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Abstract 

The N400 component of the event-related brain potential has aroused much interest 

because it is thought to provide an online measure of meaning processing in the brain. Yet, 

the underlying process of meaning construction remains incompletely understood. Here, we 

present a computationally explicit account of this process and the emerging representation of 

sentence meaning. We simulate N400 amplitudes as the change induced by an incoming 

stimulus in an implicit and probabilistic representation of meaning captured by the hidden 

unit activation pattern in a neural network model of sentence comprehension, and propose that 

the process underlying the N400 also drives implicit learning in the network. We account for 

a broad range of empirically observed N400 effects which have previously been difficult to 

capture within a single integrated framework. 
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N400 amplitudes as change in a probabilistic representation of meaning:  

A neural network model  

 

The N400 component of the event-related brain potential (ERP) has received a great 

deal of attention, as it promises to shed light on the brain processes underlying the semantic 

interpretation of language and other meaningful inputs. The N400 is a negative deflection at 

centroparietal electrode sites peaking around 400 ms after the presentation of a potentially 

meaningful stimulus. The seminal N400 study showed that N400 amplitude varies as a 

function of meaning in context: given “I take my coffee with cream and …” the anomalous 

word dog produces a larger N400 than the congruent word sugar.1 Since this study, the N400 

has been used as a dependent variable in over 1000 studies and has been shown to be 

modulated by a wide variety of variables including sentence context, categorical relations, 

repetition, and lexical frequency, amongst others2. However, despite the large amount of data 

on the N400, its functional basis is not well understood: various verbal descriptive theories 

have been actively debated, proposing, for instance, that N400 amplitudes reflect lexical 

and/or semantic access3, semantic integration4,5, semantic binding6, or semantic inhibition7.  

Here, we provide both support for and formalization of the view that the N400 reflects 

the stimulus-driven update of a representation of sentence meaning – one that implicitly and 

probabilistically represents all aspects of meaning as it evolves in real time during 

comprehension2.  We do so by presenting an explicit computational model of this process, 

showing that it can account for a broad range of empirically observed N400 effects which 

have been difficult to capture within a single theoretical account2. Rather than concentrating 

on neurophysiological details, we directly relate variations in N400 amplitudes to measures 

obtained from a more abstract, functional level account, allowing us to focus on the goal of 

clarifying the cognitive functions underlying N400 amplitudes. 
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The design of the model8 reflects the principle that listeners continually update an 

implicit probabilistic representation of sentence meaning as each incoming word of a sentence 

is presented.  The representation is an internal representation (corresponding to a pattern of 

neural activity, modeled in an artificial neural network) called the sentence gestalt (SG) that 

depends on connection-based knowledge in the update part of the network (see Fig. 1). The 

SG pattern can be characterized as implicitly representing subjective probability distributions 

over the various possible aspects or attributes of the event being described by the sentence 

(see Implicit probabilistic theory of sentence meaning section in online methods). The 

magnitude of the update produced by each successive word corresponds to the change in this 

implicit representation that is produced by the word, and it is this change, we propose, that is 

reflected in N400 amplitudes.  For example, after a listener has heard “I take my coffee with 

cream and…” our account holds that the activation state already implicitly represents the 

belief that the speaker takes her coffee with cream and sugar, so the representation will 

change very little when the final word “…sugar” is presented, resulting in little or no N400 

signal; in contrast, the representation will change much more if “…dog” is presented instead, 

corresponding to a much larger change in belief and a larger N400. Specifically, the semantic 

update (SU) induced by the current word n is defined as the sum across the SG layer units of 

the absolute value of the change in the unit’s activation produced by the current word n, i.e. 

the difference in the unit’s activation after word n and after word n-1:  

𝑁400𝑛 = 𝑆𝑈𝑛 = ∑|𝑎𝑖(𝑤𝑛) − 𝑎𝑖(𝑤𝑛−1)|

𝑖

 

This measure can be related formally to a Bayesian measure of surprise9 and to the signals 

that govern learning in the network (see online methods and below), and indeed we propose a 

new learning rule driven by the semantic update.
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Figure 1. The Sentence Gestalt (SG) model architecture (left), processing sentences with a high (top) or low (bottom) cloze probability ending, and computation 

of N400 correlate (right). Grey boxes highlight the model’s parts. Ovals represent layers of units (numbers give the number of units in each layer). Arrows 

represent all-to-all modifiable connections; each unit applies a sigmoid transformation to its summed inputs, where each input is the product of the activation of 

the sending unit times the weight of that connection. In the update part of the model, sequentially incoming words are processed through a first hidden layer 

(Hidden 1) where their input combines with the previous activation of the SG layer to produce the updated SG layer activation (shown as a vector above the 

model) corresponding to the model’s current probabilistic representation of the meaning of the sentence. During training, after each presented word, the model 

is probed concerning all aspects of the described event (e.g. agent, “man”, action, “play”, patient, “monopoly”, etc.) in the query part of the network. Here, the 

activation from the probe layer combines via hidden layer 2 with the current SG activation to produce output activations (output units for selected specific 

concepts activated in response to the agent, action, and patient probes are shown; each concept is also represented by semantic feature units; see Supplementary 

Table 1). After presentation of “The man” (leftmost), the model activates the correct unit when probed for the agent, and estimates the probabilities of the action 

and patient of the event. When presented with the second word “plays” the SG activation is updated (second 100 unit vector) and the model now activates the 

correct output units to the agent and action probe, and updates its activations estimating the probability of each possible patient. These estimates reflect the 

model’s experience, since chess occurs with relatively high probability. Thus, if the next word is “chess”, less update of the SG layer activations is necessary 

(top) than if the next word in “monopoly” (bottom). The computation of the model’s N400 correlate (right), called the Semantic Update (SU), reflects the change 

in the SG activation induced by the current word; the SU is larger for low (monopoly, bottom) as compared to high cloze probability (chess, top) endings. 
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Results 

 The representations that a listener forms when encountering the words in a sentence 

reflect the statistics of past experience with events and the sentences that describe them and 

are thought to depend on exposure to sentences in contexts where information about the 

events the sentences describe is also available (see Fig. 1 and online methods).  To test the 

model, we use an artificial corpus of {sentence, event} training examples produced by a 

generative model that embodies specific assumptions about the statistics of events and 

sentences (see online methods).  While the sentences and event descriptions are simpler than 

real sentences and events, the artificial corpus has the advantage that its properties can be 

completely understood, allowing separate manipulation of statistical and semantic 

relationships, which are difficult to fully separate in natural corpora.  We report twelve 

simulations of well-established N400 effects chosen to illustrate how the model can address 

empirical findings taken as supporting diverse and sometimes conflicting descriptive theories 

of the functional basis of the N400 signal (see Table 1). We focus on language-related effects 

but note that both linguistic and non-linguistic information contribute to changes in semantic 

activation as reflected by the N4002. 

 Please insert Table 1 about here  

Basic effects 

From “violation signal” to graded reflection of surprise. The N400 was first observed 

after a semantically anomalous sentence completion such as e.g. “He spread the warm bread 

with socks”1 as compared to a high probability congruent completion (butter). 

Correspondingly, in our model, SU was significantly larger for sentences with endings that 

are both semantically and statistically inconsistent with the training corpus compared to 

semantically consistent, high-probability completions (Fig. 2a and Supplementary Fig. 1a).  
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Figure 2. Simulation results for the basic effects. Displayed is the model’s N400 correlate, 

i.e. the update of the Sentence Gestalt layer activation – the model’s probabilistic 

representation of sentence meaning - induced by the new incoming word. Cong., congruent; 

incong., incongruent. See text for details of each simulation. Each blue dot represents the 

results for one independent run of the model, averaged across items per condition; the red 

dots represent the means for each condition, and red error bars represent +/- SEM 

(sometimes invisible because bars may not exceed the area of the red dot). Statistical results 

(t1 from the model analyses, t2 from the item analyses): a, semantic incongruity: t1(9) = 25.00, 

p < .0001, t2(9) = 11.24, p < .0001; b, cloze probability: t1(9) = 8.56, p < .0001, t2(9) = 6.42, p 

< .001; c, position in sentence: t1(9) = 8.17, p <.0001, t2(11) = 43.54, p <.0001  from the 

second to the third sentence position; t1 (9) = 4.73, p <.01, t2(11) = 4.66, p <.01, from the third 

to the fourth position; t1(9) = 17.15, p < .0001, t2(11) = 12.65, p <.0001, from the fourth to the 

fifth position; d, categorically related incongruities were larger than congruent, t1(9) = 10.63, 

p < .0001, t2(9) = 3.31, p < .05, and smaller than incongruent continuations, t1(9) = 14.69, p < 

.0001, t2(9) = 12.44, p < .0001; e, lexical frequency: t1(9) = 3.13, p < .05, t2(13) = 3.26, p < .01; 

f, semantic priming: t1(9) = 14.55, p < .0001, t2(9) = 8.92, p < .0001; g, associative priming: 

t1(9) = 14.75, p < .0001, t2(9) = 18.42, p < .0001; h, immediate repetition priming: t1(9) = 16.0, 

p < .0001, t2(9) = 18.93, p < .0001; i, semantic illusion: t1(9) = 2.09, p = .133, t2(7) = 5.67, p < 

.01, for the comparison between congruent condition and semantic illusion; t1(9) = 10.66, p < 

.0001, t2(7) = 3.56, p < .05,  for the comparison between semantic illusion and incongruent 

condition.  
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Supplementary Figure 1. Simulation results for the basic effects (by item). Displayed is the 

model’s N400 correlate, i.e. the update of the Sentence Gestalt layer activation – the model’s 

probabilistic representation of sentence meaning - induced by the new incoming word. Cong., 

congruent; incong., incongruent. See text for details of each simulation. Here, each blue dot 

represents the results for one item, averaged across 10 independent runs of the model; the red 

dots represent the means for each condition, and red error bars represent +/- SEM 

(sometimes invisible because bars may not exceed the area of the red dot). Statistical results 

are reported in the caption of Fig. 2 in the main text. 

