Stat 310A/Math 230A Theory of Probability

Practice Final Solutions

Andrea Montanari December 3, 2019

Problem 1

Let $\Omega = \{0,1\}^{\mathbb{N}}$ be the space of infinite binary sequences $\omega = (\omega_1, \omega_2, \omega_3, \dots)$, and, for $a \leq b$, write ω_a^b for the vector $(\omega_a, \omega_{a+1}, \ldots, \omega_b)$. Let F the σ -algebra gnerated by cylindrical sets

$$
C_{\ell,\xi} = \left\{ \omega \in \Omega \, : \, \omega_1^{\ell} = \xi_1^{\ell} \right\},\tag{1}
$$

for $\ell \in \mathbb{N}, \xi \in \Omega$. Let P be the product measure over (Ω, \mathcal{F}) , defined by

$$
\mathbb{P}(C_{\ell,\xi}) = \prod_{i=1}^{\ell} p(\xi_i), \qquad (2)
$$

where $p(1) = 1 - p(0) = p \in (0, 1)$. Define, for $\lambda \in (0, 1/2]$

$$
X(\omega) \equiv \sum_{i=1}^{\infty} \omega_i \,\lambda^{i-1} \,, \tag{3}
$$

and let \mathcal{P}_X be its law.

(a) Prove that, for $\lambda = 1/2$ and any $0 < x_1 < x_2 < 2$, $\mathcal{P}_X((x_1, x_2)) > 0$. What happens if $\lambda \in (0, 1/2)$?

Solution : Assume, without loss of generality $|x_2 - x_1| \geq 2^{-n+1}$. Then there exists an integer $k \in \mathbb{Z}$ $\{1, \ldots, 2^n - 1\}$, such that $x_1 < k \cdot 2^{-n} < (k+1)2^{-n} < x_2$. Of course

$$
\mathcal{P}_X((x_1, x_2)) \ge \mathbb{P}(k \cdot 2^{-n} \le X(\omega) \le (k+1)2^{-n}). \tag{4}
$$

The integer k admits the unique binary expansion $k = \sum_{i=1}^{n} k_i 2^{n-i}$. Then

$$
\mathbb{P}(k \cdot 2^{-n} \le X(\omega) \le (k+1)2^{-n}) = \mathbb{P}(C_{n,(k_1,\dots,k_n)}) = p^{n_1(k)}(1-p)^{n_0(k)},
$$
\n(5)

with $n_0(k)$ and $n_1(k)$ the number of zeros and ones in (k_1, \ldots, k_n) . For $p \in (0,1)$ the above probability is strictly positive.

For $\lambda \in (0, 1/2)$, we have

$$
X(\omega) \le \sum_{i=1}^{\infty} \lambda^{i-1} = \frac{1}{1-\lambda} < 2. \tag{6}
$$

Hence we have $\mathcal{P}_X((x_1, x_2)) = 0$ if $x_1 > (1 - \lambda)^{-1}$.

(b) Prove that, for $\lambda \in (0, 1/2)$, \mathcal{P}_X does not have atoms. What happens if $\lambda = 1/2$? [Recall that an atom is a Borel set $A \subseteq \mathbb{R}$ such that $\mathcal{P}_X(A) > 0$ and, for any Borel set $B \subseteq A$, $\mathcal{P}_X(B) = 0$ or $\mathcal{P}_X(B) = \mathcal{P}_X(A).$

Solution : For $n \geq 1$, define

$$
X_n(\omega) \equiv \sum_{i=1}^{n-1} \omega_i \lambda^i.
$$
 (7)

Obviously $X_n(\omega) \le X(\omega) \le X_n(\omega) + (1 - \lambda)^{-1} \lambda^n$, whence, for any interval $[a, b) \subseteq \mathbb{R}$

$$
\mathbb{P}\{X(\omega) \in [a,b)\} \le \mathbb{P}\{X_n(\omega) \in [a-\delta_n, b)\},\tag{8}
$$

with $\delta_n \equiv (1 - \lambda)^{-1} \lambda^n \leq 2\lambda^n$. In particular,

$$
\mathbb{P}\{X(\omega) \in [a, a + \lambda^n)\} \le \mathbb{P}\{X_n(\omega) \in [a - 2\lambda^n, a + \lambda^n)\}.
$$
\n(9)

