Problem Set 2: Minimax lower bounds

Stats 311/EE 377

Due: Thursday, 10/23/2014

Question 1 (Divergence between multivariate normal distributions): Let P_1 be $N(\theta_1, \Sigma)$ and P_2 be $N(\theta_2, \Sigma)$, where $\Sigma \succ 0$ is a positive definite matrix. What is $D_{\text{kl}}(P_1 \| P_2)$?

Question 2: In this question, we will show that the minimax rate of estimation for the parameter of a uniform distribution (in squared error) scales as $1/n^2$. In particular, assume that $X_i \overset{\text{i.i.d.}}{\sim} \text{Uni}(\theta, \theta + 1)$, meaning that X_i have densities $p(x) = 1_{(x \in [\theta, \theta + 1])}$. Let $X_{(1)} = \min_i \{X_i\}$ denote the first order statistic.

(a) Prove that
$$E[(X_{(1)} - \theta)^2] = \frac{2}{(n+1)(n+2)}.$$ (Hint: the fact that $E[Z] = \int_0^\infty P(Z \geq t)dt$ for any positive Z may be useful.)

(b) Using Le Cam’s two-point method, show that the minimax rate for estimation of $\theta \in \mathbb{R}$ for the uniform family $\mathcal{U} = \{\text{Uni}(\theta, \theta + 1) : \theta \in \mathbb{R}\}$ in squared error has lower bound c/n^2, where c is a numerical constant.

Question 3: In this question, we explore estimation under a constraint known as differential privacy. In one version of private estimation, the collector of data is not trusted, so instead of seeing true data $X_i \in \mathcal{X}$ only a disguised version $Z_i \in \mathcal{Z}$ is viewed, where given $X = x$, we have $Z \sim Q(\cdot | X = x)$. We say that this Z_i is α-differentially private if for any subset $A \subset \mathcal{Z}$ and any pair $x, x' \in \mathcal{X}$,
$$\frac{Q(Z \in A | X = x)}{Q(Z \in A | X = x')} \leq \exp(\alpha).$$ (1)

The intuition here, from a privacy standpoint, is that no matter what the true data X is, any points x and x' are essentially equally likely to have generated the observed signal Z. We explore a few consequences of differential privacy in this question, including so-called quantitative data processing inequalities. We assume that $\alpha < 1$ for simplicity.

First, we show how differential privacy acts as a contraction on probability distributions. Let P_1 and P_2 be arbitrary distributions on \mathcal{X} (with densities p_1 and p_2 w.r.t. a base measure μ) and define the marginal distributions
$$M_i(Z \in A) := \int_{\mathcal{X}} Q(Z \in A | X = x)p_i(x)d\mu(x), \quad i \in \{1, 2\}.$$ We will prove that there is a universal (numerical) constant $C < \infty$ such that for any P_1, P_2,
$$D_{\text{kl}}(M_1 \| M_2) + D_{\text{kl}}(M_2 \| M_1) \leq C(\exp(\alpha) - 1)^2 \|P_1 - P_2\|_{\text{TV}}^2.$$ (2)
(a) Show that for any $a, b > 0$

$$\left| \log \frac{a}{b} \right| \leq \frac{|a - b|}{\min\{a, b\}}.$$

(b) As discussed in HW 1, when considering $D_{KL}(M_1 \| M_2)$, it is no loss of generality to assume that $Z = \{1, \ldots, k\}$ for some finite k. Use the shorthands $q(z \mid x) = Q(Z = z \mid X = x)$ and $m_i(z) = \int q(z \mid x)p_i(x)\,d\mu(x)$. Show that there exists a universal constant $c < \infty$ such that

$$|m_1(z) - m_2(z)| \leq c(e^a - 1) \inf_{x \in X} q(z \mid x) \|P_1 - P_2\|_{TV}.$$

(c) Combining parts (a) and (b), show inequality (2).

We note in passing that, except for perhaps the constant factor C, inequality (2) cannot be improved generally. This can be shown by letting P_1 and P_2 be Bernoulli distributions, taking $\|P_1 - P_2\|_{TV} \to 0$, and choosing a Bernoulli distribution for Q while taking $\alpha \to 0$. You do not need to prove this.

