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This article seeks to establish a rapprochement between explicitly Bayesian models of
contextual effects in perception and neural network models of such effects, particularly
the connectionist interactive activation (IA) model of perception. The article is in part
an historical review and in part a tutorial, reviewing the probabilistic Bayesian approach
to understanding perception and how it may be shaped by context, and also reviewing
ideas about how such probabilistic computations may be carried out in neural networks,
focusing on the role of context in interactive neural networks, in which both bottom-up
and top-down signals affect the interpretation of sensory inputs. It is pointed out that
connectionist units that use the logistic or softmax activation functions can exactly
compute Bayesian posterior probabilities when the bias terms and connection weights
affecting such units are set to the logarithms of appropriate probabilistic quantities.
Bayesian concepts such the prior, likelihood, (joint and marginal) posterior, probability
matching and maximizing, and calculating vs. sampling from the posterior are all reviewed
and linked to neural network computations. Probabilistic and neural network models
are explicitly linked to the concept of a probabilistic generative model that describes
the relationship between the underlying target of perception (e.g., the word intended
by a speaker or other source of sensory stimuli) and the sensory input that reaches
the perceiver for use in inferring the underlying target. It is shown how a new version
of the IA model called the multinomial interactive activation (MIA) model can sample
correctly from the joint posterior of a proposed generative model for perception of letters in
words, indicating that interactive processing is fully consistent with principled probabilistic
computation. Ways in which these computations might be realized in real neural systems
are also considered.
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INTRODUCTION
For well over a century (Huey, 1908), there has been an inter-
est in understanding how context affects the perception of the
spoken and written word. During the cognitive revolution of the
1950’s and 60’s, George Miller and others contributed important
findings (e.g., Miller et al., 1951; Tulving et al., 1964) show-
ing that context facilitated word recognition, and these findings
were captured in the classical Logogen model (Morton, 1969).
Reicher (1969) introduced the striking word superiority effect,
demonstrating that letters are perceived more accurately in words
than in isolation, and the phenomenon received extensive inves-
tigation in the early 1970’s (e.g., Wheeler, 1970; Aderman and
Smith, 1971; Johnston and McClelland, 1973, 1974; Thompson
and Massaro, 1973). Rumelhart and Siple (1974) and Massaro
(1979) offered models of context effects in letter perception, and
Rumelhart (1977) laid out how such a model might be extended
to address a broader range of contextual effects, including syntac-
tic and semantic effects and effects of non-linguistic context on
word identification and semantic interpretation.

The models mentioned above were all either explicitly prob-
abilistic models or could be linked easily with probabilistic,

Bayesian computations. But then a funny thing happened. On
the one hand, Pearl (1982) offered a systematic Baysian frame-
work that unified the earlier models into an general algorithm
(subject to some limitations) for probabilistic Bayesian inference
across multiple mutually interdependent levels of interpretation
(feature, letter, word, syntactic/semantic interpretation). On the
other hand, Rumelhart and I diverged from the path of proba-
bilistic Bayesian models, proposing a model of context effects in
letter perception (McClelland and Rumelhart, 1981) that did not
refer explicitly to probabilistic Bayesian ideas, drawing inspira-
tion, instead, from models of neural activation (Grossberg, 1978).
In fact, as Massaro (1989) pointed out, our interactive activa-
tion (IA) model actually failed to account for aspects of data that
were easily captured by the earlier models and by simple Bayesian
considerations.

A considerable debate ensued, one in which it seemed for
a while as though there might be an intrinsic conflict between
probabilistic Bayesian models on the one hand and not just con-
nectionist models but any model involving bi-directional prop-
agation of influences on the other. Pearl’s work clearly provided
an interactive method of carrying out provably valid probabilistic
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Bayesian computations, but Massaro (1989); Massaro and Cohen
(1991) as well as Norris and co-authors (Norris et al., 2000)
nevertheless argued that bi-directional propagation of informa-
tion would lead to violations of correct probabilistic Bayesian
inference. While I and my collaborators (McClelland, 1991;
Movellan and McClelland, 2001; McClelland et al., 2006) were
able to address many of the specific criticisms, the notion that dis-
tortion of valid inference is intrinsic to bi-directional propagation
of information has persisted (Norris and McQueen, 2008).

In part, this debate reflects a simple failure on the part of psy-
chologists (including myself!) to keep up with developments in
computer science and related disciplines, and in part, it reflects an
enthusiasm represented by early neural network models to draw
inspiration from putative principles of brain function rather than
principles of probabilistic inference. In any case, the purpose of
the current article to establish a reconcilliation. Specifically, I seek
to reassure those who stand firm for principled Bayesian mod-
els and those who seek inspiration from principles of brain-like
processing that both sides can be happy at the same time.

The path I will take toward furthering this rapprochement will
begin by introducing basic principles of probabilistic Bayesian
inference and then indicating how these principles can be instan-
tiated in models that also adopt principles of brain-like process-
ing. The presentation is in part tutorial and in part historical,
and is intended to help put experimentally oriented cognitive
scientists, neural network modelers, and proponents of proba-
bilistic Bayesian computation on the same page with respect to
the relationship between models of perception, neural networks,
and Bayesian inference.

Many of the concepts that will be reviewed are instantiated in
a new version of the IA model of letter perception (McClelland
and Rumelhart, 1981) called the multinomial interactive activa-
tion (MIA) model (Khaitan and McClelland, 2010; Mirman et al.,
in press), and that model will be used as a vehicle for discus-
sion of these issues. The MIA model (like the IA model before
it) can be viewed as a simplified model of the process of inferring
the identities of objects in the external world (in this case, words
and the letters of which these words are composed) from noisy
visual input, and models based on the IA model and related inter-
active activation and competition networks (McClelland, 1981)
are widespread in psychological research on topics ranging from
written and spoken word perception (Elman and McClelland,
1988; Grainger and Jacobs, 1996), face perception (Burton et al.,
1990), and memory retrieval (Kumaran and McClelland, 2012) to
construal of personality (Freeman and Ambady, 2011). The devel-
opment here will connect the intuitive principles of contextual
influences on perceptual identification that were embodied in the
original IA model with Bayesian ideas, showing how the new vari-
ant of the original model (the MIA model) provides a system for
principled probabilistic inference similar to that envisioned in a
precursor to the IA model by Rumelhart (1977) and systematized
by Pearl (1982). The ideas draw heavily on the original framing
of the Boltzmann Machine (Hinton and Sejnowski, 1983). They
are related to ideas presented by Lee and Mumford (2003) and
Dean (2005) that point out connections between Bayesian com-
putational frameworks and real neural networks in the brain,
and share several of the ideas underlying deep belief networks

(Hinton and Salakhutdinov, 2006), which are, similarly, models
of perceptual inference.

Taken together, the ideas we will develop provide a bridge
between neurophysiological ideas and cognitive theories, and
between probabilistic models of cognition and process-oriented
connectionist or parallel-distributed processing models. Thus,
this tutorial may prove useful as an introduction for those inter-
ested in understanding more about the relationship between a
simple form of Bayesian computation and both real and artificial
neural networks. While the specific examples are all drawn from
perception of letters in words, the possible applications include
many other perceptual problems as well as the more general
problem of inferring underlying causes from observed evidence.

We begin by presenting Bayes’ formula as a tool for infer-
ring the posterior probability that some hypothesis is true, given
prior knowledge of certain probabilistic quantities and some
evidence1. This part of the presentation starts with the case of two
mutually exclusive and exhaustive hypotheses and a single source
of evidence, and shows how Bayes’ formula follows from the def-
inition of conditional probability. We then extend the formula to
cover cases involving an arbitrary number of mutually exclusive
and exhaustive hypotheses and to cases involving more than one
element of evidence, introducing the concept of conditional inde-
pendence. We then develop the idea of a generative model within
which the quantities needed to infer posterior probabilities can be
seen as representing parameters of a causal process that generates
the inputs to a perceptual system.

We next consider how Bayesian inference can be carried out
by a neural network. In particular, we observe how the softmax
and logistic activation functions often used in neural networks
can produce outputs corresponding to posterior probabilities,
provided that the biases and connection weights used in pro-
ducing these outputs represent the logarithms of appropriate
probabilistic quantities.

With the above background, we then describe how bottom-up
and top-down information can be combined in computing pos-
terior probabilities of letters presented in context, in accordance
with Bayes’ formula and the generative model assumed to under-
lie the perceptual inputs to the MIA model. We describe three
procedures by which such posteriors (or samples from them) can
be computed—one that is completely non-interactive [appearing
to accord with the proposals of Massaro (1989) and elsewhere,
and of Norris and McQueen (2008)], and two that involve bi-
directional propagation of information, as in the original IA
model (McClelland and Rumelhart, 1981). One of these proce-
dures computes these posteriors exactly, and relates to proposals
in Rumelhart (1977) and Pearl (1982). The other samples from
the posterior, using Gibbs sampling as in the Boltzmann machine
(Hinton and Sejnowski, 1983); this is the approach taken in the
MIA model. The connection to deep belief networks is considered
briefly at the end of the article.

As can be seen from the citations above, the key ideas reviewed
here have been in circulation for about 30 years. These ideas estab-
lish an intimate connection between the computations performed

1Often the word data is used instead of evidence. Some writers use evidence to
refer to quite a different concept.
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by neural networks and computations necessary to carry out cor-
rect probabilistic inference. Unfortunately, to my knowledge there
has not been extensive recognition of these connections, at last
among many researchers working in the psychological and cog-
nitive science disciplines. The presentation draws on an earlier
paper with similar goals (McClelland, 1998) and is intended to
help provide an intuitive understanding of some of the relevant
concepts involved, and of the reasons why certain things are true,
without relying on formal proofs.

USING BAYES’ FORMULA TO INFER POSTERIOR
PROBABILITIES
We begin by reviewing the canonical version of Bayes’ formula,
expressing the posterior probability that one of two mutually
exclusive and exhaustive hypotheses is true given some evidence e
in terms of other quantities which we will shortly define:

p(hi|e) = p(hi)p(e|hi)

p(h1)p(e|h1) + p(h2)p(e|h2)
(1)

In this expression, p(hi) corresponds to the prior probability
that hypothesis i is true, where hi could be hypothesis 1 or
hypothesis 2. p(e|hi) corresponds to the probability of the evi-
dence given that hypothesis i is true, and p(hi|e) corresponds to
the posterior probability of hypothesis i given the evidence. The
expression is often called “Bayes’ law,” or “Bayes’ rule,” although
some use “Bayes’ rule” for a formulation that expresses the ratio
of the posterior probability of h1 to h2. Bayes’ rule in that form
is easily derived from Bayes’ formula and vice versa. The formula
is also sometimes described as “Bayes’ Theorem,” but we will use
that phrase to refer to the proof of the validity of the formula,
rather than the formula itself.

As an example [from the Wikipedia entry on (Bayes’ theorem,
n.d.)], suppose a friend of yours meets a person with long hair.
What is the probability that this person is a woman? Our two
possible hypotheses here are that the person is a woman or that
the person is a man. We treat them as mutually exclusive and
exhaustive—that is, a person must be either a man or a woman;
there are no other possibilities, and the person cannot be both a
man and a woman at the same time. The evidence e is that the
person has long hair.

Bayes’ formula allows us to calculate the answer to this ques-
tion, as long as some additional relevant facts are known. First,
we need to know the overall probability that a person your friend
might meet is a woman. We could call this probability p(h1),
but to aid maintaining contact with the example, we will call it
p(W). Since we have assumed that the only other possibility is
that the person is a man, the probability that the person is not
a woman p(W̄) is equal to the probability that the person is a
man, p(M). From this it follows that p(W) + p(M) = 1, and that
p(M) = p(W̄) = 1 − p(W).

The quantity p(W) represents to a given or assumed quantity
corresponding to the overall probability that a person your friend
might meet is a woman. This quantity is often called the prior, a
usage that makes sense if our goal is to use evidence to update our
beliefs about the probability that a person your friend might meet
is a woman once we observe the particular person’s gender. Here,
we are just using this quantity as a premise in an inference process.

Nevertheless, writers often use the term prior when describing
such terms, and we will often do so here. Another phrase that
is sometimes used is base rate. Humans often neglect base rates
in carrying out probabilistic inference when given probabilistic
information in explicit form. When the base rate is low, this can
lead to an over-estimate of the posterior probability.

It might be noted that there could be uncertainty about the
prior or base rate. This is certainly true, and indeed, the ques-
tion that the Reverend Bayes was primarily interested in was how
to use evidence to update one’s beliefs about such probabilities.
This is a rich and important topic, but it is not the one we are
examining here. Instead we are considering the simpler problem
of using a set of known probabilistic quantities to infer another
probabilistic quantity, the probability that the hypothesis is true
in a particular instance, given some evidence.

In addition to knowledge of the prior probability of the
hypotheses, p(h1) and p(h2), we also must know the probability
of observing the evidence when each hypothesis it true. In our
example, we need to know the probability of long hair when the
person is a woman (for our example, p(L|W) or more generally
p(e|h1)), and also the probability of long hair when the person is
a man (p(L|M) or more generally, p(e|h2)). Here, too, there could
be considerable uncertainty. However, as with the prior, we will
treat these as quantities that are known, and proceed from there.

