How to build, train and test a feed-forward
backpropagation network in the PDPyFlow
software system!?

This document assumes you have the PDPyFlow system installed in a directory called PDP on a
linux or mac computer, and that you are working from within the PDP directory. The system
depends on Python 3.5.2 and Tensorflow 0.12, which must also be installed. Please contact the
author at aten@icloud.com or contact pdplab-support@stanford.edu for information on how to
install the software.

This tutorial will take you through the process of creating your own feed-forward network capable
of training through back propagation using the PDPyFlow software system. Along the way, you will
gain some deeper understanding of different classes and functions that underly the FFBP
interface. To make instructions clearer, this tutorial will demonstrate the creation of a new network
by the example of 8-3-8 network, also known as auto-encoding network. This network will be
trained to map an activation pattern of 8 input units to an identical pattern on 8 output units through
a distributed hidden representation of only 3 hidden units.

Creating, training, and testing a network is done in three stages:
1. Preliminary stage
1.1. Prepare data
1.2. Import required tools
2. Construction stage
2.1. Create and configure network Layers
2.2. Connect the layers into a Network
2.3. Configure the network for training and testing
3. Running stage

Each of these steps is simplified by the FFBP API and the tutorial will explain some of the relevant
details. However, if your curiosity exceeds the material presented in this tutorial, you are welcome
to explore the source code. Moreover, FFBP relies on other fully open-source libraries that can be
accessed through the links provided in some of the relevant sections of this tutorial or by a simple
web search.

In order to create and edit the code you will need a simple text editor. You can use your own
preferred text editor or use a standard UNIX editor such as nano. The example network in this
tutorial will be created with the nano text editor since all users are guaranteed to have access to it.

In order to create a text file, first go to the directory where you want this file to reside. Once in the
directory, use the nano command followed by the file name that you want to assign to the file (also

see SMIERMERL] for more information on usage):

' Correspondence: This tutorial was written by Alexandr Ten, who contributed to the development
of PDPyflow. If you have any questions or feedback regarding the code, feel free to contact him at:
aten8 @icloud.com

1

mailto:aten8@icloud.com
mailto:aten@icloud.com
mailto:pdplab-support@stanford.edu

2

user PDP $ nano filename.extension

This will create and open (but not save) a new text file or simply open an existing file where you
can enter your code. If you want to save the file, first exit the editor by pressing control + X, then
press Y or yif you want to save the contents of the file, and press Enter to perform the command.
You can open that file again by typing the same command.

An alternative way to create a file is by using standard commands like WS touchMli
you want to create your own network, it is a good idea to make a separate directory inside the
FFBP directory and store your files there. This can be done as follows:

user PDP $ mkdir FFBP/dirname
user PDP $ touch FFBP/dirname/mynet.py

user PDP $ touch FFBP/dirname/mydata.txt

Of course, you can choose your own names for the directory and the files in it, but keep in mind
that you are working with a command line interface and pretty much everything needs to be typed
manually. In this tutorial we will name our files [glsygeE:M)Y and (SRl CRt-FRo Q.

1. Preliminary Stage

1.1. Prepare data

Data preparation can be approached in different ways. One way is to create a separate text file
that will later be read from the main script. That way we don’t need to generate the same data
every time we run a network. The text file that stores data must follow a strict structure that the
object that we will build around it will understand. When such data file is loaded, it’'s read and
processed, line by line, going from top to bottom. The first row and the first column are reserved for
labels. The first row contains descriptive labels of the entries in their respective columns and is
optional (however, if you choose not to include the labels row, leave a blank line as the first line in
the document, since this line will be ignored when the file is read). Columns are separated by
commas. The entries in the first column will be interpreted as labels of the pattern pairs contained
in the same row. The next column is interpreted as an input pattern. Values of individual input units
need to be separated by spaces. The same applies to the next column, which contains the output
pattern associated with the pattern that preceded it. Thus, to create the data file for the 838

network we will create or open an existing file named ISi€:EEMEREMS4Y and then create a data
for the network:

user PDP $ nano FFBP/dirname/net838_ data.txt

GNU nano 2.5.3 File: net838 data.txt Modified

inp_label,
p1,
p2,
p3,
p4,
p5,
p6,
p7,
p8,

-
-

~-
~-

-
-

~-

-
-

~-
~-

SESESISES SIS
SESESESESE RS S)
SESESESEEN SRS
SIS IS SIS I SIS
S ST SIS IS SIS
SHER SIS SIS I SIS
N SIS IS I SIS SRS
SESESESECRCRESE S
SIS TSI SIS S)
ST SIS IS SIS
SRR SIS S I SIS)
N S I SIS SIS SIS

