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Problem 1

Let λ2 be the Lebesgue measure on (R2,BR2). We know already that it is invariant under translation i.e.
that λ2(B + x) = λ2(B) for any Borel set B and x ∈ R2 (whereby B + x = {y ∈ R2 : y − x ∈ B}).

(a) Show that it is invariant under rotations as well, i.e. that for any α ∈ [0, 2π], and any Borel set B ⊆ R2,
λ2(R(α)B) = λ2(B) (whereby R(α) denotes a rotation by an angle α and R(α)B = {x ∈ R2 : R(−α)x ∈ B}).

Solution : Throughout the solution we will use the fact that λ2 = λ1 × λ1 whence we obtain the action
of λ2 on rectangles: λ2(A1 × A2) = λ1(A1)λ1(A2). Also, for J1, J2 ⊆ R two intervals, let TJ1,J2 be any
triangle with two sides equal to J1 (parallel to the first axis) and J2 (equal to the second axis). from the
addittivity of λ2 it follows immediately that λ2(TJ1,J2) = |J1| · |J2|/2. (We use here the fact that for a
segment S = {x0 + x1λ : λ ∈ [a, b]}, x0, x1 ∈ R2, λ2(S) = 0, which can be proved by covering S with
squares.)

Consider next a rectangle A = [0, a)× [0, b), and let A′ = R(α)A. Using again addittivity it follows that,
for β = π/2− α:

λ2(A′) = (a cos α + b cos β)(a sinα + b sinβ)− a2 sinα cos α− b2 sinβ cos β

= ab(cos α sinβ + cos β sinα) = ab sin(α + β) = ab .

Hence λ2(A) = λ2(R(α)A) and by translation invariance this holds for any A = [a1, a2) × [b1, b2) (not
necessarily with a corner at the origin).

Since the π-system P = {A = [a1, a2) × [b1, b2) : a1 < a2, b1 < b2} generates the Borel σ algebra, and
recalling that λ2 is σ-finite, this proves the claim by Caratheodory uniqueness theorem.

(b) For s ∈ R+, and B ⊆ R2 Borel, let sB ≡ {x ∈ R2 : s−1x ∈ B}. Prove that λ2(sB) = s2λ2(B).

Solution : The proof is analogous to the previous one. Let µ be the measure defined by µ(B) ≡
s−2λ2(sB). For A = [a1, a2)× [b1, b2), a1 < a2, b1 < b2, we have sA = [sa1, sa2)× [sb1, sb2), whence

µ(A) =
1
s2

λ2(sA) =
1
s2

(sa2 − sa1)(sb2 − sb1) = (a2 − a1)(b2 − b1) = λ2(A) .

The claim follows by Caratheodory uniqueness theorem.

(c) For r > 0, 0 ≤ α < β ≤ 2π, let

Cr,α,β ≡
{
x = (u cos θ, u sin θ) : u ∈ [0, r] , θ ∈ [α, β]

}
. (1)

Prove that λ2(Cr,α,β) = (β − α)r2.
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Solution : Notice that Cr,α,β = rC1,α,β . Therefore, by point (b) above, it is sufficient to prove the
claim for r = 1. Further by invariance under rotation (point (a)), λ2(C1,α,β) = λ2(C1,0,β−α). It is therefore
sufficient to show that F (θ) ≡ λ2(C1,0,θ) = θ/2.

By covering C1,0,θ with a triangle and inscribing a triangle in it we have

1
2

sin θ cos θ ≤ F (θ) ≤ 1
2

tan θ .

From these we have F (θ) = θ/2 + O(θ2) as θ → 0. By addittivity of λ2, and splitting C1,0,θ = C1,0,θ/n ∪
C1,θ/n,2θ/n ∪ · · · ∪ C1,θ−θ/n,θ, we get

F (θ) = nF (θ/n) = lim
n→∞

nF (θ/n) = lim
n→∞

n
[ θ

2n
+ O(θ2/n2)

]
=

θ

2
.

This finishes the proof.

d) Let Ω ≡ [0, 2π]× [0,∞), g : Ω → R+ be given by g(θ, r) = r, and define ρ to be the measure on (Ω,BΩ)
with density g with respect to the Lebesgue measure.

