
135

COMPUTER SCIENCE
Emeriti: (Professors) Tom Binford, George B. Dantzig, Robert W. Floyd,

John G. Herriot, Donald E. Knuth, William F. Miller, Nils J. Nilsson
Chair: Jean-Claude Latombe
Associate Chair for Education: Eric S. Roberts
Professors: David Cheriton, Bill Dally, David Dill, Qussama Khatib,

Monica Lam, Hector Garcia-Molina, Gene H. Golub, Leonidas J.
Guibas, Patrick Hanrahan, John Hennessy, Mark A. Horowitz, Oussa-
ma Khatib, Jean-Claude Latombe, Zohar Manna, John McCarthy,
Edward J. McCluskey, John Mitchell, Joseph E. Oliger, Vaughan
Pratt, Jeffrey D. Ullman, Terry Winograd

Associate Professors: Michael Genesereth, Marc Levoy, Rajeev Mot-
wani, Serge A. Plotkin, Mendel Rosenblum, Yoav Shoham, Jennifer
Widom

Assistant Professors: Mary G. Baker, Dan Boneh, Christoph Bregler,
Dawson Engler, Ronald P. Fedkiw, Armando Fox, Daphne Koller,
Christopher Manning, Nick McKeown, Balaji Prabhakar, Carlo To-
masi

Professors (Research): Richard Fikes, Gio Wiederhold
Professor (Teaching): Eric S. Roberts
Courtesy Professors: Giovanni De Micheli, Martin Kay, Michael Lev-

itt, Teresa Meng, Grigori Mints, Fouad A. Tobagi
Courtesy Associate Professors: Russ Altman, Martin Fischer, John T.

Gill, III, David Heeger, Teresa Meng, Mark A. Musen, Oyekunle
Olukotun

Courtesy Assistant Professors: Joshua B. Tenenbaum, Benjamin Van
Roy

Courtesy Assistant Professor (Research): Yuval Shahar
Senior Lecturer: Margaret Johnson
Lecturers: Gerald Cain, Nicholas J. Parlante, Robert Plummer, Patrick

Young, Julie Zelenski
Acting Professor: John K. Salisbury
Acting Associate Professor: Colin Williams
Consulting Professors: Richard Gabriel, Kurt Konolige, Prabhakar

Raghavan
Consulting Associate Professors: Craig Partridge, Feng Zhao
Consulting Assistant Professor: B. J. Fogg
Visiting Associate Professors: Ahmed Bahai, Hubert Comon, Greg

Dudek, Moshe Tennenholz

The Department of Computer Science (CS) operates and supports
computing facilities for departmental education, research, and adminis-
tration needs. These CS systems are connected to SUNet, the campus-
wide 100MB Ethernet backbone network, and SUNet is connected to the
Internet through GTE.

All CS students have access to a departmental student machine, a
Multi-CPU SUN Enterprise3000, as well as a cluster of public worksta-
tions in the Gates Building. In addition, most students have access to
systems associated with their research areas.

Each research group in CS has systems specific to its research needs.
These systems range from PC clones/Macs to high-end Multi-CPU SGIs
and SUNs. Servers and workstations manufactured by DEC, SUN, HP,
SGI, Intel, Apple, and IBM are also in place.

Support for course work and instruction is provided on systems avail-
able through Information Technology Systems and Services (ITSS).

UNDERGRADUATE PROGRAMS
The department offers both a major and a minor in Computer Science.

The requirements for these programs are outlined in the “School of En-
gineering” section of this bulletin and described in more detail in the
Handbook for Undergraduate Engineering Programs published by the
School of Engineering. The department has an honors program, which
is described in the following section.

