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ABSTRACT Evaluating a set of protein struc-
ture predictions is difficult as each prediction may
omit different residues and different parts of the
structure may have different accuracies. A method
is described that captures the best results from a
large number of alternative sequence-dependent
structural superpositions between a prediction and
the experimental structure and represents them as
a single line on a graph. Applied to CASP2 and
CASP3 data the best predictions stand out visually
in most cases, as judged by manual inspection. The
results from this method applied to CASP data are
available from the URLs http://PredictionCenter.
llnl.gov/casp3/results/th/ and http://www.sanger.
ac.uk/,th/casp/. Proteins Suppl 1999;3:15–21.
r 1999 Wiley-Liss, Inc.
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INTRODUCTION

The most common way to compare pairs of three-
dimensional protein structures has long been root mean
square distance (RMS) superposition. This has been used
in various ways in the evaluation of predictions in previous
CASP experiments.1–9 Many algorithms have been devel-
oped to find the optimal superposition, mostly focusing on
the difficulty of obtaining the correct set of structurally
equivalent residues (the structural alignment) when two
different structures are being compared. In the special
case of comparing a predicted structure with an experimen-
tal result, this alignment is known (although it is still
useful to explore alternative alignments,10 see also Sippl et
al.13) since the two sequences are identical, which reduces
the complexity of the problem. On the other hand, the
problem is no longer necessarily the comparison of two
objects on the basis of there being a real structural
relationship to identify. Bad predictions may seem almost
totally dissimilar to the target structure, but still have to
be compared to identify if there is anything that has been
predicted usefully. Methods that can be applied to evalua-
tion of predictions therefore have to be robust to very large
variations in structural similarity.

In the case of evaluating many predictions, what is also
required is a way of comparing the different results in an
objective way. The problem with this is that no two
predictions are the same. Different groups may predict
different subsets of the residues in the structure and may
predict different parts of the structure at different accura-

cies. How can we evaluate what is the better prediction,
when one is the entire structure, and another is just the
core of the protein? Any cutoff that is applied, on the basis
of RMS or number of equivalent residues, is likely to
disadvantage some predictions, however without any cut-
off it would seem that we are likely to drown in a sea of
numbers.

One approach to this problem is to present the results of
a very large number of superpositions graphically. A large
number of superpositions are used to sample the best RMS
for each number of equivalent residues (not necessarily
contiguous). The graphical representation is a line for each
prediction relating these best RMS values to number of
equivalent residues. The result is the RMS/Coverage graph,
which appears to represent the best prediction as the
lowest line on the graph for most CASP2 and CASP3
targets, as judged by the manual inspection of the asses-
sors. The results can be viewed at http://PredictionCen-
ter.llnl.gov/casp3/results/th/ for CASP3 data (some 3D
coordinates are not available yet as they are still unpub-
lished), and from http://www.sanger.ac.uk/,th/casp/ for
CASP2 data.

MATERIALS AND METHODS
Data

Predictions in CASP2 were submitted in three different
formats: CM (comparative modeling), FR (fold recognition/
threading) and AB (ab initio). After excluding AB predic-
tions at 1D (secondary structure) and 2D (contact) levels,
all remaining predictions are or can be represented as a 3D
structure. In the case of AB and CM, the remaining
predictions were submitted as coordinate sets. In the case
of FR, predictions were submitted as alignments, so 3D
models were created from the first five alignments to
which the predictor gave the most confidence. Models were
created using the program AL2TS11 by Adam Zemla at the
Prediction Centre.

For CASP3 data there is no separate CM/FR/AB submis-
sion, however there are still different data formats of SS
(secondary structure), RR (residue separation), AL (align-
ment to known structure) and TS (tertiary structure). TS
submissions are already 3D coordinate sets and for AL
submissions 3D models were again created from the
alignment using AL2TS.
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Generating a Large Number of Structural
Superpositions

Astructural superposition results from the unique trans-
formation, which minimizes the RMS between two lists of
atomic coordinates. Different superpositions therefore re-
sult from different lists. In this algorithm the lists are
generated by iterating from all possible starting points of
three consecutive results. For example, for a protein of 100
residues the starting points are residues 1–3 of the predic-
tion superposed with residues 1–3 of the target; residues
2–4 superposed with residues 2–4; residues 3–5 etc., up to
residues 98–100 (see Fig. 1a).