Note that the white spaces between columns are not necessary, and we’ve included them just for
clearer presentation. Once we’ve done preparing the data we exit nano and save the changes.

1.2. Import required modules
When data is prepared we can begin coding the main script. For this we've created a new file

called gIS%:Et:Me)Y by typing EEERER A ERaEIYA IR EI: M. The first thing we want to do

is import all the required modules that will allow us to create the network:

GNU nano 2.5.3 File: net838.py Modified

import code
import tensorflow as tf

import utilities.activation_functions as actf
import utilities.evaluation_functions as evalf
import utilities.error_functions as errf

from utilities.model import model

from FFBP.classes.DataSet import DataSet

from FFBP.classes.Layer import Layer
from FFBP.classes.Network import Network

from PDPATH import PDPATH

It is not necessary to import everything at once in the beginning, but it's a commonly followed
‘pythonean’ practice to do so. The first module imported is the [gelsle module which will enable us to
interact with the network when we run the entire script after we've created it. Next, the
module will be used to create the necessary tensorflow objects and variables. The
first three modules from the package contain some useful functions that we are going
to configure some of our network’s settings with. The model function imported from the
module arranges the layers into a dict that will be used to initialize an instance of the Network

object. From the constructors package we import PEXEErSe, [IEIR;. and classes which
3

4

define how these objects are created and structured, and how they behave. Finally, we import the
RS function which simply returns the absolute path to the PDP directory, regardless of where
this directory is in the file system.

Those of you who are new to python will benefit from noting the intuitive syntax behind import
conventions. If you import a module using or
syntax, you will need to access the required objects through the name scope of the module. For
example, later in the code we will need to refer to one of the activation functions for which we
defined the name scope as “actf": FISIMCFLLIEL. From any module we can also import individual
objects by following up the import expression with a - statement. By importing the DataSet
class from module we can use it without referring to the module form
which it came. For more information, see: https://docs.python.org/3.3/reference/import.html.

Now that the necessary tools are available, we can create a DataSet object, which will allow the
network to draw pattern pair batches of specific sizes from it as well as permute the pattern pair
order if needed. In order to create a DataSet object we need to point it to the data file that we’'ve
saved earlier. And since we will be training and testing on the same data, the object will
be constructed identically to the [JERGRIR:

path = PDPATH() + '/FFBP/dirname/net838_data.txt'
trainSet = DataSet(path)

testSet = DataSet(path)

You may want to use different data sets for training and testing. Accordingly, you would need to
create two separate files.

2. Constructing the Network

2.1. Create and configure network layers

We begin by creating the layers. Our model has three of them, however, the input layer is not
considered a Layer object since it behaves differently from hidden and output layers. Rather, it is
seen as a placeholder into which we will feed different data from the data set when the network is
run. A similar placeholder needs to be created for the target patterns:

tf.placeholder(tf.float32, shape=[None,8], name='input')

tf.placeholder(tf.float32, shape=[None,8], name='target')

Tensorflow has a useful operation to implement such placeholders. The above commands create
two tensorflow placeholders. Each of these will be fed numeric arrays that will be converted to
tensorflow tensors. The first argument in both cases is which specifies the type of
the resulting tensors. The tensor shape is given as a list or a tuple with two elements (the number
of rows, the number of columns). If is given instead of an integer, the value for corresponding
dimension will be open ended. This is useful when we want to feed batches of different sizes (e.g.
for training and testing) without having to change the sizes of the placeholders. The last argument
is just a string representing the name of the output tensor. For more information on placeholders
and other approaches to feeding data into a graph consult the following links: https:/
www.tensorflow.org/api_docs/python/io _ops/placeholders#placeholder and https://
www.tensorflow.org/how_tos/reading data/.

