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Input-output mapping

Simplest model of learning: input-output mapping




Input-output mapping
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Input-output mapping

How can we learn input-output associations?

We know how to store (key, value) pairs on a computer
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Input-output mapping

But location-based memory is brittle
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Pattern Associator

Content-addressable memory: keys directly “produce” values without location lookup
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Forward Pass

Input pattern Output pattern
Input O
Woo
Input 1 o Output 0
Wo2
Input 2 Output 1
Wo3

Input 3



Forward Pass

Input pattern Output pattern
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Forward Pass

Input pattern Output pattern
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Matrix Representation
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How do we learn the weights?
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How do we learn the weights?
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Learning rules:
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1. Hebb’s rule
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Hebb’s Rule

e “Neurons that fire together wire together”



Hebb’s Rule

e “Neurons that fire together wire together”
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Hebb’s Rule

e “Neurons that fire together wire together”

target (v)
1 1 1 -1
1 1 1 1 1
1 1 -1 1 1
input (u) < uQv
1 1 1 1 1
1 1 -1 1 1




9o
-’
oC
L2,
o
Ie.
O
L

uv?

targets

-1

inputs
U




Storing multiple
memories

Hebb’s Rule
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Hebb’s Rule

Retrieval

l threshold (clip to -1, 1)
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Hebb’s Rule

targets

Observe that the input
patterns here are an
orthogonal set
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Hebb’s Rule

Orthogonality
alb < cos(O) =0 <= (a,b) = |a|l||b||cos(0.p) =0

Say we want to query the memory with input u_i:

u;TFUVT = [(u;,up), ..., (u;,u,),...,u;, un>]VT
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So if the inputs are orthogonal, retrieval will be correct up to a positive scale
factor, which could be corrected by thresholding in our binary case.
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Hebb’s Rule

e |[ncremental version:
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Hebb’s Rule
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Hebb’s Rule
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Hebb’s Rule
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Delta Rule

input: [1,-1,1, -1]

output: [0.5, 0.5]

target: [1, 1]

error, or tss: (1-0.5)2 +(1-0.5)2=0.25 + 0.25=0.5




Delta Rule

input: [1,-1,1, -1]

output: [0.5, 0.5]

target: [1, 1]

error, or tss: (1-0.5)2 +(1-0.5)2=0.25 + 0.25=0.5
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Delta Rule




Delta Rule
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Delta Rule
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Delta Rule
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Delta Rule
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Delta Rule
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Update rule:
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Homework question + Ir demo
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Linear Predictability Constraint

e These are linear models: outputs can only be expressed
as a linear combination of inputs

e Usually, we need nonlinear functions, e.g. to capture
mapping from images to class labels (not just a linear
combination of pixels)



