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Problem 1
Let Q = {0,1}" be the space of infinite binary sequences w = (wy,ws,ws, ...), and, for a < b, write w? for
the vector (wg,wWa+t1,--.,ws). Let F the o-algebra gnerated by cylindrical sets
Cz,gz{weﬁ:wf:/ffL (1)

for £ € N, £ € Q. Let P be the product measure over ({2, F), defined by

Y4

P(Cre) = [[p(&), (2)

i=1

where p(1) =1 —p(0) =p € (0,1). Define, for A € (0,1/2]

X(w) = Zwi DA (3)
i=1

and let Px be its law.
(a) Prove that, for A =1/2 and any 0 < z; < z2 < 2, Px((x1,72)) > 0. What happens if A € (0,1/2)?

Solution : Assume, without loss of generality |vo — 21| > 277!, Then there exists an integer k €
{1,...,2" =1}, such that 1 < k-27" < (k+1)27" < x9. Of course

Px((x1,22)) 2 P(k-27" < X(w) < (k+1)27"). (4)

The integer k admits the unique binary expansion k = Y., k;2"*. Then
P(k-27" < X(w) < (k+1)27") = P(Co by, k) =P (1= p)™ W, (5)
with ng(k) and nq(k) the number of zeros and ones in (ki,...,k,). For p € (0,1) the above probability is

strictly positive.
For A € (0,1/2), we have

o 1
i=1

Hence we have Px ((z1,22)) =0 if 21 > (1 —X)7L.

(b) Prove that, for A € (0,1/2), Px does not have atoms. What happens if A = 1/2?
[Recall that an atom is a Borel set A C R such that Px(A) > 0 and, for any Borel set B C A, Px(B) =0
or Px(B) = 'Px(A).]




Solution : For n > 1, define

n—1

Obviously X, (w) < X(w) < Xp(w) + (1 — A)"LA", whence, for any interval [a,b) C R
P{X(w) € [a,b)} < P{X,(w) € [a = 6n,b)}, (8)
with 6, = (1 — A)~1A" < 2A". In particular,
P{X(w) € [a,a + \")} < P{X,(w) € [a — 2\", a + \")}. 9)

For n € N and a € R, let J,(a) = [a,a + CA"), with C = (1 —2X\)/(1 —X) > 0. If for any w € €,
X(w) & Jn(a), then P{X (w) € Jy(a)} = 0. Assume therefore, that there is at least one ralization w* =
(wi,...,wk,...) such that X, (w*) € Jp(N). For any w # w,, let k = k(w) be the smallest index such that

w}, 7# wg. Then

X (w) — X (w*)| > N — Z A= (10)

I=k+1

Therefore X (w) € J,,(a) only if the first n coordinates of w coincide with those of w*, i.e.
P{X(w) € Jn(a)} < Plun = i, = wi} < max(p,1— p)" (11)

As a consequence, for any € > 0 we can find 6 = d(¢) > 0 such that P{X, (w) € [a,a+ d(¢))} <e.

This immediately implies that Px does not have atoms. Indeed, assume this is not the case and let S be
such an atom, with Px (S) = 2e. Obviously S C [0, 2]. Partition the interval [0, 2] into intervals Jy, Ja, ..., Jas
of length 6(g). Then Px (J;NS) > 0 for at least one interval <. On the other hand Px (J;NS) < Px(J;) < e.

For the case A = 1/2, the claim follows by proving that X is uniformly random in the interval [0,2). This
in turn follows by checking that P(X € [i/2", (i +1)/2")) = 1/2"* foralln > 1, and i € {0,...,2" "1 —1}.

Problem 2

Let © be the space of functions w : [0,1] — R, and, for each t € [0,1], define X;(w) = w(t). Let F =
o({Xt}eeqo,17) be the smallest o-algebra such that X; is measurable for each ¢ € [0, 1].

Also, for any S C [0,1], le Fs = o({Xt}+es) be the smallest o-algebra such that X; is measurable for
eacht e S.

(a) Prove that

F= J 7Fs. (12)

S countable

Solution: Let A = Jg countable Fs- It is clear that X, is measurable on A for each t € [0,1]. Indeed, A
contains in particular Fyy = o(Xy).

