
Problem Set 3

Stats 311/EE 377

Due: Thursday, February 18 in class

Question 3.1 (Minimax redundancy and different loss functions): In this question, we consider

expected losses under the Bernoulli distribution. Assume that Xi
i.i.d.∼ Bernoulli(p), meaning that

Xi = 1 with probability p and Xi = 0 with probability 1 − p. We consider four different loss
functions, and their associated expected regret, for measuring the accuracy of our predictions of
such Xi. For each of the four choices below, we prove expected regret bounds on

Redn(θ̂, P, ℓ) :=
n∑

i=1

EP [ℓ(θ̂(X
i−1
1 ), Xi)]− inf

θ

n∑

i=1

EP [ℓ(θ,Xi)], (1)

where θ̂ is a predictor based on X1, . . . , Xi−1 at time i. Define Si =
∑i

j=1Xj to be the partial sum
up to time i. For each of parts (a)–(c), at time i use the predictor

θ̂i = θ̂(Xi−1
1 ) =

Si−1 +
1
2

i
.

(a) Loss function: ℓ(θ, x) = 1
2(x− θ)2. Show that Redn(θ̂, P, ℓ) ≤ C · log n where C is a constant.

(b) Loss function: ℓ(θ, x) = x log 1
θ
+ (1− x) log 1

1−θ
, the usual log loss for predicting probabilities.

Show that Redn(θ̂, P, ℓ) ≤ C · log n whenever the true probability p ∈ (0, 1), where C is a
constant. Hint: Note that there exists a prior π for which θ̂ is a Bayes strategy. What is this
prior?

(c) Loss function: ℓ(θ, x) = |x − θ|. Show that Redn(θ̂, P, ℓ) ≥ c · n, where c > 0 is a constant,
whenever the true probability p 6∈ {0, 12 , 1}.

(d) Extra credit: Show that there is a numerical constant c > 0 such that for any procedure
θ̂, the worst-case redundancy supp∈[0,1] Redn(θ̂,Bernoulli(p), ℓ) ≥ c

√
n for the absolute loss ℓ in

part (c). Give a strategy attaining this redundancy.

Question 3.2 (Strong versions of redundancy): Assume that for a given θ ∈ Θ we draw Xn
1 ∼ Pθ.

We define the Bayes redundancy for a family of distributions P = {Pθ}θ∈Θ as

Cπ
n := inf

Q

∫
Dkl (Pθ||Q) dπ(θ) = Iπ(T ;X

n
1 ),

where π is a probability measure on Θ, T is distributed according to π, and conditional on T = θ,
we draw Xn

1 ∼ Pθ, and Iπ denotes the mutual information when T is drawn according to π. Define

1



the maximin redundancy C∗
n := supπ C

π
n as the worst-case Bayes redundancy. We show that for

“most” points θ under the prior π, if Q =
∫
Pθdπ(θ) is the mixture of all the Pθ under the prior π,

then no distribution Q can have subtantially better redundancy that Q.
Consider any distribution Q on the set X and let ǫ ∈ [0, 1], and define the set of points θ where

Q is ǫ-better than the worst case redundancy as

Bǫ := {θ ∈ Θ : Dkl (Pθ||Q) ≤ (1− ǫ)C∗
n} .

(a) Show that for any prior π, we have

π(Bǫ) ≤
log 2 + C∗

n − Iπ(T ;X
n
1 )

ǫC∗
n

.

As an aside, note this implies that if πi is a sequence of priors tending to supπ Iπ(T ;X
n
1 ) and

the redundancy C∗
n → ∞, then so long as C∗

n − Iπi
(T ;Xn

1 ) ≪ ǫC∗
n, we have πi(Bǫ) ≈ 0.

(b) Assume that π attains the supremum in the definition of C∗
n. Show that

π(Bǫ) ≤ O(1) · exp(−ǫC∗
n).

Hint: Introduce the random variable Z to be 1 if the random variable T ∈ Bǫ and 0 otherwise, then
use that Z → T → Xn

1 forms a Markov chain, and expand the mutual information. For part (b),
the inequality 1−x

x
log 1

1−x
≤ 1 for all x ∈ [0, 1] may be useful.