For $n \in \mathbb{N}$ and $a \in \mathbb{R}$, let $J_n(a) \equiv [a, a + C\lambda^n)$, with $C = (1 - 2\lambda)/(1 - \lambda) > 0$. If for any $\omega \in \Omega$, $X(\omega) \notin J_n(a)$, then $\mathbb{P}\{X(\omega) \in J_n(a)\} = 0$. Assume therefore, that there is at least one ralization $\omega^* =$ $(\omega_1^*,\ldots,\omega_n^*,\ldots)$ such that $X_n(\omega^*)\in J_n(\lambda)$. For any $\omega\neq\omega_*$, let $k=k(\omega)$ be the smallest index such that $\omega_k^* \neq \omega_k$. Then

$$
|X(\omega) - X(\omega^*)| \ge \lambda^k - \sum_{l=k+1}^{\infty} \lambda^l = C(\lambda) \lambda^k.
$$
 (10)

Therefore $X(\omega) \in J_n(a)$ only if the first n coordinates of ω coincide with those of ω^* , i.e.

$$
\mathbb{P}\{X(\omega) \in J_n(a)\} \le \mathbb{P}\{\omega_1 = \omega_1^*, \dots, \omega_n = \omega_n^*\} \le \max(p, 1-p)^n. \tag{11}
$$

As a consequence, for any $\varepsilon > 0$ we can find $\delta = \delta(\varepsilon) > 0$ such that $\mathbb{P}\{X_n(\omega) \in [a, a + \delta(\varepsilon))\} \leq \varepsilon$.

This immediately implies that \mathcal{P}_X does not have atoms. Indeed, assume this is not the case and let S be such an atom, with $\mathcal{P}_X(S) = 2\varepsilon$. Obviously $S \subseteq [0,2]$. Partition the interval $[0,2]$ into intervals J_1, J_2, \ldots, J_M of length $\delta(\varepsilon)$. Then $\mathcal{P}_X(J_i \cap S) > 0$ for at least one interval i. On the other hand $\mathcal{P}_X(J_i \cap S) \leq \mathcal{P}_X(J_i) \leq \varepsilon$.

For the case $\lambda = 1/2$, the claim follows by proving that X is uniformly random in the interval [0, 2). This in turn follows by checking that $\mathbb{P}(X \in [i/2^n, (i+1)/2^n)) = 1/2^{n+1}$, for all $n \geq 1$, and $i \in \{0, \ldots, 2^{n+1}-1\}$.

Problem 2

Let Ω be the space of functions $\omega : [0,1] \to \mathbb{R}$, and, for each $t \in [0,1]$, define $X_t(\omega) = \omega(t)$. Let $\mathcal{F} \equiv$ $\sigma({X_t}_{t\in[0,1]})$ be the smallest σ -algebra such that X_t is measurable for each $t \in [0,1]$.

Also, for any $S \subseteq [0,1]$, le $\mathcal{F}_S \equiv \sigma(\{X_t\}_{t\in S})$ be the smallest σ -algebra such that X_t is measurable for each $t \in S.$

(a) Prove that

$$
\mathcal{F} = \bigcup_{S \text{ countable}} \mathcal{F}_S \,. \tag{12}
$$

Solution: Let $\mathcal{A} \equiv \bigcup_{S \text{ countable}} \mathcal{F}_S$. It is clear that X_t is measurable on \mathcal{A} for each $t \in [0,1]$. Indeed, \mathcal{A} contains in particular $\mathcal{F}_{\{t\}} = \sigma(X_t)$.

Further $A \subseteq \mathcal{F}$, since $\mathcal{F}_S \subseteq \mathcal{F}$ for each $S \subseteq [0,1]$ (indeed \mathcal{F}_S is the minimal σ algebra such that X_t is measurable for each $t \in S$).

The claim follows if we show that A is a σ -algebra. Let $B \in \mathcal{A}$. Then $B \in \mathcal{F}_S$ for some S countable, whence $B^c \in \mathcal{F}_S$ (because \mathcal{F}_S is a σ -algebra) and thus $B^c \in \mathcal{A}$. Therefore \mathcal{A} is closed under complements.

Let ${B_i}_{i\in\mathbb{N}}$ be a countable collection in A. Then there exist countable sets $S_i \subseteq [0,1]$ such that $B_i \in \mathcal{F}_{S_i}$ for each *i*. In particular $B_i \in \mathcal{F}_S$ with $S = \bigcup_{i=1}^{\infty} S_i$. Let $B \equiv \bigcup_{i=1}^{\infty} B_i$. By the σ -algebra property, $B \in \mathcal{F}_S$ as well. But S is countable (countable union of countable sets), whence $B \in \mathcal{A}$.