 

Soon after the initial study it became clear that the N400 is graded, with larger amplitudes for 

acceptable sentence continuations with lower cloze probability (defined as the percentage of 

participants that continue a sentence fragment with that specific word in an offline sentence 

completion task), as in the example “Don’t touch the wet dog (low cloze)/ paint (high 

cloze)“10. This result is also captured by the model: it exhibited larger SU for sentence 

endings presented with a low as compared to a high probability during training (Fig. 2b, Fig. 

1, and Supplementary Fig. 1b). The graded character of the underlying process is further 
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supported empirically by the finding that N400s gradually decrease across the sequence of 

words in normal congruent sentences11. SU in the model correspondingly shows a gradual 

decrease across successive words in sentences (Fig. 2c and Supplementary Fig. 1c; see online 

methods for details).  

Expectancy for words or semantic features? The findings discussed above would be 

consistent with the view that N400s reflect the inverse probability of a word in a specific 

context (i.e. word surprisal12), and indeed, a recent study observed a significant correlation 

between N400 and word surprisal measured at the output layer of a simple recurrent network 

(SRN) trained with a naturalistic corpus to predict the next word based on the preceding 

context13.  However, there is evidence that N400s may not be a function of word probabilities 

per se but rather of probabilities of aspects of meaning signaled by words: N400s are smaller 

for incongruent completions that are closer semantically to the correct completion (and thus 

share more semantic features with it) than those that are semantically more distant. For 

example, consider the sentence: “They wanted to make the hotel look more like a tropical 

resort. So, along the driveway they planted rows of …”. The N400 increase relative to palms 

(congruent completion) is smaller for pines (incongruent completion from the same basic 

level category as the congruent completion) than for tulips (incongruent completion not from 

the same basic level category as the congruent completion)”14. Our model captures these 

results: We compared SU for sentence completions that were presented with a high 

probability during training and two types of never-presented completions.  SU was lowest for 

high probability completions, as expected; crucially, among never-presented completions, SU 

was smaller for those in the same semantic category as high probability completions 

compared to those that were categorically unrelated to all completions presented during 

training (Fig. 2d and Supplementary Fig. 1d). 

Semantic integration versus lexical access? The sentence-level effects considered 
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above have often been taken to indicate that N400 amplitudes reflect the difficulty or effort 

required to integrate an incoming word into the preceding context4,5. However, a sentence 

context is not actually needed: N400 effects can also be obtained for words presented in pairs 

or even in isolation. Specifically, N400s are smaller for isolated words with a high as 

compared to a low lexical frequency15; for words (e.g. “bed”) presented after a categorically 

related prime (e.g., “sofa”) or an associatively related prime (e.g., “sleep”) as compared to an 

unrelated prime16; and for an immediate repetition of a word compared to the same word 

following an unrelated prime17. Such N400 effects outside of a sentence context, especially 

the influences of repetition and lexical frequency, have led some researchers to suggest that 

N400 amplitudes do not reflect the formation of a representation of sentence meaning but 

rather lexical access to individual word meaning3,18. While the SG pattern probabilistically 

represents the meaning of a sentence if one is presented, the model can also process words 

presented singly or in pairs. Indeed, the model captures all four of the above-mentioned 

effects: First, SU was smaller for isolated words that occurred relatively frequently during 

training (Fig. 2e and Supplementary Fig. 1e). Furthermore, SU was smaller for words 

presented after words from the same semantic category as compared to words from a different 

category (Fig. 2f and Supplementary Fig. 1f), and smaller for words presented after 

associatively related words (objects presented after a typical action as in “chess” following 

“play”) as compared to unrelated words (objects presented after an unrelated action as in 

“chess” following “eat”) (Fig. 2g and Supplementary Fig. 1g). Finally, SU was smaller for 

immediately repeated words as compared to words presented after unrelated words (Fig. 2h 

and Supplementary Fig. 1h).  

 Semantic illusions and the N400. A finding that has puzzled the N400 community is 

the lack of a robust N400 effect in reversal anomalies (also termed semantic illusions): a 

surprisingly small N400 occurs in sentences such as “Every morning at breakfast, the eggs 
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would eat...“. There is clearly an anomaly here – English syntactic conventions map eggs to 

the agent role despite the fact that eggs cannot eat – yet N400 amplitudes are only very 

slightly increased in such sentences as compared to the corresponding congruent sentences 

such as “Every morning at breakfast, the boys would eat...“19.  This lack of a robust N400 

effect in reversal anomalies is accompanied by an increase of the P600, a subsequent positive 

potential.  In contrast, N400 but not P600 amplitudes are considerably larger in sentence 

variations such as “Every morning at breakfast, the boys would plant...“19. How can we 

understand this pattern?  One analysis20 treats these findings as challenging the view that the 

N400 is related to interpretation of sentence meaning, based on the argument that such 

sentences should produce a large N400 because they would require (for example) treating the 

eggs as the agents of eating, and this would require a substantial change in the meaning 

representation.  

We find, however, that the semantic update in the SG model, which models the 

formation of a representation of sentence meaning, reproduces the pattern seen in the human 

N400 data. That is, the model exhibited only a very slight increase in SU for reversal 

anomalies (e.g., “At breakfast, the eggs eat…”) as compared to typical continuations (e.g., 

“At breakfast, the man eats…”), and a substantial increase in SU for atypical continuations 

(e.g., “At breakfast, the man plants…”) (Fig. 2i and Supplementary Fig. 1i). What happens in 

the SG model when it is presented with a reversal anomaly? Analysis of the query network’s 

response to relevant probes (Fig. 3) suggests that the model exhibits a semantic illusion, in 

that the SG continues to implicitly represent the eggs as the patient instead of the agent of 

eating even after the word eat is presented. This observation is in line with the idea that, when 

presented with a reversal anomaly, comprehenders still settle at least initially into the most 

plausible semantic interpretation of the given input (i.e., the eggs being eaten) even if the 

sentence is anomalous syntactically21.  
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Figure 3. Processing semantic illusions. Activation of selected output units while the model 

processes a sentence from the semantic illusion simulation: “At breakfast, the egg eats…”.  

Note that the model continues to represent the egg as the patient (not the agent) of eating, 

even after the word “eat” has been presented, giving rise to a ‘semantic illusion’. 

 

 

In summary, the model shows that the lack of an N400 increase for reversal anomalies 

is consistent with the view that the N400 reflects the updating of an implicit representation of 

sentence meaning. The model pre-dates the discovery of the semantic illusion phenomenon, 

and accounts for it without any modification, though the details of experience (for the model 

and for human learning) are expected to affect the size and nature of the update produced by 

particular anomalous sentences. Our account leaves open the possibility that other processes 

could potentially revise the initial interpretation. We consider how reversal anomalies might 

affect the P600 in the discussion. 
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Extensions 

 In all of the simulations above, it would have been possible to model the phenomena 

by treating the N400 as a direct reflection of change in estimates of event-feature 

probabilities, rather than as reflecting the update of an implicit internal representation of 

meaning that latently represents these estimates in a way that only becomes explicit when 

queried.  In this section, we show that the implicit semantic update and the change in the 

networks’ explicit estimates of feature probabilities in response to probes can pattern 

differently, with the implicit semantic update patterning more closely with the N400, 

supporting a role for the update of the learned implicit representation rather than explicit 

estimates of event-feature probabilities or objectively true probabilities in capturing neural 

responses (see online methods for details of these measures). We then consider how the 

implicit semantic update can drive connection-based learning in the update network, 

accounting for one final observed pattern of empirical findings.  

Development. N400s change with increasing language experience and over 

developmental time. The examination of N400 effects in different age groups has shown that 

N400 effects increase with comprehension skills in babies22 but later decrease with age23,24. A 

comparison of the effect of semantic congruity on SU at different points in training shows a 

developmental pattern consistent with these findings (Fig. 4, top, and Supplementary Fig. 2, 

top): the size of the congruity effect on SU first increased and then decreased as training 

proceeded. Interestingly, the decrease in the effect on SU over the second half of training was 

accompanied by a continuing increase in the effect of semantic congruity on the change in the 

model’s explicit estimates of feature probabilities (Fig. 4, bottom, and Supplementary Fig. 2, 

bottom). This pattern indicates that, later in development, less change in activation at the SG 

layer is needed to effectively support larger changes in explicit probability estimates.  This 

pattern is possible because the activation pattern at the SG layer does not explicitly represent 
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the probabilities of semantic features per se; instead it provides a basis (together with the 

connection weights in the query network) for estimating these probabilities when probed. As 

connection weights in the query network get stronger throughout the course of learning, 

smaller changes in SG activations are sufficient to produce big changes in output activations. 

This shift of labor from activation to connection weights is interesting in that it might underlie 

the common finding that neural activity often decreases as practice leads to increases in speed 

and accuracy of task performance25.  

Figure 4. Development across training. Semantic incongruity effects as a function of the 

number of sentences the model has been exposed to. Top. Semantic update at the model’s 

hidden Sentence Gestalt layer shows at first an increase and later a decrease with additional 

training, in line with the developmental trajectory of the N400. Each blue dot represents the 

results for one independent run of the model, averaged across items per condition; the red 

dots represent the means for each condition, and red error bars represent +/- SEM. The size 

of the effect (i.e. the numerical difference between the congruent and incongruent condition) 

differed between all subsequent time points: t1(9) = 17.02, p < .0001, t2(9) = 6.94, p < .001 

between 10000 and 100000 sentences; t1(9) = 7.80, p < .001, t2(9) = 10.05, p < .0001 between 

100000 and 200000 sentences; t1(9) = 14.69, p < .0001, t2(9) = 6.87, p < .001 between 200000 

and 400000 sentences; t1(9) = 7.70, p < .001, t2(9) = 3.70, p < .05 between 400000 and 800000 

sentences. Bottom. Activation update at the output layer steadily increases with additional 

training, reflecting closer and closer approximation to the true conditional probability 

distributions embodied in the training corpus.  
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Supplementary Figure 2. Development across training (by item). Semantic incongruity 

effects as a function of the number of sentences the model has been exposed to. Top. Semantic 

update at the model’s hidden Sentence Gestalt layer shows at first an increase and later a 

decrease with additional training, in line with the developmental trajectory of the N400. Each 

blue dot represents the results for one item, averaged across 10 independent runs of the 

model; the red dots represent the means for each condition, and red error bars represent +/- 

SEM. Statistical results are reported in the caption of Fig. 4 in the main text. Bottom. 