Further A C F, since Fg C F for each S C [0,1] (indeed Fg is the minimal o algebra such that X; is
measurable for each ¢ € 5).

The claim follows if we show that A is a o-algebra. Let B € A. Then B € Fg for some S countable,
whence B¢ € Fg (because Fg is a o-algebra) and thus B¢ € A. Therefore A is closed under complements.



Let {B; }ien be a countable collection in \A. Then there exist countable sets .S; C [0, 1] such that B; € Fyg,
for each i. In particular B; € Fg with S = U$2,.S;. Let B = U2, B;. By the o-algebra property, B € Fg as
well. But S is countable (countable union of countable sets), Whence Be A

(b) Show that, for any random variable Z on (2, F) there exists S countable such that Z is measurable on

(Q, Fs).

Solution: Let Q = {q¢1, 42, ¢s, ...} be an ordering of the rationals. By point (a) above, for each i, there
exist S; countable, such that the set B; = {w: Z(w) < ¢;} is in in Fg,. As a consequence for each i, B; € Fg
with S = U, S;. This imply that {Z7'((—o00,q]) : ¢ € Q} C Fs. Since P = {(—00,q] : ¢ € Q}isa
system which generates the Borel o-algebra, the thesis follows.

(c) Define

Z(w) = sup Xi(w). (13)
te[0,1]

Is Z measurable on (2, F)?

Solution: No, it is not measurable. Indeed, assume by contradiction that it is measrable. Then by point
(b) above, there exist S countable such that Z is measurable on Fg. Consider the set B = {w: Z(w) < 0},
and let wi,ws be two functions such that wi(t) = wa(t) < 0 for all t € S and supycpywi(t) > 0 >
Supsefo,1jwa(t). Then of course w1 ¢ B, wa(t). On the other hand, for any A € Fg either wi, w2 € S or
w1, ws AnS, which leads to a contradiction. (The last claim follows from Problem 2 in the midterm.)

Problem 3
Let S%~! be the unit sphere in R%:
Sd_lz{meRd: ||x|\:1} (14)

The sphere S?~! can be given the topology induced by R?. More precisely A C S9! is open if for any
x € A, there exists ¢ > 0 such that {y € S%!: ||z —y|| < e} C A.
Let B(S?~1) be the corresponding Borel o- algebra For any A € B(S?71), define

={rz:rel0,1],z€ A}, (15)

(a) Show that, for any A € B(S91), T'(A) € B(R?).

Solution: For € > 0, let I'.(A) = {rz : r € (¢,1], z € A}. Then I'.(A) = f='(A), for the continuous
mapping f. : {x € R : ¢ < ||z]| < 1} — 891, 2 ~ z/||z||. Since counterimages of Borel sets under
continuous mappings are Borel, we have I'.(A4) € B(R?). The thesis follows since

U Fl/n U {0} (16)

(b) Let Ay be the Lebesgue measure on R?, and define, for A € B(S91),
W(A) = dAy(T(4). (17)



Prove that p is a finite measure on (S4~1, B(S971)).

Solution: Obviously y is a non-negative set function, with p(0)) = d\g(0) = 0. If {A; }ien € B(S? 1) is a
disjoint collection than {B;};en € B(RY) are also disjoint with B; = I'(4;)\{0}. Further I'(U; 4;) = U;T'(A;).
Therefore, since A\z({0}) = 0, we have

M(UzZlAi) = d)\d(Ui21F(Ai)) = d)\d z>1B Zd)\d Zd)\d )) = ZM(A") R (18)

i>1 i>1 i>1

i.e. p is countably additive, hence a measure.
Finally pu(S471) = d\g({z : ||z|| < 1}) < d\g({z : max; |z;| < 1}) = d2¢. Therefore y is finite.

(c) For A € B(S%!) and 0 < a < b, define the set C, ,(A) € B(RY) as Cypy(A) = {rz : a <r <bx € A}.
Prove that

Aa(Cap(A)) = p(A). (19)

[Hint: Use the fact that, for v > 0 and B € B(RY), A\y(yB) = v¥\4(B) (with v B the set obtained by
‘dilating’ B by a factor 7).

