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How to build, train and test a feed-forward 
backpropagation network in the PDPyFlow 
software system1 
 
This document assumes you have the PDPyFlow system installed in a directory called PDP on a 

linux or mac computer, and that you are working from within the PDP directory. The system depends 

on Python 3.5.2 and Tensorflow 0.12, which must also be installed. Please contact the author at 

aten@icloud.com or contact pdplab-support@stanford.edu for information on how to install the 

software.  

 

This tutorial will take you through the process of creating your own feed-forward network capable of 

training through back propagation using the PDPyFlow software system. Along the way, you will gain 

some deeper understanding of different classes and functions that underly the FFBP interface. To 

make instructions clearer, this tutorial will demonstrate the creation of a new network by the example 

of 8-3-8 network, also known as auto-encoding network. This network will be trained to map an 

activation pattern of 8 input units to an identical pattern on 8 output units through a distributed hidden 

representation of only 3 hidden units.  

 

Creating, training, and testing a network is done in three stages: 

1. Preliminary stage 

1.1.  Prepare data 

1.2.  Import required tools 

2. Construction stage 

2.1.  Create and configure network Layers 

2.2.  Connect the layers into a Network 

2.3.  Configure the network for training and testing 

3. Running stage 

 

Each of these steps is simplified by the FFBP API and the tutorial will explain some of the relevant 

details. However, if your curiosity exceeds the material presented in this tutorial, you are welcome 

to explore the source code. Moreover, FFBP relies on other fully open-source libraries that can be 

accessed through the links provided in some of the relevant sections of this tutorial or by a simple 

web search. 

 

In order to create and edit the code you will need a simple text editor. You can use your own preferred 

text editor or use a standard UNIX editor such as nano. The example network in this tutorial will be 

created with the nano text editor since all users are guaranteed to have access to it.  

 

In order to create a text file, first go to the directory where you want this file to reside. Once in the 

directory, use the nano command followed by the file name that you want to assign to the file (also 

see $ man nano for more information on usage): 

                                                 
1 Correspondence: This tutorial was written by Alexandr Ten, who contributed to the development 
of PDPyflow. If you have any questions or feedback regarding the code, feel free to contact him at: 
aten8@icloud.com 

mailto:aten@icloud.com
mailto:pdplab-support@stanford.edu
mailto:aten8@icloud.com
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This will create and open (but not save) a new text file or simply open an existing file where you can 

enter your code. If you want to save the file, first exit the editor by pressing control + X, then press 

Y or y if you want to save the contents of the file, and press Enter to perform the command. You can 

open that file again by typing the same command. 

 

An alternative way to create a file is by using standard commands like $ mkdir and $ touch. If you 

want to create your own network, it is a good idea to make a separate directory inside the FFBP 

directory and store your files there. This can be done as follows: 

Of course, you can choose your own names for the directory and the files in it, but keep in mind that 

you are working with a command line interface and pretty much everything needs to be typed 

manually. In this tutorial we will name our files net838.py and net838_data.txt. 

 

1. Preliminary Stage 

1.1. Prepare data 

Data preparation can be approached in different ways. One way is to create a separate text file  that 

will later be read from the main script. That way we don’t need to generate the same data every time 

we run a network. The text file that stores data must follow a strict structure that the object that we 

will build around it will understand. When such data file is loaded, it’s read and processed, line by 

line, going from top to bottom. The first row and the first column are reserved for labels. The first row 

contains descriptive labels of the entries in their respective columns and is optional (however, if you 

choose not to include the labels row, leave a blank line as the first line in the document, since this 

line will be ignored when the file is read). Columns are separated by commas. The entries in the first 

column will be interpreted as labels of the pattern pairs contained in the same row. The next column 

is interpreted as an input pattern. Values of individual input units need to be separated by spaces. 