Activation update at the output layer steadily increases with additional training, reflecting 

closer and closer approximation to the true conditional probability distributions embodied in 

the training corpus.  

 

Early sensitivity to a new language. A second language learning study showed robust 

influences of semantic priming on N400s while overt lexical decision performance in the 

newly trained language was still near chance26. We leave it to future work to do full justice to 

the complexity of second language learning, but as a first approximation we tested the model 

at a very early stage in training (Fig. 5a). Even at this early stage, SU was significantly 

influenced by semantic priming, associative priming, and semantic congruity in sentences 

(Fig. 5b and Supplementary Fig. 3) while overt estimates of feature probabilities were only 

weakly modulated by the words presented. 



 16 

 

Figure 5. Comprehension performance and semantic update effects at a very early stage in 

training. Cong., congruent; incong., incongruent.  a. Activation of selected output units while 

the model is presented with the sentence “The man plays chess.”. It can be seen that the 

model fails to activate the corresponding units at the output layer. The only thing that it has 

apparently learned at this point is which concepts correspond to possible agents, and it 

activates those in a way that is sensitive to their base rate frequencies (in the model’s 

environment, woman and man are more frequent than girl and boy; see online methods), and 

with a beginning tendency to activate the correct agent (“man”) most. b. Even at this low 

level of performance, there are robust effects of associative priming (t1(9) = 6.12, p < .001, 

t2(9) = 7.31, p < .0001, top), semantic congruity in sentences (t1(9) = 6.85, p < .0001, t2(9) = 

5.74, p < .001, middle), and semantic priming (t1(9) = 5.39, p < .001, t2(9) = 3.79, p < .01, 

bottom), on the size of the semantic update, the model’s N400 correlate. Each blue dot 

represents the results for one independent run of the model, averaged across items per 

condition; the red dots represent the means for each condition, and red error bars represent 

+/- SEM. 

 

Supplementary Figure 3 (see next page). Comprehension performance and semantic update 

effects at a very early stage in training (by item). Cong., congruent; incong., incongruent. 

Even at a low level of performance (see Fig. 5a in the main text for illustration), there are 

robust effects of associative priming (top), semantic congruity in sentences (middle), and 

semantic priming (bottom). Here, each blue dot represents the results for one item, averaged 

across ten independent runs of the model; the red dots represent the means for each 

condition, and red error bars represent +/- SEM. Statistical results are reported in the 

caption of Fig. 5 in the main text. 
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The relationship between activation update and adaptation in a predictive system. The 

change induced by the next incoming word that we suggest underlies N400 amplitudes can be 

seen as reflecting the ‘error’ (difference or divergence) between the model’s implicit 

probability estimates based on the previous word, and the updated estimate based on the next 

word in the sentence (see online methods for details). If the estimate after word n is viewed as 

a prediction, then this difference can be viewed as a kind of prediction error.  It is often 

assumed that learning is based on such temporal difference or prediction errors27–29 so that if 

N400 amplitudes reflect the update of a probabilistic representation of meaning, then larger 

N400s should be related to greater adaptation, i.e., larger adjustments to future estimates.  

Here we implement this idea, using the semantic update to drive learning.  Importantly, this 

allows the model to learn just from listening or reading, when no separate event description is 
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provided.  We then used this approach to simulate the finding that the effect of semantic 

incongruity on N400s is reduced by repetition: the first presentation of an incongruent 

completion, which induces larger semantic update compared to a congruent completion, leads 

to stronger adaptation, as reflected in a larger reduction in the N400 during a delayed 

repetition compared to the congruent continuation30.    

To simulate the observed interaction between repetition and semantic incongruity, we 

presented a set of congruent and incongruent sentences a first time, adapting the weights in 

the update network using the temporal difference signal on the SG layer to drive learning:  

The SG layer activation at the next word serves as the target for the SG layer activation at the 

current word, so that the error signal becomes SGn+1 – SGn (see online methods). We then 

presented all sentences a second time.  Using this approach, we captured the greater reduction 

in the N400 with repetition of incongruent compared to congruent sentence completions (Fig. 

6 and Supplementary Fig. 4).  

 

Figure 6. Simulation of the interaction between delayed repetition and semantic incongruity. 

Cong., congruent; incong., incongruent; rep., repeated. Each red or green dot represents the 

results for one independent run of the model, averaged across items per condition; the blue 

dots represent the means for each condition, and blue error bars represent +/- SEM. There 

were significant main effects of congruity, F1(1,9) = 214.13, p < .0001, F2(1,9) = 115.66, p < 

.0001, and repetition, F1(1,9) = 48.47, p < .0001, F2(1,9) = 109.78, p < .0001, and a 

significant interaction between both factors, F1(1,9) = 83.30, p < .0001, F2(1,9) = 120.86, p 

< .0001; post-hoc comparisons showed that even though the repetition effect was larger for 

incongruent as compared to congruent sentence completions, it was significant in both 

conditions, t1(9) = 4.21, p < .01, t2(9) = 6.90, p < .0001, for the congruent completions, and 

t1(9) = 8.78, p < .0001, t2(9) = 12.02, p < .0001, for the incongruent completions.  
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Supplementary Figure 4. Simulation of the interaction between delayed repetition and 

semantic incongruity (by item). Each red or green dot represents the results for one item, 

averaged across 10 runs of the model; blue dots represent means for each condition, and blue 

error bars represent +/- SEM. Statistical results are reported in the caption of Fig. 6. 

 

Notably, the summed magnitude of the signal that drives learning corresponds exactly 

to our N400 correlate, highlighting the relationship between semantic update, prediction error, 

and experience-driven learning. Thus, our account predicts that in general, larger N400s 

should induce stronger adaptation. Though further investigation is needed, there is some 

evidence consistent with this prediction: larger N400s to single word presentations during a 

study phase have been shown to predict enhanced implicit memory (measured by stem 

completion in the absence of explicit memory) during test31. 

Discussion 

The N400 ERP component is widely used to investigate the neurocognitive processes 

underlying the processing of meaning in language, but the brain basis of meaning construction 

is not yet fully understood. Here, we advance the view that N400 amplitudes reflect the 

change induced by an incoming stimulus in an implicit probabilistic representation of 

meaning. We offer an explicit formulation of the role of such a representation in language 

processing in which connection-based knowledge that supports this representation is shaped 

by experience with language occurring both in the context of observed events and when 

language is processed in isolation.  
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The pattern of activation in the model’s Sentence Gestalt (SG) layer latently predicts 

the semantic attributes of the entire event described by a sentence, capturing base-rate 

probabilities (before sentence processing begins) and adjusting this pattern of activation as 

each word of the sentence is presented. It is important to note that this kind of prediction does 

not refer to explicit intentional prediction of specific items but rather to a general 

configuration of the system in the sense that the model (and presumably the brain) becomes 

tuned through experience to anticipate likely upcoming input to respond to it with little 

additional effort. This entails that semantic activation changes induced by new incoming input 

as revealed in the N400 reflect the discrepancy between probabilistically anticipated and 

encountered information about aspects of sentence meaning and at the same time correspond 

to the learning signal driving adaptation of connection-based knowledge representations. In 

this sense, our approach conceptually overlaps with predictive coding28. Our simulations 

suggest that the semantic system may not represent aspects of meaning explicitly but rather 

uses a summary representation that supports explicit probability estimates when queried, 

becoming more and more efficient as learning progresses. 

Recently, other studies have also begun to link the N400 to computational models. 

Most of these have concentrated on words presented singly or after a preceding prime, and 

therefore do not address processing in a sentence context18,32,33. Two modeling studies focus 

on sentence processing. One of these studies observed a correlation between N400s and word 

surprisal as estimated by a simple recurrent network (SRN) trained to predict the next word 

based on the preceding context13.  Because the SRN’s predictions generalize across contexts 

and are mediated by a similarity-based internal representation, it can potentially account for 

effects of semantic similarity on word surprisal, and would thus share some predictions with 

the SG model.  However, an account of N400s in terms of word surprisal faces some 

difficulties.  First, word surprisal reflects both semantic and syntactic expectation violations, 

while the N400 is specific to meaning processing and syntactic violations typically modulate 
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different ERPs34. Indeed, the observed correlation between surprisal in the SRN and N400 

held only for content words and not for function words13. Furthermore, the SRN may have 

difficulty accounting for the decrease of N400 effects with age (because surprisal is measured 

in terms of the estimates of word probabilities, which become sharper as learning progresses), 

as well as the small N400 in reversal anomalies:  When presented with “At breakfast, the eggs 

would eat…”, word surprisal would likely be large, while semantic update in the SG model 

shows only a very slight increase, in line with N400 data19. 

The other sentence-level model focuses specifically on reversal anomalies, assuming 

separate lexical and semantic integration stages20, based on the assumption that reversal 

anomalies must produce a large update in a representation of sentence meaning.  In this 

model, change in lexical activation (which is small in reversal anomalies due to priming, e.g. 

from breakfast and eggs to eat) is linked to the N400; the change in activation representing 

sentence meaning is assigned to the later, P600 ERP component. However, as discussed 

above (see Results) our model accounted for the small size of the N400 in reversal anomalies 

without separate mechanisms for lexical access and semantic interpretation, and addresses a 

wider range of N400 effects. Furthermore, variables which should influence the amount of 

change in a representation of sentence meaning, such as cloze probability or surprise, 

consistently influence N400 but not necessarily P600 amplitudes10,13, supporting our view that 

the N400, not the P600, corresponds to the update of a representation of sentence meaning.  