Using these quantities, we can plug them into Equation 1 to
calculate p(W|L), the probability that the person your friend met
is a woman given that the person had long hair. The expression
below replaces the abstract variables h1 and h2 from Equation 1
with W and M, and replaces the abstract variable e with the L for
long hair, to connect the various quantities in the expression to
the relevant conceptual quantities in the example:

p(W|L) = p(W)p(L|W)

p(W)p(L|W) + p(M)p(L|M)

Let’s plug in some actual numbers. If the overall probability of
your friend meeting a woman, p(W), is 0.5; the probability of a
woman having long hair p(L|W) is 0.8; and the probability of a
man having long hair, p(L|M), is 0.3, then (relying on p(M) =
1 − p(W) = 0.5), we obtain:

p(W|L) = 0.5 ∗ 0.8

0.5 ∗ 0.8 + 0.5 ∗ 0.3
= 0.8

0.8 + 0.3
= 0.8

1.1
= 0.727

As an exercise, the reader can explore what happens to the result
when one of the relevant quantities changes. What if p(L|M)

goes down to 0.01? In a world where few men have long hair
we get a much stronger conclusion. On the other hand, what if
p(L|M) = 0.8? You should see that in this case we learn noth-
ing about the person’s gender from knowing the person has long
hair. Now, what about the prior or base rate, P(W)? We have
assumed that a person your friend might meet is equally likely
to be a woman or a man, but what if instead p(W) is only 0.1—
this might happen, for example, if the people your friend meets
are all computer science majors. Using our initial values for the
likelihoods p(L|W) = 0.8 and p(L|M) = 0.3, you should find that
the posterior probability that the person is a woman is less than
0.3. If you neglected the base rate, you might overestimate this
probability.
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As a second exercise, the reader should be able to calcu-
late p(W|S), the probability that a person your friend met is a
woman given that the person had short hair, given specific val-
ues for p(L|W), p(L|M) and p(W). Use 0.8, 0.3, and 0.5 for
these quantities. What gender should we guess to maximize the
probability of being correct if we were told that a person your
friend met had short hair? Assume for this example that each
person either has short hair or long hair—that is, that short and
long are mutually exclusive and exhaustive alternatives. As before,
also assume that male and female are mutually exclusive and
exhaustive alternatives.

Bayes’ formula can easily be applied to cases in which the
two hypotheses under consideration are the hypothesis that some
proposition is true and the hypothesis that the proposition is false.
For example, we might want to determine whether a person is
French or not. In this case, our hypotheses could be ‘Person X is
French’ and ‘Person X is not French,’ where no specific alternative
hypothesis is specified. Here it is natural to use h for the positive
case and h̄ for the negative case, and to rewrite the formula as:

p(h|e) = p(h)p(e|h)

p(h)p(e|h) + p(h̄)p(e|h̄)

Given that h and h̄ are assumed to be mutually exclusive and
exhaustive, p(h̄) = 1 − p(h), so we can also write our formula as:

p(h|e) = p(h)p(e|h)

p(h)p(e|h) + (1 − p(h))p(e|h̄)
(2)

It is also worth noting that the posterior probabilities sum to one:
p(h|e) + p(h̄|e) = 1, so p(h̄|e) = 1 − p(h|e). Thus, the evidence
simultaneously informs us about the posterior probability that h
is true, and that h is false.

Remark: Clearly, Bayes’ formula only gives valid results if the
quantities that go into the calculation are accurate. It would
likely be wrong to assume that human perception always relies
on the correct values of these quantities. One could propose
that human perceivers rely on estimates of such quantities, and
that these may differ from their actual values. A further point is
that an experimenter might generate inputs according to a pro-
tocol that is not fully consistent with the knowledge perceivers
rely on to make perceptual inferences. In that case, if the esti-
mates perceivers rely on are not altered to match the protocol
used in the experiment, the inferences could be invalid, and
therefore not optimal under the conditions of the experiment.
For example, a perceiver in a word identification experiment
might rely on estimates of each word’s probability of occurrence
based on its frequency of occurrence in past experience. However,
an experimenter might choose words from a word list without
regard to their frequency. Under these conditions, use of a word’s
frequency to represent its probability of occurrence would be
invalid. Many perceptual “biases” or “illusions” can be explained
as resulting from the use of estimates of probabilistic quanti-
ties that may be valid (or approximately valid) in the real world,
but are not valid within the context of the experiment. If such
knowledge were wired into the connections among neurons in
a perceiver’s perceptual system, as it is assumed to be in the IA

model, it might not be easily discarded and replaced with other
values.

Decision policies
So far, we have shown how to calculate a posterior probability,
but we have not discussed what one might actually do with it. In
many situations, we may simply want to take note of the poste-
rior probability—in the case of our first example above, we might
not wish to reach a definite conclusion, since the evidence is far
from conclusive. However, often a choice between the alternatives
is required. There are two possibilities that are often consid-
ered: one policy tries to pick the best response, that is, the one
that maximizes the probability of being correct, while the other
generates responses probabilistically, according to the posterior
probability.

The first policy is called maximizing. This policy amounts to
choosing the alternative with the largest posterior probability.
Formally, we could write:

Choice = argmax(p(h1|e), p(h2|e))

where the argmax function returns the index of the hypothesis
with the largest posterior probability. In our example, with the
priors p(W) = 0.5, p(L|W) = 0.8 and p(L|M) = 0.3, we calcu-
lated that p(W|L) = 0.727 and it follows that p(M|L) = 0.273.
Following this policy, then, we would conclude that the person
is a woman given that the person has long hair.

The second policy is called probability matching or just match-
ing. Under this policy, decision makers’ choices would vary from
trial to trial with the same evidence, but would occur with a prob-
ability that matches the posterior probability. Formally, we would
write this as:

p(Choice = i) = p(hi|e)

One of these two policies is better than the other, in the sense that
one maximizes the probability of choosing the correct answer.
If you would win a dollar for guessing right and loose a dollar
for guessing wrong, which of these policies should you chose?
Surprisingly, in many cases, the behavior of humans and other
animals appears closer to matching rather than maximizing, but
there are situations in which people clearly do maximize (Green
et al., 2010). There are worse policies than matching. One such
policy sometimes used in explicit outcome guessing tasks by chil-
dren around age five is to alternate choices from one trial to the
next, regardless of the probability of each of the two outcomes,
and even when the trial sequence is completely random (Derks
and Paclisanu, 1967).

BAYES’ theorem: Bayes’ formula follows from the definition of
conditional probability
So far, we have used Bayes’ formula without considering why
it is true. Here, we will show that the validity of the for-
mula follows from the definition of conditional probability. We
have already used the concept of conditional probability. Here
we will review its definition and then use it to derive Bayes’
formula.
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The conditional probability of some event a given some other
event b, written p(a|b), is defined as the ratio of the probability of
both a and b, p(a&b) to the probability of b, p(b):

p(a|b) = p(a&b)

p(b)

The definition can be read as defining conditional probability
p(a|b) as the proportion of the times when b occurs that a also
occurs. Let’s relate this to our case, letting e correspond to a and h
correspond to b:

p(e|h) = p(e&h)

p(h)
(3)

In our case, if 50% of the people your friend might meet are
women, and 40% of the people your friend might meet are
women with long hair, then the probability of long hair given
that the person is a woman—or equivalently, the proportion of
women who have long hair—would be 0.4/0.5 = 0.8, the value
we already used in our example.

Now we can also use the definition of conditional probability
to express p(h|e), letting e correspond to b and h correspond to a:

p(h|e) = p(e&h)

p(e)
(4)

Bayes’ formula can now be derived from the fact that p(e&h)

occurs in the definition of both p(e|h) and p(h|e). To derive it,
we multiply both sides of Equation 3 by p(h) to obtain:

p(e&h) = p(h)p(e|h)

For our example, this corresponds to the fact that the proportion
of people who have long hair and are women is equal to the pro-
portion of all people who are women, times the proportion of
women who have long hair.

We can now replace p(e&h) in Equation 4 with p(h)p(e|h) to
obtain:

p(h|e) = p(h)p(e|h)

p(e)

This can be stated: the probability of some hypothesis h being
true given some evidence e is equal to the prior probability of the
hypothesis, p(h), times the probability of the evidence, given the
hypothesis, divided by the overall probability of the evidence p(e).

It remains only to note that the denominator, the probability
of the evidence p(e), is equal to the probability of the evidence
occurring when the hypothesis is true plus the probability of
the evidence occurring when the hypothesis is false, p(e&h) +
p(e&h̄). That is, the total probability of situations in which e is
true is the sum of the probabilities of two situations, one in which
e is true and the hypothesis h is also true, and another in which e
is true and the hypothesis is false. This exhausts the cases in which
e is present, given that h must either be true or not. Using the fact
that p(a&b) = p(b)p(a|b) twice more, applying it to both p(e&h)

and to p(e&h̄), we finally obtain:

p(h|e) = p(h)p(e|h)

p(h)p(e|h) + p(h̄)p(e|h̄)

and from p(h̄) = 1 − p(h), we can then obtain Equation 2. Of
course the same all works out for cases in which we have two
mutually exclusive and exhaustive hypotheses called h1 and h2 as
in the version shown in Equation 1, as well.

Figure 1 gives a graphical representation of the posterior prob-
ability of a hypothesis constructed by partitioning a square with
sides of length 1. We use the horizontal dimension to partition the
square into two parts by drawing a vertical line at x = p(W), so
that the area to the left of the line corresponds to the overall prob-
ability that a person your friend might meet would be a woman
and the remaining area corresponds to the probability that the
person your friend might meet would be a man. Restating, the
areas of these two parts correspond to p(W) and p(M), respec-
tively. Then, we partition the region corresponding to women into
two parts along the vertical axis at the point y = p(L|W). This
divides the total probability that the person is a woman into two
parts, one corresponding to the probability that the person is a
woman and has long hair, and one corresponding to the prob-
ability that the person is a woman and does not have long hair.
Likewise, we partition the region corresponding to men into two
parts along the vertical axis at the point y = p(L|M). This gives us
two more rectangles, one whose area corresponds to the proba-
bility that the person is a man and has long hair, and the other
corresponding to the probability that the person is a man and
does not have long hair. The area of each resulting rectangle is a
joint probability as well as the product of a prior and a conditional
probability. The posterior probability p(W|L) is the ratio of the
area of the rectangle corresponding to women with long hair to
the area corresponding to all persons with long hair, which in turn
corresponds to the sum of the areas of the two shaded rectangles.

FIGURE 1 | Graphical depiction of posterior probability based on

relative area.

www.frontiersin.org August 2013 | Volume 4 | Article 503 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Language_Sciences/archive


McClelland Probabilistic models and neural networks

To fix your understanding of these ideas, you could draw an
approximate version of this figure for the case in which (i) the
overall probability that a person your friend might meet is a
woman is 0.25; (ii) the probability of a woman having long hair
is 0.75; and (iii) and the probability of a man having long hair is
0.25. Inspecting the relevant subrectangles within the unit rectan-
gle, you should be able to estimate the probability that the person
your friend meets is a woman, given that the person has long
hair. You would do this by noting the area corresponding to the
probability of being a woman and having long hair, and compar-
ing that to the area corresponding to the probability of being a
man and having long hair. Given that these areas are about equal,
what is the probability that a person with long hair is a woman in
this case?

Multiple alternative hypotheses
We have thus far considered cases in which there are only two pos-
sible hypotheses, for example, either the person my friend met
was a woman or the person was a man. Now let us suppose we
have many alternative hypotheses {hi}, and we are trying to deter-
mine the posterior probability of each given some evidence e.
One example arises if we are trying to determine the identity of
a letter given one of its features. For example, in the font used
by Rumelhart and Siple (1974), and in the MIA model, one of
the features (which we will call Fht ) is a horizontal line segment
at the top of a letter-feature block (See Figure 2). Some letters
have this feature, and others do not. For example, the letter T has
it and the letter U does not. Treating these statements as abso-
lutes, we could state p(Fht |T) = 1 and p(Fht |U) = 0. However, let
us allow for the possibility of error, so that with a small proba-
bility, say 0.05, feature values will be registered incorrectly. Then
p(Fht |T) = 0.95 and p(Fht |U) = 0.05. Now, suppose we want to
calculate p(T|Fht). For each letter, li we would need to know
p(Fht |li) and we would also need to know the prior probability
of occurrence of each letter as well. Given this information, the

FIGURE 2 | The line segments used in the Rumelhart and Siple font

and the letters composed from these segments. From Rumelhart and
Siple (1974). Reprinted with permission.

overall formula for the posterior probability now becomes:

p(T|Fht) = p(T)p(Fht|T)∑
i′ p(li′)p(Fht |li′)

Note that the summation2 in the denominator runs over all possi-
ble letters, including T. In general, the probability that a particular
hypothesis hi is correct given a specific element of evidence e can
be written:

p(hi|e) = p(hi)p(e|hi)∑
i′ p(hi′)p(e|hi′)

The indexing scheme is potentially confusing: Here and else-
where, we use a bare single letter such as i to index a specific item
or hypothesis of interest and a primed version of the same letter
such as i′ to index all of the items or hypotheses, including i.

It is useful at this point to introduce the notion of a multi-
nomial random variable, defined as a random variable that can
take any one of n discrete values, such as letter identities. This
generalizes the notion of a binary random variable, which is one
that can take either of two possible values (such as true or false or
man or woman). We can think of the identity of a given letter, for
example, as a multinomial random variable having one of 26 pos-
sible values. The name of the multinomial interactive activation
model is based on the idea that (in letter perception) the task of
the perceiver is to infer the correct values of several such multi-
nomial variables—one for the identity of each of the four letters
in a letter string, and one for the identity of the visually presented
word—from visual input. For now, we are working with the sim-
pler case of attempting to set the value of a single multinomial
variable corresponding to a single letter identity.

The prior associated with a multinomial random variable is the
vector of prior probablities p(hi). Under the assumption that the
hypotheses are mutually exclusive and exhaustive, the sum of the
p(hi) should be equal to 1. In the specific case of possible letter
identities, given that there are 26 letters, there are only 25 inde-
pendent letter probabilities, since the probability of the last one
must be equal to 1 minus the sum of the probabilities of all of
the others. In general, if there are N mutually exclusive possibili-
ties, there are only N − 1 degrees of freedom in the values of their
prior probabilities3.

