1: A function denoising problem

Let θ be a discrete function sampled on a regular grid in $[0, 1]$. Namely, for $n \in \mathbb{N}$, we let $\varepsilon = 1/n$, and

$$\theta = (\theta(0), \theta(\varepsilon), \theta(2\varepsilon), \ldots, \theta((n-1)\varepsilon)) \in \mathbb{R}^n. \quad (1)$$

We observe noisy measurements of this function $y_k = \theta(k\varepsilon) + z_k$, where $(z_k)_{k \leq n} \sim_{iid} \mathcal{N}(0, \sigma^2)$, and are interested in estimating θ with respect to the normalized square loss $L(\hat{\theta}, \theta) = \|\hat{\theta} - \theta\|^2_2/n$.

We define the discrete derivative by letting $\Delta \theta(k\varepsilon) = [\theta((k+1)\varepsilon) - \theta(k\varepsilon)]/\varepsilon$ for $k \in \{0, \ldots, n-2\}$, and $\Delta \theta((n-1)\varepsilon) = [\theta(0) - \theta((n-1)\varepsilon)]/\varepsilon$ (periodic boundary conditions). We consider the following parameter class

$$\Theta(R,n) = \left\{ \theta : \sum_{k=0}^{n-1} \varepsilon (\Delta \theta(k\varepsilon))^2 \leq R \right\}. \quad (2)$$

(a) Give an expression for the linear minimax risk $R_L(\Theta(R,n))$.

[Hint: It might be convenient to use the discrete Fourier transform of θ.]

(b) Can you apply Pinsker’s theorem and show that the linear minimax risk is close to the overall minimax risk $R_M(\Theta(R,n))$? Justify your answer and state explicitly any eventual condition that you are imposing on R, n.

Solution

(a) Starting with this problem, we directly observe that we may write the constraint $\sum_{k=0}^{n-1} \varepsilon (\Delta \theta(k\varepsilon))^2$ in Ellipsoidal form

$$\theta^T \Lambda \theta \leq R/n$$

Here:

$$\Lambda = \begin{pmatrix}
2 & -1 & 0 & 0 & \cdots & 0 & -1 \\
-1 & 2 & -1 & 0 & \cdots & 0 & 0 \\
0 & -1 & 2 & -1 & \cdots & 0 & 0 \\
& & & & & & \\
& & & & & \vdots & \vdots & \cdots \\
-1 & 0 & 0 & 0 & \cdots & -1 & 2
\end{pmatrix}$$
To apply Pinsker’s result, we need to diagonalize A. To this end, first consider the DFT matrix $(U_{kl})_{0 \leq k,l \leq n-1}$ with $U_{kl} = \exp(-\frac{2\pi i kl}{n})$. Furthermore, recall the following properties: $U^*U = nI_n$, so that U/\sqrt{n} is unitary. We may check that U/\sqrt{n} diagonalizes A with eigenvalues $2(1 - \cos(2\pi j/n))$. More concretely:

\[
\begin{align*}
 n\|\theta_· - \theta_{·+1}\|^2 &= \|U\theta_· - U\theta_{·+1}\|^2 \\
 &= \|U\theta_· - \exp(2i\pi \cdot /n) \cdot U\theta_·\|^2 \\
 &= \sum_{k=0}^{n-1} |1 - \exp(2ik\pi/n)|^2 (U\theta_·)_{k}^2 \\
 &= \sum_{k=0}^{n-1} 2(1 - \cos(2\pi k/n))(U\theta_·)_{k}^2
\end{align*}
\]