Question 3.3: We consider the doubling trick, a frequently used technique in online learning
to allow good performance of online learning procedures even without knowledge of the number of
steps n they will be run. For this question, we define the regret in the usual way as

Regn := sup
w⋆∈W

n∑

t=1

[ℓt(wt)− ℓt(w
⋆)].

(a) Suppose that we have a procedure (algorithm) A(η) parameterized by the real value η ≥ 0
(usually, this is simply a stepsize) that achieves the regret bound

Regn ≤ r2

2η
+

η

2
L2n

where r and L are known constants. Consider the following procedure, which proceeds in
epochs k = 1, 2, . . ., each of which lasts for nk = 2k steps. At the start of epoch k, restart the
algorithm A(η) with parameter choice ηk = r

L
√
2k
, and run the algorithm with this choice of

parameter for 2k steps. Show that

Regn ≤ C · Lr
√
n,

where C is some numerical constant (in our solution, we have C ≤ 2/(
√
2− 1)).

(b) Now we consider a slightly more restrictive setting, but we obtain better guarantees. Consider
the mixture of experts problem, in d experts suffer losses in [0, 1] at each timestep; we let
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gt ∈ [0, 1]d denote the loss vector. We play a mixture of experts wt ∈ W = ∆d, suffering
(expected) loss ℓt(wt) = 〈gt, wt〉. In the course notes, we show that in this setting

Regn =
n∑

t=1

[ℓt(wt)− ℓt(w
⋆)] ≤ log d

η
+

η

2

n∑

t=1

d∑

j=1

wt,jg
2
t,j

when using the exponential weights algorithm with stepsize η, which in turn implies

n∑

t=1

[ℓt(wt)− ℓt(w
⋆)] ≤

(
1− η

2

)−1
[
log d

η
+

η

2

n∑

t=1

ℓt(w
⋆)

]

for any w⋆ ∈ W. Consider the following procedure, which proceeds in epochs k = 1, 2, . . .,
within each of which we perform exponential weights with stepsize ηk = min{1,

√
log d/2k}.

Let Ek denote those times t belonging to epoch k, which correspond to times when we run
exponential weights with parameter ηk. Define L(k) = minj

∑
t∈Ek

gt,j to be the loss incurred
by the best expert in epoch k as the procedure runs, and continue epoch k until the best
expert’s loss in epoch k satisfies L(k) ≥ 4k. Then begin a new epoch. Show that with this
procedure,

n∑

t=1

[ℓt(wt)− ℓt(w
⋆)] ≤ C1 log log d · log d+ C2

√√√√log d ·
n∑

t=1

ℓt(w⋆)

for numerical constants C1 and C2 (we obtain C1 ≤ 3 and C2 ≤ 8
√
2).

Question 3.4 (An empirical comparison of Bandit algorithms): In this question, you will inves-
tigate three algorithms for solving the Bandit problem: the Upper Confidence Bound algorithm
(UCB), Thompson sampling (also known as Posterior Sampling), and exponential gradient. You
will attempt to maximize the reward achieved by the algorithms (note that in the notes, we some-
times maximize and sometimes minimize; make sure you have your signs correct!).

In particular, set the rewards for the arms in the following way:

i. Let θ1 =
1
2 and θ2 =

1
2 − ǫ, . . . , θK = 1

2 − ǫ.

ii. When arm j is sampled, return Y = 1 with probability θj and Y = 0 with probability 1− θj .

Now, repeat the following experiment with the values

(a) K = 10, ǫ = .1, and n = 106 steps

(b) K = 10, ǫ = .02, and n = 106 steps.

Perform Thompson sampling (Example 12.5 in the notes) assuming that the prior on θ is to have
each coordinate independent with Beta(1, 1) distribution. Perform UCB with the confidence pa-
rameter δt = 1/

√
t (Algorithm 12.1 in the notes) and the appropriate choice of the sub-Gaussian pa-

rameter σ2 (Hint: use Hoeffding’s lemma for σ2). Perform exponentiated gradient (Algorithm 12.3)
using the optimal stepsize choice η, when assuming that σ2 = 1

2 in the bound.
Plot your results for each of experiments (a) and (b). Which algorithm do you prefer?
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