(b) Show that, for any random variable Z on (Ω, \mathcal{F}) there exists S countable such that Z is measurable on $(\Omega, \mathcal{F}_S).$

Solution: Let $\mathbb{Q} = \{q_1, q_2, q_3, \dots\}$ be an ordering of the rationals. By point (a) above, for each i, there exist S_i countable, such that the set $B_i = \{ \omega : Z(\omega) \le q_i \}$ is in in \mathcal{F}_{S_i} . As a consequence for each $i, B_i \in \mathcal{F}_S$ with $S \equiv \bigcup_{i=1}^{\infty} S_i$. This imply that $\{Z^{-1}((-\infty, q]) : q \in \mathbb{Q}\} \subseteq \mathcal{F}_S$. Since $\mathcal{P} = \{(-\infty, q] : q \in \mathbb{Q}\}$ is a π system which generates the Borel σ -algebra, the thesis follows.

(c) Define

$$
Z(\omega) = \sup_{t \in [0,1]} X_t(\omega). \tag{13}
$$

Is Z measurable on (Ω, \mathcal{F}) ?

Solution: No, it is not measurable. Indeed, assume by contradiction that it is measrable. Then by point (b) above, there exist S countable such that Z is measurable on \mathcal{F}_S . Consider the set $B = {\omega : Z(\omega) \le 0},$ and let ω_1, ω_2 be two functions such that $\omega_1(t) = \omega_2(t) \leq 0$ for all $t \in S$ and $\sup_{t \in [0,1]} \omega_1(t) > 0$ $\sup_{t\in[0,1]}\omega_2(t)$. Then of course $\omega_1 \notin B$, $\omega_2(t)$. On the other hand, for any $A\in\mathcal{F}_S$ either $\omega_1,\omega_2\in S$ or ω_1, ω_2 *inS*, which leads to a contradiction. (The last claim follows from Problem 2 in the midterm.)

Problem 3

Let S^{d-1} be the unit sphere in \mathbb{R}^d :

$$
S^{d-1} = \{x \in \mathbb{R}^d : ||x|| = 1\}.
$$
\n(14)

The sphere S^{d-1} can be given the topology induced by \mathbb{R}^d . More precisely $A \subseteq S^{d-1}$ is open if for any $x \in A$, there exists $\varepsilon > 0$ such that $\{y \in S^{d-1} : ||x - y|| \le \varepsilon\} \subseteq A$.

Let $\mathcal{B}(S^{d-1})$ be the corresponding Borel σ -algebra. For any $A \in \mathcal{B}(S^{d-1})$, define

$$
\Gamma(A) = \{ rx : r \in [0, 1], x \in A \},\tag{15}
$$

(a) Show that, for any $A \in \mathcal{B}(S^{d-1}), \Gamma(A) \in \mathcal{B}(\mathbb{R}^d)$.

Solution: For $\varepsilon > 0$, let $\Gamma_{\varepsilon}(A) \equiv \{ rx : r \in (\varepsilon, 1], x \in A \}$. Then $\Gamma_{\varepsilon}(A) = f_{\varepsilon}^{-1}(A)$, for the continuous mapping $f_{\varepsilon}: \{x \in \mathbb{R}^d : \varepsilon \leq ||x|| \leq 1\} \to S^{d-1}, x \mapsto x/||x||$. Since counterimages of Borel sets under continuous mappings are Borel, we have $\Gamma_{\varepsilon}(A) \in \mathcal{B}(\mathbb{R}^d)$. The thesis follows since

$$
\Gamma(A) = \bigcup_{n=1}^{\infty} \Gamma_{1/n}(A) \cup \{0\}.
$$
 (16)

(b) Let λ_d be the Lebesgue measure on \mathbb{R}^d , and define, for $A \in \mathcal{B}(S^{d-1})$,

$$
\mu(A) = d\lambda_d(\Gamma(A)).\tag{17}
$$

Prove that μ is a finite measure on $(S^{d-1}, \mathcal{B}(S^{d-1}))$.

Solution: Obviously μ is a non-negative set function, with $\mu(\emptyset) = d\lambda_d(\emptyset) = 0$. If $\{A_i\}_{i \in \mathbb{N}} \subseteq \mathcal{B}(S^{d-1})$ is a disjoint collection than ${B_i}_{i \in \mathbb{N}} \subseteq \mathcal{B}(\mathbb{R}^d)$ are also disjoint with $B_i = \Gamma(A_i) \setminus \{0\}$. Further $\Gamma(\cup_i A_i) = \cup_i \Gamma(A_i)$. Therefore, since $\lambda_d(\{0\})=0$, we have

$$
\mu(\cup_{i\geq 1} A_i) = d\lambda_d(\cup_{i\geq 1} \Gamma(A_i)) = d\lambda_d(\cup_{i\geq 1} B_i) = \sum_{i\geq 1} d\lambda_d(B_i) = \sum_{i\geq 1} d\lambda_d(\Gamma(A_i)) = \sum_{i\geq 1} \mu(A_i),\tag{18}
$$

i.e. μ is countably additive, hence a measure.

