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Problem 1

Let Ω = {0, 1}N be the space of infinite binary sequences ω = (ω1, ω2, ω3, . . . ), and, for a ≤ b, write ωba for
the vector (ωa, ωa+1, . . . , ωb). Let F the σ-algebra gnerated by cylindrical sets

C`,ξ =
{
ω ∈ Ω : ω`1 = ξ`1

}
, (1)

for ` ∈ N, ξ ∈ Ω. Let P be the product measure over (Ω,F), defined by

P(C`,ξ) =
∏̀
i=1

p(ξi) , (2)

where p(1) = 1− p(0) = p ∈ (0, 1). Define, for λ ∈ (0, 1/2]

X(ω) ≡
∞∑
i=1

ωi λ
i−1 , (3)

and let PX be its law.

(a) Prove that, for λ = 1/2 and any 0 < x1 < x2 < 2, PX((x1, x2)) > 0. What happens if λ ∈ (0, 1/2)?

Solution : Assume, without loss of generality |x2 − x1| ≥ 2−n+1. Then there exists an integer k ∈
{1, . . . , 2n − 1}, such that x1 < k · 2−n < (k + 1)2−n < x2. Of course

PX((x1, x2)) ≥ P(k · 2−n ≤ X(ω) ≤ (k + 1)2−n) . (4)

The integer k admits the unique binary expansion k =
∑n
i=1 ki2

n−i. Then

P(k · 2−n ≤ X(ω) ≤ (k + 1)2−n) = P(Cn,(k1...,kn)) = pn1(k)(1− p)n0(k) , (5)

with n0(k) and n1(k) the number of zeros and ones in (k1, . . . , kn). For p ∈ (0, 1) the above probability is
strictly positive.

For λ ∈ (0, 1/2), we have

X(ω) ≤
∞∑
i=1

λi−1 =
1

1− λ
< 2 . (6)

Hence we have PX((x1, x2)) = 0 if x1 > (1− λ)−1.

(b) Prove that, for λ ∈ (0, 1/2), PX does not have atoms. What happens if λ = 1/2?
[Recall that an atom is a Borel set A ⊆ R such that PX(A) > 0 and, for any Borel set B ⊆ A, PX(B) = 0
or PX(B) = PX(A).]
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Solution : For n ≥ 1, define

Xn(ω) ≡
n−1∑
i=1

ωi λ
i . (7)

Obviously Xn(ω) ≤ X(ω) ≤ Xn(ω) + (1− λ)−1λn, whence, for any interval [a, b) ⊆ R

P{X(ω) ∈ [a, b)} ≤ P{Xn(ω) ∈ [a− δn, b)} , (8)

with δn ≡ (1− λ)−1λn ≤ 2λn. In particular,

P{X(ω) ∈ [a, a+ λn)} ≤ P{Xn(ω) ∈ [a− 2λn, a+ λn)} . (9)

For n ∈ N and a ∈ R, let Jn(a) ≡ [a, a + Cλn), with C = (1 − 2λ)/(1 − λ) > 0. If for any ω ∈ Ω,
X(ω) 6∈ Jn(a), then P{X(ω) ∈ Jn(a)} = 0. Assume therefore, that there is at least one ralization ω∗ =
(ω∗1 , . . . , ω

∗
n, . . . ) such that Xn(ω∗) ∈ Jn(λ). For any ω 6= ω∗, let k = k(ω) be the smallest index such that

ω∗k 6= ωk. Then

|X(ω)−X(ω∗)| ≥ λk −
∞∑

l=k+1

λl = C(λ)λk . (10)

Therefore X(ω) ∈ Jn(a) only if the first n coordinates of ω coincide with those of ω∗, i.e.

P{X(ω) ∈ Jn(a)} ≤ P{ω1 = ω∗1 , . . . , ωn = ω∗n} ≤ max(p, 1− p)n . (11)

As a consequence, for any ε > 0 we can find δ = δ(ε) > 0 such that P{Xn(ω) ∈ [a, a+ δ(ε))} ≤ ε.
This immediately implies that PX does not have atoms. Indeed, assume this is not the case and let S be

such an atom, with PX(S) = 2ε. Obviously S ⊆ [0, 2]. Partition the interval [0, 2] into intervals J1, J2, . . . , JM
of length δ(ε). Then PX(Ji∩S) > 0 for at least one interval i. On the other hand PX(Ji∩S) ≤ PX(Ji) ≤ ε.

