Lecture 4 Quiz

 $(\ensuremath{\underline{1}})$ This is a preview of the published version of the quiz

Started: Apr 14 at 9:25pm

Quiz Instructions

Choose the best answer for each question. You may look back at lectures and notes.

Question 2	1 pts
If the non-zero EPG coefficients are $F_2^2 = i$ the equivalence magnetization is	\$
\bigcirc Mx = cos(4 π z), My = -sin(4 π z)	
\bigcirc Mx = -sin(4 π z), My = -cos(4 π z)	
\bigcirc Mx = sin(4 π z), My = cos(4 π z)	
\bigcirc Mx = cos(4 π z), My = +sin(4 π z)	

Question 3	1 pts
On EPG F and Z coefficients, the effect of relaxation (with E1 and E2 defi previously) is to	ned as
O None of these	
O Attenuate all F states by E2, all Z states by E1	
O Attenuate all F states by E2, all Z states by E1, and add (1-E1) to Z0	
O Attenuate all F states by E2, all Z states by E1, and add (1-E1) to all Z states	

Question 4	1 pts
The effect of a <i>negative</i> unit gradient on a non-zero state F_1^+ is to	
Refocus the magnetization to F0	
○ None of these	
Mix magnetization between states of order 1	
O Dephase the magnetization to a 2nd-order state	

Question 5	1 pts
The rotation matrix due to precession in EPG takes the form	
\bigcirc R = [exp(i θ) exp(-i θ) exp(i θ)] (transpose)	
\bigcirc R = [exp(i θ) exp(i θ) 1] (transpose)	

 \bigcirc R = [exp(i θ) exp(-i θ) 1] (transpose)

Question 6

1 pts

If $Z_2 = 0.25 + 0.25i$ then the longitudinal magnetization is

O.5cos(2πz)-0.5sin(2πz)

O 0.5cos(2πz)+0.5sin(2πz)

O 0.25cos(2πz)-0.25sin(2πz)

O 0.25cos(2πz)+0.25sin(2πz)

Question 7 1 pts When magnetization passes from F⁺ states to F⁻, then is refocused subsequently without passing through a Z state, this is a stimulated echo both spin echo and stimulated echo gradient spoiling a spin echo

When dephrased magnetization passes through a Z state, and is subsequently refocused, this is

🔘 a spin echo

O both a spin echo and a stimulated echo

○ gradient spoiling

○ a stimulated echo

Question 9	1 pts
To generate 2 cycles of twist in magnetization from an F_0 state you can	
 apply a unit gradient and an RF pulse 	
o apply 2 unit gradients	
o apply 2 RF pulses	
o apply 2 RF pulses and a unit gradient	

Question 10	1 pts
The transverse EPG basis functions are best described as	
 integer numbers of positive and negative twists (transverse magnetization) and in numbers of sine/cosine cycles (longitudinal magnetization) 	teger
 integer numbers of negative twists (transverse magnetization) and integer number sine/cosine cycles (longitudinal magnetization) 	rs of

◯ integer	numbers of positive and negative twists (transverse magnetization) and integer
number	s of cosine cycles (longitudinal magnetization)

Quiz saved at 9:25pm Submit Quiz