BIOENGINEERING

Chair: Russ B. Altman
Co-Chair: Stephen R. Quake
Associate Professors: Kwabena Boahen, Charles Taylor
Assistant Professors: Zev David Bryant, Jennifer R. Cochran, Markus Wilkens Cover, Karl Deisseroth, Andrew Endy, Kerwyn C. Huang, Christina D. Smolke
Courtesy Professors: Sanjiv Sam Gambhir, Michael T. Longaker
Courtesy Associate Professors: Jeffrey A. Feinstein, Garry E. Gold, Kim Buttus Pauly
Affiliated Faculty: Atul J. Butte, Rebecca Fahrig, Stuart B. Goodman, Sarah Heilshorn, Ellen Kuhl, Marc E. Levenston, Craig Levin, Mark Musen, David S. Paik, Sylvia K. Plevris, Terence Sanger, Mark J. Schnitzer, Krishna V. Shenoy, Daniel Mark Spielman
Student Services: Clark Center, Room S-166
Mail Code: 94305-5444
Student Services Phone: (650) 736-2254
Web Site: http://bioengineering.stanford.edu

COTERMINAL B.S./M.S. PROGRAM IN BIOENGINEERING

This option is available to outstanding Stanford undergraduates who wish to work simultaneously toward a B.S. in another field and an M.S. in Bioengineering. The degrees may be granted simultaneously or at the conclusion of different quarters, though the bachelor’s degree cannot be awarded after the master’s degree has been granted. As Bioengineering does not currently offer an undergraduate program, the B.S. degree must be from another department. The University minimum requirements for the coterminal bachelor’s/master’s program are 180 units for the bachelor’s degree plus 45 unduplicated units for the master’s degree. Students may apply for the coterminal B.S. and M.S. program after 120 units are completed and they must be accepted into our program one quarter before receiving the B.S. degree. Students should apply directly to the Bioengineering Student Service Office by December 2, 2008. We require students interested in our coterminal degree to take the Graduate Record Examination (GRE); applications may be obtained at http://www.gre.org. New coterminal applications and procedures are now available on the Office of the University Registrar web site. Access the new application form, instructions, and supporting documents online at http://bioengineering.stanford.edu/education/coterminal.html; University regulations and forms concerning coterminal degree programs are available at http://registrar.stanford.edu/shared/publications.htm#Coterm.

The application must provide evidence of potential for strong academic performance as a graduate student. The application is evaluated and acted upon by the graduate admissions committee of the department. Students are expected to enter with a series of core competencies in mathematics, biology, chemistry, physics, computing, and engineering. Typically, a GPA of at least 3.5 in engineering, science, and math is expected.

GRADUATE PROGRAMS IN BIOENGINEERING

The University’s requirements for the M.S. and Ph.D. degrees are outlined in the “Graduate Degrees” section of this bulletin.

Admission—Students are expected to enter with a series of core competencies in mathematics, biology, chemistry, physics, computing, and engineering. Students entering the program are assessed by the examination of their undergraduate transcripts and research experiences. Specifically, we require that students have completed mathematics through multivariable calculus and differential equations, completed a series of undergraduate biology courses, technical electives, seminars and unrestricted electives. The research and educational thrusts are in biomedical computation, biomedical imaging, biomedical devices, regenerative medicine, and cell/molecular engineering. The clinical dimension of the department includes cardiovascular medicine, neuroscience, orthopedics, cancer care, neurology, and environment.

UNDERGRADUATE PROGRAMS IN BIOENGINEERING

Although primarily a graduate-level department, pre-approved B.S. majors in Biomedical Engineering and Biomedical Computation can be arranged through the School of Engineering. For detailed information, see the “School of Engineering” section of this bulletin and the Handbook for Undergraduate Engineering Programs at http://ughb.stanford.edu and available from the Office of the Dean of Engineering.
These courses, together with the approved technical electives, should form a cohesive course of study that provides depth and breadth.