For the case λ = 1/2, the claim follows by proving that X is uniformly random in the interval [0, 2). This
in turn follows by checking that P(X ∈ [i/2n, (i+ 1)/2n)) = 1/2n+1, for all n ≥ 1, and i ∈ {0, . . . , 2n+1− 1}.

Problem 2

Let Ω be the space of functions ω : [0, 1] → R, and, for each t ∈ [0, 1], define Xt(ω) = ω(t). Let F ≡
σ({Xt}t∈[0,1]) be the smallest σ-algebra such that Xt is measurable for each t ∈ [0, 1].

Also, for any S ⊆ [0, 1], le FS ≡ σ({Xt}t∈S) be the smallest σ-algebra such that Xt is measurable for
each t ∈ S.

(a) Prove that

F =
⋃

S countable

FS . (12)

Solution: Let A ≡
⋃
S countable FS . It is clear that Xt is measurable on A for each t ∈ [0, 1]. Indeed, A

contains in particular F{t} = σ(Xt).
Further A ⊆ F , since FS ⊆ F for each S ⊆ [0, 1] (indeed FS is the minimal σ algebra such that Xt is

measurable for each t ∈ S).
The claim follows if we show that A is a σ-algebra. Let B ∈ A. Then B ∈ FS for some S countable,

whence Bc ∈ FS (because FS is a σ-algebra) and thus Bc ∈ A. Therefore A is closed under complements.
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Let {Bi}i∈N be a countable collection in A. Then there exist countable sets Si ⊆ [0, 1] such that Bi ∈ FSi

for each i. In particular Bi ∈ FS with S = ∪∞i=1Si. Let B ≡ ∪∞i=1Bi. By the σ-algebra property, B ∈ FS as
well. But S is countable (countable union of countable sets), whence B ∈ A.

(b) Show that, for any random variable Z on (Ω,F) there exists S countable such that Z is measurable on
(Ω,FS).

Solution: Let Q = {q1, q2, q3, . . . } be an ordering of the rationals. By point (a) above, for each i, there
exist Si countable, such that the set Bi = {ω : Z(ω) ≤ qi} is in in FSi

. As a consequence for each i, Bi ∈ FS
with S ≡ ∪∞i=1Si. This imply that {Z−1((−∞, q]) : q ∈ Q} ⊆ FS . Since P = {(−∞, q] : q ∈ Q} is a π
system which generates the Borel σ-algebra, the thesis follows.

(c) Define

Z(ω) = sup
t∈[0,1]

Xt(ω) . (13)

Is Z measurable on (Ω,F)?

Solution: No, it is not measurable. Indeed, assume by contradiction that it is measrable. Then by point
(b) above, there exist S countable such that Z is measurable on FS . Consider the set B = {ω : Z(ω) ≤ 0},
and let ω1, ω2 be two functions such that ω1(t) = ω2(t) ≤ 0 for all t ∈ S and supt∈[0,1] ω1(t) > 0 ≥
supt∈[0,1] ω2(t). Then of course ω1 6∈ B, ω2(t). On the other hand, for any A ∈ FS either ω1, ω2 ∈ S or
ω1, ω2 6 inS, which leads to a contradiction. (The last claim follows from Problem 2 in the midterm.)

Problem 3

Let Sd−1 be the unit sphere in Rd:

Sd−1 =
{
x ∈ Rd : ||x|| = 1

}
. (14)

The sphere Sd−1 can be given the topology induced by Rd. More precisely A ⊆ Sd−1 is open if for any
x ∈ A, there exists ε > 0 such that {y ∈ Sd−1 : ||x− y|| ≤ ε} ⊆ A.

Let B(Sd−1) be the corresponding Borel σ-algebra. For any A ∈ B(Sd−1), define

Γ(A) =
{
rx : r ∈ [0, 1], x ∈ A

}
, (15)

(a) Show that, for any A ∈ B(Sd−1), Γ(A) ∈ B(Rd).

