[ecture #4 %
Basics of Relaxation
 Topics

— Molecular motion
— Stochastic processes
— A simple model of relaxation
— T, and T,
 Handouts and Reading assignments
— Levitt, Chapters 19.1-3, 20.1-3,

— Kowalewski, Chapter 2.



NMR Relaxation

Relaxation 1s the process by which the phase coherence among
spins returns to its equilibrium value (as given by the Boltzmann
distribution).

Restoration of longitudinal magnetization, M = yh<iz>, 1S
characterized by a time constant, 7.

Disappearance of transverse magnetization, M yh(< ]Ax> + i< iy>),
1s characterized by a time constant, 7.

Do the other coherences, e.g.
<2fZ§Z >,<2fx§x >,<2fy§y > ..., also relax?

We’ll first look at some simple relaxation models to build intuition.



Precession
frequency

w=yB

Nuclear Spins »

A spin 1n a magnetic field simply undergoes Larmor precession.

gﬂﬁ;gté?z Ii)inasll about phase coherence among \\j ? ’v f/ ; é

Magnetic fields are the only way to interact with the magnetic
moment of a spin %2 nuclei. (spins > % interact w/ E-field gradients)

In general, any change in the magnetic field (magnitude and/or
direction) seen by a nuclear spin will change its magnetic moment

A

Hamiltonian: H = — i - B Magnetic moment: [{ = yhi

Basic principle: spatial and temporal magnetic field
variations are the primary source of NMR relaxation.




Molecular Motion

e In vivo, molecular motion is the key source of spatially and
temporally varying magnetic fields.

e Time scales of these motions determine the corresponding
physical effects.
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NMR Effects of Molecular Motion
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In Vivo Magnetic Fields

* One source of magnetic field variations is due to dipolar coupling
and molecular tumbling.
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e While <AB(t)> =0, the instantaneous effect is not negligible.

A

Called “tupbling” rather than

rotating” since molecules

constantly bumping into each other.
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B=B, +AB(t)

* We need to take a close look at the properties of AB(?).
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Brief Review of Stochastic Processes

e The perturbing magnetic field, AB(t), is modeled as a stochastic
process and represents a family of time functions.

e For example, consider a collection of nuclear spins, I, for i=1,...N.
Let AB(t) be the time varying field seen by the i spin.

MAM\ M ﬁ — AB(t) is a random function of time. Process is ergodic if time

AB, averages equal averages of i: e.g. <ABZ.2 (t0)>i = <ABI~2 (1 )>t = <Bz>

— One function we care about is the statistical correlation between
f) MMW AB(?) and AB(t+7), G, (1,7) = <ABl. (1)AB; (1 + ‘L’)> Averaging
over all spins yields G(z, 7).
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— For a stationary process: G(t, t) = G(7), 1.e. independent of .
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m M | — Asecond highly useful function is the Fourier transform of G(7).
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! Wiener-Khinchin Theorem

At any time, #,, AB(#,) is a random ] .
variable with zero mean and S(w) is called the power spectrum or spectral density and

variance =(B*). AB(?) is stationary represents the power available at each frequency. This
if statistics independent of . function plays a fundamental role in NMR relaxation theory.




Molecular Tumbling

e Consider a water molecule undergoing isotropic tumbling
(Brownian motion). For simplicity, we’ll arbitrarily place the 7
spin at the origin and assume the inter-nuclear distance is fixed.

Ensemble of Moleculesat =7+ T

R
- ’ N ~
/

T large
* T, =rotational correlation time = average time for a molecule to
rotate over one radian, a measure of rotational coherence.

* Almost all NMR relaxation processes are described by an
exponential correlation function: G(7)=G(0) PRMAL

e That is, the correlation between the position of a molecule at two
points in time falls of exponentially.



G(t) for a simple case

e Are exponential correlation functions a good fit for in vivo NMR?
G(1) = (AB()AB(1 +7)) = G(0)e ™™
Let’s find out...

e For the case of a (nearly) spherical molecule undergoing
isotropic tumbling, let AB(¢)=F(€2), where for convenience
Q2 is a single angle variable representing (0(t),d(t)).

G(r)=(FOF (t+7))=4= [ [ F(Q)F (9/)’ P(Q,|Q.7)dQ,dQ

probability of finding the molecule at
), starting at angle €2 after a time ©

e To derive an expression of G(7), we’ll start with Fick’s law of
diffusion.



Fick’s law of diffusion

* Fick’s second law

2 2 2
of (x,9.2) _ p[ 9 f(x,zy,z)+ 0 f(x,zy,z)+ 0 f(x,zy,z) - DAf(x.y.2)
ot dx dy 0z / \
Diffusion Laplacian

constant

* In spherical coordinates, the Laplacian operator is:

1 9(,0 1 a(. .9 1 9
=——|r +—— sin6 +—— >
dr) r°sinf oo 00) r“sin“ 0 0¢

e In our case, fixing the radius r and just considering the angular
components, yields
Rotational diffusion constant
Fick’s law for
rotational diffusion.

0P (Q,|Q.7)
ot

=D:£FP(QO|Q,I) (=

Legendre operator (Laplacian with fixed r)
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G(t) for a stmple case (cont.)

* The spherical harmonics, Y,”, are eigenfunctions of A, and form a
complete orthonormal basis set, and the solution for Fick’s law of
rotational diffusion can be written as:

P(QO |Q,17) — EEYZW (Qo )Ylm (Q)e—l(lH)D,r
L m

e Spherical harmonics: ¥," (6,¢)
— orthonormal over the surface of a sphere.