The same applies to the next column, which contains the output pattern associated with the pattern 

that preceded it. Thus, to create the data file for the 838 network we will create or open an existing 

file named net838_data.txt and then create a data for the network: 

 

 

 

 

 

Note that the white spaces between columns are not necessary, and we’ve included them just for  

clearer presentation. Once we’ve done preparing the data we exit nano and save the changes. 

user PDP $ nano filename.extension 

user PDP $ nano FFBP/dirname/net838_data.txt 

user PDP $ mkdir FFBP/dirname 

user PDP $ touch FFBP/dirname/mynet.py 

user PDP $ touch FFBP/dirname/mydata.txt 
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1.2. Import required modules 

When data is prepared we can begin coding the main script. For this we’ve created a new file called 

net838.py by typing $ nano FFBP/dirname/net838.py. The first thing we want to do is import all the 

required modules that will allow us to create the network: 

It is not necessary to import everything at once in the beginning, but it’s a commonly followed 

‘pythonean’ practice to do so. The first module imported is the code module which will enable us to 

interact with the network when we run the entire script after we’ve created it. Next, the tensorflow 

module will be used to create the necessary tensorflow objects and variables. The first three modules 

from the utilities package contain some useful functions that we are going to configure some of our 

network’s settings with. The model function imported from the model module arranges the layers into 

a dict that will be used to initialize an instance of the Network object. From the constructors package 

we import DataSet, Layer, and Network classes which define how these objects are created and 

structured, and how they behave. Finally, we import the PDPATH function which simply returns the 

absolute path to the PDP directory, regardless of where this directory is in the file system. 

GNU nano 2.5.3              File: net838.py                    Modified 

 

import code 

import tensorflow as tf 

 

import utilities.activation_functions as actf 

import utilities.evaluation_functions as evalf 

import utilities.error_functions as errf 

 

from utilities.model import model 

 

from FFBP.classes.DataSet import DataSet 

from FFBP.classes.Layer import Layer 

from FFBP.classes.Network import Network 

from PDPATH import PDPATH 

GNU nano 2.5.3            File: net838_data.txt                Modified 

 

inp_label,  input,             output, 

p1,         1 0 0 0 0 0 0 0,   1 0 0 0 0 0 0 0, 

p2,         0 1 0 0 0 0 0 0,   0 1 0 0 0 0 0 0, 

p3,         0 0 1 0 0 0 0 0,   0 0 1 0 0 0 0 0, 

p4,         0 0 0 1 0 0 0 0,   0 0 0 1 0 0 0 0, 

p5,         0 0 0 0 1 0 0 0,   0 0 0 0 1 0 0 0, 

p6,         0 0 0 0 0 1 0 0,   0 0 0 0 0 1 0 0, 

p7,         0 0 0 0 0 0 1 0,   0 0 0 0 0 0 1 0, 

p8,         0 0 0 0 0 0 0 1,   0 0 0 0 0 0 0 1, 
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Those of you who are new to python will benefit from noting the intuitive syntax behind import 

conventions. If you import a module using import modulename or import modulename as mn syntax, you 

will need to access the required objects through the name scope of the module. For example, later 

in the code we will need to refer to one of the activation functions for which we defined the name 

scope as “actf": actf.sigmoid. From any module we can also import individual objects by following up 

the import expression with a from - statement. By importing the DataSet class from 

FFBP.classes.DataSet module we can use it without referring to the module form which it came. For 

more information, see: https://docs.python.org/3.3/reference/import.html. 

 

Now that the necessary tools are available, we can create a DataSet object, which will allow the 

network to draw pattern pair batches of specific sizes from it as well as permute the pattern pair 

order if needed. In order to create a DataSet object we need to point it to the data file that we’ve 

saved earlier. And since we will be training and testing on the same data, the testSet object will be 

constructed identically to the trainSet: 

You may want to use different data sets for training and testing. Accordingly, you would need to 
create two separate files. 
 

2. Constructing the Network 

2.1. Create and configure network layers 

We begin by creating the layers. Our model has three of them, however, the input layer is not 
considered a Layer object since it behaves differently from hidden and output layers. Rather, it is 
seen as a placeholder into which we will feed different data from the data set when the network is 
run. A similar placeholder needs to be created for the target patterns: 
Tensorflow has a useful operation to implement such placeholders. The above commands create 
two tensorflow placeholders. Each of these will be fed numeric arrays that will be converted to 
tensorflow tensors. The first argument in both cases is tf.float32 which specifies the type of the 

resulting tensors. The tensor shape is given as a list or a tuple with two elements (the number of 
rows, the number of columns). If None is given instead of an integer, the value for corresponding 

dimension will be open ended. This is useful when we want to feed batches of different sizes (e.g. 
for training and testing) without having to change the sizes of the placeholders. The last argument is 
just a string representing the name of the output tensor. For more information on placeholders and 
other approaches to feeding data into a graph consult the following links: 
https://www.tensorflow.org/api_docs/python/io_ops/placeholders#placeholder and 
https://www.tensorflow.org/how_tos/reading_data/. 
 