Question 4: In this question, we apply the results of Question 3 to a problem of estimation of drug use. Assume we interview a series of individuals $i = 1, \ldots, n$, asking each whether he or she takes illicit drugs. Let $X_i \in \{0, 1\}$ be 1 if person i uses drugs, 0 otherwise, and define $\theta^* = E[X] = E[X_i] = P(X = 1)$. To avoid answer bias, each answer X_i is perturbed by some channel Q, where Q is α-differentially private (recall definition (1)). That is, we observe independent Z_i where conditional on X_i, we have

$$Z_i \mid X_i = x \sim Q(\cdot \mid X_i = x).$$

To make sure everyone feels suitably private, we assume $\alpha < 1/2$ (so that $(e^a - 1)^2 \leq 2\alpha^2$). In the questions, let Q_α denote the family of all α-differentially private channels, and let P denote the Bernoulli distributions with parameter $\theta(P) = P(X = 1) \in [0, 1]$ for $P \in \mathcal{P}$.

(a) Use Le Cam’s method and the strong data processing inequality (2) to show that the minimax rate for estimation of the proportion θ^* in absolute value satisfies

$$\mathcal{M}_n(\theta(\mathcal{P}), \cdot, \cdot, \alpha) := \inf_{Q \in Q_\alpha} \inf_{\hat{\theta}} \sup_{P \in \mathcal{P}} E\left[|\hat{\theta}(Z_1, \ldots, Z_n) - \theta(P)|\right] \geq \frac{1}{\sqrt{na^2}},$$

where $c > 0$ is a universal constant. Here the infimum is over channels Q and estimators $\hat{\theta}$, and the expectation is taken with respect to both the X_i (according to P) and the Z_i (according to $Q(\cdot \mid X_i)$).

(b) Give a rate-optimal estimator for this problem. That is, define a channel Q that is α-differentially private and an estimator $\hat{\theta}$ such that $E[|\hat{\theta}(Z^n) - \theta|] \leq C/\sqrt{na^2}$, where $C > 0$ is a universal constant.

(c) Download the dataset at http://web.stanford.edu/class/stats311/Data/drugs.txt, which consists of a sample of 100,000 hospital admissions and whether the patient was abusing drugs (1 indicates abuse, 0 no abuse). Use your estimator from part (b) to estimate the population proportion of drug abusers: give an estimated number of users for $\alpha \in \{2^{-k}, k = 0, 1, \ldots, 10\}$. Perform each experiment several times. Assuming that the proportion of users in the dataset is the true population proportion, how accurate is your estimator?
Question 5 (Sign identification in sparse linear regression): In sparse linear regression, we have \(n \) observations \(Y_i = \langle X_i, \theta^* \rangle + \varepsilon_i \), where \(X_i \in \mathbb{R}^d \) are known (fixed) matrices and the vector \(\theta^* \) has a small number \(k \ll d \) of non-zero indices, and \(\varepsilon_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2) \). In this problem, we investigate the problem of sign recovery, that is, identifying the vector of signs \(\text{sign}(\theta^*_j) \) for \(j = 1, \ldots, d \), where \(\text{sign}(0) = 0 \).

Assume we have the following process: fix a signal threshold \(\theta_{\min} > 0 \). First, a vector \(S \in \{-1, 0, 1\}^d \) is chosen uniformly at random from the set of vectors \(S_k := \{s \in \{-1, 0, 1\}^d : \|s\|_1 = k\} \). Then we define vectors \(\theta^*_s \) so that \(\theta^*_s = \theta_{\min}s_j \) and conditional on \(S = s \), we observe

\[Y = X\theta + \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, \sigma^2 I_{n \times n}). \]

(Here \(X \in \mathbb{R}^{n \times d} \) is a known fixed matrix.)

(a) Use Fano’s inequality to show that for any estimator \(\hat{S} \) of \(S \), we have

\[\Pr(\hat{S} \neq S) \geq \frac{1}{2} \quad \text{unless} \quad n \geq c \frac{d \log \binom{d}{k}}{\|n^{-1/2}X\|_F^2} \frac{\sigma^2}{\theta_{\min}^2}, \]

where \(c \) is a numerical constant. You may assume that \(k \geq 4 \) or \(\log \binom{d}{k} \geq 4 \log 2 \).

(b) Assume that \(X \in \{-1, 1\}^{n \times d} \). Give a lower bound on how large \(n \) must be for sign recovery. Give a one sentence interpretation of \(\sigma^2/\theta_{\min}^2 \).