1. **Approved Technical Electives (27 units):** These units must be selected from graduate courses in mathematics, statistics, engineering, physical science, life science, and medicine. They should be chosen in concert with the bioengineering courses to provide a cohesive degree program in a bioengineering focus area. Students are required to take at least one course in some area of device or instrumentation. Up to 9 units of directed study and research may be used as approved electives.

2. **Seminars (3 units):** The seminar units should be fulfilled through BIOE 390, Introduction to Bioengineering Research, BIOE 393, Bioengineering Departmental Research Colloquium, or BIOE 459, Frontiers in Interdisciplinary Biosciences. Other relevant seminar units may also be used with the approval of the faculty adviser. One of the seminar units must be BIOE 459, Frontiers in Interdisciplinary Biosciences.

3. **Unrestricted Electives (6 units):** Students are assigned an initial faculty adviser to assist them in designing a plan of study that creates a cohesive degree program with an appropriate concentration in a particular bioengineering focus area. These focus areas include, but are not limited to: Biomedical Computation, Regenerative Medicine/Tissue Engineering, Molecular and Cell Bioengineering, Biomedical Imaging, and Biomedical Devices.

 To ensure that an appropriate program is pursued by all M.S. candidates, students who first matriculate at Stanford at the graduate level (a) submit an adviser approved Program Proposal for a Master’s Degree form to the student services office during the first month of the first quarter of enrollment and (b) obtain approval from the M.S. adviser and the Chair of Graduate Studies for any subsequent program change or changes. It is expected that the requirements for the M.S. in Bioengineering can be completed within approximately one year. There is no thesis requirement for the M.S.

 Due to the interdisciplinary nature of Bioengineering, a number of courses are offered directly through the Bioengineering Department, but many are available through other departments. See respective department listings for course descriptions.

COGNATE COURSES

BIOC 218. Computational Molecular Biology (Same as BIOMEDIN 231.)

BIOMEDIN 210. Introduction to Biomedical Informatics: Fundamental Methods (Same as CS 270.)

BIOMEDIN 217. Translational Bioinformatics (Same as CS 275.)

CHEMENG 450. Advances in Biotechnology

EE 369A. Medical Imaging Systems I

EE 369B. Medical Imaging Systems II

EE 369C. Medical Image Reconstruction

ME 280. Skeletal Development and Evolution

ME 287. Soft Tissue Mechanics

ME 381. Orthopaedic Bioengineering

ME 382A. Medical Device Design

ME 382B. Medical Device Design

RAD 226. In Vivo Magnetic Resonance Spectroscopy and Imaging

DOCTOR OF PHILOSOPHY IN BIOENGINEERING

A student studying for the Ph.D. degree must complete a master’s degree (45 units) comparable to that of the Stanford M.S. degree in Bioengineering. Up to 45 units of master’s degree residency units may be counted towards the degree. The Ph.D. degree is awarded after the completion of a minimum of 135 units of graduate work as well as satisfactory completion of any additional University requirements. Students admitted to the Ph.D. program with an M.S. degree must complete at least 90 units of work at Stanford. The maximum number of transfer units is 45.

On the basis of the research interests expressed in their application, students are assigned an initial faculty adviser who assists them in choosing courses and identifying research opportunities. The department does not require formal lab rotations, but students are encouraged to explore research activities in two or three labs during their first academic year.

Prior to being formally admitted to candidacy for the Ph.D. degree, the student must demonstrate knowledge of bioengineering fundamentals and a potential for research by passing a qualifying oral examination.

Typically, the exam is taken shortly after the student earns a master’s degree. The student is expected to have a nominal graduate Stanford GPA of 3.25 to be eligible for the exam. Once the student’s faculty sponsor has agreed that the exam is to take place, the student must submit an application folder containing items including a curriculum vitae, manuscript, abstract, and preliminary dissertation proposal to the student services office. Information about the exam may be obtained from the student services office.

In addition to the course requirements of the M.S. degree, doctoral candidates must complete a minimum of 15 additional units of approved formal course work (excluding research, directed study, and seminars).

Dissertation Reading Committee—Each Ph.D. candidate is required to establish a reading committee for the doctoral dissertation within six months after passing the department’s Ph.D. qualifying exams. Thereafter, the student should consult frequently with all members of the committee about the direction and progress of the dissertation research.