path = PDPATH() + '/FFBP/dirname/net838_data.txt' 

trainSet = DataSet(path) 

testSet = DataSet(path) 

PHinp = tf.placeholder(tf.float32, shape=[None,8], name='input') 

PHout = tf.placeholder(tf.float32, shape=[None,8], name='target') 
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The hidden layer and the output layer are created as Layer objects because unlike the input layer 
they both have incoming tensors, incoming connections, and activation functions associated with 
them. Layer objects expect many arguments for initialization: 
First, we specify the input. Our hidden layer takes the output of the input_layer placeholder, which is 

a tensor of shape ?x8. As one of the preconditions of our auto-encoding problem, the hidden layer 
size is 3 units. Next we define the activation function for the layer. In our example we use the sigmoid 
function from the activation_functions module. Functions from this module are tensorflow operations, 
which means that they take tensors as their inputs and return tensors as their outputs. The output 
tensor will be captured in the Layer.act attribute when we run the network. The layer_name is given by 

a string and could be a string version of the name of its variable or any other string. Important thing 
to keep in mind is that this string is used by the viewer to annotate the layers with their corresponding 
names. Finally, layer_type should be given either the ‘hidden’ or ’output’ string argument. This is 
optional, but if layer_type is identified as anything other than ‘output’ you won’t be able to visualize 

the target vector for this layer later, if it exists. 
 
After creating a Layer object we can proceed in two different ways about constraining the initialization 
of incoming weights connecting the Layer to its sender. In this tutorial we’ve opted for one of these 
alternatives and in the XOR.py program you saw the other approach. Here, right after creating the 
hidden layer, we use the init_wrange() method to set the lower and the upper bounds of weight range. 

This method expects one of three possible inputs. If you just give it a 0, all weights will be initialized 
at 0. If you give it a list or a tuple of two numbers, the weights will be initialized randomly and uniformly 
between the values in the list or the tuple. The first value will be the lower limit, and the second value 
will be the upper limit. You can optionally include a third item in the input container and it will serve 
as a random number generator seed. Using a particular seed value, you will be able to run several 
sessions, perhaps using different hyperparameters, starting from the same pseudo-randomly-
generated state. Note that we need to configure the weights for each layer separately, unlike in the 
XOR.py program. However, this provides some extra flexibility if we wanted a set of weights to a 
specific layer to be in some specific range.  
 
Similarly to the above, we instantiate our output layer. Take note of the differences between this and 
the hidden layer initialization: 
As you can see the input tensor is the activation attribute of the hidden Layer object. Note also, that 

you don’t have to use the same activation function for each layer. You can use any function from the 

activation_functions module or create your own (just make sure it outputs a tensorflow tensor), if you 

want to have layers with different activation functions. This module is there for convenience and 
accessibility purposes and uses tensorflow activation functions directly without adding any utility to 

hid = Layer(input = PHinp, 

    size = 3, 

   act = actf.sigmoid, 

   layer_name = 'hidden',  

   layer_type = 'hidden') 

hid.init_wrange([-1, 1, 1]) 

output = Layer(input = hid,  

  size = 8,  

  act = actf.sigmoid, 

  layer_name = 'output',  

  layer_type = 'output') 

output.init_wrange([-1, 1, 1]) 
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underlying computation. You can always use tensorflow functions directly, e.g. act = tf.nn.softmax 

(see https://www.tensorflow.org/api_docs/python/nn/activation_functions_). Currently seven choices 
are provided in the activation_functions module (listed in Table 1). Also see: 

https://en.wikipedia.org/wiki/Activation_function for a more comprehensive review of activation 
functions. 

2.2 Several layers feeding into one layer 

You might want to explore architectures in which a given layer receives activation from two or more 
sending layers. Imagine we added another hidden layer to our 8-3-8 model, not sequentially to the 
existing one, but in parallel as in Figure 1. 
 