2By convention, we use �s to refer to a sum of terms indexed by a subscript
s and we use �s to refer to a product of terms indexed by s (in the equation
here the subscript is i′ for consistency with later usage as explained below).
A summation or product applies to all of the factors multiplied together fol-
lowing the summation symbol. Thus �iaibici is equivalent to �i(aibici) and
�iai�jbijcij is equivalent to �i(ai�j(bijcij)). Unless explicitly indicated with
parentheses, summation does not extend across a plus or minus sign. Thus
�iai + b is not the same as �i(ai + b).
3It is worth noting that, if one tabulated counts of occurrences of letters in
a randomly chosen book, the counts could be considered to be independent
quantities. In this case, the total count of letters in the book would be the sum
of the counts for all of the letters. If we were to be given this total count, we
could infer the count for any given letter from the counts for the others letters
and the total count. Either way, there are N + 1 quantities (each count and the
sum) but only N independent quantities.
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McClelland Probabilistic models and neural networks

Even when there are multiple possibilities, we note that if only
one of these hypotheses is of interest—when, say, we are interested
in knowing whether a given letter is a T or not—all of the other
possibilities can be lumped together and we have:

p(T|Fht) = p(Fht |T)p(T)

p(Fht |T)p(T) + ∑
i′ �= T p(Fht |li′)p(li′)

where the summation in the denominator runs over all possible
letters other than T of terms corresponding to the product of the
prior and the likelihood. This is a generalization of Equation 2,
previously given, with

∑
i′ �=T p(Fht |li′ )p(li′) playing the role of

p(Fht |T̄)p(T̄)4.
It is also worth noting that in some situations, we may want to

include the possibility that the observed input arose from some
unknown cause, outside of a specifically enumerated set. For
example, some feature arrays that appear in a letter perception
experiment might have been generated from something other
than one of the known letters. We can include this possibility as
an additional hypothesis, if we also provide the probability that
the feature value arises from this other cause. In this case the sum
of the probabilities of the enumerated causes is less than one, with
the other causes consuming the remainder of the total probability.
Then we can write Bayes Formula as:

p(hi|e) = p(hi)p(e|hi)∑
i′ p(hi′)p(e|hi′) + p(o)p(e|o)

where p(o) is the prior probability for all other causes and p(e|o)
is the probability of the evidence arising from any of these other
causes. In psychological models, e.g., the Logogen model of word
recognition (Morton, 1969), or the generalized context model of
categorization (Nosofsky, 1984), the elements of the expression
p(o)p(e|o) are not separately estimated, and are lumped together
in a constant.

Multiple elements of evidence and conditional independence
In general, when we are attempting to recognize letters or other
things, there may be more than one element of evidence (e.g.,
more than one feature) at a time. How can we deal with such
situations? A first step is to generalize Bayes’ formula by using a
likelihood term that encompasses all of the evidence. For example,
we might have evidence that there is a horizontal feature across
the top of a feature array and a vertical segment down the mid-
dle. We could then make use of expressions such as p(Fht&Fvm|T)

to represent the probability of observing both of these features,
given that the letter in question is T.

A problem that arises here is that the number of possible com-
binations of elements of evidence can grow large very quickly,
and it becomes intractable to assume that a perceiver knows and
represents all of these probabilities. Luckily, there is a condition
under which the computation of the values of such expressions
becomes very simple. This condition is known as conditional
independence, which can be defined for two or more events

4Note that in general,
∑

i′ �= T p(Fht |li′ )p(li′ ) may not be equivalent to∑
i′ �= T p(Fht |li′ )

∑
i′ �= T p(li′ ).

with respect to some other, conditioning event. For two events,
conditional independence is defined as follows:

Definition of Conditional Independence. Elements of evidence
e1 and e2 are conditionally independent given condition c if the
probability of both pieces of evidence given c, p(e1&e2|c), is equal
to the product of the separate conditional probabilities p(e1|c)
and p(e2|c) for each element of the evidence separately.

We can generalize this to an ensemble of any number of
elements of evidence ei and express the relationship succinctly:
Conditional independence of an ensemble of n elements of evi-
dence ei given some condition c holds when:

p(e1&e2& . . . &en|c) =
∏

j

p(ej|c).

Considering our example, we can consider the presence of a hor-
izontal across the top, Fht , and the presence of a vertical down
the middle, Fvm. These would be conditionally independent given
that the underlying letter was in fact intended to be a T if it were
true of the world that error entered into the registration of each
of these two features of the letter T independently.

We can now write a version of our formula for inferring
posterior probabilities under the assumption that conditional
independence holds for all elements of evidence ej conditioned
on all of the hypotheses hi:

p(hi|e1&e2& . . . &en) = p(hi)
∏

j p(ej|hi)∑
i′ p(hi′)

∏
j p(ej|hi′ )

We are still relying on many probabilistic quantities, but not as
many as we would have to rely on if we separately represented
the probability of each feature combination conditional on each
hypothesis.

Remark: Clearly, the assumption of conditional independence
is unlikely to be exactly correct. However, it is hard to imagine
proceeding without it. One way of alleviating the concern that
relying on this assumption will lead us astray is to note that in
cases where the occurrence of elements of evidence is highly cor-
related (even after conditioning on hypotheses), we might treat
these elements as a single element, instead of as separate ele-
ments. Maybe that is what features are: clusters of elements that
have a strong tendency to co-occur with each other. Another
response to this situation would be to note that any explicit
probability model involving sets of explicit hypotheses and ele-
ments of evidence is unlikely to be exactly correct for naturalistic
stimuli. Words spelled using letters and their features as in the
Rumelhart font are not really natural stimuli, since these items
actually do consist of discrete units (letters) and these in turn
consist of independent sub-units (letter features). This allows
for the possibility of validly characterizing displays of such fea-
tures in terms of a process in which conditional independence
of features holds exactly. A learned, implicit probability model
of the kind embodied in a Deep Belief Network (Hinton and
Salakhutdinov, 2006) is likely to be a better model for naturalistic
stimuli.
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A GENERATIVE MODEL OF FEATURE ARRAYS
Consider the following description of how displays of letter
features registered by a perceiver might be generated. An exper-
imenter selects a letter to display from the alphabet with proba-
bility p(li), which for now we will take to be simply 1/26 for each
letter, and then generates a feature array as follows. Each letter has
a set of correct feature values. For example, for T, the feature Fht

is present, the feature Fvm is present, and the feature Fhb, a hor-
izontal line across the bottom, is absent (for simplicity, we will
just consider these three features for now). However, when the
actual feature array is generated, there is some small probability
that each feature will not be generated correctly. The correctness
of each feature is separately determined by an independent ran-
dom process, e.g., by rolling a 20-sided die with a spot on just
one side. If the spot comes up, the incorrect value of the feature
is displayed. If it does not, the feature is generated correctly. The
die is rolled once for each feature, and we are expressly assuming
that the outcome of each roll is independent of the outcomes of
all other rolls.

The above is a simple example of a generative model. If
features were generated according to this process, then the
probabilities of features are conditionally independent, given the
letter identities. Note that if the generative process usually works
perfectly and correctly generates all the correct features, but
occasionally hiccups and gets all the features wrong at the same
time, the elements of the evidence would not be conditionally
independent. Note also that conditional independence can hold
if the probability of feature perturbation is different for different
features; this is likely if we think of the perturbation as occurring
within the visual system, so that some features are more likely
to be mis-registered than others, due to differences in their size,
retinal position, or other factors.

Now, the true process generating feature arrays may not be
exactly as described, just as the prior and likelihood values used
may not be exactly accurate. However, a generative model in
which feature values are perturbed independently can be treated
as an assumption about the actual generative process, or alter-
natively it can be treated as an assumption about the model of
the generative process that is utilized by the perceiver in a let-
ter perception experiment. Such a model could be false, or only
approximately true, and still be used by a perceiver. A further
possibility is that the true model used by the perceiver is more
complex, but that the assumption that the perceiver uses such a
model provides a good approximation to the true model being
used by the perceiver.

THE SUPPORT FOR AN HYPOTHESIS AND THE LUCE CHOICE RULE
It will be helpful in our later development to write an expression
we will call the Support (Si) for a given alternative hypothesis hi,
given a set of elements of evidence {e} = {e1, e2, . . .} as follows:

Si = p(hi)
∏

j

p(ej|hi)

For our example, the hi correspond to the different possible letter
hypotheses and the ej correspond to the elements of the evidence.
We will describe this overall support as consisting of the product

of two terms, the prior p(hi) and the likelihood p(e|hi), which
under the generative model described above is equal to the prod-
uct of terms that might be called the element-wise likelihoods of
each element of the evidence.

With this expression for the support of hypothesis i in the
presence of evidence {e}, we can write Bayes’ formula as:

p(hi|{e}) = Si∑
i′ Si′

As before, i′ is an index running over all of the alternative
hypotheses, including hypothesis i. Readers familiar with the Luce
(1959) choice rule will notice that this expression corresponds to
Luce’s rule, with the Si corresponding to the response strengths
associated with the different choice alternatives.

As an exercise, consider a letter microworld with just the three
features we have considered so far and just the letters T, U and I.
Assume that according to the generative model, each letter is
equally likely p(T) = p(U) = p(I) = 1/3. Regarding the features,
we follow a policy used in the original IA model and carried over
in the multinomial IA model: we explicitly represent the absence
of a feature as an element of evidence, just like the presence of a
feature. Thus, there are six possible elements of evidence or fea-
ture values relevant to identifying letters: a feature can be present
or absent, for each of the three possible features.

To proceed with our exercise, the probability of each possible
feature value (present or absent) is given for each of the three pos-
sible feature dimensions of each letter in Table 1. Here h stands
for a high probability (let’s say 0.95) and l for a low probability
(0.05). Features cannot be both present and absent, so l = 1 − h.
Assuming actual features are generated in a conditionally inde-
pendent manner, we can then ask, what is the probability that the
underlying letter was a T given that the following evidence {e}
is available: Horizontal at top present, Vertical at middle absent,
Horizontal at bottom absent. Although these features do perfectly
match the high-probability values for the letter T, the letter is
more likely to be a T than a U or an I. See if you can verify this.
Using the two equations above, along with Table 1 and the spe-
cific numerical values given in this paragraph, you should be able
to obtain an explicit probability for p(T|{e}). You should also be
able to express simply why T is more probable that U or I given
the available evidence.

Table 1 | Probability that features take given values in the Letters T, U,

and I.

Letter Feature

Horiz. at Top Vert. thru Middle Horiz. at Bottom

Present Absent Present Absent Present Absent

T h l h l l h

U l h l h h l

I h l h l h l

h in the table corresponds to a high probability, such as 0.95, and l corresponds

to a low probability, such as 0.05.
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McClelland Probabilistic models and neural networks

One additional issue may now be considered. We may ask,
what happens if we are not told about one of the elements of
the evidence? For example, we are told that the horizontal bar
across the top is present and the vertical bar down the center
is present but we simply are not told about the horizontal bar
across the bottom (perhaps something is blocking our view of
that feature in a perceptual display, for example). We would sim-
ply use those elements of evidence that we do have, and exclude
the elements that are unspecified. Our existing expression already
captures this policy implicitly, since when an element of evidence
is missing it simply does not show up in the ensemble of elements
ej. However, it will prove useful to capture this case by elaborating
the expression for S above to include explicit information speci-
fying whether particular items of evidence are or are not present.
A nice way to do this is to have a binary vector indicating whether
the element of evidence is present or not. We have six possible
elements of evidence in our example, as enumerated above. If we
are given Horizontal at Top present, Vertical thru Middle absent,
this vector would become: v = 100100. Then we would obtain the
same results as before by writing Si as follows:

Si = p(hi)
∏

j

p(ej|hi)
vj

Where
∏

j represents the product over all possible elements, and
vj is equal to 1 for elements of evidence that are present, or 0 oth-
erwise. Note that elements that are absent have no effect since
for any non-zero x, x0 = 1, and for all p, p · 1 = p. 5 Note that
the model we use here distinguishes between evidence of absence
(“No horizontal bar is present at the bottom of the feature array”)
and the absence of evidence (“We do not know whether or not a
bar is present at the bottom of the feature array”). In many cases,
it is useful to distinguish between these two situations.

Remark: Using p(e|h) to infer p(h|e) It is worth noting that
we use knowledge of the probability of evidence given a hypoth-
esis to infer the probability of a hypothesis given evidence. At
first, this may seem counter-intuitive. Why don’t we just store
the value of p(h|e), rather than always having to compute it? A
similar counter-intuition arises in thinking about the “bottom-
up” support for letter hypotheses by feature evidence. One might
think that the effect of a feature’s presence on the probability of
a letter should depend on the probability of the letter given the
feature, and not the other way around. The resolution of this
counter-intuition depends on noticing that the posterior prob-
abilities are not directly defined in the generative model, while
the prior and the p(e|h) terms are. Indeed, the posterior prob-
ability that a hypothesis is true depends on the entire ensemble
of quantities in the generative model and the particular ensem-
ble of elements of evidence that may be present, while the p(h)

and p(e|h) values can be stable and independent. To contem-
plate this in a specific context, let us return to the question of the

5Strictly speaking, this formula is valid if the causes that could lead to missing
evidence—e.g., no information about whether a particular feature is present
or absent—are independent of the process that generates the feature values.
This would be true if, for example, the probability that an occluder would
partially restrict the visibility of an object were independent of the identity of
an object.

probability that a person is a woman, given that she has long hair.
This quantity depends on three other quantities: the overall prob-
ability that a person is a woman; the probability that a woman
has long hair; and the probability that a man has long hair. Each
of these quantities can be changed independently, without affect-
ing the others, while the probability that a person with long hair is
a woman depends on all three. In short, in many contexts at least,
it makes sense that we use p(h) and p(e|h) to compute p(h|e).