4

The hidden layer and the output layer are created as Layer objects because unlike the input layer
they both have incoming tensors, incoming connections, and activation functions associated with
them. Layer objects expect many arguments for initialization:

hid = Layer(input = PHinp,
size =
act = actf.sigmoid,

layer_name = 'hidden’',
layer_type 'hidden')
hid.init_wrange([-1, 1, 1])

First, we specify the input. Our hidden layer takes the output of the placeholder,
which is a tensor of shape ?x8. As one of the preconditions of our auto-encoding problem, the
hidden layer size is 3 units. Next we define the activation function for the layer. In our example we
use the sigmoid function from the module. Functions from this module
are tensorflow operations, which means that they take tensors as their inputs and return tensors as
their outputs. The output tensor will be captured in the attribute when we run the
network. The is given by a string and could be a string version of the name of its

variable or any other string. Important thing to keep in mind is that this string is used by the viewer
to annotate the layers with their corresponding names. Finally, [EN=Ig8%s= should be given either
the or tring argument. This is optional, but if IENISRT: is identified as

anything other than JeJiiqeJisd you won'’t be able to visualize the target vector for this layer later, if
it exists.

After creating a Layer object we can proceed in two different ways about constraining the
initialization of incoming weights connecting the Layer to its sender. In this tutorial we've opted for
one of these alternatives and in the XOR. rogram you saw the other approach. Here, right after
creating the hidden layer, we use the w method to set the lower and the upper
bounds of weight range. This method expects one of three possible inputs. If you just give it a 0, all
weights will be initialized at 0. If you give it a list or a tuple of two numbers, the weights will be
initialized randomly and uniformly between the values in the list or the tuple. The first value will be
the lower limit, and the second value will be the upper limit. You can optionally include a third item
in the input container and it will serve as a random number generator seed. Using a particular seed
value, you will be able to run several sessions, perhaps using different hyperparameters, starting
from the same pseudo-randomly-generated state. Note that we need to configure the weights for
each layer separately, unlike in the XOR.py program. However, this provides some extra flexibility if
we wanted a set of weights to a specific layer to be in some specific range.

Similarly to the above, we instantiate our output layer. Take note of the differences between this
and the layer initialization:

output = Layer(input = hid,
size =
act = actf.sigmoid,

layer_name 'output’,
layer_type 'output"')
output.init_wrange([-1, 1, 11)

As you can see the input tensor is the activation attribute of the Layer object. Note also,
that you don’t have to use the same activation function for each layer. You can use any function
from the EIASAEYSTIENIIeslelsls module or create your own (just make sure it outputs a

5

6

tensorflow tensor), if you want to have layers with different activation functions. This module is
there for convenience and accessibility purposes and uses tensorflow activation functions directly
without adding any utility to underlying computation. You can always use tensorflow functions
directly, e.g. (see https://www.tensorflow.org/api_docs/python/nn/
activation functions). Currently seven choices are provided in the
module (listed in Table 1). Also see: htips://en.wikipedia.org/wiki/Activation_function for a more
comprehensive review of activation functions.

Table 1. Activation functions from PDP/utilities/activation_functions.py

name equation derivative range
linear flx)== fl(x) =1 (—00,00)
1

sigmoid f(x) = = f(x) = flx)(1 - f(x)) (0,1)
2 /

tanh flz) = T2t (@) =1-f(z)? (-1,1)

evi 8 .fl . 5
softmax /(@i = S g Tk g;j) = f(@)i(6i; — f(@);) (0,1)
x / 1

softplus f(z) =In(1 +¢%) fiz) = Fp— (0, 00)
fi , f

relu f(x):{g fgf‘ i;g f('T):{(l) fgi i;g [0,00)

2.2 Several layers feeding into one layer

You might want to explore architectures in which a given layer receives activation from two or more
sending layers. Imagine we added another hidden layer to our 8-3-8 model, not sequentially to the
existing one, but in parallel as in Figure 1.