The basis of the P600 requires further investigation; it might reflect detection of the anomaly, 

consistent with the proposal that the P600 is an instance of the oddball-sensitive P335. In that 

case, detection of the anomaly might trigger processes that could ultimately revise the 

semantic interpretation of the sentence. 

The current work opens up an opportunity for extensive further investigations, 

addressing a wide range of behavioral as well as neural aspects of sentence processing.  The 

model’s query language and training corpus will need to be extended to address the full range 
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of relevant phenomena, and it will need to be integrated into a more complete account of the 

neuro-mechanistic processes that take place during language processing, including the P600 

and other ERP components as well as signals that have been detected using other 

measurement modalities34,36.  While extending the model will be worthwhile, it nevertheless 

makes a useful contribution to understanding the brain processes underlying language 

comprehension in its current simple form. A recent comprehensive review on the N400 ERP 

component2 concluded that the N400 “does not readily map onto specific subprocesses 

posited in traditional frameworks” (p. 18) and that therefore none of the available accounts of 

N400 amplitudes - proposing functional localizations at some specific point along a 

processing stream from prelexical analysis over lexical processing to word recognition, 

semantic access, and semantic integration - could explain the full range of N400 data. Instead, 

the authors suggest that N400 amplitudes might best be understood as a “temporally delimited 

electrical snapshot of the intersection of a feedforward flow of stimulus-driven activity with a 

state of the distributed, dynamically active neural landscape that is semantic memory.” (p. 

21). This view seems reminiscent of the SG model, in which incoming stimuli serve as ‘cues 

to meaning’37 which change the overall semantic representation of the described event. 

Crucially, the model provides a computationally explicit account of the nature and role of this 

distributed representation and how it changes through stimulus-driven activity as meaning is 

dynamically constructed during comprehension. This simple model’s successes in capturing a 

diverse body of empirically observed neural responses suggest that the principles of semantic 

representation and processing it embodies may capture essential aspects of human language 

comprehension. 
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Online Methods 

 

 

We begin by describing the implicit probabilistic theory of meaning underlying the 

Sentence Gestalt model and relate the updates in the model to other probabilistic measures of 

surprise.  Next we describe the new semantic update driven learning rule used in simulating 

the reduction in the incongruity effect due to repetition.  We then provide details on the 

model’s training environment as well as the protocols used for training the model and for the 

simulations of empirical findings.  Figure 1 in the main text presents the network architecture 

and the processing flow in the model. 

Implicit probabilistic theory of sentence meaning 

The theory of meaning embodied in the Sentence Gestalt model holds that sentences  

constrain an implicit probabilistic representation of the meanings speakers intend to convey 

through these sentences.  The representation is implicit in that no specific form for the 

representation is prescribed, nor are specific bounds set on the content of the representation of 

meaning.  Instead, sentences are viewed as conveying information about situations or events, 

and a representation of meaning is treated as a representation that provides the comprehender 

with a basis for estimating the probabilities of aspects of the situation or event the sentence 

describes. To capture this we characterize the ensemble of aspects as an ensemble of queries 

about the event, with each query associated with an ensemble of possible responses.  In the 

general form of the theory, the queries could range widely in nature and scope (encompassing, 

for example, whatever the comprehender should expect to observe via any sense modality or 

subsequent linguistic input, given the input received so far).  In implementations to date, at 

least four different query formats have been considered38–40, including a natural language-

based question and answer format (Fincham & McClelland, 1997, Abstract). Queries may 

also vary in their probability of being posed (hereafter called demand probability), and the 

correct answer to a particular query may be uncertain, since sentences may be ambiguous, 
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vague or incomplete.  A key tenet of the theory is that aspects of meaning can often be 

estimated without being explicitly described in a sentence, due to knowledge acquired 

through past experience38.  If events involving cutting steak usually involve a knife, the knife 

would be understood, even without ever having been explicitly mentioned in a sentence. 

The theory envisions that sentences are uttered in situations where information about 

the expected responses to a probabilistic sample of queries is often available to constrain 

learning about the meaning of the sentence.  When such information is available, the learner 

is thought to be (implicitly) engaged in attempting to use the representation derived from 

listening to the sentence to anticipate the expected responses to these queries and to use the 

actual responses provided with the queries to bring the estimates of the probabilities of these 

responses in line with their probabilities in the environment.  This process is thought to occur 

in real time as the sentence unfolds; for simplicity it is modeled as occurring word by word as 

the sentence is heard.   

As an example, consider the sequence of words ‘The man eats’ and the query, ‘What 

does he eat’?  What the theory assumes is that the environment specifies a probability 

distribution over the possible answers to this and many other questions, and the goal of 

learning is to form a representation that allows the comprehender to match this probability 

distribution. 

 More formally, the learning environment is treated as producing sentence-event-

description pairs according to a probabilistic generative model.  The sentence consists of a 

sequence of words, while the event-description consists of a set of queries and associated 

responses. Each such pair is called an example. The words in the sentence are presented to the 

neural network in sequence, and after each word, the system can be probed for its response to 

each query, which is conditional on the words presented so far (we use wn to denote the 

sequence of words up to and including word n). The goal of learning is to minimize the 

expected value over the distribution of examples of a probabilistic measure (the Kullback-
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Leibler divergence, DKL) of the difference between the distribution of probabilities p over 

possible responses r to each possible query and the model’s estimates 𝜌 of the distribution of 

these probabilities, summed over all of the queries q occurring after each word, and over all of 

the words in the sentence. In this sum, the contribution of each query is weighed by its 

demand probability conditional on the words seen so far, represented p(q|wn). We call this the 

expected value E of the summed divergence measure, written as: 

𝐸 (∑ ∑ 𝑝(𝑞|𝑤𝑛)

𝑞𝑛

𝐷𝐾𝐿(𝑝(𝑟|𝑞, 𝑤𝑛)||𝜌(𝑟|𝑞, 𝑤𝑛))) 

 In this expression the divergence for each query, DKL(p(r|q,wn)||ρ(r|q,wn)), is given by 

∑ 𝑝(𝑟|𝑞, 𝑤𝑛) log (
𝑝(𝑟|𝑞, 𝑤𝑛)

𝜌(𝑟|𝑞, 𝑤𝑛)
)

𝑟

 

It is useful to view each combination of a query q and sequence of words wn as a context, 

henceforth called C. The sequence of words ‘the man eats’ and the query ‘what does he eat?’ 

is an example of one such context.  To simplify our notation, we will consider each 

combination of q and wn as a context C, so that the divergence in context C, written DKL(C), is 

∑ 𝑝(𝑟|𝐶) log (
𝑝(𝑟|𝐶)

𝜌(𝑟|𝐶)
)𝑟 .  Note that DKL(C) equals 0 when the estimates match the probabilities 

(that is, when p(r|C) = ρ(r|C) for all r) in context C, since log(x/x) = log(1) = 0.  Furthermore, 

the expected value of the summed divergence measure is 0 if the estimates match the 

probabilities for all C.   

 Because the real learning environment is rich and probabilistic, the number of possible 

sentences that may occur in the environment is indefinite, and it would not in general be 

possible to represent the estimates of the conditional probabilities explicitly (e.g. by listing 

them in a table).  A neural network solves this problem by providing a mechanism that can 

process any sequence of words and associated queries that are within the scope of its 

environment, allowing it to generate appropriate estimates in response to queries about 

sentences it has never seen before38. 
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 Learning occurs from observed examples by stochastic gradient descent:  A training 

example consisting of a sentence and a corresponding set of query-response pairs is drawn 

from the environment.  Then, after each word of the sentence is presented, each of the queries 

is presented along with the response that is paired with it in the example. This response is 

treated as the target for learning, and the model adjusts its weights to increase its probability 

of giving this response under these circumstances.  This procedure tends to minimize the 

expected value of the summed divergence measure over the environment, though the model’s 

estimates will vary around the true values in practice as long as a non-zero learning rate is 

used.  In that case the network will be sensitive to recent history and can gradually change its 

estimates if there is a shift in the probabilities of events in the environment. 

The implemented query-answer format and standard network learning rule 

 In the implementation of the model used here, the queries presented with a given 

training example can be seen as questions about attributes of the possible fillers of each of a 

set of possible roles in the event described by the sentence. There is a probe for each role, 

which can be seen as specifying a set of queries, one for each of the possible attributes of the 

filler of the role in the event. For example, the probe for the agent role can be thought of as 

asking, in parallel, a set of binary yes-no questions, one about each of several attributes or 

features f of the agent of the sentence, with the possible responses to the question being 1 (for 

yes the feature is present) or 0 (the feature is not present).  For example, one of the features 

specifies whether or not the role filler is male. Letting p(v|f,C) represent the probability that 

the feature has the value v in context C (where now context corresponds to the role being 

probed in the training example after the nth word in the sentence has been presented), the 

divergence can be written as ∑ 𝑝(𝑣|𝑓, 𝐶) log (
𝑝(𝑣|𝑓,𝐶)

𝜌(𝑣|𝑓,𝐶)
)𝑣=1,0 . Writing the terms of the sum 

explicitly, this becomes 𝑝(1|𝑓, 𝐶) log (
𝑝(1|𝑓, 𝐶)

𝜌(1|𝑓, 𝐶)
) + 𝑝(0|𝑓, 𝐶) log (

𝑝(0|𝑓,𝐶)

𝜌(0|𝑓,𝐶)
). Using the fact 

that the two possible answers are mutually exclusive and exhaustive, the two probabilities 
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must sum to 1, so that p(0|f,C) = 1 – p(1|f,C); and similarly, (0|f,C) = 1 – (1|f,C). Writing 

p(f|C) as shorthand for p(1|f,C) and (f|C) for (1|f,C), and using the fact that log(a/b) = 

log(a) – log(b) for all a,b, the expression for DKL(f,C) becomes 

(𝑝(𝑓|𝐶) log(𝑝(𝑓|𝐶)) + (1 −  𝑝(𝑓|𝐶)) log(1 − 𝑝(𝑓|𝐶))) 

                                   −(𝑝(𝑓|𝐶) log(𝜌(𝑓|𝐶)) + (1 −  𝑝(𝑓|𝐶)) log(1 − 𝜌(𝑓|𝐶)))  

The first part of this expression contains only environmental probabilities and is 

constant, so that minimizing the expression as a whole is equivalent to minimizing the second 

part, called the cross-entropy CE(f,C) between the true and the estimated probability that the 

value of feature f = 1 in context C: 

𝐶𝐸(𝑓, 𝐶) = −(𝑝(𝑓|𝐶) log(𝜌(𝑓|𝐶)) + (1 −  𝑝(𝑓|𝐶)) log(1 − 𝜌(𝑓|𝐶))) 

The goal of learning is then to minimize the sum of this quantity across all features and 

situations. 

