
Problem Set 1

Stats 311/EE 377

Due: Thursday, January 21 in class

Note: If you are familiar with measure theory, you may find it more satisfying to prove every
result in this homework in full generality (that is, instead of assuming that all distributions have
Lebesgue densities, simply assume that they are all absolutely continuous with respect to some
base measure µ). If you are not familiar with measure theory, there is essentially no loss of general-
ity in anything in this problem set by proving results assuming all distributions have densities on R.

Our first few questions investigate properties of a divergence between distributions that is weaker
than the KL-divergence, but is intimately related to optimal testing. Let P1 and P2 be arbitrary
distributions on a space X . The total variation distance between P1 and P2 is defined as

‖P1 − P2‖TV := sup
A⊂X

|P1(A)− P2(A)| .

Question 1: Prove the following identities about total variation. Throughout, let P1 and P2 have
densities p1 and p2 on a (common) set X .

(a) 2 ‖P1 − P2‖TV =
∫
|p1(x)− p2(x)|dx.

(b) For functions f : X → R, define the supremum norm ‖f‖∞ = supx∈X |f(x)|. Show that
2 ‖P1 − P2‖TV = sup‖f‖∞≤1

∫
X f(x)(p1(x)− p2(x))dx.

(c) ‖P1 − P2‖TV =
∫

max{p1(x), p2(x)}dx− 1.

(d) ‖P1 − P2‖TV = 1−
∫

min{p1(x), p2(x)}dx.

(e) For functions f, g : X → R,

inf

{∫
f(x)p1(x)dx+

∫
g(x)p2(x)dx : f + g ≥ 1, f ≥ 0, g ≥ 0

}
= 1− ‖P1 − P2‖TV .

In class, we defined a quantizer as any function g : X → {1, . . . ,m} for some m ∈ N, and we
noted that g partitions X into sets A1, . . . , Am, where g(x) = i for x ∈ Ai. Let f : R+ → R be a
convex function satisfying f(1) = 0. In class, we defined the f -divergence between two probability
measures P and Q; as with the KL-divergence, the most general definition of an f -divergence
between P and Q on the space X may be defined as

Df (P ||Q) := sup {Df (P ||Q | g) : g quantizes X} , (1)

1



where Df (P ||Q | g) =
∑m

i=1Q(Ai)f(P (Ai)
Q(Ai)

). Now we show how to extend the data processing
inequality in class—which applied to the KL-divergence—to the family of f -divergences.
Question 2 (Generalized “log-sum” inequalities): Let f : R+ → R be an arbitrary convex
function.

(a) Let ai, bi, i = 1, . . . , n be non-negative reals. Prove that( n∑
i=1

ai

)
f

(∑n
i=1 bi∑n
i=1 ai

)
≤

n∑
i=1

aif

(
bi
ai

)
.

(b) Generalizing the preceding result, let a : X → R+ and b : X → R+, and let u : X → R+ satisfy∫
u(x)dx <∞. Show that∫

a(x)u(x)dxf

(∫
b(x)u(x)dx∫
a(x)u(x)dx

)
≤
∫
a(x)f

(
b(x)

a(x)

)
u(x)dx.

(Hint: use the fact that the perspective of a function f , defined by h(x, t) = tf(x/t) for t > 0, is
jointly convex in x and t [e.g. 1, Chapter 3.2.6].)

Question 3 (Data processing and f -divergences I): As with the KL-divergence, given a quantizer
g of the set X , where g induces a partition A1, . . . , Am of X , we define the f -divergence between
P and Q conditioned on g as

Df (P ||Q | g) :=
m∑
i=1

Q(Ai)f

(
P (Ai)

Q(Ai)

)
=

m∑
i=1

Q(g−1({i}))f
(
P (g−1({i}))
Q(g−1({i}))

)
.

Given quantizers g1 and g2, we say that g1 is a finer quantizer than g2 under the following condition:
assume that g1 induces the partition A1, . . . , An and g2 induces the partition B1, . . . , Bm; then for
any of the sets Bi, there are exists some k and sets Ai1 , . . . , Aik such that Bi = ∪kj=1Aij . We let
g1 ≺ g2 denote that g1 is a finer quantizer than g2.

(a) Let g1 and g2 be quantizers of the set X , and let g1 ≺ g2, meaning that g1 is a finer quantization
than g2. Prove that

Df (P ||Q | g2) ≤ Df (P ||Q | g1) .

Equivalently, show that whenever A and B are collections of sets partitioning X , but A is a
finer partition of X than B, that∑

B∈B
Q(B)f

(
P (B)

Q(B)

)
≤
∑
A∈A

Q(A)f

(
P (A)

Q(A)

)
.

(Hint: Use the result of Question 2(a)).

