
Problem Set 2

Stats 311/EE 377

Due: Thursday, February 4 in class

Question 2.1 (A discrete isoperimetric inequality): Let A ⊂ Zd be a finite subset of the d-
dimensional integers. Let the projection mapping πj : Zd → Zd−1 be defined by

πj(z1, . . . , zd) = (z1, . . . , zj−1, zj+1, . . . , zd)

so that we “project out” the jth coordinate, and define the projected sets.

Aj = πj(A) = {πj(z) : z ∈ A}

=
{
z ∈ Zd−1 : there exists z? ∈ Z such that (z1, z2, . . . , zj−1, z?, zj , . . . , zd−1) ∈ A

}
.

Prove the Loomis-Whitney inequality, that is, that

card(A) ≤

 d∏
j=1

card(Aj)

 1
d−1

.

Question 2.2 (Optimal algorithms for memory access): In a modern CPU, memory is
organized in a hierarchy, so that data upon which computations are being actively performed lies
in a very small memory close to the logic units of the processor for which access is extraordinarily
fast, while data not being actively used lies in slower memory slightly farther from the processor.
(Modern processor memory is generally organized into the registers—a small number of 4- or 8-
byte memory locations on the processor—and several increasing-sized levels of cache, which contain
small amounts of data and increasing access times, and RAM (random access memory).) Moving
data—communicating—between levels of the memory hierarchy is both power intensive and slow
relative to computation on the data itself, so that in many algorithms the bulk of the time of the
algorithm is in moving data from one place to another. Thus, developing very fast algorithms for
numerical (and other) tasks on modern computers requires careful tracking of memory access, and
control of these quantities can often yield orders of magnitude speed improvements in execution.
In this problem, we prove a lower bound on the number of communication steps that certain
numerical-type methods must perform, giving a concrete (attainable) inequality that allows one to
certify optimality of specific algorithms.

We consider matrix multiplication, as it is a proxy for a class of cubic algorithms that are well
behaved. Let A,B ∈ Rn×n be matrices, and assume we wish to compute C = AB, via the simple
algorithm that for all i, j sets

Cij =
n∑
l=1

AilBlj .
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Computationally, this forces us to repeatedly execute operations of the form

Mem(Cij) = F (Mem(Ail),Mem(Blj),Mem(Cij)),

where F is some function—that may depend on i, j, l—and Mem(·) indicates that we access the
memory associated with the argument. (In our case, we have Cij = Cij +Ail ·Blj .) We assume that
executing F requires that Mem(Ail), Mem(Blj), and Mem(Cij) belong to fast memory, and that
each are distinct (stored in a separate place in slow and fast memory). We assume that the order
of the computations does not matter, so we may re-order them in any way to improve memory
access. We call Mem(Ail) (respectively B or C) and operand in our computation. We let M denote
the size of fast/local memory, and we would like to lower bound the number of times we must
communicate an operand into or out of the fast local memory when all we may do is re-order the
computation being executed. We let NStore denote the number of times we write something from
fast memory out to slow memory and let NLoad the number of times we load something from slow
memory to fast memory. Let N be the total number of operations we execute (for simple matrix
multiplication, we have N = n3, though with sparse matrices, this can be smaller).

We analyze the procedure by breaking the computation into a number of segments, where each
segment contains precisely M load or store (communication-causing) instructions.

(a) Let Nseg be an upper bound on the number of evaluations with the function F (·) in any given
segment (you will upper bound this in a later part of the problem). Justify that

NStore +NLoad ≥M bN/Nsegc .

(b) Within a segment, all operands involved must be in fast memory at least once to be computed
with. Assume that memory locations Mem(Ail), Mem(Blj), and Mem(Cij) do not overlap.
For any operand involved in a memory operation in one of the segments, the operand (1) was
already in fast memory at the beginning of the segment, (2) was read from slow memory, (3)
is still in fast memory at the end of the segment, or (4) is written to slow memory at the end
of the segment. (There are also operands potentially created during execution that are simply
discarded; we do not bound those.) Justify the following: within a segment, for each type of
operand Mem(Aij), Mem(Bij), or Mem(Cij), there are at most c ·M such operands (i.e. there
are at most cM operands of type Mem(Aij), independent of the others, and so on), where c is
a numerical constant. What value of c can you attain?