Solution: First consider the case b = 1, a/b = o < 1. Using the definition of T'.(A) in point (a), we
have I'g(A) = U2 Cyi+1 4i(A). Since the union is disjoint, and A\;({0}) = 0, we have

1(A) = dAg(To(A Zd/\d it i (A ZdoﬂdAd w1(4)) = _1ad dXa(Ca1(A)). (20)
For b # 1, it is sufficient to use Ag(Cqp(A)) = bINg(Ca.,1(A)) for a = a/b.
(d) Deduce that, for any B € B(R),
B) = /0 - [5 1w e B) e dp(a)dr (21)

Solution: We can assume 0 ¢ B, since both sides are modified by a vanishing term . Let w(B) be the
quantity defined on the right hand side of Eq. . Notice, by Fubini, that w(B) is the integral of the simple
function I(rz € B) under the product measure p x A; on S9! x (0, 00). Therefore w is a measure on B(R?).
Further, both Ay and w are o-finite (it is sufficient to consider the sets B, = {xz : ||z|| < n} 1 R%. Finally,
by point (c) above

Ad(Cap(A)) = w(Cap(A4)) (22)

for any a < b, A € B(S%1). The thesis follows by showing that P = {C,,(A) : a < b, A € B(S* 1)} is a
7-system (this is obvious) that generates B(R?).
There are many ways of proving the last claim. One is the following. First define, for A € B(S91),

Dyp(A)={rz :a<r<bzeA}. (23)

It is clear that D, ;(A) can be constructed by finite intersections and unions of sets {C,,(A)}. Consider
next any open set @ C R%. We want to show that it is a countable union of sets {D, ;(A)} with A relatively



open in S471. Without loss of generality we can assume 0 ¢ Q and Q C H. with H. = {z ¢ R? : x; > ¢}
an half space. Let ¢ : H. — R? be the mapping

V(xy, ..., xq) = (r(x),ze/r(x),...,zq/r(x)), (24)
r(z) = \/x%—l—x%—i—-“-kl‘z, (25)

which is differentiable together with its inverse on ¢(H.). The set ¢(Q) is open in R%. Therefore

i=1

with the R;’s open rectangles in R? (because rectangles generate the Borel o-algebra). Therefore
Q=Uv'(R), (27)
i=1

but Y1 (R;) = Dq, p,(A;) for some a;, b;, A;.

Problem 4

Consider the probability space (Q,F,P), with Q = {A, B, C,...,Z}" the space of infinite strings of capital
letters from the english alphabet (it might be useful to recall that there are 26 such letters). Further, let
F be the o-algebra generated by cylindrical sets (i.e. sets of the form Cpq = {w = (w1, wo,...) : w1 =

ai,...wp = ag} for some £ € N and some sequence of letters a = (ay,...,ar)), and P the uniform measure,
defined by
P(Cra) = o7 (28)
la) = 26£ .

For any w € Q and N € N, let Zy(w) be the number of occurrences of the word PROBABILITY in
(wl, ce 7w]\r).

(a) Show that Zy is indeed a random variable (i.e. it is measurable on (€, F)).

Solution: Let X, (w) be the indicator on the event
{wn—lo =P,wpo9=R,wn =00, 7=Bwy6=Awn5=Bupas=lLw, 3=Lw,a=Lw, 1 =T w, = Y},

with, by convention X,,(w) = 0 for n < 10. Clearly, X, is an indicator on finite union of cylinder sets, hence
it is measurable. Further

Zn(w) =) Xnlw), (29)

whence Z is also measurable.

(b) Show that the limit limy_, o E[ZN]/N exists, and compute it. Call the result m.

Solution : By independence, we have, for any n > 10, E[X,,] = 1/26!!. Therefore E[Zy] = (N —10)/26!,
which immediately implies the thesis with a = 1/26'!.



(c) Prove that Zy satisfies the law of large numbers, i.e. that

IP{ lim ZI?\([”) - a} —1. (30)

N—o0

Solution : Let Y,, = X,, — a. Then,

Zn 1 R 24 N
E{ (W - a) } =Nt Z E{YY;Y,Yi} < i Z [E{Y;Y;YiYi}]. (31)
i kd=11 11<i<j<k<I<N

Notice that E(Y;) =0, |Y¥;| < 1 and Y; is independendent from Y;,Y},Y; unless j — ¢ < 10. Analogously V;
is independendent from Y;, Y}, Y} unless [ — k£ < 10. Therefore

Zn 4 24 o 24 - 112 2000

e < — —1 < —k< < < .

