Lecture-10B — Pulse Sequences III

Echo Planar Imaging (EPI) Artifacts

Daniel Ennis
dbe@stanford.edu
Learning Objectives

• Appreciate the challenges associated with EPI
• Describe the appearance of four principal EPI artifacts.
• Discuss the origin of each of these four artifacts
• Recall a solution for each EPI artifact.
Main Challenges with EPI

- Signal modulation over k-space
 - T_2^* effects during long echo trains
- Geometric distortion
 - Off-resonance and eddy currents
- Ghosting artifacts
 - Mismatch between even and odd echoes
- Chemical shift artifacts
 - Low bandwidth in phase encode direction
Signal Modulation in EPI

• **Problem** – Object blurring that is T_2^* dependent.

• **Origin** – T_2^* causes signal decay, which is especially large for long single-shot readouts.

• **Solution** – Shorten the readout as much as possible.

 – High receiver bandwidth, use maximum gradient performance, under sample k-space.
Signal Modulation in EPI

Phase Encoding

- "Blip" direction is slow.
- Low effect PE bandwidth
- FE much smaller

T₂* Decay

Modulates k-space amplitude.

Off-Resonance

Modulates k-space phase.
Signal Modulation in EPI

Perfect Object

EPI Top-Down

EPI Center-Out

- T_2^* Image contrast
- T_2^* dependent blurring
- T_2^* top-down k-space shading

- PD image contrast
- T_2^* dependent blurring
- T_2^* center-out k-space blurring

Example generated with Lecture_10B_EPI_T2star.m
Geometric Distortion in EPI

- **Problem** – Large object distortions and signal pile-up or dispersion.
- **Origin** – Field inhomogeneity (ΔB_0) during readout.
 - Imperfect B_0 (bad shim, susceptibility)
 - Eddy currents
- **Solution** – Careful field shimming, mitigate eddy currents, under sample k-space.
Geometric Distortion in EPI

- Fast Spin Echo (FSE)
 - Slow ~3 minutes

- Echo Planar Imaging (EPI)
 - Faster ~10 seconds

T_2-weighted image. Full brain coverage. Same target resolution.
Geometric Distortion in EPI

Spatially inhomogeneous off-resonance (Hz) imparts image distortion during long EPI readouts. Try, Lecture_10B_EPI_OffRes_Distortion.m

\[d_{pe}(\vec{r}) = \frac{\gamma}{2\pi} \Delta B_0(\vec{r}) t_{esp} FOV_{pe} \]

EPI displacement due to off-resonance.
EPI Distortion Solution – Better Shimming

The MRI scanner has shim coils that can be tuned to even out the B_0-field for a specific patient.

Images courtesy Brian Hargreaves
EPI Distortion Solution – Parallel Imaging

T2-weighted image. Same target resolution. Scan time matched.
EPI – Nyquist Ghosting

- **Problem** – EPI is prone to FOV/2 ghosting.

- **Origin** – Constant or linear phase offsets accumulate between echoes, but oppositely impact odd and even echoes.

 - B_0 eddy currents, center frequency offsets, gradient delays, gradient amplifier hysteresis.

- **Solution** – Limit center frequency shifts, minimize echo spacing, limit k-space coverage.
Constant (spatially independent) phase offsets cause even/odd echo phase shifts and FOV/2 ghosts.
Spatially linear phase offsets cause even/odd echo phase shifts, FOV/2 ghosts, and signal cancellation.
EPI – Chemical Shift

- **Problem** – Fat-specific ghosting artifacts.

- **Origin** – Fat is chemical shifted relative to water, especially in the low bandwidth phase encode direction.

- **Solution** – Decrease echo spacing as much as possible, under sample k-space, fat saturation.
Chemical shift displacement artifacts are generally apparent in the FE direction for single echo methods:

\[\Delta x_{c.s.} = \frac{\Delta f_{c.s.}}{2\Delta f_{rbw}} \cdot FOV_x \]

- \(\Delta f_{c.s.} = 421 \text{Hz} \) @3T
- \(\Delta_{rbw} = \pm 32000 \text{Hz} \)
- \(FOV_x = 320 \text{mm} \)
- \(\Delta x_{c.s.} = 2.1 \text{mm} \)

Chemical shift is not a problem in the PE direction for single echo methods because the CS phase does not accumulate.
EPI – Chemical Shift

- EPI typically uses very high RBW, but the PE BW is much lower and dependent on the echo spacing.

\[\Delta y_{c.s.} = \frac{\Delta f_{c.s.}}{2\Delta f_{pe}} \cdot FOV_{pe} = \frac{t_{esp}\Delta f_{c.s.}}{N_{shot}} \cdot FOV_{pe} \]

- \(\Delta f_{c.s.} = 421 \text{ Hz}, \ t_{esp} = 1 \text{ ms}, \ N_{shot} = 1 \)
 - \(\Delta f_{p.e.} = 1000 \text{ Hz} \) (Low bandwidth in PE direction!)

- \(\Delta y_{c.s.} = 134.7 \text{ mm} \) (Large displacement!)

Chemical shift is a problem in the PE direction for EPI because the CS phase accumulates between echoes.
Fat is chemical shifted from water (-3.3ppm) and accumulates significant phase during long EPI readouts.

Try, Lecture_10B_EPI_ChemicalShift.m
Summary - EPI Artifacts

• EPI is a very fast, but challenging pulse sequence.

• Prone to artifacts from:
 – Off-resonance, T_2^*, B_0 and gradient imperfections, chemical shift and more!

• Mitigating field effects and limiting the EPI readout duration generally help, but come at a cost…
Further Learning...

- Principles of Magnetic Resonance Imaging
 A Signal Processing Perspective
 Zhi-Pei Liang
 Paul C. Lauterbur

- Handbook of MRI Pulse Sequences
 Matt A. Bernstein
 Kevin F. King
 Xiaohong Joe Zhou
What alternatives are there to single-shot EPI?