All we need to do for this computation to work is concatenate (or join) the activations of the two 

hidden layers with the help of tf.concat() function and use the resulting composite as the output layer’s 

hid1 = Layer(…) 

hid1.init_weights(…) 

hid2 = Layer(…) 

hid2.init_weights(…) 

 

output = Layer(input = [hid1, hid2], 

   size = 8,  

   act = actf.sigmoid, 

   layer_name = 'output',  

   layer_type = 'output') 

output.init_wrange([-1, 1, 1]) 

Table 1. Activation functions from PDP/utilities/activation_functions.py 

name equation derivative range 

linear    

sigmoid 
 

  

tanh 
 

  

softmax 
  

 

softplus  
 

 

relu 
  

 

 

https://www.tensorflow.org/api_docs/python/nn/activation_functions_
https://en.wikipedia.org/wiki/Activation_function
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input tensor. This is done internally by the receiving layer object, so all we are left with is passing the 
list of inputs: 
You can see a concrete example of implementing parallel 
converging layers in the FFBP/EightThings.py program and 
the actual code of how concatenation is done in the 
FFBP/classes/Layer.py file in the first few lines of the __init__ 
method of the Layer class. 
 

2.3. Connect layers into a network 

To construct a network from the created Layers, we first need 

to build a model of the network. It is simply a python dict with 
three keys: ‘images’, ‘network’, and ‘labels’. The first key stores input layers (i.e. input placeholders 
of the network), The ‘network’ key stores the Layer objects, and the ‘labels’ key contains the target 
placeholder. You can create such dict yourself, but as a convenience tool we use the model function 
that we’ve already imported: 

The order in which we pass the arguments matters. All input placeholders must be given first. If there 
are several input layers, pass them as a list or a tuple containing each input layer. Next, analogously 
pass all the Layer object arguments. Finally, the targets placeholder is given as the third position 
argument. When we have the model of out network, we can pass it to the Network constructor: 
Optionally, you can name your network with a string. Another optional argument is logdir. If this 

argument is omitted, the network will store training logs and parameter checkpoints inside the default 
directory FFBP/logs. If you do specify the logdir parameter (which should be the same as you 
directory in the FFBP directory), the default path will be changed to FFBP/dirname/logs and 
everything will be stored there. 

2.4. Configure the network for training and testing 

To configure our network, we will use various methods that are available for the Network class as 
well as assign some values to its attributes directly. We will first give it the training and testing data 

sets that we’ve defined earlier: 
Next, we will use the initconfigure method to initialize tensorflow variables that represent network 

weights and configure various training settings: 

model838 = model(PHinp, [hid, output], PHout) 

net838 = Network(model838, name='net838', logdir='dirname') 

net838.train_set = trainSet 

net838.test_set = testSet 

net838.initconfig(loss = errf.squared_error, 

      train_batch_size = 8, 

      learning_rate = .3, 

      momentum = .9, 

      permute = False, 

      ecrit = 0.01, 

      test_func = evalf.tss) 

Figure 1. FFBP network with two 
parallel hidden units 
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If you add an extra argument wrange, and define it as a two- or three-element list, it will overwrite 

the initialized weights that have been specified before. 
 
Alternatively, we could perform configuration and initialization separately: 
The keyword arguments are rather self-explanatory. We first define the loss function to be the 
squared_error function from the error_functions module that we imported as errf. Likewise, we configure 
the test function to compute tss with the help of the corresponding function from the 
evaluation_functions module (imported as evalf). Although functions for error and performance 

evaluation calculations can be set independently, they perform identical computations. That is, the 
squared error function from error functions module is the same as the tss function from the evaluation 

function module. Keep in mind, however that error function (errf) is used to compute gradients during 
training, while the evaluation function (evalf) is the one used for testing. Table 2 shows the available 
error and evaluation functions and their derivatives: 
 
Note that the batch size needs to divide the total number of patterns in the train set, otherwise an 
error will be raised. 
 
When we construct, configure, and initialize the network, several inconspicuous processes occur 
behind the scenes. Essentially, we are coding the flow of information through a computational 
process. A level deeper than the relatively intuitive interface, the code relies on a tensorflow Graph 
object that contains all created tensorflow Operations (units of computation or functions) and Tensors 
(units of data that flow through the graph). A complete graph can be run in a tensorflow Session 
which is capable of reserving computational resources for launching the graph. So what we’ve really 
done so far is created a functional tensorflow graph and reserved resources for its execution. Here 
is a recommended tensorflow page that introduces some of the concepts mentioned so far: 
https://www.tensorflow.org/get_started/basic_usage. 
 
Add the following line at the end of your code to enable interactive usage (see 3.3 Interactive 
Methods on page 9): code.interact(local = locals()); then save and close the file. 

