In this session, we will go through some practice problems. These problems fall in the scope of Stats 310A and involves a lot of what we learned comprehensively.

Problem 1
Let \mathcal{X} be a set, \mathcal{B} be a countably generated σ-algebra of subsets of \mathcal{X}. Let $\mathcal{P}(\mathcal{X},\mathcal{B})$ be the set of all probability measures on $(\mathcal{X},\mathcal{B})$. Make $\mathcal{P}(\mathcal{X},\mathcal{B})$ into a measurable space by declaring that the map $P \mapsto P(A)$ is Borel measurable for each $A \in \mathcal{B}$. Call the associated σ-algebra B^*.

(a) Show that B^* is countably generated.

(b) For $\mu \in \mathcal{P}(\mathcal{X},\mathcal{B})$, show that $\{\mu\} \in B^*$.

(c) For $\mu,\nu \in \mathcal{P}(\mathcal{X},\mathcal{B})$, let
$$
\|\mu - \nu\| = \sup_{A \in \mathcal{B}} |\mu(A) - \nu(A)|.
$$
Show that the map $(\mu,\nu) \mapsto \|\mu - \nu\|$ is $B^* \times B^*$ measurable.

Solution

(a) We have by the definition of B^* that
$$
B^* = \sigma(\{\{P \in \mathcal{P}(\mathcal{X},\mathcal{B}) : P(A) \leq p\} : A \in \mathcal{B}, p \in [0,1]\}).
$$

As \mathcal{B} is countably generated, there exists some countable \mathcal{B}_0 such that $\mathcal{B} = \sigma(\mathcal{B}_0)$. Without loss of generality, we can let \mathcal{B}_0 be an algebra (if not, consider the smallest algebra containing \mathcal{B}_0: this also generates $\sigma(\mathcal{B}_0)$ and is a countable set, see Exercise 1.1.29(b) in Dembo’s Notes).

We now define
$$
B^* = \sigma(\{\{P \in \mathcal{P}(\mathcal{X},\mathcal{B}) : P(A) \leq p\} : A \in \mathcal{B}_0, p \in [0,1] \cap \mathbb{Q}\}),
$$
which is the smallest σ-algebra that makes $f_A := P \mapsto P(A)$ measurable for all $A \in \mathcal{B}_0$.

Recalling that the total variation distance makes $\mathcal{P}(\mathcal{X},\mathcal{B})$ into a metric space, let B^*_{tv} be the corresponding Borel σ-algebra. We will now show that
$$
B^*_0 \subseteq B^* \subseteq B^*_{tv} \subseteq B^*_0
$$

The first inclusion is trivial and the second follows from the fact that
$$
|f_A(P) - f_A(P')| = |P(A) - P'(A)| \leq \|P - P'\|_{tv},
$$
rendering each f_A Lipschitz, so continuous, and thus B^*_{tv}-measurable.
For the last inclusion, a slight modification of Exercise 1.2.15(a) in Dembo’s notes yields that for any \(P, P' \in \mathcal{P} \) and \(A \in \mathcal{B} \),
\[
\inf_{B \in \mathcal{B}_0} (P(A \Delta B) \lor P'(A \Delta B)) = 0.
\]

In particular, for any \(B \in \mathcal{B} \) and \(\epsilon > 0 \), we can take \(A_\epsilon \in \mathcal{B}_0 \) such that \(P(A_\epsilon \Delta A), P'(A_\epsilon \Delta A) < \epsilon \), which renders
\[
|P(A) - P'(A)| = |P(A_\epsilon) - P(A_\epsilon) - P(A \Delta A)|
\leq P(A \setminus A_\epsilon) + P(A_\epsilon \setminus A)
\leq 2\epsilon,
\]
and similarly for \(P' \). We thus have that, for any \(\epsilon > 0 \),
\[
\sup_{A \in \mathcal{B}_0} |P(A) - P'(A)| \leq \sup_{A \in \mathcal{B}} |P(A) - P'(A)|
\leq \sup_{A \in \mathcal{B}} |P(A) - P'(A)| + 4\epsilon
\leq \sup_{A \in \mathcal{B}_0} |P(A) - P'(A)| + 4\epsilon,
\]
from which we have that
\[
\sup_{A \in \mathcal{B}} |P(A) - P'(A)| = \sup_{A \in \mathcal{B}_0} |P(A) - P'(A)|.
\]