Solution: For ε > 0, let Γε(A) ≡ {rx : r ∈ (ε, 1], x ∈ A}. Then Γε(A) = f−1
ε (A), for the continuous

mapping fε : {x ∈ Rd : ε ≤ ||x|| ≤ 1} → Sd−1, x 7→ x/||x||. Since counterimages of Borel sets under
continuous mappings are Borel, we have Γε(A) ∈ B(Rd). The thesis follows since

Γ(A) =

∞⋃
n=1

Γ1/n(A) ∪ {0} . (16)

(b) Let λd be the Lebesgue measure on Rd, and define, for A ∈ B(Sd−1),

µ(A) = d λd(Γ(A)) . (17)
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Prove that µ is a finite measure on (Sd−1,B(Sd−1)).

Solution: Obviously µ is a non-negative set function, with µ(∅) = dλd(∅) = 0. If {Ai}i∈N ⊆ B(Sd−1) is a
disjoint collection than {Bi}i∈N ⊆ B(Rd) are also disjoint with Bi = Γ(Ai)\{0}. Further Γ(∪iAi) = ∪iΓ(Ai).
Therefore, since λd({0}) = 0, we have

µ(∪i≥1Ai) = dλd(∪i≥1Γ(Ai)) = dλd(∪i≥1Bi) =
∑
i≥1

dλd(Bi) =
∑
i≥1

dλd(Γ(Ai)) =
∑
i≥1

µ(Ai) , (18)

i.e. µ is countably additive, hence a measure.
Finally µ(Sd−1) = dλd({x : ||x|| ≤ 1}) ≤ dλd({x : maxi |xi| ≤ 1}) = d2d. Therefore µ is finite.

(c) For A ∈ B(Sd−1) and 0 ≤ a ≤ b, define the set Ca,b(A) ∈ B(Rd) as Ca,b(A) = {rx : a < r ≤ b x ∈ A}.
Prove that

λd(Ca,b(A)) =
bd − ad

d
µ(A) . (19)

[Hint: Use the fact that, for γ > 0 and B ∈ B(Rd), λd(γ B) = γdλd(B) (with γ B the set obtained by
‘dilating’ B by a factor γ).]

Solution: First consider the case b = 1, a/b = α < 1. Using the definition of Γε(A) in point (a), we
have Γ0(A) = ∪∞i=0Cαi+1,αi(A). Since the union is disjoint, and λd({0}) = 0, we have

µ(A) = dλd(Γ0(A)) =

∞∑
i=0

d λd(Cαi+1,αi(A)) =

∞∑
i=0

dαidλd(Cα,1(A)) =
1

1− αd
dλd(Cα,1(A)) . (20)

For b 6= 1, it is sufficient to use λd(Ca,b(A)) = bdλd(Cα,1(A)) for α = a/b.

(d) Deduce that, for any B ∈ B(Rd),

λd(B) =

∫ ∞
0

∫
Sd−1

I(rx ∈ B) rd−1 dµ(x)dr . (21)

Solution: We can assume 0 6∈ B, since both sides are modified by a vanishing term . Let ω(B) be the
quantity defined on the right hand side of Eq. (21). Notice, by Fubini, that ω(B) is the integral of the simple
function I(rx ∈ B) under the product measure µ×λ1 on Sd−1× (0,∞). Therefore ω is a measure on B(Rd).
Further, both λd and ω are σ-finite (it is sufficient to consider the sets Bn ≡ {x : ||x|| ≤ n} ↑ Rd. Finally,
by point (c) above

λd(Ca,b(A)) = ω(Ca,b(A)) , (22)

for any a < b, A ∈ B(Sd−1). The thesis follows by showing that P = {Ca,b(A) : a < b, A ∈ B(Sd−1)} is a
π-system (this is obvious) that generates B(Rd).

There are many ways of proving the last claim. One is the following. First define, for A ∈ B(Sd−1),

Da,b(A) = {rx : a < r < bx ∈ A} . (23)

It is clear that Da,b(A) can be constructed by finite intersections and unions of sets {Ca,b(A)}. Consider
next any open set Q ⊆ Rd. We want to show that it is a countable union of sets {Da,b(A)} with A relatively
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open in Sd−1. Without loss of generality we can assume 0 6∈ Q and Q ⊆ Hε with Hε ≡ {x ∈ Rd : x1 ≥ ε}
an half space. Let ψ : Hε → Rd be the mapping

ψ(x1, . . . , xd) = (r(x), x2/r(x), . . . , xd/r(x)) , (24)

r(x) ≡
√
x2

1 + x2
2 + · · ·+ x2

d , (25)

which is differentiable together with its inverse on ψ(Hε). The set ψ(Q) is open in Rd. Therefore

ψ(Q) =

∞⋃
i=1

Ri , (26)

with the Ri’s open rectangles in Rd (because rectangles generate the Borel σ-algebra). Therefore

Q =
∞⋃
i=1

ψ−1(Ri) , (27)

but ψ−1(Ri) = Dai,bi(Ai) for some ai, bi, Ai.

