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Preface

These are the lecture notes for a year long, PhD level course in Probability Theory
that I taught at Stanford University in 2004, 2006 and 2009. The goal of this
course is to prepare incoming PhD students in Stanford’s mathematics and statistics
departments to do research in probability theory. More broadly, the goal of the text
is to help the reader master the mathematical foundations of probability theory
and the techniques most commonly used in proving theorems in this area. This is
then applied to the rigorous study of the most fundamental classes of stochastic
processes.

Towards this goal, we introduce in Chapter [Il the relevant elements from measure
and integration theory, namely, the probability space and the o-algebras of events
in it, random variables viewed as measurable functions, their expectation as the
corresponding Lebesgue integral, and the important concept of independence.

Utilizing these elements, we study in Chapter [2the various notions of convergence
of random variables and derive the weak and strong laws of large numbers.

Chapter Bl is devoted to the theory of weak convergence, the related concepts
of distribution and characteristic functions and two important special cases: the
Central Limit Theorem (in short CLT) and the Poisson approximation.

Drawing upon the framework of Chapter[Il we devote Chapter [ to the definition,
existence and properties of the conditional expectation and the associated regular
conditional probability distribution.

Chapter [ deals with filtrations, the mathematical notion of information progres-
sion in time, and with the corresponding stopping times. Results about the latter
are obtained as a by product of the study of a collection of stochastic processes
called martingales. Martingale representations are explored, as well as maximal
inequalities, convergence theorems and various applications thereof. Aiming for a
clearer and easier presentation, we focus here on the discrete time settings deferring
the continuous time counterpart to Chapter

Chapter [0 provides a brief introduction to the theory of Markov chains, a vast
subject at the core of probability theory, to which many text books are devoted.
We illustrate some of the interesting mathematical properties of such processes by
examining a few special cases of interest.

In Chapter [[l we provide a brief introduction to Ergodic Theory, limiting our
attention to its application for discrete time stochastic processes. We define the
notion of stationary and ergodic processes, derive the classical theorems of Birkhoff
and Kingman, and highlight few of the many useful applications that this theory
has.



6 PREFACE

Chapter [ sets the framework for studying right-continuous stochastic processes
indexed by a continuous time parameter, introduces the family of Gaussian pro-
cesses and rigorously constructs the Brownian motion as a Gaussian process of
continuous sample path and zero-mean, stationary independent increments.

Chapter [@ expands our earlier treatment of martingales and strong Markov pro-
cesses to the continuous time setting, emphasizing the role of right-continuous fil-
tration. The mathematical structure of such processes is then illustrated both in
the context of Brownian motion and that of Markov jump processes.

Building on this, in Chapter [0 we re-construct the Brownian motion via the
invariance principle as the limit of certain rescaled random walks. We further delve
into the rich properties of its sample path and the many applications of Brownian
motion to the CLT and the Law of the Iterated Logarithm (in short, LIL).

The intended audience for this course should have prior exposure to stochastic
processes, at an informal level. While students are assumed to have taken a real
analysis class dealing with Riemann integration, and mastered well this material,
prior knowledge of measure theory is not assumed.

It is quite clear that these notes are much influenced by the text books |[Bil95)
Dur10, (Wil91l, KaS97] I have been using.

I thank my students out of whose work this text materialized and my teaching as-
sistants Su Chen, Kshitij Khare, Guoqgiang Hu, Julia Salzman, Kevin Sun and Hua
Zhou for their help in the assembly of the notes of more than eighty students into
a coherent document. I am also much indebted to Kevin Ross, Andrea Montanari
and Oana Mocioalca for their feedback on earlier drafts of these notes, to Kevin
Ross for providing all the figures in this text, and to Andrea Montanari, David
Siegmund and Tze Lai for contributing some of the exercises in these notes.

AMIR DEMBO

STANFORD, CALIFORNIA
APRIL 2010



CHAPTER 1

Probability, measure and integration

This chapter is devoted to the mathematical foundations of probability theory.
Section [[Tlintroduces the basic measure theory framework, namely, the probability
space and the o-algebras of events in it. The next building blocks are random
variables, introduced in Section as measurable functions w — X (w) and their
distribution.

This allows us to define in Section [[L3]the important concept of expectation as the
corresponding Lebesgue integral, extending the horizon of our discussion beyond
the special functions and variables with density to which elementary probability
theory is limited. Section [L4] concludes the chapter by considering independence,
the most fundamental aspect that differentiates probability from (general) measure
theory, and the associated product measures.

1.1. Probability spaces, measures and c-algebras

We shall define here the probability space (€2, F,P) using the terminology of mea-
sure theory.

The sample space € is a set of all possible outcomes w € 2 of some random exper-
iment. Probabilities are assigned by A — P(A) to A in a subset F of all possible
sets of outcomes. The event space F represents both the amount of information
available as a result of the experiment conducted and the collection of all subsets
of possible interest to us, where we denote elements of F as events. A pleasant
mathematical framework results by imposing on F the structural conditions of a
o-algebra, as done in Subsection [[T.J] The most common and useful choices for
this o-algebra are then explored in Subsection [[.T.21 Subsection [[LT.3] provides fun-
damental supplements from measure theory, namely Dynkin’s and Carathéodory’s
theorems and their application to the construction of Lebesgue measure.

1.1.1. The probability space (2, F, P). We use 2% to denote the set of all
possible subsets of €. The event space is thus a subset F of 22, consisting of all
allowed events, that is, those subsets of {2 to which we shall assign probabilities.
We next define the structural conditions imposed on F.

DEFINITION 1.1.1. We say that F C 2% is a o-algebra (or a o-field), if
(a) Q€ F,

(b) If A € F then A° € F as well (where A°=Q\ A).

(¢) If A; € F fori=1,2,3,... then also | J; A; € F.

REMARK. Using DeMorgan’s law, we know that (|J, AS)¢ = (), Ai. Thus the
following is equivalent to property (c) of Definition [LT.Tt
(¢’) If Ay € F for i =1,2,3,... then also (), A; € F.

7
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DEFINITION 1.1.2. A pair (Q,F) with F a o-algebra of subsets of Q is called a
measurable space. Given a measurable space (2, F), a measure p is any countably
additive non-negative set function on this space. That is, u : F — [0,00], having
the properties:

(a) u(A) > u(@) =0 for all A € F.
(b) 1(U,, An) = >, 1(Ap) for any countable collection of disjoint sets A, € F.

When in addition u(Q) = 1, we call the measure p a probability measure, and
often label it by P (it is also easy to see that then P(A) <1 for all A€ F).

REMARK. When (b) of Definition is relaxed to involve only finite collections
of disjoint sets A,, we say that p is a finitely additive non-negative set-function.
In measure theory we sometimes consider signed measures, whereby g is no longer
non-negative, hence its range is [—00, 00, and say that such measure is finite when
its range is R (i.e. no set in F is assigned an infinite measure).

DEFINITION 1.1.3. A measure space is a triplet (0, F, 1), with u a measure on the
measurable space (2, F). A measure space (0, F, P) with P a probability measure
is called a probability space.

The next exercise collects some of the fundamental properties shared by all prob-
ability measures.

EXERCISE 1.1.4. Let (2, F,P) be a probability space and A, B, A; events in F.
Prove the following properties of every probability measure.

(a) Monotonicity. If A C B then P(A) < P(B).

(b) Sub-additivity. If A C U;A; then P(A) < . P(4;).

(c) Coutinuity from below: If A; T A, that is, Ay C Ay C ... and U;A; = A,
then P(A;) 1 P(A).

(d) Coutinuity from above: If A; | A, that is, A1 D Ay
then P(A;) | P(A).

V)

. and ﬂlAl = A,

REMARK. In the more general context of measure theory, note that properties
(a)-(c) of Exercise [LT.4 hold for any measure y, whereas the continuity from above
holds whenever p(A4;) < oo for all i sufficiently large. Here is more on this:

EXERCISE 1.1.5. Prove that a finitely additive non-negative set function p on a
measurable space (2, F) with the “continuity” property

B,eF, B,l0, uB,) < = u(B,)—0

must be countably additive if () < co. Give an example that it is not necessarily
so when p(2) = co.

The o-algebra F always contains at least the set () and its complement, the empty
set (). Necessarily, P(Q2) = 1 and P() = 0. So, if we take Fy = {0, Q} as our o-
algebra, then we are left with no degrees of freedom in choice of P. For this reason
we call Fy the trivial o-algebra. Fixing 2, we may expect that the larger the o-
algebra we consider, the more freedom we have in choosing the probability measure.
This indeed holds to some extent, that is, as long as we have no problem satisfying
the requirements in the definition of a probability measure. A natural question is
when should we expect the maximal possible o-algebra F = 2 to be useful?

EXAMPLE 1.1.6. When the sample space ) is countable we can and typically shall
take F = 2. Indeed, in such situations we assign a probability p,, > 0 to eachw €
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making sure that ), pw = 1. Then, it is easy to see that taking P(A) =3 4 pw
for any A C Q results with a probability measure on (,2%). For instance, when
Q is finite, we can take p, = ﬁ, the uniform measure on ), whereby computing
probabilities is the same as counting. Concrete examples are a single coin toss, for
which we have Q. = {H, T} (w = H if the coin lands on its head and w = T if it
lands on its tail), and Fy = {0,Q,H, T}, or when we consider a finite number of
coin tosses, say m, in which case Q, = {(w1,...,wp) s w; € {H,T},i=1,...,n}
is the set of all possible n-tuples of coin tosses, while F,, = 2% is the collection
of all possible sets of n-tuples of coin tosses. Another erxample pertains to the
set of all non-negative integers Q0 = {0,1,2,...} and F = 2%, where we get the
Poisson probability measure of parameter A > 0 when starting from py = Xk—’;ef)‘ for
k=0,1,2,....

When € is uncountable such a strategy as in Example will no longer work.
The problem is that if we take p, = P({w}) > 0 for uncountably many values of
w, we shall end up with P(Q2) = co. Of course we may define everything as before
on a countable subset € of  and demand that P(A)=P(AN ﬁ) for each A C Q.
Excluding such trivial cases, to genuinely use an uncountable sample space 2 we
need to restrict our o-algebra F to a strict subset of 2.

DEFINITION 1.1.7. We say that a probability space (2, F,P) is non-atomic, or
alternatively call P non-atomic if P(A) > 0 implies the existence of B€ F, B C A
with 0 < P(B) < P(A).

Indeed, in contrast to the case of countable 2, the generic uncountable sample
space results with a non-atomic probability space (c.f. Exercise [LI.27). Here is an
interesting property of such spaces (see also [Bil95, Problem 2.19)).

EXERCISE 1.1.8. Suppose P is non-atomic and A € F with P(A) > 0.

(a) Show that for every e > 0, we have B C A such that 0 < P(B) < e.
(b) Prove that if 0 < a < P(A) then there exists B C A with P(B) = a.

Hint: Fiz €, | 0 and define inductively numbers x,, and sets G, € F with Hy = (),
H, = UgenGg, 2, = sup{P(G) : G C A\H,, P(H, UG) < a} and G,, C A\H,
such that P(H, |JGr) < a and P(G,) > (1 — €,)xy,. Consider B = UpGy.

As you show next, the collection of all measures on a given space is a convex cone.

EXERCISE 1.1.9. Given any measures {un,n > 1} on (Q,F), verify that p =

Zf;l Cnlin 18 also a measure on this space, for any finite constants ¢, > 0.

Here are few properties of probability measures for which the conclusions of Ex-
ercise [[L.T4] are useful.

EXERCISE 1.1.10. A function d : X x X — [0,00) is called a semi-metric on
the set X if d(z,z) = 0, d(z,y) = d(y,x) and the triangle inequality d(x,z) <
d(z,y) + d(y, z) holds. With AAB = (AN B°) U (A°N B) denoting the symmetric
difference of subsets A and B of ), show that for any probability space (2, F,P),
the function d(A, B) = P(AAB) is a semi-metric on F.

EXERCISE 1.1.11. Consider events {A,} in a probability space (Q, F,P) that are
almost disjoint in the sense that P(A, N Ay) = 0 for all n # m. Show that then
P(UpL 4,) = ZOO P(A4y).

n=1
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EXERCISE 1.1.12. Suppose a random outcome N follows the Poisson probability
measure of parameter A > 0. Find a simple expression for the probability that N is
an even integer.

1.1.2. Generated and Borel o-algebras. Enumerating the sets in the o-
algebra F is not a realistic option for uncountable Q). Instead, as we see next, the
most common construction of o-algebras is then by implicit means. That is, we
demand that certain sets (called the generators) be in our o-algebra, and take the
smallest possible collection for which this holds.

EXERCISE 1.1.13.

(a) Check that the intersection of (possibly uncountably many) o-algebras is
also a o-algebra.

(b) Verify that for any o-algebras H C G and any H € H, the collection
HE ={Ae€G:ANH € H} is a o-algebra.

(c) Show that H — HH is non-increasing with respect to set inclusions, with
HY = H and H® = G. Deduce that HT9H = HH nyH’ for any pair
H H eH.

In view of part (a) of this exercise we have the following definition.

DEFINITION 1.1.14. Given a collection of subsets A, C Q (not necessarily count-
able), we denote the smallest o-algebra F such that A, € F for all a € T either by
oc({Ax}) or by o(An,a €T), and call 0({An}) the o-algebra generated by the sets
A,. That is,
c({Au})=N{G: GC2%isao—algebra, A, €G VaeTl}.

EXAMPLE 1.1.15. Suppose Q =S is a topological space (that is, S is equipped with
a notion of open subsets, or topology). An example of a generated o-algebra is the
Borel o-algebra on S defined as o({O C S open}) and denoted by Bs. Of special
importance is Bg which we also denote by B.

Different sets of generators may result with the same o-algebra. For example, tak-
ing Q = {1,2,3} it is easy to see that o({1}) = 0({2,3}) = {0, {1}, {2, 3}, {1,2,3}}.

A o-algebra F is countably generated if there exists a countable collection of sets
that generates it. Exercise[L.T.T7shows that Bg is countably generated, but as you
show next, there exist non countably generated o-algebras even on 2 = R.

EXERCISE 1.1.16. Let F consist of all A C Q such that either A is a countable set
or A° is a countable set.

(a) Verify that F is a o-algebra.
(b) Show that F is countably generated if and only if 2 is a countable set.

Recall that if a collection of sets A is a subset of a o-algebra G, then also o(A) C G.
Consequently, to show that o({A,}) = o({Bg}) for two different sets of generators
{A.} and {Bg}, we only need to show that A, € o({Bg}) for each a and that
Bg € 0({Ay}) for each 8. For instance, considering Bg = o({(a,b) : a < b € Q}),
we have by this approach that Bg = o({(a,0) : a < b € R}), as soon as we
show that any interval (a,b) is in Bg. To see this fact, note that for any real
a < b there are rational numbers ¢, < r, such that ¢, | a and 7, T b, hence
(a,b) = Un(gn,m™n) € Bg. Expanding on this, the next exercise provides useful
alternative definitions of B.
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EXERCISE 1.1.17. Verify the alternative definitions of the Borel o-algebra B:
o({(a,b):a<beR}) =c({[a,b] :a <beER}) =0c({(—00,b] : b € R})
=0({(—00,b] : b€ Q}) =0({O CRopen })

If ACRisin B of Example[[LT.T5 we say that A is a Borel set. In particular, all
open (closed) subsets of R are Borel sets, as are many other sets. However,

PROPOSITION 1.1.18. There exists a subset of R that is not in B. That is, not all
subsets of R are Borel sets.

PROOF. See [Wil91] A.1.1] or [Bil95| page 45]. O

EXAMPLE 1.1.19. Another classical example of an uncountable Q) is relevant for
studying the experiment with an infinite number of coin tosses, that is, Qoo = QY
for Q1 = {H, T} (indeed, setting H =1 and T =0, each infinite sequence w € Qoo
is in correspondence with a unique real number x € [0,1] with w being the binary
expansion of x, see Exercise [L213). The o-algebra should at least allow us to
consider any possible outcome of a finite number of coin tosses. The natural o-
algebra in this case is the minimal o-algebra having this property, or put more
formally Fo. = o({Apr,0 € Q¥ k=1,2,...}), where Apj = {w € Qoo 1 w; = 0, =
1...,k} for0=(61,...,60k).