Finally $\mu(S^{d-1}) = d\lambda_d(\{x : ||x|| \le 1\}) \le d\lambda_d(\{x : \max_i |x_i| \le 1\}) = d2^d$. Therefore μ is finite.

(c) For $A \in \mathcal{B}(S^{d-1})$ and $0 \le a \le b$, define the set $C_{a,b}(A) \in \mathcal{B}(\mathbb{R}^d)$ as $C_{a,b}(A) = \{rx : a < r \le bx \in A\}$. Prove that

$$
\lambda_d(C_{a,b}(A)) = \frac{b^d - a^d}{d} \mu(A).
$$
\n(19)

[Hint: Use the fact that, for $\gamma > 0$ and $B \in \mathcal{B}(\mathbb{R}^d)$, $\lambda_d(\gamma B) = \gamma^d \lambda_d(B)$ (with γB the set obtained by 'dilating' B by a factor γ).]

Solution: First consider the case $b = 1$, $a/b = \alpha < 1$. Using the definition of $\Gamma_{\varepsilon}(A)$ in point (a), we have $\Gamma_0(A) = \bigcup_{i=0}^{\infty} C_{\alpha^{i+1},\alpha^{i}}(A)$. Since the union is disjoint, and $\lambda_d(\{0\}) = 0$, we have

$$
\mu(A) = d\lambda_d(\Gamma_0(A)) = \sum_{i=0}^{\infty} d\lambda_d(C_{\alpha^{i+1},\alpha^i}(A)) = \sum_{i=0}^{\infty} d\alpha^{id}\lambda_d(C_{\alpha,1}(A)) = \frac{1}{1 - \alpha^d} d\lambda_d(C_{\alpha,1}(A)).
$$
 (20)

For $b \neq 1$, it is sufficient to use $\lambda_d(C_{a,b}(A)) = b^d \lambda_d(C_{\alpha,1}(A))$ for $\alpha = a/b$.

(d) Deduce that, for any $B \in \mathcal{B}(\mathbb{R}^d)$,

$$
\lambda_d(B) = \int_0^\infty \int_{S^{d-1}} \mathbb{I}(rx \in B) \ r^{d-1} \ d\mu(x) dr \,. \tag{21}
$$

Solution: We can assume $0 \notin B$, since both sides are modified by a vanishing term. Let $\omega(B)$ be the quantity defined on the right hand side of Eq. [\(21\)](#page-3-0). Notice, by Fubini, that $\omega(B)$ is the integral of the simple function $\mathbb{I}(rx \in B)$ under the product measure $\mu \times \lambda_1$ on $S^{d-1} \times (0, \infty)$. Therefore ω is a measure on $\mathcal{B}(\mathbb{R}^d)$. Further, both λ_d and ω are σ -finite (it is sufficient to consider the sets $B_n \equiv \{x : ||x|| \le n\} \uparrow \mathbb{R}^d$. Finally, by point (c) above

$$
\lambda_d(C_{a,b}(A)) = \omega(C_{a,b}(A)),\tag{22}
$$

for any $a < b$, $A \in \mathcal{B}(S^{d-1})$. The thesis follows by showing that $\mathcal{P} = \{C_{a,b}(A): a < b, A \in \mathcal{B}(S^{d-1})\}$ is a π -system (this is obvious) that generates $\mathcal{B}(\mathbb{R}^d)$.

There are many ways of proving the last claim. One is the following. First define, for $A \in \mathcal{B}(S^{d-1})$,

$$
D_{a,b}(A) = \{ rx : a < r < b \, x \in A \}. \tag{23}
$$

It is clear that $D_{a,b}(A)$ can be constructed by finite intersections and unions of sets $\{C_{a,b}(A)\}$. Consider next any open set $Q \subseteq \mathbb{R}^d$. We want to show that it is a countable union of sets $\{D_{a,b}(A)\}$ with A relatively

open in S^{d-1} . Without loss of generality we can assume $0 \notin Q$ and $Q \subseteq H_{\varepsilon}$ with $H_{\varepsilon} \equiv \{x \in \mathbb{R}^d : x_1 \geq \varepsilon\}$ an half space. Let $\psi: H_{\varepsilon} \to \mathbb{R}^d$ be the mapping

