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Guaranteeing that synaptic plasticity leads to effective learning

requires a means for assigning credit to each neuron for its

contribution to behavior. The ‘credit assignment problem’

refers to the fact that credit assignment is non-trivial in

hierarchical networks with multiple stages of processing. One

difficulty is that if credit signals are integrated with other inputs,

then it is hard for synaptic plasticity rules to distinguish credit-

related activity from non-credit-related activity. A potential

solution is to use the spatial layout and non-linear properties of

dendrites to distinguish credit signals from other inputs. In

cortical pyramidal neurons, evidence hints that top-down

feedback signals are integrated in the distal apical dendrites

and have a distinct impact on spike-firing and synaptic

plasticity. This suggests that the distal apical dendrites of

pyramidal neurons help the brain to solve the credit assignment

problem.
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Introduction: the credit assignment problem
The flexibility of learning in animals indicates that the

brain possesses general purpose learning algorithms. A

learning algorithm is a set of rules for translating the

experiences an animal has into changes in their neural

circuits (e.g. synaptic changes). The ultimate goal of a

learning algorithm is to alter the behavioral phenotype of

the animal, helping it to adapt to the environment.

Understanding the brain’s learning algorithms is key to

understanding the biological basis of animal intelligence.

The formal study of learning algorithms often utilizes the

concept of a loss function (also known as a cost function)
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[1,2]. Within neuroscience, a loss function provides a

metric for the failure of the current phenotype in achiev-

ing an animal’s goals (Figure 1a) [3]. For example, a loss

function could measure motor slips or sensory prediction

errors. Ideally, the brain would have some way of ensuring

that changes in a neural circuit reduce a given loss

function [3], at least within the environments that the

animal is likely to encounter [4]. To do this, it is useful to

assign ‘credit’ (or ‘blame’) to each neuron or synapse for

its contribution to the loss function [5,6]. However,

outside of very simple neural circuits, credit assignment

calculations are difficult. In a hierarchical sensorimotor

circuit with multiple stages of processing, such as the

mammalian neocortex, the credit that a neuron in a

sensory area deserves for any motor errors depends on

that neuron’s downstream connections to motor circuits

(Figure 1b) [7]. The difficulty of assigning credit in the

context of hierarchical circuits is known as the credit
assignment problem [8].

Typically, solutions to the credit assignment problem

have been explored in neural network models that treat

each neuron as a single voltage compartment with a single

type of output (e.g. a scalar firing-rate or spike train)

[7,9��,10��,11–14,15�]. This strategy is reasonable at face

value: it fits with the basic properties of neural computa-

tion and helps to reduce mathematical complexity. How-

ever, there are two reasons that this strategy may have

inadvertently made it more difficult to identify the brain’s

solution to the credit assignment problem. First, if each

neuron is calculating everything using a single voltage

value, then any incoming signals about credit (e.g. feed-

back from another cortical area) must be integrated with

other signals about sensory data, or they must arrive at a

separate time. The result is that any credit related signals

must be carefully timed or they risk becoming entangled

with other ongoing calculations (Figure 1c,d). There is

some evidence of clock-like phasic activity in various

parts of the brain [16], but none of these seem to exhibit

the clear segregation between feedforward and feedback

activity required for credit assignment. Second, if a neu-

ron only has one type of output, for example, a firing rate,

then it is not immediately obvious how neural circuits can

disambiguate credit related activity from basic informa-

tion transmission (Figure 1f).

Of course, real neurons are not single compartments —

they possess complex dendritic trees that integrate dif-

ferent signals in different locations [17–27], often in non-

linear manners that have important functional implica-

tions [28–44]. Moreover, active channels in dendrites can

drive spiking behavior that is different from regular
www.sciencedirect.com
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Figure 1

Loss functions and credit assignment. (a) Illustration of a loss function. A loss function provides a metric for the performance of an agent on some

learning task. In a neural circuit, loss functions are functions of synaptic strength. The goal of learning is to find synaptic strengths that minimize

the loss function. Here, an arbitrary loss function is plotted for a network with only two synapses. (b) Illustration of the credit assignment problem.

A multilayer neural network with two neurons per layer is shown. Circles indicate neurons, with green circles indicating highly active neurons.