The dissertation reading committee consists of the principal dissertation adviser and at least two other readers. Reading committees in Bioengineering may include faculty from another department. It is expected that at least one member of the Bioengineering faculty be on each reading committee. The initial committee, and any subsequent changes, must be officially approved by the department Chair.

University Oral and Dissertation—The Ph.D. candidate is required to take the University oral examination after the dissertation is substantially completed (with the dissertation draft in writing), but before final approval. The examination consists of a public presentation of dissertation research, followed by substantive private questioning on the dissertation and related fields by the University oral committee (four selected faculty members, plus a chair from another department). Once the oral has been passed, the student finalizes the dissertation for reading committee review and final approval. Forms for the University oral scheduling and a one-page dissertation abstract should be submitted to the department student services office at least three weeks prior to the date of the oral for departmental review and approval.

PH.D. MINOR IN BIOENGINEERING

Doctoral students pursuing a Ph.D. degree in a major other than Bioengineering may apply for the Ph.D. minor in Bioengineering. A minor is not a requirement for any degree, but is available when agreed upon by the student and the major and minor department. Application forms, including the University’s general requirements, can be found at http://registrar.stanford.edu/shared/forms.htm.

A student desiring a Ph.D. minor in Bioengineering must have a minor program advisor who is a regular Bioengineering faculty member. This advisor must be a member of the student’s reading committee for the doctoral dissertation, and the entire reading committee must meet at least one year prior to the date of the student’s dissertation defense.

The Ph.D. minor program must include at least 20 units of coursework in Stanford Bioengineering or Bioengineering cognate courses at or above the 200 level. Of these 20 units, no more than 10 can be in cognate courses. All courses listed to fulfill the 20 unit requirement must be taken for a letter grade and the GPA must be at least 3.25. Courses used for a minor may not be used to also meet the requirements for a master’s degree.

M.D./PH.D. DUAL DEGREE PROGRAM

Students interested in a career oriented towards bioengineering and medicine can pursue the combined M.D./Ph.D. degree program. Stanford has two ways to do an M.D./Ph.D. U.S. citizens and permanent residents can apply to the Medical Scientist Training Program and can be accepted with funding from both M.D. and
Ph.D. programs for stipend and tuition. They can then select a bioengineering laboratory for their Ph.D. Students not admitted to the Medical Scientist Training Program must apply to be admitted separately to the M.D. program and the Ph.D. program of their choice. The Ph.D. is administered by the Department of Bioengineering. To be formally admitted as a Ph.D. degree candidate in this combined degree program, the student must apply through normal departmental channels and must have earned or have plans to earn an M.S. in bioengineering or other engineering discipline at Stanford or another university. The M.S. requires 45 units of course work which consists of core bioengineering courses, technical electives, seminars, and 6 unrestricted units. Students must also pass the Department of Bioengineering Ph.D. qualifying examination. For students fulfilling the full M.D. requirements who earned their master’s level engineering degree at Stanford, the Department of Bioengineering waives the normal departmental requirement of 15 units applied towards the Ph.D. degree beyond the master’s degree level through formal course work. Consistent with the University Ph.D. requirements, the department accepts 15 units comprised of courses, research, or seminars approved by the student’s academic adviser and the department chair. Students not completing their M.S. engineering degree at Stanford are required to take 15 units of formal course work in engineering-related areas as determined by their academic adviser.

BIOENGINEERING (BIOE) COURSES

For information on undergraduate and graduate programs in the Department of Bioengineering, see the “Bioengineering” and “School of Engineering” sections of this bulletin.

UNDERGRADUATE COURSES IN BIOENGINEERING

BIOE 70Q. Medical Device Innovation
Stanford Introductory Seminar. Preference to sophomores. Commonly used medical devices in different medical specialties. Guest lecturers include Stanford Medical School physicians, entrepreneurs, and venture capitalists. How to identify clinical needs and design device solutions to address these needs. Fundamentals of starting a company. Field trips to local medical device companies; workshops. No previous engineering training required.