Problem 4

Consider the probability space (Ω,F ,P), with Ω = {A,B,C, . . . ,Z}N the space of infinite strings of capital
letters from the english alphabet (it might be useful to recall that there are 26 such letters). Further, let
F be the σ-algebra generated by cylindrical sets (i.e. sets of the form C`,a = {ω = (ω1, ω2, . . . ) : ω1 =
a1, . . . ω` = a`} for some ` ∈ N and some sequence of letters a = (a1, . . . , a`)), and P the uniform measure,
defined by

P(C`,a) ≡ 1

26`
. (28)

For any ω ∈ Ω and N ∈ N, let ZN (ω) be the number of occurrences of the word PROBABILITY in
(ω1, . . . , ωN ).

(a) Show that ZN is indeed a random variable (i.e. it is measurable on (Ω,F)).

Solution: Let Xn(ω) be the indicator on the event

{ωn−10 = P, ωn−9 = R, ωn−8 = O, ωn−7 = B, ωn−6 = A, ωn−5 = B, ωn−4 = I, ωn−3 = L, ωn−2 = I, ωn−1 = T, ωn = Y},

with, by convention Xn(ω) = 0 for n ≤ 10. Clearly, Xn is an indicator on finite union of cylinder sets, hence
it is measurable. Further

ZN (ω) =

N∑
n=1

Xn(ω) , (29)

whence ZN is also measurable.

(b) Show that the limit limN→∞ E[ZN ]/N exists, and compute it. Call the result m.

Solution : By independence, we have, for any n > 10, E[Xn] = 1/2611. Therefore E[ZN ] = (N−10)/2611,
which immediately implies the thesis with a = 1/2611.
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(c) Prove that ZN satisfies the law of large numbers, i.e. that

P
{

lim
N→∞

ZN (ω)

N
= a

}
= 1 . (30)

Solution : Let Yn ≡ Xn − a. Then,

E
{(ZN

N
− a
)4}

=
1

N4

N∑
i,j,k,l=11

E{YiYjYkYl} ≤
24

N4

N∑
11≤i≤j≤k≤l≤N

|E{YiYjYkYl}| . (31)

Notice that E(Yi) = 0, |Yi| ≤ 1 and Yi is independendent from Yj , Yk, Yl unless j − i ≤ 10. Analogously Yl
is independendent from Yi, Yj , Yk unless l − k ≤ 10. Therefore

E
{(ZN

N
− a
)4}
≤ 24

N4

∑
11≤i≤j≤k≤l≤N

I(j − i ≤ 10)I(l − k ≤ 10) ≤ 24 · 112

N4

∑
1≤j≤k≤N

1 ≤ 2000

N2
. (32)

By Markov inequality for any ε > 0, P{|ZN/N − a| ≥ ε} ≤ C(ε)/N2. Applying Borel-Cantelli I we obtain
the desired result.

(d) Show that ZN satisfies the following central limit theorem

lim
N→∞

P
{ZN (ω)−Nm

b
√
N

≤ z
}

= FG(z) . (33)

for some b ∈ R and all z ∈ R. Here FG(z) = P{Y ≤ z} is the distribution function of a standard normal
random variable Y . [Hint: Partition the string (ω1 . . . ωN ) into blocks.]