E{( > a) } <w Z IG—i <1011 — k £10) < = Z 1< (32)
11<i<G<k<ISN 1<j<k<N

By Markov inequality for any € > 0, P{|Zy/N — a|] > ¢} < C(¢)/N?. Applying Borel-Cantelli I we obtain

the desired result.

(d) Show that Zy satisfies the following central limit theorem

ZN(w) — Nm
WN

for some b € R and all z € R. Here F(z) = P{Y < z} is the distribution function of a standard normal
random variable Y. [Hint: Partition the string (w; ...wn) into blocks.]

lim ]P’{

N—00

< z} = Fa(2). (33)

Solution : Throughout we let Sy = Zy(w) — Na = Zr]:[:u Y,,. We want to prove that

Jim_ P{Sn(w)/bVN < 2} = Fg(z). (34)

Fix v € (0,1/2) and let m =|N'/2-7|. Partition the set {11,..., N} into m consecutive intervals, each of
length ¢ = | (N — 10)/m] or £ + 1, to be denoted by J1,Ja, ..., Jy, (that is J; = {11,...,11 4+ £ — 1}), etc).
Partition each of these intervals into two consecutive intervals as J; = K; U L; with |L;| = 10 or 11 and
|K;| = ¢ — 10. Define

Wi= > Y., Sy=> W. (35)

nek; i=1

The W;’s are independent and identically distributed with EW; = 0. Further, proceeding as in point (b)
above, it is easy to see that

E(W?) = bl =bl+0O(1), (36)
EW! < ef?. (37)

Consider therefore the normalized sum §}‘V = Y7, W;/VNb. The Lindeberg parameter reads

m

1 & 1 emf? c
gn(e) = m;E{Wf L [Wi| > eVNb} < W;E{Wf} < ’ (38)

IN

(Neb)?2 — e2m



Since m — oo as N — 0o, we have gn(¢) — 0. Further Var(gj*v) = mE(W?)/(Nb) — 1 because £ — oo as
well. By Lindeberg central limit theorem

ngnoop{sj*v/b\/ﬁ <z} =Fg(2). (39)
Since |Yy,| < 1, we have |Sy — S%| < 11m < §v/N, for any § > 0 and all N > Ny(d). Therefore
P{Sy < 2bV/N — 6V N} < P{Sy < 2bV'N} < P{S} < 2bV/N + VN }. (40)
By taking the limit N — oo and using Eq. 7 we get

Fg(z—46) <lim mf P{SN )/bV'N < z} <lim sup P{Sn(w )/bVN < z} < Fa(z+96). (41)

The thesis follows by taking § — 0 by continuity of Fg.

Problem 5

Let © be the interval [0,27) with the end-points identified (in other words, this is a circle indexed by the
angular coordinate). Endow this set with the standard topology, whereby a basis of neighborhoods of x is
given by the intervals (x — e,z 4 €) for  # 0 (and € > 0 small enough) and (27 — ¢,¢) for x = 0. The
resulting topological space {2 is compact.

The mapping ¢ : [0,27) — Q (the first space endowed with the standard topology), with ¢(z) = z, is
piecewise continuous together with its inverse. In particular both ¢ and ¢! are measurable with respect to
the Borel o algebras. The Lebesgue measure \q is uniquely defined by Ao = Ao ¢ 1. Analogously, for any
measure v on ([0,27), Bjg 2r)) one can associate the measure v o ¢~! on (92, Bq).

Given a probability measure p on (€2, Bg), its Fourier coefficients are the numbers

uli) = [ € ulan). (42)

for k € Z. Tt is known that, for any 0 < a < b < 27 with u({a}) = p({b}) =0,

p((a,b]) = Tim_ {Qmw Z Z ckeﬂ“}dt (43)

(a, 1=0 k=

where ¢, = ¢x(p). (You are welcome to use this fact in answering the following questions.)

(a) Show that the Fourier coefficients uniquely determine the probability measure, i.e. that given u, v
probability measures on (2, Bg) with ¢x(u) = ¢k (v) for all k € Z, we have u = v.