In addition to Computer Science itself, Stanford offers several inter-
disciplinary degrees with a substantial computer science component. The

Computer Systems Engineering major (also in Engineering) allows the
study of issues of both computer hardware and software, bridging the gap
between traditional CS and Electrical Engineering majors. The Symbolic
Systems major (in the School of Humanities and Sciences) offers a chance
to explore computer science and its relation to linguistics, philosophy,
and psychology. Finally, the Mathematical and Computational Scienc-
es major (also Humanities and Sciences) allows students to explore com-
puter science along with more mathematics, statistics, and operations
research.

HONORS
The Department of Computer Science offers an honors program for

selected undergraduates whose academic records and personal initiative
indicate that they have the necessary skills to undertake high-quality
research in computer science. Admission to the program is by applica-
tion only. To apply for the honors program, students must be majoring
in Computer Science, have a grade point average (GPA) of at least 3.5 in
courses that count toward the major, and achieve senior standing (135
or more units) by the end of the academic year in which they apply. Co-
terminal master’s students are eligible to apply as long as they have not
already received their undergraduate degree. Beyond these requirements,
students who apply for the honors program must also find a faculty mem-
ber who agrees to serve as the thesis adviser for the project. Thesis ad-
visers must be members of Stanford’s Academic Council.

Students who meet the eligibility requirements and wish to be con-
sidered for the honors program must submit a written application to the
undergraduate program office by May 1 of the year preceding the hon-
ors work. The application must include a letter describing the research
project, a letter of endorsement from the faculty sponsor, and a transcript
of courses taken at Stanford. Each year, a faculty review committee will
select the successful candidates for honors from the pool of qualified
applicants.

In order to receive departmental honors, students admitted to the
honors program must, in addition to satisfying the standard requirements
for the undergraduate degree, do the following:
1. Complete at least 9 units of CS 191 or 191W under the direction of

their project sponsor.
2. Enroll in a research seminar, which allows students to share their

experience with other students working on research projects.
3. Complete an honors thesis deemed acceptable by a committee con-

sisting of the thesis adviser and at least one additional faculty mem-
ber.

4. Present the thesis at a public colloquium sponsored by the department.
5. Maintain the 3.5 GPA required for admission to the honors program.

GRADUATE PROGRAMS
The University’s basic requirements for the M.S. and Ph.D. degrees

are discussed in the “Graduate Degrees” section of this bulletin.

MASTER OF SCIENCE
In general, the M.S. degree in Computer Science is intended as a ter-

minal professional degree and does not lead to the Ph.D. degree. Most
students planning to obtain the Ph.D. degree should apply directly for
admission to the Ph.D. program. Some students, however, may wish to
complete the master’s program before deciding whether to pursue the
Ph.D. To give such students a greater opportunity to become familiar with
research, the department has instituted a new program leading to a mas-
ter’s degree with distinction in research. This degree is described in more
detail in a subsequent section.

Applications for admission to the M.S. program, and all of the required
supporting documents, must be received before December 15, 2000.
Exceptions are made for applicants who are either Honors Co-op appli-
cants or who are already students at Stanford (including coterminal ap-
plicants). Information on these deadlines is available from the depart-
ment.

C
om

pu
te

r S
ci

en
ce

136

 S
C

H
O

O
L O

F
EN

G
IN

EE
RI

N
G

REQUIREMENTS
A candidate is required to complete a program of 45 units. At least 36

of these must be graded units, passed with an average 3.0 (B) grade point
average (GPA) or better. The 45 units may include no more than 21 units
of courses from those listed below in Requirements 1 and 2. Thus, stu-
dents needing to take more than seven of the courses listed in Require-
ments 1 and 2 actually complete more than 45 units of course work in this
program. Only extremely well-prepared students may expect to finish the
program in one year; most complete the program in six quarters. Students
hoping to complete the program with 45 units should already have a sub-
stantial background in computer science, including course work or ex-
perience equivalent to all of Requirement 1 and some of the courses in
Requirement 2.

Requirement 1—The following courses may be needed as prerequi-
sites for other courses in the program: CS 103X, 107, 108; 193L (for
specialization 5 only); Electrical Engineering 182; Mathematics 109 or
120.