For any function f ∈ L1(R2,BR2 , λ2), let f̂ : Ω → R be defined by f̂(θ, r) ≡ f(r cos θ, r sin θ). Prove that
f ∈ L1(Ω,BΩ, ρ), and that ∫

Ω

f̂ dρ =
∫

R2
f dλ2 . (2)

Solution : The proof follows by the Monotone Class Theorem. Denote by H the class of Borel functions
such that (2) holds. Then (a) 1 ∈ H since both sides are infinite; (b) If h1, h2 ∈ H then c1h1 + c2h2 ∈ H by
linearity of the integral; (c) H is closed under limits from below by monotone convergence.

Finally, let A = Cr,α,β . We claim that f ≡ IA ∈ H. Indeed by point (c) above
∫

R2 f dλ2. On the other
hand f̂(θ, u) = I[α,β]×[0,r](θ, u), whence

∫
Ω

f̂ dρ = (β − α)
∫ r

0
udλ1(u) = (β − α)r2/2. Therefore, for the

π-system

P ≡
{
C̃r,α,β : r ≥ 0, 0 ≤ α < β < 2π

}
C̃r,α,β ≡

{
x = (u cos θ, u sin θ) : u ∈ [0, r] , θ ∈ [α, β)

}
,

we have IA ∈ H for any A ∈ P. The thesis is completed by noting that σ(P) is the Borel σ-algebra (this is
a standard argument).

Problem 2

Let (Ω,F , µ) be a measure space, {An}n∈N a sequence of measurable sets and f ∈ L1(Ω,F , µ). Assume that

lim
n→∞

∫
|IAn

− f |dµ = 0 . (3)

Prove that there exists A ∈ F such that f = IA almost everywhere.

Solution : For ε > 0, let Aε be defined as

Aε ≡
{
ω ∈ Ω : min(|f(ω)|, |f(ω)− 1|) ≥ ε

}
.
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Of course we have |IAn
− f | ≥ ε IAε

, whence

µ(Aε) ≤
1
ε

∫
|IAn − f |dµ → 0 .

Therefore

µ({ω : f(ω) 6∈ {0, 1}}) = µ(∪∞k=1A1/k) = 0 ,

where the second identity follows since A1/k is an increasing sequence of sets. This finishes the proof.

Problem 3

Let f1, f2 : [0, 1] → R be two Borel functions with f1(x) ≤ f2(x) for all x ∈ [0, 1], and define A ⊆ R2 by

A ≡
{
(x, y) ∈ [0, 1]× R : f1(x) ≤ y ≤ f2(x)

}
(4)

(a) Prove that A is a Borel set.

Solution : Indeed A = A1 ∩ Ac
2 where Aa ≡

{
(x, y) ∈ [0, 1]× R : fa(x) ≤ y

}
. To see that Aa is Borel,

define Fa : R2 → R by Fa(x, y) = y − fa(x). This is a Borel function (since it is the difference of Borel
functions), and Aa = F−1

a ([0,∞)), whence the claim follows.

(b) Denoting by λd the Lebesgue measure on Rd, prove that

λ2(A) =
∫

[0,1]

[f2(x)− f1(x)] dλ1(x) . (5)

Solution : Applying Fubini’s theorem to the non-negative Borel function IA and the Lebesgue measure
λ2 = λ1 × λ1, we have

λ2(A) =
∫

IA dλ2(x, y) =
∫

[0,1]

{∫
R

I[f1(x),f2(x)](y)dλ1(y)
}

dλ1(x) =
∫

[0,1]

[f2(x)− f1(x)] dλ1(x) .

(c) For a Borel function f : [0, 1] → R, and y ∈ R, let

Ay ≡
{
x ∈ [0, 1] : y = f(x)

}
. (6)

Prove that λ1(Ay) = 0 for almost every y.

Solution : Let A = ∪y∈RAy. Applying point (b) to f1 = f2 = f , we get λ2(A) = 0. On the other hand

λ2(A) =
∫

IA dλ2(x, y) =
∫

R

{∫
[0,1]

inf
Ay

(x)dλ1(x)
}

dλ1(y) =
∫

R
λ1(Ay) dλ1(y) .

Since λ1(Ay) ≥ 0 and
∫

R λ1(Ay) dλ1(y) = 0 it follows that λ1(Ay) = 0 almost everywhere.
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Problem 4

Let Ω = {red, blue}Z2
be the set of all possible ways to color the vertices of Z2 (the infinite 2-dimensional

lattice) with two colors (red and blue). An element of this space is an assignment of colors ω : x 7→ ωx ∈
{red, blue} for all x ∈ Z2.