 

3. Running the Network 
The network we’ve created can be trained and tested with or without visualization depending on user 
preference. Each of these capabilities can be accessed either interactively through the use of the 
python shell, or autonomously by scripting the appropriate commands, or through a combination of 
both. Regardless of how training / testing is approached, the Network relies on two basic methods 

net838.init_weights() 

net838.configure(loss, traing_batch_size, learnin_rate, momentum,      

permute, test_func) 

Table 2. Error (loss) and evaluation functions from PDP/utilities 

name equation derivative 

squared error 
 

 

cross entropy 
 

 

L = loss, p = pattern index, t = target value, a = obtained activation value, i = unit index 

 

https://www.tensorflow.org/get_started/basic_usage
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that are not intended for direct use, but are as accessible as any other Network method. These are 
Network._train() and Network._test() methods. It is useful to be familiar with these methods, so they 

will be briefly described in the following section. 
 
Although visualization methods rely on data generated by these training and testing methods, it is 
an independent process that can be called outside any particular run, provided that some appropriate 
data exists in a known and accessible location. We will therefore demonstrate visualization in a 
separate section.  

3.1 Network._train() Method 

Network._train() requires three positional arguments: num_epochs, dataset, batch_size. It also takes two 
keyword arguments with default values: ecrit = 0.01, permute = False. Unsurprisingly, num_epochs is 

responsible for setting the number of training iterations the network will go through. One epoch 
accomplishes a complete sweep through the data set, though learning experience which the network 
can get in one epoch can vary. An epoch can be comprised of one or more steps depending on the 
batch size. The bigger the batch size, the less steps it will take the network to complete an epoch. 
More precisely, the number of steps is equal to the total number of  training pairs divided by 
batch_size Therefore, batch size cannot be greater than the number of training pairs and must divide 
it into equal parts. Every training step yields a batch-wise error measure that is accumulated in the 
epoch-wise error. This epoch-wise or total error is compared to a critical value. The ecrit parameter 

sets this criterion so that the network breaks from the training loop whenever the obtained loss 
becomes less than or equal to ecrit. Finally, if the permute parameter is set to True, the network will 

train in ptrain mode. If you want to perform stochastic gradient descent, specify a train_batch_size 
that is less than the number of patterns in the training set, and divides evenly into that number, and 
then set permute to True. This will then cause the network to run minibatches of train_batch_size 
patterns (selected at random without replacement from the training data), updating the weights after 
each minibatch.  

3.2 Network._test() Method 

Network._test() method is designed to do two things: (1) evaluate the error at the current state of the 

network and (2) make a snapshot of the particular state and store it for later analyses. The method 
takes two positional arguments (dataset and evalfunc) and two keyword arguments with a default 
values (snapshot = False and checkpoint = False). Therefore, it needs to know which data set it will be 
tested on and which evaluation function it is to use for this test. It will also check whether the snapshot 
parameter is anything other than False or 0. In this case, the test method will try to take a snapshot 
of the network state. The checkpoint parameter gates the activity of tensorflow’s saver function that 
saves all session variable values (i.e. weights and biases) at a particular time. Saved checkpoint 
files which are essentially network states can be restored later. 
 
As you can see, direct calls to the _train() and _test()methods require entering all of these parameters 

every time you want run some training or test your network, so it might not be ideal for interactive 
use. If we configure the network the way we did our example network, it will be much simpler to train 
and test the network interactively. 

3.3 Interactive Methods 

The first thing to include in our main script that will allow to interact with our network is to use the 

code module that we’ve imported in the beginning: 

This function launches an interactive console which emulates the behavior of the interactive python 
interpreter and loads variables in the local scope of the script to the scope of the console. At this 
point we can consider our main script complete. If we save and quit script and run it in the terminal  

code.interact(local = locals()) 
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by using the $ python command and passing to it the path to our script we will be set to interact with 

the network. Note that if you created your.py file in a subdirectory, you will need to precede to put 

the subdirectory name in the path to the file: 
The three angular brackets are the console’s command prompt. The prompt indicates that the control 
is given to the user and that the console is waiting for some input from them. Let’s go ahead and use 

the interactive test method to test our yet untrained network: 
Internally, the _test() method was called. However, we didn’t need to enter any arguments, because 

we’ve already configured them in the script. The output is the single error value. As you might 
imagine, more has happened that it seems. Since we didn't change the scope setting, the network 
took a snapshot of all 9 attributes (see Table 1) and stored them into a snapshot file which was 
created inside the logging directory. We will talk more about the logging directory (or logdir   for short) 
later when we discuss visualization.  
 