All we need to do for this computation to work is concatenate (or join) the activations of the two
hidden layers with the help of function and use the resulting composite as the
output layer’s input tensor. This is done internally by the receiving layer object, so all we are left
with is passing the list of inputs:

hidl = Layer(..) Figure 1. FFBP network with two
hidl.init_weights(..) parallel hidden units

hid2 = Layer(..)
hid2.init_weights(..)

output = Layer(input = [hidl, hid2],

size = 8,

act = actf.sigmoid,

layer_name = 'output’,

layer_type 'output')
output.init_wrange([-1, 1,

output

https://www.tensorflow.org/api_docs/python/nn/activation_functions_
https://www.tensorflow.org/api_docs/python/nn/activation_functions_
https://en.wikipedia.org/wiki/Activation_function

7

You can see a concrete example of implementing parallel converging layers in the FFBP/
EightThings.py program and the actual code of how concatenation is done in the FFBP/classes/
Layer.py file in the first few lines of the __init__ method of the Layer class.

2.3. Connect layers into a network

To construct a network from the created Layers, we first need to build a model of the network. It is
simply a python dict with three keys: ‘images’, ‘network’, and ‘labels’. The first key stores input
layers (i.e. input placeholders of the network), The ‘network’ key stores the Layer objects, and the
‘labels’ key contains the target placeholder. You can create such dict yourself, but as a
convenience tool we use the model function that we’ve already imported:

mode1838 = model(PHinp, [hid, outputl]l, PHout)

The order in which we pass the arguments matters. All input placeholders must be given first. If
there are several input layers, pass them as a list or a tuple containing each input layer. Next,
analogously pass all the Layer object arguments. Finally, the targets placeholder is given as the
third position argument. When we have the model of out network, we can pass it to the
constructor:

net838 = Network(model838, name='net838', logdir='dirname')

Optionally, you can name your network with a string. Another optional argument is [JelckNg. If this
argument is omitted, the network will store training logs and parameter checkpoints inside the
default directory FFBP/logs. If you do specify the logdir parameter (which should be the same as
you directory in the FFBP directory), the default path will be changed to FFBP/dirname/logs and
everything will be stored there.

2.4. Configure the network for training and testing

To configure our network, we will use various methods that are available for the Network class as
well as assign some values to its attributes directly. We will first give it the training and testing data
sets that we’ve defined earlier:

net838.train_set = trainSet

net838.test_set = testSet

Next, we will use the method to initialize tensorflow variables that represent
network weights and configure various training settings:

net838.initconfig(loss = errf.squared_error,
train_batch_size = 8,
learning_rate = .3,
momentum = .9,

permute = False,
ecrit = 0.01,
test_func = evalf.tss)

If you add an extra argument wrange, and define it as a two- or three-element list, it will overwrite
the initialized weights that have been specified before.

Alternatively, we could perform configuration and initialization separately:

net838.1init_weights()
net838.configure(loss, traing batch_size, learnin_rate, momentum,

permute, test_func)

The keyword arguments are rather self-explanatory. We first define the loss function to be the

function from the module that we imported as [gi.

Likewise, we configure the test function to compute 5 with the help of the corresponding function

from the [EINEIS R ORISR module (imported as [BYERNH). Although functions for error and
performance evaluation calculations can be set independently, they perform identical

computations. That is, the squared error function from error functions module is the same as the
tss function from the evaluation function module. Keep in mind, however that error function (gl
is used to compute gradients during training, while the evaluation function (E¥EXE) is the one used
for testing. Table 2 shows the available error and evaluation functions and their derivatives:

Table 2. Error (loss) and evaluation functions from PDP/utilities

name equation derivative
5 oL
squared error Lp(t,a) = Zi(tip — Qip) 9a 'p =2 Zi(tip — aip)
, i
oL t; 1—1t;
cross entropy Lp(t,a) = — ZZ [tiplog (aip) + (1 — tip) log (1 — azp)] 87;; =— (az + ﬁ)

L =loss, p = pattern index, t =target value, a = obtained activation value, i = unit index

Note that the batch size needs to divide the total number of patterns in the train set, otherwise an
error will be raised.