The preceding example is a special case of the construction of a product of mea-
surable spaces, which we detail now.

ExAMPLE 1.1.20. The product of the measurable spaces (i, F;), i = 1,...,n is
the set Q@ = Qq x - - - X Q,, with the o-algebra generated by {A1 X ---x A, : A; € F;},
denoted by Fi X --- Fp,.

You are now to check that the Borel g-algebra of R? is the product of d-copies of
that of R. As we see later, this helps simplifying the study of random vectors.

EXERCISE 1.1.21. Show that for any d < oo,
BRdZBX---XBZU({(al,bl) x---x(ad,bd):ai<bi€R,i:1,...,d})

(you need to prove both identities, with the middle term defined as in Example

[L120).

EXERCISE 1.1.22. Let F = 0(Aq, € T') where the collection of sets Ay, a € T is
uncountable (i.e., T is uncountable). Prove that for each B € F there exists a count-
able sub-collection {Aq,,j = 1,2,...} C {Aa,a € '}, such that B € 0({Aq,,J =
1,2,...}).

Often there is no explicit enumerative description of the o-algebra generated by
an infinite collection of subsets, but a notable exception is

EXERCISE 1.1.23. Show that the sets in G = o({[a,b] : a,b € Z}) are all possible
unions of elements from the countable collection {{b}, (b,b+1),b € Z}, and deduce
that B # G.

Probability measures on the Borel o-algebra of R are examples of regular measures,
namely:
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EXERCISE 1.1.24. Show that if P is a probability measure on (R, B) then for any
A € B and € > 0, there exists an open set G containing A such that P(A) + ¢ >
P(G).

Here is more information about Bga.

EXERCISE 1.1.25. Show that if p is a finitely additive non-negative set function
on (RY, Bga) such that n(R%) = 1 and for any Borel set A,

w(A) =sup{u(K): K C A, K compact },

then p must be a probability measure.

Hint: Argue by contradiction using the conclusion of FExercise .13 To this end,
recall the finite intersection property (if compact K; C R® are such that Ni_, K; are
non-empty for finite n, then the countable intersection (=, K; is also non-empty).

1.1.3. Lebesgue measure and Carathéodory’s theorem. Perhaps the
most important measure on (R, B) is the Lebesgue measure, A. It is the unique
measure that satisfies A\(F') = >, _, (bx — ax) whenever F = J; _, (ax, by] for some
r<ooand a; < by <ag <bg--- <b,.. Since A(R) = oo, this is not a probability
measure. However, when we restrict 2 to be the interval (0, 1] we get

EXAMPLE 1.1.26. The uniform probability measure on (0,1], is denoted U and
defined as above, now with added restrictions that 0 < a1 and b, < 1. Alternatively,
U is the restriction of the measure X to the sub-o-algebra B 1) of B.

EXERCISE 1.1.27. Show that ((0,1], B(o,1}, U) is a non-atomic probability space and
deduce that (R, B, \) is a non-atomic measure space.

Note that any countable union of sets of probability zero has probability zero, but
this is not the case for an uncountable union. For example, U({z}) = 0 for every
z € R, but U(R) = 1.

As we have seen in Example it is often impossible to explicitly specify the
value of a measure on all sets of the o-algebra F. Instead, we wish to specify its
values on a much smaller and better behaved collection of generators A of F and
use Carathéodory’s theorem to guarantee the existence of a unique measure on F
that coincides with our specified values. To this end, we require that A4 be an
algebra, that is,

DEFINITION 1.1.28. A collection A of subsets of 2 is an algebra (or a field) if
(a) Qe A,
(b) If A € A then A° € A as well,
(c) If A,B € A then also AU B € A.

REMARK. In view of the closure of algebra with respect to complements, we could
have replaced the requirement that 2 € A with the (more standard) requirement
that § € A. As part (c) of Definition amounts to closure of an algebra
under finite unions (and by DeMorgan’s law also finite intersections), the difference
between an algebra and a g-algebra is that a o-algebra is also closed under countable
unions.

We sometimes make use of the fact that unlike generated o-algebras, the algebra
generated by a collection of sets A can be explicitly presented.

EXERCISE 1.1.29. The algebra generated by a given collection of subsets A, denoted
f(A), is the intersection of all algebras of subsets of Q containing A.
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(a) Verify that f(A) is indeed an algebra and that f(A) is minimal in the
sense that if G is an algebra and A C G, then f(A) CG.

(b) Show that f(A) is the collection of all finite disjoint unions of sets of the
form (;L, Aij, where for each i and j either A;; or AS; are in A.

We next state Carathéodory’s extension theorem, a key result from measure the-
ory, and demonstrate how it applies in the context of Example [[.T.26]

THEOREM 1.1.30 (CARATHEODORY’S EXTENSION THEOREM). If o : A — [0, 00]
is a countably additive set function on an algebra A then there exists a measure
woon (Q,0(A)) such that p = po on A. Furthermore, if uo(Q) < oo then such a
measure [ 1S unique.

To construct the measure U on B(g 1y let = (0,1] and
A={(a1,b1]U---U(ar,b;] : 0< a1 < by <---<a,<b <1,r <00}

be a collection of subsets of (0,1]. It is not hard to verify that A is an algebra, and
further that o(A) = Bgq) (c.f. Exercise [LTIT for a similar issue, just with (0, 1]
replaced by R). With Uy denoting the non-negative set function on A such that

(1.1.1) Uo( U(Gk,bk]) :Z(bk—@k)7

k=1 k=1
note that Up((0,1]) = 1, hence the existence of a unique probability measure U on
((0,1], B(g,1)) such that U(A) = Uy(A) for sets A € A follows by Carathéodory’s
extension theorem, as soon as we verify that

LEMMA 1.1.31. The set function Uy is countably additive on A. That is, if Ay is a
sequence of disjoint sets in A such that Uy Ay, = A € A, then Ug(A) = >, Uo(Ay).

The proof of Lemma [LT.3T] is based on

EXERCISE 1.1.32. Show that Uy is finitely additive on A. That is, Ug(Uj_; Ax) =
Y iy Uo(Ay) for any finite collection of disjoint sets Aq, ..., A, € A.

Proor. Let G, = U;_, Ax and H, = A\ G,. Then, H, | 0 and since
Ay, A € A which is an algebra it follows that G,, and hence H,, are also in A. By
definition, Uy is finitely additive on A, so

Uo(A) = Uo(Hn) + Uo(Gn) = Uo(Hp) + Z Uo(Ak) -
k=1
To prove that Uy is countably additive, it suffices to show that Uy(H,,) | 0, for then

Uo(4) = lim Up(Gn) = lim > Uo(Ar) =D Us(Ar).

k=1 k=1
To complete the proof, we argue by contradiction, assuming that Uy(H,,) > 2¢ for
some € > 0 and all n, where H,, | () are elements of A. By the definition of A
and Uy, we can find for each ¢ a set J; € A whose closure J, is a subset of H, and
Uo(Hy \ Ji) < g2t (for example, add to each aj in the representation of Hy the
minimum of €27¢/r and (by — ay)/2). With Uy finitely additive on the algebra A
this implies that for each n,

UO( U(HZ\JZ)) < iUo(Hg\Jg) <e.

(=1
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As H, C Hy for all £ < n, we have that

Hn\ﬂJe: U(Hn\Je)Q U(Hz\Je)-

<n <n <n

Hence, by finite additivity of Uy and our assumption that Uy(H,) > 2¢, also
Uo(() Je) = Uo(Hn) = Uo(Hn \ ) Je) = Uo(Hn) — Uo(| (He \ J2)) > €.

L<n <n L<n
In particular, for every n, the set (,.,, J¢ is non-empty and therefore so are the
decreasing sets K, = ﬂE<n Je. Since K, are compact sets (by Heine-Borel theo-

rem), the set NeJp is then non-empty as well, and since Jy is a subset of H, for all
¢ we arrive at Ny H, non-empty, contradicting our assumption that H, | 0. O

REMARK. The proof of Lemma [[LT.3T] is generic (for finite measures). Namely,
any non-negative finitely additive set function pg on an algebra A is countably
additive if uo(H,) J 0 whenever H,, € A and H,, | (). Further, as this proof shows,
when 2 is a topological space it suffices for countable additivity of uo to have for
any H € A a sequence Ji € A such that J;, C H are compact and uo(H \ Ji) — 0
as k — oo.

EXERCISE 1.1.33. Show the necessity of the assumption that A be an algebra in
Carathéodory’s extension theorem, by giving an example of two probability measures
w # v oon a measurable space (2, F) such that u(A) = v(A) for all A € A and
F=o0(A).

Hint: This can be done with Q = {1,2,3,4} and F = 2.

It is often useful to assume that the probability space we have is complete, in the
sense we make precise now.

DEFINITION 1.1.34. We say that a measure space (2, F,u) is complete if any
subset N of any B € F with uw(B) = 0 is also in F. If further u = P is a probability
measure, we say that the probability space (2, F,P) is a complete probability space.

Our next theorem states that any measure space can be completed by adding to
its o-algebra all subsets of sets of zero measure (a procedure that depends on the
measure in use).

THEOREM 1.1.35. Given a measure space (Q, F,u), let N = {N : N C A for
some A € F with u(A) = 0} denote the collection of p-null sets. Then, there
exists a complete measure space (Q, F,Ti), called the completion of the measure

space (Q, F, ), such that F={FUN:F € F,N €N} and i = yu on F.

PROOF. This is beyond our scope, but see detailed proof in [Durl0l Theorem
A.2.3]. In particular, F = o(F,N) and u(A U N) = p(A) for any N € N and
A e F (cf. |Bil95| Problems 3.10 and 10.5]). O

The following collections of sets play an important role in proving the easy part
of Carathéodory’s theorem, the uniqueness of the extension .

DEFINITION 1.1.36. A m-system is a collection P of sets closed under finite inter-
sections (i.e. if I € P and J € P then INJ € P).
A M-system is a collection L of sets containing Q2 and B\ A for any AC B A,B € L,
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which is also closed under monotone increasing limits (i.e. if A; € L and A; T A,

then A € L as well).

REMARK. One may equivalently define A-system with A¢ € £ whenever A € L,
instead of requiring that B\ A € £ whenever AC B, A,B € L.

Obviously, an algebra is a m-system. Though an algebra may not be a A-system,

PROPOSITION 1.1.37. A collection F of sets is a o-algebra if and only if it is both
a w-system and a \-system.

PRrROOF. The fact that a o-algebra is a A-system is a trivial consequence of
Definition [LT.Il To prove the converse direction, suppose that F is both a 7-
system and a A-system. Then € is in the A-system F and so is A° = Q\ A for any
A € F. Further, with F also a w-system we have that

AUB=Q\(A°NB°) e F,
for any A, B € F. Consequently, if A; € F then so are also G,, = A;U---UA,, € F.

Since F is a A-system and G, 1 |, 4j, it follows that | J, A; € F as well, completing
the verification that F is a o-algebra. (]

The main tool in proving the uniqueness of the extension is Dynkin’s m— A theorem,
stated next.

THEOREM 1.1.38 (DYNKIN’S ™ — A THEOREM). If P C L with P a w-system and
L a \-system then o(P) C L.

PROOF. A short though dense exercise in set manipulations shows that the
smallest A-system containing P is a m-system (for details see [Wil91), Section A.1.3]
or the proof of [Bil95| Theorem 3.2]). By Proposition[[LT.37it is a o-algebra, hence
contains o(P). Further, it is contained in the A-system £, as £ also contains P. O

As we show next, the uniqueness part of Carathéodory’s theorem, is an immediate
consequence of the m — A\ theorem.

PROPOSITION 1.1.39. If two measures py and ps on (Q,0(P)) agree on the 7-
system P and are such that p1(Q) = pa(Q) < oo, then uy = uo.

PRrROOF. Let £ = {A € 0(P) : p1(A4) = pu2(A)}. Our assumptions imply that

P C L and that Q € L. Further, o(P) is a A-system (by Proposition [LT.37), and
if AC B, A, B € L, then by additivity of the finite measures p; and ps,

p1(B\ A) = p1(B) — p1(A) = p2(B) — p2(A) = p2(B\ A),
that is, B\ A € L. Similarly, if A; 1 A and A; € L, then by the continuity from
below of p; and ps (see remark following Exercise [LT4]),

pi(A) = lim g (An) = lim po(An) = p2(4),

so that A € L. We conclude that £ is a A-system, hence by Dynkin’s m — A theorem,
o(P) C L, that is, p1 = uo. O

REMARK. With a somewhat more involved proof one can relax the condition
11 () = p2(Q) < oo to the existence of A, € P such that 4,, T Q and p1(4,) < 00
(c.f. [Bil95, Theorem 10.3] for details). Accordingly, in Carathéodory’s extension
theorem we can relax po(§2) < oo to the assumption that pg is a o-finite measure,
that is uo(A,) < oo for some A, € A such that A, T , as is the case with
Lebesgue’s measure A on R.
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We conclude this subsection with an outline the proof of Carathéodory’s extension
theorem, noting that since an algebra A is a m-system and ) € A, the uniqueness of
the extension to o(A) follows from Proposition [LT.39 Our outline of the existence
of an extension follows [Wil91l, Section A.1.8] (or see [Bil95, Theorem 11.3] for
the proof of a somewhat stronger result). This outline centers on the construction
of the appropriate outer measure, a relaxation of the concept of measure, which we
now define.

DEFINITION 1.1.40. An increasing, countably sub-additive, non-negative set func-
tion pu* on a measurable space (0, F) is called an outer measure. That is, u* : F —
[0, 0], having the properties:

(a) *(0) =0 and p* (A1) < p*(Az) for any Ay, Ay € F with Ay C As.
(b) * (U, An) <>, w*(Ay) for any countable collection of sets A, € F.

In the first step of the proof we define the increasing, non-negative set function
pH(B) = inf{d  po(An) : EC | JAn, Ay € A},
n=1 n

for E € F = 2, and prove that it is countably sub-additive, hence an outer measure
on F.

By definition, p*(A) < po(A) for any A € A. In the second step we prove that
if in addition A C (J,, A4,, for A, € A, then the countable additivity of yo on A
results with 110(A) < > po(Ar). Consequently, u* = po on the algebra A.

The third step uses the countable additivity of 119 on A to show that for any A € A
the outer measure p* is additive when splitting subsets of ) by intersections with A
and A¢. That is, we show that any element of A is a p*-measurable set, as defined
next.

DEFINITION 1.1.41. Let A be a non-negative set function on a measurable space
(Q,F), with \(0) = 0. We say that A € F is a A-measurable set if \(F) =
AMFNA)+ ANFnNAC) for all F € F.

The fourth step consists of proving the following general lemma.

LEMMA 1.1.42 (CARATHEODORY’S LEMMA). Let u* be an outer measure on a
measurable space (Q, F). Then the p*-measurable sets in F form a o-algebra G on
which p* is countably additive, so that (Q,G, u*) is a measure space.

In the current setting, with .4 contained in the o-algebra G, it follows that o(A) C
G on which p* is a measure. Thus, the restriction p of pu* to o(A) is the stated
measure that coincides with g on A.

REMARK. In the setting of Carathéodory’s extension theorem for finite measures,
we have that the o-algebra G of all p*-measurable sets is the completion of o(A)
with respect to p (c.f. [Bil95, Page 45]). In the context of Lebesgue’s measure U
on Bg ), this is the o-algebra E(OJ] of all Lebesgue measurable subsets of (0, 1].
Associated with it are the Lebesgue measurable functions f : (0,1] — R for which
f~YB) e E(OJ] for all B € B. However, as noted for example in [Dur10, Theorem
A.2.4], the non Borel set constructed in the proof of Proposition [[LT.18 is also non
Lebesgue measurable.