(c) Using the result of question 2.1, argue that Nseg ≤ c′
√
M3 for a numerical constant c′. What

value of c′ do you get?

(d) Using the result of part (c), argue that the number of loads and stores satisfies

NStore +NLoad ≥ c′′
N√
M
−M

for a numerical constant c′′. What is your constant?

Question 2.3: Let F be a collection of functions or parameters, let Z be a space in which data
lies, ` : F×Z → R be a loss function. In this problem, we give a so-called PAC-Bayes generalization
bound, in the sense that it relies on the difference between a prior and posterior distribution (PAC
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stands for “probably approximately correct”). We assume that for each f ∈ F , the random variable
`(f, Z) is σ2-sub-Gaussian, that is, when Z ∼ P , we have

E [exp(λ(`(f, Z)− E[`(f, Z)]))] ≤ exp

(
λ2σ2

2

)
for all λ ∈ R.

Let R(f) = E[`(f, Z)] denote the risk of a particular prediction function f , and let R̂n(f) =
1
n

∑n
i=1 `(f, Zi) denote the empirical risk for Zi

i.i.d.∼ P . For any distribution Q on the set F , we
also define the expected risk (averaged over Q) as

R(Q) :=

∫
R(f)dQ(f) = Ef∼Q[R(f)] and R̂n(Q) :=

∫
R̂n(f)dQ(f) = Ef∼Q[R̂n(f)].

We will prove that for any distribution Π on the functions in F (the prior) with probability at
least 1− δ over the draw of the sample Z1:n, that

∣∣∣R̂n(Q)−R(Q)
∣∣∣ ≤

√
eσ2

log 2
δ +Dkl (Q||Π)

n
(1)

holds for all distributions Q (the posterior).

(a) Let ∆n(f) = R̂n(f)−R(f) for shorthand. Argue that for any fixed f ,

EP
[
exp

(
∆n(f)2n

eσ2

)]
< 2,

where the expectation EP is taken over the sample Z1:n.

(b) Let the event E (a function of the random sample Z1:n) be defined by

E :=

{
EΠ

[
exp

(
∆n(f)2n

eσ2

)
| Z1:n

]
≥ 2

δ

}
,

where the expectation is taken over f ∼ Π and Z1:n are held fixed. Argue that P(E) < δ.

(c) Argue that if there exists any distribution Q on the set F such that

EQ
[

∆n(f)2n

eσ2
| Z1:n

]
−Dkl (Q||Π) ≥ log

2

δ
,

then the event E occurs.

(d) Show how part (c) yields inequality (1).

(e) Suppose that the class F is finite, and that Z = (X,Y ) consists of pairsX ∈ X and Y ∈ {−1, 1},
and that `(f, Z) = 1(f(X)Y≤0). Show how inequality (1) gives

max
f∈F
|R̂n(f)−R(f)| ≤

√
e

log 2
δ + log |F|

4n
.
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(f) Suppose that the set F consists of functions of the form

fθ(x) = θ>x

indexed by θ ∈ Θ ⊂ Rd, and that the data pairs (x, y) ∈ Rd×{−1, 1} (the standard classification
problem setup in machine learning and statistics). Let the loss `(fθ, (x, y)) =

[
1− yθ>x

]
+

be

the hinge loss. Let Θ be the `2-ball of radius 1 in Rd and assume the data x satisfy ‖x‖2 ≤ r
where r > 1. Show that with probability at least 1− δ over the draw of the sample Z1:n,

sup
θ∈Θ

∣∣∣R̂n(fθ)−R(fθ)
∣∣∣ ≤ r ε√

d
+
√
er

√
log 2

δ + d log(1 + 1
ε )

n

for all ε ∈ (0, 1]. (Hint: consider Q and Π uniform on appropriate `2-balls.)

Question 2.4: In this question, we show how to use Bernstein-type (sub-exponential) in-
equalities to give sharp convergence guarantees. Recall (Example 3.13, Corollary 3.17, and inequal-
ity (3.1.7) in the notes) that if Xi are independent bounded random variables with |Xi−E[X]| ≤ b
for all i and Var(Xi) ≤ σ2, then

max

{
P

(
1

n

n∑
i=1

Xi ≥ E[X] + t

)
,P

(
1

n

n∑
i=1

Xi ≤ E[X]− t

)}
≤ exp

(
−1

2
min

{
5

6

nt2

σ2
,
nt

2b

})
.

