
Problem Set 4: Minimax lower bounds

Stats 311/EE 377

Due: Thursday, March 17 (last day of quarter)

Question 4.1: In this question, we will show that the minimax rate of estimation for the parameter

of a uniform distribution (in squared error) scales as 1/n2. In particular, assume that Xi
i.i.d.∼

Uni(θ, θ + 1), meaning that Xi have densities p(x) = 1(x∈[θ,θ+1]). Let X(1) = mini{Xi} denote the
first order statistic.

(a) Prove that

E[(X(1) − θ)2] =
2

(n+ 1)(n+ 2)
.

(Hint: the fact that E[Z] =
∫∞
0 P(Z ≥ t)dt for any positive Z may be useful.)

(b) Using Le Cam’s two-point method, show that the minimax rate for estimation of θ ∈ R for the
uniform family U = {Uni(θ, θ+ 1) : θ ∈ R} in squared error has lower bound c/n2, where c is a
numerical constant.

Question 4.2: In this question, we explore estimation under a constraint known as differential
privacy. In one version of private estimation, the collector of data is not trusted, so instead of
seeing true data Xi ∈ X only a disguised version Zi ∈ Z is viewed, where given X = x, we have
Z ∼ Q(· | X = x). We say that this Zi is α-differentially private if for any subset A ⊂ Z and any
pair x, x′ ∈ X ,

Q(Z ∈ A | X = x)

Q(Z ∈ A | X = x′)
≤ exp(α). (1)

The intuition here, from a privacy standpoint, is that no matter what the true data X is, any
points x and x′ are essentially equally likely to have generated the observed signal Z. We explore
a few consequences of differential privacy in this question, including so-called quantitative data
processing inequalities. We assume that α < 1 for simplicity.

First, we show how differential privacy acts as a contraction on probability distributions. Let
P1 and P2 be arbitrary distributions on X (with densities p1 and p2 w.r.t. a base measure µ) and
define the marginal distributions

Mi(Z ∈ A) :=

∫
X
Q(Z ∈ A | X = x)pi(x)dµ(x), i ∈ {1, 2}.

We will prove that there is a universal (numerical) constant C <∞ such that for any P1, P2,

Dkl (M1||M2) +Dkl (M2||M1) ≤ C(eα − 1)2 ‖P1 − P2‖2TV . (2)
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(a) Show that for any a, b > 0 ∣∣∣log
a

b

∣∣∣ ≤ |a− b|
min{a, b}

.

(b) As discussed in HW 1, when considering Dkl (M1||M2), it is no loss of generality to assume
that Z = {1, . . . , k} for some finite k. Use the shorthands q(z | x) = Q(Z = z | X = x) and
mi(z) =

∫
q(z | x)pi(x)dµ(x). Show that there exists a universal constant c <∞ such that

|m1(z)−m2(z)| ≤ c(eα − 1) inf
x∈X

q(z | x) ‖P1 − P2‖TV .

(c) Combining parts (a) and (b), show inequality (2).

We note in passing that, except for perhaps the constant factor C, inequality (2) cannot be improved
generally. This can be shown by letting P1 and P2 be Bernoulli distributions, taking ‖P1 − P2‖TV →
0, and choosing a Bernoulli distribution for Q while taking α→ 0. You do not need to prove this.

Question 4.3: In this question, we apply the results of Question 4.2 to a problem of estimation
of drug use. Assume we interview a series of individuals i = 1, . . . , n, asking each whether he
or she takes illicit drugs. Let Xi ∈ {0, 1} be 1 if person i uses drugs, 0 otherwise, and define
θ∗ = E[X] = E[Xi] = P (X = 1). To avoid answer bias, each answer Xi is perturbed by some
channelQ, whereQ is α-differentially private (recall definition (1)). That is, we observe independent
Zi where conditional on Xi, we have

Zi | Xi = x ∼ Q(· | Xi = x).

To make sure everyone feels suitably private, we assume α < 1/2 (so that (eα − 1)2 ≤ 2α2). In the
questions, let Qα denote the family of all α-differentially private channels, and let P denote the
Bernoulli distributions with parameter θ(P ) = P (Xi = 1) ∈ [0, 1] for P ∈ P.

(a) Use Le Cam’s method and the strong data processing inequality (2) to show that the minimax
rate for estimation of the proportion θ∗ in absolute value satisfies

Mn(θ(P), | · |, α) := inf
Q∈Qα

inf
θ̂

sup
P∈P

E
[
|θ̂(Z1, . . . , Zn)− θ(P )|

]
≥ c 1√

nα2
,

where c > 0 is a universal constant. Here the infimum is over channels Q and estimators θ̂, and
the expectation is taken with respect to both the Xi (according to P ) and the Zi (according
to Q(· | Xi)).

(b) Give a rate-optimal estimator for this problem. That is, define a channel Q that is α-
differentially private and an estimator θ̂ such that E[|θ̂(Zn1 ) − θ|] ≤ C/

√
nα2, where C > 0

is a universal constant.

(c) Let Pk, for k ≥ 2, denote the family of distributions on R such that EP |X|k ≤ 1 for P ∈ Pk
(note that X is no longer restricted to have support {0, 1}). Show, similarly to part (a), that
for θ(P ) = EP [X]

Mn(θ(Pk), | · |, α) := inf
Q∈Qα

inf
θ̂

sup
P∈Pk

E
[
|θ̂(Z1, . . . , Zn)− θ(P )|

]
≥ c 1

(nα2)
k−1
2k

.