The actual value of the feature for a particular role in a randomly sampled training 

example e is either 1 (the filler of the role has the feature) or 0 (the filler does not have the 

feature). This actual value is the target value used in training, and is represented as t(f|Ce), 

where we use Ce to denote the specific instance of this context in the training example (note 

that the value of a feature depends on the probed role in the training example, but stays 

constant throughout the processing of each of the words in the example sentence). The 

activation a of a unit in the query network in context Ce, a(f|Ce), corresponds to the network’s 

estimate of the probability that the value of this feature is 1 in the given context; we use a 

instead of  to call attention to the fact that the probability estimates are represented by unit 

activations. The cross-entropy between the target value for the feature and the probability 

estimate produced by the network in response to the given query after word n then becomes: 

𝐶𝐸(𝑓, 𝐶𝑒) = −(𝑡(𝑓|𝐶𝑒) log(𝑎(𝑓|𝐶𝑒)) + (1 − 𝑡(𝑓|𝐶𝑒)) log(1 − 𝑎(𝑓|𝐶𝑒))) 
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To see why this expression represents a sample that can be used to estimate CE(f,C) above, it 

is useful to recall that the value of a feature in a given context varies probabilistically across 

training examples presenting this same context. For example, for the context ‘the man eats 

…’, the value of a feature of the filler of the patient role can vary from case to case.  Over the 

ensemble of training examples, the probability that t(f|Ce) = 1 corresponds to p(f|C), so that 

the expected value of t(f|Ce) over a set of such training examples will be p(f|C), and the 

average value of CE(f,Ce) over such instances will approximate CE(f,C). 

 Now, the network uses units whose activation a is given by the logistic function of its 

net input, such that 𝑎 = 1 (1 + 𝑒−𝑛𝑒𝑡)⁄ , where the net input is the sum of the weighted 

influences of other units projecting to the unit in question, plus its bias term.  As has long 

been known41, the negative of the gradient of this cross-entropy measure with respect to the 

net input to the unit is simply t(f|Ce) – a(f|Ce).  This is the signal back-propagated through the 

network for each feature in each context during standard network training (see section 

simulation details/ training protocol for more detail).    

Probabilistic measures of the surprise produced by the occurrence of a word in a 

sentence 

 Others have proposed probabilistic measures of the surprise produced by perceptual or 

linguistic inputs9,12.  In the framework of our approach to the characterization of sentence 

meaning, we adapt one of these proposals9, and use it to propose measures of three slightly 

different conceptions of surprise: The normative surprise, the subjective explicit surprise, and 

the implicit surprise – the last of which corresponds closely to the measure we use to model 

the N400. 

 We define the normative surprise (NS) resulting from the occurrence of the nth word 

in a sentence s as the KL divergence between the environmentally determined distribution of 

responses r to the set of demand-weighted queries q before and after the occurrence of word 

wn: 
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𝑁𝑆(𝑤𝑛) =  ∑ 𝑝(𝑞|𝑤𝑛) ∑ 𝑝(𝑟|𝑞, 𝑤𝑛) 𝑙𝑜𝑔

𝑟|𝑞,𝑠𝑞

(
𝑝(𝑟|𝑞, 𝑤𝑛)

𝑝(𝑟|𝑞, 𝑤𝑛−1)
) 

 

If one knew the true probabilities, one could calculate the normative surprise and attribute it 

to an ideal observer.  In the case where the queries are binary questions about features as in 

the implemented version of the SG model this expression becomes: 

 

𝑁𝑆(𝑤𝑛) = ∑ 𝑝(𝑞|𝑤𝑛) (𝑝(𝑓|𝑞, 𝑤𝑛) log (
𝑝(𝑓|𝑞, 𝑤𝑛)

𝑝(𝑓|𝑞, 𝑤𝑛−1)
)

𝑞

+ (1 − 𝑝(𝑓|𝑞, 𝑤𝑛)) log (
1 − 𝑝(𝑓|𝑞, 𝑤𝑛)

1 − 𝑝(𝑓|𝑞, 𝑤𝑛−1)
)) 

To keep this expression simple, we treat q as ranging over the features of the fillers of all 

of the probed roles in the sentence. 

 The explicit subjective surprise ESS treats a human participant or model thereof as 

relying on subjective estimates of the distribution of responses to the set of demand-weighted 

queries.  In the model these are provided by the activations a of the output units 

corresponding to each feature: 

 

𝐸𝑆𝑆(𝑤𝑛) =  ∑ 𝜌(𝑞|𝑤𝑛) (𝑎(𝑓|𝑞, 𝑤𝑛) log (
𝑎(𝑓|𝑞, 𝑤𝑛)

𝑎(𝑓|𝑞, 𝑤𝑛−1)
)

𝑞

+ (1 − 𝑎(𝑓|𝑞, 𝑤𝑛)) log (
1 − 𝑎(𝑓|𝑞, 𝑤𝑛)

1 − 𝑎(𝑓|𝑞, 𝑤𝑛−1)
)) 

 

 Our third measure, the implicit surprise (IS) is a probabilistically interpretable 

measure of the change in the pattern of activation over the learned internal meaning 

representation (corresponding to the SG layer in the model).  Since the unit activations are 
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constrained to lie in the interval between 0 and 1, they can be viewed intuitively as 

representing estimates of probabilities of implicit underlying meaning dimensions or 

microfeatures42 that together constrain the model’s estimates of the explicit feature 

probabilities.  In this case we can define the implicit surprise as the summed KL divergence 

between these implicit feature probabilities before and after the occurrence of word n, using 

𝑎𝑖 to represent the estimate of the probability that the feature characterizes the meaning of the 

sentence and (1 − 𝑎𝑖) to represent the negation of this probability: 

 

𝐼𝑆(𝑤𝑛) =  ∑ (𝑎𝑖(𝑤𝑛) log (
𝑎𝑖(𝑤𝑛)

𝑎𝑖(𝑤𝑛−1)
) + (1 −  𝑎𝑖(𝑤𝑛)) log (

1 − 𝑎𝑖(𝑤𝑛)

1 − 𝑎𝑖(𝑤𝑛−1)
))

𝑖

 

 

The actual measure we use for the semantic update (SU) as defined in the main text is similar 

to the above measure in being a measure of the difference or divergence between the 

activation at word n and word n-1, summed over the units in the SG layer: 

 

𝑆𝑈(𝑤𝑛) =  ∑ |𝑎𝑖(𝑤𝑛) − 

𝑖

𝑎𝑖(𝑤𝑛−1)| 

 

The SU and IS are highly correlated and have the same minimum (both measures are equal to 

0 when the activations before and after word n are identical). We use the analogous measure 

over the outputs of the query network, called the explicit subjective update (ESU) to compare 

to the SU in the developmental simulation reported in the main text: 

 

𝐸𝑆𝑈(𝑤𝑛) =  ∑ 𝜌(𝑞|𝑤𝑛) |𝑎(𝑓|𝑞, 𝑤𝑛) − 𝑎(𝑓|𝑞, 𝑤𝑛−1)|

𝑞
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As before we treat q as ranging over all of the features of the fillers of all of the probed 

roles in the sentence.  In calculating the ESU or the ESS, the queries associated with the 

presented sentences are all used, with 𝜌(q|𝑤𝑛) = 1 for each one.   

 The simulation results presented in the main text show the same pattern in all cases if 

the ESS and IS are used rather than the SU and ESU. 