Solution: For z € [0,27), let G(z) = u([0,2)). It is clearly sufficient to show that G is uniquely
determined by the Fourier coefficients, since the intervals [0, z) form a m-system that generates Bg. By
assumption G(0) = 0 and G(27) = 1. Further G is non-dereasing and right-continuous. Let C be the set of
continuity points a € (0,27) such that u({a}) =0. For a € C, 1 — G(a) = p((a,2m)) is uniquely determined
by the inversion formula as the limit for b1 27, b € C of u((a,b]). For general a, using right continuity
we have G(a) = inf{G(a’) : @’ > a,a’ € C}.

Therefore G is uniquely detemined by the Fourier coefficients.

(b) Given two independent random variables X, Y taking values in Q, let Z = X @Y be defined by

X+Y if X +Y € 0,2m),

X@Y{ X+4+Y-2r X+Y €2nm4n).



Can you express the Fourier coefficients of (the law of) Z in terms of (the laws of) X and Y.

Solution: We have, for k € Z, c;(Z) = E{e'*?}. But Z = X +Y — 2n/ for an integer ¢, and therefore
ehZ = FXHY) | Using independence ¢, (Z) = E{e*?} = E{e* XY} = B{e* X 1E{*} = ¢ (X)cr(Y).

(c) Let {X; }ien, be independent and identically distributed random variables taking values in €2, and assume
their common distribution to admit a density fx with respect to the Lebesgue measure. Let u(™) be the law
OfX1 @XQ@@Xn

Prove that, as n — oo, u(™ converges weakly to the uniform distribution over Q (i.e. to U = \q/(27)).

Solution: Let cfﬁn) = ¢ (u™). We claim that, for any k € Z, cgﬁn) — ¢ (U). Since €2 is compact,
the sequence of probability measures (™ is uniformly tight. Hence any subsequence {,u("(m))} admits a
converging subsequence p(™ (™) 2 1 with {n/(m)}men € {n(m)}men. Since z s eik?
bounded function, czl(m) — ¢,(v) along such a subsequence. But as proved in point (a), the Fourier
coefficiends determine uniquely the distribution, whence v = U for any subsequence. Therefore (by the same

is a continuous

argument as in Levy’s continuity theorem) p(™) = U

We are left with the task of proving c](gn) — ¢(U). Notice that ¢g(U) =1 and ¢(U) =0 for k # 0. Let
c,(C") = [ ey (™ (dz). By point (b) above c,g") = (cx)" for ¢, = E{e?*X}. Clearly ¢y = 1. It is therefore
sufficient to prove that |ci| < 1 for all k # 0. Using Fubini, we get immediately |cy|? = E{e*(X=Y)} =
E{cos k(X —Y)} for X, Y i.i.d. with density fx. Therefore, since (cos(a/2))? = (1 — cos )/2 and using the
fact that X,Y have a density

_ k(x —y)\?2
1 Jeyf? = /[o,wo,m (cos ™) pa) fly) do x dy (45)

for dz x dy the Lebesgue measure in R?. Therefore |ci| = 1 implies f(z)f(y) = 0 for almost every (z,y), i.e.
f(z) = 0 for almost every x, which is impossible since [ f(z) = 1. This implies |cx| < 1 as claimed.

(d) Consider now the case in which X; = 0 for all ¢ almost surely, for some 6 € [0,27) with /7 irrational.
Does ;™ have a weak limit? Consider the average

n

1
) = = (k) 46
v nE f (46)

k=1

Does v(™) have a weak limit as n — co? Prove your answer.

Solution: We have u(™ =6, for x, = nf — (27 (with an appropriate choice of £). For 8/ irrational
the sequence x, does not converge, and hence (™ does not converge either.
We claim that (™) converges weakly to U (the uniform probability measure over [0,27)). By the same

argument as in point (c) above, it is sufficient to prove that the corresponding Fourier coefficients c,(c") =

[ e***1(")(dzx) are such that c,in) — 0 for all k # 0 (obviously c(()n) =1).
We have v =n=1 37 §,,. For k integer e’**¢ = ¢k Therefore, for k # 0,

n ik6 _ ik(n+1)0
(n) _ 1 omikeg _ 1 € €
W L = “7)

whence |C§Cn)| <2/(n(1 —coskf)) — 0 (because for §/m irrational, cos(kf) < 1 for all k).




	