Now let’s train the network for 50 epochs with the interactive train method: 
A text-based progress bar appears and fills up as the network completes each iteration of the loop 
inside the _test() method. When the training loop terminates, the network reports the number of 

epochs it trained for on the most recent call, the total number of epochs, and the time it took to finish 
the training loop. 
 

user PDP $ python3.5 FFBP/net838.py 

Python 3.5.2 |Continuum Analytics, Inc.| (default, Jul  2 2016, 17:52:12)  

[GCC 4.2.1 Compatible Apple LLVM 4.2 (clang-425.0.28)] on darwin 

Type "help", "copyright", "credits" or "license" for more information. 

(InteractiveConsole) 

>>> 

>>> net838.test() 

[net838] Initial test... 

[net838] Error = 15.319734573364258 

>>> net838.train(50) 

[net838] Training: |###############| 100.0%  

[net838] Done training for 50/50 epochs (0.051 seconds) 

>>> net838.tnt(500,50,0) 

[net838] Now in train and test mode... 

[net838] epoch 0: 15.319734573364258 

[net838] epoch 50: 5.697778701782227 

[net838] epoch 100: 5.017020225524902 

[net838] epoch 150: 5.009669303894043 

[net838] epoch 200: 5.006933689117432 

... 
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There is another useful method that combines the two described above. It will make the network test 
and train intermittently for some maximum number of epochs or until ecrit is reached. We call this 
method tnt: 
What we did is told the network to test once, then train for 500 epochs, stopping every 50th epoch 
to test again. The argument of 0 is passed to the checkpoints parameter and stops the network from 

saving tf.checkpoints. Any other positive integer would set the interval at which the network would 

save the checkpoints, but note that this process compromises speed quite a bit. If you want to use 
different data sets than those configured with Network.initconfig(), you can add two corresponding 

keyword arguments. e.g: 

3.4 Visualization 

The train() and test() methods you saw above were designed to function with minimal input. However, 

the behavior of both methods can be modified by changing the default value of the vis keyword 
argument from False to True or 1. ‘Vis’ stands for visualization, and if set to True, the two methods 

>>> net838.train(100,1) 

[net838] Training: |###############| 100.0%  

[net838] Done training for 100/650 epochs (0.082 seconds) 

>>> net838.tnt(500,50,0,  

      train_set = some_set, test_set = some_other_set) 

... 

[net838] epoch 250: 5.005369186401367 

[net838] epoch 300: 5.004334449768066 

[net838] epoch 350: 5.003580093383789 

[net838] epoch 400: 5.0029826164245605 

[net838] epoch 450: 5.002461910247803 

[net838] Final error (epoch 500): 5.00193977355957 

[net838] Process terminated. 
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will create their respective visualizations. So, for example, if we wanted to train our 838 network for 
another 100 epochs and show us how the loss value has changed over time since epoch 0 we would 
type: 
As with the previous demonstration the output shows us the progress bar, epochs, and time, but this 
time, a new window has appeared: 
 
In it, you can see the line plot of the error (in our case tss) across time. The slide widget below the 
plot allows you to slide back and forth through the timeline to see the value of tss more precisely.  If 
we click on any point of the slide except the slider pin, the position of the pin will change one unit in 
the direction of where we’ve clicked. Note that the ‘>>>’ prompt has not disappeared from the shell. 

If you execute the same command again, the network will train for another 100 epochs and the graph 
will be updated accordingly. 
 
If we want to inspect the state of the network rather than its performance, we can use the test method 
with visualization parameter set to True: 
Network state visualization is also interactive, which is controlled through the Controls panel at the 
bottom of the window. The visualization shows you arrays of values that were tested at any particular 
moment. In the example below we can see depictions of the hidden layer and the output layer. Each 
layer’s visualization can be divided into two parts: the forward propagation (FP; on the left) and the 
back propagation (BP; right) part. The FP side shows you the values of each individual weight to 
each individual unit in the layer, as we as bias, net input and activation values of each unit. If the 

layer has a target vector associated with it, you will also see it next to the activation vector. Below 
each weight array, you can see the input vector to the layer. The BP side contains arrays with values 
of gradients with respect to net input and activation. You can inspect the precise value of each tile 
by clicking on it. As you do, the chosen tile will be represented at the left-hand side of the controls 
panel.  