Iteration consists of building a new list from the result of
the previous superposition, followed by a new superposi-
tion, etc. The new list is constructed by measuring the

distance between equivalent residues. Any pair for which
the distance is less than six Angstroms is included in the
new list. Six Angstroms is a high distance threshold
compared with that used normally (,3 to 3.5 Angstroms)
in structure comparison methods. It can afford to be so
high because sequence-dependent structural superposi-
tion is being carried out here so what is an equivalent
residue is unambiguous. It is useful to make this high,
because of the RMS between a predicted structure and
target can be much larger than between two naturally
similar protein structures as predictions do not necessarily
respect protein geometry. In this experiment, three itera-
tions are carried from each starting point. For many
prediction/target pairs, after three iterations many of
these superpositions and their corresponding residue pair

Fig. 1. a: A schematic representation of iterative superposition. (1)
The initial superposition is made using the coordinate pairs of residues
1–3 in the two structures. (2) After the first superposition residue pairs
1,3,4,5,6,7 and 8 are closer than the cutoff of six Angstroms and are used
to make the next superposition. (3) After the second superposition the
position of the structures has shifted such that residue pairs 5–13 are
closer than the cutoff. These would be used to make the third superposi-

tion. In most cases, continuing this process will result in convergence to a
list that no longer changes. b: A schematic representation of the
construction of an RMS coverage list from a superposition. The distances
between all equivalent pairs of residues are calculated. These distances
are sorted smallest to largest to give (1). The RMS is calculated from the
distances for a coverage of 1 (top pair); 2 (first two pairs); 3 (first three
pairs) etc., to give the values in (2).
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Fig. 2. RMS/coverage graph for T0046 is shown with axes of 1–100 residues coverage and 0–10 Angstroms RMS (see text for discussion). (a) shows
graph itself, with arrows indicating key features. (b) shows the graph as it appears on a web page with its associated text.



Figure 3.

Figure 4.

Fig. 3. Equivalent residue/Coverage graph for an ab initio CASP2
prediction of target T0030 (T0030AB807). The red line shows the
RMS/Coverage line for this prediction taken from the graph for all
predictions for this target. Plotted on the same graph, with the same X
axis, is a dot plot where the Y axis is the residue numbering of the target
protein. Each black pixel indicates that the single residue is part of the
equivalent list making up the coverage on the X axis (see text for
discussion).

Fig. 4. Two predictions of the B domain of T0063 are shown. The
predictions are T0063bTS005 (a) and (b) and T0063bAL066 (c) and (d)
(prediction T0063bTS005 is a 3D model submission by group 5;
T0063bAL066 is an alignment submission by group 66). The coloring
schemes are based on distance separation for (a) and (c): , 2A: yellow
(residue pairs not shifted and well modeled); 2–4A: orange (badly
modeled/shifted by 1 residue); 4–8A: red (badly modeled/shifted by 1–2
residues); 8–12A: violet (badly modeled/shifted by 3–4 residues); . 12A:
purple and segment shift after distance constrained Smith-Waterman
alignment for (b) and (d): no shift: yellow; shift of 1–2: orange; shift of 3–5:
red; shift of 5–10: violet; shift of . 10: purple. With a suitably configured
browser/helper the (a) and (c) structures can be viewed by clicking on the
link labeled [i] on the web pages and the (b) and (d) predictions viewed by
clicking on the link labeled [s].



lists will be very similar, i.e., the iteration converges. In
cases where there are several quite dissimilar end points
the prediction contains different substructures that are
similar to the target but which cannot all be superposed
together. For the evaluation carried out here the 98*4
different superpositions for a 100 residue protein appears
to sample superposition space sufficiently for the next
step.

Determining the Minimum RMS
for Each Coverage Value

Coverage is defined here as the fraction of the target
being predicted for the number of residues being consid-
ered. For a 100 residue protein coverage values range from
0.01 (1/100 residues) to 1 (100/100 residues). Coverage as
defined here is non-consecutive, i.e., residues 1,3,10,88 can
be considered as a coverage of 0.04 just as residues 1–4
can. The minimum RMS for each coverage value out of all
the superpositions sampled can be determined by measur-
ing the distance between each equivalent residue pair;
sorting this list and then calculating the RMS for the first
two residue pairs in the list, the first three pairs, etc. (see
Fig. 1b). The minimum RMS for each coverage value for
the entire prediction/target comparison is the set of lowest
RMSs for each coverage value, across all the different
superpositions. It is this minimum RMS that is plotted
against coverage as a line on an RMS/Coverage graph (see
Fig. 2).