Requirement 2—Students must demonstrate breadth of knowledge
in the field by completing the following courses:
1. Area A: Mathematical and Theoretical Foundations:

a) Required:
1) Statistics (Statistics 116 or Management Science and Engineer-

ing 120)
2) Algorithms (CS 161)
3) Automata (CS 154)

b) Choose one of:
1) Numerical Analysis (CS 137 or 237A)
2) Logic (CS 157, 257, 258, or Philosophy 160A)

2. Area B: Computer Systems:
a) Required: Architecture (Electrical Engineering 182 or 282)
b) Choose two of:

1) Operating Systems (CS 140)
2) Compliers (CS 143)
3) Introduction to Computer Networks (CS 244A or Electrical

Engineering 284)
3. Area C: AI and Applications:

a) Choose two of the following, with at least one 200-level course:
1) AI (CS 121 or 221)
2) Databases (CS 145 or 245)
3) Graphics (CS 148 or 248)

Individual specializations are free to narrow the set of choices in spe-
cific areas of the breadth requirement; see the individual specialization
sheets in the department office for details. Breadth courses are waived
only if evidence is provided that similar or more advanced courses have
been taken, either at Stanford or another institution. Courses that are
waived rather than taken may not be counted toward the M.S. degree.
Breadth courses may be taken on a Satisfactory/No Credit basis provid-
ed that a minimum of 36 graded units is presented within the 45-unit
program.

Requirement 3—At least 1 but no more than 3 units of 500-level sem-
inars must be taken.

Requirement 4—A program of 21 units in an area of specialization
must be completed. All courses in this area must be taken for letter grades.
Eight approved programs are listed below. Students may propose to the
M.S. program committee other coherent programs that meet their goals
and satisfy the basic requirements. Students who want to include a sub-
stantial research project as part of their degree program can arrange with
their adviser to replace units in their specialization with a CS 393 (Com-
puter Laboratory) project.

1. Numerical Analysis/Scientific Computation
a) CS 237A, 237B, 237C
b) At least two of: CS 260; Manage. Sci. & Engr. 121; Math.

131, 132, 220A, 220B, 220C; Stat. 200
c) At least three of: CS 223A, 238, 326A, 327A, 328, 336, 337,

339; Aero. & Astro. 214A, 214B; Mech. Engr. 235A, 254;
Stat. 227

2. Systems
a) CS 240, 242
b) At least three of: CS 243, 244A, 245, 248, 348B; Elect. Engr.

271, 275, 382
c) At least 6 more units selected from ‘2b’ and from the following:

CS 194, 241, 244B, 244C, 248V, 249, 255, 315A, 315B, 341,
342, 343, 344, 345, 346, 347, 348A, 348C, 349, 448; Elect.
Engr. 183, 272, 281, 318, 319, 374, 384A, 384B, 384C, 482A,
482B, 487, 488, 489; Psych. 267

3. Software Theory
a) CS 242, 243, 256, 258
b) At least one of: CS 244A, 245, 342, 343, 345
c) At least one course from the following: CS 255, 261, 351,

355, 356, 361A, 361B, 365, 368
d) At least one additional course selected from ‘3b,’ ‘3c,’ CS

346
4. Theoretical Computer Science

a) CS 256, 258, 261 (361A, 361B, or 365 may be used as substitutes
for 261)

b) At least 12 more units from CS 228, 255, 345, 351, 352, 353,
355, 356, 357, 358, 359*, 361A, 361B, 365, 367A, 367B, 368,
369*; Manage. Sci. & Engr. 310