Semantic update driven learning rule 

The semantic update driven learning rule introduced in this article for the Sentence 

Gestalt model is motivated by the idea that later-coming words in a sentence provide 

information that can be used to teach the network to optimize the probabilistic representation 

of sentence meaning it derives from words coming earlier in the sentence.  We briefly 

consider how this idea could be applied to generate signals for driving learning in the query 

network, in a situation where the teaching signal (in the form of a set of queries and 

corresponding feature values) corresponding to the actual features of an event are available to 

the model only after the presentation of the last word of the sentence (designated word N).  In 

that situation, the goal of learning for the last word can be treated as the goal of minimizing 

the KL divergence between the outputs of the query network after word N and the target 

values of the features of the event t(f|q,e). As in the standard learning rule, this reduces to the 

cross-entropy, which for a single feature is given by 

 

𝐶𝐸(𝑓, 𝑞, 𝑤𝑁) = −(𝑡(𝑓|𝑞, 𝑒) log(𝑎(𝑓|𝑞, 𝑤𝑁)) + (1 − 𝑡(𝑓|𝑞, 𝑒)) log(1 − 𝑎(𝑓|𝑞, 𝑤𝑁))) 

 

A single {sentence, event} pair chosen from the environment would then provide a 

sample from this distribution.  As is the case in the standard training regime, the negative of 

the gradient with respect to the net input to a given output feature unit in the query network 

after a given probe is simply 𝑡(𝑓|𝑞, 𝑒) − 𝑎(𝑓|𝑞, 𝑤𝑁). This is then the error signal propagated 

back through the network. To train the network to make better estimates of the feature 
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probabilities from the next to last word in the sentence (word N-1), we can use the difference 

between the activations of the output units after word N as the teaching signal for word N-1, 

so for a given feature unit the estimate of the gradient with respect to its net input simply 

becomes 𝑎(𝑓|𝑞, 𝑤𝑁) − 𝑎(𝑓|𝑞, 𝑤𝑁−1). Using this approach, as a(f|q,wN) comes to approximate 

t(f|q,e) it thereby comes to approximate the correct target for a(f|q, N-1). This cycle repeats 

for earlier words, so that as a(f|q, N-1) comes to approximate a(f|q, N) and therefore t(f|q, e) it 

also comes to approximate the correct teacher for a(f|q, N-2), etc. This approach is similar to 

the temporal difference (TD) learning method used in reinforcement learning43 in situations 

where reward becomes available only at the end of an episode, except that here we would be 

learning the estimates of the probabilities for all of the queries rather than a single estimate of 

the final reward at the end of an episode.  This method is known to be slow and can be 

unstable, but it could be used in combination with learning based on episodes in which 

teaching information is available throughout the processing of the sentence, as in the standard 

learning rule for the SG model. 

 The semantic update based learning rule we propose extends the idea described above, 

based on the observation that the pattern of activation over the SG layer of the update network 

serves as the input pattern that allows the query network to produce estimates of probabilities 

of alternative possible responses to queries after it has seen some or all of the words in a 

sentence. Consider for the moment an ideally trained network in which the presentation of 

each word produces the optimal update to the SG representation based on the environment it 

had been trained on so far, so that the activations at the output of the query network would 

correspond exactly to the correct probability estimates.  Then using the SG representation 

after word n+1 as the target for training the SG representation after word n would allow the 

network to update its implicit representation based on word n to capture changes in the 

environmental probabilities as these might be conveyed in a sentence.  More formally, we 

propose that changing the weights in the update network to minimize the Implicit Surprise 
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allows the network to make an approximate update to its implicit probabilistic model of 

sentence meaning, providing a way for the network to learn from linguistic input alone.  The 

negative of the gradient of the Implicit Surprise with respect to the net input to SG unit i after 

word n is given by 𝑎𝑖(𝑤𝑛) − 𝑎𝑖(𝑤𝑛−1).  This is therefore the signal that we back propagate 

through the update network to train the connections during implicit temporal difference 

learning.  As noted in the main text, the sum over the SG units of the absolute value of this 

quantity also corresponds to the SU, our model’s N400 correlate. 

 
Simulation Details 

 Environment. The model environment consists of {sentence, event} pairs 

probabilistically generated online during training according to constraints embodied in a 

simple generative model (see Fig. 7a). The sentences are single clause sentences such as “At 

breakfast, the man eats eggs in the kitchen”. They are stripped of articles as well as 

inflectional markers of tense, aspect, and number, and are presented as a sequence of 

constituents, each consisting of a content word and possibly one closed class word such as a 

preposition or passive marker. A single input unit is dedicated to each word in the model’s 

vocabulary.  In the example above, the constituents are “at breakfast”, “man”, “eats”, “eggs”, 

“in kitchen”, and presentation of the first constituent corresponds to activating the input units 

for “at” and “breakfast”. 
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Figure 7. a. The sentence/ event generator used to train the model. Bar width corresponds to 

relative probability. First, one out of twelve actions is chosen with equal probability. Then, 

for every action except one (“look at”) an agent is chosen (“woman” and “man” each with a 

probability of .4, “boy” and “girl” with a probability of .1). Next, a situation is chosen 

depending on the action. Some actions can occur in two possible situations, some in one, and 

some without a specified situation. Even if an action occurs in a specific situation, the 

corresponding word is presented only with a probability of .5 in the sentence while the 

situation is always part of the event representation. Then, depending on the action (and in the 

case that an action can occur in two possible situations, depending on the situation) an 

object/patient is chosen. For each action or situation (except for “like” and “look at” for 

which all 36 objects are chosen equally often) there is a high probability and a low 

probability object (if the agent is “man” or “woman”, the respective high/low probabilities 

are .7/.3, if the agent is “girl” or “boy”, the probabilities are .6/.4). The high and low 

probability objects occurring in the same specific action context are always from the same 

semantic category, and for each category, there is a third object which is never presented in 

that action context and instead only occurs in the unspecific “like” or “look at” contexts (to 

enable the simulation of categorically related incongruities; these are the twelve rightmost 

objects in the figure; here bar width is larger than probability to maintain readability). 

Possible sentence structures are displayed below. b. Similarity matrices of the hand-crafted 

semantic representations used for the current model (left) and representations based on a 

principal component analysis on word vectors derived from co-occurrences in large text 

corpora44. The correlation between the matrices is r = .73. 
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The events are characterized as sets of role filler pairs, in this case: agent – man, action 

– eat, patient – eggs, location – kitchen, situation - breakfast. Each thematic role is 

represented by a single unit at the probe and output layer. For the filler concepts, we used 

feature-based semantic representations such that each concept was represented by a number of 

units (at the probe and output layer) each corresponding to a semantic feature. For instance, 

the concept “daisy” was represented by five units.  The units have labels that allow the reader 

to keep track of their roles but the model is not affected by the labels themselves, only by the 

similarity relationships induced by these labels.  For example, the semantic features of 

“daisy” are labeled “can grow”, “has roots”, “has petals”, “yellow”, and “daisy”. The feature-

based representations were handcrafted to create graded similarities between concepts roughly 

corresponding to real world similarities as in other models of semantic representation45,46. For 

instance, all living things shared a semantic feature (“can grow”), all plants shared an 

additional feature (“has roots”), all flowers shared one more feature (“has petals”) and then 

the daisy had two individuating features (“yellow” and its name “daisy”) so that the daisy and 

the rose shared three of their five semantic features, the daisy and the pine shared two 

features, the daisy and the salmon shared only one feature, and the daisy and the email did not 

share any features (see the Supplementary Table 1 for a complete list of concepts and 

features). Comparison of a similarity matrix of the concepts based on our hand-crafted 

semantic representations and representations based on a principal component analysis (PCA) 

performed on semantic word vectors derived from co-occurrences in large text corpora44 

showed a reasonable correspondence (r = .73; see Fig. 7b), suggesting that the similarities 

among the hand-crafted conceptual representations roughly matched real world similarities 

(as far as they can be derived from co-occurrence statistics).  

 Training protocol. The training procedure is intended to approximate a situation in 

which a language learner has observed an event and thus has a complete representation of the 

event available, and then hears a sentence about it so that learning can be based on a 
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comparison of the current output of the comprehension mechanism and the event. 

Furthermore, it implements the assumption that listeners anticipate the full meaning of each 

presented sentence as early as possible, so that the model can learn to probabilistically 

preactivate the semantic features of all role fillers involved in the described event based on 

the statistical regularities in its environment. 

Each training trial consists in randomly generating a new {sentence, event} pair based 

on the simple generative model depicted in Fig. 7a, and then going through the following 

steps: At the beginning of a sentence, all units are set to 0. Then, for each constituent of the 

sentence, the input unit or units representing the constituent are turned on and activation flows 

from the input units and – at the same time via recurrent connections - from the SG units to 

the units in the first hidden layer (Hidden 1), and from these to the units in the SG layer where 

the previous representation (initially all 0’s) is replaced by a new activation pattern which 

reflects the influence of the current constituent. The activation pattern at the SG layer is then 

frozen while the model is probed concerning the event described by the sentence in the query 

part of the model. Specifically, for each probe question, a unit (representing a thematic role) 

or units (corresponding to feature-based representations of fillers concepts) at the probe layer 

are activated and feed into the hidden layer (Hidden 2) which at the same time receives 

activation from the SG layer. Activation from the SG and the probe layer combine and feed 

into the output layer where the units representing the complete role-filler pair (i.e., the unit 

representing the thematic role and the units corresponding to the feature-based representation 

of the filler concept) should be activated. After each presented constituent, the model is 

probed once for the filler of each role and once for the role of each filler involved in the 

described event, and for each response, the model’s activation at the output layer is compared 

with the correct output. After each response, the gradient of the cross-entropy error measure 

for each connection weight and bias term in the query network is back-propagated through 

this part of the network, and the corresponding weights and biases are adjusted accordingly. 



 37 

At the SG layer, the gradient of the cross-entropy error measure for each connection weight 

and bias term in the update network is collected for the responses on all the probes for each 

constituent before being back-propagated through this part of the network and adjusting the 

corresponding weights and biases. We used a learning rate of 0.00001 and momentum of 0.9 

throughout. 

 Simulation of empirical findings. Because the model’s implicit probabilistic 

representation of meaning and thus also the semantic update at any given point is determined 

by the statistical regularities in the training set, in the description of the simulations below we 

try to make clear how the observed effects depend on the training corpus (please refer to Fig. 

7a). 