The following concept of a monotone class of sets is a considerable relaxation of
that of a A-system (hence also of a g-algebra, see Proposition [[LT.37).
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DEFINITION 1.1.43. A monotone class is a collection M of sets closed under both
monotone increasing and monotone decreasing limits (i.e. if A; € M and either

AitAorA; ] A, then Ae M).

When starting from an algebra instead of a m-system, one may save effort by
applying Halmos’s monotone class theorem instead of Dynkin’s 7 — A theorem.

THEOREM 1.1.44 (HALMOS’S MONOTONE CLASS THEOREM). If A C M with A
an algebra and M a monotone class then o(A) C M.

PRrROOF. Clearly, any algebra which is a monotone class must be a o-algebra.
Another short though dense exercise in set manipulations shows that the intersec-
tion m(A) of all monotone classes containing an algebra A is both an algebra and
a monotone class (see the proof of [Bil95, Theorem 3.4]). Consequently, m(.A) is
a o-algebra. Since A C m(A) this implies that 0(A) C m(A) and we complete the
proof upon noting that m(A) C M. O

EXERCISE 1.1.45. We say that a subset V of {1,2,3,---} has Ceséro density (V)
and write V€ CES if the limit

~(V) = lim n_1|Vﬁ{1,2,3,--- ,n},
n— oo

exists. Give an example of sets Vi € CES and Vo € CES for which V3 NV, ¢ CES.
Thus, CES is not an algebra.

Here is an alternative specification of the concept of algebra.

EXERCISE 1.1.46.
(a) Suppose that Q € A and that AN B° € A whenever A, B € A. Show that

A is an algebra.

(b) Give an example of a collection C of subsets of Q such that Q € C, if
A € C then A° € C and if A,B € C are disjoint then also AU B € C,
while C is not an algebra.

As we already saw, the o-algebra structure is preserved under intersections. How-
ever, whereas the increasing union of algebras is an algebra, it is not necessarily
the case for o-algebras.

EXERCISE 1.1.47. Suppose that A, are classes of sets such that A, C Api1-

(a) Show that if A, are algebras then so is |y, An.
(b) Provide an ezample of o-algebras A, for which |J,—, Ay is not a o-
algebra.

1.2. Random variables and their distribution

Random variables are numerical functions w — X (w) of the outcome of our ran-
dom experiment. However, in order to have a successful mathematical theory, we
limit our interest to the subset of measurable functions (or more generally, measur-
able mappings), as defined in Subsection [[21] and study the closure properties of
this collection in Subsection Subsection [[.2.3] is devoted to the characteriza-
tion of the collection of distribution functions induced by random variables.
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1.2.1. Indicators, simple functions and random variables. We start
with the definition of random variables, first in the general case, and then restricted
to R-valued variables.

DEFINITION 1.2.1. A mapping X : Q — S between two measurable spaces (2, F)
and (S,S) is called an (S, S)-valued Random Variable (R.V.) if

X 'B):={w:XWw)€eB}eF VB e S.
Such a mapping is also called a measurable mapping.

DEFINITION 1.2.2. When we say that X is a random wariable, or a measurable
function, we mean an (R, B)-valued random variable which is the most common type
of R.V. we shall encounter. We let mF denote the collection of all (R, B)-valued
measurable mappings, so X is a R. V. if and only if X € mF. If in addition Q) is a
topological space and F = o({O C Q open }) is the corresponding Borel o-algebra,
we say that X : Q — R is a Borel (measurable) function. More generally, a random
vector is an (R, Bga)-valued R.V. for some d < co.

The next exercise shows that a random vector is merely a finite collection of R.V.
on the same probability space.

EXERCISE 1.2.3. Relying on Ezercise and Theorem [L.2.9, show that X :
Q = R? is a random vector if and only if X (w) = (X1(w),..., Xa(w)) with each
X:i:Q—=RaR.V.

d
Hint: Note that X '(By x ... x Bg) = (| X; *(By).
=1

We now provide two important generic examples of random variables.

EXAMPLE 1.2.4. For any A € F the function I4(w) = Lwe4

O,we¢ A
Indeed, {w : I4(w) € B} is for any B C R one of the four sets ), A, A® or Q
(depending on whether 0 € B or not and whether 1 € B or not), all of whom are
in F. We call such R.V. also an indicator function.

is a R.V.

EXERCISE 1.2.5. By the same reasoning check that X (w) = Zﬁ;l enla, (W) is a

R.V. for any finite N, non-random ¢, € R and sets A, € F. We call any such X
a simple function, denoted by X € SF.

Our next proposition explains why simple functions are quite useful in probability
theory.

PROPOSITION 1.2.6. For every R.V. X (w) there exists a sequence of simple func-
tions Xp(w) such that X, (w) = X(w) as n — oo, for each fized w € Q.

PROOF. Let
n2"—1
fn(l') = nlm>n + Z k2_n1(k:27n)(k+1)27n] ($) N

k=0
noting that for R.V. X > 0, we have that X,, = f,(X) are simple functions. Since
X > Xpp1 > X, and X(w) — X (w) < 27" whenever X (w) < n, it follows that

Xp(w) = X (w) as n — oo, for each w.
We write a general R.V. as X (w) = X4 (w) — X_(w) where X (w) = max(X (w),0)
and X_(w) = —min(X(w),0) are non-negative R.V.-s. By the above argument
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the simple functions X,, = f,(Xt) — fn(X_-) have the convergence property we
claimed. O

Note that in case F = 29, every mapping X :  + S is measurable (and therefore
is an (S,S)-valued R.V.). The choice of the o-algebra F is very important in
determining the class of all (S,S)-valued R.V. For example, there are non-trivial
o-algebras G and F on §2 = R such that X (w) = w is a measurable function for
(Q, F), but is non-measurable for (2, G). Indeed, one such example is when F is the
Borel o-algebra B and G = o({[a,b] : a,b € Z}) (for example, the set {w: w < a}
is not in G whenever «a ¢ Z).

Building on Proposition we have the following analog of Halmos’s monotone
class theorem. It allows us to deduce in the sequel general properties of (bounded)
measurable functions upon verifying them only for indicators of elements of 7-
systems.

THEOREM 1.2.7 (MONOTONE CLASS THEOREM). Suppose H is a collection of
R-valued functions on ) such that:

(a) The constant function 1 is an element of H.

(b) H is a vector space over R. That is, if h1,ha € H and c1,c2 € R then
cihi + coho is in H.

(¢) If hy, € H are non-negative and hy, T h where h is a (bounded) real-valued
function on 2, then h € H.

If P is a m-system and Iy € H for all A € P, then H contains all (bounded)
functions on Q that are measurable with respect to o(P).

REMARK. We stated here two versions of the monotone class theorem, with the
less restrictive assumption that (c¢) holds only for bounded & yielding the weaker
conclusion about bounded elements of mo(P). In the sequel we use both versions,
which as we see next, are derived by essentially the same proof. Adapting this
proof you can also show that any collection H of non-negative functions on 2
satisfying the conditions of Theorem [[277] apart from requiring (b) to hold only
when ¢1h1 4+ coho > 0, must contain all non-negative elements of mo(P).

PROOF. Let £L ={A CQ: I € H}. From (a) we have that 2 € £, while (b)
implies that B\ A is in £ whenever A C B are both in £. Further, in view of (¢)
the collection L is closed under monotone increasing limits. Consequently, £ is a
A-system, so by Dynkin’s m-A theorem, our assumption that £ contains P results
with o(P) C L. With H a vector space over R, this in turn implies that H contains
all simple functions with respect to the measurable space (€2, o(P)). In the proof of
Proposition [[L2.6 we saw that any (bounded) measurable function is a difference of
two (bounded) non-negative functions each of which is a monotone increasing limit
of certain non-negative simple functions. Thus, from (b) and (c) we conclude that
‘H contains all (bounded) measurable functions with respect to (€2, o(P)). O

The concept of almost sure prevails throughout probability theory.

DEFINITION 1.2.8. We say that two (S,S)-valued R.V. X and Y defined on the
same probability space (Q, F,P) are almost surely the same if P{w : X(w) #

Y(w)}) = 0. This shall be denoted by X “= Y. More generally, same notation
applies to any property of R.V. For example, X (w) > 0 a.s. means that P({w :
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X (w) < 0}) = 0. Hereafter, we shall consider X and Y such that X “2'Y to be the
same S-valued R.V. hence often omit the qualifier “a.s.” when stating properties
of R.V. We also use the terms almost surely (a.s.), almost everywhere (a.e.), and
with probability 1 (w.p.1) interchangeably.

Since the o-algebra & might be huge, it is very important to note that we may
verify that a given mapping is measurable without the need to check that the pre-
image X ~!(B) is in F for every B € S. Indeed, as shown next, it suffices to do
this only for a collection (of our choice) of generators of S.

THEOREM 1.2.9. If § = 0(A) and X : Q +— S is such that X (A) € F for all
A€ A, then X is an (S,S)-valued R.V.

PROOF. We first check that 8 = {B € & : X~Y(B) € F} is a o-algebra.
Indeed,

a). 0 €S since X~ 1(0) = 0.
b). If A € S then X 1(A) € F. With F a o-algebra, X 1(A¢) = (X 1(4))° € F.
Consequently, A€ € S.
¢). If A, € 8 for all n then X~1(A,) € F for all n. With F a o-algebra, then also
XU, 4,) = U, X"1(A,) € F. Consequently, |J, A, € S.

Our assumption that A C S, then translates to S = o(A) C S, as claimed. O

The most important o-algebras are those generated by ((S,S)-valued) random
variables, as defined next.

EXERCISE 1.2.10. Adapting the proof of Theorem[1.2.9, show that for any mapping
X : QS and any o-algebra S of subsets of S, the collection {X~*(B) : B € S} is
a o-algebra. Verify that X is an (S,S)-valued R.V. if and only if {X~Y(B) : B €
S} C F, in which case we denote {X~*(B) : B € S} either by o(X) or by FX and
call it the o-algebra generated by X.

To practice your understanding of generated o-algebras, solve the next exercise,
providing a convenient collection of generators for o(X).

EXERCISE 1.2.11. If X s an (S,S)-valued R.V. and S = o(A) then o(X) is
generated by the collection of sets X 1(A) :== {X~1(A): A e A}.

An important example of use of Exercise [[L2Z.11] corresponds to (R, B)-valued ran-
dom variables and A = {(—o0, ] : € R} (or even A = {(—o0,z] : € Q}) which
generates B (see Exercise [[T.17), leading to the following alternative definition of
the o-algebra generated by such R.V. X.

DEFINITION 1.2.12. Given a function X : Q — R we denote by o(X) or by FX
the smallest o-algebra F such that X (w) is a measurable mapping from (Q, F) to
(R, B). Alternatively,

o(X)=c({w: X(w) <al,aeR)=c({w: X(w) <q¢},¢€Q).

More generally, given a random vector X = (X1,...,X,), that is, random variables
X1,..., X, on the same probability space, let o(Xy, k < n) (or FX), denote the
smallest o-algebra F such that Xp(w), k = 1,...,n are measurable on (2, F).
Alternatively,

c( X, k<n)=oc({w: Xp(w) <al,ae R k<n).
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Finally, given a possibly uncountable collection of functions X, : Q1 — R, indezxed
by v € T, we denote by o(X~,y € T) (or simply by FX), the smallest o-algebra F
such that X (w), v € ' are measurable on (2, F).

The concept of o-algebra is needed in order to produce a rigorous mathematical
theory. It further has the crucial role of quantifying the amount of information
we have. For example, (X)) contains exactly those events A for which we can say
whether w € A or not, based on the value of X (w). Interpreting Example as
corresponding to sequentially tossing coins, the R.V. X, (w) = w, gives the result
of the n-th coin toss in our experiment o, of infinitely many such tosses. The o-
algebra F,, = 2 of Example then contains exactly the information we have
upon observing the outcome of the first n coin tosses, whereas the larger o-algebra
Fe allows us to also study the limiting properties of this sequence (and as you show
next, F. is isomorphic, in the sense of Definition [L4.24] to Bjg 1))

EXERCISE 1.2.13. Let F. denote the cylindrical o-algebra for the set Qo = {0, 1}
of infinite binary sequences, as in Example L1139
(a) Show that X(w) = >0 wp2™™ is a measurable map from (Qoo, Fe) to
(10,11, By.).
(b) Conversely, let Y(z) = (w1,...,Wwn,...) where for each n > 1, w,(1) =1
while wp(z) = I(|2"x| is an odd number) when x € [0,1). Show that
Y = X! is a measurable map from ([0, 1], Bjo1]) to (Qoc, Fe)-

Here are some alternatives for Definition [[.2.12

EXERCISE 1.2.14. Verify the following relations and show that each generating
collection of sets on the right hand side is a w-system.
(a) o(X)=0c({w: X(w) < a},a € R)
(b) o(Xk,k<n)=c({w: Xp(w) <ax,1 <k<n}a,...,a, €R)
(c) o(X1,X2,...) = c({w : Xj(w) < ax,1 <k <m},a1,...,a,, € Rom €
N)
(d) o(X1,X2,...) =0, 0(Xi, k <n))

As you next show, when approximating a random variable by a simple function,
one may also specify the latter to be based on sets in any generating algebra.

EXERCISE 1.2.15. Suppose (2, F,P) is a probability space, with F = o(A) for an
algebra A.
(a) Show that inf{P(AAB): A€ A} =0 for any B € F (recall that AAB =
(ANB°)U (AN B)).
(b) Show that for any bounded random variable X and € > 0 there exists a
simple function Y = Zﬁle enla, with A, € A such that P(|X = Y| >
€) <e.

EXERCISE 1.2.16. Let F = o(Aq,a € T) and suppose there exist wi # we € €
such that for any o € T, either {w1, w2} C Ay or {w1,ws} C AS.
(a) Show that if mapping X is measurable on (Q, F) then X (w1) = X (w2).
(b) Provide an explicit o-algebra F of subsets of @ = {1,2,3} and a mapping
X : Q+— R which is not a random variable on (2, F).

We conclude with a glimpse of the canonical measurable space associated with a
stochastic process (X¢,t € T) (for more on this, see Lemma [B1.7).
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EXERCISE 1.2.17. Fizing a possibly uncountable collection of random variables X,
indezed by t € T, let FX = o(Xy,t € C) for each C C T. Show that

m= U *

c countable

and that any R.V. Z on (Q, FX) is measurable on FX for some countable C C T.

1.2.2. Closure properties of random variables. For the typical measur-
able space with uncountable 2 it is impractical to list all possible R.V. Instead,
we state a few useful closure properties that often help us in showing that a given
mapping X (w) is indeed a R.V.

We start with closure with respect to the composition of a R.V. and a measurable
mapping.

PROPOSITION 1.2.18. If X : Q+ S is an (S, S)-valued R.V. and f is a measurable
mapping from (S,S) to (T,T), then the composition f(X): Q — T is a (T,T)-
valued R.V.

PROOF. Considering an arbitrary B € T, we know that f~!(B) € S since f is
a measurable mapping. Thus, as X is an (S,S)-valued R.V. it follows that

[FX)THB) =X (fT(B) e F.
This holds for any B € T, thus concluding the proof. O

In view of Exercise [[.2.3 we have the following special case of Proposition [[.L2.18|
corresponding to S = R™ and T = R equipped with the respective Borel o-algebras.

COROLLARY 1.2.19. Let X;, i = 1,...,n be R.V. on the same measurable space
(Q,F) and f : R™ — R a Borel function. Then, f(Xi,...,X,) is also a R.V. on
the same space.

To appreciate the power of Corollary [.2.19] consider the following exercise, in
which you show that every continuous function is also a Borel function.

EXERCISE 1.2.20. Suppose (S, p) is a metric space (for example, S =R™). A func-
tion g : S+ [—00, 00] is called lower semi-continuous (1.s.c.) if liminf,, .),0 9(y) >
g(x), for allx € S. A function g is said to be upper semi-continuous(u.s.c.) if —g
is l.s.c.