SUMMARY: GENERALIZED VERSION OF BAYES FORMULA
To summarize the above development, the generalized version
of Bayes formula for the posterior probability of hypothesis hi,
for i = 1, . . . , n mutually exclusive hypotheses and j = 1, . . . , m
possible conditionally independent elements of evidence is:

p(hi|e) = Si∑
i′ Si′

, (5)

where Si stands for the support for hypothesis hi, defined as:

Si = p(hi)
∏

j

p(ej|hi)
vj (6)

CALCULATING POSTERIOR PROBABILITIES WITH
CONNECTIONIST UNITS USING THE SOFTMAX AND
LOGISTIC FUNCTIONS
We now develop the idea that the posterior probability calculation
just presented can be computed by a group of connectionist pro-
cessing units, using a function called the softmax function. The
neural network is illustrated in Figure 3. In this network, each

FIGURE 3 | Sketch of a pool of units that can calculate posterior

probabilities of patterns represented on its inputs using the softmax

function. Dashed line signifies lateral inhibition to normalize the activations
of units in the pool.
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unit corresponds to an hypothesis hi, and has a bias term bi, as
well as incoming connections from units outside the ensemble.
Each of these outside units indexed by j stands for a possible ele-
ment of evidence. When the element of evidence is present, the
unit will have an activation value aj equal to 1; when it is absent,
its activation will be 0. Each connection to a hypothesis unit from
an evidence unit will have a strength or weight represented by the
variable wij.

Concretely, pursuing our example, the units in the pool could
correspond to possible letters, each unit’s bias term could reflect a
perceiver’s bias to think the input contains the given letter, and the
connection weights could reflect the perceiver’s tendency to think
the hypothesis is more (or less) likely, when the corresponding
element of evidence is present. The pool described corresponds
to one of the pools of letter level units in the MIA model,
although we are considering just one such pool in isolation for
now, without additional input from the word level.

In our network, as in most neural networks, each unit com-
putes a summed or net input that reflects both its bias and the
weighted sum of activations of other units:

neti = bi +
∑

j

wijaj

We will now see that if we set the weights and biases to appro-
priate values, then apply the softmax function defined below, the
output of the function, represented here as ρi, will be equal to the
posterior probability of the letter the unit stands for, as expressed
by the generalized Bayes formula.

The softmax function is:

ρi = eneti

∑′
i eneti′

The reader should already be able to see that the softmax has
some relationship to the generalized Bayes formula. Indeed, as
we shall discuss, the expressions eneti and eneti′ correspond to the
expressions for Si and Si′ in that equation.

The essential idea is that the bias term and the weights will
be chosen to correspond to the logarithms of the quantities that
are multiplied together to determine the Si terms. Using the logs
of these quantities, we add rather than multiply to combine the
influences of the prior and the evidence. The resulting net input
term corresponds to the log of the Si terms defined above. We
then reverse the logarithmic transformation at the end of the
calculation, using the exponential function.

The analysis relies on several facts about the log and exponen-
tial functions that we now review. First, the function y = log(x)

is defined as the function that produces, when applied to its argu-
ment x, a number y such that ey = x. Note that log is used here to
correspond to the natural logarithm, sometimes written loge or
ln. The exponential function of y, ey corresponds to the number e
taken to the power y, and is sometimes written exp(y). Given these
definitions, it follows that log(ey) = y and elog(x) = x. The graphs
of the log and exp functions are shown in Figure 4.

The second important fact is that the log of the product of any
number of quantities is the sum of the logs of the quantities:

log(a · b · c · . . . ) = log(a) + log(b) + log(c) + . . .

FIGURE 4 | The log and exponential functions.

Similarly, the log of the ratio of two quantities is equal to the
difference between the logs of the quantities:

log(a/b) = log(a) − log(b)

Finally, the log of a quantity to a power is that power times the log
of the quantity:

log(ab) = b log(a)

There are also useful related facts about exponentials,
namely e(a + b + c + ...) = ea · eb · ec · . . .; e(a − b) = ea

eb ; and

e(a · b) = (ea)b6.
With this information in hand, we consider the expression we

previously presented for Si, the support for hypothesis i:

Si = p(hi)
∏

j

p(ej|hi)
vj

Taking logs, we see that:

log(Si) = log(p(hi)) +
∑

j

vj log(p(ej|hi))

It should now be apparent that the net input as described above
would correspond to the log of the support for the hypothesis rep-
resented by the unit if: (a) the value of the bias term were set to
correspond to the log of the prior probability of the hypothesis;
(b) each incoming weight were set to correspond to the log of the
probability of the corresponding element of the evidence given
the hypothesis; and (c) the activation of the external unit send-
ing activation through the weight were to be equal to 1 when the
evidence is present, and 0 otherwise. Stated succinctly in terms of
defined quantities:

neti = log(Si) if bi = log(p(hi)), wij = log(p(ej|hi)),

and aj = vj.

6Those wanting to gain familiarity with these functions can obtain values by
reading off of these functions, and check that the above relationships all hold
up. For example log(2) + log(3) = log(2 · 3) = log(6) and log(8) − log(4) =
log(8/4) = log(2), and not log(4).
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Now it should be clear that applying the softmax
function:

ρi = eneti

∑
i′ eneti′

should set the value of the variable ρi to be equal to the poste-
rior probability of hypothesis i given the set of elements of the
evidence ej as long as neti corresponds to log(Si) for all i, since

elog(x) = x, as noted above. Substituting log(Si) and log(Si′) into
the softmax function where we find neti and neti′ we will clearly
obtain our generalized Bayes formula.

Thus, the neural network in Figure 3, employing the soft-
max function, calculates posterior probabilities by relying on a
non-linear but monotonic function (the exponential function)
of the sum of a set of terms, one for the prior probability of the
hypothesis and one for each of the elements of the evidence.

Why sums rather than products? One might be inclined to ask
at this point, why should neural network modelers even bother
computing net inputs as additive quantities? Why not compute
the posterior probabilities more directly, without ever taking logs?
The answer may in part be historical: the original model neu-
ron introduced by McCulloch and Pitts (1943) summed weighted
inputs, and if they exceeded a threshold the neuron’s output
was set to 1; otherwise the output was 0. This was intended to
mimic both real neurons (which fire action potentials if their
state of depolarization reaches a critical level) and logic gates
(devices then send out a 1 or a 0 based on some logical func-
tion of their inputs). The logistic function discussed below, a close
relative of the softmax function, was adopted for use in neu-
ral network models because it produced a graded rather than
a discrete response, and could be differentiated. Only later did
the connection to probability become apparent [first reflected,
to my knowledge, in Hinton and Sejnowski (1983)]. But what
about the brain itself? It is common to treat synaptic currents
as being summed to determine the neuron’s potential, which in
turn determines its firing rate according to a non-linear func-
tion. It is possible that addition may be more robust and easier to
implement in neurons than multiplication, especially when small
probabilities are involved, since noise affecting such quantities
can drastically distort the results of multiplying products, and in
any case the computations are just as valid when conducted using
addition of logarithms rather than multiplication, as long as we
have a non-linear activation function like softmax to convert the
influences back. Some further relevant observations are provided
below.

Maximizing and matching using the neural network
We can imagine a number of policies we might employ in using
the ρi values as a basis for overt responding. One policy would
be to choose the alternative with the largest value of ρi; this cor-
responds to maximizing. Matching would occur if we were to
choose alternatives with probability equal to the value of ρi. A
gradient of possibilities between these extremes can be obtained
by introducing a parameter usually called temperature, following
the analogy to statistical physics introduced into neural networks

research by Hinton and Sejnowski (1983). This usage corresponds
to the analogy from physics, in which the temperature deter-
mines the degree of randomness in the behavior of elements of
the system. In this version of the formula, our expression now
becomes:

ρi(T) = eneti/T

∑
i′ eneti′/T

Our previous case corresponds to the situation in which T = 1.
We can now imagine a policy in which we choose each alternative
with probability ρi(T), for different values of the T parameter. As
T becomes small, the largest net input term strongly dominates,
and in the limit as T → 0 our policy converges on maximizing,
since ρi(T) will approach 1 for the unit with the largest net input
and will approach 0 for all other units. As T becomes large, the
ρi(T) will all approach 1/N where N is the number of alternatives,
corresponding to random guessing.

Example. The softmax function can be used to model response
choice probabilities in many situations, under a matching
assumption, where the ρi correspond to choice probabilities. One
case where the model provided an excellent fit arose in an experi-
ment by Salzman and Newsome (1994). Here a monkey received
a visual motion stimulus, corresponding to evidence favoring a
particular alternative direction out of eight alternative motion
directions. On some trials, the monkey also received direct elec-
trical stimulation of neurons representing motion in a particular
direction (treated in the model as another source of condition-
ally independent evidence). The monkey’s choice behavior when
both sources of evidence were presented together corresponded
well to the predictions of the model. The experimenters estimated
quantities corresponding to the bias terms and weights used in the
softmax formulation. Although they did not mention Bayesian
ideas, these terms could be treated as corresponding to logarithms
of the corresponding Bayesian quantities.

Lateral inhibition and effects of noise in the net input. The
denominator of the softmax function can be seen as expressing
a particular form of lateral inhibition, in that strong support for
one alternative will reduce the value of ρi for another. Some read-
ers may notice that the inhibitory influence a unit exerts on others
depends on its net input term (specifically, eneti/T ), whereas it is
natural to think of the ρi as corresponding to the activations of the
units for different alternatives. In most neural network models,
units are usually thought to transmit their activation value, not
their net input, both to exert excitatory and inhibitory influences.
Do units use one variable for mutual inhibition and another to
influence outside units? It is certainly a possibility. A computa-
tion of this kind could certainly be carried out, say, if the units
in our networks corresponded to columns of neurons, in which
some engaged in lateral inhibitory interactions while others sent
excitatory signals to neurons in other pools. Also, it may be worth
noticing that in practice, an iterative computational procedure in
which the net input terms build up gradually and the denomina-
tor relies on the ρi terms instead of the eneti terms should converge
to the same result, as in the REMERGE model of memory trace
activation (Kumaran and McClelland, 2012).
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It is also possible to view the softmax function as describ-
ing the outcome of a simple winner-take-all process. Suppose
we simply allow each unit to compute its net input, subject to
noise, and adopt the policy of choosing as our response the
unit with the largest net input. If the noise is very small, and
the weights and biases correspond to the probabilistic quanti-
ties above, then by choosing the unit with the largest net input
we will always be maximizing the posterior probability. On the
other hand if the noise is sufficiently large, the net input will be
effectively swamped by the noise, and choosing the unit with the
largest net input will correspond to random responding. With an
intermediate amount of noise, the process just described approx-
imates choosing alternatives with probability ρi(T) as calculated
by the softmax function, for some value of the parameter T that
depends on the amount of noise. In fact, if the noise affecting each
unit is identically distributed according to a distribution called
the extreme value distribution, then the choice probabilities will
match those described by the softmax function exactly (Train,
1993). For those not familiar with the extreme value distribution,
it is somewhat different from the Gaussian distribution, in that it
is slightly skewed, but the shape is not drastically different from
Gaussian, and simulations using Gaussian noise yield similar
results to those expected using the extreme value distribution. The
best characterization of noise in real neural populations is a mat-
ter of ongoing investigation, and it may not exactly match either
the Gaussian or the extreme value distribution. In the absence of
complete consensus, it seems reasonable to treat the noise in neu-
ral population activity as reasonably well approximated by the
extreme value distribution, and thus to conclude that a simple
winner-take-all procedure that could be implemented in real neu-
ral circuits can approximate probability matching, if the weights
and biases have the right values, and can also approximate all
policies between maximizing and pure guessing depending on the
level of the noise7.

The logistic function
We now consider a variant of the scenario described above, in
which we have just two mutually exclusive hypotheses. In this
case it is possible to use bias terms and weights that allow us to
calculate the posterior probability of one of the two hypotheses
more directly, using the logistic function—the function we men-
tioned above that is very frequently used in setting the activations
of units in neural network models. The approach is very natural
when h1 corresponds to the hypothesis that some proposition is
true, and h2 corresponds to the proposition that it is false, but
can be applied to any situation in which there are two mutually
exclusive and exhaustive alternatives. We will present the logistic
function by deriving it from the softmax function for the special
case of two alternative hypotheses.

7It may be useful to note that what determines how likely it is that the unit
with the strongest net input is the most active unit is not the absolute mag-
nitude of the noise but the ratio of the strength of the noise to the size of
the difference in the net inputs to different units. Given this, the noise might
remain constant, while the net inputs (and therefore differences among them)
might build up gradually over time. In this way, as time progressed, we could
go from chance performance to matching, and, if signals continue to grow
stronger, to maximizing as a function of time spent processing.

We consider the calculation of the posterior probability of h1,
noting that the posterior probability of h2 must be 1 minus this
quantity. Specializing the softmax function of this case, we can
write:

ρ1 = enet1

enet1 + enet2

where net1 and net2 are based on the values of the biases and
weights as described above. Dividing the numerator by enet2 ,
recalling that ea/eb = ea − b and noting that enet2/enet2 = 1 we
obtain:

ρ1 = enet1 − net2

enet1 − net2 + 1

Rather than compute each net input term separately and then
subtract them, we can instead compute a single net input using
biases and weights corresponding to the difference between the
corresponding terms in each of these two expressions. That is, we
define the combined net input as:

net = b +
∑

j

ajwj

where b = b1 − b2 and wj = w1j − w2j. Replacing the bias and
weight terms with their probabilistic values we have b =
log(p(h1)) − log(p(h2)) and wj = log(p(ej|h1)) − log(p(ej|h2)),
and recalling that log(a) − log(b) = log(a/b), we see that if
the old biases and weights corresponded to the appropriate
Bayesian quantities, the new combined bias term will be equal to
log(p(h1)/p(h2)) and each new combined weight wj will be equal
to log(p(ej|h1)/p(ej|h2)).

In terms of a single hypothesis h that is either true or false, the
bias term becomes log(p(h)/p(h̄)) or log(p(h)/(1 − p(h)) and the
wj becomes log(p(ej|h)/p(ej|h̄)). These are quantities often used
in discussions of probabilities. The first is called the log-odds. The
second is the log of the likelihood ratio, although in this case it
is the element-specific likelihood ratio, specifying the log of the
ratio of the likelihood of a specific element of the evidence when
h is true to the likelihood of that same element of the evidence
when h is false. The overall log likelihood ratio given n condi-
tionally independent elements of evidence is the sum of these
quantities over all of the conditionally independent elements of
the evidence.

