
Stat 300A Theory of Statistics

Homework 4
Andrea Montanari Due on October 24, 2018

• Solutions should be complete and concisely written. Please, use a separate sheet (or set of sheets) for
each problem.

• We will be using Gradescope (https://www.gradescope.com) for homework submission (you should
have received an invitation) - no paper homework will be accepted. Handwritten solutions are still fine
though, just make a good quality scan and upload it to Gradescope.

• You are welcome to discuss problems with your colleagues, but should write and submit your own
solution.

# 1: Small noise limit in the bounded normal mean model

Consider the normal mean model in one dimension Pθ = N(θ, σ2) with θ ∈ Θ = [−1, 1], and σ2 known and
square loss. Denote by RM(Θ;σ2) the corresponding minimax error. The objective of this homework is to
prove that

RM(Θ;σ2) = σ2 + o(σ2) . (1)

(In other words, we want to show that limσ→0RM(Θ;σ2)/σ2 = 1.)

(a) Prove that, for any σ2 > 0,

RM(Θ;σ2) ≤ σ2 . (2)

(b) Construct a sequence of priors Qσ indexed by σ > 0, and prove that

lim inf
σ→0

1

σ2
RB(Qσ) ≥ 1 . (3)

[Hint: Here are two possible choices for the prior Qσ (both allow to prove the claim, with sufficient work,
and you might be able to come up with better constructions). Choice #1: Take Qσ = Unif([−1, 1]) the
uniform distribution in [−1, 1]. Choice #2: Let v(σ) > 0, be such that v(σ) → 0 and v(σ)/σ2 → ∞,
as σ → 0. Than take Qσ to be the distribution of a N(0, v(σ)) random variable conditional to lie in
[−1, 1].]

(c) Conclude that the results above imply the claim (1).

# 2: A modified James-Stein estimator

Consider again the normal mean model in d dimensions Pθ = N(θ, I), θ ∈ Θ = Rd, with square loss. We
denote by 1 = (1, . . . , 1)T the all-ones vector in d dimensions, and define the modified James-Stein estimator

θ̂(x) = x1 +
(
1− h(‖x− x1‖22)

)
(x− x1) . (4)

where x = 〈x,1〉/d is the average of the entries of vector x.
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(a) Use SURE to give an expression for the risk of this estimator. Assume all the nice conditions required
to apply SURE.

(b) Specialize this expression to h(u) = C/u, for C a constant.

(c) Show that, for d ≥ 3, the constant C can be chosen in such a way that θ̂ dominates the unbiased

estimator θ̂u(x) = x.

(d) Provide an empirical Bayes interpretation of θ̂.

# 3: A regression problem with random designs

Let θ ∈ Θ ≡ {v ∈ Rd : ‖v‖2 = 1} and suppose you are given n i.i.d. data points (y1,x1), . . . (yn,xn),
where xi ∼ N(0, Id) and

yi = xT
i θ + wi , (5)

with wi ∼ N(0, σ2) independent of xi. We denote collectively the data by (y,X). We consider the action
space A = Rd, and the loss function

L(θ̂,θ) = ‖θ̂ − θ‖2 . (6)

(a) Show that, in order to construct a minimax estimator θ̂, you can assume without loss of generality

that θ̂ takes values in a closed ball Bd(R).

(b) Construct a least favorable prior Q∗.

(c) Write a formal expression for the minimax estimator.

(d) Upper bound the minimax risk by considering the estimator

θ̂(y,X) =
1

C(n)

n∑
i=1

yixi . (7)

Optimize the resulting bound by tuning the constant C(n).
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