Solution : Throughout we let SN = ZN (ω)−Na =
∑N
n=11 Yn. We want to prove that

lim
N→∞

P
{
SN (ω)/b

√
N ≤ z

}
= FG(z) . (34)

Fix γ ∈ (0, 1/2) and let m ≡cN1/2−γc. Partition the set {11, . . . , N} into m consecutive intervals, each of
length ` ≡ b(N − 10)/mc or `+ 1, to be denoted by J1, J2, . . . , Jm (that is J1 = {11, . . . , 11 + `− 1}), etc).
Partition each of these intervals into two consecutive intervals as Ji = Ki ∪ Li with |Li| = 10 or 11 and
|Ki| = `− 10. Define

Wi =
∑
n∈Ki

Yn , S∗N =

m∑
i=1

Wi . (35)

The Wi’s are independent and identically distributed with EWi = 0. Further, proceeding as in point (b)
above, it is easy to see that

E(W 2
i ) ≡ b`` = b`+O(1) , (36)

E(W 4
i ) ≤ c`2 . (37)

Consider therefore the normalized sum Ŝ∗N =
∑m
i=1Wi/

√
Nb. The Lindeberg parameter reads

gN (ε) =
1

Nb

m∑
i=1

E
{
W 2
i : |Wi| ≥ ε

√
Nb
}
≤ 1

(Nεb)2

m∑
i=1

E
{
W 4
i

}
≤ cm`2

(Nεb)2
≤ c′

ε2m
, (38)
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Since m → ∞ as N → ∞, we have gN (ε) → 0. Further Var(Ŝ∗N ) = mE(W 2
i )/(Nb) → 1 because ` → ∞ as

well. By Lindeberg central limit theorem

lim
N→∞

P
{
S∗N/b

√
N ≤ z

}
= FG(z) . (39)

Since |Yn| ≤ 1, we have |SN − S∗N | ≤ 11m ≤ δ
√
N , for any δ > 0 and all N > N0(δ). Therefore

P
{
S∗N ≤ zb

√
N − δ

√
N
}
≤ P

{
SN ≤ zb

√
N
}
≤ P

{
S∗N ≤ zb

√
N + δ

√
N
}
. (40)

By taking the limit N →∞ and using Eq. (39), we get

FG(z − δ) ≤ lim inf
N→∞

P
{
SN (ω)/b

√
N ≤ z

}
≤ lim sup

N→∞
P
{
SN (ω)/b

√
N ≤ z

}
≤ FG(z + δ) . (41)

The thesis follows by taking δ → 0 by continuity of FG.

Problem 5

Let Ω be the interval [0, 2π) with the end-points identified (in other words, this is a circle indexed by the
angular coordinate). Endow this set with the standard topology, whereby a basis of neighborhoods of x is
given by the intervals (x − ε, x + ε) for x 6= 0 (and ε > 0 small enough) and (2π − ε, ε) for x = 0. The
resulting topological space Ω is compact.

The mapping ϕ : [0, 2π) → Ω (the first space endowed with the standard topology), with ϕ(x) = x, is
piecewise continuous together with its inverse. In particular both ϕ and ϕ−1 are measurable with respect to
the Borel σ algebras. The Lebesgue measure λΩ is uniquely defined by λΩ = λ ◦ ϕ−1. Analogously, for any
measure ν on ([0, 2π),B[0,2π)) one can associate the measure ν ◦ ϕ−1 on (Ω,BΩ).

Given a probability measure µ on (Ω,BΩ), its Fourier coefficients are the numbers

ck(µ) =

∫
Ω

eikx µ(dx) , (42)

for k ∈ Z. It is known that, for any 0 < a < b < 2π with µ({a}) = µ({b}) = 0,

µ((a, b]) = lim
m→∞

∫
(a,b]

{ 1

2mπ

m−1∑
l=0

l∑
k=−l

ck e
−ikt

}
dt , (43)

where ck = ck(µ). (You are welcome to use this fact in answering the following questions.)

(a) Show that the Fourier coefficients uniquely determine the probability measure, i.e. that given µ, ν
probability measures on (Ω,BΩ) with ck(µ) = ck(ν) for all k ∈ Z, we have µ = ν.

Solution: For z ∈ [0, 2π), let G(z) = µ([0, z)). It is clearly sufficient to show that G is uniquely
determined by the Fourier coefficients, since the intervals [0, z) form a π-system that generates BΩ. By
assumption G(0) = 0 and G(2π) = 1. Further G is non-dereasing and right-continuous. Let C be the set of
continuity points a ∈ (0, 2π) such that µ({a}) = 0. For a ∈ C, 1−G(a) = µ((a, 2π)) is uniquely determined
by the inversion formula (43) as the limit for b ↑ 2π, b ∈ C of µ((a, b]). For general a, using right continuity
we have G(a) = inf{G(a′) : a′ > a, a′ ∈ C}.