$$
\psi(x_1, \ldots, x_d) = (r(x), x_2/r(x), \ldots, x_d/r(x)), \qquad (24)
$$

$$
r(x) \equiv \sqrt{x_1^2 + x_2^2 + \dots + x_d^2}, \tag{25}
$$

which is differentiable together with its inverse on $\psi(H_{\varepsilon})$. The set $\psi(Q)$ is open in \mathbb{R}^{d} . Therefore

$$
\psi(Q) = \bigcup_{i=1}^{\infty} R_i \,,\tag{26}
$$

with the R_i 's open rectangles in \mathbb{R}^d (because rectangles generate the Borel σ -algebra). Therefore

$$
Q = \bigcup_{i=1}^{\infty} \psi^{-1}(R_i), \qquad (27)
$$

but $\psi^{-1}(R_i) = D_{a_i,b_i}(A_i)$ for some a_i, b_i, A_i .

Problem 4

Consider the probability space $(\Omega, \mathcal{F}, \mathbb{P})$, with $\Omega = \{A, B, C, \ldots, Z\}^{\mathbb{N}}$ the space of infinite strings of capital letters from the english alphabet (it might be useful to recall that there are 26 such letters). Further, let F be the σ -algebra generated by cylindrical sets (i.e. sets of the form $C_{\ell,a} = {\omega = (\omega_1, \omega_2, \dots) : \omega_1 = \omega_2}$ $a_1, \ldots, \omega_\ell = a_\ell$ for some $\ell \in \mathbb{N}$ and some sequence of letters $a = (a_1, \ldots, a_\ell)$, and \mathbb{P} the uniform measure, defined by

$$
\mathbb{P}(C_{\ell,a}) \equiv \frac{1}{26^{\ell}}.
$$
\n(28)

For any $\omega \in \Omega$ and $N \in \mathbb{N}$, let $Z_N(\omega)$ be the number of occurrences of the word PROBABILITY in $(\omega_1, \ldots, \omega_N).$

(a) Show that Z_N is indeed a random variable (i.e. it is measurable on (Ω, \mathcal{F})).

Solution: Let $X_n(\omega)$ be the indicator on the event

 ${\omega_{n-10} = \mathcal{P}, \omega_{n-9} = \mathcal{R}, \omega_{n-8} = \mathcal{O}, \omega_{n-7} = \mathcal{B}, \omega_{n-6} = \mathcal{A}, \omega_{n-5} = \mathcal{B}, \omega_{n-4} = \mathcal{I}, \omega_{n-3} = \mathcal{L}, \omega_{n-2} = \mathcal{I}, \omega_{n-1} = \mathcal{T}, \omega_n = \mathcal{Y}},$

with, by convention $X_n(\omega) = 0$ for $n \leq 10$. Clearly, X_n is an indicator on finite union of cylinder sets, hence it is measurable. Further

$$
Z_N(\omega) = \sum_{n=1}^N X_n(\omega), \qquad (29)
$$

whence Z_N is also measurable.

(b) Show that the limit $\lim_{N\to\infty} \mathbb{E}[Z_N]/N$ exists, and compute it. Call the result m.

Solution : By independence, we have, for any $n > 10$, $\mathbb{E}[X_n] = 1/26^{11}$. Therefore $\mathbb{E}[Z_N] = (N-10)/26^{11}$, which immediately implies the thesis with $a = 1/26^{11}$.

(c) Prove that Z_N satisfies the law of large numbers, i.e. that

$$
\mathbb{P}\left\{\lim_{N\to\infty}\frac{Z_N(\omega)}{N}=a\right\}=1.
$$
\n(30)

Solution : Let $Y_n \equiv X_n - a$. Then,

$$
\mathbb{E}\left\{\left(\frac{Z_N}{N} - a\right)^4\right\} = \frac{1}{N^4} \sum_{i,j,k,l=11}^N \mathbb{E}\{Y_i Y_j Y_k Y_l\} \le \frac{24}{N^4} \sum_{11 \le i \le j \le k \le l \le N}^N |\mathbb{E}\{Y_i Y_j Y_k Y_l\}|. \tag{31}
$$

Notice that $\mathbb{E}(Y_i) = 0$, $|Y_i| \leq 1$ and Y_i is independendent from Y_j, Y_k, Y_l unless $j - i \leq 10$. Analogously Y_l is independendent from Y_i, Y_j, Y_k unless $l - k \leq 10$. Therefore

$$
\mathbb{E}\left\{\left(\frac{Z_N}{N} - a\right)^4\right\} \le \frac{24}{N^4} \sum_{11 \le i \le j \le k \le l \le N} \mathbb{I}(j - i \le 10)\mathbb{I}(l - k \le 10) \le \frac{24 \cdot 11^2}{N^4} \sum_{1 \le j \le k \le N} 1 \le \frac{2000}{N^2}.
$$
 (32)

By Markov inequality for any $\varepsilon > 0$, $\mathbb{P}\{|Z_N/N - a| \geq \varepsilon\} \leq C(\varepsilon)/N^2$. Applying Borel-Cantelli I we obtain the desired result.

