Learning in One-Layer Networks

Psych 209
January 9, 2020

Input-output mapping

Simplest model of learning: input-output mapping

Input-output mapping

Pattern associator

Input stimulus

Input pattern Output pattern Output behavior

Input-output mapping

How can we learn input-output associations?

We know how to store (key, value) pairs on a computer

at b1

a2 b2
* hash * address *

an bn

Input pattern Output pattern

Input-output mapping

But location-based memory is brittle

ai b1

a2 b2

& = | " | = hash =) address = | -

an bn

atl’ z1

:”?v.".b' a2’ . 22
T ESHE T
a|.1’ z.n

Similar input

t Totally different
patterns

output pattern

Pattern Associator

Content-addressable memory: keys directly “produce” values without location lookup

Input pattern Output pattern

neuron
(cell body)
connection
(axon)

Desirable properties

O O

Fully connected

Forward Pass

Input pattern Output pattern
Input O
Woo
Input 1 o Output 0
Wo2
Input 2 Output 1
Wo3

Input 3

Forward Pass

Input pattern Output pattern
Input O
Woo
Input 1 o Output 0
Wo2
Input 2 Output 1
Wo3
Input 3

a; — E wijaj
J

Forward Pass

Input pattern Output pattern
Input O
Woo
Input 1 9 Output 0
Wo2
Input 2 Output 1 inpo
Wo3 ?np1
Inp2
Input 3 inp3
Woo Woi1 Wo2 Wos || Outo
W10 W11 W12 W3 || outy

out =W inp

Matrix Representation

T
i

A

/S VIV VYV VY
oo b A s/
AN et a¥ vy S NP
S S S S S S
LAY YYD
AR
PRI o
NN NN NN N
PR o
oﬁ”jojojojojoy/ IOVV

How do we learn the weights?

T
T

A

PAlR VAR A AN
V9999
o_jojojojojojojoj Ouv
S S S S S S
ojojojojojojojoj fOuv
AR
PRI o
bbb
SV Y SV Y Y SN
oﬁjojojojojoj.y/ [OVV

N

How do we learn the weights?

Woo

Learning rules:
Wo1

1. Hebb’s rule

woz 2. Delta rule

Wo3

Hebb’s Rule

e “Neurons that fire together wire together”

Hebb’s Rule

e “Neurons that fire together wire together”

target (v)

1 1 1 -1

input (u) < u®v

Hebb’s Rule

e “Neurons that fire together wire together”

target (v)
1 1 1 -1
1 1 1 1 1
1 1 -1 1 1
input (u) < uQv
1 1 1 1 1
1 1 -1 1 1

9o
-’
oC
L2,
o
Ie.
O
L

uv?

targets

-1

inputs
U

Storing multiple
memories

Hebb’s Rule

targets |

1 1 3 1
-1 3 1 1
input - T
puts uv
U 3 1 1 1

Hebb’s Rule

Retrieval

l threshold (clip to -1, 1)

1

Hebb’s Rule

targets

Observe that the input
patterns here are an
orthogonal set

—UVv?t

inputs

Hebb’s Rule

Orthogonality
alb < cos(O) =0 <= (a,b) = |a|l||b||cos(0.p) =0

Say we want to query the memory with input u_i:

u;TFUVT = [(u;,up), ..., (u;,u,),...,u;, un>]VT
=1[0,...,[|ul],...,0]V?!
SR

So if the inputs are orthogonal, retrieval will be correct up to a positive scale
factor, which could be corrected by thresholding in our binary case.

Vi

%

KA
Vi

9o
-’
oC
L2,
o
Ie.
O
L

KK
4 l/

%

e |[ncremental version:

Hebb’s Rule

e |[ncremental version:

n

Awij — € Z AipUjp
%O

p=1

O a

A

Hebb’s Rule

C
D
g O Input Output
g g g |
0 1 2 3

3
AUJ4Q — € E CL4pCLQp

p=0

YYYYy B
| + 4+ | =
I+ ++ N
+ | + | O
il + 4+ &

—ec+e—e—e=0

Hebb’s Rule

C
D
g O Input Output
g g g |
0 1 2 3

o * 2 3 4
+ - + - +
+ + + + +
+ + + - -
+ - - 4+ -

A’UJ40 =0

Aw41 =0

AUJ42 — 2¢

Aw43 =0

Hebb’s Rule

i 0 L SN
5o i
R O

Sddd

F¥YF¥YY¥ O
|l + 4+ 1 =
| + + +
+ | + 1
| + +

Delta Rule

input: [1,-1,1, -1]

output: [0.5, 0.5]

target: [1, 1]

error, or tss: (1-0.5)2 +(1-0.5)2=0.25 + 0.25=0.5

Delta Rule

input: [1,-1,1, -1]

output: [0.5, 0.5]

target: [1, 1]

error, or tss: (1-0.5)2 +(1-0.5)2=0.25 + 0.25=0.5

Awij — €

OF
821]7;3'

Delta Rule

Delta Rule

OE OE 0y

(‘9wij N 0@2 (9wij

Delta Rule
OF

1
E — = 7 Afl: 2 s — —
9 E (yi — 9i) Aw;; e

0yz Z(‘?A Uk — k)

VR

A\ 2
) Awij = —

(\W)
S
: g>

Delta Rule

oOF
(9wz-_,,-

Delta Rule

> (i — 9:)°
Awij = —¢€ 8E
(9wz-_,,-

Delta Rule

. OF
Z(yz _ yz)2 Awij —

—€
(9wz-_,,-

Delta Rule

N2 OF
Z(yz — yz) Awij — —anij

A

OE OF 3y, (
c?wij B 83)1 5’wij B Ji yz)x‘y

Update rule:

Awij = €(yi — §i)x;

Homework question + Ir demo

. (...)

Linear Predictability Constraint

e These are linear models: outputs can only be expressed
as a linear combination of inputs

e Usually, we need nonlinear functions, e.g. to capture
mapping from images to class labels (not just a linear
combination of pixels)