For the simulations of semantic incongruity, cloze probability, and categorically 

related semantic incongruity, for each condition one agent (“man”) was presented once with 

each of the ten specific actions (excluding only “like” and “look at”). The agent was not 

varied because the conditional probabilities for the later sentence constituents depend very 

little on the agents (the only effect of the choice of agent is that the manipulation of cloze 

probability is stronger for “man” and “woman”, namely .7 vs. .3, than for “girl” and “boy”, 

namely .6 vs. .4; see Fig. 7a). For the simulation of semantic incongruity, the objects were the 

high probability objects in the congruent condition (e.g., “The man plays chess.”) and 

unrelated objects in the incongruent condition (e.g., “The man plays salmon”). For the 

simulation of cloze probability, the objects/patients were the high probability objects in the 

high cloze condition (e.g., “The man plays chess.”) and the low probability objects in the low 

cloze condition (e.g., “The man plays monopoly.”). For the simulation of categorically related 

semantic incongruities, the congruent and incongruent conditions from the semantic 

incongruity simulation were kept the same and there was an additional condition where the 

objects were from the same semantic category as the high and low probability objects related 

to the action (and thus shared semantic features at the output layer, e.g., “The man plays 
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backgammon”), but were never presented as patients of that specific action during training (so 

that their conditional probability to complete the presented sentence beginnings was 0). 

Instead, these objects only occurred as patients of the unspecific “like” and “look at” actions 

(Fig. 7a). For all these simulations, there were 10 items in each condition, and semantic 

update was computed based on the difference in SG layer activation between the presentation 

of the action (word n-1) and the object (word n). 

For the simulation of the influence of a word’s position in the sentence, we presented 

the longest possible sentences, i.e. all sentences that had occurred during training with a 

situation and a location, including both the version with the high probability ending and the 

version with the low probability ending of these sentences. There were 12 items in each 

condition, and semantic update was computed over the course of the sentences, i.e. the 

difference in SG layer activation between the first and the second word provided the basis for 

semantic update induced by the second word (the agent), the difference in SG layer activation 

between the second and the third word provided the basis for semantic update induced by the 

third word (the action), the difference in SG layer activation between the third and the fourth 

word provided the basis for semantic update induced by the fourth word (the object/ patient), 

and the difference in SG layer activation between the fourth and the fifth word provided the 

basis for semantic update induced by the fifth word (the location). It is interesting to consider 

the conditional probabilities of the constituents over the course of the sentence: Given a 

specific situation, the conditional probability of the presented agent (“man”; at the second 

position in the sentence) is .36 (because the conditional probability of that agent is overall .4, 

and the probability of the sentence being an active sentence such that the agent occurs in the 

second position is .9; see Fig. 7a). The conditional probability of the action (at the third 

position) is 1 because the actions are determined by the situations (see section on reversal 

anomalies, below, for the rationale behind this predictive relationship between the situation 
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and the action). The conditional probability of the objects (at the fourth position) is either .7 

(for high probability objects) or .3 (for low probability objects) so that it is .5 on average, and 

the conditional probability of the location (at the fifth position) is 1 because the locations are 

determined by the objects. Thus, the constituents’ conditional probabilities do not gradually 

decrease across the course of the sentences. The finding that semantic update nonetheless 

gradually decreased over successive words in these sentences (see Results) suggests that the 

SG layer activation does not perfectly track conditional probabilities. Even if an incoming 

word can be predicted with a probability of 1.0 so that an ideal observer could in principle 

have no residual uncertainty, the presentation of the item itself still produces some update, 

indicating that the model retains a degree of uncertainty, consistent with the ‘noisy channel’ 

model47.  In this situation, as we should expect, the SG anticipates the presentation of the item 

more strongly as additional confirmatory evidence is accumulated, so that later perfectly 

predictable constituents are more strongly anticipated than earlier ones.  In summary, the 

model’s predictions reflect accumulation of predictive influences, rather than completely 

perfect instantaneous sensitivity to probabilistic constraints in the corpus. 

For the simulation of lexical frequency, the high frequency condition comprised the 

high probability objects from the ten semantic categories, the two high probability agents 

(“woman” and “man”) and two high probability locations (“kitchen” and “living room”). The 

low frequency condition contained the ten low probability objects, the two low probability 

agents (“girl” and “boy”) and two low probability locations (“balcony” and “veranda”). The 

high and low frequency locations were matched pairwise in terms of the number and diversity 

of object patients they are related to (“kitchen” matched with “balcony”, “living room” 

matched with “veranda”). Before presenting the high versus low frequency words, we 

presented a blank stimulus to the network (i.e., an input pattern consisting of all 0) to evoke 

the model’s default activation which reflects the encoding of base-rate probabilities in the 

model’s connection weights. There were 14 items in each condition, and semantic update was 
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computed based on the difference in SG layer activation between the blank stimulus (word n-

1) and the high or low frequency word (word n). 

To simulate semantic priming, for the condition of semantic relatedness, the low and 

high probability objects of each of the ten semantic object categories were presented 

subsequently as prime-target pair (e.g., “monopoly chess”). For the unrelated condition, 

primes and targets from the related pairs were re-assigned such that there was no semantic 

relationship between prime and target (e.g., “sunfish chess”). For the simulation of associative 

priming, the condition of associative relatedness consisted of the ten specific actions as 

primes followed by their high probability patients as targets (e.g., “play chess”). For the 

unrelated condition, primes and targets were again re-assigned such there was no relationship 

between prime and target (e.g., “play eggs”). To simulate repetition priming, the high 

probability object of each semantic category was presented twice (e.g., “chess chess”). For the 

unrelated condition, instead of the same object, a high probability object from another 

semantic category was presented as prime. For all priming simulations, there were 10 items in 

each condition, and semantic update was computed based on the difference in SG layer 

activation between the prime (word n-1) and the target (word n). 

For the simulation of semantic illusions/ reversal anomalies, each of the eight 

situations was presented, followed by the high probability object related to that situation and 

the action typically performed in that situation (e.g., “At breakfast, the eggs eat…”). For the 

congruent condition, the situations were presented with a possible agent and the action 

typically performed in that situation (e.g., “At breakfast, the man eats…”) and for the 

incongruent condition, with a possible agent and an unrelated action (e.g., “At breakfast, the 

man plants…”). There were eight items in each condition, and semantic update was computed 

based on the difference in SG layer activation between the presentation of the second 

constituent which could be an object or an agent (e.g., “eggs” or “man”; word n-1) and the 

action (word n). Please note that in the model environment, the situations predict specific 
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actions with a probability of 1. This prevented the critical words (i.e., the actions) from being 

much better predictable in the reversal anomaly condition where they are preceded by objects 

(which in the model environment also predict specific actions with a probability of 1) as 

compared to the congruent condition where they are preceded by agents (which are not 

predictive of specific actions at all). Of course, situations do not completely determine actions 

in the real world. However, the rationale behind the decision to construct the corpus in that 

way to simulate the reversal anomaly experiment by Kuperberg and colleagues19 was that the 

range of plausibly related actions might be similar for specific situations and specific objects 

such that actions are not much better predictable in the reversal anomaly than in the congruent 

condition. A relevant difference between both conditions was that in the reversal anomaly 

condition the model initially assumed the sentences to be in passive voice, because during 

training, sentences with the objects presented before the actions had always been in passive 

voice (see Fig. 7a). Thus, when the critical word was presented without passive marker (i.e., 

“by”), the model revised its initial assumptions in that regard in the reversal anomaly 

condition while there was no need for revision in the congruent condition. 

To simulate the developmental trajectory of N400 effects we examined the effect of 

semantic incongruity on semantic update (as described above) at different points in training, 

specifically after exposure to 10000, 100000, 200000, 400000, and 800000 sentences. To 

examine the relation between update at the SG layer and update at the output layer (reflecting 

latent and explicit estimates of semantic feature probabilities, respectively), at each of the 

different points in training (see above) we computed the update of activation at the output 

layer (summed over all role filler pairs) analogously to the activation update at the SG layer.  

To simulate semantic priming effects on N400 amplitudes during near-chance lexical 

decision performance in a second language, we examined the model early in training when it 

had been presented with just 10000 sentences. As illustrated in Figure 5a, at this point the 

model fails to understand words and sentences, i.e. to activate the corresponding units at the 
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output layer. The only knowledge that is apparent in the model’s performance at the output 

layer concerns the possible filler concepts for the agent role and their relative frequency, as 

well as a beginning tendency to activate the correct agent slightly more than the others. Given 

the high base-rate frequencies of the possible agents, it does not seem surprising that the 

model learns this aspect of its environment first. At this stage in training, we simulated 

semantic priming as described above. In addition, even though this has not been done in the 

empirical study, we also simulated associative priming and influences of semantic incongruity 

in sentences (as described above). 

For the simulation of the interaction between semantic incongruity and repetition, all 

sentences from the simulation of semantic incongruity (see above) were presented twice, in 

two successive blocks (i.e., running through the first presentation of all the sentences before 

running through the second presentation) with connection weights being adapted during the 

first round of presentations (learning rate = .01). Sentences were presented in a different 

random order for each model with the restrictions that the presentation order was the same in 

the first and the second block, and that the incongruent and congruent version of each 

sentence directly followed each other. The order of conditions, i.e. whether the incongruent or 

the congruent version of each sentence was presented first was counterbalanced across models 

and items (i.e., for half of the models, the incongruent version was presented first for half of 

the items, and for the other half of the models, the incongruent version was presented first for 

the other half of the items).  

It is often assumed that learning is based on prediction error27–29. Because the SG layer 

activation at any given time represents the model’s implicit prediction or probability estimates 

of the semantic features of all aspects of the event described by a sentence, the change in 

activation induced by the next incoming word can be seen as the prediction error contained in 

the previous representation (at least as far as it is revealed by that next word). Thus, in 

accordance with the widely shared view that prediction errors drive learning, we used a 
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temporal difference (TD) learning approach, assuming that in the absence of observed events, 

learning is driven by this prediction error concerning the next internal state. Thus, the SG 

layer activation at the next word serves as the target for the SG layer activation at the current 

word, so that the error signal becomes the difference in activation between both words, i.e. 

SGn+1 – SGn  (also see section Semantic update driven learning rule, above). There were 10 

items in each condition, and semantic update was computed during the first and second 

presentation of each sentence as the difference in SG layer activation between the 

presentation of the action (word n-1) and the object (word n). 