(d) Show that Z_N satisfies the following central limit theorem

$$
\lim_{N \to \infty} \mathbb{P}\left\{\frac{Z_N(\omega) - Nm}{b\sqrt{N}} \le z\right\} = F_G(z).
$$
\n(33)

for some $b \in \mathbb{R}$ and all $z \in \mathbb{R}$. Here $F_G(z) = \mathbb{P}\{Y \leq z\}$ is the distribution function of a standard normal random variable Y. [Hint: Partition the string $(\omega_1 \dots \omega_N)$ into blocks.]

Solution : Throughout we let $S_N = Z_N(\omega) - Na = \sum_{n=1}^N Y_n$. We want to prove that

$$
\lim_{N \to \infty} \mathbb{P}\{S_N(\omega)/b\sqrt{N} \le z\} = F_G(z).
$$
\n(34)

Fix $\gamma \in (0, 1/2)$ and let $m \equiv |N^{1/2-\gamma}|$. Partition the set $\{11, \ldots, N\}$ into m consecutive intervals, each of length $\ell \equiv \lfloor (N - 10)/m \rfloor$ or $\ell + 1$, to be denoted by J_1, J_2, \ldots, J_m (that is $J_1 = \{11, \ldots, 11 + \ell - 1\}$), etc). Partition each of these intervals into two consecutive intervals as $J_i = K_i \cup L_i$ with $|L_i| = 10$ or 11 and $|K_i| = \ell - 10$. Define

$$
W_i = \sum_{n \in K_i} Y_n, \qquad S_N^* = \sum_{i=1}^m W_i.
$$
 (35)

The W_i 's are independent and identically distributed with $\mathbb{E}W_i = 0$. Further, proceeding as in point (b) above, it is easy to see that

$$
\mathbb{E}(W_i^2) \quad \equiv \quad b_\ell \ell = b\ell + O(1) \,, \tag{36}
$$

$$
\mathbb{E}(W_i^4) \leq c\ell^2. \tag{37}
$$

Consider therefore the normalized sum $\widehat{S}_N^* = \sum_{i=1}^m W_i$ / √ Nb. The Lindeberg parameter reads

$$
g_N(\varepsilon) = \frac{1}{Nb} \sum_{i=1}^m \mathbb{E}\left\{W_i^2 : |W_i| \ge \varepsilon\sqrt{Nb}\right\} \le \frac{1}{(N\varepsilon b)^2} \sum_{i=1}^m \mathbb{E}\left\{W_i^4\right\} \le \frac{cm\ell^2}{(N\varepsilon b)^2} \le \frac{c'}{\varepsilon^2 m},\tag{38}
$$

Since $m \to \infty$ as $N \to \infty$, we have $g_N(\varepsilon) \to 0$. Further $\text{Var}(\widehat{S}_N^*) = m \mathbb{E}(W_i^2)/(Nb) \to 1$ because $\ell \to \infty$ as well. By Lindeberg central limit theorem

$$
\lim_{N \to \infty} \mathbb{P}\{S_N^* / b\sqrt{N} \le z\} = F_G(z).
$$
\n(39)

Since $|Y_n| \leq 1$, we have $|S_N - S_N^*| \leq 11 \, m \leq \delta$ √ N, for any $\delta > 0$ and all $N > N_0(\delta)$. Therefore

$$
\mathbb{P}\{S_N^* \le zb\sqrt{N} - \delta\sqrt{N}\} \le \mathbb{P}\{S_N \le zb\sqrt{N}\} \le \mathbb{P}\{S_N^* \le zb\sqrt{N} + \delta\sqrt{N}\}.
$$
 (40)

By taking the limit $N \to \infty$ and using Eq. [\(39\)](#page-6-0), we get

$$
F_{\mathcal{G}}(z-\delta) \le \lim \inf_{N \to \infty} \mathbb{P}\big\{ S_N(\omega) / b\sqrt{N} \le z \big\} \le \lim \sup_{N \to \infty} \mathbb{P}\big\{ S_N(\omega) / b\sqrt{N} \le z \big\} \le F_{\mathcal{G}}(z+\delta). \tag{41}
$$

The thesis follows by taking $\delta \to 0$ by continuity of $F_{\rm G}$.