When we construct, configure, and initialize the network, several inconspicuous processes occur
behind the scenes. Essentially, we are coding the flow of information through a computational
process. A level deeper than the relatively intuitive interface, the code relies on a tensorflow Graph
object that contains all created tensorflow Operations (units of computation or functions) and
Tensors (units of data that flow through the graph). A complete graph can be run in a tensorflow
Session which is capable of reserving computational resources for launching the graph. So what
we've really done so far is created a functional tensorflow graph and reserved resources for its
execution. Here is a recommended tensorflow page that introduces some of the concepts
mentioned so far: https://www.tensorflow.org/get started/basic usage.

Add the following line at the end of your code to enable interactive usage (see 3.3 Interactive
Methods on page 9): [fefo[sHERi=I -l A QT TLA MMM G I REAOD]; then save and close the file.

3. Running the Network

The network we've created can be trained and tested with or without visualization depending on
user preference. Each of these capabilities can be accessed either interactively through the use of
the python shell, or autonomously by scripting the appropriate commands, or through a
combination of both. Regardless of how training / testing is approached, the Network relies on two
basic methods that are not intended for direct use, but are as accessible as any other Network
method. These are Network._train() and Network._test() methods. It is useful to be
familiar with these methods, so they will be briefly described in the following section.

https://www.tensorflow.org/get_started/basic_usage

9

Although visualization methods rely on data generated by these training and testing methods, it is
an independent process that can be called outside any particular run, provided that some
appropriate data exists in a known and accessible location. We will therefore demonstrate
visualization in a separate section.

3.1 Network._train() Method

Network._train() requires three positional arguments: num_epochs, dataset, batch_size.
It also takes two keyword arguments with default values: ecrit = 0.01, permute = False.
Unsurprisingly, num_epochs is responsible for setting the number of training iterations the network
will go through. One epoch accomplishes a complete sweep through the data set, though learning
experience which the network can get in one epoch can vary. An epoch can be comprised of one
or more steps depending on the batch size. The bigger the batch size, the less steps it will take the
network to complete an epoch. More precisely, the number of steps is equal to the total number of
training pairs divided by batch_size Therefore, batch size cannot be greater than the number of
training pairs and must divide it into equal parts. Every training step yields a batch-wise error
measure that is accumulated in the epoch-wise error. This epoch-wise or total error is compared to
a critical value. The ecrit parameter sets this criterion so that the network breaks from the
training loop whenever the obtained loss becomes less than or equal to ecrit. Finally, if the
permute parameter is set to True, the network will train in ptrain mode. If you want to perform
stochastic gradient descent, specify a train_batch_size that is less than the number of patterns in
the training set, and divides evenly into that number, and then set permute to True. This will then
cause the network to run minibatches of train_batch_size patterns (selected at random without
replacement from the training data), updating the weights after each minibatch.

3.2 Network._test() Method

Network._test () method is designed to do two things: (1) evaluate the error at the current state
of the network and (2) make a snapshot of the particular state and store it for later analyses. The
method takes two positional arguments (dataset and evalfunc) and two keyword arguments
with a default values (snapshot = False and checkpoint = False). Therefore, it needs to
know which data set it will be tested on and which evaluation function it is to use for this test. It will
also check whether the snapshot parameter is anything other than False or 0. In this case, the
test method will try to take a snapshot of the network state. The checkpoint parameter gates the
activity of tensorflow’s saver function that saves all session variable values (i.e. weights and
biases) at a particular time. Saved checkpoint files which are essentially network states can be
restored later.

As you can see, direct calls to the _train() and _test () methods require entering all of these
parameters every time you want run some training or test your network, so it might not be ideal for
interactive use. If we configure the network the way we did our example network, it will be much
simpler to train and test the network interactively.

