Problem Set 1

Stats 311/EE 377
Due: Thursday, January 21 in class

Note: If you are familiar with measure theory, you may find it more satisfying to prove every result in this homework in full generality (that is, instead of assuming that all distributions have Lebesgue densities, simply assume that they are all absolutely continuous with respect to some base measure μ). If you are not familiar with measure theory, there is essentially no loss of generality in anything in this problem set by proving results assuming all distributions have densities on \mathbb{R}.

Our first few questions investigate properties of a divergence between distributions that is weaker than the KL-divergence, but is intimately related to optimal testing. Let P_{1} and P_{2} be arbitrary distributions on a space \mathcal{X}. The total variation distance between P_{1} and P_{2} is defined as

$$
\left\|P_{1}-P_{2}\right\|_{\mathrm{TV}}:=\sup _{A \subset \mathcal{X}}\left|P_{1}(A)-P_{2}(A)\right|
$$

Question 1: Prove the following identities about total variation. Throughout, let P_{1} and P_{2} have densities p_{1} and p_{2} on a (common) set \mathcal{X}.
(a) $2\left\|P_{1}-P_{2}\right\|_{\mathrm{TV}}=\int\left|p_{1}(x)-p_{2}(x)\right| d x$.
(b) For functions $f: \mathcal{X} \rightarrow \mathbb{R}$, define the supremum norm $\|f\|_{\infty}=\sup _{x \in \mathcal{X}}|f(x)|$. Show that $2\left\|P_{1}-P_{2}\right\|_{\mathrm{TV}}=\sup _{\|f\|_{\infty} \leq 1} \int_{\mathcal{X}} f(x)\left(p_{1}(x)-p_{2}(x)\right) d x$.
(c) $\left\|P_{1}-P_{2}\right\|_{\mathrm{TV}}=\int \max \left\{p_{1}(x), p_{2}(x)\right\} d x-1$.
(d) $\left\|P_{1}-P_{2}\right\|_{\mathrm{TV}}=1-\int \min \left\{p_{1}(x), p_{2}(x)\right\} d x$.
(e) For functions $f, g: \mathcal{X} \rightarrow \mathbb{R}$,

$$
\inf \left\{\int f(x) p_{1}(x) d x+\int g(x) p_{2}(x) d x: f+g \geq 1, f \geq 0, g \geq 0\right\}=1-\left\|P_{1}-P_{2}\right\|_{\mathrm{TV}}
$$

In class, we defined a quantizer as any function $g: \mathcal{X} \rightarrow\{1, \ldots, m\}$ for some $m \in \mathbb{N}$, and we noted that g partitions \mathcal{X} into sets A_{1}, \ldots, A_{m}, where $g(x)=i$ for $x \in A_{i}$. Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be a convex function satisfying $f(1)=0$. In class, we defined the f-divergence between two probability measures P and Q; as with the KL-divergence, the most general definition of an f-divergence between P and Q on the space \mathcal{X} may be defined as

$$
\begin{equation*}
D_{f}(P \| Q):=\sup \left\{D_{f}(P \| Q \mid g): g \text { quantizes } \mathcal{X}\right\}, \tag{1}
\end{equation*}
$$

where $D_{f}(P \| Q \mid g)=\sum_{i=1}^{m} Q\left(A_{i}\right) f\left(\frac{P\left(A_{i}\right)}{Q\left(A_{i}\right)}\right)$. Now we show how to extend the data processing inequality in class - which applied to the KL-divergence - to the family of f-divergences.
Question 2 (Generalized "log-sum" inequalities): Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be an arbitrary convex function.
(a) Let $a_{i}, b_{i}, i=1, \ldots, n$ be non-negative reals. Prove that

$$
\left(\sum_{i=1}^{n} a_{i}\right) f\left(\frac{\sum_{i=1}^{n} b_{i}}{\sum_{i=1}^{n} a_{i}}\right) \leq \sum_{i=1}^{n} a_{i} f\left(\frac{b_{i}}{a_{i}}\right) .
$$

(b) Generalizing the preceding result, let $a: \mathcal{X} \rightarrow \mathbb{R}_{+}$and $b: \mathcal{X} \rightarrow \mathbb{R}_{+}$, and let $u: \mathcal{X} \rightarrow \mathbb{R}_{+}$satisfy $\int u(x) d x<\infty$. Show that

$$
\int a(x) u(x) d x f\left(\frac{\int b(x) u(x) d x}{\int a(x) u(x) d x}\right) \leq \int a(x) f\left(\frac{b(x)}{a(x)}\right) u(x) d x .
$$

(Hint: use the fact that the perspective of a function f, defined by $h(x, t)=t f(x / t)$ for $t>0$, is jointly convex in x and t [e.g. 1, Chapter 3.2.6].)