3 units, Spr (Mandato, J; Milroy, J; Doshi, B)

BIOE 191. Bioengineering Problems and Experimental Investigation
Directed study and research for undergraduates on a subject of mutual interest to student and instructor. Prerequisites: consent of instructor and adviser.

1-5 units, Aut (Staff), Win (Staff), Spr (Staff), Sum (Staff)

GRADUATE COURSES IN BIOENGINEERING

Primarily for graduate students; undergraduates may enroll with consent of instructor.

BIOE 214. Representations and Algorithms for Computational Molecular Biology
(Same as BIOMEDIN 214, CS 274, GENE 214.) Topics: algorithms for alignment of biological sequences and structures, computing with strings, phylogenetic tree construction, hidden Markov models, computing with networks of genes, basic structural computations on proteins, protein structure prediction, protein threading techniques, homology modeling, molecular dynamics and energy minimization, statistical analysis of 3D biological data, integration of data sources, knowledge representation and controlled terminologies for molecular biology, graphical display of biological data, machine learning (clustering and classification), and natural language text processing. Prerequisites: programming skills; consent of instructor for 3 units.

3-4 units, Spr (Altmann, R)

BIOE 220. Imaging Anatomy
(Same as RAD 220.) The physics of medical imaging and human anatomy through medical images. Emphasis is on normal anatomy, contrast mechanisms, and the relative strengths of each imaging modality. Labs reinforce imaging techniques and anatomy. Prerequisites: basic biology, physics.

3 units, Win (Gold, G; Pauly, K)

BIOE 222A. Multimodality Molecular Imaging in Living Subjects I
(Same as RAD 222A.) Instruments for imaging molecular and cellular events in animals and human beings using novel assays. Instrumentation physics, chemistry of molecular imaging probes, and applications to preclinical models and clinical disease management.

4 units, Aut (Gambrill, S; Rao, J)

BIOE 222B. Multimodality Molecular Imaging in Living Subjects II
(Same as RAD 222B.) In vivo imaging techniques and applications to preclinical models and clinical disease management. Focus on cancer research, neurobiology, cardiovascular and musculoskeletal diseases.

2 units, Win (Gambrill, S; Rao, J)

BIOE 261. Principles and Practice of Stem Cell Engineering
(Same as NSUR 261.) Quantitative models used to characterize incorporation of new cells into existing tissues emphasizing pluripotent cells such as embryonic and neural stem cells. Molecular methods to control stem cell decisions to self-renew, differentiate, die, or become quiescent. Practical, industrial, and ethical aspects of stem cell technology application. Final projects: team-reviewed grants and business proposals.

3 units, Aut (Deisseroth, K; Palmer, T)

BIOE 281. Biomechanics of Movement
(Same as ME 281.) Experimental techniques to study human and animal movement including motion capture systems, EMG, force plates, medical imaging, and animation. The mechanical properties of muscle and tendon, and quantitative analysis of musculoskeletal geometry. Projects and demonstrations emphasize applications of mechanics in sports, orthopedics, and rehabilitation.

3 units, Aut (Delp, S)

BIOE 284A. Cardiovascular Bioengineering

3 units, Aut (Taylor, C)

BIOE 284B. Cardiovascular Bioengineering

3 units, Win (Taylor, C)

BIOE 284C. Cardiovascular Bioengineering

3 units, Win (Taylor, C)
BIOE 300A. Molecular and Cellular Bioengineering
The molecular and cellular bases of life from an engineering perspective. Analysis and engineering of biomolecular structure and dynamics, enzyme function, molecular interactions, metabolic pathways, signal transduction, and cellular mechanics. Quantitative primary literature. Prerequisites: CHEM 171 and BIO 41 or equivalents; MATLAB or an equivalent programming language.