Arrows indicate synaptic connections and the width of the arrows indicates synaptic strength. If an input arrives at the left-hand neuron, its activity

causes strong activation in the downstream left-hand neurons, due to strong synaptic connections. However, if the loss function specifies that the

target was to give an output at the right-hand, then an error is generated. To make it more likely that the right-hand output neuron would be

activated, it would help to increase the feedforward activity of the right-hand middle neuron, X. In other words, this neuron deserves some ‘credit’

for the incorrect output. Credit assignment can be achieved if the error signal at the top-level is sent back to the middle-layer. (c) However, if the

middle-layer neuron is a single compartment, this error signal, E, would be integrated with the ongoing activity, X, thereby altering the ‘forward’

computation being performed by this neuron. (d) A possible solution is to have carefully timed phases where feedforward and feedback signals

are received at distinct times. (e) An alternative is to integrate the credit assignment signal in a separate dendritic compartment. (f) and (g)

Illustration of the use of specialized spike-waveforms for credit assignment. (f) If incoming inputs and credit signals both produce the same type of

spiking output in a neuron (indicated by ‘X’ and ‘E’, respectively), it is difficult to differentiate credit assignment from ongoing processing. (g) In

contrast, if credit signals drive dendritic non-linearities that produce unique spike-waveforms (e.g. a complex spike or high-frequency burst), then

it is easy to differentiate credit assignment from other processes.
spiking [45,46]. One possibility, then, is to segregate

credit signals into dendritic compartments, where (i) they

can be kept separate from other ongoing calculations

(Figure 1e), and (ii) they can drive unique spike-wave-

forms that signal credit information (Figure 1g). Thus,

there has been a growing interest in understanding

whether one of the solutions to the credit assignment

problem lies in dendritic computation [47,48��,49��,50�]
(and see also IMN Sacramento et al. arXiv: 1801.00062).

What counts as evidence for credit
assignment?
The ideal experiment for understanding credit assign-

ment in the brain would be to measure a loss function

explicitly, then demonstrate that a given synaptic plastic-

ity mechanism was responsible for ensuring reductions in

that loss function during learning. Such experiments are
www.sciencedirect.com 
currently outside of our technical reach, though, because

it is often unclear how we can identify a loss function in

the brain and track its progress over time [3]. Further-

more, there is no reason to assume that the brain explicitly

represents any of the loss functions it may be reducing.

Indeed, at the neural level, it is possible to reduce a loss

function without there being any direct neural correlate of

said loss function to find [51,52].

Given these realities, the best strategy for scientists to

study credit assignment depends on the level of analysis.

For example, if the desire is to examine whether credit

assignment actually shapes activity in the brain based on

the extent to which different neurons contribute to a task

[53], then it is possible to use tetrode recordings and

similar approaches [54]. In contrast, if the desire is to

understand the cellular mechanisms by which credit is
Current Opinion in Neurobiology 2019, 54:28–36



30 Neurobiology of learning and plasticity
assigned in a hierarchy, then studies of synaptic plasticity

are key. Historically, the study of plasticity rules has

focused on two-factor Hebbian updates [55–57], which

emphasize correlations in pre and postsynaptic activity

[58]. However, the cumulative evidence from computa-

tional modeling and machine learning suggests that a

simple Hebbian learning algorithm based solely on two

factors — pre and postsynaptic activity — is insufficient

for credit assignment in difficult tasks where the loss

function depends on downstream circuits and delayed

outcomes [55–57]. A starting place for coming to grips

with this issue is to consider learning rules wherein pre

and postsynaptic activity determine an ‘eligibility trace’

that indicates which synapses are eligible for updates, but

a third (or possibly fourth) factor that depends on feed-

back or neuromodulation determines whether long-term

potentiation (LTP) or long-term depression (LTD) occur

[7,14,47,48��,59–62,63�,64]. Accordingly, these models

predict that LTP/LTD should depend not only on pre

and postsynaptic activity, but also on additional ‘credit

signals’ carrying information about things like action

outcomes, prediction errors, rewards/punishments, and

attention [55–57,65]. Thus, a practical, experimental

framework for studying credit assignment is to examine

Hebbian synaptic plasticity rules in a circuit and deter-

mine whether additional feedback signals carrying credit-

related information can regulate the synaptic changes that

occur.

There are several lines of experimental evidence support-

ing a role for neuromodulators in credit assignment in

various neural circuits, including the hippocampus, neo-

cortex and striatum [66–69]. Indeed, neuromodulators

have been shown to have modulating effects on Heb-

bian-like synaptic plasticity in these circuits [66–68].