>>> net838.test(1) 

[net838] Test after epoch 600: 

[net838] Error = 4.999884128570557 

[FFBP Viewer] Initializing viewer for FFBPlog_0 ... 
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In addition to inspecting tile values, the control panel allows you to discretely move through time and 
observe the state of the network at each epoch that it was tested on. You can use the slider widget 
to navigate the particular time slice you want to see and then click the update button to change the 
image. Since the state of the network is different in response to different inputs, you can look at any 
input on a given epoch, by choosing one from the drop-down menu and hitting the update button. 

3.5 FFBP Viewer and Reader 

The above visualization is a result of reading a logged snapshot-log file that was created when the 
network was tested for the first time and appended on subsequent tests. The snapshot-log file is 
stored in the session directory which is created every time a new Network object is instantiated. The 
directory is stamped by a single index and contains whatever contents the user has saved during 
the session. If you would like to view a previously stored session, you can use the FFBP_viewer.py. 
To do this, go back to the terminal prompt and run the viewer. You will first be asked to provide the 
name of the user directory if you have created one inside FFBP. If you have not, the program will 
look for snapshots in the default directory. Assuming you have created a separate directory for your 
files, you need to enter the name of that directory first. Then you will see another prompt asking you 

to provide the name of log directory itself or simply its index. When you enter the name or the index, 
the familiar visualization panel will appear. The program will ask you if you want to proceed to view 
another file. If you do, enter ‘y’ and you will be prompted to give another index: 
 
Another program, FFBP_reader.py, allows the reader to extract data from a log.  You access the log 
in the same was as with the FFBP_viewer program.  In this case, however, the data is simply held 
on a ‘reader’ object that can return the values of logged variables to the user.  Each variable 
associated with each layer of the network is stored in a list with an array for the values of the variable 
at each test time point.  For example, if the network was tested a total of 13 times, once prior to the 
start of training and one final time after the criterion was reached, there will be 13 entries in the list 
of arrays for each variable. These variables are the same ones that are displayed in the viewer.  One 
can place the values desidered valiable in an array for analysis within python or one can save them 
to a csv file for analysis with another program. 
 
To see a summary of the contents type ‘reader.summary()’ at the command prompt.  One might see, 
for example, that the hidden layer in our 8-3-8 encoder has a list of 13 entries for a variable called 
‘act’ in an 8x3 array.  The first dimension corresponds to the test item, while the second dimension 
corresponds to the unit within the hidden layer activation pattern for that item.  One can put the list 
of hidden acts in an array with a command like 
 
 ‘hacts = reader.main[‘hidden’].act  
 
(the quoted string is the name you gave the layer when you defined it).  To access the array for a 
given test time point, you can simply enter ‘hacts[index]’, where index ranges from 0 to (in this case) 
13-1, or 12.  To store the act array from the test with index 0 in a csv file called hacts.csv, you would 
use a command like  
 
reader.scsv(‘hacts.csv’,’hidden’,0,’act’) 

user PDP $ python3.5 FFBP/FFBP_viewer.py  

[FFBP Viewer] Provide user directory (if any), or press 'enter' to use default directory: dirname 

[FFBP Viewer] Enter name of log directory OR corresponding index: 0 

[FFBP Viewer] Initializing viewer for FFBPlog_0 ... 

[FFBP Viewer] Would you like to proceed? 

[y/n] -> █ 
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The file will be saved in the same directory as the log file that the data was taken from.  You can 
append additional data to the same file if you re-use the same file name; otherwise a new file will be 
created. 
 

Conclusion 
We have walked through the steps necessary for running a functional feed-forward neural network. 
We began by creating a data file and data objects for training and testing our network. We then 
constructed the actual network and configured it for further interaction. After initializing the network, 
we were able to train and test it using the interactive methods as well as visualize the results with 
the help of a couple of visualization tools. By now, you should be able to build your own feed-forward 
network and explore its progress as you train it. Although the range of possible architectures is rather 
limited with the provided tool set, this tutorial didn’t go through every possible variation and more can 
be understood and achieved by exploring the source code. 
 
You may have already noticed that there is a net838.py file inside the FFBP directory. If you follow 
the instructions of this tutorial you should end up with a copy of the exact same program inside your 
own directory. You can compare how the two programs behave to make sure you haven’t missed 
anything. Another thing you can do is use the net838.py file as a template that you can then modify 
to create your own network. 
 