Therefore G is uniquely detemined by the Fourier coefficients.

(b) Given two independent random variables X, Y taking values in Ω, let Z = X ⊕ Y be defined by

X ⊕ Y =

{
X + Y if X + Y ∈ [0, 2π),
X + Y − 2π if X + Y ∈ [2π, 4π).

(44)

7



Can you express the Fourier coefficients of (the law of) Z in terms of (the laws of) X and Y .

Solution: We have, for k ∈ Z, ck(Z) = E{eikZ}. But Z = X + Y − 2π` for an integer `, and therefore
eikZ = eik(X+Y ). Using independence ck(Z) = E{eikZ} = E{eikXeikY } = E{eikX}E{eikY } = ck(X)ck(Y ).

(c) Let {Xi}i∈N, be independent and identically distributed random variables taking values in Ω, and assume
their common distribution to admit a density fX with respect to the Lebesgue measure. Let µ(n) be the law
of X1 ⊕X2 ⊕ · · · ⊕Xn.

Prove that, as n→∞, µ(n) converges weakly to the uniform distribution over Ω (i.e. to U = λΩ/(2π)).

Solution: Let c
(n)
k = ck(µ(n)). We claim that, for any k ∈ Z, c

(n)
k → ck(U). Since Ω is compact,

the sequence of probability measures µ(n) is uniformly tight. Hence any subsequence {µ(n(m))} admits a

converging subsequence µ(n′(m)) w⇒ ν, with {n′(m)}m∈N ⊆ {n(m)}m∈N. Since x 7→ eikx is a continuous

bounded function, c
n′(m)
k → ck(ν) along such a subsequence. But as proved in point (a), the Fourier

coefficiends determine uniquely the distribution, whence ν = U for any subsequence. Therefore (by the same

argument as in Levy’s continuity theorem) µ(n) w⇒ U

We are left with the task of proving c
(n)
k → ck(U). Notice that c0(U) = 1 and ck(U) = 0 for k 6= 0. Let

c
(n)
k =

∫
eikxµ(n)(dx). By point (b) above c

(n)
k = (ck)n for ck = E{eikX}. Clearly c0 = 1. It is therefore

sufficient to prove that |ck| < 1 for all k 6= 0. Using Fubini, we get immediately |ck|2 = E{eik(X−Y )} =
E{cos k(X −Y )} for X, Y i.i.d. with density fX . Therefore, since (cos(α/2))2 = (1− cosα)/2 and using the
fact that X,Y have a density

1− |ck|2 =

∫
[0,2π)×[0,2π)

(
cos

k(x− y)

2

)2

f(x) f(y) dx× dy (45)

for dx×dy the Lebesgue measure in R2. Therefore |ck| = 1 implies f(x)f(y) = 0 for almost every (x, y), i.e.
f(x) = 0 for almost every x, which is impossible since

∫
f(x) = 1. This implies |ck| < 1 as claimed.

(d) Consider now the case in which Xi = θ for all i almost surely, for some θ ∈ [0, 2π) with θ/π irrational.
Does µ(n) have a weak limit? Consider the average

ν(n) ≡ 1

n

n∑
k=1

µ(k) . (46)

Does ν(n) have a weak limit as n→∞? Prove your answer.

Solution: We have µ(n) = δxn for xn = nθ − `2π (with an appropriate choice of `). For θ/π irrational
the sequence xn does not converge, and hence µ(n) does not converge either.

We claim that ν(n) converges weakly to U (the uniform probability measure over [0, 2π)). By the same

argument as in point (c) above, it is sufficient to prove that the corresponding Fourier coefficients c
(n)
k =∫

eikxν(n)(dx) are such that c
(n)
k → 0 for all k 6= 0 (obviously c

(n)
0 = 1).

We have ν(n) = n−1
∑n
`=1 δx`

. For k integer eikx` = eik`θ. Therefore, for k 6= 0,

c
(n)
k =

1

n

n∑
`=1

e2πik`θ =
1

n

eikθ − eik(n+1)θ

1− eikθ
, (47)

whence |c(n)
k | ≤ 2/(n(1− cos kθ))→ 0 (because for θ/π irrational, cos(kθ) < 1 for all k).
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