However, we also know that neuromodulator systems

tend to transmit widely to a volume of tissue, and thus

are not usually neuron specific, let alone dendrite specific.

The most interesting role that dendrites could play in

credit assignment would be to provide a site for fine-

grained credit assignment calculations, since effective

credit assignment in deep networks typically requires

some form of neuron-by-neuron credit signal [10��,57].
Thus, while neuromodulators undoubtedly play a crucial

role in credit assignment systems, we here focus on

neuron-by-neuron credit assignment mechanisms, which

are more likely to be linked to dendritic processing.

Perhaps the clearest example of experimental evidence

for neuron-by-neuron credit assignment is provided by

learning in the cerebellum. In the cerebellum, granule

cells project to Purkinje cells via parallel fibers, carrying

information about input from the spinal cord, the cortex,

and the vestibular system. The Purkinje cells carry signals

that are considered the output of the cerebellum [70].

Various forms of motor learning may rely on the plasticity

of parallel fiber synapses onto Purkinje cells [71–74]
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(though see [75]). However, this plasticity depends not

only on parallel fiber and Purkinje cell activity, but a third

term delivered via climbing fibers from the inferior oli-

vary nucleus [70]. Evidence suggests that diverse error

signals from downstream motor systems are communi-

cated by the climbing fibers [76,77], and interestingly,

climbing fibers synapse onto Purkinje cells in a one-to-

one correspondence. This makes one-to-one mapping of

error signals possible (Figure 2a). Plasticity at the parallel

fiber ! Purkinje cell synapses is mediated by a distinct

spike-waveform generated by climbing fiber activity and

the calcium currents they control, referred to as a

‘complex spike’ (Figure 2b) [45,78,79]. This allows the

climbing fibers to control whether positive (LTP) or

negative (LTD) changes in the parallel fiber ! Purkinje

cell connections occur [80–83] (Figure 2c). Moreover, the

specific timing of climbing fiber activation controls paral-

lel fiber ! Purkinje cell plasticity in a manner that

matches the temporal delay between cerebellar activity

and error signal receipt [84�]. Thus, this can be modeled

as a three-factor learning rule, where pre and/or postsyn-

aptic activities interact with a credit assignment factor

provided by the climbing fibers [70,85].

There is a potentially important difference between

Purkinje cell credit assignment and credit assignment

in other neurons/circuits, though: because Purkinje cells

represent the output of the cerebellum, and because

there appears to be a one-to-one mapping between climb-

ing fibers and Purkinje cells [45], the credit assignment

problem in Purkinje cells is much less difficult. That is,

credit assignment in Purkinje cells may be relatively

straightforward, since error signals are not being inte-

grated backwards through a complex hierarchy, but

instead are directly communicated to each neuron on a

one-to-one basis. Therefore, credit calculations in Pur-

kinje cells may not require a dendritic compartment that

is segregated from the parallel fiber inputs. In contrast, in

pyramidal neurons buried deep in a cortical network in

the forebrain, the credit assignment problem is much

more daunting and dendritic segregation may be crucial

for enabling detailed credit assignment.

Credit assignment in cortical pyramidal
neurons
In the neocortex and hippocampus, pyramidal neurons

are part of a hierarchical pathway with multiple sources of

potential credit-related feedback. Thus, assigning credit

in cortical pyramidal neurons may require more involved

calculations than in the output layer of the cerebellum

with one-to-one climbing fiber ! Purkinje cell error

signals. Where might these credit calculations take place?

To date, direct experimental evidence for credit assign-

ment calculations in neocortical neurons is limited. But,

there are converging lines of evidence that led us to

propose in a recent computational modeling study that
www.sciencedirect.com
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Figure 2

Credit assignment in the cerebellum. (a) Purkinje cells receive parallel fiber (PF) inputs from granule cells, as well as climbing fiber (CF) inputs in a

one-CF-to-one-Purkinje manner. (b) When PF inputs are stimulated in isolation, regular spiking results. When PF inputs are paired with CF inputs,

a complex spike is produced. (c) Climbing fiber inputs enable bidirectional regulation of PF ! Purkinje synaptic plasticity. PF input by itself can

induce a saturating LTP that can be reversed by LTD when the same PF input patterns are paired with credit signals from CFs. Excitatory

postsynaptic potential (EPSP) data shown is a reproduction by hand from Figure 3 of Ref. [82].
the distal apical dendrites of pyramidal neurons are

involved in credit assignment [48��].

