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Many animal species have evolved a capacity to estimate the number of 
objects seen1. Numerosity estimation is foundational to mathematical 
learning in humans2,3, and susceptibility to adaptation suggests that 
numerosity is a primary visual property4. Nonetheless, the nature of 
the computations underlying this “visual sense of number”4 remains 
controversial5. Variability in object size prevents a simple solution 
based on the summation of their surface area (cumulative surface 
area), which is a main perceptual correlate of numerosity. A promi-
nent theory6 requires object size normalization as key preprocessing 
stage for numerosity estimation. Others circumvent the problem, 
assuming the use of “occupied area” independent of object size7.

Here we show that visual numerosity emerges as a statistical prop-
erty of images through unsupervised learning. We used deep networks, 
multilayer neural networks that contain top-down connections and 
learn to generate sensory data rather than to classify it8,9. Stochastic 
hierarchical generative models are appealing because they develop 
increasingly more complex distributed nonlinear representations of 
the sensory input across layers9. These features make deep networks 
particularly attractive for the purpose of neuro-cognitive modeling.

The deep network had one ‘visible’ layer encoding the sensory 
data and two hierarchically organized ‘hidden’ layers (Fig. 1). The 
training database consisted of 51,200 unlabeled binary images 
containing up to 32 randomly placed objects with variable surface 
area, such as those in Supplementary Figure 1a. Crucially, learning 
concerned only efficient coding of the sensory data (that is, maxi-
mizing the likelihood of reconstructing the input) and not number 
discrimination, as information about object numerosity was not  
provided (Supplementary Methods and Supplementary Fig. 1).
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Figure 1 Deep network model and number-sensitive neurons.  
(a) Architecture of the deep network model and sample input images 
(samples with 4, 8 and 16 objects and equal cumulative area).  
(b) Regression coefficients for log(numerosity) and log(cumulative area) of 
neurons in the second hidden layer. Selectivity is indexed by large absolute 
value of one coefficient combined with near-zero value of the other. Red, 
numerosity detectors; black, cumulative-area detectors; gray, non-selective 
neurons. (c) Population activity of numerosity detectors (mean activation 
value) as a function of number of objects (±1 s.d. bands represent 
variability across images). Inset (adapted from ref. 10): corresponding 
response (mean firing rate ± s.e.m.) of a number-sensitive neuron in the 
monkey LIP area (red and purple represent different experimental blocks). 
(d) Population activity of numerosity detectors (mean activation value), 
showing invariance to cumulative area in pixels (px). (e) Spatial properties 
of off-center (blue) and on-center (red) basis functions in hidden layer 1  
(HL1) (samples in Supplementary Fig. 2) superimposed on the image 
space (gray area). (f) Spatial selectivity of numerosity detectors in hidden 
layer 2 (HL2), represented as 30 × 30 pixel plots superimposed on the 
image space (light gray area). Each colored point in a neuron’s receptive 
field (dark gray squares) represents an HL1 center-surround neuron.
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We first sought sensitivity to numerosity information after learning 
in terms of internal coding by hidden neurons, controlling for the 
confounding cumulative surface area. Compressed monotonic coding 
that resembles a scalar variable is the simplest number code found in 
the lateral intraparietal (LIP) area of the monkey brain10. We found 
distinct populations of neurons in the second hidden layer (HL2) 
that noisily estimated numerosity and cumulative area, respectively 
(Fig. 1b and Supplementary Methods). The numerosity detectors in  
particular showed response profiles consistent with the neurophysio-
logical data (Fig. 1c). Average activity across numerosity detectors 
was well explained by log(numerosity) of the stimulus (regression  
R2 = 0.82) and was invariant to cumulative area (Fig. 1d), suggesting 
that population coding can support numerosity estimation.

We then assessed whether HL2 neurons could support numerosity 
comparison2,3,11. A linear classifier, fed with HL2 activity, was trained 
on the image dataset to decide whether a visual numerosity was larger 
than a reference number (either 8 or 16) (Supplementary Methods). 
The classifier scored 93% on a novel test set of 51,200 images. This 
set was also used to thoroughly assess numerosity discrimination, 
which is modulated by numerical ratio in humans and animals1–3,11. 
Probability of the response “larger”, plotted as a function of the log 
ratio of the two numbers (test numerosity/reference), followed a clas-
sic sigmoid curve (Fig. 2a). Notably, the curves for the two reference 
numbers were identical, in accordance with Weber’s law for numbers1  
and in excellent agreement with human behavioral studies2,3,11  
(Fig. 2b). The response distributions were used to compute an index of 
number discriminability (also known as number acuity2,3), the inter-
nal Weber fraction11 w (Supplementary Methods). More intuitively, 
2w represents the proportion by which a numerosity must differ from 
the reference to be discriminable with about 95% confidence11. The 
model’s w was 0.15, which is in line with the mean values observed 
in human adults3,11. Crucially, numerosity estimation was invariant 
to cumulative area (Fig. 2c).