(a) Show that if g is l.s.c. then {x : g(x) < b} is closed for each b € R.
(b) Conclude that semi-continuous functions are Borel measurable.
(c) Conclude that continuous functions are Borel measurable.

A concrete application of Corollary [[.2.19] shows that any linear combination of
finitely many R.V.-s is a R.V.

EXAMPLE 1.2.21. Suppose X; are R.V.-s on the same measurable space and c; € R.
Then, Wy(w) = 1, ;i Xi(w) are also R.V.-s. To see this, apply Corollary [LZ13
for f(@1,...,2n) = > 14 ¢;im; a continuous, hence Borel (measurable) function (by
FEzercise [L2.20).

We turn to explore the closure properties of mJF with respect to operations of a
limiting nature, starting with the following key theorem.
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THEOREM 1.2.22. Let R = [—o00, 00| equipped with its Borel o-algebra
By =0 ([-00,b): beR).
If X; are R-valued R.V.-s on the same measurable space, then

inf X,,, supX,, liminfX,, limsupX,,
n n n—oo

n—oo

are also R-valued random variables.

PRroOF. Pick an arbitrary b € R. Then,
{w:inf X, (w) < b} = | J{w: Xa(w) <b} = | X, ([~00,b)) € F.
n=1 n=1

Since By is generated by {[—00,b) : b € R}, it follows by Theorem[[.2.9/that inf,, X,
is an R-valued R.V.
Observing that sup,, X, = — inf,,(—X,,), we deduce from the above and Corollary
(for f(x) = —x), that sup,, X,, is also an R-valued R.V.
Next, recall that
W = liminf X,, = su ['nf Xl} .
n—00 n I>n
By the preceding proof we have that Y, = inf;>, X; are R-valued R.V.-s and hence
so is W =sup,, ;.
Similarly to the arguments already used, we conclude the proof either by observing
that
Z = limsup X,, = inf [sup Xl} ,

n—oo n o Li>n

or by observing that limsup,, X,, = — liminf,,(—X,). (]

REMARK. Since inf,, X, sup,, Xy, limsup,, X,, and liminf,, X,, may result in val-
ues £oo even when every X,, is R-valued, hereafter we let mJF also denote the
collection of R-valued R.V.

An important corollary of this theorem deals with the existence of limits of se-
quences of R.V.

COROLLARY 1.2.23. For any sequence X, € mJF, both

Qo = {w € Q: liminf X, (w) = limsup X,, (w)}
n—o0 n—00

and
O ={w e Q:liminf X,,(w) = limsup X,,(w) € R}

n—00 n—00

are measurable sets, that is, Qo € F and Q1 € F.

ProOOF. By Theorem[[2.221we have that Z = limsup,, X,, and W = liminf,, X,
are two R-valued variables on the same space, with Z(w) > W (w) for all w. Hence,
O ={w:Z(w)—W(w)=0,Z(w) € R,W(w) € R} is measurable (apply Corollary
L2T9 for f(z,w) =2z —w), as is Qo = WL ({oo}) U Z71({—00}) U Q. O

The following structural result is yet another consequence of Theorem [[.2.27]
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COROLLARY 1.2.24. For anyd < oo and R.V.-s Y7, ...,Y; on the same measurable
space (0, F) the collection H = {h(Y1,...,Yy);h : RY +— R Borel function} is a
vector space over R containing the constant functions, such that if X, € H are
non-negative and X, T X, an R-valued function on €, then X € H.

Proor. By Example [[L2.2]] the collection of all Borel functions is a vector
space over R which evidently contains the constant functions. Consequently, the
same applies for H. Next, suppose X,, = h,(Y1,...,Yy) for Borel functions h,, such
that 0 < X,,(w) T X (w) for all w € Q. Then, h(y) = sup,, hy(y) is by Theorem
[222 an R-valued Borel function on RY, such that X = h(Yj,...,Yy). Setting
h(y) = h(y) when h(y) € R and h(y) = 0 otherwise, it is easy to check that h is a
real-valued Borel function. Moreover, with X :  +— R (finite valued), necessarily
X =h(Y,...,Yy) as well, so X € H. O

The point-wise convergence of R.V., that is X,,(w) — X (w), for every w € € is
often too strong of a requirement, as it may fail to hold as a result of the R.V. being
ill-defined for a negligible set of values of w (that is, a set of zero measure). We
thus define the more useful, weaker notion of almost sure convergence of random
variables.

DEFINITION 1.2.25. We say that a sequence of random variables X,, on the same
probability space (2, F,P) converges almost surely if P(Q) = 1. We then set
Xoo = limsup,,_, Xn, and say that X,, converges almost surely to X, or use the
notation X, 55 Xoo.

REMARK. Note that in Definition [[2:25 we allow the limit X (w) to take the
values +oo with positive probability. So, we say that X, converges almost surely
to a finite limit if P(Q;) = 1, or alternatively, if X, € R with probability one.

We proceed with an explicit characterization of the functions measurable with
respect to a o-algebra of the form o(Yy, k < n).

THEOREM 1.2.26. Let G = o(Yy, k < n) for some n < oo and R.V.-s Y1,...,Y,
on the same measurable space (2, F). Then, mG = {g(¥1,...,Y,) : g : R" —
R is a Borel function}.

Proo¥r. From Corollary we know that Z = ¢g(Y1,...,Y,) is in mgG for
each Borel function g : R® +— R. Turning to prove the converse result, recall
part (b) of Exercise [[L2Z14] that the o-algebra G is generated by the m-system P =
{Aa 1 a = (a1,...,a,) € R"} where I4, = ho(Y1,...,Y,) for the Borel function
ha(Y1s--,yn) = [1p—; lys<asr- Thus, in view of Corollary [L2:24] we have by the
monotone class theorem that H = {g(¥1,...,Y,) : g : R" — R is a Borel function}
contains all elements of mg. O

We conclude this sub-section with a few exercises, starting with Borel measura-
bility of monotone functions (regardless of their continuity properties).

EXERCISE 1.2.27. Show that any monotone function g : R — R is Borel measur-
able.

Next, Exercise [L2Z.20 implies that the set of points at which a given function g is
discontinuous, is a Borel set.

EXERCISE 1.2.28. Fiz an arbitrary function g : S — R.
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(a) Show that for any § > 0 the function g.(z,d) = inf{g(y) : p(x,y) < d} is
u.s.c. and the function g*(x,d) = sup{g(y) : p(x,y) < d} is l.s.c.

(b) Show that D, = {z : sup, g« (x, k™) < infy g*(x, k™ 1)} is exzactly the set
of points at which g is discontinuous.

(c) Deduce that the set Dy of points of discontinuity of g is a Borel set.

Here is an alternative characterization of B that complements Exercise [[.2.20

EXERCISE 1.2.29. Show that if F is a o-algebra of subsets of R then B C F if
and only if every continuous function f: R — R is in mF (i.e. B is the smallest
o-algebra on R with respect to which all continuous functions are measurable).

EXERCISE 1.2.30. Suppose X,, and X are real-valued random variables and
P({w : limsup X, (w) < Xoo(w)})=1.
n—oo

Show that for any e > 0, there exists an event A with P(A) < e and a non-random
N = N(e), sufficiently large such that X, (w) < Xeo(w)+¢ for alln > N and every
w e A°.

Equipped with Theorem [[.2.22] you can also strengthen Proposition [1.2.6]

EXERCISE 1.2.31. Show that the class mF of R-valued measurable functions, is
the smallest class containing SF and closed under point-wise limits.

Your next exercise also relies on Theorem [1.2.22]

EXERCISE 1.2.32. Given a measurable space (2, F) and T' C Q (not necessarily in
F), let Fr ={ANT: Aec F}.
(a) Check that (T, Fr) is a measurable space.
(b) Show that any bounded, Fr-measurable function (on T'), is the restriction
to I' of some bounded, F-measurable f: € — R.

Finally, relying on Theorem it is easy to show that a Borel function can
only reduce the amount of information quantified by the corresponding generated
o-algebras, whereas such information content is invariant under invertible Borel
transformations, that is

EXERCISE 1.2.33. Show that o(g(Y1,...,Ys)) C o(Yi, k < n) for any Borel func-
tion g : R™ — R. Further, if Y1,...,Y, and Z1, ..., Z,, defined on the same proba-
bility space are such that Z, = g (Y1,...,Y,), k=1,....mand¥; = hi(Z1,...,Zn),
i = 1,...,n for some Borel functions g : R® — R and h; : R™ — R, then
oY1,....Yn)=0(Z1,..., Zm).

1.2.3. Distribution, density and law. As defined next, every random vari-
able X induces a probability measure on its range which is called the law of X.

DEFINITION 1.2.34. The law of a real-valued R.V. X, denoted Px, is the proba-
bility measure on (R, B) such that Px(B) = P({w : X(w) € B}) for any Borel set
B.

REMARK. Since X is a R.V., it follows that Px(B) is well defined for all B € 5.
Further, the non-negativity of P implies that Px is a non-negative set function on
(R, B), and since X ~1(R) = €, also Px(R) = 1. Consider next disjoint Borel sets
B;, observing that X ~1(B;) € F are disjoint subsets of {2 such that

X*l(U B;) = UX*(BZ-) :
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Thus, by the countable additivity of P we have that
Px(JB) =P(JX'(B) =) P(X ! (B)) =Y Px(Bi).

This shows that Px is also countably additive, hence a probability measure, as
claimed in Definition [[L2.34]

Note that the law Px of a R.V. X : @ — R, determines the values of the
probability measure P on o(X).

DEFINITION 1.2.35. We write X 2 Y and say that X equals Y in law (or in
distribution), if and only if Px = Py.

A good way to practice your understanding of the Definitions [[.2.34] and [[.2.37] is

by verifying that if X “=" Y, then also X 2y (that is, any two random variables
we consider to be the same would indeed have the same law).

The next concept we define, the distribution function, is closely associated with
the law Px of the R.V.

DEFINITION 1.2.36. The distribution function Fx of a real-valued R.V. X is
Fx(a) =P{w: X(w) < a}) = Px((—o0,q]) Va e R

Our next result characterizes the set of all functions F' : R — [0, 1] that are
distribution functions of some R.V.

THEOREM 1.2.37. A function F : R — [0,1] is a distribution function of some
R.V. if and only if
(a) F is non-decreasing
(b) limy oo F'(z) =1 and limy— oo F(z) =0
(c) F is right-continuous, i.e. limy ., F(y) = F(z)

ProOF. First, assuming that F' = Fx is a distribution function, we show that
it must have the stated properties (a)-(c). Indeed, if 2 < y then (—o0, 2] C (—o0, y],
and by the monotonicity of the probability measure Px (see part (a) of Exercise
[LTA), we have that Fx(z) < Fx(y), proving that Fx is non-decreasing. Further,
(—o00,z] T R as = T oo, while (—oo,z]| | 0 as | —oo, resulting with property (b)
of the theorem by the continuity from below and the continuity from above of the
probability measure Px on R. Similarly, since (—oo,y| | (—o0,z] as y | = we get
the right continuity of Fix by yet another application of continuity from above of
Px.

We proceed to prove the converse result, that is, assuming F' has the stated prop-
erties (a)-(c), we consider the random variable X ~(w) = sup{y : F(y) < w} on
the probability space ((0,1],B,1},U) and show that Fx- = F. With I having
property (b), we see that for any w > 0 the set {y : F(y) < w} is non-empty and
further if w < 1 then X~ (w) < 00,80 X~ : (0,1) — R is well defined. The identity

(1.2.1) {w: X (w)<z}={w:w < F(a)},

implies that Fx-(z) = U((0, F(z)]) = F(z) for all z € R, and further, the sets
(0, F(x)] are all in B 1), implying that X ~ is a measurable function (i.e. a R.V.).
Turning to prove (L21)) note that if w < F(z) then z & {y : F(y) < w} and so by

definition (and the monotonicity of F'), X~ (w) < x. Now suppose that w > F(z).
Since F is right continuous, this implies that F(x + ¢) < w for some € > 0, hence
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by definition of X~ also X ~(w) > x + € > z, completing the proof of (L2 and
with it the proof of the theorem. O

Check your understanding of the preceding proof by showing that the collection
of distribution functions for R-valued random variables consist of all F': R — [0, 1]
that are non-decreasing and right-continuous.

REMARK. The construction of the random variable X ~(w) in Theorem [[.2.37] is
called Skorokhod’s representation. You can, and should, verify that the random
variable X (w) = sup{y : F(y) < w} would have worked equally well for that
purpose, since X (w) # X~ (w) only if X (w) > ¢ > X~ (w) for some rational g,
in which case by definition w > F(q) > w, so there are most countably many such
values of w (hence P(X* # X~) = 0). We shall return to this construction when
dealing with convergence in distribution in Section 3.2l An alternative approach to
Theorem [[.2.3Tis to adapt the construction of the probability measure of Example
[LT26 taking here 2 = R with the corresponding change to A and replacing the
right side of (LLI) with >, _,(F(bx) — F(ak)), yielding a probability measure P
on (R, B) such that P((—oo, a]) = F(«) for all « € R (c.f. [Bil95, Theorem 12.4]).

Our next example highlights the possible shape of the distribution function.

ExXAMPLE 1.2.38. Consider Example of n coin tosses, with o-algebra F,, =
2% sample space Q,, = {H, T}", and the probability measure P,,(A) = Y wed Do
where p, = 27" for each w € Q,, (that is, w = {w1,wa, -+ ,wy} for w; € {H,T}),
corresponding to independent, fair, coin tosses. Let Y (w) = If,,—py measure the
outcome of the first toss. The law of this random variable is,

1 1
Py(B) = 51(0en} + 5lp1em)

and its distribution function is

1, a>1
(1.22) Fy(a) =Py((-00,a]) =P, (Y(w)<a)=4¢3, 0<a<1
0, a<0

Note that in general o(X) is a strict subset of the o-algebra F (in Example[T.2.38
we have that o(Y) determines the probability measure for the first coin toss, but
tells us nothing about the probability measure assigned to the remaining n — 1
tosses). Consequently, though the law Px determines the probability measure P
on o(X) it usually does not completely determine P.

Example[[.2.38is somewhat generic. That is, if the R.V. X is a simple function (or
more generally, when the set {X (w) : w € Q} is countable and has no accumulation
points), then its distribution function F'y is piecewise constant with jumps at the
possible values that X takes and jump sizes that are the corresponding probabilities.
Indeed, note that (—oo,y] 1 (—o0,x) as y 1 x, so by the continuity from below of
Px it follows that

Fx(x7) = lim Fx(y) = P({w: X(w) <a}) = Fx(z) - P({w: X(w) = =}),
for any R.V. X.

A direct corollary of Theorem [[.2.37 shows that any distribution function has a
collection of continuity points that is dense in R.
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EXERCISE 1.2.39. Show that a distribution function F' has at most countably many
points of discontinuity and consequently, that for any x € R there exist yi and zy
at which F' is continuous such that zi | x and yi T x.

In contrast with Example [[.2.38 the distribution function of a R.V. with a density
is continuous and almost everywhere differentiable, that is,

DEFINITION 1.2.40. We say that a R.V. X(w) has a probability density function
fx if and only if its distribution function Fx can be expressed as

(1.2.3) Fx(a) = /_a fx(z)dx, Va € R.

By Theorem[1.2-37 a probability density function fx must be an integrable, Lebesgue
almost everywhere non-negative function, with fR fx(x)dx = 1. Such Fx is contin-
uous with ddL;((,T) = fx(x) except possibly on a set of values of x of zero Lebesque
measure.