Question 3 (Data processing and f-divergences I): As with the KL-divergence, given a quantizer g of the set \mathcal{X}, where g induces a partition A_{1}, \ldots, A_{m} of \mathcal{X}, we define the f-divergence between P and Q conditioned on g as

$$
D_{f}(P \| Q \mid g):=\sum_{i=1}^{m} Q\left(A_{i}\right) f\left(\frac{P\left(A_{i}\right)}{Q\left(A_{i}\right)}\right)=\sum_{i=1}^{m} Q\left(g^{-1}(\{i\})\right) f\left(\frac{P\left(g^{-1}(\{i\})\right)}{Q\left(g^{-1}(\{i\})\right)}\right) .
$$

Given quantizers g_{1} and g_{2}, we say that g_{1} is a finer quantizer than g_{2} under the following condition: assume that g_{1} induces the partition A_{1}, \ldots, A_{n} and g_{2} induces the partition B_{1}, \ldots, B_{m}; then for any of the sets B_{i}, there are exists some k and sets $A_{i_{1}}, \ldots, A_{i_{k}}$ such that $B_{i}=\cup_{j=1}^{k} A_{i_{j}}$. We let $g_{1} \prec g_{2}$ denote that g_{1} is a finer quantizer than g_{2}.
(a) Let g_{1} and g_{2} be quantizers of the set \mathcal{X}, and let $g_{1} \prec g_{2}$, meaning that g_{1} is a finer quantization than g_{2}. Prove that

$$
D_{f}\left(P \| Q \mid g_{2}\right) \leq D_{f}\left(P \| Q \mid g_{1}\right)
$$

Equivalently, show that whenever \mathcal{A} and \mathcal{B} are collections of sets partitioning \mathcal{X}, but \mathcal{A} is a finer partition of \mathcal{X} than \mathcal{B}, that

$$
\sum_{B \in \mathcal{B}} Q(B) f\left(\frac{P(B)}{Q(B)}\right) \leq \sum_{A \in \mathcal{A}} Q(A) f\left(\frac{P(A)}{Q(A)}\right) .
$$

(Hint: Use the result of Question 2(a)).
(b) Suppose that \mathcal{X} is discrete so that P and Q have p.m.f.s p and q. Show that

$$
D_{f}(P \| Q)=\sum_{x} q(x) f\left(\frac{p(x)}{q(x)}\right) .
$$

Question 4 (General data processing inequalities): Let f be a convex function satisfying $f(1)=0$. Let K be a Markov transition kernel from \mathcal{X} to \mathcal{Z}, that is, $K(\cdot \mid x)$ is a probability distribution on \mathcal{Z} for each $x \in \mathcal{X}$. (Written differently, we have $X \rightarrow Z$, and conditioned on $X=x, Z$ has distribution $K(\cdot \mid x)$, so that $K(A \mid x)$ is the probability that $Z \in A$ given $X=x$.)
(a) Define the marginals $K_{P}(A)=\int_{\mathcal{X}} K(A, x) p(x) d x$ and $K_{Q}(A)=\int K(A, x) q(x) d x$. Show that

$$
D_{f}\left(K_{P} \| K_{Q}\right) \leq D_{f}(P \| Q) .
$$

(Hint: by equation (1), w.l.o.g. we may assume that \mathcal{Z} is finite and $\mathcal{Z}=\{1, \ldots, m\}$.)
(b) Let X and Y be random variables with joint distribution $P_{X Y}$ and marginals P_{X} and P_{Y}. Define the f-information between X and Y as

$$
I_{f}(X ; Y):=D_{f}\left(P_{X Y} \| P_{X} \times P_{Y}\right) .
$$

Use part (a) to show the following general data processing inequality: if we have the Markov chain $X \rightarrow Y \rightarrow Z$, then

$$
I_{f}(X ; Z) \leq I_{f}(X ; Y)
$$

Question 5 (Concentration of bounded random variables): Let X be a random variable taking values in $[a, b]$, where $-\infty<a \leq b<\infty$. In this question, we show Hoeffding's Lemma, that is, that X is sub-Gaussian: for all $\lambda \in \mathbb{R}$, we have

$$
\mathbb{E}[\exp (\lambda(X-\mathbb{E}[X]))] \leq \exp \left(\frac{\lambda^{2}(b-a)^{2}}{8}\right)
$$