3.3 Interactive Methods

The first thing to include in our main script that will allow to interact with our network is to use the
module that we’ve imported in the beginning:

code.interact(local = locals())

This function launches an interactive console which emulates the behavior of the interactive python
interpreter and loads variables in the local scope of the script to the scope of the console. At this
point we can consider our main script complete. If we save and quit script and run it in the terminal
by using the command and passing to it the path to our script we will be set to interact

9

10

with the network. Note that if you created your.py file in a subdirectory, you will need to precede to
put the subdirectory name in the path to the file:

user PDP $ python3.5 FFBP/net838.py

Python 3.5.2 |Continuum Analytics, Inc.| (default, Jul 2 2016,
17:52:12)

[GCC 4.2.1 Compatible Apple LLVM 4.2 (clang-425.0.28)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
(InteractiveConsole)
>>>

The three angular brackets are the console’s command prompt. The prompt indicates that the
control is given to the user and that the console is waiting for some input from them. Let’s go
ahead and use the interactive test method to test our yet untrained network:

>>> net838.test()
[net838] Initial test...

[net838] Error = 15.319734573364258

Internally, the _test() method was called. However, we didn’t need to enter any arguments,
because we’ve already configured them in the script. The output is the single error value. As you
might imagine, more has happened that it seems. Since we didn't change the scope setting, the
network took a snapshot of all 9 attributes (see Table 1) and stored them into a snapshot file which
was created inside the logging directory. We will talk more about the logging directory (or logdir
for short) later when we discuss visualization.

Now let’s train the network for 50 epochs with the interactive train method:

>>> net838.train(50)
[net838] Training: |###############| 100.0%

[net838] Done training for 50/50 epochs (0.051 seconds)

A text-based progress bar appears and fills up as the network completes each iteration of the loop
inside the _test () method. When the training loop terminates, the network reports the number of
epochs it trained for on the most recent call, the total number of epochs, and the time it took to
finish the training loop.

There is another useful method that combines the two described above. It will make the network
test and train intermittently for some maximum number of epochs or until ecrit is reached. We
call this method tnt:

>>> net838.tnt(500,50,0)

[net838] Now in train and test mode...
[net838] epoch 0: 15.319734573364258
[net838] epoch 50: 5.697778701782227

[net838] epoch 100: 5.017020225524902
[net838] epoch 150: 5.009669303894043
[net838] epoch 200: 5.006933689117432

10

11

[net838] epoch 250: 5.005369186401367
[net838] epoch 300: 5.004334449768066
[net838] epoch 350: 5.003580093383789

[net838] epoch 400: 5.0029826164245605

[net838] epoch 450: 5.002461910247803

[net838] Final error (epoch 500): 5.00193977355957
[net838] Process terminated.

What we did is told the network to test once, then train for 500 epochs, stopping every 50th epoch
to test again. The argument of 0 is passed to the checkpoints parameter and stops the network
from saving tf.checkpoints. Any other positive integer would set the interval at which the network
would save the checkpoints, but note that this process compromises speed quite a bit. If you want
to use different data sets than those configured with [R S CRRERSLEReR®), You can add two
corresponding keyword arguments. e.g:

>>> net838.tnt(500,50,0,

train_set = some_set, test_set = some_other_set)

3.4 Visualization

The train() and test() methods you saw above were designed to function with minimal input.
However, the behavior of both methods can be modified by changing the default value of the vis
keyword argument from False to True or 1. ‘Vis’ stands for visualization, and if set to True, the
two methods will create their respective visualizations. So, for example, if we wanted to train our
838 network for another 100 epochs and show us how the loss value has changed over time since
epoch 0 we would type:

>>> net838.train(100,1)
[net838] Training: |####it#stiiiitts| 100.0%

[net838] Done training for 100/650 epochs (0.082 seconds)

As with the previous demonstration the output shows us the progress bar, epochs, and time, but
this time, a new window has appeared:

o060 FFBPlog_0

16

14

12

6 tss: 5.001961708068848

0 100 200 300 400 500 600
epoch

epoch: 498

11

12

In it, you can see the line plot of the error (in our case tss) across time. The slide widget below the
plot allows you to slide back and forth through the timeline to see the value of tss more precisely. If
we click on any point of the slide except the slider pin, the position of the pin will change one unit in
the direction of where we've clicked. Note that the *>>>’ prompt has not disappeared from the shell.
If you execute the same command again, the network will train for another 100 epochs and the
graph will be updated accordingly.