But now, we can write any TV-open ball as
\[
\{ P : \|P - P_0\|_{\text{tv}} < r \} = \bigcup_{q < r, q \in \mathbb{Q}} \{ P : \sup_{A \in \mathcal{B}} |P(A) - P_0(A)| \leq q \}
= \bigcup_{q < r, q \in \mathbb{Q}} \{ P : \sup_{A \in \mathcal{B}_0} |P(A) - P_0(A)| \leq q \}
= \bigcup_{q < r, q \in \mathbb{Q}} \bigcap_{r=1}^{\infty} \bigcap_{A \in \mathcal{B}_0} \{ P : |P(A) - P_0(A)| < q + 1/r \}
\in \mathcal{B}_0^*.
\]

We thus have our chain of set inclusions and in particular, \(\mathcal{B}_0^* = \mathcal{B}_0^* \), which is finitely-generated.

(b) Given any \(\mu \in \mathcal{P}(\mathcal{X}, \mathcal{B}) \), we clearly have
\[
\{ \mu \} \subseteq \{ P : P(A) = \mu(A), \text{ for all } A \in \mathcal{B}_0 \} = \bigcap_{A \in \mathcal{B}_0} \{ P : P(A) = \mu(A) \}.
\]

Our goal is to show the converse direction, thereby showing that \(\{ \mu \} \) is the intersection of countably many generating sets and thus \(\{ \mu \} \in \mathcal{B}^* \). This is to say that any two measures that coincide on the generating set \(\mathcal{B}_0 \) has to coincide on \(\mathcal{B} \), which is guaranteed by the uniqueness of the Caratheodory extension.
(c) From the working in part (a), it suffices to show that for any \(t \in \mathbb{R} \),

\[
\{(\mu, \nu) : \|\mu - \nu\|_{tv} \leq t\} = \bigcap_{A \in B_0} \{(\mu, \nu) : |\mu(A) - \nu(A)| \leq t\}
\]

is a measurable subset of \(B^* \times B^* \). But note that each set on the RHS is \(B^* \times B^* \)-measurable as the function \((\mu, \nu) \rightarrow |\mu(A) - \nu(A)|\) is measurable for all \(A \), so the result follows.

\(\square\)

Problem 2 Let \(\{X_n\}_n \) be iid symmetric random variables such that

\[
\lim_{y \to \infty} \frac{y^2 \Pr(|X_1| > y)}{\mathbb{E}(X_1^2; |X_1| < y)} = 0.
\]

Show that there exists a sequence \(\{b_n\}_n \) of positive constants such that

\[
\frac{1}{b_n} \sum_{k=1}^{n} X_k \xrightarrow{d} \mathcal{N}(0, 1).
\]

Solution We will be truncating the random variables at some \(c_n \to \infty \), but we will leave the specification of this sequence for later. Define

\[
\sigma_n^2 = \mathbb{E}(X_1^2; |X_1| < c_n)
\]

so that \(\sigma_n^2 \to \mathbb{E}X_1^2 \in (0, \infty] \). Next, we define the truncations

\[
\tilde{X}_{n,k} = \frac{1}{\sigma_n \sqrt{n}} X_k 1_{\{|X_k| \leq c_n\}}.
\]

Defining

\[
S_n = \frac{1}{\sigma_n \sqrt{n}} \sum_{k=1}^{n} X_k,
\]

\[
\tilde{S}_n = \sum_{k=1}^{n} \tilde{X}_{n,k},
\]

we verify the Lindeberg condition, so for any \(\epsilon > 0 \), we have

\[
\mathbb{E}(\tilde{X}_{n,k}^2; |\tilde{X}_{n,k} \geq \epsilon) = \frac{1}{n \sigma_n^2} \mathbb{E}(X_1^2; \epsilon \sigma_n \sqrt{n} \leq |X_1| < c_n),
\]

\[
g_n(\epsilon) = \frac{1}{\sigma_n^2} \mathbb{E}(X_1^2; \epsilon \sigma_n \sqrt{n} \leq |X_1| < c_n).
\]

Notice that if \(c_n \ll \sigma_n \sqrt{n} \), then for large enough \(n \), the condition in the expectation fails and \(g_n(\epsilon) = 0 \). The Lindeberg CLT thus yields that \(\tilde{S}_n \xrightarrow{d} \mathcal{N}(0, 1) \).
Next, we use the usual truncation trick to write

\[
\Pr(S_n \neq \tilde{S}_n) \leq \sum_{k=1}^{n} \Pr(|X_k| > c_n) \tag{9}
\]

\[
= n \Pr(|X_1| > c_n) \tag{10}
\]

\[
= \frac{n}{c_n^2} \cdot c^2 \Pr(|X_1| > c_n) \tag{11}
\]

\[
= \frac{n}{c_n^2} \mathbb{E}(X_1^2; |X_1| < c_n) f(c_n), \tag{12}
\]

where \(f(y) \) is the function tending to 0 defined in eq. [3].