5. Artificial Intelligence
a) At least four of: CS 222, 223A, 223B, 224M, 224N, 227, 228,

229, 326A
b) A total of 21 units from the above and from the following: CS

205, 206, 225A, 225B, 226, 256, 257, 270A, 271, 274, 323,
327A, 328, 329, 354, 377, 379, 426

6. Database
a) CS 245
b) Two of: CS 345, 346, 347
c) Four additional courses selected from ‘6b’ and from the

following: CS 222, 240, 242, 243, 244A, 244B, 244C, 249,
255, 270A, 270B, 271, 272, 315A, 315B, 341, 344, 395, 446;
Elect. Engr. 489

7. Human-Computer Interaction
a) CS 147, 247A, 247B
b) At least 6 units from: CS 148 or 248, 377 (may be taken

repeatedly), 378, 447
c) A total of 21 units from the above and from the following:

Comm. 269, 272; CS 249, 270A, 270B, 272, 320, 348A, 348B,
448; Engr. 145; Manage. Sci. & Engr. 234, 273, 280, 284;
Linguistics 238; Mech. Engr. 101, 115, 215, 313; Psych. 203,
205, 221, 266, 267

8. Real-World Computing
a) At least two of: CS 223A, 223B, 248
b) At least three of: CS 205, 237A, 237B, 237C, 248V, 249, 270A,

270B, 271, 272, 326A, 348A, 348B, 368
c) A total of 21 units from the above and from the following: CS

225A, 225B, 247A, 274, 327A, 328, 336, 399, 448; Psych.
267

* With consent of Specialization chair.

Requirement 5—Additional elective units must be technical courses
(numbered 100 or above) related to the degree program and approved by
the adviser. Elective courses may be taken on a Satisfactory/No Credit
basis provided that a minimum of 36 graded units are presented within
the 45-unit program.

MASTER OF SCIENCE WITH DISTINCTION IN RESEARCH
A student who wishes to pursue the M.S./CS with distinction in re-

search must first identify a faculty adviser who agrees to supervise and
support the research work. The research adviser must be a member of the
Academic Council and must hold an appointment in Computer Science.
The student and principal adviser must also identify another faculty
member, who need not be in the Department of Computer Science, to
serve as a secondary adviser and reader for the research report. In addi-
tion, the student must complete the following requirements beyond those
for the regular M.S./CS degree:

137

1. Research Experience: the program must include significant research
experience, at the level of a half-time commitment over the course of
three academic quarters. In any given quarter, the half-time research
commitment may be satisfied by a 50 percent appointment to a de-
partmentally supported research assistantship, 6 units of independent
study (CS 393, 395, or 399), or a prorated combination of the two (such
as a 25 percent research assistantship supplemented by 3 units of in-
dependent study). This research must be carried out under the direc-
tion of the primary or secondary adviser.

2. Supervised Writing and Research: in addition to the research experi-
ence outlined in the previous requirement, students must enroll in at
least 3 units of independent research (CS 393, 395, or 399) under the
direction of their primary or secondary adviser. These units should
be closely related to the research described in the first requirement,
but focused more directly on the preparation of the research report
described in the next section. Note that these units must be taken in
addition to the 21 units required for the specialization, although they
do not count toward the 45 units required for the degree.

3. Research Report: students must complete a significant report describ-
ing their research and its conclusions. The research report represents
work that is publishable in a journal or at a high-quality conference,
although it is presumably longer and more expansive in scope than a
typical conference paper. Three copies of the research report must be
submitted to the Student Services office in the department three weeks
before the beginning of the examination period in the student’s final
quarter. Both the primary and secondary adviser must approve the
research report before the “distinction in research” designation can
be conferred.

DOCTOR OF PHILOSOPHY
Applications to the Ph.D. program and all supporting documents must

be received before December 15, 2000. The following are department
requirements (see the Computer Science graduate programs administra-
tor for further details, or visit http://cs.stanford.edu/Admissions):
1. A student should plan and successfully complete a coherent program

of study covering the basic areas of computer science and related
disciplines. The student’s adviser has primary responsibility for the
adequacy of the program, which is subject to review by the Ph.D.
program committee.