2 units, Aut (Bryant, Z)

BIOE 300B. Physiology and Tissue Engineering
The interaction, communication, and disorders of major organ systems and relevant developmental biology and tissue engineering from cells to complex organs.
3 units, Win (Deisseroth, K; Covert, M)

BIOE 301A. Molecular and Cellular Engineering Lab
Preference to Bioengineering graduate students. Practical applications of biotechnology and molecular bioengineering including recombinant DNA techniques, molecular cloning, microbial cell growth and manipulation, library screening, and microarrays. Emphasis is on experimental design and data analysis. Limited enrollment. Corequisite: 300A.
2 units, Aut (Cochran, J)

BIOE 301B. Clinical Needs and Technology
Diagnostic and therapeutic methods in medicine. Labs include a pathology/histology session, pulmonary function testing, and the Goodman Simulation Center. Each student paired with a physician for observation of an operation or procedure. Limited enrollment. Corequisite: 300B.
1 unit, Win (Feinstein, J)

BIOE 310. Systems Biology
(Same as BIOC 278, CS 278, CSB 278.) Complex biological behaviors through the integration of computational modeling and molecular biology. Topics: reconstructing biological networks from high-throughput data and knowledge bases. Network properties. Computational modeling of network behaviors at the small and large scale. Using model predictions to guide an experimental program. Robustness, noise, and cellular variation. Prerequisites: background in biology and mathematical analysis.
3 units, Aut (Covert, M; Dill, D; Brudlag, D; Ferrell, J)

BIOE 331. Protein Engineering
The design and engineering of biomolecules emphasizing proteins, antibodies, and enzymes. Combinatorial methodologies, rational design, protein structure and function, and biophysical analyses of modified biomolecules. Clinically relevant examples from the literature and biotech industry. Prerequisite: basic biochemistry.
3 units, Win (Feinstein, J; Covert, M; Dill, D; Brudlag, D; Ferrell, J)

BIOE 332A. Large-Scale Neural Modeling
Emphasis is on cortical computation, from feature maps in the neocortex to episodic memory in the hippocampus, with attention to the roles of recurrent connectivity, rhythmic activity, spike synchrony, synaptic plasticity, and noise and heterogeneity. Large-scale models run in real-time on neuromorphic hardware developed for this purpose. Techniques to analyze and predict network behavior; applications to data recorded from models in laboratory. Techniques introduced are used to develop projects in second half of two-quarter sequence.
3 units, Win (Boahen, K)

BIOE 332B. Large-Scale Neural Modeling
Emphasis is on cortical computation, from feature maps in the neocortex to episodic memory in the hippocampus, with attention to the roles of recurrent connectivity, rhythmic activity, spike synchrony, synaptic plasticity, and noise and heterogeneity. Simulation exercises to model neural phenomena; quantitative techniques to analyze and predict network behavior; modeling projects to study neural systems of interest. Student teams of two run large-scale models in real-time on neuromorphic hardware developed for this purpose. Prerequisite: 332A.
3 units, Spr (Boahen, K)

BIOE 333. Interfacial Phenomena and Bionanotechnology
How biological, biochemical, environmental, and bioengineering problems require understanding of the properties of systems of large interfacial area and surface-active molecules. Concepts used by Laplace, Gibbs, Kelvin, and Young to describe these systems. Self-assembling aspects of surface-active molecules including biological molecules. The relevance of interfacial phenomena to protein folding/unfolding and microfluidic devices. Applications to recent research advances in bionano- and biomicrotechnology, drawing from the scientific literature.
3 units, Spr (Barron, A)

BIOE 334. Engineering Principles in Molecular Biology
The achievements and difficulties that exemplify the interface of theory and quantitative experiment. Topics include: bistability, cooperativity, robust adaptation, kinetic proofreading, analysis of fluctuations, sequence analysis, clustering, phylogenetics, maximum likelihood methods, and information theory. Sources include classic papers.
3 units, Aut (Staff)

BIOE 335. Molecular Motors I: F1 ATPase
Physical mechanisms of mechanochemical coupling in biological molecular motors, using F1 ATPase as the principal model system. Applications of biochemistry, structure determination, single molecule tracking and manipulation, protein engineering, and computational techniques to the study of molecular motors.
3 units, Spr (Bryant, Z)