Let Ax be the set of conficurations such that vertex x is red: Ax = {ω : ωx = red}, and consider the
σ-algebra F ≡ σ({Ax : x ∈ Z2}).

Given a coloring ω, a red cluster R is a connected subset of red vertices. By ‘connected’ we mean that
for any two vertices x, y ∈ R, there exists a nearest-neighbors path of red vertices connecting them (i.e. a
sequence x1, x2, . . . , xn ∈ Z2 such that x1 = x, xn = y, ‖xi+1 − xi‖ = 1 and ωxi = red for all i.

(a) Let C ⊆ Ω be the subset of configurations defined by

C =
{
ω : ω contains a red cluster with infinitely many vertices

}
. (7)

Prove that C ∈ F .

Solution : Given integers m < n, let Cm,n be the event that there exists a red cluster R ⊆ Z2 with at
least one vertex x ∈ R such that ‖x‖∞ ≤ m and at least one vertex x ∈ R such that ‖x‖∞ ≥ n. Of course
Cm,n ∈ F since membership in Cm,n only depends {ωx : ‖x‖∞ ≤ n}.

Next consider Cm ≡ ∩∞n=m+1Cm,n. This also is in F since is a countable intersection. Further Cm is the
event that there exists an infinite red cluster with at least one vertex x such that ‖x‖∞ ≤ m. The proof is
finished by noting that C = ∪∞m=1Cm.

(b) Let p ∈ [0, 1] be given and define P to be the probability measure on (Ω,F) such that the collection of
events {Ax : x ∈ Z2} are mutually independent, with P(Ax) = p for all x ∈ Z2.

Prove that either P(C) = 1 or P(C) = 0.

Solution : Let X`(ω) = ωx(`) where x(1), x(2), . . . is an ordering of the vertices of the two-dimensional
lattice Z2 such that ‖x(`)‖∞ is non-decreasing. Denote by T` ≡ σ(X`, X`+1, . . . ).

With the notation at the previous point, Cm ∈ T` provided m > ‖x(`)‖∞. As a consequence C ∈ T =
∩`T`. The proof is finished by applying Kolmogorov’s 0-1 law.

Problem 5

Consider the measurable space (Ω,F), with: Ω = {0, 1}N the set of (infinite) binary sequences ω =
(ω1, ω2, ω3, . . . ); F the σ-algebra generated by cylindrical sets (equivalently the σ-algebra generated by
sets of the type Ai,x = {ω : ωi = x} for i ∈ N and x ∈ {0, 1}).

Let P be the probability measure on (Ω,F) such that for all n

P
(
{ω : (ω1, . . . , ωn) = (x1, . . . , xn)}

)
=

1
2

n−1∏
i=1

pi(xi, xi+1) , (8)

where

pi(xi, xi+1) =
{

1− (1/i2) if xi = xi+1,
(1/i2) otherwise. (9)
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(a) Prove that a probability measure satisfying Eqs. (8) and (9) does indeed exist.

Solution : This follows by checking the hypotheses of Kolmogorov extension theorem, which is immediate

∑
xn

P
(
{ω : (ω1, . . . , ωn) = (x1, . . . , xn)}

)
=

1
2

n−2∏
i=1

pi(xi, xi+1)
∑
xn

pi−1(xi−1, xi)

= P
(
{ω : (ω1, . . . , ωn−1) = (x1, . . . , xn−1)} .

(b) Let Xi(ω) = ωi and consider the tail σ-algebra T = ∩∞n=1σ({Xm : m ≥ n}). Is T trivial? Prove your
answer.

Solution : T is non-trivial.
Consider the events

A ≡
{
ω : lim sup

n→∞
Xn(ω) = lim inf

n→∞
Xn(ω)

}
,

A0 ≡
{
ω : lim sup

n→∞
Xn(ω) = lim inf

n→∞
Xn(ω) = 0

}
,

A1 ≡
{
ω : lim sup

n→∞
Xn(ω) = lim inf

n→∞
Xn(ω) = 1

}
.

Clearly A,A0, A1 ∈ T . Further A0∩A1 = ∅ and A0∪A1 = A whence by symmetry P(A0) = P(A1) = P(A)/2.
The claim follows by proving that P(A) = 1. To show this, consider the event Ac = {ω : Xn(ω) 6=
Xn+1(ω) infinitely often }. Since

∞∑
n=1

P{Xn(ω) 6= Xn+1(ω)} =
∞∑

n=1

1
n2

< ∞ ,

we have P(Ac) = 0 by Borel-Cantelli.
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