RESULTS
RMS/Coverage Graphs

An example of a complete RMS/Coverage graph is shown
in Figure 2 for CASP target T0046. This example illus-
trates how such graphs allow several good predictions with
different features to be picked out from the rest. It can be
seen that there are a couple of predictions with very low
RMS at about 40 residues coverage, but whose RMS
rapidly rises after that, and some more predictions with
worse RMS at 40 residues, but the best RMS for much
higher coverage values (80 residues). The annotated graphi-
cal displays of these two predictions cannot be printed
here, however, what they would show is that the 40 residue
prediction is of the core secondary structures of the protein
(a set of beta strands), but does not include loops. The
80-residue prediction is of the full structure, but obviously
has a core that is not as accurate as the 40 residue
prediction. In the context of the CASP experiment, the
graph draws attention to interesting predictions that
should be examined in more detail.

Equivalent Residue/Coverage Plots
or Each Prediction

Since each line on an RMS/Coverage graph can be made
up of results from many different superpositions, it is
useful to know which residue pairs were included at any
given coverage value. Equivalent residue/Coverage plots
are therefore calculated for each prediction. Figure 3
shows the equivalent residue/Coverage plot for the CASP2
prediction T0030AB807. On all plots, one pixel corre-

sponds to one residue (black) or 0.1A RMS (red line, Y
axis). The exact correspondence between residue and RMS
is to ensure that the slope of the red line is comparable
between plots. T0030 has a length of 66 residues, so the
point at which the red line touches the maximum on the Y
axis is when the RMS is 6.6A. The black dot plot shows the
different superpositions that give rise to the lowest RMS
for each coverage point. Working along the X axis, the first
block of black pixels can be seen at residues 20–23. This
corresponds to the best superpositions sampled involving
two, three, or four residues. For five residues, this region
no longer has the best superposition. It is superseded by a
region centered on the hairpin around residues 48–49.
This region is built up until 18 residues are involved in the
superposition, mostly involving this single well predicted
hairpin (superposition of these 18 residues is ,3A). To
superpose 19 residues, however, a completely different set
of equivalences gives the lowest RMS, involving parts of
the entire prediction. What this shows, without needing to
look at the structures, is that regions throughout the
prediction can be superposed at around 4A RMS, but that
there is a piece of structure centered on residue 48, which
is predicted correctly locally, but not with respect to the
rest of the structure.

Selection of the Best Superposition
and Method for Graphical Display

While sampling the different superpositions, a record is
kept of the one that results in the largest list of equivalent
pairs. The coordinates of this superposition are kept and
are linked to the RMS/Coverage graph page of the website.
As well as linking raw coordinates, two annotated coordi-
nate sets are provided in RasMol inline format. The
annotation is to color code residue pairs according to their
accuracy.

In the two alternative coordinate sets, two annotation
methods are used (see Fig. 4). In the first, residue pairs are
colored according to their distance separation. The color-
ing scheme used is: , 2A: yellow (residue pairs not shifted
and well modeled); 2–4A: orange (badly modeled/shifted by
1 residue); 4–8A: red (badly modeled/shifted by 1–2 resi-
dues); 8–12A: violet (badly modeled/shifted by 3–4 resi-
dues); . 12A: purple.

In the second, residue pairs are colored according to the
shift between the (correct) sequence based alignment and
the alignment implied by the structural superposition, i.e.,
if residues 3 and 6 are structurally aligned, the shift is 3.
The alignment implied by the structural superposition is
calculated by a Smith-Waterman algorithm applied to the
full distance matrix resulting from the superposition imple-
mented using the dynamite dynamic programming com-
piler.12 Although the first coloring scheme relates dis-
tances to a rough number of shifts, the effect of the
Smith-Waterman algorithm is to smooth the output so that
entire secondary structures are colored according to their
alignment shift, rather than each residue being different.
The coloring scheme used is: no shift: yellow; shift of 1–2:
orange; shift of 3–5: red; shift of 5–10: violet; shift of . 10:
purple.
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Two predictions for the b domain of T0063 can see seen
annotated in this way in Figure 4. The predictions are
T0063bTS005 (a) and (b), and T0063bAL066 (c) and (d). In
(a) and (c) every residue in the prediction (thick lines) is
colored, however it is hard to work out exactly what the
problems in superposition of prediction and target are. In
(b) and (d), some residues between segments of the predic-
tion are not aligned to the target and are colored gray,
however, it is much clearer that whereas T0063bAL066
has been superposed with no overall segment shifts, the
superposition of T0063bTS005 leads to a one or two
residue shift in one face of the beta barrel. Note that these
views do not evaluate a prediction, but are ways of
simplifying the viewing of a particular structural superpo-
sition.