We begin by highlighting the properties of distal apical

dendrites that make them suitable for credit assignment

calculations. First, the distal apical dendrites in neocortex

are a major recipient of higher-order cortico-cortical and

thalamo-cortical feedback signals [21,86,18–20,86], and in

the CA1 region of the hippocampus they receive long-

range information back from entorhinal cortex [26,25].

This is notable because one of the key features of credit

assignment in a number of computational models is the

use of downstream feedback to control upstream synaptic

plasticity [7,9��,10��,14,15�,48��]. Second, distal apical

dendrites are electrotonically distant from the soma

and the basal and oblique dendrites [34,37,87,88], which

receive much of the local feedforward and recurrent

inputs to pyramidal neurons [22,23]. As such, distal apical

dendrites both receive feedback signals that are required

for credit assignment, and they are sufficiently segregated

to permit credit assignment calculations in isolation from

ongoing sensory integration (Figure 3a).

If distal apical dendrites are electrotonically distant,

though, how could their computations act as a third-factor

to control plasticity in oblique and/or basal dendrites?

Synaptic plasticity in pyramidal neurons ultimately

depends on local depolarization and non-linear active

potentials driven by N-methyl-D-aspartate (NMDA)

receptors (‘NMDA spikes’) [49��,89–94]. Thus, what

matters for the induction of synaptic plasticity is not

postsynaptic action potential firing, per se, but the manner

in which postsynaptic activity affects local depolarization

in dendritic compartments [95,96]. Interestingly, distal

apical dendrites may actually be well-placed to control
www.sciencedirect.com 
depolarization in the basal/oblique dendrites. High-fre-

quency burst-firing is a well established mechanism for

inducing dendritic depolarization, NMDA spikes and

synaptic plasticity [97,35,98], and burst-firing can alter

the sign of synaptic plasticity in proximal synapses in

cortical pyramidal neurons [99]. It is notable, then, that

the distal apical dendrites are well-placed to drive burst-

firing [46]. Specifically, the apical dendrites of pyramidal

neurons have a region that is rich in voltage-gated calcium

channels [31,33,100,101,43,36], which can induce

‘plateau potentials’ when the apical dendrites are suffi-

ciently depolarized, or if there is coincident activation of

distal apical inputs and somatic spiking (Figure 3b)

[34,37,102,43]. These plateau potentials induce high-fre-

quency (>100 Hz) bursts of action potentials [34,37,102].

As such, a switch from regular spiking to burst-firing in

pyramidal neurons carries a signal indicating that inputs

were received at the distal apical dendrites [102,46,103].

Given that burst-firing can regulate local depolarization in

the basal/oblique dendrites, it has been proposed that

bursts driven by distal apical inputs provide a third-factor

that regulates plasticity in other dendrites based on

current higher-order feedback [48��,104]. This proposed

role for apical dendrites in synaptic plasticity has been

used by computational modelers to implement credit-

assignment calculations in simulated pyramidal neurons

[48��,104] (IMN Sacramento et al. arXiv: 1801.00062), and

thereby reduce high-level loss functions with local syn-

aptic plasticity rules.

As stated above, the properties of apical dendrites make

them suitable for credit assignment calculations, but

experimental evidence for this proposal is limited. None-

theless, recent findings support the conclusion that apical

dendrites control plasticity in pyramidal neurons. In layer
Current Opinion in Neurobiology 2019, 54:28–36
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Figure 3

Credit assignment in pyramidal neuron apical dendrites. (a) There is spatial segregation of the inputs to pyramidal neurons, with local feedforward

(FF) inputs largely arriving at basal/oblique dendrites, and feedback (FB) inputs arriving largely at distal apical dendrites. These dendrites are

electrotonically distant from each other. As well, the apical dendrites have a zone rich in active calcium conductances that can generate plateau

potentials. The image shown here is a recreation of a layer 5 neocortical pyramidal neuron. (b) When FF inputs arrive they trigger regular spiking,

which can backpropagate into the apical dendrite (green traces) but does not trigger a plateau potential. In contrast, when FF and FB inputs arrive

together a plateau potential is generated, driving burst-firing. (c) The impact of FB inputs on FF synaptic plasticity is not well-understood. For

example, one possibility (illustrated here with fake data) is that a protocol that normally generates LTD on FF pathways may be converted into a

protocol that generates LTP when FF inputs are paired with FB inputs.
2/3 pyramidal neurons in somatosensory cortex, apical

dendrites receiving associative thalamic input can induce

synaptic plasticity of sensory inputs without spiking [105],

and these same inputs gate synaptic plasticity when

spiking does occur (IMN Williams & Holtmaat bioRxiv:

10.1101/281477). In the CA1 region of the hippocampus,

two important studies recently demonstrated that apical-

driven plateau potentials control the formation of place-

cells and determine whether synaptic plasticity in basal

dendrites occurs, even with seconds between the occur-

rence of basal synaptic input and plateau potentials

[43��,106��]. Moreover, a series of studies examining

visual cortex in the last few years have provided convinc-

ing demonstrations that layer 1 inputs from both higher-

order cortex and associative thalamus can carry predictive

and error feedback signals [107��,108,109�,110,111],
which could be used to calculate prediction errors for

credit assignment [9��,63�]. Altogether, the new data

coming out in the field of dendritic processing, synaptic

plasticity, and cortical coding is consistent with the

hypothesized role for apical dendrites in credit assign-

ment. This may help to explain the mysterious architec-

ture of pyramidal neurons, wherein a substantial propor-

tion of long-range inputs arrive at an electronically distant

site [46]. However, much more experimental data needs

to be collected to understand how apical dendrites might

be involved in credit assignment calculations in pyrami-

dal neurons. Specifically, more studies are required to

determine: first, how apical inputs modify basal/oblique

plasticity rules (Figure 3c), similar to how we know the

manner in which climbing fiber inputs modulate parallel

fiber inputs to Purkinje neurons [82], and second,
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whether different pyramidal neurons in different regions

use apical signals for credit assignment in different ways

(e.g. are there differences in apical credit assignment

between hippocampal versus neocortical, or layer 2/3

versus layer 5 pyramidal neurons?). Furthermore, it is

possible that the distal compartments of basal dendrites

provide another site for credit assignment calculations in

cortical pyramidal neurons [49��,112].

Conclusion
A major goal for researchers in coming years should be a

better link between the theory of credit assignment in

neural networks [7,9��,10��,11–14], and our growing

knowledge of the biophysics of dendrites and dendritic

computation [28–44]. Clearly, there is much more to

understand about dendritic computations in pyramidal

neurons, how they may signal credit information, and how

they contribute to learning, in-turn. Three issues that

deserve focused attention in our opinion are: first, how do

dendritic mechanisms map onto three-factor synaptic

update rules [55–57]? Second, what is the role of inhibi-

tory interneuron microcircuits in credit assignment

[27,50�,113–115]? Third, how does plasticity of feedback

inputs to distal apical dendrites factor into credit assign-

ment [9��,94,99,116–118]? Each of these questions are

ripe for extensive investigations.

The credit assignment problem has rarely been an

explicit focus in experimental studies of synaptic plastic-

ity. But, arguably, that was for two good reasons. First, the

major theoretical advances in credit assignment were

developed for artificial neural networks that made few
www.sciencedirect.com
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concrete experimental predictions [6,12,13]. Second, it is

difficult/impossible to experimentally explore all of the

potential input patterns that may drive synaptic plasticity.

For example, spike-timing-dependent plasticity may not

actually be the true synaptic update rule, but may instead

be what emerges from a learning algorithm that uses

feedback for credit assignment when studied with highly

constrained spike-timing patterns [119�]. Thus, theoreti-

cal insights are required to guide synaptic plasticity

experiments and provide practical limits on the inputs

and spike patterns that need to be tested. One aspect of

the current lack of predictions from neural network

models is an absence of dendrites and their active prop-

erties. The assumption that all neurons are single, linear

compartments with just one form of non-linear spiking

output has made some mathematical analyses easier.

However, whereas in machine learning the circuitry

required for learning can be built outside the network

being trained and dispensed with when it is not needed,

in the real brain the circuitry for learning must fit into

existing pathways and is always present. Recent compu-

tational work has highlighted the potential importance of

dendrites with separate compartments and non-linear

properties for solving the credit assignment problem in

a biologically realistic manner [47,48��,49��]. Given the

success of deep learning in artificial intelligence [2], and

the emergence of sophisticated optical tools for studying

dendritic computation [120], now is the ideal time for

modelers and experimentalists to work together, and

unify our understanding of dendritic computation with

our theories of learning in hierarchical neural networks.
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94. Sjöström PJ, Häusser M: A cooperative switch determines the
sign of synaptic plasticity in distal dendrites of neocortical
pyramidal neurons. Neuron 2006, 51:227-238 http://dx.doi.org/
10.1016/j.neuron.2006.06.017.