If we want to inspect the state of the network rather than its performance, we can use the test
method with visualization parameter set to True:

>>> net838.test(1)
[net838] Test after epoch 600:

[net838] Error = 4.999884128570557
[FFBP Viewer] Initializing viewer for FFBPlog_0 ...

Network state visualization is also interactive, which is controlled through the Controls panel at the
bottom of the window. The visualization shows you arrays of values that were tested at any
particular moment. In the example below we can see depictions of the hidden layer and the output
layer. Each layer’s visualization can be divided into two parts: the forward propagation (FP; on the
left) and the back propagation (BP; right) part. The FP side shows you the values of each individual
weight to each individual unit in the layer, as we as bias, net input and activation values of each
unit. If the layer has a target vector associated with it, you will also see it next to the activation
vector. Below each weight array, you can see the input vector to the layer. The BP side contains
arrays with values of gradients with respect to net input and activation. You can inspect the precise
value of each tile by clicking on it. As you do, the chosen tile will be represented at the left-hand
side of the controls panel.

' ® L FFBPlog_0O
output
S £ 2

[I |

HEE B B

HEEERN

HE H B

HS BB

| O

L[[|

HE H BN
hricid

hidden N
u b net & =
u H |
| |
| u
p4 B
lrate: 0.3
mrate: 0.9
2 5 0 error function: squared_error
_ Zoom out Zoom in batch size: 8

train mode: s-train
epoch
Update

In addition to inspecting tile values, the control panel allows you to discretely move through time
and observe the state of the network at each epoch that it was tested on. You can use the slider
widget to navigate the particular time slice you want to see and then click the update button to
change the image. Since the state of the network is different in response to different inputs, you

12

13

can look at any input on a given epoch, by choosing one from the drop-down menu and hitting the
update button.

3.5 FFBP Viewer

The above visualization is a result of reading a logged snapshot-log file that was created when the
network was tested for the first time and appended on subsequent tests. The snapshot-log file is
stored in the session directory which is created every time a new Network object is instantiated.
The directory is stamped by a single index and contains whatever contents the user has saved
during the session. If you would like to view a previously stored session, you can use the
FFBP_viewer.py. To do this, go back to the terminal prompt and run the viewer. You will first be
asked to provide the name of the user directory if you have created one inside FFBP. If you have
not, the program will look for snapshots in the default directory. Assuming you have created a
separate directory for your files, you need to enter the name of that directory first. Then you will
see another prompt asking you to provide the name of log directory itself or simply its index. When
you enter the name or the index, the familiar visualization panel will appear. The program will ask
you if you want to proceed to view another file. If you do, enter ‘y’ and you will be prompted to give
another index:

user PDP $ python3.5 FFBP/FFBP_viewer.py

[FFBP Viewer] Provide user directory (if any), or press 'enter' to use
default directory: dirname

[FFBP Viewer] Enter name of log directory OR corresponding index: 0

[FFBP Viewer] Initializing viewer for FFBPlog_0 ...
[FFBP Viewer] Would you like to proceed?
[y/n] — |}

Conclusion

We have walked through the steps necessary for running a functional feed-forward neural network.
We began by creating a data file and data objects for training and testing our network. We then
constructed the actual network and configured it for further interaction. After initializing the network,
we were able to train and test it using the interactive methods as well as visualize the results with
the help of a couple of visualization tools. By now, you should be able to build your own feed-
forward network and explore its progress as you train it. Although the range of possible
architectures is rather limited with the provided tool set, this tutorial didn’t go through every
possible variation and more can be understood and achieved by exploring the source code.

You may have already noticed that there is a net838.py file inside the FFBP directory. If you follow
the instructions of this tutorial you should end up with a copy of the exact same program inside
your own directory. You can compare how the two programs behave to make sure you haven’t
missed anything. Another thing you can do is use the net838.py file as a template that you can
then modify to create your own network.

13