Since the unitary matrix U/\sqrt{n} diagonalizes A, we note that there must exist also an orthogonal (real) matrix O which diagonalizes A and has the same eigenvalues. Furthermore, note that 1st column and row of U/\sqrt{n} just consists of entries $1/\sqrt{n}$, thus also the 1st row of O will consist of these entries. Thus upon mapping $y \mapsto \tilde{y} = Oy$, we observe that if we let $\tilde{\theta} = O\theta$, then $\tilde{y} \sim \mathcal{N}(\tilde{\theta}, \sigma^2)$. Furthermore the constraints turn into:

\[
\tilde{\theta}_0 = \sum_{i=0}^{n-1} \frac{1}{\sqrt{n}} \theta_i = 0
\]

and

\[
\sum_{k=0}^{n-1} 2(1 - \cos(2\pi k/n))\tilde{\theta}_k^2 \leq \frac{R}{n}
\]

Furthermore, since $\|\hat{\theta} - \theta\|^2 = \|O\hat{\theta} - O\theta\|^2$, we see that the transformed and the original estimation problems are equivalent and hence that their (linear) minimax risks must coincide. Also, since we know the first coordinate is 0, by a sufficiency argument we may discard the first observation \tilde{Y}_0 without loss of information and find ourselves in a $(n - 1)$-dimensional Gaussian problem with the following Ellipsoidal form:

\[
\tilde{Y} \sim \mathcal{N}(\tilde{\theta}, \sigma^2)
\]

\[
\tilde{\theta} \in \tilde{\Theta} = \{\tilde{\theta} \in \mathbb{R}^{n-1}: \tilde{\theta}^\top \tilde{A}\tilde{\theta} \leq 1\}
\]

Here $\tilde{A} = \text{Diag}(\tilde{a}_1^2, \ldots, \tilde{a}_{n-1}^2)$ and $\tilde{a}_j = \sqrt{\frac{2R}{n}}(1 - \cos(2\pi j/n))$

We are finally ready to apply Theorem 4.1 from the notes to get (the notes gives us the linear minimax risk for the unnormalized loss so we further divide by n):

\[
R_L(\theta) = \frac{1}{n} \inf_{\lambda \geq 0} \left\{ \lambda^2 + \sigma^2 \sum_{i=1}^{n-1} (1 - \lambda \tilde{a}_j)_+^2 \right\}
\]

The minimum is achieved at the unique solution of:
\[\lambda = \sigma^2 \sum_{j=1}^{n-1} \tilde{a}_j (1 - \lambda \tilde{a}_j)_+ \]

Let us now get a bit more insight into this expression, i.e. what is the minimax rate ignoring constants? We will write \(\asymp \) to denote “rate equality”, i.e. we will write \(a_n \asymp b_n \) to mean \(0 < \lim \inf a_n/b_n \leq \lim \sup a_n/b_n < \infty \).

First let us note that (for \(j \) small enough so that the first order Taylor expansion of \(1 - \cos(x) \approx x^2/2 \) is accurate):

\[\tilde{a}_j \asymp \frac{j}{n^{1/2}R^{1/2}} \]

So with \(\lambda := \lambda(k) \asymp \frac{n^{1/2} R^{1/2}}{k} \) we would get the equality:

\[\frac{n^{1/2} R^{1/2}}{k} \asymp \sigma^2 \sum_{j=1}^{k} \frac{j}{n^{1/2} R^{1/2}} \asymp \frac{\sigma^2}{n^{1/2} R^{1/2}} k^2 \]

Solve for \(k \) to get:

\[k^3 \asymp \frac{n R \sigma^2}{\sigma^2}, \text{ i.e. } k_* \asymp \frac{n^{1/3} R^{1/3}}{\sigma^{2/3}} \]

So the optimal \(\lambda_* \) satisfies:

\[\lambda_* \asymp \sigma^{2/3} n^{1/6} R^{1/6} \]

Finally we get the affine minimax risk:

\[R_L(\Theta) \asymp \sigma^4 R^{1/3} n^{-2/3} \]

In particular, we recover the rate for the nonparametric regression problem over first-order Sobolev ellipsoids (for fixed \(R \)).