From this we now can see that the posterior probability that
some hypothesis h is true can be expressed as:

ρ = enet

enet + 1

where the net input is the sum of a bias term equal to the log
of the prior odds and each weight in the contribution from each
element of the evidence is equal to the element-specific log likeli-
hood ratio. This expression does not look exactly like the logistic
function as usually written, but it is equivalent to it. We can
produce the usual form of the logistic function by dividing the
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numerator and the denominator by enet , relying on the fact that
1/ex = e−x :

ρ = 1

1 + e−net

This form of the function is used in simulators since it involves
calling the exp() function only once, but they are both essen-
tially the same function.

To summarize this section: The softmax function can compute
according to Bayes’ formula using biases and weights correspond-
ing to the logs of key Bayesian quantities, while the logistic
function computes according to Bayes’ formula using biases and
weights corresponding to logs of ratios of these quantities. The
minus sign in the exponentiation in the logistic function reflects
a simplification of the formula that slightly obscures the relation-
ship to Bayes’ formula but makes calculation quicker. It is also
worth reiterating that the softmax and logistic functions could
be used to describe the outcome of a process in which one sim-
ply chooses the alternative with the largest net input, subject to
Gaussian noise. In such a case we might think of the system as
attempting to maximize, but appearing to be doing something
more like probability matching, because the noise sometimes
makes the wrong alternative come out ahead.

Logistic additivity
Here we discuss a characteristic of patterns of data we will call
logistic additivity. This is a condition on the relationship between
the posterior probability that some binary hypothesis h is true,
as we manipulate two independent sources of evidence, under
the assumption that the sources of evidence are conditionally
independent given h and given h̄. It is also, at the same time, a
condition on the expected output of the logistic function, given
that each source of evidence has an additive effect on the net input
variable that is the input to this function. Logistic additivity is of
special interest for us because [as pointed out by Massaro (1989)],
the original IA model failed to exhibit this pattern, thereby failing
to correspond to a proper Bayesian computation and to patterns
often seen in behavioral data at the same time.

We will say that logistic additivity holds for the effects of two
independent sources of evidence on the probability of some out-
come when they have additive influences on the logit of the
probability of the outcome given the two sources of evidence. The
logit of a probability p is defined as follows:

logit(p) = log(p/(1 − p))

With this expression defined, we can write the statement of the
condition under which logistic additivity holds as:

logit(p(h1|e1, e2)) = b + f1(e1) + f2(e2)

This result is nice for visualization purposes since it says that
for a factorial combination of different levels of e1 and e2, we
should obtain parallel curves. While we will not develop this
point further here, these parallel curves can be turned into parallel
straight lines by appropriate spacing of points along the x axis. In
his excellent early analysis of context effects in word recognition

(Morton, 1969) used this approach. Further details are presented
in Figure 5 and the corresponding caption.

We now show how logistic additivity follows from Bayes
formula for the case of two sources of evidence e1 and e2

for hypotheses h and h̄. We work from Bayes formula, using
S = p(h)p(e1|h)p(e2|h) to represent the support for h and S̄ =
p(h̄)p(e1|h̄)p(e2|h̄) to represent the support for h̄, so that:

p(h|e1, e2) = S

S + S̄

Dividing the numerator and denominator of this expression by S̄:

p(h|e1, e2) = (S/S̄)

1 + (S/S̄)

It follows from this that:

1 − p(h|e1, e2) = 1

1 + (S/S̄)
.

If you do not see this immediately, add the two quantities
together—clearly they sum to 1. Dividing the first expression by
the second, we obtain:

p(h|e1, e2)/[1 − p(h|e1, e2)] = S/S̄
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FIGURE 5 | The joint effect of context and stimulus information on

probability of identifying a word correctly, displayed on axes where

points are spaced according to the logit of the indicated probabilities.

The x axis corresponds to the logit of the probability of identifying a target
word when presented without context; in the experiment (Tulving et al.,
1964), this probability was manipulated by using different exposure
durations ranging from 0 to 120 ms. Two curves are plotted, one for cases
in which an eight-word context was provided (e.g., for the target raspberries:
“We all like jam made from strawberries and”), and one for the case in
which only the last four words of the context was provided. The curves
show that the context and stimulus information have additive effects on the
logit of the probability of identifying the stimulus correctly. From Morton
(1969). Reprinted with permission.
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Replacing S and S̄ with the products they each stand for, and
taking logs of both sides, we obtain:

logit(p(h|e1, e2)) = log
p(h)

p(h̄)
+ log

p(e1|h)

p(e1|h̄)
+ log

p(e2|h)

p(e2|h̄)

The right-hand side of this equation exhibits logistic additivity,
with log(p(h)/p(h̄)) corresponding to b, log(p(e1|h)/p(e1|h̄)) cor-
responding to f1(e1), and log(p(e2|h)/p(e2|h̄)) corresponding to
f2(e2).

Working directly from the logistic function we can proceed in a
similar vein to arrive at the formula expressing logistic additivity.

Given that ρ = enet

enet + 1 it follows that 1 − ρ = 1
enet + 1 . From these

observations, it follows that ρ/(1 − ρ) = enet , since the denomi-
nators cancel. Taking logs of both sides and replacing net with its
definition we have:

logit(ρ) = b + a1w1 + a2w2

The idea that different sources of evidence—and in particular
stimulus and context information—should exhibit logistic addi-
tivity was referred to as the Morton–Massaro Law by Movellan and
McClelland (2001), and is a consequence of the assumptions of
both Morton’s and Massaro’s (e.g., Massaro, 1989) models of how
different sources of information are combined. Though neither
model was explicitly formulated in Bayesian terms, it should be
clear that these models follow from Bayes’ formula and from the
assumption that context and stimulus information are condition-
ally independent sources of evidence about the identity of an item
in context.

Given the above analysis we can think of the logit transform
of a probability (a number between 0 and 1) as converting the
probability into an unbounded real number whose value exhibits
additive influences arising from logs of prior odds and logs of
the ratios of likelihoods of conditionally independent elements
of evidence. The transform is the inverse of the logistic function,
uncovering the underlying additivity of the contributions of the
inputs to the function.

PROBABILISTIC COMPUTATIONS IN THE MULTINOMIAL
INTERACTIVE ACTIVATION MODEL
With the above background, we are finally ready to apply the
ideas we have explored so far to the MIA model (Khaitan and
McClelland, 2010; Mirman et al., in press). The goal of percep-
tion, according to this model, is to infer the underlying state of
the world that gave rise to observed features. In this case, the goal
is to infer the identity of the word and of the four letters that gen-
erated the features that reach the input to the model in a trial of a
perception experiment using displays containing features in four
letter positions.

A diagram of the model is presented in Figure 6. The diagram
shows some of the units and a small subset of the connections
in the neural network model, or equivalently, it depicts the set of
multinomial random variables used in the model, and some of the
constraints that influence the probability that these variables will
take on particular values. The identity of the word is treated as the
value of a multinomial random variable that can take on one of

FIGURE 6 | The architecture of the multinomial interactive activation

model. Each parallelogram in the figure corresponds to a pool of mutually
exclusive units, corresponding to a multinomial random variable in the
probabilistic conception of the model. The softmax function is used to
calculate estimates of posterior probabilities for the word units and for each
pool of letter units.

nw values where nw corresponds to the number of known words,
and each word unit in the neural network model corresponds to
one of the possible values this multinomial random value might
take. Similarly, the identity of the letter in each position is treated
as the value of one of four additional multinomial random vari-
ables each of which can take on one of 26 values corresponding
to the letters of the alphabet, and each letter unit in each posi-
tion corresponds to one of the values the variable for that position
might take. Finally, the observed value of each feature in a given
position is treated as the value of one of 14 multinomial random
variables, each of which can take on either of two values (present,
absent); in the neural network model, there is a separate unit for
each of these two possible values within each of these 14 variables.
There is a separate set of 14 multinomial variables for each posi-
tion, or equivalently, a separate set of 14 × 2 feature units for each
position.

Restating the goal of perception in terms of these variables, it
is to infer values of the word and letter variables based on inputs
specifying values of the feature variables. Note that the correct
values of these variables cannot be determined with certainty,
since the generative process that produces the observed features
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is assumed to be probabilistic. The MIA model assumes that per-
ception produces as its outcome a sample of a possible underlying
state of the world that could have generated the observed fea-
tures. This sample takes the form of a set of specific values for
the multinomial word variable and the four letter variables (e.g.,
[WORD = TIME; LETTERS = {T,I,M,E}]), and corresponds to
one word unit being active and one letter unit being active in
each of the four letter positions. Alternative possible underly-
ing states are sampled probabilistically, such that the probability
of sampling each possible underlying state corresponds to the
actual posterior probability that this was the underlying state
that generated the observed features, according to the generative
model embodied in its architecture and its connection weights.
The model also provides a mechanism for doing so, based on a
procedure we will describe below. Before we turn to the model,
however, we must establish what the posterior probabilities of
different underlying states of the world are, given that we have
observed a set of feature values in each position as our evidence.
To do this, we must first describe the generative model assumed
to give rise to observed feature arrays.

THE GENERATIVE MODEL OF THE MULTINOMIAL INTERACTIVE
ACTIVATION MODEL
The generative model of the MIA model is a characteriza-
tion of the process that produces the set of input features
received by a participant in a letter and word perception exper-
iment. The generative process can be envisioned with the help
of Figure 6, with the proviso that the generative process runs
strictly top down, whereas constraints among units run in both
directions.

The first step in the generative process is to select a word at ran-
dom from a list of words that are four letters long, in accordance
with a base rate for each word (represented p(wi)). We then
generate letters independently in each position with probability
p(ljp |wi), where we use ljp to represent letter j in position p8. Given
the above procedure, the probability of a particular word wi and
four letters {ljp} is:

p(wi, {ljp}) = p(wi)
∏

p

p(ljp |wi).

Now using the letter sampled in each position independently, we
sample values for features for each letter. As noted above, we treat
the set of features as consisting of 14 separate feature dimensions,
for each of which there are two explicitly represented possibil-
ities, one that the feature is present and one that it is absent.

8In principle, for each letter in each word we could have a full table of 26
times 4 entries, p(ljp |wi), but for simplicity we will assume (as in Mirman
et al., in press), that p(ljp |wi) is the same, and is equal to a fixed parame-
ter value cL|W if lj is the correct letter in position p of word i and that the
remaining probability, 1 − cL|W , is split evenly among the remaining 25 let-
ters. Thus, if cL|W = 0.95, the value of p(ljp |wi) for the incorrect letters will be

0.05/25 = 0.002. Using these numbers, with probability 0.954 � 0.81 all four
letters generated from the chosen word will be the correct letters, but with
probability 1 − 0.954 � 0.19 there will be one or more incorrect letters.

Independently for each dimension, we select the value for a given
feature dimension with probability p(fvdp |ljp)9.

The generative process has produced a word, a letter in each
position, and a value for each feature of each letter. We will call
this set of elements a path Pi,{jp},{vdp} of the generative process, and
subscript it with the indices of all of the selected elements, one for
the word (i), a set of four indices {jp} for the letters, where p runs
over the four positions, and the set of 4 × 14 indices {vdp} each
specifying the value v (present, absent) of each feature dimension
d of each position p. The probability of a given path is:

p(Pi,{jp},{vdp}) = p(wi)
∏

p

p(ljp |wi)
∏

d

p(fvdp |ljp ).

Simplify the notation slightly, using p({vdp}|ljp )10 to represent∏
d p(fvdp |ljp ), this becomes:

p(Pi,{jp},{vdp}) = p(wi)
∏

p

p(ljp |wi)p({vdp}|ljp ). (7)

We will refer to this equation later as the path probability
equation.

We can now consider the posterior probability of a par-
ticular combination of unobserved word and letter variables,
given an observed set of features, representing this with the
expression p(wi, {ljp }|{vdp}). This is just the path probabil-
ity of the full path involving the given word, letters, and
observed features, divided by the sum of the path probabili-
ties of all of the paths that could have generated the observed
features:

p(wi, {ljp}|{vdp}) = p(Pi,{jp},{vdp})
Z{vdp}

.

The denominator represents a quantity called the partition func-
tion. It stands for the sum over all nw × 264 path probabilities.
The above equation is nothing more than an application of Bayes
formula, but in a situation where the alternative hypotheses are
the alternative combinations of possible word and letter identi-
ties that could have produced the given evidence, or ensemble of
features.

Let us now consider how we could calculate the posterior prob-
ability that the word responsible for a given path was word i,
given that we observed the set of features {vdp}. This will be the
sum, over all paths that can generate these features starting from
the word i, of the probabilities of these paths, divided by the
sum over all of the paths that could have generated the observed
features:

p(wi|{vdp}) =
∑

j1,j2,j3,j4 p(wi)
∏

p p(ljp |wi)p({vdp}|ljp )
Z{vdp}

9Again for simplicity, we use a single parameter for correct features, cF|L; for
incorrect features, the corresponding probability is 1 − cF|L.
10Note the distinction between {vdp}, the full set of indices of the active feature
value units across all dimensions and all positions, and {vdp }, the set of indices
of the active feature values in position p.
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The summation in the numerator is the sum over the 264 pos-
sible combinations of the 26 possible letters, one in each of
the four letter positions, and Z{vdp} is the partition function as
above.