Suppose now that \(c_n \geq \sigma_n n^{1/4} \) and define

\[
\bar{f}(x) = \sup_{y \geq x} f(y). \tag{13}
\]

This function dominates \(f \), is decreasing and tends to 0 as \(x \to \infty \). In particular, we can define

\[
a_n = \bar{f}(\sigma_n n^{1/4}) \geq f(c_n), \tag{14}
\]

so that

\[
\Pr(S_n \neq \tilde{S}_n) \leq \frac{n \sigma_n^2 a_n}{c_n^2}, \tag{15}
\]

which converges to 0 as long as

\[
a_n \sigma_n \sqrt{n} \ll c_n. \tag{16}
\]

At last, we can define

\[
c_n = \sigma_n (\sqrt{a_n} \vee n^{-1/4}) \sqrt{n}. \tag{17}
\]

Notice that this satisfies \(c_n \to \infty, c_n \geq \sigma_n n^{1/4} \) and \(c_n \gg a_n \sigma_n \sqrt{n} \) so that \(\Pr(S_n \neq \tilde{S}_n) \to 0 \), and also satisfies \(c_n \ll \sigma_n \sqrt{n} \) so that \(\tilde{S}_n \overset{d}{\to} \mathcal{N}(0,1) \). Therefore, we conclude that \(S_n \overset{d}{\to} \mathcal{N}(0,1) \). \(\square \)

Problem 3 Recall that given two measures \(\mu, \nu \) on \((\mathbb{R}, \mathcal{B}_R)\), a coupling of \(\mu \) and \(\nu \) is any probability measure \(\gamma \) on \((\mathbb{R}^2, \mathcal{B}_{\mathbb{R}^2})\) such that, for any Borel set \(A \), we have \(\gamma(A \times \mathbb{R}) = \mu(A), \gamma(\mathbb{R} \times A) = \nu(A) \). (In words, the one-dimensional marginals of \(\gamma \) are –respectively– \(\mu \) and \(\nu \).) We denote by \(\Gamma(\mu, \nu) \) the set of couplings of \(\mu \) and \(\nu \). For \(p \geq 1 \), let \(\mathcal{P}_p \) be the space of probability measures \(\mu \) such that \(\int |x|^p \mu(dx) < \infty \). For \(\mu, \nu \in \mathcal{P}_p \), their \(p \)-th Wasserstein distance is

\[
W_p(\mu, \nu) = \left\{ \inf_{\gamma \in \Gamma(\mu, \nu)} \int_{\mathbb{R} \times \mathbb{R}} |x-y|^p \gamma(dx, dy) \right\}^{1/p} \tag{18}
\]

1. For \(\mu = \mathcal{N}(0,1) \) and \(\nu = \mathcal{N}(a,1) \), prove that \(W_2(\mu, \nu) = |a| \).
2. For \(\mu = \mathcal{N}(0,1) \) and \(\nu = \mathcal{N}(0,v), v > 1 \), prove that \(W_2(\mu, \nu) = \sqrt{v} - 1 \).
3. Prove that \(\Gamma(\mu, \nu) \) is uniformly tight.
4. Fix \(p \geq 1 \). Prove that there exists a sequence of probability measures \(\{\gamma_n\}_{n \in \mathbb{R}} \subseteq \Gamma(\mu, \nu) \) and \(\gamma \in \Gamma(\mu, \nu) \) such that \(\gamma_n \overset{w}{\Rightarrow} \gamma \), and

\[
\lim_{n \to \infty} \int_{\mathbb{R} \times \mathbb{R}} |x-y|^p \gamma_n(dx, dy) = W_p(\mu, \nu)^p. \tag{19}
\]
5. Prove that (for \(\{\gamma_n\}_{n \in \mathbb{N}} \), \(\gamma \) constructed as in the previous point)

\[
\lim \inf_{n \to \infty} \int_{\mathbb{R} \times \mathbb{R}} |x - y|^p \gamma_n(dx, dy) \geq \int_{\mathbb{R} \times \mathbb{R}} |x - y|^p \gamma(dx, dy),
\]