95. Kampa BM, Letzkus JJ, Stuart GJ: Dendritic mechanisms
controlling spike-timing-dependent synaptic plasticity. Trends
Neurosci 2007, 30:456-463 http://dx.doi.org/10.1016/j.
tins.2007.06.010.

96. Lisman J, Spruston N: Questions about STDP as a general
model of synaptic plasticity. Front Synaptic Neurosci 2010,
2:140.

97. Kampa BM, Stuart GJ: Calcium spikes in basal dendrites of
layer 5 pyramidal neurons during action potential bursts. J
Neurosci 2006, 26:7424 http://dx.doi.org/10.1523/
JNEUROSCI.3062-05.2006.

98. Pike FG, Meredith RM, Olding AWA, Paulsen O: Postsynaptic
bursting is essential for ‘Hebbian’ induction of associative
long-term potentiation at excitatory synapses in rat
hippocampus. J Physiol 1999, 518:571-576 http://dx.doi.org/
10.1111/j.1469-7793.1999.0571p.x.

99. Letzkus JJ, Kampa BM, Stuart GJ: Learning rules for spike
timing-dependent plasticity depend on dendritic synapse
location. J Neurosci 2006, 26:10420-10429 URL http://www.
jneurosci.org/content/26/41/10420.short.

100. Larkum ME, Zhu JJ: Signaling of layer 1 and whisker-evoked
Ca2+ and Na+ action potentials in distal and terminal
dendrites of rat neocortical pyramidal neurons in vitro and in
vivo. J Neurosci 2002, 22:6991 http://dx.doi.org/10.1523/
JNEUROSCI.22-16-06991.2002.

101. Amitai Y, Friedman A, Connors BW, Gutnick MJ: Regenerative
activity in apical dendrites of pyramidal cells in neocortex.
Cereb Cortex 1993, 3:26-38 http://dx.doi.org/10.1093/cercor/
3.1.26.

102. Shai AS, Anastassiou CA, Larkum ME, Koch C: Physiology of
layer 5 pyramidal neurons in mouse primary visual cortex:
coincidence detection through bursting. PLoS Comput Biol
2015, 11:e1004090 http://dx.doi.org/10.1371/journal.
pcbi.1004090.

103. Naud R, Sprekeler H: Sparse bursts optimize information
transmission in a multiplexed neural code. Proc Natl Acad Sci U
S A 2018. 201720995.

104. Körding KP, König P: Supervised and unsupervised learning
with two sites of synaptic integration. J Comput Neurosci 2001,
11:207-215 http://dx.doi.org/10.1023/A:1013776130161.

105. Gambino F, Pages S, Kehayas V, Baptista D, Tatti R, Carleton A,
Holtmaat A: Sensory-evoked LTP driven by dendritic plateau
potentials in vivo. Nature 2014, 515:116-119 http://dx.doi.org/
10.1038/nature13664.

106.
��

Bittner KC, Milstein AD, Grienberger C, Romani S, Magee JC:
Behavioral time scale synaptic plasticity underlies CA1 place
fields. Science 2017, 357:1033 http://dx.doi.org/10.1126/science.
aan3846.

This paper demonstrates that place-field formation in CA1 of the hippo-
campus depends on a synaptic plasticity rule that depends on plateau
potentials. The timing-rules are such that inputs that occur seconds
before or after a plateau potential are potentiated.
Current Opinion in Neurobiology 2019, 54:28–36 
107.
��

Leinweber M, Ward DR, Sobczak JM, Attinger A, Keller GB: A
sensorimotor circuit in mouse cortex for visual flow
predictions. Neuron 2017, 95:1420-1432.e5 http://dx.doi.org/
10.1016/j.neuron.2017.08.036.

This paper demonstrated the existence of a feedback pathway from
premotor cortex to primary visual cortex in mice. The signals commu-
nicated by this pathway could potentially be used to solve the credit
assignment problem.

108. Keller GB, Bonhoeffer T, Hübener M: Sensorimotor mismatch
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