Statistics 

All reported statistical results are based on ten runs of the model each initialized 

independently (with initial weights randomly varying between +/- .05) and trained with 

independently-generated training examples as described in section Simulation Details/ 

Environment (N=800000, unless otherwise indicated). In analogy to subject and item analyses 

in empirical experiments, we performed two types of analyses on each comparison, a model 

analysis with values averaged over items within each condition and the 10 models treated as 

random factor, and an item analysis with values averaged over models and the items (N 

ranging between 8 and 14; please see the previous section for the exact number of items in 

each simulation experiment) treated as random factor. There was no blinding. We used two-

sided paired t-tests to analyze differences between conditions; when a simulation experiment 

involved more than one comparison, significance levels were Bonferroni-corrected within the 

simulation experiment. To test for the interaction between repetition and congruity, we used a 

repeated measures analysis of variance (rmANOVA) with factors Repetition and Congruity. 

To analyze whether our data met the normality assumption for these parametric tests, we 

tested differences between conditions (for the t-tests) and residuals (for the rmANOVA) for 

normality with the Shapiro-Wilk test. Using study-wide Bonferroni correction to adjust 

significance levels for the multiple performed tests, results did not show significant deviations 
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from normality (all ps > .11 for the model analyses and > .25 for the item analyses). However, 

to further corroborate our results we additionally tested all comparisons with deviations from 

normality at uncorrected significance levels <.05 using the Wilcoxon signed rank test which 

does not depend on the normality assumptions; all results remained significant. Specifically, 

in the model analyses deviations from normality at uncorrected significance levels were 

detected for the semantic incongruity effect (Fig. 2a; p = .043) and the frequency effect (Fig. 

2e; p = .044), as well as for the difference between categorically related incongruities and 

congruent completions (Fig. 2d; p = .0053). Wilcoxon signed rank tests confirmed significant 

effects of semantic incongruity (Fig. 2a; p = .002) and lexical frequency (Fig. 2e; p = .037), 

and a significant difference between categorically related incongruities and congruent 

sentence continuations (Fig. 2d; p = .002). In the item analyses, deviations from normality at 

an uncorrected significance level were detected for the difference between incongruent 

completions and semantic illusions (Supplementary Fig. 1i; p = .012). Again, the Wilcoxon 

signed rank test confirmed a significant difference between the conditions (p = .0078).  

Using Levene’s test, we detected violations of the assumption of homogeneity of 

variances (required for the rmANOVA used to analyze the interaction between repetition and 

congruity; Fig. 6 and Supplementary Fig. 4) in the item analysis, F2(3) = 12.05, p < .0001, but 

not in the model analysis, F1 < 1. We nonetheless report the ANOVA results for both analyses 

because ANOVAs are typically robust to violations of this assumption as long as the groups 

to be compared are of the same size. However, we additionally corroborated the interaction 

result from the item ANOVA by performing a two-tailed paired t-test on the repetition effects 

in the incongruent versus congruent conditions, i.e. we directly tested the hypothesis that the 

size of the difference in the model’s N400 correlate between the first presentation and the 

repetition was larger for incongruent than for congruent sentence completions: incongruent 

(first – repetition) > congruent (first – repetition). Indeed, the size of the repetition effects 

significantly differed between congruent and incongruent conditions, t2(9) = 10.99, p < .0001, 
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and the differences between conditions did not significantly deviate from normality, p = .44, 

thus fulfilling the prerequisites for performing the t-test.  

In general, systematic deviations from normality are unlikely for the results by-model 

(where apparent idiosyncrasies are most probably due to sampling noise), but possible in the 

by-item data. Thus, while we present data averaged over items in the figures in the main text 

in accordance with the common practice in ERP research to analyze data averaged over items, 

for transparency we additionally display the data averaged over models as used for the by-

item analyses (see Supplementary Fig. 1-4).  

Code availability 

All computer code used to run the simulations and analyze the results will be made 

available on github at the time of publication.
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Simulated effects  Example     N400 data    Reference   

_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 
 

Basic effects 
 

Semantic incongruity  I take my coffee with cream and sugar/ dog. cong. < incong.     Kutas & Hillyard (1980)  
 
Cloze probability  Don’t touch the wet paint/ dog.   high < low    Kutas & Hillyard (1984)   
 
Position in sentence        late < early    Van Petten & Kutas (1991) 
 
Categorically related  They wanted to make the hotel look more like  cong. < cat. rel. incong. < incong.  Federmeier & Kutas (1999) 
incongruity   a tropical resort. So along the driveway they  

planted rows of palms/ pines/ tulips. 
 
Lexical frequency        high < low    Barber, Vergara, & Carreiras (2004) 
 
Semantic priming  sofa - bed     related < unrelated   Koivisto & Revonsuo (2001) 
 
Associative priming  wind - mill     related < unrelated   Koivisto & Revonsuo (2001) 
 
Repetition priming         repeated < unrelated   Rugg (1985) 
 
Reversal anomalies  Every morning at breakfast the boys would eat/ cong. =< rev. anom. < incong.  Kuperberg, Sitnikova, Caplan, &  
    Every morning at breakfast the eggs would eat/      Holcomb (2003)   
    Every morning at breakfast the boys would plant  
              
Extensions 
 

Age           babies: less compr. < more compr.  Friedrich & Friederici (2009), Kutas &  
          later: young > old   Iragui (1998), Atchley et al. (2006) 
 
Priming during near chance chien – chat     related < unrelated   McLaughlin, Osterhout & Kim (2004) 
2nd language performance 
 
Repetition X incongruity        cong. (|nonrep. – rep.|) <    Besson, Kutas, & van Petten (1992) 

incong. (|nonrep. – rep.|) 
_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________  

Table 1. Overview of simulated effects. cong: congruent; incong.: incongruent; cat. rel.: categorically related; rev. anom.: reversal anomaly; compr.: comprehension; 
rep.: repeated; nonrep.: nonrepeated.
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Supplementary Table 1 

 

Words (i.e. labels of input units) and their semantic representations  (i.e., labels of the 

output units by which the concepts that the words refer to are represented) 

 
 

Words  Semantic representations 

___________________________________________________________________________ 

 

Woman person, agent, adult, female, woman 

Man   person, agent, adult, male, man 

Girl   person, agent, child, female, girl 

Boy   person, agent, child, male, boy 

 

Drink  action, consume, done with liquids, drink 

Eat  action, consume, done with foods, eat 

Feed  action, done to animals, done with food, feed 

Fish   action, done to fishes, done close to water, fish 

Plant   action, done to plants, done with earth, plant 

Water   action, done to plants, done with water, water 

Play   action, done with games, done for fun, play 

Wear  action, done with clothes, done for warming, wear 

Read  action, done with letters, perceptual, read 

Write  action, done with letters, productive, write 

Look at  action, visual look at 

Like  action, positive, like 

 

Kitchen location, inside, place to eat, kitchen 

Living room location, inside, place for leisure, living room 

Bedroom location, inside, place to sleep, bedroom 

Garden  location, outside, place for leisure, garden 

Lake   location, outside, place with animals, lake 

Park  location, outside, place with animals, park 

Balcony location, outside, place to step out, balcony 

River  location, outside, place with water, river 

Backyard location, outside, place behind house, backyard 

Veranda location, outside, place in front of house, veranda 

 

Breakfast situation, food related, in the morning, breakfast 

Dinner  situation, food related, in the evening, dinner 

Excursion situation, going somewhere, to enjoy, excursion 

Afternoon situation, after lunch, day time, afternoon 

Holiday situation, special day, no work, holiday 

Sunday situation, free time, to relax, Sunday 

Morning situation, early, wake up, morning 

Evening situation, late, get tired, evening 

 

Egg  consumable, food, white, egg 

Toast  consumable, food, brown, toast 

Cereals consumable, food, healthy, cereals 

Soup  consumable, food, in bowl, soup 
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Pizza  consumable, food, round, pizza 

Salad  consumable, food, light, salad 

 

Iced tea consumable, drink, from leaves, iced tea 

Juice  consumable, drink, from fruit, juice 

Lemonade consumable, drink, sweet, lemonade 

Cacao  consumable, drink, with chocolate, cacao 

Tea  consumable, drink, hot, tea 

Coffee  consumable, drink, activating, coffee 

 

Chess  game, entertaining, strategic, chess 

Monopoly game, entertaining, with dice, monopoly 

Backgammon game, entertaining, old, backgammon 

 

Jeans  garment, to cover body, for legs, jeans 

Shirt  garment, to cover body, for upper part, shirt 

Pajamas garment, to cover body, for night, pajamas 

 

Novel  contains language, contains letters, art, novel 

Email  contains language, contains letters, communication, email 

SMS  contains language, contains letters, communication, short, SMS 

Letter  contains language, contains letters, communication, on paper, letter 

Paper  contains language, contains letters, scientific, paper 

Newspaper contains language, contains letters, information, newspaper 

 

Rose  can grow, has roots, has petals, red, rose 

Daisy  can grow, has roots, has petals, yellow, daisy 

Tulip   can grow, has roots, has petals, colorful, tulip 

 

Pine  can grow, has roots, has bark, green, pine 

Oak  can grow, has roots, has bark, tall, oak 

Birch  can grow, has roots, has bark, white bark, birch 

 

Robin  can grow, can move, can fly, red, robin 

Canary  can grow, can move, can fly, yellow, canary 

Sparrow  can grow, can move, can fly, brown, sparrow 

 

Sunfish  can grow, can move, can swim, yellow, sunfish 

Salmon  can grow, can move, can swim, red, salmon 

Eel   can grow, can move, can swim, long, eel 

 

By  passive voice (activated together with the deep subject, e.g., ‘by the man’) 

Was  passive voice (activated together with the verb, e.g., ‘was played’) 

During/at no output units (activated together with situation words, e.g., ‘at breakfast’) 

In   no output units (activated together with location words, e.g., ‘in the park’) 

  
 
   
 
 
 


