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Problem 1

Let A2 be the Lebesgue measure on (R? Bgz). We know already that it is invariant under translation i.e.
that A\2(B + x) = A2(B) for any Borel set B and = € R? (whereby B+ 2 = {y € R? : y — x € B}).

(a) Show that it is invariant under rotations as well, i.e. that for any « € [0,27], and any Borel set B C R2,
A2(R(a) B) = X\2(B) (whereby R(cv) denotes a rotation by an angle o and R(a)B = {z € R? : R(—«a)x € B}).

Solution : Throughout the solution we will use the fact that Ao = A1 X A; whence we obtain the action
of A2 on rectangles: Ag(A; X Ag) = A1(A1)A1(A2). Also, for Ji,Jo € R two intervals, let Ty, s, be any
triangle with two sides equal to J; (parallel to the first axis) and Jo (equal to the second axis). from the
addittivity of A it follows immediately that \o(Ty, 7,) = |Ji| - |J2|/2. (We use here the fact that for a
segment S = {zg + 21\ : X € [a,b]}, 20,71 € R?, A2(S) = 0, which can be proved by covering S with
squares.)

Consider next a rectangle A = [0,a) x [0,b), and let A’ = R(a))A. Using again addittivity it follows that,
for f=7/2—a:

A2 (A") = (acosa + bceos B)(asina + bsin 3) — a? sin o cos o — b? sin 3 cos 3

= ab(cos asin § + cos fsin ) = absin(a + 3) = ab.

Hence A2(A) = Aa(R(a)A) and by translation invariance this holds for any A = [aj,a2) X [b1,b2) (not
necessarily with a corner at the origin).

Since the m-system P = {A = [a1,a2) X [b1,b2) : a1 < ag,b; < by} generates the Borel o algebra, and
recalling that Ao is o-finite, this proves the claim by Caratheodory uniqueness theorem.

(b) For s € R, and B C R? Borel, let sB = {x € R? : s~z € B}. Prove that \y(sB) = s?\a(B).

Solution : The proof is analogous to the previous one. Let p be the measure defined by pu(B) =
572X2(sB). For A = [a1,as) X [b1,b2), a1 < az,b; < by, we have sA = [say, sas) X [sby, sba), whence

w(A) = S%)\Q(SA) = Slz(sag — sa1)(sba — sby) = (az — a1)(by — b1) = A2(A).

The claim follows by Caratheodory uniqueness theorem.

() Forr>0,0<a<f<2n, let
Crap = {z=(ucos,usinb) : uel0,r],0€[a,pf]}. (1)

Prove that A\3(Cy o) = (8 — a)r?.




Solution : Notice that C, 3 = rCi 4. Therefore, by point (b) above, it is sufficient to prove the
claim for » = 1. Further by invariance under rotation (point (a)), A2(C1,a,8) = A2(C1,0,8-a). It is therefore
sufficient to show that F(0) = A2(C1,0,0) = 6/2.

By covering C ¢ with a triangle and inscribing a triangle in it we have

1
isinﬂcosﬂ < F(0) < = tanf.

NN

From these we have F(0) = 6/2 + O(6?) as § — 0. By addittivity of A2, and splitting C1 99 = C1,0,0/n U
Cro/n20/m U~ UC19_g/n0, we get

F(0) =nF(@/n) = lim nF(#/n) = lim n % L 0% /n?)] =2

n—oo n—o0

This finishes the proof.

d) Let Q =[0,27] x [0,00), g : @ — R be given by g(,r) = r, and define p to be the measure on (£, Bg)
with density g with respect to the Lebesgue measure. N
For any function f € L;(R?, Bg,, \2), let f : © — R be defined by f(0,7) = f(r cos®,rsin@). Prove that

f € L1(2,Bq, p), and that
[ Fan=[ rax. @
Q R2

Solution : The proof follows by the Monotone Class Theorem. Denote by H the class of Borel functions
such that holds. Then (a) 1 € H since both sides are infinite; (b) If hy, he € H then c1hy + coho € H by
linearity of the integral; (¢) H is closed under limits from below by monotone convergence.

Finally, let A = C). o,3. We claim that f =14 € H. Indeed by point (c) above fR2 f dX2. On the other
hand f(@,u) = Tja,gx[0,/) (0, u), whence fgfdp = (8- a) for udAi(u) = (8 — a)r?/2. Therefore, for the
m-system

P = {5T,a75:r20,0§a<ﬁ<27r}
Croap = {z = (ucosb,usinb) : ue|0,r],6€[a,p)},

we have I4 € H for any A € P. The thesis is completed by noting that o(P) is the Borel g-algebra (this is
a standard argument).

Problem 2

Let (9, F, ) be a measure space, { A, }nen a sequence of measurable sets and f € L1(Q, F, ). Assume that

tim [ |La, ~ fldn =0, (3)

Prove that there exists A € F such that f =14 almost everywhere.

Solution : For € > 0, let A, be defined as

c={weQ: min(|f(w)|[f(w)—1]) >¢€}.



Of course we have [I4, — f| > el 4., whence

1
W(A) < 7 [ L, ~ fldu—0.
Therefore

p{w = flw) 40,11} = p(UiZiArye) = 0,

where the second identity follows since A,/ is an increasing sequence of sets. This finishes the proof.

Problem 3
Let f1, f2: [0,1] — R be two Borel functions with fi(z) < fa(x) for all z € [0, 1], and define A C R? by

A={(z.y) €[0,1] xR : fi(z) <y < fo() } (4)

(a) Prove that A is a Borel set.