2. Each student, to remain in the Ph.D. program, must satisfy the breadth
requirement covering introductory level graduate material in major
areas of computer science. Once a student fulfills six of eight whole
areas of the breadth requirement, he or she may apply for admission
to candidacy for the Ph.D. This is typically done by the end of the
second year in the program. The student must completely satisfy the
breadth requirement by the end of nine quarters (excluding summers),
and must pass a qualifying exam in the general area of the expected
dissertation.

3. As part of the training for the Ph.D., the student is required to com-
plete at least 4 units (a unit is 10 hours per week for one quarter) as a
teaching assistant or instructor for courses in Computer Science num-
bered 100 or above.

4. The most important requirement is the dissertation. After passing the
qualifying examination, each student must secure the agreement of a
member of the department faculty to act as the dissertation adviser.
(In some cases, the dissertation adviser may be in another department.)

5. The student must pass a University oral examination in the form of a
defense of the dissertation. It is usually held after all or a substantial
portion of the dissertation research has been completed.

6. The student is expected to demonstrate the ability to present scholar-
ly material orally, both in the dissertation defense and by a lecture in
a department seminar.

7. The dissertation must be accepted by a reading committee composed
of the principal dissertation adviser, a second member from within
the department, and a third member chosen from within the Univer-
sity. The principal adviser and at least one of the other committee
members must be Academic Council members.

Ph.D. MINOR
For a minor in Computer Science, a candidate must complete 20 units

of computer science course work, including at least three of the master’s
core courses to provide breadth, and one course numbered 300 to pro-
vide depth. The remaining courses must be numbered 200 or above. One
of the courses taken must include a significant programming project to
demonstrate programming proficiency. A grade point average (GPA) of
3.0 or better must be maintained.

TEACHING AND RESEARCH ASSISTANTSHIPS
Graduate student assistantships are available. Half-time assistants

receive a tuition scholarship for 9 units per quarter during the academic
year, and in addition receive a monthly stipend.

Duties for half-time assistants during the academic year involve
approximately 20 hours of work per week. Teaching assistants (TAs) help
an instructor teach a course by conducting discussion sections, consult-
ing with students, grading examinations, and so on. Research assistants
(RAs) help faculty and senior staff members with research in computer
science. Most teaching and research assistantships are held by Ph.D. stu-
dents in the Department of Computer Science. If there is an insufficient
number of Ph.D. students to staff teaching and research assistantships,
then these positions are open to a limited number of master’s students in
the department. However, master’s students should not plan on being
appointed to an assistantship.

Students with fellowships may have the opportunity to supplement
their stipends by serving as graduate student assistants.

COURSES
(WIM) indicates that the course meets the Writing in the Major re-

quirement.
(AU) indicates that the course is subject to the University Activity Unit

limitations (8 units maximum).

GUIDE TO SELECTING INTRODUCTORY
COURSES

Students arriving at Stanford have widely differing backgrounds and
goals, but most find that the ability to use computers effectively is ben-
eficial to their education. The department offers many introductory cours-
es to meet the needs of these students.

For students whose principal interest is an exposure to the fundamental
ideas behind computer science and programming, CS 105 is the most
appropriate course. It is intended for students in nontechnical disciplines
who expect to make some use of computers, but who do not expect to go
on to more advanced courses. CS 105 meets the Area 2b General Educa-
tion Requirement and includes an introduction to programming, and the
use of modern Internet-based technologies. Students interested in learn-
ing to use the computer should consider CS 1C (Introduction to Comput-
ing at Stanford) or 1U (Introduction to Unix).

Students who intend to pursue a serious course of study in computer
science may enter the program at a variety of levels, depending on their
background. Students with little prior experience or those who wish to
take more time to study the fundamentals of programming should take
106A followed by 106B. Students in 106A need not have prior program-
ming experience. Students with significant prior exposure to program-
ming or those who want an intensive introduction to the field should take
106X, which covers most of the material in 106A and B in a single quar-
ter. All instruction in CS 106 uses ANSI C, although the prior program-
ming experience required for 106X may be in any language. In all cases,
students are encouraged to discuss their background with the instructors
responsible for these courses.