We consider minimization of loss functions ` over finite function classes F with ` ∈ [0, 1], so that if
R(f) = E[`(f, Z)] then |`(f, Z)−R(f)| ≤ 1. Throughout this question, we let

R? = min
f∈F

R(f) and f? ∈ argmin
f∈F

R(f).

We will show that, roughly, a procedure based on picking an empirical risk minimizer is unlikely to
choose a function f ∈ F with bad performance, so that we obtain faster concentration guarantees.

(a) Argue that for any f ∈ F

P
(
R̂n(f) ≥ R(f) + t

)
∨ P

(
R̂n(f) ≤ R(f)− t

)
≤ exp

(
−1

2
min

{
5

6

nt2

R(f)(1−R(f))
,
nt

2

})
.

(b) Define the set of “bad” prediction functions Fε bad := {f ∈ F : R(f) ≥ R? + ε}. Show that for
any fixed ε ≥ 0 and any f ∈ F2εbad, we have

P
(
R̂n(f) ≤ R? + ε

)
≤ exp

(
−1

2
min

{
5

6

nε2

R?(1−R?) + 2ε(1− 2ε)
,
nε

2

})
.

(c) Let f̂n ∈ argminf∈F R̂n(f) denote the empirical minimizer over the class F . Argue that it is
likely to have good performance, that is, for all ε ≥ 0 we have

P
(
R(f̂n) ≥ R(f?) + 2ε

)
≤ card(F) · exp

(
−1

2
min

{
5

6

nε2

R?(1−R?) + 2ε(1− 2ε)
,
nε

2

})
.
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(d) Using the result of part (c), argue that with probability at least 1− δ,

R(f̂n) ≤ R(f?) +
48 log |F|δ

5n
+ 4

√
3

5
·

√
R?(1−R?) · log |F|δ√

n
.

Why is this better than an inequality based purely on the boundedness of the loss `, such as
Theorem 4.4 or Corollary 4.6? What happens when there is a perfect risk minimizer f??

Question 2.5 (Mixtures are as good as point distributions): Let P be a Laplace(λ) distribution
on R, meaning that X ∼ P has density

p(x) =
λ

2
exp(−λ|x|).

Assume that X1, . . . , Xn
i.i.d.∼ P , and let Pn denote the n-fold product of P . In this problem, we

compare the predictive performance of distributions from the normal location family P = {N(θ, σ2) :
θ ∈ R} with the mixture distribution Qπ over P defined by the normal prior distribution N(µ, τ2),
that is, π(θ) = (2πτ2)−1/2 exp(−(θ − µ)2/2τ2).

(a) Let Pθ,Σ be the multivariate normal distribution with mean θ ∈ Rn and covariance Σ ∈ Rn×n.
What is Dkl (Pn||Pθ,Σ)?

(b) Show that infθ∈Rn Dkl (Pn||Pθ,Σ) = Dkl (Pn||P0,Σ), that is, the mean-zero normal distribution
has the smallest KL-divergence from the Laplace distribution.

(c) Let Qπn be the mixture of the n-fold products in P, that is, Qπn has density

qπn(xn1 ) =

∫ ∞
−∞

π(θ)pθ(x1) · · · pθ(xn)dθ,

where π is N(0, τ2). What is Dkl (Pn||Qπn)?

(d) Show that the redundancy of Qπn under the distribution P is asymptotically nearly as good
as the redundancy of any Pθ ∈ P, the normal location family (so Pθ has density pθ(x) =
(2πσ2)−1/2 exp(−(x− θ)2/2σ2)). That is, show that

sup
θ∈R

EP
[
log

1

qπn(Xn
1 )
− log

1

pθ(X
n
1 )

]
= O(log n)

for any prior variance τ2 > 0 and any prior mean µ ∈ R, where the big-Oh hides terms
dependent on τ2, σ2, µ2.

(e) Extra credit: Can you give an interesting condition under which such redundancy guarantees
hold more generally? That is, using Proposition 9.7 in the notes, give a general condition under
which

EP
[
log

1

qπ(Xn
1 )
− log

1

pθ(X
n
1 )

]
= o(n)

as n→∞, for all θ ∈ Θ.
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