It is useful at this point to introduce the conceptual and
terminological distinction between the joint posterior probabil-
ity of a combination of variables and the marginal posterior
probability of a single variable. The quantity p(wi, {ljp }|{vdp})
is an example of a joint posterior probability (in this case, of
the combination of the indexed word and the four indexed
letters), whereas p(wi|{vdp}) is an example of a marginal poste-
rior probability (in this case, of just the indexed word). There
are also marginal posterior probabilities associated with each of
the indexed letters, e.g., for the first position p(lj1 |{vvp}). The
marginal posterior probability that a single variable has a given
value is the sum of the joint posterior over all of the combi-
nations of variables in which the variable has the given value.
For example, the marginal posterior probability of word i is
the sum over all of the combinations involving word i of the
joint posterior probability of the combination. As we will see,
some procedures naturally calculate marginal posterior probabil-
ities, while other procedures naturally sample from joint poste-
rior probabilities. We will consider these concepts further as we
proceed.

It will simplify further analysis to note that p(wi) is a con-
stant that can be pulled out of the summation in the numerator
above, and that we can use the distributive law 11 to rewrite∑

j1,j2,j3,j4

∏
p xjp as

∏
p

∑
j xjp . Using these two facts, the above

reduces to:12

p(wi|{vdp}) =
p(wi)

∏
p

∑
jp p(ljp |wi)p({vdp}|ljp )

Z{vdp}

The value we obtain for each word i corresponds to the
marginal posterior probability of the word given the observed
features.

Now, let us turn to the problem of calculating the marginal
posterior probability that the letter in some arbitrary letter posi-
tion is letter j, given the full set of feature values {vdp} over the four
positions. This probability is just the sum of probabilities of all of
the paths that involve letter j in position p and the given feature
values in all four positions, divided by the sum of the probabili-
ties of all of the paths that could have generated the given features.
The expression below represents this summation. We focus on
position 1 to simplify the notation—analogous expressions can
be written replacing the index 1 with the index of any of the other
letter positions.

11This law states that for all a, b, c, d: (a + b)(c + d) = ac + ad + bc + bd.
12It is worth noting that the simplification here dramatically speeds calcu-
lation. Instead of computing 264 separate products of four quantities and
then adding these all up, we compute the product of four sums of 26
quantities, producing a speed up of 17,000:1. It is also easier to implement
the add-then-multiply simplification as a parallel computation in a neural
network.

p(lj1 |{vdp}) =

∑
i

∑
{j2,j3,j4} p(wi)p(lj1|wi)p({vd1}|lj1)∏

p�=1 p(ljp |wi)p({vdp}|ljp )∑
j′1

∑
i

∑
{j2,j3,j4} p(wi)p(lj′1|wi)p({vd1}|lj′1 )∏

p �= 1 p(ljp |wi)p({vdp}|ljp )

The expression looks complex 13, but if we approach it slowly it
should make sense. Starting with the numerator, we start with the
notation for the summation over all of the nw × n3

l possible paths
that could have generated the given features and that involve let-
ter j in position 1. The probability of each of these paths is then
the product of the prior probability for the word involved in the
specific path, p(wi), times a corresponding expression for each of
the letters involved in the path.

Once again we can simplify. Looking first at the numerator,
we can pull out the expression p({vd1}|lj1 ) from the summation
over words and letter combinations, since this expression is con-
stant with respect to these. Likewise, we can pull p(wi)p(lj1|wi)

out of the summation over letter combinations, since it too is
constant in all of these combinations. We can then use the dis-
tributive law to replace

∑
{j2,j3,j4}

∏
p�=1 p(ljp |wi)p({vdp}|ljp ) with∏

p �= 1

∑
jp p(ljp |wi)p({vdp}|ljp). In the denominator, we have par-

titioned the sum of the full set of path probabilities into subsets,
one for each set of paths involving a different letter in position 1.
We can apply the simplifications just described for the numerator
to each such term in the denominator to obtain:

p(lj1 |{vdp}) =
p({vd1}|lj1 )

∑
i p(wi)p(lj1 |wi)∏

p �= 1

∑
jp p(ljp |wi)p({vdp}|ljp )

∑
j′1 p({vd1}|lj′1)

∑
i p(wi)p(lj′1|wi)∏

p �= 1

∑
jp p(ljp |wi)p({vdp}|ljp)

The leftmost factor in the numerator p({vd1}|lj1) now corresponds
to the standard Bayesian quantity p({e}|h), where {e} is the
bottom-up evidence for the ensemble of features in position 1
and h is the hypothesis that the letter in position 1 is letter j.
Everything else in the numerator specifies what we will call
p(lj1 |c), the probability of letter j in position 1, given the con-
text c, where the context is the set of features in all of the
other letter positions. Thus, we could rewrite the numerator as
p({vd1}|lj1 )p(lj1 |c). The denominator consists of a sum over all
of the letters of corresponding quantities, so we can rewrite the
above to express the posterior letter probability:

p(lj1 |{vdp}) = p({vd1}|lj1)p(lj1 |c)∑
j′1 p({vd1}|lj′1 )p(lj′1|c)

(8)

This equation once again looks like Bayes’ formula, but this time,
we use the probability of the item given the context in place of the
prior or base rate. This should make sense: We can think of what
we are doing here as using the context to set the “prior” prob-
abilities of different letters to context-specific values, combining
these context specific prior probabilities with the contribution of

13In both the numerator and denominator of this equation and the next one,
there is a line break before the product symbol

∏
.
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the evidence, to calculate the total support for each of the possible
alternative letters.

ALTERNATIVE PROCEDURES FOR CALCULATING AND SAMPLING
POSTERIOR PROBABILITIES GIVEN OBSERVED FEATURE ARRAYS
The above can be thought of as a mathematical characterization
of the true posterior joint and marginal probabilities of each word
and of each letter in each position, conditional on observing some
set of features {vdp}, under the generative model. How might we
calculate, or sample from, these quantities during perception?

We now describe two different ways to calculate the marginal
posterior probabilities of words and letters—a undirectional
method and an interactive method. After that we will describe
how the updating procedure used in the MIA model allows us to
sample from the joint posterior distribution, and (as a byproduct)
also the marginal posterior distribution over words and over
letters in each position.

A unidirectional calculation method
Our first calculation method is completely non-interactive—
information flows in a single direction between each pair of pools,
as shown in Figure 7A14. Both Figure 7A and the text below apply
to the particular case of calculating the posterior probability of
possible letters in position 1, given the full set of features {vdp}.
1. For each letter in each position, including position 1, we first

calculate p({vdp}|ljp ). This corresponds to the upward arrows
from each feature array to each letter array in Figure 7A.

2. For each word, we then calculate
p(wi)

∏
p �= 1

∑
jp p(ljp |wi)p({vdp}|ljp ). This is the support

for each word, given the feature information in all positions
other than position 1, and we will thus call it Si/1

15. This
corresponds to the three upward arrows from the position 2,
3, and 4 letter arrays to the word array in Figure 7A.

3. For each letter j in position 1, multiply each of the above
word-specific terms by p(lj1|wi) and sum over words to obtain:∑

i p(lj1 |wi)Si/1. These quantities are the p(lj1 |c) terms we
need, and the computation corresponds to the downward
arrow in Figure 7A from the word level to the letters in
position 1.

4. Finally, calculate p(lj1 |{vdp}) using the posterior letter proba-
bility equation (Equation 8), taking p({vd1}|lj1 ) from step 1 and
the p(lj1 |c) from step 3.

The procedure can, of course, be applied to any letter position,
just exchanging the roles of position 1 and any other position.

A drawback of the unidirectional method. The method just
reviewed is basically consistent with the ideas of Massaro (1989)
and Norris and McQueen (2008) and elsewhere. Both argue
that when identifying the letter (or phoneme) in a particular

14In a sense the flow is still both bottom up and top-down, but there is no
back-and-forth communication, which is the essence of interactive activation.
15It could be worth noting that we have the option of normalizing the above
quantities for each word by dividing them all by their sum. This step will
not make any difference, since ratios of these quantities will be used later in
calculating posterior probabilities at the letter level.

FIGURE 7 | Schematic diagram of flow of computation for: (A)

unidirectional procedure for calculating the posterior probabilities of

letters in the first position and (B) bi-directional procedure for

calculating the posterior probabilities of all four letters. The dashed
ovals highlight the differences between the two procedures. In the
unidirectional procedure, calculation proceeds upwards to the word level
from positions 2, 3, and 4, and downward only for position 1. In the
interactive procedure, calculation proceeds upwards and downwards in all
four positions.

string position, we must separately calculate context and stimulus
support for each alternative, then combine these quantities only
as the final step of our computation. The idea seems sensible
when we think about using preceding context to help recognize
the next phoneme in a spoken word. We can imagine generating
expectations based on the input received so far for the phoneme
next to come, then combining these expectations with bottom-up
information about this next phoneme to compute its posterior,
iterating this procedure for each successive phoneme. However,
experimental evidence (e.g., Rumelhart and McClelland, 1982)
supports the view that perception of letters in every position of a
briefly-presented word benefits from contextual influences from
all other positions. The data indicates that the perception of each
letter should benefit from the context provided by all of the other
letters, and that these computations should be carried out in par-
allel, so that these influences can occur while the input is available
for identification. Subsequent context also affects phoneme per-
ception from spoken input, even though the context does not
arrive until after the target phoneme (Warren and Sherman, 1974;
Ganong, 1980), a key finding motivating the interactive architec-
ture of the TRACE model of speech perception (McClelland and
Elman, 1986).

In general, to maximize the use of context, it seems desirable
to calculate posterior probabilities for each letter using the context
provided by all the other letters, and it could be useful to calcu-
late posterior probabilities for words, based on all of the letters,
as well. The original IA model achieved something close to this,
but not exactly—many of the complaints by Massaro and later by
Norris et al. (2000; Norris and McQueen, 2008) focused on the
fact that the model did not get the posterior probabilities exactly
right; indeed, as documented by McClelland (1991) and Movellan
and McClelland (2001), the original IA model failed to exhibit
logistic additivity. Here we consider how the correct posterior
probabilities can be calculated by an interactive procedure.

To calculate the posterior probabilities over words, we
should of course include input from all four positions in the
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corresponding calculation of the Si for each word. To calculate the
context terms for a given position—say position 1—we have to
exclude its contribution to the word level to obtain the appropri-
ate Si/1 values. It would be possible to calculate Si along with Si/1,
Si/2, etc., separately in parallel, but it seems redundant and com-
putationally wasteful. Fortunately, there is a simple way to avoid
the redundancy.

A parallel, interactive method
The approach we now consider is a specific instance of the
approach proposed by Pearl (1982)—it is not the procedure we
use in the MIA model, but it is useful to understand both proce-
dures, and the differences between them. Pearl’s approach allows
processing to occur in parallel for all four letter positions, rely-
ing on the bi-directional propagation of information, as shown
in Figure 7B, minimizing the redundancy just noted. The key
observation (specialized for our specific circumstances) is that the
posterior probability for each word contains a product of terms,
one from each letter position. The term from a given letter posi-
tion p to each word unit i is

∑
j p(ljp |wi)p({vdp}|ljp ). Suppose we

call each of these quantities rip . Then we can calculate the full
bottom-up support for each word combining the rip across all
four positions, saving the rip values so that we can divide them
back out in calculating the p(ljp |c) factors for each position. In
more detail, here is the procedure:

1. For each letter in each position, calculate p({vdp}|ljp ).
2. For each word, then calculate Si = p(wi)

∏
p rip where rip is

as defined above, using the values calculated in step 1. Si

represents the total support for each word, given the feature
information in all positions and the prior word probability,
and can be used to calculate the posterior probability of each
word by dividing through by the sum of all of the Si.

3. For each letter position, we now calculate the appropriate top-
down term by dividing Si by rip to obtain Si/p. We then proceed
to calculate, for each letter j, p(ljp |c) = ∑

i p(ljp |wi)Si/p as in
the unidirectional procedure.

4. For each position, we finally calculate p(ljp |{vdp}), using the
p({vdp}|ljp ) from step 1 and the p(ljp |c) from step 3.

This procedure is a specific instance of the one proposed by
Pearl (1982) for unidirectional causal graphical models (models
in which causality propagates only in one direction, as in our
generative model), subject to the constraint that each multino-
mial variable (i.e., each a set of mutually exclusive hypotheses)
in the graph has at most one parent, i.e., one variable that it is
conditioned on in the generative model. The generative model
underlying the MIA model is an example of such a graph: In the
generative model, the multinomial word variable has no parents;
each of the four multinomial letter position variables depends
only on the word variable; and each of the 14 binomial feature
dimension variables in each letter position depends only on the
letter variable for that position. The method allows for iterative,
i.e., interactive updating; as new information arrives at any of the
variables, it can be propagated through to update all of the other
variables. There is an inherent sequentiality moving upward and
then downward, but information can flow back and forth in both

directions. If feature information built up gradually over time, the
process could be iterated repeatedly, updating all of the variables
as new evidence arises.

Pearl’s method is an elegant and general method, and is now
a long established part of the fabric of probabilistic computation.
Interestingly, the idea did not come up in the development of the
IA model, even though the key idea of dividing back out one’s
contribution to a parent when receiving top-down input from
the parent was proposed by Rumelhart (1977). Perhaps one rea-
son why Rumelhart did not suggest we explore this idea when
we were developing the original IA model may be that Pearl’s
method requires each multinomial variable to keep separate track
of its bottom-up and top-down values. What gets passed up in
Pearl’s algorithm is strictly feed-forward information; what gets
passed down to a given multinomial variable carefully excludes
the information that came up through it, and must be kept
distinct16. A feature Rumelhart found pleasing in the original IA
model was that the computation was entirely homogeneous. In
an early talk on the model, he had on one of his transparencies:
“activation is the only currency” transmitted between units in the
network.

