Visualizing Data: Basic Plot Types

Data Science 101

Stanford University, Department of Statistics
Today’s lecture focuses on these basic plot types:

- bar charts
- histograms
- boxplots
- scatter plots
- densities

Which visualization is best depends on

- whether the data are univariate or bivariate data
- whether the variables are discrete or continuous
- context
Context is Essential for Graphical Integrity

To be truthful and revealing, data graphics must bear on the question at the heart of quantitative thinking: “Compared to what?” The emaciated, data-thin design should always provoke suspicion, for graphics often lie by omission, leaving out data sufficient for comparisons. The principle:

Graphics must not quote data out of context.

Nearly all the important questions are left unanswered by this display:

A few more data points add immensely to the account:
Imagine the very different interpretations other possible time-paths surrounding the 1955–1956 change would have:

Comparisons with adjacent states give a still better context, revealing it was not only Connecticut that enjoyed a decline in traffic fatalities in the year of the crackdown on speeding:

Traffic Deaths per 100,000 Persons in Connecticut, Massachusetts, Rhode Island, and New York, 1951–1959

Discrete Variables (a.k.a. Categorical Variables)

Roughly speaking, **discrete** variables take only a few unique values (we might turn them into **factors** in R).

- Win, Lose, Tie
- Treatment vs Control
- Can be numeric, e.g. cars grouped by 4, 6, or 8 cylinders.

```r
by(mtcars$mpg, mtcars$cyl, mean)
```

```r
mtcars$cyl: 4
[1] 26.66364
```

```r
mtcars$cyl: 6
[1] 19.74286
```

```r
mtcars$cyl: 8
[1] 15.1
```
Bar chart

Bar chart: height of the bar is proportional to some summary statistic associated with a discrete variable.

```r
carplot(by(mtcars$mpg, mtcars$cyl, mean),
       main = "Fuel Efficiency of 32 Different Cars",
       xlab = "Cylinders", ylab="MPG",
       sub = "data: mtcars", col="blue")
```

Fuel Efficiency of 32 Different Cars

<table>
<thead>
<tr>
<th>Cylinders</th>
<th>MPG</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>15</td>
</tr>
</tbody>
</table>
In theory, **continuous** variables may take infinitely many values (though in practice resolution is limited by the measuring apparatus’ precision). For example, **mpg** is a continuous variable: a car’s average fuel economy could be any number between 0 and ∞. Histograms and density plots are often used to display continuous univariate data.
Histograms displays quantitative data like a bar graph but they allow for unequal block lengths.

```
hist(mtcars$mpg, main = "Fuel Efficiency of 32 Different Cars",
     breaks = c(10, 15, 19, 20, 21, 25, 35))
```
Area is proportional to frequency so the percentage falling into a block can be discerned without a vertical scale (since the total area equals 100%). But it’s helpful to have a vertical scale (density scale). Its unit is ‘% per unit’, so ‘% per mpg’ in above example.

Histograms show two kinds of information...
Density (crowding): The bar height tells how many cars are in one unit on the horizontal scale. The highest density (0.094 = 9.4%) is at 20mpg. Even though only 3 cars have 20mpg, adjusting for width, more cars fall in that category than any other. By contrast, the density is only 0.019 for the 6 cars with \(\text{mpg} > 25 \).
Histograms show percentages

Percentages (relative frequencies) are given by:

\[\text{Area} = \text{Height} \times \text{Width} \]

For example, 18.75% fall into the most fuel efficient category (between 25 and 35 mpg) because the corresponding area is

\[\text{Area} = (10 \text{ mpg}) \times (0.01875 \% \text{ per mpg}) \]

Alternatively, eyeballing shows this area makes up roughly 1/5 of the total area.
Density plots

A density plot is like a “smoothed” histogram.

```r
plot(density(mtcars$mpg), main = "Fuel Mileage")
```

Fuel Mileage

N = 32 Bandwidth = 2.477
Choice of Bandwidth: How Many Peaks?

Small bandwidths capture many local peaks but may be unstable (‘wiggly’) elsewhere. **Big bandwidths** are ‘smoother’ (fewer peaks).
Scatter plot

For **bivariate** data where both variables are *continuous*, scatterplots are the standard way to display association.

```r
plot(GaltonFamilies$midparentHeight, 
     GaltonFamilies$childHeight, main="Galton's Famous Data", 
     pch=20) # pch denotes point type
```

![Galton's Famous Data](image)
A special case of the scatter plot is a ‘time series.’ By convention, time is always set to be the x variable.

Air Quality in New York, 1973

data: airquality

Ozone

May Jun Jul Aug Sep Oct
Box Plots

Box plots provide a compact summary of a variable—both its median as well as values that the variable typically takes.

```r
boxplot(mtcars$mpg)
```
Details about the box plot

- For each value of the **categorical** variable, it depicts the following information about the **continuous** variable:
 - The median
 - The first and third quartiles; these are the **hinge** values, which represent the extent of the box
 - The smallest observation **greater than** the first quartile **less** 1.5 times the interquartile range **or** the minimum, whichever is larger; this is the extent of the **lower whisker**
 - The largest observation **less than** the third quartile **plus** 1.5 times the interquartile range **or** the maximum, whichever is smaller; this is the extent of the **upper whisker**
 - Points that lie outside 1.5 times the interquartile range from the **hinges**, as **individual points** (sometimes denoted **outliers**
Box plot (a.k.a. ‘box-and-whisker’ plot)

The box plot is also convenient for displaying bivariate data, where one variable is continuous and the other is categorical. Box plots give a useful summary of the distribution of the continuous variable for each value of the categorical variable.

`boxplot(mtcars$mpg ~ mtcars$cyl)`
Summary

- Visualization should be chosen based on variable number and type and the research question at hand.

<table>
<thead>
<tr>
<th></th>
<th>Discrete</th>
<th>Continuous</th>
<th>One of Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univariate</td>
<td>Table</td>
<td>Histogram</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>or Density</td>
<td></td>
</tr>
<tr>
<td>Bivariate</td>
<td>Contingency Table</td>
<td>Scatter</td>
<td>Boxplot</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>or two-color Barplot</td>
</tr>
</tbody>
</table>

- Compared with barplots, boxplots convey more information about sampling variability (but typically require more text to explain to the reader).
- Density plots and histograms contain rich information about a variable’s distribution but may require some calibration for the appropriate amount of “wigliness”.