REMARK. To make Definition precise we temporarily assume that probabil-
ity density functions fx are Riemann integrable and interpret the integral in (23]
in this sense. In Section [[.3] we construct Lebesgue’s integral and extend the scope
of Definition to Lebesgue integrable density functions fx > 0 (in particular,
accommodating Borel functions fx). This is the setting we assume thereafter, with
the right-hand-side of (LZ3) interpreted as the integral A(fx; (—00,a]) of fx with
respect to the restriction on (—oo, a] of the completion X of the Lebesgue measure on
R (c.f. Definition [[L3.59 and Example [[360)). Further, the function fx is uniquely
defined only as a representative of an equivalence class. That is, in this context we
consider f and g to be the same function when A({z : f(z) # g(z)}) = 0.

Building on Example [[.LT.26] we next detail a few classical examples of R.V. that
have densities.

EXAMPLE 1.2.41. The distribution function Fy of the R.V. of Example [1.1.24 is
1, a>1
(1.2.4) Fy(a)=PU<a)=PUe€0,a])=¢a, 0<a<1
0, a<0

1,0<u<1
and its density is fu(u) = 07 t; U <
, otherwise

The exponential distribution function is

F(x)—{o’“(’ ,

1—e ™ x>0

0, z<0
corresponding to the density f(x) = { f - 0 whereas the standard normal
e, T >

distribution has the density
2
$lz) = (2m) V2T,

with no closed form expression for the corresponding distribution function ®(x) =
J¥ ¢(u)du in terms of elementary functions.
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Every real-valued R.V. X has a distribution function but not necessarily a density.
For example X = 0 w.p.1 has distribution function Fx (&) = 14>0. Since Fx is
discontinuous at 0, the R.V. X does not have a density.

DEFINITION 1.2.42. We say that a function F is a Lebesgue singular function if
it has a zero derivative except on a set of zero Lebesgue measure.

Since the distribution function of any R.V. is non-decreasing, from real analysis
we know that it is almost everywhere differentiable. However, perhaps somewhat
surprisingly, there are continuous distribution functions that are Lebesgue singular
functions. Consequently, there are non-discrete random variables that do not have
a density. We next provide one such example.

EXAMPLE 1.2.43. The Cantor set C' is defined by removing (1/3,2/3) from [0, 1]
and then iteratively removing the middle third of each interval that remains. The
uniform distribution on the (closed) set C' corresponds to the distribution function
obtained by setting F(x) = 0 for x < 0, F(z) = 1 forx > 1, F(z) = 1/2 for
x € [1/3,2/3], then F(z) = 1/4 for x € [1/9,2/9], F(z) = 3/4 for xz € [7/9,8/9],
and so on (which as you should check, satisfies the properties (a)-(c) of Theorem
[IZ2-37). From the definition, we see that dF/dxz = 0 for almost every x ¢ C and
that the corresponding probability measure has P(C°) = 0. As the Lebesgue measure
of C' is zero, we see that the derivative of F' is zero except on a set of zero Lebesgue
measure, and consequently, there is no function f for which F(x) = ffoo fly)dy
holds. Though it is somewhat more involved, you may want to check that F' is
everywhere continuous (c.f. [Bil95 Problem 31.2]).

Even discrete distribution functions can be quite complex. As the next example
shows, the points of discontinuity of such a function might form a (countable) dense
subset of R (which in a sense is extreme, per Exercise [.L2.39).

EXAMPLE 1.2.44. Let q1,q2, ... be an enumeration of the rational numbers and set
F(z) =271 «)()
i=1

(where 1ig, ooy(x) = 1 if x > ¢; and zero otherwise). Clearly, such F' is non-
decreasing, with limits 0 and 1 as x — —oo and x — o0, respectively. It is not hard
to check that F' is also right continuous, hence a distribution function, whereas by
construction F is discontinuous at each rational number.

As we have that P({w : X (w) < a}) = Fx(«) for the generators {w : X (w) < a}
of o(X), we are not at all surprised by the following proposition.

PROPOSITION 1.2.45. The distribution function Fx uniquely determines the law
PX OfX.

ProOOF. Consider the collection 7(R) = {(—00,b] : b € R} of subsets of R. It
is easy to see that m(R) is a m-system, which generates B (see Exercise [[T1T7).
Hence, by Proposition[[LT.39 any two probability measures on (R, B) that coincide
on m(R) are the same. Since the distribution function Fx specifies the restriction

of such a probability measure Px on m(R) it thus uniquely determines the values
of Px(B) for all B € B. O

Different probability measures P on the measurable space (2, F) may “trivialize”
different o-algebras. That is,



30 1. PROBABILITY, MEASURE AND INTEGRATION

DEFINITION 1.2.46. If a o-algebra H C F and measure p on (2, F) are such that
either p(H) =0 or u(H®) =0 for all H € H, we call H a p-trivial o-algebra. For
probability measure ;. = P this is equivalent to requiring that P(H) € {0,1} for
all H € H. Similarly, a random variable X is called P-trivial or P-degenerate, if
there exists a non-random constant ¢ such that P(X # ¢) = 0.

Using distribution functions we show next that all random variables on a P-trivial
o-algebra are P-trivial.

PROPOSITION 1.2.47. If a random variable X € mH for a P-trivial o-algebra H,
then X is P-trivial.

PROOF. By definition, the sets {w : X (w) < a} are in H for all @ € R. Since H
is P-trivial this implies that Fx () € {0, 1} for all & € R. In view of Theorem [[.2.37]
this is possible only if Fx () = 14>, for some non-random ¢ € R (for example, set
c¢=inf{a: Fx(a) = 1}). That is, P(X # ¢) = 0, as claimed. O

We conclude with few exercises about the support of measures on (R, B).

EXERCISE 1.2.48. Let u be a measure on (R,B). A point xz is said to be in the
support of p if u(O) > 0 for every open neighborhood O of x. Prove that the support
is a closed set whose complement is the maximal open set on which u vanishes.

EXERCISE 1.2.49. Given an arbitrary closed set C C R, construct a probability
measure on (R, B) whose support is C.

Hint: Try a measure consisting of a countable collection of atoms (i.e. points of
positive probability).

As you are to check next, the discontinuity points of a distribution function are
closely related to the support of the corresponding law.

EXERCISE 1.2.50. The support of a distribution function F is the set Sp = {x € R
such that F(x 4 €) — F(x —¢€) > 0 for all ¢ > 0}.

(a) Show that all points of discontinuity of F(-) belong to Sg, and that any
isolated point of S (that is, x € Sp such that (x — §,x + ) N Sp = {z}
for some 6 > 0) must be a point of discontinuity of F(-).

(b) Show that the support of the law Px of a random variable X, as defined
in Exercise[1.2.78, is the same as the support of its distribution function
Fx.

1.3. Integration and the (mathematical) expectation

A key concept in probability theory is the mathematical expectation of ran-
dom variables. In Subsection [[L3.] we provide its definition via the framework
of Lebesgue integration with respect to a measure and study properties such as
monotonicity and linearity. In Subsection we consider fundamental inequal-
ities associated with the expectation. Subsection [[.3.3] is about the exchange of
integration and limit operations, complemented by uniform integrability and its
consequences in Subsection L34l Subsection considers densities relative to
arbitrary measures and relates our treatment of integration and expectation to
Riemann’s integral and the classical definition of the expectation for a R.V. with
probability density. We conclude with Subsection about moments of random
variables, including their values for a few well known distributions.
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1.3.1. Lebesgue integral, linearity and monotonicity. Let SF denote
the collection of non-negative simple functions with respect to the given measurable
space (S, F) and mF, denote the collection of [0, cco]-valued measurable functions
on this space. We next define Lebesgue’s integral with respect to any measure u
on (S, F), first for p € SF,, then extending it to all f € mF,. With the notation
p(f) == Js f(s)du(s) for this integral, we also denote by io(-) the more restrictive
integral, defined only on SF ., so as to clarify the role each of these plays in some of
our proofs. We call an R-valued measurable function f € mJF for which u(|f|) < oo,
a p-integrable function, and denote the collection of all u-integrable functions by
LY(S, F, i), extending the definition of the integral u(f) to all f € LY(S, F, u).

DEFINITION 1.3.1. Fix a measure space (S, F,u) and define u(f) by the following
four step procedure:

Step 1. Define po(Ia) := p(A) for each A € F.

Step 2. Any ¢ € SF4 has a representation ¢ = Y, ¢;la, for some finite n < oo,
=1
non-random ¢; € [0,00] and sets A; € F, yielding the definition of the integral via

n

po(p) = Z ap(Ar)

=1

where we adopt hereafter the convention that co x 0 =0 x co = 0.

Step 3. For f € mF4 we define

p(f) = sup{po(p) : p € SF4, 0 < f}.

Step 4. For f € mF let fy = max(f,0) € mF4 and f- = —min(f,0) € mF;.
We then set u(f) = p(f+) — u(f-) provided either pu(fy) < oo or u(f-) < co. In
particular, this applies whenever f € LY(S,F,u), for then u(f+) + p(f-) = p(f)
is finite, hence u(f) is well defined and finite valued.

We use the notation [g f(s)du(s) for u(f) which we call Lebesgue integral of f
with respect to the measure fi.

The expectation E[X] of a random variable X on a probability space (Q, F,P) is
merely Lebesgue’s integral [ X (w)dP(w) of X with respect to P. That is,
Step 1. E[I4] =P(A) for any A € F.
Step 2. Any ¢ € SF, has a representation ¢ = > ¢;14, for some non-random

=1
n < 0o, ¢; > 0 and sets A; € F, to which corresponds

E[(p] = iclE[IAL] = iClP(Al)-
=1 =1

Step 3. For X € mF, define
EX =sup{EY : Y € SF,,Y < X}.

Step 4. Represent X € mF as X = X — X_, where X; = max(X,0) € mFy and
X_ = —min(X,0) € mF,, with the corresponding definition

EX=EX, -EX_,
provided either EX| < co or EX_ < o0.
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REMARK. Note that we may have EX = oo while X (w) < oo for all w. For
instance, take the random variable X (w) = w for Q = {1,2,...} and F = 2% If
P(w=k)=ck 2 with c=[Y;—, k~?]7! a positive, finite normalization constant,
then EX =c¢> o, k™! = o0.

Similar to the notation of u-integrable functions introduced in the last step of
the definition of Lebesgue’s integral, we have the following definition for random
variables.

DEFINITION 1.3.2. We say that a random variable X is (absolutely) integrable,
or X has finite expectation, if E|X| < oo, that is, both EX < oo and EX_ < oo.
Fizing 1 < g < oo we denote by LI(Q, F,P) the collection of random variables X
on (Q,F) for which ||X||, = [E|X|1"? < co. For example, L*(Q2, F,P) denotes
the space of all (absolutely) integrable random-variables. We use the short notation
L7 when the probability space (0, F,P) is clear from the context.

We next verify that Lebesgue’s integral of each function f is assigned a unique
value in Definition [[3] To this end, we focus on pg : SF4 — [0, 00] of Step 2 of
our definition and derive its structural properties, such as monotonicity, linearity
and invariance to a change of argument on a p-negligible set.

LEMMA 1.3.3. po(p) assigns a unique value to each ¢ € SF. Further,

a). po(p) = po(¥) if ¥ € SF are such that p({s : o(s) # ¢(s)}) = 0.
b). wo is linear, that is

po(e + 1) = po(p) + po(¥) po(cp) = cpo(p),

for any p,7 € SFy and ¢ > 0.
¢). po is monotone, that is po(w) < po(v) if w(s) < Y(s) for all s € S.

PrOOF. Note that a non-negative simple function ¢ € SF| has many different
representations as weighted sums of indicator functions. Suppose for example that

(1.3.1) > ala(s)=> dils,(s),
=1 k=1

for some ¢; > 0, di, > 0, A; € F, B € F and all s € S. There exists a finite
partition of S to at most 2*+™ disjoint sets C; such that each of the sets A; and
By, is a union of some Cj, i = 1,...,2"T™. Expressing both sides of (L3.1]) as finite
weighted sums of I¢,, we necessarily have for each 7 the same weight on both sides.
Due to the (finite) additivity of x4 over unions of disjoint sets C;, we thus get after
some algebra that

(1.3.2) ZCzH(Al) = deH(Bk)-
=1 k=1

Consequently, po(p) is well-defined and independent of the chosen representation
for ¢. Further, the conclusion (IL3.2) applies also when the two sides of (L3
differ for s € C' as long as u(C) = 0, hence proving the first stated property of the
lemma.

Choosing the representation of ¢ + 1 based on the representations of ¢ and v
immediately results with the stated linearity of uo. Given this, if ¢(s) < ¢(s) for all
s, then ¢ = ¢+ for some § € SF., implying that o(¢)) = po(¢) + 10(§) > po(p),
as claimed. (|
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REMARK. The stated monotonicity of po implies that p(-) coincides with po(+) on
SF4. As po is uniquely defined for each f € SFy and f = fi when f € mF,, it
follows that u(f) is uniquely defined for each f € mFy U LL(S,F, ).

All three properties of po (hence p) stated in Lemma [[L33] for functions in SF
extend to all of mFy U L. Indeed, the facts that p(cf) = cu(f), that u(f) < u(g)
whenever 0 < f < g, and that u(f) = u(g) whenever p({s: f(s) # g(s)}) = 0 are
immediate consequences of our definition (once we have these for f,g € SF,). Since
f < g implies fy < gy and f_ > g_, the monotonicity of u(-) extends to functions
in L' (by Step 4 of our definition). To prove that p(h + g) = u(h) + u(g) for all
h,g € mF, U L! requires an application of the monotone convergence theorem (in
short MON), which we now state, while deferring its proof to Subsection [[L3.31

THEOREM 1.3.4 (MONOTONE CONVERGENCE THEOREM). If 0 < h,(s) 1 h(s) for
all s €S and hy, € mFy, then u(hy) 1T p(h) < oco.

Indeed, recall that while proving Proposition we constructed the sequence
fn such that for every g € mF, we have f,(g) € SF; and f,(g) T g. Specifying
g,h € mF, we have that f,(h) + f.(g9) € SF4+. So, by Lemma [[.3:3]

#(fn(M)+Fn(9)) = po(fr(h)+fn(9)) = mo(fn(h))+10(fn(9)) = p(fu(h)+1(fn(9)) -
Since f,(h) T h and f,(h) + fn(g) T h + g, by monotone convergence,

plh+g) = lim p(fa(h) + falg)) = lim u(fu(h)) + lim p(falg)) = u(h) + p(g) -

To extend this result to g,h € mF, UL, note that h_ +g_ = f+(h+g)_ > f for
some f € mF, such that hy+g+ = f+(h+g)4. Since u(h_) < oo and p(g-) < oo,
by linearity and monotonicity of u(-) on mF, necessarily also u(f) < oo and the
linearity of uu(h+ g) on mFy UL! follows by elementary algebra. In conclusion, we
have just proved that

PROPOSITION 1.3.5. The integral u(f) assigns a unique value to each f € mF U
LY(S, F,u). Further,

a). p(f) = pu(g) whenever p({s: f(s) # g(s)}) = 0.
b). w is linear, that is for any f,h,g € mFy U L' and ¢ > 0,

plh+g) = p(h) +ulg),  nulef) =culf).
c). 1 is monotone, that is p(f) < u(g) if f(s) < g(s) for all s €S.

Our proof of the identity u(h + g) = p(h) + p(g) is an example of the following
general approach to proving that certain properties hold for all h € L.

DEFINITION 1.3.6 (Standard Machine). To prove the validity of a certain property
for all h € LY(S,F,u), break your proof to four easier steps, following those of
Definition .31
Step 1. Prove the property for h which is an indicator function.

Step 2. Using linearity, extend the property to all SF .

Step 3. Using MON extend the property to all h € mF,.

Step 4. Estend the property in question to h € L' by writing h = hy — h_ and
using linearity.

Here is another application of the standard machine.
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EXERCISE 1.3.7. Suppose that a probability measure P on (R,B) is such that
P(B) = M(fIB) for the Lebesque measure X on R, some non-negative Borel function
f(-) and all B € B. Using the standard machine, prove that then P(h) = X(fh) for
any Borel function h such that either h > 0 or A(f|h|) < co.

Hint: See the proof of Proposition [[.3.50.