An important characteristic of Pearl’s approach is that the
posterior probabilities calculated for each variable are marginal-
ized over all possible values of all of the other variables. To see
what this means concretely, consider the set of features shown in
Figure 8. The features in each position are consistent with two
letters (H or F in the first position, E or O in the second posi-
tion, and W or X in the third)17. The features are also consistent
with four words: FEW, FOX, HEX, and HOW18. Pearl’s algorithm
will allow us to calculate that these words and letters are the most
likely. Ignoring differences in word frequency, the words would
all be equally likely, and so would the letters. If we selected one

16The importance of keeping these messages distinct becomes even more
clear if the top-down signals need to be passed down more than one level,
a possibility that arises in Pearl’s general formulation.
17To the human eye, the features in position 1 seem consistent with the letter
B as well as the letters F and H. However, in the Rumelhart and Siple font,
B does not have a vertical on the left, so that letter is ruled out by the given
features. Also, humans appear not to entertain the possibility of W in the third
position, perhaps because the segments appear to terminate at the bottom, but
again, the given features are equally consistent with W and X in the Rumelhart
and Siple font.
18The word HEW is also consistent with one letter in each position, but it
is very low in frequency and for the sake of the example we assume it is not
known to the perceiver.

FIGURE 8 | A few features from each position of a three-letter word.

Based on the Rumelhart and Siple font, there are two consistent letters in
each position, and four consistent words.
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word from those that are equally probable, and one letter from
each position from those that are equally probable, we could end
up with the conclusion that the word is FEW but that the letters
are H, O, and X (letters that, together, don’t even form a word).

The approach used in the MIA model samples from the
joint posterior of the generative model. That is, it samples from
the space of composite hypotheses consisting of one word and
one letter in each position. For example, the joint hypothesis
[WORD = FEW; LETTERS = {F,E,W}] is one such hypothesis,
while the hypothesis [WORD = FEW; LETTERS = {H,O,X}] is
another. The first of these joint hypotheses is far more likely than
the second. The MIA model assumes that perceivers select among
alternative joint hypothesis weighted by their overall probability.
We now turn to the procedure used for doing this.

Sampling from the joint posterior in the MIA model
The final approach we will consider, the one used in the MIA
model, is based on the Bayesian procedure known as Gibbs sam-
pling, and was used in the Boltzman machine by Hinton and
Sejnowski (1983). Gibbs sampling is discussed in more detail
below; for now, we note that Gibbs sampling is a procedure
used to sample from the joint posterior distribution of a prob-
abilistic model by iteratively updating the states of unobserved
variables probabilistically, based on current values of observed
and other unobserved variables. We present the specific version
of these ideas used in the MIA model, which have been adapted
and specialized for our case.

In the model, there are word, letter, and feature units as
illustrated in Figure 6, and weights are considered to be bi-
directional, as in the figure, but their values are defined only in
one direction. At the word level, each word unit has a bias term,
corresponding to the log of its prior probability, log(p(wi)). The
connection weight linking each word to each letter is set equal to
log(p(ljp |wi)), and the weight linking each feature to each letter is
set to log(p(fvdp |ljp)).

We specify the input to the model by setting the values of the
feature units to correspond to a specific input feature array. With
all units at the letter and word levels initially off, we proceed as
follows:

1. For each position, we calculate each letter’s net input. Since the
word units are all off, there will be no contribution from the
word level, and each letter unit’s net input will correspond to
log p({vdp}|ljp).

2. Within each letter position we then select one unit to be
on, using the softmax function to calculate the probability of
selecting each letter, given the net inputs to all of the letter
units.

3. We then calculate the net input to each word unit, based on
the single active letter unit in each position.

4. We then select one word unit to be on, again using the softmax
function and the net inputs to all of the word units.

5. We calculate each letter’s net input again, noting that now, one
unit at the word level is active on each iteration, providing top-
down input that affects the net input to each letter unit, in
addition to the bottom-up input coming in from the feature
level.

6. We then select one letter unit to be on in each letter position,
using softmax.

7. We repeat steps 3–6 several times, then stop with one word
unit active and one letter unit active in each position.

This iterative process in steps 3–6, which corresponds to Gibbs
sampling, is called “settling.” The initial bottom-up pass in steps
1–2 helps the network to start the settling process from an initial
state usefully constrained by the featural input.

The state of activation in the network after settling for many
iterations will be a sample from the joint posterior of the gener-
ative model (we will consider why this is true below). That is, if
we ran this whole procedure a very large number of times, and
counted the number of times the pattern at the end of settling
corresponded to each possible joint hypothesis (one word and
one letter in each position), the proportion of times the network
settled to each such pattern would correspond to the posterior
probability of the corresponding joint hypothesis.

Running the above procedure hundreds of thousands of times
would not be very efficient, but we do not propose that perception
involves such a process. Instead, we propose that each trial of a
perceptual experiment involves a single instance of running the
above procedure. Each such instance generates a single sample
from the above process, capturing the probabilistic nature of per-
formance in behavioral experiments. In a perceptual experiment
where the task is to identify the letter in a specified position (as in
most of the experiments modeled using the original IA model),
we can imagine that the participant simply reads out the identity
of the letter corresponding to the active unit in the appropriate
position. Note that this procedure is a way to use a sample from
the joint posterior as a sample from the marginal posterior for
a particular multinomial variable (e.g., the letter in the specified
position).

Relationship to Gibbs sampling and Boltzmann machines. The
above procedure is related to the updating procedure proposed
for Boltzmann machines by Hinton and Sejnowski (1983, 1986).
One difference is that in the original Boltzmann machine, units
are not organized into pools corresponding to multinominal ran-
dom variables. Rather, each unit is treated as a separate (binary)
random variable. Units are updated one at a time, selecting the
next unit to update sequentially and at random, using the logistic
function. Our network is similar, but our units are organized into
pools, each corresponding to a single multinomial variable, such
that only one unit per pool/variable is allowed to be active at one
time. In both cases, after an initial burn-in period (corresponding
to what we called settling above), networks visit global states with
probability proportional to eGs/T , where Gs is the goodness of the
state and T corresponds to the temperature. The goodness of a
state is defined as:

G(s) =
∑

i < j

aiajwij +
∑

i

aibi,

where the summation runs over all pairs of units (with each
pair of units counted only once) and wij corresponds to the
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bi-directional weight between the two units19. Additional terms
can be included to represent external inputs to units, but these
can be captured using weighted inputs from units whose activa-
tions are treated as clamped, as the set of input feature units are
in our procedure.

For the MIA model, the goodness of a state in which one word
is active and one letter in each position is active, given a set of
input feature values clamped onto the input units, is given by
what we will call the MIA goodness equation:

G(s|{vdp}) = bi +
∑

p

(wi,jp +
∑

d

wjp,vdp
) (9)

Here i indexes the single word unit that is active at the word
level, the four values of {jp} (one for each position p) index the
active letter units in each of the four positions p, and the set of 4
times 14 values of {vdp } represent the indices of the active feature-
value units on each feature dimension in each feature position.
The activations of the units involved are not expressed as vari-
ables because they are all equal to 1; no other terms occur in the
goodness because all other units’ activation values are 0.

As an exercise, the reader can check that the goodness of a
state as represented by the MIA goodness equation is equal to the
log of the probability of the corresponding path under the gen-
erative model, by taking the log of the path probability equation
(Equation 7). Given that this is so, if we run our network at some
temperature T, then the network will visit this state with proba-
bility proportional to elog(p(Ps))/T , where p(Ps) is the probability
of the path corresponding to state s. The posterior probability of
visiting this particular state given the particular feature values can
be calculated by dividing through by the sum of the exponenti-
ated and T-scaled goodnesses of all of the states that can be visited
given the feature values:

p(S|{vdp}/T) = e
Gs|{vdp }/T

∑
s′ e

Gs′ |{vdp}/T

For the case where T is equal to 1, we obtain:

p(S|{vdp}) = e
Gs|{vdp }

∑
s′ e

Gs′ |{vdp}

The probability that the network is in state Si after settling is thus
equal to the posterior probability of the state, given the evidence.

Hinton and Sejnowski (1983, 1986) focused on the task of
finding the single best joint hypothesis using a process they called
simulated annealing. In this process, one engages in a similar
sequential update process to that described above, but with grad-
ually reducing temperature. The procedure we have described
operates at a fixed temperature. At lower temperatures, the pref-
erence for units with stronger net inputs is amplified, and as T
goes to zero, the procedure will allocate all of the probability

19Instead of goodness, Hinton and Sejnowski (1986), included a minus sign
and called the quantity energy, following (Hopfield, 1982), but the equation is
otherwise the same.

to the alternative with the largest net input. Gradually lowering
the temperature corresponds to gradually increasing the relative
probability of visiting the alternatives with the largest posterior
probability. It may be worth noting that a gradual change in the
clarity of evidence can have a similar effect as a gradual change
in temperature, or that running the procedure when the evi-
dence is very weak can be similar to running the procedure at
very high temperature. Thus, perception with very weak stimuli
may correspond approximately to running the model at very high
temperature, and gradual buildup of information over time may
correspond to simulated annealing. These ideas may be worth
developing further in extensions of the MIA model.

Why does the MIA model sample correctly from the posterior? So
far we have stated without proof that “after a burn-in period” and
at fixed temperature, states are sampled in proportion to eG(s)/T .
How do we know that this is true? For particular cases, we can
demonstrate the validity of this result via stochastic simulation,
and we have done so for several cases, showing results for one
specific case in Mirman et al. (in press). The fact that it is true for
all cases follows from the fact that the sampling procedure we are
using is an instance of a Gibbs sampling procedure, introduced
by Geman and Geman (1984). The Gibbs sampler (named after
the physicist J. W. Gibbs) is widely used to sample from posterior
probability distributions in applications of Bayesian inference.

A Gibbs sampling procedure is a procedure that obtains sam-
ples from the joint posterior of a set of random variables by
successively updating sampled values of individual probabilistic
variables conditional on the values of other variables. Concretely
in our case, we are updating the multinomial word variable based
on the letter variables and each letter variable based on the word
variable and the appropriate position specific feature variables.
We can see our procedure as sampling from the conditional distri-
bution of the word variable based on the values of the feature and
letter variables on each update at the word level, and as sampling
from the conditional distribution of each letter variable, based on
the values of the word and feature variables, on each update at the
letter level. After burn-in, the overall state after each update is a
sample from the joint distribution over all of the variables. The
statement that such states are samples from the joint posterior
means that the probability of visiting each state (at equilibrium,
i.e., after a burn-in period) is equal to the posterior probability of
the state.

Two properties of our sampling procedure are necessary to
ensure that it accurately samples from the posterior (Hastings,
1970). First, the process must be ergodic—it must be possible to
get from any state to any other state in a finite number of steps.
Taking the feature units’ values to be clamped, we are concerned
only with states corresponding to a joint specification of a word
and four possible letters. The process is ergodic if it is possible
to get from any state of the word and letter units to any other
state of these units. This property holds in our case, because all of
the probabilities encoded in the weights are non-zero, making it
possible (a) to visit any possible state of the letter units given an
active word unit and a set of active feature values, and (b) to then
visit any possible state of the word units given a set of active letter
values. In our case, then, it is possible in principle to get from any
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state to any other state in one update cycle, consisting of one letter
update and one word update. So our model is ergodic20.

The second critical property is that the updating process
exhibits detailed balance. A stochastic updating process is said to
have detailed balance with respect to a particular probability dis-
tribution {π} = {. . . , πi, . . . , πj . . .}) over possible states if the
probability of being in state i and transitioning to state j is equal
to the probability of being in state j and transitioning to state i:

πip(i → j) = πjp(j → i),

or equivalently,

p(j → i)

p(i → j)
= πi

πj
,

If a stochastic updating process has this property, it will converge
to the equilibrium distribution {π} in which the probabilities of
states i and j are πi and πj respectively; ergodicity ensures that we
can get to the equilibrium distribution from any starting state21.

Intuitively, the detailed balance condition can be seen as a way
of expressing what it means for a probability distribution to be
at equilibrium, or stationary. Referring to the first version of the
equation, we can read it as saying that at equilibrium, the prob-
ability of being in state i and then transitioning to state j should
be equal to the probability of being in state j and transitioning to
state i. If this is true for all pairs of states, and if we can get from
any state to any other state, then the distribution over states will
stay constant as we continue to update. It is important to note that
it is not the states themselves but the distribution over states that
is stationary. On each update, the state may change, but the prob-
ability distribution over states, conceived of as the proportion of
times an infinitely large ensemble of instances of the process is in
each possible state, can still remain stationary. This is so because
in the ensemble, the detailed balance condition stipulates that the
probability of being in state i and transitioning to state j is equal
to the probability of being in j and transitioning to i.

We have just seen that if we are already at equilibrium (i.e.,
if the ratios of probabilities of particular states are equal to the
ratios of the corresponding transition probabilities) we will stay
there. But what if, at a certain time, the distribution of states is not
yet at equilibrium? In that case, if the transition probability ratios
are equal to the equilibrium probability ratios, the transitions will
tend to move the distribution toward the stationary distribution.
We will not prove this statement but we will consider an example
a bit later showing how movement toward the correct stationary
distribution does occur.

To show that our updating procedure will sample from the
posterior distribution of the MIA model, we must show that its

20It should be noted that some of the transition probabilities can be very
small, and thus many of the transitions are highly unlikely. As we shall see
below, we will not be relying on moving widely across the state space during
processing of a single item.
21Being ergodic, as noted in footnote 18, is an in-principle matter, and some
of the transition probabilities can be very small, but the starting state we start
from—all units off except the clamped feature units—makes for easy access to
all of the states that are plausible given the input.

state transitions are balanced with respect to the posterior prob-
abilities of the paths associated with these states, i.e., that the
transition probabilities between states i and j are in balance with
the posterior path probabilities. To do so, it is easier to work with
the second version of the statement of the detailed balance con-
dition. Working with this version, we would like to show that
the ratio of the transition probabilities between any two states is
equal to the ratio of the posterior probabilities of the generative
paths corresponding to these states. Designating these states and
the probabilities of the corresponding paths with the subscripts i
and j, this corresponds to the expression:

p(Sj → Si)

p(Si → Sj)
= πi

πj
.