Problem 5

Let Ω be the interval $[0, 2\pi)$ with the end-points identified (in other words, this is a circle indexed by the angular coordinate). Endow this set with the standard topology, whereby a basis of neighborhoods of x is given by the intervals $(x - \varepsilon, x + \varepsilon)$ for $x \neq 0$ (and $\varepsilon > 0$ small enough) and $(2\pi - \varepsilon, \varepsilon)$ for $x = 0$. The resulting topological space Ω is compact.

The mapping $\varphi : [0, 2\pi) \to \Omega$ (the first space endowed with the standard topology), with $\varphi(x) = x$, is piecewise continuous together with its inverse. In particular both φ and φ^{-1} are measurable with respect to the Borel σ algebras. The Lebesgue measure λ_{Ω} is uniquely defined by $\lambda_{\Omega} = \lambda \circ \varphi^{-1}$. Analogously, for any measure ν on $([0, 2\pi), \mathcal{B}_{[0, 2\pi)})$ one can associate the measure $\nu \circ \varphi^{-1}$ on $(\Omega, \mathcal{B}_{\Omega}).$

Given a probability measure μ on $(\Omega, \mathcal{B}_{\Omega})$, its Fourier coefficients are the numbers

$$
c_k(\mu) = \int_{\Omega} e^{ikx} \mu(\mathrm{d}x), \qquad (42)
$$

for $k \in \mathbb{Z}$. It is known that, for any $0 < a < b < 2\pi$ with $\mu({a}) = \mu({b}) = 0$,

$$
\mu((a,b]) = \lim_{m \to \infty} \int_{(a,b]} \left\{ \frac{1}{2m\pi} \sum_{l=0}^{m-1} \sum_{k=-l}^{l} c_k e^{-ikt} \right\} dt,
$$
\n(43)

where $c_k = c_k(\mu)$. (You are welcome to use this fact in answering the following questions.)

(a) Show that the Fourier coefficients uniquely determine the probability measure, i.e. that given μ , ν probability measures on $(\Omega, \mathcal{B}_{\Omega})$ with $c_k(\mu) = c_k(\nu)$ for all $k \in \mathbb{Z}$, we have $\mu = \nu$.

Solution: For $z \in [0, 2\pi)$, let $G(z) = \mu([0, z))$. It is clearly sufficient to show that G is uniquely determined by the Fourier coefficients, since the intervals $[0, z)$ form a π-system that generates \mathcal{B}_{Ω} . By assumption $G(0) = 0$ and $G(2\pi) = 1$. Further G is non-dereasing and right-continuous. Let C be the set of continuity points $a \in (0, 2\pi)$ such that $\mu({a}) = 0$. For $a \in \mathcal{C}$, $1 - G(a) = \mu((a, 2\pi))$ is uniquely determined by the inversion formula [\(43\)](#page-6-1) as the limit for $b \uparrow 2\pi$, $b \in C$ of $\mu((a, b])$. For general a, using right continuity we have $G(a) = \inf \{ G(a') : a' > a, a' \in C \}.$

Therefore G is uniquely detemined by the Fourier coefficients.

(b) Given two independent random variables X, Y taking values in Ω , let $Z = X \oplus Y$ be defined by

$$
X \oplus Y = \begin{cases} X + Y & \text{if } X + Y \in [0, 2\pi), \\ X + Y - 2\pi & \text{if } X + Y \in [2\pi, 4\pi). \end{cases}
$$
\n(44)

Can you express the Fourier coefficients of (the law of) Z in terms of (the laws of) X and Y .

Solution: We have, for $k \in \mathbb{Z}$, $c_k(Z) = \mathbb{E}\{e^{ikZ}\}\$. But $Z = X + Y - 2\pi\ell$ for an integer ℓ , and therefore $e^{ikZ} = e^{ik(X+Y)}$. Using independence $c_k(Z) = \mathbb{E}\{e^{ikZ}\} = \mathbb{E}\{e^{ikX}e^{ikY}\} = \mathbb{E}\{e^{ikX}\}\mathbb{E}\{e^{ikY}\} = c_k(X)c_k(Y)$.

(c) Let ${X_i}_{i\in\mathbb{N}}$, be independent and identically distributed random variables taking values in Ω , and assume their common distribution to admit a density f_X with respect to the Lebesgue measure. Let $\mu^{(n)}$ be the law of $X_1 \oplus X_2 \oplus \cdots \oplus X_n$.