We shall see more applications of the standard machine later (for example, when
proving Proposition and Theorem [[.3.6T]).

We next strengthen the non-negativity and monotonicity properties of Lebesgue’s
integral p(-) by showing that

LEMMA 1.3.8. If u(h) = 0 for h € mF, then p({s : h(s) > 0}) = 0. Conse-
quently, if for f,g € L'(S,F,u) both u(f) = pu(g) and p({s : f(s) > g(s)}) =0,
then u({s : (5) £ g(s)}) = 0.

PROOF. By continuity below of the measure u we have that
pl{s : hs) > 0}) = lim u({s:h(s) >n"1})
(see Exercise [[LT4)). Hence, if u({s: h(s) > 0}) > 0, then for some n < oo,

0 <nu({s:h(s) >n"}) = po(n~ T +) < ().
where the right most inequality is a consequence of the definition of p(h) and the
fact that h > n~'I,~,-1 € SF,. Thus, our assumption that u(h) = 0 must imply
that u({s: h(s) > 0}) =0.
To prove the second part of the lemma, consider h= g — f which is non-negative
outside a set N € F such that u(N) = 0. Hence, h = (g — f)Ine € mF; and

0 = u(g) — u(f) = p(h) = p(h) by Proposition 3.5 implying that p({s : h(s) >
0}) = 0 by the preceding proof. The same applies for i and the statement of the
lemma follows. O

We conclude this subsection by stating the results of Proposition[[.3.5land Lemma
38 in terms of the expectation on a probability space (2, F,P).

THEOREM 1.3.9. The mathematical expectation E[X] is well defined for every R.V.
X on (Q,F,P) provided either X > 0 almost surely, or X € L*(Q2, F,P). Further,
(a) EX = EY whenever X =Y.

(b) The expectation is a linear operation, for if Y and Z are integrable R.V. then
for any constants v, B the R.V. oY + 87 is integrable and E(aY + 7Z) = a(EY ) +
B(EZ). The same applies when Y, Z > 0 almost surely and a, > 0.

(¢) The expectation is monotone. That is, if Y and Z are either integrable or
non-negative and Y > Z almost surely, then EY > EZ. Further, if Y and Z are
integrable with’Y > 7 a.s. and EY = EZ, then Y =7z,

(d) Constants are invariant under the expectation. That is, if X “= ¢ for non-
random ¢ € (—oo, 00|, then EX = c.

REMARK. Part (d) of the theorem relies on the fact that P is a probability mea-
sure, namely P(Q) = 1. Indeed, it is obtained by considering the expectation of
the simple function clg to which X equals with probability one.

The linearity of the expectation (i.e. part (b) of the preceding theorem), is often
extremely helpful when looking for an explicit formula for it. We next provide a
few examples of this.
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EXERCISE 1.3.10. Write (Q, F,P) for a random experiment whose outcome is a
recording of the results of n independent rolls of a balanced siz-sided dice (including
their order). Compute the expectation of the random wvariable D(w) which counts
the number of different faces of the dice recorded in these n rolls.

EXERCISE 1.3.11 (MATCHING). In a random matching experiment, we apply a
random permutation m to the integers {1,2,...,n}, where each of the possible n!
permutations is equally likely. Let Z; = I ;=) be the random variable indicating
whether © = 1,2,...,n is a fired point of the random permutation, and X, =
S Z; count the number of fized points of the random permutation (i.e. the
number of self-matchings). Show that E[X, (X, —1)--- (X, —k+1)] = 1 for
k=1,2,...,n.

Similarly, here is an elementary application of the monotonicity of the expectation
(i.e. part (c) of the preceding theorem).

EXERCISE 1.3.12. Suppose an integrable random variable X is such that E(X14) =
0 for each A € o(X). Show that necessarily X = 0 almost surely.

1.3.2. Inequalities. The linearity of the expectation often allows us to com-
pute EX even when we cannot compute the distribution function Fx. In such cases
the expectation can be used to bound tail probabilities, based on the following clas-
sical inequality.

THEOREM 1.3.13 (MARKOV’S INEQUALITY). Suppose 1 : R — [0,00] is a Borel
function and let . (A) = inf{e(y) : y € A} for any A € B. Then for any R.V. X,

U (A)P(X € A) SE(W(X)Ixea) < E¢(X).
PRrOOF. By the definition of #,(A) and non-negativity of 1 we have that
"/’*(A)I:EEA < w(x)IwEA < "/’(x)v
for all z € R. Therefore, ¥.(A)Ixeca < V(X)Ixea < P(X) for every w € Q.

We deduce the stated inequality by the monotonicity of the expectation and the
identity E(¢«(A)Ixea) = ¥ (A)P(X € A) (due to Step 2 of Definition [L3T)). O

We next specify three common instances of Markov’s inequality.

EXAMPLE 1.3.14. (a). Taking ¥(x) = x4 and A = [a,00) for some a > 0 we have
that .. (A) = a. Markov’s inequality is then

EX
P(X >a) < —,
a

which is particularly appealing when X >0, so EX; = EX.

(b). Taking ¥(z) = |z|? and A = (—o0, —a] U [a,o0) for some a > 0, we get that

Y« (A) = al. Markov’s inequality is then a'P(|X| > a) < E|X|?. Considering ¢ = 2

and X =Y —EY for Y € L?, this amounts to

Var(Y)
a2

which we call Chebyshev’s inequality (c.f. Definition [I.3.67] for the variance and

moments of random variable Y ).

(c). Taking ¥(z) = € for some 6 > 0 and A = [a,00) for some a € R we have

that 1. (A) = €%®. Markov’s inequality is then

P(X > a) < e EeX,

P(Y —EY|>a) <

3
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This bound provides an exponential decay in a, at the cost of requiring X to have
finite exponential moments.

In general, we cannot compute EX explicitly from the Definition [[.3.1] except
for discrete R.V.s and for R.V.s having a probability density function. We thus
appeal to the properties of the expectation listed in Theorem [[L.3.9] or use various
inequalities to bound one expectation by another. To this end, we start with
Jensen’s inequality, dealing with the effect that a convex function makes on the
expectation.

PROPOSITION 1.3.15 (JENSEN’S INEQUALITY). Suppose g(-) is a convez function
on an open interval G of R, that is,

M)+ (1 =Ng(y) 2gAz+(1-Ny) Vaz,yelG, 0<A<L

If X is an integrable R.V. with P(X € G) =1 and g(X) is also integrable, then
E(9(X)) > g(EX).

PROOF. The convexity of g(-) on G implies that g(-) is continuous on G (hence
g(X) is a random variable) and the existence for each ¢ € G of b = b(c) € R such
that

(1.3.3) g(x) > g(c) + bz — ¢), Ve e .

Since G is an open interval of R with P(X € G) =1 and X is integrable, it follows
that EX € G. Assuming ([L33) holds for ¢ = EX, that X € G a.s., and that both
X and g(X) are integrable, we have by Theorem [[.3.9] that

E(9(X)) = E(9(X)Ixec) = E[(g(c)+b(X —¢))Ixec] = g(c) +b(EX —¢) = g(EX),

as stated. To derive (L33) note that if (¢ — ha,c+ hy) C G for positive h; and ho,
then by convexity of g(-),

hy hy

hy) >

NN e ) 2900,

which amounts to [g(c + k1) — g(¢)]/h1 > [g(c) — g(c — ha)]/ha. Considering the

infimum over h; > 0 and the supremum over ho > 0 we deduce that

h>0,c+heqG g(c+ hf)L - g(C) . (DJrg)(C) = (Dig)(C) . h>0?cuPhGG g(C) - .Z(C - h) '

(c+hy)+

With G an open set, obviously (D_g)(x) > —occ and (D1g)(z) < oo for any z € G
(in particular, g(-) is continuous on G). Now for any b € [(D_g)(c), (D+g)(c)] CR
we get (L33) out of the definition of D;g and D_g. O

REMARK. Since g(-) is convex if and only if —g(-) is concave, we may as well state
Jensen’s inequality for concave functions, just reversing the sign of the inequality in
this case. A trivial instance of Jensen’s inequality happens when X (w) = x4 (w) +
ylge(w) for some z,y € R and A € F such that P(A) = A. Then,

EX = 2P(A) + yP(A°) = zA + y(1 — \),
whereas g(X (w)) = g(x)la(w) + g(y)Lac(w). So,
Eg(X) =g(@)A +g(y)(1 =) > g(zA +y(1 - ) = g(EX),

as g is convex.
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Applying Jensen’s inequality, we show that the spaces L(Q, F,P) of Definition
[[.3.2 are nested in terms of the parameter ¢ > 1.

LEMMA 1.3.16. Fizing Y € mF, the mapping q — ||Y||; = [E|Y |99 is non-
decreasing for ¢ > 0. Hence, the space L1(Q, F,P) is contained in L"(Q, F,P) for
any r <q.

PRrROOF. Fix ¢ > r > 0 and consider the sequence of bounded R.V. X, (w) =
{min(|Y (w)|,n)}". Obviously, X, and XY™ are both in L!. Apply Jensen’s In-
equality for the convex function g(x) = |#|%/" and the non-negative R.V. X,,, to
get that

(EX,)" <E(X;i) = E[{min(|Y],n)}*] < E(Y]) .

a
™

For n 1 oo we have that X,, 1 |Y|", so by monotone convergence E (|Y|")" <
(E|Y'|?). Taking the 1/g-th power yields the stated result ||Y||, < ||Y||q < oco. O

We next bound the expectation of the product of two R.V. while assuming nothing
about the relation between them.

PROPOSITION 1.3.17 (HOLDER’S INEQUALITY). Let X,Y be two random variables
on the same probability space. If p,q > 1 with % + % =1, then

(1.3.4) E[XY] < [IX|[pl[Y]lq -

REMARK. Recall that if XY is integrable then E|XY| is by itself an upper bound
on |[EXY]|. The special case of p = ¢ = 2 in Hélder’s inequality

E|XY| < VEX?VEY?,

is called the Cauchy-Schwarz inequality.

PrOOF. Fixingp>1land ¢=p/(p—1)let A= ||X]||, and { = ||Y]]4- fEA=0
then | X|? “2" 0 (see Theorem [[3.9). Likewise, if £ = 0 then |Y|? “2 0. In either
case, the inequality (IL34]) trivially holds. As this inequality also trivially holds
when either A = 0o or £ = oo, we may and shall assume hereafter that both A and
¢ are finite and strictly positive. Recall that

Y4

—+——xy>0 Ve, y >0

p q
(c.f. [Durl0, Page 21] where it is proved by considering the first two derivatives
in z). Taking z = |X|/X and y = |Y|/&, we have by linearity and monotonicity of
the expectation that

1 1 EX|P E|Y|? _ E|XY]

l=-+-= + >

poqg  APp q A&
yielding the stated inequality ([3.4). O

)

A direct consequence of Holder’s inequality is the triangle inequality for the norm
|X ||, in LP(Q, F, P), that is,

PROPOSITION 1.3.18 (MINKOWSKI'S INEQUALITY). If X|Y € LP(Q, F,P),p > 1,
then [|X + Y|l < [[X][p +[[Y]lp-
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ProoF. With | X +Y]| < |X]|+1Y], by monotonicity of the expectation we have
the stated inequality in case p = 1. Considering hereafter p > 1, it follows from
Holder’s inequality (Proposition [[317) that

E X +Y]P=E(|X+Y||X +Y]P1

<E(X[X +Y[PH) +E(Y(IX +Y[PT)

1

< (E|X[")7 (E|X +Y|?~D9)7 4 (E|[Y|")» (E|X + Y|®~D9)3
1
= (1X[lp + |IY]l,) (BIX +Y[P)7
(recall that (p — 1)¢ = p). Since X,Y € L? and
&+ yl? < (Ja| + |y))? <227V (|2” + |y?),  Va,yER, p>1,

if follows that a, = E|X + Y|P < co. There is nothing to prove unless a, > 0, in
which case dividing by (a,)'/? we get that

1-1
(BX +Y[7) e < [IX|lp + Y]]y,

giving the stated inequality (since 1 — % = %) O

REMARK. Jensen’s inequality applies only for probability measures, while both
Holder’s inequality u(|fgl) < u(|fP)/Pu(|lg|?)'/9 and Minkowski’s inequality ap-
ply for any measure u, with exactly the same proof we provided for probability
measures.

To practice your understanding of Markov’s inequality, solve the following exercise.

EXERCISE 1.3.19. Let X be a non-negative random variable with Var(X) < 1/2.
Show that then P(—1+ EX < X <2EX) > 1/2.

To practice your understanding of the proof of Jensen’s inequality, try to prove
its extension to convex functions on R”.

EXERCISE 1.3.20. Suppose g : R™ — R is a convex function and X1, Xo,..., X,
are integrable random variables, defined on the same probability space and such that
9(X1,...,X,,) is integrable. Show that then Eg(Xy,...,X,) > g(EXy,...,EX,).

Hint: Use convex analysis to show that g(-) is continuous and further that for any
¢ € R™ there exists b € R™ such that g(z) > g(c) + (b,x — ¢) for all x € R™ (with
(-,-) denoting the inner product of two vectors in R™).

EXERCISE 1.3.21. Let Y > 0 with v = E(Y?) < co.
(a) Show that for any 0 < a < EY,
(EY —a)?
E(Y?)
Hint: Apply the Cauchy-Schwarz inequality to Y Iy ~,.
(b) Show that (E|Y? —v])? < 4v(v — (EY)?).
(c) Derive the second Bonferroni inequality,

PY >a)>

n n

i 1

i=1 = 1<j<i<n

How does it compare with the bound of part (a) for Y =31 | Ia,?
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1.3.3. Convergence, limits and expectation. Asymptotic behavior is a
key issue in probability theory. We thus explore here various notions of convergence
of random variables and the relations among them, focusing on the integrability
conditions needed for exchanging the order of limit and expectation operations.
Unless explicitly stated otherwise, throughout this section we assume that all R.V.
are defined on the same probability space (2, F,P).

In Definition we have encountered the convergence almost surely of R.V. A
weaker notion of convergence is convergence in probability as defined next.

DEFINITION 1.3.22. We say that R.V. X,, converge to a given R.V. X in prob-
ability, denoted X, % Xoo, if P({w : [ Xp(w) — Xao(w)| > €}) = 0 as n — oo, for
any fized € > 0. This is equivalent to | X, — X0l 20, and is a special case of the
convergence in p-measure of fn, € mF to foo € mF, that is p({s : | fn(8) — foo(s)| >
€}) = 0 as n — oo, for any fized € > 0.

Our next exercise and example clarify the relationship between convergence almost
surely and convergence in probability.

EXERCISE 1.3.23. Verify that convergence almost surely to a finite limit implies
convergence in probability, that is if X, “3 Xo € R then X, 5 X

REMARK 1.3.24. Generalizing Definition [[.L3.22] for a separable metric space (S, p)
we say that (S, Bs)-valued random variables X, converge to X, in probability if and
only if for every € > 0, P(p(X,, Xoo) > €) — 0 as n — oo (see [Dud89l Section
9.2] for more details). Equipping S = R with a suitable metric (for example,
plz,y) = |p(x) — p(y)| with ¢(z) = z/(1 + |z|) : R ~ [=1,1]), this definition
removes the restriction to X, finite in Exercise

In general, X,, LA X~ does not imply that X, 2 X

EXAMPLE 1.3.25. Consider the probability space ((0,1], B, U) and Xp(w) =
1, tptsn) (W) with s, L 0 as n — oo slowly enough and t,, € [0,1 — s,] are such
that any w € (0,1] is in infinitely many intervals [t,, t, + sn]. The latter property
applies if t, = (i — 1)/k and s, = 1/k whenn =k(k—1)/2+1i,i=1,2,...,k and
k=1,2,... (plot the intervals [t,,t, + sn| to convince yourself). Then, X, 50
(since s, = U(X,, # 0) — 0), whereas fizing each w € (0, 1], we have that X, (w) =
1 for infinitely many values of n, hence X,, does not converge a.s. to zero.