Website

All of the above data is available for CASP3 predictions
from the address http://PredictionCenter.llnl.gov/casp3/

results/th/. The data is presented in a number of different
ways to make it easy to view predictions from the point of
view of a particular predictor or a particular target. For
example, when making RMS/Coverage graphs there is an
issue of what axes to use. Constant units for both RMS (y
axis) and Coverage (x axis) mean that the slope of the
curve can be compared between predictions and indicates
their relative difficulties. Graphs are therefore provided
showing the first 100 residues coverage against 0–10A
RMS. However, this masks good performance on very large
predictions and does not show the full RMS range, so two
more sets of graphs are provided: 1) the full coverage
scaled onto the x axis with 0–10A RMS range and 2) full
coverage and full RMS range.

In CASP3, predictors were allowed to submit up to five
predictions for each target, but it was emphasized that the
assessment would concentrate on their first prediction. As
a result, there are two graphs for each target, the first just
showing the top predictions and the second showing all
five predictions.

Fig. 5. Thumbnail images of the RMS/Coverage graphs for CASP3, roughly ordered by difficulty.
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Figure 2 shows the ‘All predictions’ graph for T0046.
Figure 2b shows the graph with the text as it appears on
the web page. Underneath each graph, information is
listed with one line for each prediction. The information
shown is: (1) prediction ID; (2) predictor group; (3) number
of predictions; (4) the number of residues predicted; (5) an
RMS; (6) links labeled [p], [i], [s]; (7) the identifier of the
PDB chain from which the model is predicted; (8) the
SCOP fold code for the PDB code; and (9) the frequency
with which this code is used over all predictions for this
target. If the prediction is ab initio, 7,8,9 are undefined.
The RMS given is for a coverage of 66 residues and the list
of predictions are ordered according to this value. When
the graphs show all predictions made, the best RMS by
each predictor is shown in bold and the ranking is accord-
ing to this value. In the case where fewer than 66 residues
were predicted, the RMS value is an extrapolation and
shown in italics. On such pages, holding the mouse over
any of the lines on the graph causes the name of that
prediction to appear in the status bar of the browser, and
clicking will jump down the page to the line referring to
that prediction. (These images are drawn using Perl
Modules GD.pm and GIFgraph.pm, extended by Matt
Pocock available from the common perl archive network
CPAN). In the text, clicking on the prediction number (3)
will jump to the ‘Equivalent residue/Coverage graph’ for
that prediction. With a rasmol viewer correctly configured
as a helper application of your browser, clicking on [p], [i]
or [s] will cause the Calpha coordinates (with residue
coloring annotation in case of [i] or [s]) to be downloaded
and displayed.

As well as these ‘per prediction’ pages, there are pages
showing thumbnail images of the RMS/Coverage graphs
by target and by group. Figure 5 shows the page with
images of all predictions roughly ordered by difficulty.
These images show the first 100 residues coverage against
0–10A RMS, so the slope is constant. It is immediately
apparent the relative quality of the predictions: for T0047
all predictions are clearly accurate homology models, since
the curve is flat, however for T0058 it can be seen that a
few groups made wrong predictions. It becomes apparent
what part of the graph approximates to a random predic-
tion and it can be seen where there are lines that fall below
this and are better.

In the title, the word ‘qualitative’ is used to describe the
method. This is to emphasis that the method does not
generate a single universal number that allows predic-
tions to be ranked, but rather a graphical view that is clear
to the eye. The ranking of predictions on the web pages
(Fig. 2b) is based on a single number extracted from data
used to generate the plot, but is only one possible ranking.
The parameter used (lowest RMS for a coverage of 66
residues) seems a good compromise for many predictions,
but does not reproduce what the eye would identify as the
best in all cases, which is a limitation of the method.
Figure 5 shows how the method allows many predictions to

be compared in a visual way. However, since no satisfac-
tory way has yet been found to convert the data in these
images into a single number, the method has not been used
to quantify performance on different targets.

CONCLUSIONS

Making sense of the vast amount of CASP data is very
difficult and takes a great deal of time. Automatically
generated analysis presented in a graphical ‘point and
click’ way helps assessors and predictors focus on the most
interesting predictions, by showing at a glance the range of
predictions for any target. These interfaces to CASP
analysis data will continue to be developed and extended
to integrate all historical CASP data into a single view and
extend the range of ways in which it is analyzed.
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