BIOE 341. Computational Neural Networks
Distributed neural network implementations of algorithms for signal processing, function approximation, and control. Representation of information in networks of spiking neurons. Supervised and unsupervised learning algorithms. Radial basis functions, principal and independent components analysis, reinforcement learning, support-vector machines, self-organizing maps, auto-associative learning, hidden Markov models. Related methods from information theory, signal processing, bayesian estimation, and stochastic systems. Final project in software or programmable hardware. Prerequisites: linear algebra, dynamic systems, and probability theory as in MATH 103, EE 102A, and EE 178 or equivalent, and programming experience in C++ or Matlab.
3 units, Aut (Sanger, T)

BIOE 355. Advanced Biochemical Engineering
(Same as CHEMENG 355.) Combines biological knowledge and methods with quantitative engineering principles. Quantitative review of biochemistry and metabolism; recombinant DNA technology and synthetic biology (metabolic engineering). The production of protein pharmaeuticals as a paradigm for the application of chemical engineering principles to advanced process development within the framework of current business and regulatory requirements. Prerequisite: CHEMENG 181 (formerly 188) or BIO 41, or equivalent.
3 units, Spr (Swarz, J)

BIOE 361. Biomaterials in Regenerative Medicine
(Same as MATSCI 381.) Materials design and engineering for regenerative medicine. How materials interact with cells through their micro- and nanostructure, mechanical properties, degradation characteristics, surface chemistry, and biochemistry. Examples include novel materials for drug and gene delivery, materials for stem cell proliferation and differentiation, and tissue engineering scaffolds. Prerequisites: undergraduate chemistry, and cell/molecular biology or biochemistry.
3 units, alternate years, not given this year

BIOE 370. Microfluidic Device Laboratory
Fabrication of microfluidic devices for biological applications. Photolithography, soft lithography, and micromechanical valves and pumps. Emphasis is on device design, fabrication, and testing.
2 units, Win (Quake, S)
BIOE 374A. Biodesign Innovation: Needs Finding and Concept Creation
(Same as ME 368A, MED 272A, OIT 581.) Two quarter sequence. Inventing new medical devices and instrumentation, including: methods of validating medical needs; techniques for analyzing intellectual property; basics of regulatory (FDA) and reimbursement planning; brainstorming and early prototyping. Guest lecturers and practical demonstrations.
2 units, Win (Yock, P; Zenios, S; Brinton, T; Milroy, C)

BIOE 374B. Biodesign Innovation: Concept Development and Implementation
(Same as ME 368B, MED 272B, OIT 583.) Two quarter sequence. How to take a medical device invention forward from early concept to technology translation and development. Topics include prototyping; patent strategies; advanced planning for reimbursement and FDA approval; choosing translation route (licensing versus start-up); ethical issues including conflict of interest; fundraising approaches and cash requirements; essentials of writing a business or research plan; strategies for assembling a development team.
2 units, Spr (Yock, P; Zenios, S; Brinton, T; Milroy, C)

BIOE 375A. Biodesign Innovation, Project A
(Same as ME 369A, MED 273A, OIT 582.) Interdisciplinary student teams select a medical need, characterize it fully, develop a needs statement, invent potential conceptual approaches to solving the need, and pursue initial prototyping and planning for regulatory and reimbursement pathways. Guest experts. Corequisite: MED 272A/BIOE 374A/ME 368A/OIT 581.
2 units, Win (Yock, P; Zenios, S; Brinton, T; Milroy, C)

BIOE 375B. Biodesign Innovation, Project B
(Same as ME 369B, MED 273B, OIT 584.) Interdisciplinary teams select the most promising invention from BIOE 375A and move into prototyping and project planning. Teams develop strategies for patenting, FDA submission, third-party reimbursement, licensing agreement or launching a start-up, including cash forecasting and business plan. Prerequisites: MED 375A/ME 369A/BIOE 375A/OIT 582. Corequisite: MED 272B/ME 368B/BIOE 374B/OIT 583.
2 units, Spr (Yock, P; Milroy, C; Brinton, T; Zenios, S)