For concreteness, let’s consider a specific case. Suppose that the
input features are the correct values of the features of the word
TIME, and that the correct word is active at the word level, and
the correct letter is active in positions 2, 3, and 4. Let state SI be
the state in which, in addition to the above, the letter I is active in
the first position and let state ST be the state in which, in addition
to the above, the letter T is active in the first position, and let πI

and πT represent the probabilities of the corresponding paths of
the generative model. Using these indices, the above would then
correspond to:

p(ST → SI)

p(SI → ST)
= πI

πT
.

Based on the visual similarity between I and T in the Rumelhart
and Siple font, the paths associated with these states should be
among the most probable, although state I should be less probable
that state T. Now, suppose we are in state I and we are about to
update the state of the first-position letter variable. We calculate
the net input to each letter unit based on the active features and
the active letters, and we then select the letter to activate according
to the softmax function. The probability of transitioning to state

T, i.e., of selecting T as the next letter, is e
netT1∑
j e

netj1
, where netT1 , the

net input to the unit for letter T in position 1, is:

log(p(lT1 |wTIME)) +
∑

d

log(p(fvd1
|lT1))

so that enetT1 is p(lT1 |wTIME)
∏

d p(fvd1
|lT1). Similarly, suppose we

are in state T and we are about to update the state of the first-
position letter variable. We proceed as before, and find that the

probability of transitioning to state I is e
netI1∑
j e

netj1
, where the net

input to the unit for letter I in position 1 is:

log(p(lI1 |wTIME)) +
∑

d

log(p(fvd1
|lI1))

and enetI1 is p(lI1 |wTIME)
∏

d p(fvd1
|lI1). The ratio of these two

transition probabilities, p(SI→ST )

p(ST→SI)
is then:

p(lT1 |wTIME)
∏

d p(fvd1
|lT1)

p(lI1 |wTIME)
∏

d p(fvd1
|lI1)
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They have the same denominator, which cancels out. This ratio
is the same as the ratio of the posterior probabilities of each of
the two paths, since the path probabilities share all of the other
factors in common as well as the same denominator, and again
everything else cancels out.

It would be tedious to repeat the above analysis for all possi-
ble pairs of states that might arise in the course of our sampling
process. Luckily, there was nothing special about the particular
case we just considered. The same argument can be applied for
any pair of states differing only by the letter that is active in one
of the four letter positions, given any set of clamped features.
Furthermore, an analogous argument can be applied for any two
states differing only by the word that is active. Since all the tran-
sitions are from one letter in a given position to another letter, or
from one word to another word, this covers all of the transitions.

This completes the proof that the MIA model exhibits detailed
balance, and we previously saw that it was ergodic. It follows,
then, that the model samples states with probabilities correspond-
ing to the posterior probabilities of the corresponding paths
through the generative model.

In the context of the example we were working with above,
we can now observe that the distribution of states tends to move
toward the correct equilibrium distribution, at least in a simple
specific case. Consider, for concreteness, an ensemble of 1000 sep-
arate instances of our network, and let an arbitrary fraction be in
state I and the rest be in state T just before we update the multi-
nomial variable for the first letter position in each of these 1000
instances. As one possibility, all of the networks could be in the
I state. Now, we note that our update procedure is unaffected by
the previous active letter in the first letter position (it depends
only on the state of the feature and word units—the other multi-
nomial variables in the system). Relying on the same reasoning
we worked through above, it should be clear that the update in
each network will put the system in state T with a probability
proportional to πT = p(PT), and in state I with a probability pro-
portional to πI = p(PI), and thus the ratio of the proportion of

networks in states I and T will tend toward p(PT )
p(PI )

after the update.

Thus, in this case, we can move from a distribution far from equi-
librium to something much closer to it in just a single update step.
We have not considered what would happen in a full range of
cases, but perhaps this example helps support the intuition that,
in general, the distribution of states will tend to move toward the
equilibrium distribution, if the transition probability ratios are in
balance with the posterior path probabilities.

A few practicalities. It is important to be aware of two things
when using Gibbs sampling and related procedures. First, it
takes some time for the settling process to reach the stationary
distribution. It is difficult to know how many iterations of settling
to allow before taking the state of the network as a valid sample
from the stationary distribution, and testing for stationarity is
not easy. Second, while in principle it is possible to transition
from any state to any other state, in practice adjacent states tend
to be correlated, and it may take a long time to make a transition
between quite different, but equally good possibilities. For exam-
ple, for the display in Figure 8, the time needed to transition from
the interpretation [WORD = FEW; LETTERS = {F,E,W}] to the

interpretation [WORD = HEX; LETTERS = {H,E,X}] may be
quite long. It may, in fact, be quicker to get a set of decent samples
by restarting from a blank starting place several times. This is
how we proceeded to sample from the MIA model in Mirman
et al. (in press). This is appropriate for our purposes, given that
we think of each trial in a perceptual experiment as correspond-
ing to a single case of settling to a perceptual interpretation,
corresponding to a single sample from the posterior.

SUMMARY AND DISCUSSION
The analysis presented above supports the assertion that interac-
tive processing can be consistent with principled Bayesian compu-
tation. It is hoped that the analysis will lay to rest the in-principle
concern about this matter. It is true that not all versions of inter-
active models can accurately capture Bayesian computations, but
it should now be clear that at least some can. Many questions, or
course, remain. In this section I will briefly consider two issues:
First, what was wrong with the original IA model? Second, can
some of the assumptions made in demonstrating that the MIA
model can correctly sample form the posterior of the given gen-
erative model be relaxed, and still allow for proper probabilistic
computations, or a good approximation to such computations?

WHAT WAS WRONG WITH THE ORIGINAL IA MODEL?
Complaints about the adequacy of the original IA model (e.g.,
Massaro, 1989; Norris and McQueen, 2008) have centered on the
bi-directional propagation of activation signals, but in fact, the
original IA model failed to produce the pattern of logistic additiv-
ity one would expect even in the absence of interactive processing:
the problem arose even when two sources of bottom-up evidence
were combined (McClelland, 1991). This occurred because the
particular activation and response selection assumptions used in
the original IA model distorted the contributions of two different
sources of evidence. Specifically, the original model applied the
softmax function, not to the net inputs to units, but to activations
of units—activations that had already been subjected to other
non-linearities. These non-linearities did not prevent the model
(or the TRACE model of speech perception) from capturing qual-
itatively a wide range of contextual influences on perception, but
did contribute to the model’s failure to exhibit logistic additivity.

Even if the problem with the original IA model’s activation
function were corrected, however, there could still be distortions
of proper probabilistic computation in a deterministic model
like the original IA model, as the IA model’s critics claimed. To
see this, consider first the following unidirectional model, which
would not produce a distortion. In this model, we use the archi-
tecture and connection weight values of the MIA model. However,
we make two changes: (a) we compute unit activations in the var-
ious layers of the model, setting them to continuous values based
on the softmax function rather than selecting one to have an acti-
vation of 1 and all others to have an activation of 0; and (b) we
allow only a unidirectional flow of processing, as in the unidirec-
tional procedure described previously and depicted in Figure 7A.
The activations so computed will correspond exactly to the prob-
abilistic quantities that we could have computed directly—the net
inputs, which are the sums of logs of relevant probabilistic quan-
tities will be turned back into the relevant probabilistic quantities
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by the exponentiation operation applied to the net input values
in the softmax function. Now consider a version of this model,
in which, instead of assumption (b), we allow word level activa-
tions to be computed based on letter level activations in all four
letter positions, and we then send top-down signals back to the
letter level from the word level based on all four letters instead
of just three. This will clearly produce a distortion of the result-
ing activations, unless we take care (as Pearl did in his procedure)
to divide back out of the top-down input to each letter position
its own contribution to the activation at the word level. Based on
these considerations, it appears that the original IA model may
have failed to carry out proper Bayesian computations on two
counts: it distorted these computations due to its basic activation
assumptions and it distorted them due to its failure at lower lev-
els to take back out its own contribution to the signals it received
from higher levels.

RELAXING SOME OF THE ASSUMPTIONS OF THE MIA MODEL
The MIA model makes some assumptions that were helpful in
the analysis presented above. Among them are (1) we allowed
just one unit to be active at a time in each pool corresponding
to a multinomial random variable, (2) unit activation values are
restricted to the values 0 and 1, and (3) units are updated accord-
ing to a strict alternation schedule. None of these features are
likely to hold in real neural networks. Would it still be possi-
ble to carry out proper probabilistic computations if some or all
of these assumptions were relaxed? The exact limits of the con-
ditions under which a (real or artificial) neural network could
carry out proper Bayesian computations are not fully known,
and further work will be required to further our understand-
ing of this point. For now, I offer the conjecture that perhaps
all of these assumptions can be relaxed, based on the following
considerations.

First, in McClelland (1991), I presented simulations showing
that logistic additivity of factors affecting stimulus and contex-
tual influences on letter identification could be observed in three
different variants of the original IA model, whereas the original
model violated logistic additivity. Since logistic additivity of stim-
ulus and context effects should be observed under the generative
model underlying the MIA model, these findings are consistent
with the conjecture above.

One of the three variants I considered in McClelland (1991)
was a Boltzmann machine version of the original model. This
variant is very similar to the MIA model, with these differences:
(a) units within a pool are mutually inhibitory (there are negative
connections between them) but they were not strictly mutually
exclusive as in the MIA model and (b) unit activations were
updated completely at random, as in the standard implementa-
tion of a Boltzmann machine. A mathematical analysis presented
in McClelland (1991) demonstrated that logistic additivity fol-
lows from the assumptions of this model, and in McClelland
(1998) I extended this analysis by showing that if the weights and
bias terms in this variant of the model are set to the logs of the
same probabilistic quantities used in the MIA model, then after
settling to equilibrium at a temperature of 1, the relative prob-
abilities of states with exactly one active word unit and exactly
one active letter unit in each position would correspond to the

relative posterior probabilities of the corresponding paths from
the generative model.

The Boltzmann version of the IA model just considered still
makes use of binary units. Could samples from the posterior
still be obtained in models using continuous activation values for
units in the neural network? It seems likely. The other two vari-
ants of the original IA model that exhibited logistic additivity in
McClelland (1991) did use continuous activation values—in fact,
these variants also retained the activation assumptions used in
the original IA model. What differentiated these variants from the
original model were the assumptions about sources of variability.
In the original model, processing was completely deterministic
and variability only affected response choices based on activations
calculated deterministically, whereas in the two variants consid-
ered in McClelland (1991), variability was present either in the
external inputs to the model or in the calculation of the net input
to each of the units in the network. In both variants, the response
choice after a period of settling was determined by selecting the
most active unit within a mutually exclusive pool of units (e.g.,
the units for letters in one of the four letter positions). Yet another
variant that used continuous activation values that also exhibits
logistic additivity was presented in Movellan and McClelland
(2001). These demonstrations of logistic additivity are largely
based on simulations; proving that these variants produce logis-
tic additivity is challenging, although some analysis under certain
limiting conditions was provided for the third variant in Movellan
and McClelland (2001). These findings are consistent with the
conjecture that interactive networks that incorporate variability
either in their inputs or intrinsic to processing can implement
proper probabilistic computations. As previously stated, however,
further analysis is required before we can definitively accept or
reject this conjecture.

CONCLUSION AND FUTURE DIRECTIONS
This article has covered a lot of ideas related to Bayesian infer-
ence, generative models, and neural networks. The primary goal
was to review the ideas necessary to establish the proposition that
interactive neural network models and principled probabilistic
models of cognition can be compatible with each other. I hope
that this review fulfills this goal, and I also hope that it will be
of broader use. The probabilistic and neural network concepts
considered here are in broad use throughout the psychological,
cognitive science, and cognitive neuroscience literatures, and their
integration should help advance our understanding of probabilis-
tic computation in perception and its implementation in neural
systems.

For the future, there is exciting work to be done. To date the
MIA model has been used primarily to establish the basic the-
oretical point that interactive computations in neural networks
are completely consistent with principled Bayesian computations.
The ability of the model (or a successor) to capture specific pat-
terns in data, such as those captured by the original IA model
of letter perception (McClelland and Rumelhart, 1981) and to
capture the many findings in the literature that were not ade-
quately addressed by the original model [e.g., the time-course of
stimulus and context effects, as observed in Massaro and Klitzke
(1979)] remains to be explored [initial steps in this direction
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were described in Khaitan and McClelland (2010)]. For that
exploration, it will be necessary to develop, among other things,
assumptions about exactly how the visual display conditions used
in letter and word perception experiments affect activations of
feature units and how this in turn affects the process of settling.
Establishing more detailed links with the details of the underlying
neurobiology will also be an important direction for the future.

I believe that incorporating learning and distributed represen-
tations will also be necessary to fully capture interactive processes
in perception as they arise in naturalistic settings. We have seen in
this article how an explicit generative model can be embedded
in a perceptual system, so that it can sample from the genera-
tive model’s posterior distribution. For this case, we have had the
advantage of working in a domain—the domain of printed words
and letters—where the relevant underlying units (the words and
letters themselves) and contingent relations between them (let-
ters depend on words, and features on letters)—can be identified,
so that an explicit generative model (albeit oversimplified) can
be advanced, and instantiated in a neural network. Real scenes
that we are called upon to perceive are of course far more com-
plex. There may be several objects in a display at the same time –
so rather than a single underlying cause, there can be several.
The underlying causes may be partially, but perhaps not com-
pletely, independent. The objects may take various poses and
scales, be subject to various occluders and misleading lighting

effects, etc. The objects themselves might not be fully character-
ized by mutually exclusive discrete identities, as words and letters
are. To handle such cases, one can well imagine that no explicit
generative model could ever do full justice to the actual entities or
contingent probabilities involved.

A solution to this problem may involve using a network in
which the units and connection weights are not pre-assigned, but
learned. The network could still be viewed as instantiating a gen-
erative model, but without the prior stipulation of the correct set
of units or connections. This is the approach taken in the deep
belief networks introduced by Hinton and Salakhutdinov (2006).
Incorporating these ideas into interactive models addressing the
psychological and neural mechanisms of perception provides an
exciting future challenge.
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