(b) Directly applying Pinsker’s theorem (Theorem 4.2), recalling that here we are dealing with a normalized loss, we get that for any \(\varepsilon < 1/2 \) we have (for a universal constant \(c_0 \)) that:

\[R_M \leq R_L \leq (1 + c_0 \varepsilon) R_M + \frac{c_0}{n} \delta(\varepsilon) \]

Here:

\[\delta(\varepsilon) = \tilde{a}_{\min}^{-2} \exp(-\Lambda_* \varepsilon^2 / 64) \]

\[\Lambda_* = \frac{\lambda_* / \sigma^2}{\max_{1 \leq i \leq (n-1)} \tilde{a}_i (1 - \lambda_* \tilde{a}_i)_+} \]

Note:

\[\tilde{a}_{\min} \asymp \frac{1}{n^{1/2} R^{1/2}} \]
Hence we may bound the additive term as:

\[C_1 R \]

Note that if we can make the additive term \(o(R_L) \), we will get \(R_M / R_L \to 1 \). One way to achieve this is (taking \(\varepsilon \to 0 \)) to require that \(R = o(R_L) \) or in other words \(R = o(e^{4/3} R^{1/3} n^{-2/3}) \), i.e. \(R = o(n^{-1} \sigma^2) \). For such shrinking radius \(R \) thus Pinsker gives that linear minimax and minimax risks are the same asymptotically.

Remark: Instead of considering a regime of shrinking radius, the same result also holds in a regime of \(R \gg n \), where the radius \(R \) increases at some appropriate rate compared to the sample size \(n \). Both results are not that surprising given that we know that in the 1-dimensional bounded normal mean model in which \(Z \sim \mathcal{N}(\mu, 1) \), \(\mu \in [-\tau, \tau] \), the minimax risk and affine minimax risk are the same both in the regime where \(\tau \to 0 \) and \(\tau \to \infty \).

2: A simple application of Le Cam’s method

Let \(f : \mathbb{R}^d \to \mathbb{R} \) be a differentiable probability density function, and assume that there exists another density function \(g : \mathbb{R}^d \to \mathbb{R} \), and a constant \(M \) such that, for all \(x \in \mathbb{R}^d \)

\[\| \nabla f(x) \|_2 \leq M g(x). \quad (3) \]

We will denote by \(P_\theta \) the probability distribution of \(X = \theta + W \) where \(W \sim f(\cdot) \) is noise with density \(f \).

(a) Prove that, for any \(\theta_1, \theta_2 \in \mathbb{R}^d \),

\[\| P_{\theta_1} - P_{\theta_2} \|_{TV} \leq \frac{M}{2} \| \theta_1 - \theta_2 \|_2. \quad (4) \]

(b) Consider the problem of estimating \(\theta \in \Theta \equiv \mathbb{R}^d \) from data \(X \sim P_\theta \) under the square loss \(L(\hat{\theta}, \theta) = \| \hat{\theta} - \theta \|_2^2 \). Use the previous result to derive a lower bound on the minimax risk.

[Hint: It is sufficient to consider two priors \(Q_1, Q_2 \) given by Dirac’s deltas.]

(c) Apply this lower bound to the case of Gaussian noise, namely to the case of \(f \) the density of the Gaussian distribution \(\mathcal{N}(0, \sigma^2 I_d) \). How does the result compare with the actual minimax risk?

Solution:

(a) We first note that \(P_\theta \) has a density w.r.t. Lebesgue measure, namely \(f_\theta(x) = f(x - \theta) \) (i.e. we are dealing with a location family problem). Therefore:

...
\[\|P_{\theta_1} - P_{\theta_2}\|_{TV} = \frac{1}{2} \int_{\mathbb{R}^d} |f_{\theta_1}(x) - f_{\theta_2}(x)| dx \]
\[= \frac{1}{2} \int_{\mathbb{R}^d} |f(x - \theta_1) - f(x - \theta_2)| dx \]
\[= \frac{1}{2} \int_{\mathbb{R}^d} \int_0^1 \frac{d}{dt} f(x - \theta_1 + t(\theta_1 - \theta_2)) dt dx \]
\[= \frac{1}{2} \int_{\mathbb{R}^d} \int_0^1 \nabla f(x - \theta_1 + t(\theta_1 - \theta_2))^T (\theta_2 - \theta_1) dt dx \]
\[\leq \frac{1}{2} \int_{\mathbb{R}^d} \int_0^1 \nabla f(x - \theta_1 + t(\theta_1 - \theta_2)) \|\theta_2 - \theta_1\| dt dx \]
\[\leq \frac{\|\theta_2 - \theta_1\|}{2} \int_{\mathbb{R}^d} \int_0^1 Mg(x - \theta_1 + t(\theta_1 - \theta_2)) dt dx \]
\[= \frac{M}{2} \|\theta_2 - \theta_1\| \] (by Fubini’s theorem)

(b) We will directly apply Le Cam’s Lemma. To this end, first note that for any \(a \in \mathbb{R}^d \) we have that:
\[||a - \theta_1||^2 + ||a - \theta_2||^2 \geq \frac{1}{2} ||\theta_1 - \theta_2||^2 \]
In other words we may take \(d(\theta_1, \theta_2) = \frac{1}{2} ||\theta_1 - \theta_2||^2 \). We want this to be \(\geq 2\delta \).
Hence let us set \(\delta = \frac{1}{4} ||\theta_1 - \theta_2||^2 \), where we will choose these parameters later.
Then:
\[1 - \|P_{\theta_1} - P_{\theta_2}\|_{TV} \geq 1 - \frac{M}{2} ||\theta_1 - \theta_2||_2 \]
Le Cam gives the lower bound:
\[\geq \frac{||\theta_1 - \theta_2||^2}{8} \left(1 - \frac{M}{2} ||\theta_1 - \theta_2||_2 \right) \]
Plugging in \(||\theta_1 - \theta_2|| = \frac{4}{3M} \) we get the lower bound \(\frac{2}{27M^2} \).

(c)
\[||\nabla f(x)|| = \frac{||x||}{\sigma^2(2\pi\sigma^2)^{d/2}} e^{-1/(2\sigma^2)||x||^2} \]
The r.h.s. has finite integral. Letting \(Z \sim N(0, I_d) \), the desired bound holds with
\[M^{-1} = \int \frac{||x||}{\sigma^2(2\pi\sigma^2)^{d/2}} e^{-1/(2\sigma^2)||x||^2} dx = \frac{1}{\sigma} E[||Z||] \] (5)
We know \(E[||Z||] \approx \sqrt{d} \), so plugging this into the expression from the previous part gives:
\[R_b(Q) \geq \frac{2\sigma^2 (E[||Z||]^2)}{27} \approx \frac{2\sigma^2}{27d} \]
The minimax risk in the problem is \(R_m = \sigma^2 d \), so our argument recovers the correct dependence in \(\sigma^2 \) but not in \(d \).
3: Some properties of distances between distributions

(a) Let $P = P_1 \times P_2 \times \cdots \times P_n$ and $Q = Q_1 \times Q_2 \times \cdots \times Q_n$ be two product-form distributions (where, for each $i \leq n$, P_i, Q_i are probability measures on the same space \mathcal{X}_i). Show that

$$\|P - Q\|_{TV} \leq \sum_{i=1}^{n} \|P_i - Q_i\|_{TV}.$$ \hspace{1cm} (6)

[Hint: Start with $n = 2$. It is fine to assume that the \mathcal{X}_i’s are finite sets.]