Prove that, as $n \to \infty$, $\mu^{(n)}$ converges weakly to the uniform distribution over Ω (i.e. to $U = \lambda_{\Omega}/(2\pi)$).

Solution: Let $c_k^{(n)} = c_k(\mu^{(n)})$. We claim that, for any $k \in \mathbb{Z}$, $c_k^{(n)} \to c_k(U)$. Since Ω is compact, the sequence of probability measures $\mu^{(n)}$ is uniformly tight. Hence any subsequence $\{\mu^{(n(m))}\}\$ admits a converging subsequence $\mu^{(n'(m))} \stackrel{w}{\Rightarrow} \nu$, with $\{n'(m)\}_{m\in\mathbb{N}} \subseteq \{n(m)\}_{m\in\mathbb{N}}$. Since $x \mapsto e^{ikx}$ is a continuous bounded function, $c_k^{n'(m)} \to c_k(\nu)$ along such a subsequence. But as proved in point (a), the Fourier coefficiends determine uniquely the distribution, whence $\nu = U$ for any subsequence. Therefore (by the same argument as in Levy's continuity theorem) $\mu^{(n)} \stackrel{w}{\Rightarrow} U$

We are left with the task of proving $c_k^{(n)} \to c_k(U)$. Notice that $c_0(U) = 1$ and $c_k(U) = 0$ for $k \neq 0$. Let $c_k^{(n)} = \int e^{ikx} \mu^{(n)}(\mathrm{d}x)$. By point (b) above $c_k^{(n)} = (c_k)^n$ for $c_k = \mathbb{E}\{e^{ikX}\}$. Clearly $c_0 = 1$. It is therefore sufficient to prove that $|c_k| < 1$ for all $k \neq 0$. Using Fubini, we get immediately $|c_k|^2 = \mathbb{E}\{e^{ik(X-Y)}\}$ $\mathbb{E}\{\cos k(X-Y)\}\$ for X, Y i.i.d. with density f_X . Therefore, since $(\cos(\alpha/2))^2 = (1-\cos\alpha)/2$ and using the fact that X, Y have a density

$$
1 - |c_k|^2 = \int_{[0,2\pi)\times[0,2\pi)} \left(\cos\frac{k(x-y)}{2}\right)^2 f(x) f(y) dx \times dy \tag{45}
$$

for $dx \times dy$ the Lebesgue measure in \mathbb{R}^2 . Therefore $|c_k| = 1$ implies $f(x)f(y) = 0$ for almost every (x, y) , i.e. $f(x) = 0$ for almost every x, which is impossible since $\int f(x) = 1$. This implies $|c_k| < 1$ as claimed.

(d) Consider now the case in which $X_i = \theta$ for all i almost surely, for some $\theta \in [0, 2\pi)$ with θ/π irrational. Does $\mu^{(n)}$ have a weak limit? Consider the average

$$
\nu^{(n)} \equiv \frac{1}{n} \sum_{k=1}^{n} \mu^{(k)}.
$$
\n(46)

Does $\nu^{(n)}$ have a weak limit as $n \to \infty$? Prove your answer.

Solution: We have $\mu^{(n)} = \delta_{x_n}$ for $x_n = n\theta - \ell 2\pi$ (with an appropriate choice of ℓ). For θ/π irrational the sequence x_n does not converge, and hence $\mu^{(n)}$ does not converge either.

We claim that $\nu^{(n)}$ converges weakly to U (the uniform probability measure over $[0, 2\pi)$). By the same argument as in point (c) above, it is sufficient to prove that the corresponding Fourier coefficients $c_k^{(n)}$ = $\int e^{ikx} \nu^{(n)}(\text{d}x)$ are such that $c_k^{(n)} \to 0$ for all $k \neq 0$ (obviously $c_0^{(n)} = 1$).

We have $\nu^{(n)} = n^{-1} \sum_{\ell=1}^n \delta_{x_\ell}$. For k integer $e^{ikx_\ell} = e^{ik\ell\theta}$. Therefore, for $k \neq 0$,

$$
c_k^{(n)} = \frac{1}{n} \sum_{\ell=1}^n e^{2\pi i k \ell \theta} = \frac{1}{n} \frac{e^{ik\theta} - e^{ik(n+1)\theta}}{1 - e^{ik\theta}},
$$
\n(47)

whence $|c_k^{(n)}\>$ $|k_{k}^{(n)}| \leq 2/(n(1-\cos k\theta)) \to 0$ (because for θ/π irrational, $\cos(k\theta) < 1$ for all k).