Solution : Indeed A = A; N AS where A, = {(z,y) € [0,1] xR : fo(x) <y }. To see that A, is Borel,
define F, : R?> — R by F,(z,y) = y — fa(z). This is a Borel function (since it is the difference of Borel
functions), and A, = F, 1([0,00)), whence the claim follows.

(b) Denoting by \g the Lebesgue measure on R?, prove that

Mo(4) = /[ o)~ i) ane). (5)

Solution : Applying Fubini’s theorem to the non-negative Borel function I4 and the Lebesgue measure
Ay = A1 X A1, we have

A2 (A) = /]IAd/\z(ﬂ%y) =/

(0,1]

{ [ 10 n@n0 fan@ = [ (5 - i) d@).

(0,1]

(¢) For a Borel function f: [0,1] —» R, and y € R, let
Ay={zel0,1] : y=f(z)}. (6)

Prove that A1 (A4,) = 0 for almost every y.

Solution : Let A = UyecrA,. Applying point (b) to f1 = fo = f, we get A2(A) = 0. On the other hand

Ao(A) = / Iy dXo(z,y) = /R { /[O inf(:z:)d/\l(x)}d)\l(y): /]R Ar(Ay) d(y) .

1] Ay

Since A1(A4,) >0 and [, A1(A4,) dAi(y) = 0 it follows that A;(A,) = 0 almost everywhere.




Problem 4

Let © = {red, blue}%" be the set of all possible ways to color the vertices of Z2 (the infinite 2-dimensional
lattice) with two colors (red and blue). An element of this space is an assignment of colors w : z +— w, €
{red, blue} for all z € Z2.

Let A, be the set of conficurations such that vertex z is red: A, = {w : w, = red}, and consider the
o-algebra F = o({A, : © € Z*}).

Given a coloring w, a red cluster R is a connected subset of red vertices. By ‘connected’ we mean that
for any two vertices z,y € R, there exists a nearest-neighbors path of red vertices connecting them (i.e. a
sequence Ty, s, ..., T, € Z* such that x; = z, ,, = 9, ||v;11 — ;]| = 1 and w,, = red for all i.

(a) Let C' C Q be the subset of configurations defined by
C = {w : w contains a red cluster with infinitely many vertices } . (7)

Prove that C € F.

Solution : Given integers m < n, let C,, ,, be the event that there exists a red cluster R C 7?2 with at
least one vertex x € R such that ||z||.c < m and at least one vertex z € R such that ||z|s > n. Of course
Chn € F since membership in C,, ,, only depends {w, : [|z|e0 < n}.

Next consider C,, = N2, 1 1Chy.n. This also is in F since is a countable intersection. Further Cp, is the
event that there exists an infinite red cluster with at least one vertex z such that ||z]oc < m. The proof is
finished by noting that C' = US_, Cp,.

(b) Let p € [0,1] be given and define P to be the probability measure on (€2, F) such that the collection of
events {A, : x € Z?} are mutually independent, with P(A,) = p for all z € Z2.
Prove that either P(C') =1 or P(C) = 0.

Solution : Let X/(w) = wy(y) where (1), 2(2),... is an ordering of the vertices of the two-dimensional
lattice Z? such that ||z(£)||s is non-decreasing. Denote by 7, = o(Xy, X¢11,...).

With the notation at the previous point, C, € 7y provided m > ||z(¢)||c. As a consequence C' € T =
N¢7Zy. The proof is finished by applying Kolmogorov’s 0-1 law.

Problem 5

Consider the measurable space (€2, F), with: Q = {0,1}" the set of (infinite) binary sequences w =
(w1, wa,ws,...); F the o-algebra generated by cylindrical sets (equivalently the c-algebra generated by
sets of the type A;; = {w: w; =z} for i € N and z € {0,1}).

Let P be the probability measure on (€2, F) such that for all n

P{w : (i, ,wn) = (T1,...,20)}) = % ﬁpi(l’i,xi-i-l)y (8)

where

=) i ay = wag,
pi(@i, 1) = { (1/i2) otherwise. ©)




(a) Prove that a probability measure satisfying Egs. (8) and (9) does indeed exist.

Solution : This follows by checking the hypotheses of Kolmogorov extension theorem, which is immediate

n—2
ZP({Q} : (wh. .. ,wn) = (1‘1, ce ,l’n)}) = % Hpi(l’i,l’i+1)Zpi,1($i,1,$i)

= IP({w s (Wi wn—1) = (X1, 1)}

(b) Let X;(w) = w; and consider the tail o-algebra 7 = N2 ,0({X,, : m > n}). Is T trivial? Prove your
answer.

Solution : 7 is non-trivial.
Consider the events

A={w : lim sup X, (w)=1lim inf X,(w)},

Ap = {w : lim sup X, (w) =lim inf X,(w)= 0}7

Ay ={w : lim sup X, (w) =lim inf X,(w)=1}.
Clearly A, Ag, Ay € T. Further AgNA; = 0 and AgUA; = A whence by symmetry P(4y) = P(4;) = P(A4)/2.
The claim follows by proving that P(A) = 1. To show this, consider the event A° = {w : X, (w) #
Xp+1(w) infinitely often }. Since

> P{Xa() £ Xnna (@)} = 3 5 < oo,

we have P(A°) = 0 by Borel-Cantelli.




	