(b) Suppose that X is discrete so that P and Q have p.m.f.s p and q. Show that

Df (P ||Q) =
∑
x

q(x)f

(
p(x)

q(x)

)
.
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Question 4 (General data processing inequalities): Let f be a convex function satisfying f(1) = 0.
Let K be a Markov transition kernel from X to Z, that is, K(· | x) is a probability distribution
on Z for each x ∈ X . (Written differently, we have X → Z, and conditioned on X = x, Z has
distribution K(· | x), so that K(A | x) is the probability that Z ∈ A given X = x.)

(a) Define the marginals KP (A) =
∫
X K(A, x)p(x)dx and KQ(A) =

∫
K(A, x)q(x)dx. Show that

Df (KP ||KQ) ≤ Df (P ||Q) .

(Hint: by equation (1), w.l.o.g. we may assume that Z is finite and Z = {1, . . . ,m}.)

(b) Let X and Y be random variables with joint distribution PXY and marginals PX and PY .
Define the f -information between X and Y as

If (X;Y ) := Df (PXY ||PX × PY ) .

Use part (a) to show the following general data processing inequality: if we have the Markov
chain X → Y → Z, then

If (X;Z) ≤ If (X;Y ).

Question 5 (Concentration of bounded random variables): Let X be a random variable taking
values in [a, b], where −∞ < a ≤ b < ∞. In this question, we show Hoeffding’s Lemma, that is,
that X is sub-Gaussian: for all λ ∈ R, we have

E[exp(λ(X − E[X]))] ≤ exp

(
λ2(b− a)2

8

)
.

(a) Show that Var(X) ≤ ( b−a2 )2 = (b−a)2
4 for any random variable X taking values in [a, b].

(b) Let
ϕ(λ) = logE[exp(λ(X − E[X]))].

Assuming that E[X] = 0 (convince yourself that this is no loss of generality) show that

ϕ(0) = 0, ϕ′(0) = 0, ϕ′′(t) =
E[X2etX ]

E[etX ]
− E[XetX ]2

E[etX ]2
.

(You may assume that derivatives and expectations commute, which they do in this case.)

(c) Construct a random variable Yt, defined for t ∈ R, such that Yt ∈ [a, b] and

Var(Yt) = ϕ′′(t).

(You may assume X has a density for simplicity.)

(d) Using the result of part (c), show that ϕ(λ) ≤ λ2(b−a)2
8 for all λ ∈ R.
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Question 6 (Variational forms of KL divergence): Let P and Q be arbitrary distributions on a
common space X . Prove the following variational representation of the KL divergence:

Dkl (P ||Q) = sup
f :EQ[ef(X)]<∞

{
EP [f(X)]− logEQ[exp(f(X))]

}
.

You may assume that P and Q have densities. Hint: the technique of Problem 5(c) may be useful.
It might not be, too.

Question 7 (Getting information the right way): In this question, we study the differences in
recovery of a random signal when we have sequential measurements, chosen optimally, and a block
of random measurements performed a priori. We assume the following model: we have

X ∼ N(0,Σ),

where Σ � 0 is a positive definite matrix in Rd×d. We would like to estimate X based on a sequence
of random observations of the form

Yi = w>i X + Zi, Zi
i.i.d.∼ N(0, σ2),

where Zi are independent of everything else in the problem and Wi are constrained to satisfy
‖wi‖2 ≤ 1.

(a) Give the joint distribution of the vector

(X,Y1, . . . , Yk) ∈ Rd+k.

(b) What is the distribution of X conditional on observing Y1, . . . , Yk (assuming that w1, . . . , wk
are fixed vectors)?

(c) Prove that for any distribution onX (including non-Gaussian), if wi is a function of Y1, . . . , Yi−1,
we have

I(X;Yi | Y1, . . . , Yi−1) ≤
1

2
log

(
1 +

E[Var(w>i X | Y1, . . . , Yi−1)]
σ2

)
.

(d) Consider the following sequential observation strategy: at each iteration i = 1, 2, . . . , k, we
choose the measurement vector wi to approximately maximize the information I(X;Yi | Y1, . . . , Yi−1)
by choosing wi to maximize the upper bound in part (c). In the case that X ∼ N(0,Σ) and we
know Σ, what choice should we make for wi? Do the previous observations Y1, . . . , Yi−1 affect
this choice?

(e) Using the data online at http://web.stanford.edu/class/stats311/data/information-gathering.jl
or http://web.stanford.edu/class/stats311/data/InformationGathering.m, implement and com-
pare the procedure of part (d) with a naive strategy of choosing k vectors wi uniformly at
random from the set {w ∈ Rd : ‖w‖2 = 1}. Repeat this experiment 400 times each for
each k in the file. Using the plotting code in the file, plot the ratio of the mean squared er-
rors E[‖X − E[X | Y1, . . . , Yk]‖22] for the random w to that of the greedy choice of w for each
k ∈ {2i, i = 1, . . . , 8}.
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