BIOE 386. Neuromuscular Biomechanics
(Same as ME 386.) The interplay between mechanics and neural control of movement. State of the art assessment through a review of classic and recent journal articles. Emphasis is on the application of dynamics and control to the design of assistive technology for persons with movement disorders.
3 units, not given this year

BIOE 390. Introduction to Bioengineering Research
(Same as MED 289.) Preference to medical and bioengineering graduate students. Bioengineering is an interdisciplinary field that leverages the disciplines of biology, medicine, and engineering to understand living systems, and engineer biological systems and improve engineering designs and human and environmental health. Topics include: imaging; molecular, cell, and tissue engineering; biomechanics; biomedical computation; biochemical engineering; biosensors; and medical devices. Limited enrollment.
1-2 units, Aut (Taylor, C), Win (Taylor, C)

BIOE 391. Directed Study
May be used to prepare for research during a later quarter in 392. Faculty sponsor required. May be repeated for credit.
1-6 units, Aut (Staff), Win (Staff), Spr (Staff), Sum (Staff)

BIOE 392. Directed Investigation
For Bioengineering graduate students. Previous work in 391 may be required for background; faculty sponsor required. May be repeated for credit.
1-10 units, Aut (Staff), Win (Staff), Spr (Staff), Sum (Staff)

BIOE 393. Bioengineering Departmental Research Colloquium
Bioengineering department labs at Stanford present recent research projects and results. Guest lecturers. Topics include applications of engineering to biology, medicine, biotechnology, and medical technology, including biodesign and devices, molecular and cellular engineering, regenerative medicine and tissue engineering, biomedical imaging, and biomedical computation.
1 unit, Aut (Altman, R), Win (Altman, R), Spr (Altman, R)

BIOE 454. Synthetic Biology and Metabolic Engineering
(Same as CHEMENG 454.) Principles for the design and optimization of new biological systems. Development of new enzymes, metabolic pathways, other metabolic systems, and communication systems among organisms. Example applications include the production of central metabolites, amino acids, pharmaceutical proteins, and isoprenoids. Economic challenges and quantitative assessment of metabolic performance. Pre- or corequisite: CHEMENG 355 or equivalent.
3 units, alternate years, not given this year

BIOE 459. Frontiers in Interdisciplinary Biosciences
(Same as BIO 459, BIOC 459, CHEMENG 459, CHEM 459, PSYCH 459.) Students register through their affiliated department; otherwise register for CHEMENG 459. For specialists and non-specialists. Sponsored by the Stanford BioX Program. Three seminars per quarter address scientific and technical themes related to interdisciplinary approaches in bioengineering, medicine, and the chemical, physical, and biological sciences. Leading investigators from Stanford and the world present breakthroughs and endeavors that cut across core disciplines. Pre-seminars introduce basic concepts and background for non-experts. Registered students attend all pre-seminars; others welcome. See http://biox.stanford.edu/courses/459.html. Recommended: basic mathematics, biology, chemistry, and physics.
1 unit, Aut, Win, Spr (Robertson, C)

BIOE 484. Computational Methods in Cardiovascular Bioengineering
(Same as ME 484.) Lumped parameter, one-dimensional nonlinear and linear wave propagation, and three-dimensional modeling techniques applied to simulate blood flow in the cardiovascular system and evaluate the performance of cardiovascular devices. Construction of anatomic models and extraction of physiologic quantities from medical imaging data. Problems in blood flow within the context of disease research, device design, and surgical planning.
3 units, Spr (Figueroa Alvarez, C)

BIOE 485. Modeling and Simulation of Human Movement
(Same as ME 485.) Direct experience with the computational tools used to create simulations of human movement. Lecture/labs on animation of movement; kinematic models of joints; forward dynamic simulation; computational models of muscles, tendons, and ligaments; creation of models from medical images; control of dynamic simulations; collision detection and contact models. Prerequisite: 281, 331A,B, or equivalent.
3 units, Spr (Delp, S)

BIOE 500. Thesis (Ph.D.)
1-15 units, Aut (Staff), Win (Staff), Spr (Staff), Sum (Staff)