— arise in multiple physical applications, e€.g. atomic orbitals
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The first few spherical harmonics

L } Rank O
2 cosfO |
| - Rank 1
= F./<= sinfe*" .
= /= (3c0329—1) |
T =F\/L cosfsin Oe*” - Rank 2
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G(t) for a stmple case (cont.)

e Substituting back into the equation for G(T)

G(r)=4 22 A f Y (Q ))dQ f F'(Q)Y" (Q)dQ

e In general, solving can be difficult, except when the
functions, F(€2), can be expressed as sums of spherical

harmonics.
1 for [=l'andm=m'

Y"s are orthonormal: <Y,m‘Yl,’”’>={ 0 for a1 |
or [=]'orm=m
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G(t) for a stmple case (cont.)

e Example: the secular approximation of the dipolar coupling
Hamiltonian is:

2 2
H,=F(Q)= Ho? h\/g(Bcoszﬁ(t)—l) ljl(jt/rh 24ny?

* Because of the orthogonality of ¥,"s, all of the terms but

one are Zero.
A simple decaying
exponential!

Yy = 2

3uly*n®  -6D,
:> G(T) = 4%0;/2r6 € i

o

T ] ; D = kT . . .
where 6D, and D, 87a’n a = radius, 17 = viscosity

Stokes-Einstein equation for nearly spherical molecules:
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The Spectral Density Function

e Hence, the correlation function is typically taken to be of the form:
G(t) = <AB (HDAB(t+ T )> = G(O)e_r/r" <== gstationary with exponential decay

—amolecule’s “memory” of its orientation decays exponentially in time.

— virtually all correlation functions in NMR are exponential.

* The corresponding power spectrum is:
S(w) = f G(t)e ™ dt
0

From which we’ll define the
spectral density function:

e )

J@)=1 [ e gr =T
(@) 2f 1+w’t’

—00

Note, we’ll address the G(0) term later.

15



T

c

Typical Correlation Times

For nearly spherical molecules, the Stokes-Einstein relation yields...

solvent viscosity

1 _4mna’_
6D, 3kT
liquids: 7, =10""7-10""s

Small

molecules O — 0 —->Q—>Q >0 shortr

C

0-0-0-0-0 -

7. =10 -10"s

Large
molecules

solids:

Tissue or compound Rotational Correlation time

Water: cerebral spinal fluid (CSF)
Water: muscle

Water: bone

Albumin (representative protein)
Gd-DTPA

Water: ice at -2° C

~ 1015
~107s
~107s
~3x10%s
~6x1011s
~10¢s
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Random Fields

* While dipolar coupling is the most important source of in vivo
relaxation, it 1s not the simplest to analyze.

 The random magnetic fields, AB(t), seen by two dipolar coupled
nuclei are clearly not independent, but rather correlated.

* For now, we’ll ignore this complication (to be revisited next
lecture) and assume each nuclei sees an independent, time-
varying random field AB(t) with corresponding spectral density:

J(w) = T, Indicates energy from the
1+ w2T62 lattice at frequency w.

17



T,: Spin-Lattice Relaxation
e Assume an isotropic randomly fluctuating magnetic field given by

AB(t) = B.()X + B,(1)y + B,(1)Z
where (B!) = (B})=(B!) = (B’)
e The relaxation of M, can then be shown to be (we’ll derive later):

() (82)) ) =20 ()

22
1 N . l+w;t.
o\
power of the fraction of the
Iteraction photons at w=w,

* The word “lattice” 1s a solid-state term, short for “crystal lattice™.
We still call T, the “spin-lattice relaxation time” even though in
vivo there is no actual crystal.
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Key Features of T, Relaxation

L 2 oo T ) Ll
T ! ((B2)+(B2)) @)= 21 (B")— ET> UI

l+w;T.
Changes in M, induced by spin transitions between energy states
Requires energy exchange between spin system and the lattice.
As a resonant system, energy exchange occurs at Zw,

Hence, T, relaxation and Rf excitation are much the same process

— Transverse magnetic fields at w, are needed to induce transitions
— Rf excitation: we provide a coherent rotating B, field

- T, relaxation: lattice provides the B, field
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T,: Spin-Spin Relaxation

The referring to T, as the “spin-spin relaxation time” 1s somewhat
misleading as relaxation can actually occur without any spin-spin
interactions.

T, relaxation concerns loss of transverse coherences: <Ix> and <I

Changes in <IAX> and <i y> do not require energy transfer

Fields in the z direction cause dephasing, and the slower the
fluctuations, the more efficient this relaxation mechanism.

Tiz,=y2<B§>J(0)

20



T,: Spin-Spin Relaxation

* Spin transitions also cause loss of transverse phase coherence
and hence are a second factor in T, relaxation.

! = I + J =) Note, technically 2T, > T,, rather than
T, 2T Tz' the usually quoted T, > T,
L (B I(0)+ (B2 4 B (w,)

T, 2

e Full expression...

L=)/2<Bz>(J(O)+J(a)O))=)/2<Bz>(1:c+ Le )

2_2
I, l+w,T;

probes the spectral density at 0 and w,
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The Spectral Density Function
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Relaxation Rates vs B,
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—— 1.=10"11s => free water
......... 1=10°s = viscous liquid
..... 1=107s = solid
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Summary

Lattice provides random time-varying magnetic fields.

e X-y components cause transitions =» 7 relaxation (also 7))
* z component causes dephasing == T, relaxation

From our simple model of uncorrelated, random AB(t) ...

%=2y2<Bz>J(%) Ti2=y2<32>(J(o)+J(wo))

T, relaxation depends on transverse fields having energy at the
Larmor frequency.

T, relaxation depends on both J(0) and J(w,,).

Helps explain relaxation rates versus B, and some observed
tissues relaxation behavior.
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Next Lecture: Relaxation through
dipolar coupling
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