Associated with each space L1(2, F, P) is the notion of L? convergence which we
now define.

DEFINITION 1.3.26. We say that X,, converges in L9 to X, denoted X, L—q> Xoo,
if Xn,Xoo € LT and || X;, — Xool|lqg = 0 as n — o0 (e, E(|X,, — Xx|?) — 0 as

n — oo.
REMARK. For ¢ = 2 we have the explicit formula
1, — X[ = B(X2) - 2E(X,, X) + E(X?).
Thus, it is often easiest to check convergence in L2.

The following immediate corollary of Lemma [[.3.16] provides an ordering of L9
convergence in terms of the parameter q.

COROLLARY 1.3.27. If X», 5 Xoo and q > 7, then Xn % Xoo.
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Next note that the L? convergence implies the convergence of the expectation of
| X2

EXERCISE 1.3.28. Fizing q > 1, use Minkowski’s inequality (Proposition [[L318),

to show that if X, =R Xoo, then E|X,|">E|X|? and for ¢ = 1,2,3,... also
EX? - EXZ.

Further, it follows from Markov’s inequality that the convergence in L?¢ implies
convergence in probability (for any value of ¢).

PROPOSITION 1.3.29. If X, 25 Xoo, then X, 2 Xoo.
PRrROOF. Fixing q > 0 recall that Markov’s inequality results with
P(|Y]>¢) <e “E[[Y|],

for any R.V. Y and any ¢ > 0 (c.f part (b) of Example [L3.14). The assumed
convergence in L? means that E[|X,, — X|? — 0 as n — oo, so taking Y =Y, =
X — Xoo, we necessarily have also P(|X,, — Xo| > ¢) — 0 as n — oo. Since € > 0

is arbitrary, we see that X, LN X as claimed. O

The converse of Proposition [[L3.29 does not hold in general. As we next demon-
strate, even the stronger almost surely convergence (see Exercise[[.3.23)), and having
a non-random constant limit are not enough to guarantee the L? convergence, for
any g > 0.

EXAMPLE 1.3.30. Fizing q¢ > 0, consider the probability space ((0,1],Bo,1},U)
and the R.V. Y, (w) = nl/qI[O)nq](w). Since Y (w) = 0 for all n > ng and some
finite ng = no(w), it follows that Yy, (w) “3 0 as n — oo. However, E[|Y,|] =
nU([0,n7Y]) = 1 for all n, so Y, does not converge to zero in L9 (see Emercise

1.3.28).

Considering Example [[L3.25, where X, LS 0 while X, does not converge a.s. to
zero, and Example which exhibits the converse phenomenon, we conclude
that the convergence in L? and the a.s. convergence are in general non comparable,
and neither one is a consequence of convergence in probability.

Nevertheless, a sequence X,, can have at most one limit, regardless of which con-
vergence mode is considered.

EXERCISE 1.3.31. Check that if Xp = X and X, “3 Y then X 2 Y.

Though we have just seen that in general the order of the limit and expectation
operations is non-interchangeable, we examine for the remainder of this subsection
various conditions which do allow for such an interchange. Note in passing that
upon proving any such result under certain point-wise convergence conditions, we
may with no extra effort relax these to the corresponding almost sure convergence
(and the same applies for integrals with respect to measures, see part (a) of Theorem

[[39 or that of Proposition [[L3.1]).

Turning to do just that, we first outline the results which apply in the more
general measure theory setting, starting with the proof of the monotone convergence
theorem.
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ProOOF OF THEOREM [[L34]l By part (c) of Proposition [[30] the proof of
which did not use Theorem [[.3.4] we know that u(h,,) is a non-decreasing sequence
that is bounded above by p(h). It therefore suffices to show that

nlgrolo p(hn) = sup{po(¥) : ¥ € SF1, ¢ < hn}

(1.3.5) > sup{uo(p) : ¢ € SF4, 0 < h} = p(h)

(see Step 3 of Definition [[3T]). That is, it suffices to find for each non-negative
simple function ¢ < h a sequence of non-negative simple functions 1, < h,, such
that uo(1n) — wo(p) as n — oco. To this end, fixing ¢, we may and shall choose
without loss of generality a representation ¢ = > ¢;l4, such that 4; € F are
=1

disjoint and further ¢;u(A;) > 0 for I =1,...,m (see proof of Lemma[[.3:3)). Using
hereafter the notation f.(A) = inf{f(s) : s € A} for f € mF; and A € F, the
condition ¢(s) < h(s) for all s € S is equivalent to ¢; < h.(4;) for all I, so

po(9) <D hu(A)p(A) = V.
=1

Suppose first that V' < oo, that is 0 < h.(A;)p(A4;) < oo for all I. In this case, fixing
A < 1, consider for each n the disjoint sets A; xn = {s € A; : hn(s) > M (4))} € F
and the corresponding

’@[U\Jl(s) = Z Al (Al)IAl,/\,n (S) € SF+ )
=1
where ¥ n(s) < hyp(s) for all s € S. If s € A; then h(s) > M. (4;). Thus, hy, T h
implies that A; x, T A; as n — o0, for each . Consequently, by definition of p(h,,)
and the continuity from below of p,

lim M(hn) > lim MO(wk,n) =AV.

Taking A 1 1 we deduce that lim,, p(hy) >V > po(p). Next suppose that V' = oo,
so without loss of generality we may and shall assume that h.(A41)u(A1) = oc.
Fixing z € (0,h.(A1)) let A1 5 = {s € A1 : hy(s) > x} € F noting that Ay ;. T
Ap as n — oo and Y n(s) = xla,, . (5) < hy(s) for all n and s € S, is a non-
negative simple function. Thus, again by continuity from below of p we have that

Jim pu(hy) > 1 pio(4,n) = 2p(Ar).

Taking x 1 h.(A1) we deduce that lim,, p1(hy) > ha(A1)p(A1) = 0o, completing the
proof of (L33) and that of the theorem. O

Considering probability spaces, Theorem [[.3.4] tells us that we can exchange the
order of the limit and the expectation in case of monotone upward a.s. convergence
of non-negative R.V. (with the limit possibly infinite). That is,

THEOREM 1.3.32 (MONOTONE CONVERGENCE THEOREM). If X,, > 0 and X, (w) 1
Xoo(w) for almost every w, then EX,, 1 EX .

In Example we have a point-wise convergent sequence of R.V. whose ex-
pectations exceed that of their limit. In a sense this is always the case, as stated
next in Fatou’s lemma (which is a direct consequence of the monotone convergence
theorem).
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LEMMA 1.3.33 (FATOU’S LEMMA). For any measure space (S, F, ) and any f, €
mF, if fn(s) > g(s) for some p-integrable function g, all n and p-almost-every
s €S, then

(1.3.6) liminf p(f,) > p(liminf f,).
n—oo n—oo

Alternatively, if fn(s) < g(s) for all n and a.e. s, then

(1.3.7) lim sup u(fr) < p(limsup f,).
n—oo n—oo

PROOF. Assume first that f, € mFy and let h,(s) = infx>, fx(s), noting
that h, € mJF, is a non-decreasing sequence, whose point-wise limit is h(s) :=
liminf,, o fn(s). By the monotone convergence theorem, u(h,) T p(h). Since
fn(8) > hy(s) for all s € S, the monotonicity of the integral (see Proposition [[3.5])
implies that u(f,) > p(hy) for all n. Considering the liminf as n — oo we arrive
at (L3.6).

Turning to extend this inequality to the more general setting of the lemma, note
that our conditions imply that f, = g + (f, — g)4 for each n. Considering the
countable union of the p-negligible sets in which one of these identities is violated,
we thus have that

h:=liminf f,, < g + liminf(f, — g) .
n—oo n—oo
Further, u(f,) = u(g) + u((fn — g)+) by the linearity of the integral in mF, U L*.
Taking n — oo and applying (L36) for (f, — ¢g)+ € mF4 we deduce that
liminf p(fn) > p(g) + plimint (£, = 9)1) = p(g) + p(h — g) = u(h)

(where for the right most identity we used the linearity of the integral, as well as
the fact that —g is p-integrable).

Finally, we get (IL3.7) for f, by considering (L3.6]) for — f,. d

REMARK. In terms of the expectation, Fatou’s lemma is the statement that if
R.V. X,, > X, almost surely, for some X € L! and all n, then

(1.3.8) hnrr_1)1£fE(Xn) > E(hnn_l,é%f Xn),

whereas if X,, < X, almost surely, for some X € L' and all n, then
(1.3.9) limsup E(X,,) < E(limsup X,,).
n—oo n—oo

Some text books call (39) and (L37) the Reverse Fatou Lemma (e.g. [Wil91),
Section 5.4]).

Using Fatou’s lemma, we can easily prove Lebesgue’s dominated convergence the-
orem (in short DOM).

THEOREM 1.3.34 (DOMINATED CONVERGENCE THEOREM). For any measure space
(S, F, 1) and any f,, € mF, if for some p-integrable function g and p-almost-every
s € S both fn(s) = fools) as n — oo, and |fn(s)| < g(s) for all n, then f is
w-integrable and further u(|frn — foo|) = 0 as n — oo.

ProoF. Up to a p-negligible subset of S, our assumption that |f,| < g and
fn = foo, implies that | foo| < g, hence fo is p-integrable. Applying Fatou’s lemma
370 for |frn — fool < 2g such that limsup,, | frn — foo| = 0, we conclude that

0 < limsup p(lfn — fool) < plimsup [fn — fool) = pu(0) =0,
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as claimed. O

By Minkowski’s inequality, u(|frn — foo|) — 0 implies that u(|fn]) = p(|f]). The
dominated convergence theorem provides us with a simple sufficient condition for
the converse implication in case also f, — f a.e.

LEMMA 1.3.35 (SCHEFFE’S LEMMA). If f,, € mF converges a.e. to foo € mF and
u((fnl) = (| fool) < 00 then p([fn — fool) = 0 as n — oo.

REMARK. In terms of expectation, Scheffé’s lemma states that if X,, “3° X, and
1
E|X,| = E|[Xs| < 00, then X,, & X as well.

PROOF. As already noted, we may assume without loss of generality that
fn(s) = foo(s) for all s € S, that is g,(s) = fn(s) — foo(s) = 0 as n — oo,
for all s € S. Further, since u(|fn|) = p(|fool) < 00, we may and shall assume also
that f,, are R-valued and p-integrable for all n < oo, hence g,, € L*(S, F, i) as well.

Suppose first that f,, € mF, for all n < co. In this case, 0 < (gn)— < foo for all
n and s. As (gn)-(s) — 0 for every s € S, applying the dominated convergence
theorem we deduce that u((g,)—) — 0. From the assumptions of the lemma (and
the linearity of the integral on L'), we get that u(g,) = u(fn) — p(fs) — 0 as
n — oo. Since |x| = z 4+ 2z_ for any x € R, it thus follows by linearity of the
integral on L' that u(|gn|) = p(gn) + 21((gn)—) — 0 for n — oo, as claimed.

In the general case of f,, € mJF, we know that both 0 < (f,,)+(s) = (foo)+(s) and
0 < (fn)=(s5) = (foo)—(s) for every s, so by (L3.0) of Fatou’s lemma, we have that

pllfool) = n(foo)+) + ml(foo)-) < liminf u((fn) ) + lim inf p((fn)+)
< lminflp((fn)-) + p((fa)+)] = T p(|fal) = p(lfool) -

Hence, necessarily both u((fn)+) = p#((foo)+) and u((frn)-) — 1((foo)—). Since
|z —y| <|zy —ys|+|z— —y—]| for all z,y € R and we already proved the lemma

for the non-negative (f,)_ and (fy)+, we see that
Jim pu([fo = fool) < Hm p(|(fn)+ = (foo) 4 1) + lim pu(|(fn)~ = (foo)-1) = 0,
concluding the proof of the lemma. O

We conclude this sub-section with quite a few exercises, starting with an alterna-
tive characterization of convergence almost surely.

EXERCISE 1.3.36. Show that X,, “3 0 if and only if for each € > 0 there is n
so that for each random integer M with M(w) > n for all w € Q we have that
P({w: [Xpro) (@) > 2}) < e.

EXERCISE 1.3.37. Let Y, be (real-valued) random variables on (0, F,P), and Ny
positive integer valued random variables on the same probability space.

(a) Show that Yn, (w) = Yy, () (w) are random variables on (Q, F).

(b) Show that if Y;, 3 Yoo and Ny, 3 0o then Yy, “5 Yio.

(c) Provide an example of Yy, 250 and Ny %3 o such that almost surely
Yn, =1 for all k.

(d) Show that if Yy, 3 Yoo and P(Ny, > 1) — 1 as k — oo, for every fived
r < 00, then Yn, LN Y.
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In the following four exercises you find some of the many applications of the
monotone convergence theorem.

EXERCISE 1.3.38. You are now to relax the non-negativity assumption in the mono-
tone convergence theorem.

(a) Show that if E[(X1)-] < 00 and X, (w) T X (w) for almost every w, then
EX, + EX.
(b) Show that if in addition sup,, E[(X,)+] < oo, then X € L*(Q, F,P).

EXERCISE 1.3.39. In this exercise you are to show that for any R.V. X >0,

(1.3.10) EX = ImEs X for BsX = D J6P({w: 6 < X(w) < (j+1)3}) .
j=0

First use monotone convergence to show that Es X converges to EX along the

sequence 0, = 27%. Then, check that Es;X < E,X +n for any 6,1 > 0 and deduce

from it the identity (L.310).

Applying (L.310Q) verify that if X takes at most countably many values {x1,x2,...},
then EX = Y. o,P{w : X(w) = x;}) (this applies to every R.V. X > 0 on a
countable ). More generally, verify that such formula applies whenever the series
is absolutely convergent (which amounts to X € L*).

EXERCISE 1.3.40. Use monotone convergence to show that for any sequence of

non-negative R.V. Y,
o0

E(i Y,)=> EY,.

EXERCISE 1.3.41. Suppose X,,, X € L*(Q, F,P) are such that

(a) X, >0 almost surely, E[X,]=1, E[X,logX,] <1, and
(b) E[X,.)Y] = E[XY] as n — oo, for each bounded random variable Y on
(6, F).

Show that then X > 0 almost surely, E[X] =1 and E[X log X] < 1.
Hint: Jensen’s inequality is handy for showing that E[X log X] < 1.

Next come few direct applications of the dominated convergence theorem.

EXERCISE 1.3.42.

(a) Show that for any random variable X , the function t — Ble~1*=X1] is con-
tinuous on R (this function is sometimes called the bilateral exponential
transform ).

(b) Suppose X > 0 is such that EX? < oo for some ¢ > 0. Show that then
¢ Y (EX?—1) = Elog X as q | 0 and deduce that also g~ logEX? —
Elog X as ¢ 0.

Hint: Fizing * > 0 deduce from convexity of q — x? that ¢~'(z? — 1) | logz as
q40.

EXERCISE 1.3.43. Suppose X is an integrable random variable.

(a) Show that E(|X|I{x>n}) — 0 as n — oo.
(b) Deduce that for any € > 0 there exists § > 0 such that

sup{E[| X |14] : P(4) <} <e.
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(c) Provide an example of X > 0 with EX = oo for which the preceding fails,
that is, P(Ar) — 0 as k — oo while E[X14,] is bounded away from zero.

The following generalization of the dominated convergence theorem is also left as
an exercise.

EXERCISE 1.3.44. Suppose gn(-) < fu(:) < hn(:) are p-integrable functions in the
same measure space (S,F,u) such that for p-almost-every s € S both g,(s) —
Goo(8), fn(8) = foo(8) and hy(s) = hoo(s) as n — oo. Show that if further g and
heo are p-integrable functions such that p(gn) = p(goo) and p(hy) — p(hoo), then
foo is p-integrable and p(fn) — p(foo)-

Finally, here is a demonstration of one of the many issues that are particularly
easy to resolve with respect to the L?(Q, F, P) norm.