(b) Prove that there cannot be a reverse Pinsker inequality. Namely, there does not exist any function $f : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ with $f(t) > 0$ for $t > 0$ such that, for any two distributions P, Q,

$$D(P\|Q) \leq f(\|P - Q\|_{TV}).$$ \hspace{1cm} (7)

(c) Assume that P and Q are probability distributions over a finite set \mathcal{X}, with probability mass functions p, q, and assume $q(x) \geq q_{\text{min}} > 0$ for all $x \in \mathcal{X}$. Prove that there exists $g : \mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ with $g(t, s) > 0$ for $t, s > 0$ such that, for any two probability mass functions p, q, we have

$$D(P\|Q) \leq g(\|P - Q\|_{TV}, q_{\text{min}}).$$ \hspace{1cm} (8)

We would like the function g to be such that $\lim_{z \to 0} g(z; q_{\text{min}}) = 0$ for any $q_{\text{min}} > 0$. Give an explicit expression for the function g.

[Hint: Write $D(P\|Q) = \mathbb{E}_Q(X \log X - X + 1)$, for $X = \frac{dP}{dQ}$.]

Solution:

(a) Consider the case where $X_1 \in \mathcal{X}_1, X_2 \in \mathcal{X}_2$ where \mathcal{X}_i are finite sets. We will show the result in the case where $n = 2$, the general case follows by induction.

$$\|P - Q\|_{TV} = \frac{1}{2} \sum_{x_1 \in \mathcal{X}_1, x_2 \in \mathcal{X}_2} |p_1(x_1)p_2(x_2) - q_1(x_1)q_2(x_2)|$$

$$= \frac{1}{2} \sum_{x_1 \in \mathcal{X}_1, x_2 \in \mathcal{X}_2} |(p_1(x_1) - q_1(x_1))p_2(x_2) + (q_2(x_2) - p_2(x_2))q_1(x_1)|$$

$$\leq \frac{1}{2} \sum_{x_1 \in \mathcal{X}_1, x_2 \in \mathcal{X}_2} |p_1(x_1) - q_1(x_1)|p_2(x_2) + |q_2(x_2) - p_2(x_2)|q_1(x_1)$$

$$= \|P_1 - Q_1\|_{TV} + \|P_2 - Q_2\|_{TV}$$

(b) To show this it suffices to argue that for any $v > 0$, there exist P, Q with $\|P - Q\|_{TV} = v$ but $D(P\|Q) = \infty$. Consider $\mathcal{X} = \{1, 2, 3\}$. Let $P = v\delta_1 + (1 - v)\delta_2$ and $Q = v\delta_3 + (1 - v)\delta_2$ so that $\|P - Q\|_{TV} = v$. But $D(P\|Q) = \infty$ because $Q(1) = 0$ and hence $\sum_{x \in \mathcal{X}} P(x) \log \left(\frac{P(x)}{Q(x)}\right) = \infty$.

(c) With $X = \frac{dP}{dQ}$, and using the hint, we write the KL divergence as
\[D(P||Q) = \mathbb{E}_Q(X \log X - X + 1) \]
\[\leq \mathbb{E}_Q(X(X - 1) - X + 1) \]
\[= \mathbb{E}_Q(X^2) - 2\mathbb{E}_Q(X) + 1 \]
\[= \mathbb{E}_Q(X^2) - 1 \]
\[= \sum_{x \in \mathcal{X}} \left(\frac{p(x_i)}{q(x_i)} \right)^2 q(x_i) - 1 \]
\[= \sum_{x \in \mathcal{X}} \left(\frac{(p(x_i) - q(x_i))^2}{q(x_i)} \right) \]
\[\leq \frac{1}{q_{\min}} \sum_{x \in \mathcal{X}} (p(x_i) - q(x_i))^2 \]
\[\leq \frac{1}{q_{\min}} \left(\sum_{x \in \mathcal{X}} |p(x_i) - q(x_i)| \right)^2 \]
\[= 4\|P - Q\|_{TV}^2 \]

Thus we may choose \(g(t, s) = \frac{4t^2}{s} \) for \(t, s > 0 \).

References