(20)

and deduce that

\[
W_p(\mu, \nu) = \left(\int_{\mathbb{R} \times \mathbb{R}} |x - y|^p \gamma(dx, dy) \right)^{1/p}
\]

(21)

Solution

1. For any \(X \sim \mu \) and \(Y \sim \nu \), we have by Jensen’s inequality that

\[
\sqrt{\mathbb{E}(X - Y)^2} \geq |\mathbb{E}X - \mathbb{E}Y| = |a|,
\]

(22)

and this lower bound is achieved by taking \(Z \sim \mathcal{N}(0, 1) \) and \(X = Z, Y = Z + a \) so that

\[
\sqrt{\mathbb{E}(X - Y)^2} = \sqrt{\mathbb{E}(Z - (Z + a))^2} = |a|.
\]

Hence, \(W_2(\mu, \nu) = |a| \).

2. For any \(X \sim \mu \) and \(Y \sim \nu \), we have by Cauchy-Schwarz that

\[
\mathbb{E}(X - Y)^2 = \mathbb{E}X^2 - 2\mathbb{E}XY + \mathbb{E}Y^2 \geq v - 2\sqrt{v} + 1 = (\sqrt{v} - 1)^2
\]

(24)

and this lower bound is achieved by taking \(Z \sim \mathcal{N}(0, 1) \) and \(X = Z, Y = \sqrt{v}Z \) so that

\[
\sqrt{\mathbb{E}(X - Y)^2} = \sqrt{\mathbb{E}((\sqrt{v} - 1)^2Z^2)} = \sqrt{v} - 1.
\]

Hence, \(W_2(\mu, \nu) = \sqrt{v} - 1 \).

3. Let \(\epsilon > 0 \) and let \(K \) be such that \(\mu([-K, K]^c), \nu([-K, K]^c) < \epsilon/2 \). We then have that \([{-K, K}]^2\) is compact such that, for any \(\gamma \in \Gamma \), we have that

\[
\gamma([[-K, K]^2]^c) = \Pr(\{X \notin [-K, K]\} \cup \{Y \notin [-K, K]\})
\leq \Pr(X \notin [-K, K]) + \Pr(Y \notin [-K, K])
\leq \epsilon.
\]

(26) \hspace{1cm} (27) \hspace{1cm} (28)

That is, \(\Gamma \) is uniformly tight.

4. Since \(W_p^p(\mu, \nu) = \inf_{\gamma \in \Gamma} \int_{\mathbb{R}^2} |x - y|^p \gamma(dx, dy) \), choose a sequence \(\gamma_n \in \Gamma \) such that

\[
\lim_{n \to \infty} \int_{\mathbb{R} \times \mathbb{R}} |x - y|^p \gamma_n(dx, dy) = W_p^p(\mu, \nu).
\]

(29)

By the uniform tightness of \(\Gamma \), Prokhorov’s theorem allows us to choose a subsequence \(n_k \) such that \(\gamma_{n_k} \Rightarrow \gamma \). Joint weak convergence implying marginal weak convergence (since coordinate projections are continuous) allows us to conclude that \(\gamma \in \Gamma \).
5. Since $\gamma_{n_k} \Rightarrow \gamma$, Skorokhod’s representation theorem yields a sequence of random variables $(X_k, X'_k) \sim \gamma_{n_k}$ converging almost surely to some $(X, X') \sim \gamma$. Fatou’s lemma then gives

$$\lim \inf_{k \to \infty} \int_{\mathbb{R} \times \mathbb{R}} |x - y|^p \gamma_{n_k}(dx, dy) = \lim \inf_{k \to \infty} \mathbb{E}|X_k - X'_k| \geq \mathbb{E}|X - X'| = \int_{\mathbb{R} \times \mathbb{R}} |x - y|^p \gamma(dx, dy).$$

Since $\gamma \in \Gamma$, we combine this with the previous result to conclude

$$W_p^p(\mu, \nu) \geq \int_{\mathbb{R} \times \mathbb{R}} |x - y|^p \gamma(dx, dy) \geq W_p^p(\mu, \nu),$$

from which we conclude that the infimum in the definition of $W_p^p(\mu, \nu)$ is necessarily achieved.