We also generated four more test sets to assess the model’s numer-
osity estimation ability under specific conditions, as in animal stud-
ies12,13 (Fig. 2d and Supplementary Methods). Set A contained 
objects with fixed size and shape (squares of 3 × 3 pixels) for all 
numerosities, set B had equal cumulative surface area (100 pixels) 
for all numerosities (object size therefore decreased with increasing 
numerosity), set C had objects with variable features (shape, size and 
orientation) in each image and set D had two density levels for each 
numerosity. The w values for these sets were 0.13, 0.14, 0.14 and 0.17, 
respectively. These results show that numerosity estimation in the 
model, like that in animals and humans1,13, is invariant to cumulative 
area, density and object features (Fig. 2c,d).

Analyses of the network computations revealed that most of the 
first hidden layer (HL1) neurons were center-surround detectors 
that uniformly covered the image space (Fig. 1e; see examples in 
Supplementary Fig. 2). Also, the numerosity detectors in HL2 were 
spatially selective (Fig. 1f). They received strong input from HL1 
neurons with spatially aligned receptive fields. They also received 
inhibition from a few HL1 neurons that encoded cumulative area, 
thereby providing a normalization signal. Thus, the numerosity 
detectors encoded local, size-invariant numerosity. The popula-
tion activity of HL2 numerosity detectors was well predicted by 
a linear combination of the population activity of the two types of 
HL1 neuron (Supplementary Fig. 3), and it adequately supported 
numerosity comparison when used as the sole input to a classifier 
(Supplementary Methods). Simulations with a simplified math-
ematical model confirmed these analyses (Supplementary Methods 
and Supplementary Fig. 4). We emphasize that the response 
properties of the hidden neurons were not stipulated in any way 
but represent an emergent property of the image data obtained  
without supervision.

Unsupervised ‘deep learning’ discovered statistical features that 
efficiently coded a large set of images8. Visual numerosity, a high-
order feature, was progressively extracted across hidden layers, and it 
was coded invariantly from other visual properties only in the deepest 
layer of a hierarchical generative model9. The emergent monotonic 
encoding is consistent with single-cell recordings in monkey LIP10 
and functional magnetic resonance imaging blood oxygen level–
dependent (BOLD) modulation in the human homolog of LIP14. 
The model computed numerosity through the combination of local 
computations and a simple global image statistic (cumulative area), 
without explicit individuation and size normalization of visual objects 
(compare refs. 6,15). The numerosity detectors were spatially selec-
tive, which is consistent with the properties of LIP neurons10 and with 
numerosity adaptation4. Thus, local visual numerosities are invari-
ants that can support various numerosity-related estimates, and they 
form the basis of a “visual sense of number”. Though the adequacy 
of the proposed neural mechanism should be further tested in new 
behavioral and neurophysiological studies, its relative simplicity fits 
well with the long phylogenetic history of numerosity estimation1. 
Future studies should also assess whether sensitivity to numerosity 
can emerge when this dimension is a less salient stimulus feature 
in the training data, such as in natural images. One overarching 
implication of our findings is that learning a hierarchical generative 
model was the key to understanding the neural mechanism under-
lying numerosity perception and thus to bridging the gap between 
neurons and behavior.
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Figure 2 Numerosity comparison task. Probability of the response “larger” as a function of the log-ratio of input numerosity and reference. (a) Numerosity 
discrimination on the test dataset with 8 (diamonds) or 16 (squares) as reference, indexed by a Weber fraction of w = 0.15 (sigmoid fit). (b) Human adult 
data (replotted from ref. 3) in numerosity comparison (squares, 16 as reference; circles, 32). (c) Invariance to cumulative area in pixels (px). (d) Performance 
on control data sets A–D: constant object area (black), constant cumulative area (green), variable object features (purple) and variable density (red and blue).
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Note: Supplementary information is available on the Nature Neuroscience website.
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