EXERCISE 1.3.45. Let X = (X(t))ter be a mapping from R into L*(Q, F,P).
Show that t — X (t) is a continuous mapping (with respect to the norm || - ||2 on
L3(Q, F,P)), if and only if both

u(t) = BIX()] and r(s,t) = BIX(s)X(8)] — u(s)p(t)
are continuous real-valued functions (r(s,t) is continuous as a map from R? to R).

1.3.4. L'-convergence and uniform integrability. For probability theory,
the dominated convergence theorem states that if random variables X, % X, are
such that | X,| <Y for all n and some random variable Y such that EY < oo, then

1
Xoo € L' and X,, & X... Since constants have finite expectation (see part (d) of
Theorem [[L3.9), we have as its corollary the bounded convergence theorem, that is,

COROLLARY 1.3.46 (Bounded Convergence). Suppose that a.s. |X,(w)| < K for
some finite non-random constant K and all n. If X, 3 Xoo, then Xoo € L' and

1
X, 5 x...

We next state a uniform integrability condition that together with convergence in
probability implies the convergence in L'.

DEFINITION 1.3.47. A possibly uncountable collection of R.V.-s {Xa, 0 € T} is
called uniformly integrable (U.I.) if

(1.3.11) lim sup E[|Xo|lx,>m] = 0.
M—oo ¢

Our next lemma shows that U.L. is a relaxation of the condition of dominated
convergence, and that U.IL still implies the boundedness in L* of {X,,« € Z}.

LEMMA 1.3.48. If | Xo| <Y for all « and some R. V.Y such that EY < oo, then
the collection {Xo} is U.L In particular, any finite collection of integrable R.V. is
U.L

Further, if {X} is U.L then sup, E|X,| < co.

PRrROOF. By monotone convergence, E[Y Iy <y 1 EY as M 1 oo, for any R.V.
Y > 0. Hence, if in addition EY < oo, then by linearity of the expectation,
E[ny>M] J/ 0 as M T Q. NOW, if |Xa| < Y then |Xa|I|Xa\>M < YIy>M,
hence E[|Xo|1 x,|>nm] < E[Y Iy~ ], which does not depend on «, and for Y € L!
converges to zero when M — oo. We thus proved that if | X,| <Y for all a and
some Y such that EY < oo, then {X,} is a U.L collection of R.V.-s
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For a finite collection of R.V.-s X; € L', i =1,... k, take Y = | X1| + | Xao|+---+
| X)| € L' such that |X;| <Y for i = 1,...,k, to see that any finite collection of
integrable R.V.-s is U.I.

Finally, since

E|Xo| = B[ Xall x,|<m] + El| Xoll x,>0m] £ M +supE[| Xo|l|x, > M)

we see that if {X,,a € Z} is U.L then sup, E|X,| < cc. O

We next state and prove Vitali’s convergence theorem for probability measures,
deferring the general case to Exercise [L3.53

THEOREM 1.3.49 (VITALI’S CONVERGENCE THEOREM). Suppose X, 2 Xoo. Then,

1
the collection {X,} is U.L if and only if X, L Xoo which in turn is equivalent to
Xy, being integrable for all n < oo and E|X,| — E|X|.

REMARK. In view of Lemma [[L3.48 Vitali’s theorem relaxes the assumed a.s.
convergence X,, — X of the dominated (or bounded) convergence theorem, and
of Scheffé’s lemma, to that of convergence in probability.

PROOF. Suppose first that | X,,| < M for some non-random finite constant M
and all n. For each e > 0let B, . = {w : | X, (w) — Xoo(w)| > €}. The assumed
convergence in probability means that P(B,.) — 0 as n — oo (see Definition
[322). Since P(|Xo| > M 4+ ¢) < P(B,.), taking n — oo and considering
e = ¢ex | 0, we get by continuity from below of P that almost surely |Xo| < M.
So, | X, — Xoo| < 2M and by linearity and monotonicity of the expectation, for any
n and € > 0,

E|Xn — Xoo| = E[| X, — X00|IB$%E] +E[|X, - X00|IBn,s]
< Elelp. | +E(2MIp, | <c+2MP(B,.).
Since P(B,,,.) — 0 as n — o0, it follows that limsup,,_, . E|X,, — Xo| < e. Taking
e } 0 we deduce that E|X,, — X| — 0 in this case.

Moving to deal now with the general case of a collection {X,} that is U.L, let
oum(z) = max(min(z, M), —M). As |opm(x)—par(y)| < |z—y| for any x,y € R, our
assumption X,, 2 X implies that om (Xn) N onm(Xoo) for any fixed M < oco.
With |par(+)] < M, we then have by the preceding proof of bounded convergence

1
that @ (X5) L oom (Xoo). Further, by Minkowski’s inequality, also E|pa (X,)| —
Elpym(Xs)|- By Lemma [[348 our assumption that {X,} are U.I. implies their
L' boundedness, and since |p(2)| < |2 for all 2, we deduce that for any M,

(1.3.12) oo > c:=supE|X,| > li_>m Eloym (Xn)| = Elom(Xoo)| -

With |om(Xoo)| T | Xso| as M 1 oo, it follows from monotone convergence that
Elom(Xoo)| T E|Xoo|, hence E|Xo| < ¢ < oo in view of (I312). Fixing ¢ >
0, choose M = M(e) < oo large enough for E[|X|I|x_|>m] < €, and further
increasing M if needed, by the U.IL. condition also E[| X, |l x,|>m] < € for all n.
Considering the expectation of the inequality |2 — ()] < |2|I5)> s (Which holds
for all z € R), with x = X, and = X, we obtain that

E|X,, — Xoo| < Bl X0 — 01(Xa)| + Bl (Xn) = oa1(Xoo)| + El Xow = o1 (Xo0)|
<2+ E|om(Xn) —om(Xoo)l -
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1
Recall that o (X,,) L, om(Xoo), hence limsup,, E| X, — Xo| < 2e. Taking e — 0
completes the proof of L! convergence of X,, to X.

1
Suppose now that X, L Xoo. Then, by Jensen’s inequality (for the convex
function g(x) = |z]),

[E|X| — B[ X[ < B[ [Xn| = [Xoo| [] < E[Xpn = Xoo| = 0.

That is, E|X,,| = E|X| and X,, n < co are integrable.
It thus remains only to show that if X,, & X, all of which are integrable and
E|X,| — E|X| then the collection {X,} is U.I. To the end, for any M > 1, let

Yy () = |2l <pr—1 + (M = 1)(M = [z} T —1,01 (2])
a piecewise-linear, continuous, bounded function, such that ¢y (x) = |z| for |z| <
M —1 and ¢p(z) = 0 for |z| > M. Fixing € > 0, with X integrable, by dominated
convergence E| X o | —Et,, (X)) < € for some finite m = m(e). Further, as |1, (x)—
Ym(y)| < (m —1)|z — y| for any z,y € R, our assumption X,, = X, implies that
Ym(Xn) 2 m(Xs). Hence, by the preceding proof of bounded convergence,
followed by Minkowski’s inequality, we deduce that Ei,,(X,) — E¢,,(X) as
n — oo. Since |z|ljzj>m < |z — ¥ (z) for all z € R, our assumption E|X,, | —
E|X | thus implies that for some ny = ng(e) finite and all n > ng and M > m(e),
< E|Xoo| — BV (Xoo) +€ < 26.
As each X, is integrable, E[|X,|Ix,|>n] < 2¢ for some M > m finite and all n

(including also n < mg(€)). The fact that such finite M = M (e) exists for any € > 0
amounts to the collection {X,,} being U.I O

The following exercise builds upon the bounded convergence theorem.

EXERCISE 1.3.50. Show that for any X > 0 (do not assume E(1/X) < 00), both
(a) lim yE[X 1Ix-,] =0 and
Y—r00
() limyE[X 'Ix-,] =0.
y40

Next is an example of the advantage of Vitali’s convergence theorem over the
dominated convergence theorem.

EXERCISE 1.3.51. On ((0,1], B(o,1),U), let Xy (w) = (n/logn)(gn-1y(w) for n >
2. Show that the collection {X,} is U.L such that X, 3 0 and EX,, — 0, but

there is mo random wvariable Y with finite expectation such that' Y > X, for all
n > 2 and almost all w € (0,1].

By a simple application of Vitali’s convergence theorem you can derive a classical
result of analysis, dealing with the convergence of Cesaro averages.

EXERCISE 1.3.52. Let U, denote a random variable whose law is the uniform
probability measure on (0,n], namely, Lebesque measure restricted to the interval
(0,n] and normalized by =" to a probability measure. Show that g(U,) = 0 as
n — oo, for any Borel function g(-) such that |g(y)| — 0 as y — oo. Further,
assuming that also sup, |g(y)| < oo, deduce that Elg(Uy,)| = n~" [;"|g(y)|dy — 0
as n — co.
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Here is Vitali’s convergence theorem for a general measure space.

EXERCISE 1.3.53. Given a measure space (S,F, ), suppose fn, foo € mF with
w(|fnl) finite and p(|fr — fool > €) = 0 as n — oo, for each fized € > 0. Show
that pu(|frn — fool) = 0 as n — oo if and only if both sup, u(|fullf,|>k) — 0 and
sup,, (| fnlla,) = 0 for k — oo and some {A} C F such that p(AS§) < oo.

We conclude this subsection with a useful sufficient criterion for uniform integra-
bility and few of its consequences.

EXERCISE 1.3.54. Let f > 0 be a Borel function such that f(r)/r — 0o asr — co.
Suppose Ef (| X4|) < C for some finite non-random constant C' and all « € Z. Show
that then { X, : a € T} is a uniformly integrable collection of R.V.

EXERCISE 1.3.55.
(a) Construct random wvariables X, such that sup, E(|X,|) < oo, but the
collection {X,} is not uniformly integrable.
(b) Show that if {X,} is a U.L collection and {Y,} is a U.IL collection, then
{X,, +Y,} is also U.L
(¢) Show that if X,, > Xo and the collection {X,} is uniformly integrable,
then E(Xp1a) = E(Xoola) as n — oo, for any measurable set A.

1.3.5. Expectation, density and Riemann integral. Applying the stan-
dard machine we now show that fixing a measure space (S, F, ), each non-negative
measurable function f induces a measure fu on (S,F), with f being the natural
generalization of the concept of probability density function.

PROPOSITION 1.3.56. Fiz a measure space (S,F,u). Fvery f € mFy induces
a measure fi on (S,F) via (fu)(A) = u(flg) for all A € F. These measures
satisfy the composition relation h(fu) = (hf)u for all fyh € mFy. Further, h €
LY(S, F, fu) if and only if fh € LY(S, F,pu) and then (fu)(h) = u(fh).

PRrOOF. Fixing f € mF, obviously fu is a non-negative set function on (S, F)
with (fu)(0) = p(fIy) = u(0) = 0. To check that fu is countably additive, hence
a measure, let A = Ui Ay for a countable collection of disjoint sets A; € F. Since
Sor_y fLla, T fla, it follows by monotone convergence and linearity of the integral
that,

p(fLa) = lim p(y " fla) = Tim D> u(fIa) =Y u(fla,)
k=1 k=1 k

Thus, (fu)(A) = >, (fu)(Ax) verifying that fpu is a measure.
Fixing f € mFy, we turn to prove that the identity

(1.3.13) (Fu)(h1a) = p(FhLa) vAeF,

holds for any h € mF,. Since the left side of (L3.I3)) is the value assigned to A
by the measure h(fu) and the right side of this identity is the value assigned to
the same set by the measure (hf)u, this would verify the stated composition rule
h(fur) = (hf)u. The proof of (L3I3)) proceeds by applying the standard machine:
Step 1. If h = Ip for B € F we have by the definition of the integral of an indicator
function that

(fu)(Ipla) = (fu)(Tang) = (f)(ANB) = u(flanp) = p(fIs1a),
which is (L313).
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Step 2. Take h € SF represented as h = >,_, ¢Ip, with ¢, > 0 and B, € F.
Then, by Step 1 and the linearity of the integrals with respect to fu and with
respect to u, we see that

n

(fu)(hia) = Zcz(fu) Ip,14) = Zcm fIp1a) = ZClIBLIA w(fhla),

=1

again yielding (L313).

Step 3. For any h € mF, there exist h, € SF; such that h, T h. By Step 2 we
know that (fu)(hnla) = p(fhnla) for any A € F and all n. Further, h,Ia 1 his
and fhpIa 1 fhIa, so by monotone convergence (for both integrals with respect to

f/'L and /’L)u
(fu)(hia) = Jim (fp)(hnla) = lim pw(fhnla) = p(fhia),

completing the proof of (L3I3) for all h € mF.
Writing h € mF as h = hy — h_ with hy = max(h,0) € mF; and h_ =
—min(h,0) € mF,, it follows from the composition rule that

/hid(fﬂ) = (fu)(hels) = ha (fp)(S) = ((he f)p)(S) = u(fhils) = /fhidﬂ-

Observing that fhy = (fh)x when f € mF;, we thus deduce that h is fu-
integrable if and only if fh is p-integrable in which case [hd(fu) = [ fhdp, as
stated. O

Fixing a measure space (S, F,u), every set D € F induces a o-algebra Fp =
{A e F:ACD}. Let up denote the restriction of u to (D,Fp). As a corollary
of Proposition we express the integral with respect to pp in terms of the
original measure p.

COROLLARY 1.3.57. Fizing D € F let hp denote the restriction of h € mF to
(D, Fp). Then, up(hp) = u(hlp) for any h € mF,. Further, hp € L*(D, Fp, up)
if and only if hIp € LY(S,F, ), in which case also up(hp) = p(hip).

PRrROOF. Note that the measure Ippu of Proposition coincides with pp
on the o-algebra Fp and assigns to any set A € F the same value it assigns to
AND € Fp. By Definition [[37] this implies that (Ipu)(h) = up(hp) for any
h € mF,. The corollary is thus a re-statement of the composition and integrability

relations of Proposition [[L3.50] for f = Ip. O

REMARK 1.3.58. Corollary justiﬁes using hereafter the notation [, fdu or
wu(f; A) for p(fIa), or writing E =[,X (w) for E(X14). With this
notation in place, Proposition [L.3 states that each Z > 0 such that EZ =1
induces a probablhty measure Q = ZP such that Q(4 f 4 ZdP for all A € F,
and then Eq(W) := [WdQ = E(ZW) whenever W 2 0 or ZW € LY (Q, F,P)

(the assumption EZ =1 translates to Q(Q) = 1).

Proposition[I.3.50is closely related to the probability density function of Definition
[[.2.400 En-route to showing this, we first define the collection of Lebesgue integrable
functions.
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DEFINITION 1.3.59. Consider Lebesque’s measure A on (R, B) as in Section 13,

and its completion X\ on (R,B) (see Theorem [[.1.35). A set B € B is called
Lebesgue measurable and f : R — R is called Lebesgue integrable function if
f € mB, and X(|f]) < co. As we show in Proposition any mon-negative
Riemann integrable function is also Lebesgue integrable, and the integral values
coincide, justifying the notation fB x)dx for X(f; B), where the function f and
the set B are both Lebesgue measurable.

EXAMPLE 1.3.60. Suppose f is a non-negative Lebesgue integrable function such
that [, f(x)dz = 1. Then, P = fX of Pmposztzon [L.758 is a probability measure
n (R, B) such that P(B) = A(f; B) = [ f(@)dx for any Lebesque measurable set
B By Theorem [1.2.37 it is easy to Uemfy that F( ) = P((—00,a]) is a distribution
function, such that F(a f f(z)dz. That is, P is the law of a R.V. X : R —
R whose probability denszty functwn is f (c.f. Definition and Proposition
[Z.2.45)-
Our next theorem allows us to compute expectations of functions of a R.V. X
in the space (R, B, Px), using the law of X (c.f. Definition [.2.34) and calculus,
instead of working on the original general probability space. One of its immediate

consequences is the “obvious” fact that if X 2 Y then Eh(X) = Eh(Y) for any
non-ne