After the introductory sequence, Computer Science majors and those
who need a significant background in computer science for related ma-
jors in engineering should take 103, 107 and 108. CS 103 offers an intro-
duction to the mathematical and theoretical foundations of computer
science. CS 107 exposes students to a variety of programming paradigms
that illustrate critical strategies used in systems development; 108 builds

C
om

pu
te

r S
ci

en
ce

http://cs.stanford.edu/Admissions

138

 S
C

H
O

O
L O

F
EN

G
IN

EE
RI

N
G

on this material, focusing on the development of large interactive pro-
grams based on the object-oriented programming paradigm.

In summary:

For exposure—1C or 1U
For nontechnical use—105
For scientific use—106A
For a technical introduction—106A
For significant use—106A,B or 106X, along with 103, 107, and 108

NUMBERING SYSTEM
The first digit of a CS course number indicates its general level of

sophistication:
0-99 service courses for nontechnical majors

100-199 other service courses, basic undergraduate
200-299 advanced undergraduate/beginning graduate
300-399 advanced graduate
400-499 experimental
500-599 graduate seminars

The tens digit indicates the area of Computer Science it addresses:
00-09 Introductory, miscellaneous
10-19 Hardware Systems
20-29 Artificial Intelligence
30-39 Numerical Analysis
40-49 Software Systems
50-59 Mathematical Foundations of Computing
60-69 Analysis of Algorithms
70-79 Typography and Computational Models of Language
90-99 Independent Study and Practicum

NONMAJOR
1C. Introduction to Computing at Stanford—For those with limited
experience on computers. Introduction to the basics of computing, and a
variety of programs, encouraging individual exploration of the programs
covered. Topics: word processing, spread sheets, using the WWW and
the Internet, and computing resources at Stanford. Macintosh and PC
systems. One-hour lecture/demonstration in dormitory clusters. Week-
ly short assignments and final project. Not a programming course.

1 unit, Aut (Staff)

1I. The Internet—For a computer-literate but not technical audience.
What is the Internet and what is it good for? The foundations, resources,
and uses of the Internet, emphasizing practical skills for finding, reading,
and authoring Internet material. Topics: HTML, FTP, HTTP, web
publishing and searching; evolution and future directions; security and
privacy issues. Programming-oriented course is 193I. Prerequisites:
basic computer skills at level of 1C, e.g., file editing, and access to a
computer on the Internet.

1 unit, Win (Staff)

1U. Introduction to Unix—Tutorial on using the Unix operating sys-
tem. Topics: text editors, the file system, the C shell, standard Unix
utilities, PERL. Includes simple shell programming, but is not a program-
ming course and assumes no prior exposure to programming.

1 unit, Spr (Staff)

50. Problem Solving with Mathematica—For engineers, physicists,
mathematicians, and others who need to solve mathematical or quantita-
tive problems. Comprehensive introduction to Mathematica, an interac-
tive mathematical software package that includes a high-level program-
ming language. Symbolic, numerical, graphical, animation, and pro-
gramming capabilities, including use of Mathematica to manipulate
expressions, find roots, solve differential equations, visualize functions
and data, import and export data in arbitrary formats, work with expres-
sions in standard mathematical notation, and perform statistical analyses.

2 units (Williams) alternate years, not given 2001-02

51. Introduction to Quantum Computing and Quantum Informa-
tion Theory—For computer scientists, physicists, mathematicians, en-
gineers, and others who want to learn the capabilities of quantum

computers and the necessary quantum mechanics and complexity theory.
Topics: quantum algorithms (including Shor’s polynomial time algo-
rithm for integer factorization, Grover’s database search algorithm,
quantum tree search, quantum wavelets), quantum information theory,
quantum cryptography, breaking the RSA cryptosystem, quantum tele-
portation, circuit design, quantum error correction, and examples of
prototype quantum computers. Prerequisites: familiarity with elementa-
ry matrix algebra and complex numbers.