(a) Show that $\operatorname{Var}(X) \leq\left(\frac{b-a}{2}\right)^{2}=\frac{(b-a)^{2}}{4}$ for any random variable X taking values in $[a, b]$.
(b) Let

$$
\varphi(\lambda)=\log \mathbb{E}[\exp (\lambda(X-\mathbb{E}[X]))] .
$$

Assuming that $\mathbb{E}[X]=0$ (convince yourself that this is no loss of generality) show that

$$
\varphi(0)=0, \quad \varphi^{\prime}(0)=0, \quad \varphi^{\prime \prime}(t)=\frac{\mathbb{E}\left[X^{2} e^{t X}\right]}{\mathbb{E}\left[e^{t X}\right]}-\frac{\mathbb{E}\left[X e^{t X}\right]^{2}}{\mathbb{E}\left[e^{t X}\right]^{2}}
$$

(You may assume that derivatives and expectations commute, which they do in this case.)
(c) Construct a random variable Y_{t}, defined for $t \in \mathbb{R}$, such that $Y_{t} \in[a, b]$ and

$$
\operatorname{Var}\left(Y_{t}\right)=\varphi^{\prime \prime}(t)
$$

(You may assume X has a density for simplicity.)
(d) Using the result of part (C), show that $\varphi(\lambda) \leq \frac{\lambda^{2}(b-a)^{2}}{8}$ for all $\lambda \in \mathbb{R}$.

Question 6 (Variational forms of KL divergence): Let P and Q be arbitrary distributions on a common space \mathcal{X}. Prove the following variational representation of the KL divergence:

$$
D_{\mathrm{kl}}(P \| Q)=\sup _{f: \mathbb{E}_{Q}\left[e^{f(X)}\right]<\infty}\left\{\mathbb{E}_{P}[f(X)]-\log \mathbb{E}_{Q}[\exp (f(X))]\right\} .
$$

You may assume that P and Q have densities. Hint: the technique of Problem (5(C) may be useful. It might not be, too.

Question 7 (Getting information the right way): In this question, we study the differences in recovery of a random signal when we have sequential measurements, chosen optimally, and a block of random measurements performed a priori. We assume the following model: we have

$$
X \sim \mathrm{~N}(0, \Sigma)
$$

where $\Sigma \succ 0$ is a positive definite matrix in $\mathbb{R}^{d \times d}$. We would like to estimate X based on a sequence of random observations of the form

$$
Y_{i}=w_{i}^{\top} X+Z_{i}, \quad Z_{i} \stackrel{\text { i.i.d. }}{\sim} \mathrm{N}\left(0, \sigma^{2}\right),
$$

where Z_{i} are independent of everything else in the problem and W_{i} are constrained to satisfy $\left\|w_{i}\right\|_{2} \leq 1$.
(a) Give the joint distribution of the vector

$$
\left(X, Y_{1}, \ldots, Y_{k}\right) \in \mathbb{R}^{d+k}
$$

(b) What is the distribution of X conditional on observing Y_{1}, \ldots, Y_{k} (assuming that w_{1}, \ldots, w_{k} are fixed vectors)?
(c) Prove that for any distribution on X (including non-Gaussian), if w_{i} is a function of Y_{1}, \ldots, Y_{i-1}, we have

$$
I\left(X ; Y_{i} \mid Y_{1}, \ldots, Y_{i-1}\right) \leq \frac{1}{2} \log \left(1+\frac{\mathbb{E}\left[\operatorname{Var}\left(w_{i}^{\top} X \mid Y_{1}, \ldots, Y_{i-1}\right)\right]}{\sigma^{2}}\right)
$$

(d) Consider the following sequential observation strategy: at each iteration $i=1,2, \ldots, k$, we choose the measurement vector w_{i} to approximately maximize the information $I\left(X ; Y_{i} \mid Y_{1}, \ldots, Y_{i-1}\right)$ by choosing w_{i} to maximize the upper bound in part (c). In the case that $X \sim \mathrm{~N}(0, \Sigma)$ and we know Σ, what choice should we make for w_{i} ? Do the previous observations Y_{1}, \ldots, Y_{i-1} affect this choice?
(e) Using the data online at http://web.stanford.edu/class/stats311/data/information-gathering.jl or http://web.stanford.edu/class/stats311/data/InformationGathering.m, implement and compare the procedure of part (d) with a naive strategy of choosing k vectors w_{i} uniformly at random from the set $\left\{w \in \mathbb{R}^{d}:\|w\|_{2}=1\right\}$. Repeat this experiment 400 times each for each k in the file. Using the plotting code in the file, plot the ratio of the mean squared errors $\mathbb{E}\left[\left\|X-\mathbb{E}\left[X \mid Y_{1}, \ldots, Y_{k}\right]\right\|_{2}^{2}\right]$ for the random w to that of the greedy choice of w for each $k \in\left\{2^{i}, i=1, \ldots, 8\right\}$.

References

[1] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

