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Homework 1 solution
Suyash Gupta Due on October 3, 2018

# 1: Properties of exponential families

(a) Want to show that if θ1 and θ2 are in ΘN , then for any λ ∈ [0, 1], λθ1 + (1− λ)θ2 ∈ ΘN .

Observe that∫
exp{〈λθ1 + (1− λ)θ2,T (x)〉}h(x)dx

=

∫
exp{〈λθ1 + (1− λ)θ2,T (x)〉}h(x)λh(x)1−λdx

=

∫
(exp{〈θ1,T (x)〉}h(x))λ(exp{〈θ2,T (x)〉}h(x))1−λdx

≤
(∫

(exp{〈θ1,T (x)〉}h(x))dx

)λ(∫
(exp{〈θ2,T (x)〉}h(x))dx

)1−λ

[By Holder′s inequality]

<∞

That φ is a convex function follows from exactly the same line of arguments as above.

(b)

∂φ

∂θi
(θ) =

1

Z(θ)

∫
Ti(x)exp{〈θ,T (x)〉}h(x))dx = Eθ{Ti(X)}

Now,

Z(θ)
∂φ

∂θi
(θ) =

∫
Ti(x)exp{〈θ,T (x)〉}h(x))dx = Eθ{Ti(X)}

Differentiating the above equation w.r.t. θj and then dividing both sides by Z(θ) , we get

∂φ

∂θi
(θ)

∂φ

∂θj
(θ) +

∂2φ

∂θi∂θj
(θ) =

1

Z(θ)

∫
Ti(x)Tj(x)exp{〈θ,T (x)〉}h(x))dx

Hence proved.

(c)

Eθ

{[
1

h(x)

∂h

∂xi
(x) + 〈θ, ∂T

∂xi
(x)〉

]
g(x)

}
=

∫
∂Pθ(x)

∂xi
g(x)dx

= −
∫

Pθ(x)
∂g

∂xi
(x)dx [By Integration by parts]

= −Eθ
{
∂g

∂xi
(x)

}
Hence proved.
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(d) If X ∼ N(µ, I), then trivially we have

E
{

(x− µ) g(x)
}

= E
{
∇g(x)

}
.

where we applied Stein’s identity component wise.

Now, let X ∼ N(µ,Σ), and whiten X.

Take Y = AX where A−1 is the square root of Σ. Let h(x) = g(A−1x).

Using Stein’s identity for Y and the differentiable function h., we get

E
{

(y −Aµ)h(x)
}

= E
{
∇h(x)

}
.

Also, ∇h(x) = A−1∇g(x)

Plugging in Y = AX, we get,

E
{

(Ax−Aµ) g(x)
}

= A−1E
{
∇g(x)

}
.

Hence,

E
{

(x− µ) g(x)
}

= ΣE
{
∇g(x)

}
.

# 2: Exercises on sufficient statistics

(a) We claim that T (x)={ p2p1 ,
p3
p1
, ..., pkp1 } is a sufficient statistic. Observe that for any j, such that 1 ≤ j ≤ k,

we have,

pj =
pj
p1

p1

Let g(T (x), j) =
pj
p1

and h(x) = p1, then by Factorization theorem, we have that T (x) is a sufficient
statistic.

(b) The joint density of X1, ..., Xn is

f(x1, ..., xn) =
1

θ2 − θ1

k∏
i=1

1{θ1≤xi≤θ2}

=
1

θ2 − θ1
1{xmin≥θ1}1{xmax≤θ2}

By Factorization theorem, we have the result.

(c)

pθ =
1

(σ
√

2π)n
exp{− (x−Aθ)T (x−Aθ)

2σ2
}

=
1

(σ
√

2π)n
exp{− 1

2σ2
(xTx+ θTATAθ − 2xTAθ)}

Hence, again by Factorization theorem, ATx is a sufficient statistic.
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# 3: Optimal linear estimation in heteroscedastic Gaussian model

Assume σ1, . . . , σd > 0 to be known, and consider the statistical model Pθ = N(θ1,Σ), where Σ =
diag(σ2

1 , . . . , σ
2
d), and θ ∈ Θ = R (with 1 denoting the all-ones vector). In other words, Xi = θ + σiGi

where (Gi)i≤d ∼iid N(0, 1). (Here 〈u,v〉 =
∑m
i=1 uivi denotes the usual scalar product of u,v ∈ Rm.)

(a)

pθ =
1

(
∏d
i=1 σi

√
2π)n

exp{−
d∑
i=1

(
xi − θ
σi

)2

}

=
1

(
∏d
i=1 σi

√
2π)n

exp{
d∑
i=1

(
x2i
σ2
i

+
θ2

σ2
i

− 2θxi
σ2
i

)
}

=
1

(
∏d
i=1 σi

√
2π)n

exp{
d∑
i=1

x2i
σ2
i

}exp{
d∑
i=1

θ2

σ2
i

}exp{−2θ

d∑
i=1

xi
σ2
i

}

So, by Factorization theorem, l(x) = 〈c,x〉 is a sufficient statistic where c =
(

1
σ2
1
, ..., 1

σ2
d

)
(b) We use Rao-Blackwell theorem to do this problem.

First observe that 〈a,1〉 = 1, as

E(〈a,x〉 − θ)2 =V ar(〈a,x〉) + (Bias(〈a,x〉)2

= aTΣa+ θ2(〈a,1〉 − 1)2

So, if 〈a,1〉 6= 1, then we can not avoid having the corresponding minimum value as ∞.

Now, for any a such that 〈a,1〉 = 1, consider the Rao-Blackwell estimator E(〈a,x〉|〈c,x〉) correspond-
ing to the estimator 〈a,x〉, where we have used the sufficiency of 〈c,x〉.
By Rao-Blackwell theorem, the corresponding Rao-Blackwell estimator has lower risk.

So, it suffices to consider only the Rao-Blackwell estimators , i.e., we only to optimize among all
Rao-Blackwell estimators such that 〈a,1〉 = 1.

Let us find the explicit form of E(〈a,x〉|〈c,x〉).
Note, (

〈a,x〉
〈c,x〉

)
∼ N

[(
θ〈a,1〉
θ〈c,1〉

)
,

(
aTΣa aTΣc
aTΣc cTΣc

)]
Also note,

aTΣc = 〈a,1〉 = 1

cTΣc = 〈c,1〉

Using the expression for conditional mean for bivariate Normal, we have,

E(〈a,x〉|〈c,x〉) =
〈c,x〉
〈c,1〉

which is free of a, so it is the required optimal linear estimator.

[Remark: You can also go about the problem by first invoking Rao-Blackwell Theorem and then
observing that 〈a,1〉 = 1 or simply use Lagrangian Method for optimization].
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(c) Let X ∼ N(θ1,Σ), take Y = AX where A−1 is the square root of Σ, so Y ∼ N(θA1, I).

Let ai be the ith row sum of the matrix A.

It can be easily verified that the sufficient statistic is again of the form l(y) = 〈c,y〉, where c =
(a1, ..., ad).

Again following the same argument as in part b), we have the optimal linear estimator is 〈c,y〉
〈c,A1〉 =

〈c,Ax〉
〈c,A1〉 .
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