What does this say about k = 2?
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(d) Download the dataset at http://web.stanford.edu/class/stats311/Data/drugs.txt, which
consists of a sample of 100,000 hospital admissions and whether the patient was abusing drugs
(a 1 indicates abuse, 0 no abuse). Use your estimator from part (b) to estimate the population
proportion of drug abusers: give an estimated number of users for α ∈ {2−k, k = 0, 1, . . . , 10}.
Perform each experiment several times. Assuming that the proportion of users in the dataset
is the true population proportion, how accurate is your estimator?

Question 4.4: In this question, we study the question of whether adaptivity can give better
estimation performance for linear regression problems. That is, for i = 1, . . . , n, assume that we
observe variables Yi in the usual linear regression setup,

Yi = 〈Xi, θ〉+ εi, εi
i.i.d.∼ N(0, σ2), (3)

where θ ∈ Rd is unknown. But now, based on observing Y i−1
1 = {Y1, . . . , Yi−1}, we allow an adaptive

choice of the next predictor variables Xi ∈ Rd. Let Lnada(F2) denote the family of linear regression
problems under this adaptive setting (with n observations) where we constrain the Frobenius norm
of the data matrix X> = [X1 · · · Xn], X ∈ Rn×d, to have bound ‖X‖2Fr =

∑n
i=1 ‖Xi‖22 ≤ F2. We

use Assouad’s method to show that the minimax mean-squared error satisfies the following bound:

M(Lnada(F2), ‖·‖
2
2) := inf

θ̂
sup
θ∈Rd

E[‖θ̂ − θ‖22] ≥
dσ2

n
· 1

16 1
dnF

2
. (4)

Here the infimum is taken over all adaptive procedures satisfying ‖X‖2Fr ≤ F2.
In general, when we choose Xi based on the observations Y i−1

1 , we are taking Xi = Fi(Y
i−1
1 , U i1),

where Ui is a random variable independent of εi and Y i−1
1 and Fi is some function. Justify the

following steps in the proof of inequality (4):

(i) Assume that nature chooses v ∈ V = {−1, 1}d uniformly at random and, conditionally on v,
let θ = θv. Justify

M(Lnada(F2), ‖·‖
2
2) ≥ inf

θ̂

1

|V|
∑
v∈V

Eθv [‖θ̂ − θv‖22].

Argue it is no loss of generality to assume that the choices for Xi are deterministic based on
the Y i−1

1 . Thus, throughout we assume that Xi = Fi(Y
i−1
1 , ui1), where un1 is a fixed sequence,

or, for simplicity, that Xi is a function of Y i−1
1 .

(ii) Fix δ > 0. Let v ∈ {−1, 1}d, and for each such v, define θv = δv. Also let Pnv denote the joint
distribution (over all adaptively chosen Xi) of the observed variables Y1, . . . , Yn, and define
Pn+j = 1

2d−1

∑
v:vj=1 P

n
v and Pn−j = 1

2d−1

∑
v:vj=−1 P

n
v , so that Pn±j denotes the distribution of

the Yi when v ∈ {−1, 1}d is chosen uniformly at random but conditioned on vj = ±1. Then

inf
θ̂

1

|V|
∑
v∈V

Eθv [‖θ̂ − θv‖22] ≥
δ2

2

d∑
j=1

[
1−

∥∥Pn+j − Pn−j∥∥TV

]
.

(iii) We have

δ2

2

d∑
j=1

[
1−

∥∥Pn+j − Pn−j∥∥TV

]
≥ δ2d

2

1−
(

1

d

d∑
j=1

∥∥Pn+j − Pn−j∥∥2TV

) 1
2

 .
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(iv) Let P
(i)
+j be the distribution of the random variable Yi conditioned on vj = +1 (with the other

coordinates of v chosen uniformly at random), and let P
(i)
+j (· | y

i−1
1 , xi) denote the distribution

of Yi conditioned on vj = +1, Y i−1
1 = yi−11 , and xi. Justify∥∥Pn+j − Pn−j∥∥2TV

≤ 1

2
Dkl

(
Pn+j ||Pn−j

)
≤ 1

2

n∑
i=1

∫
Dkl

(
P

(i)
+j (· | y

i−1
1 , xi)||P (i)

−j (· | y
i−1
1 , xi)

)
dP i−1+j (yi−11 , xi).

(v) Then we have
d∑
j=1

Dkl

(
P

(i)
+j (· | y

i−1
1 , xi)||P (i)

−j (· | y
i−1
1 , xi)

)
≤ 2δ2

σ2
‖xi‖22 .

(vi) We have
d∑
j=1

∥∥Pn+j − Pn−j∥∥2TV
≤ δ2

σ2
E[‖X‖2Fr],

where the final expectation is over V drawn uniformly in {−1, 1}d and all Yi, Xi.

(vii) Show how to choose δ appropriately to conclude the minimax bound (4).

Question 4.5: Suppose under the setting of Question 4.4 that we may no longer be adaptive,
meaning that the matrix X ∈ Rn×d must be chosen ahead of time (without seeing any data).
Assuming n ≥ d, is it possible to attain (within a constant factor) the risk (4)? If so, give an
example construction, if not, explain why not.
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