2 units, Win (Williams)

99A. Stanford Introductory Seminar: The Downside of Computing
Systems—Preference to freshmen. Computers are critical components
of our world in such tasks as surgery, air traffic control, and international
banking. How computing systems fail, how such failures may affect our
society in the future, and how to build and maintain systems to avoid
failures. Case studies of computer-related disasters, including the Ther-
ac-025 accidents, the Internet worm, and the Ariane 5 crash. Topics:
computer security, robust distributed systems, fault-tolerant architec-
tures, organizational behavior.

3 units (Baker) not given 2000-01

99C. Stanford Introductory Seminar: Computers—Fact and Fic-
tion—Preference to freshmen. Can a computer be world chess champi-
on? Can it learn to do something it wasn’t told to do? Can it create? Even
computer scientists have disagreed. Some interesting and/or controver-
sial predictions are compared to the state of the art technology. Things
computers have already done, things that they might be able to do, and
things that computers cannot do. Possible topics: virtual reality, the
world wide web, machine learning, computer game playing, security and
crptography, etc. Prerequisite: basic understanding of how computers
work (i.e., how we write programs that tell a computer what to do).

3 units (Koller) not given 2000-01

99D. Stanford Introductory Seminar: The Science of Art—Prefer-
ence to freshmen. The interwoven histories of science and Western art
from the Renaissance to the 19th century. Emphasis is on the revolutions
in science and mathematics that have inspired parallel revolutions in the
visual arts (e.g., Brunelleschi’s invention of linear perspective, Newton’s
discoveries in geometric optics, and the theories of color vision proposed
by Goethe, Young, Helmholtz, etc.). The scientific principles behind
image making, including a brief survey of digital image synthesis (i.e.,
computer graphics). GER:2b (DR:6)

3 units, Win (Levoy)

99E. Stanford Introductory Seminar: Great Ideas in Computer
Science—Preference to freshmen. The power and limitations of comput-
ers; concrete strategies for solving problems using computers. What can
a computer do efficiently? Why are programs hard to test? How can we
make computers appear clairvoyant? How do you keep secrets in
computers? Should tables be sorted? When is it a good idea to be greedy?
These questions involve ideas whose impact ranges from the philosoph-
ical foundations of computation to concrete applications in everyday life.
Prerequisite: mathematical maturity (e.g., AP Math) and exposure to
computer programming.

3 units (Motwani, Raghavan) not given 2000-01

99F. Stanford Introductory Seminar: Paradox—Bug or Feature?—
Preference to freshmen. Conflict in thought is as inevitable as in territory
and relationships. The discovery, influence, and use of paradoxes in
mathematics, logic, nature, cognition, and computation. The paradoxical
continuum: Zeno, Democritus, Newton, Leibniz, Cohen, Itano. Logical
paradoxes: Eubulides’ liar, the set of all sets, incompleteness of arith-
metic, the halting problem. Paradoxes in nature: quantum mechanics,
chaos. Cognition: mind-body interaction, free will, and determinism.
Computer hardware and software: cyclic circuits and the fixpoint oper-
ator. Prerequisite: AP Math.

3 units, Win (Pratt)

139

99G. Stanford Introductory Seminar: The Two Cultures—Bridging
the Gap—Preference to freshmen. In 1959, the British physicist and
novelist C. P. Snow delivered a lecture at Cambridge University in which
he argued that “the intellectual life of the whole of western society is
increasingly being split into two polar groups.” In Snow’s view, these
groups, which can be characterized roughly as humanists and scientists,
exist as separate cultures that have “almost ceased to communicate at
all.” Professors in Computer Science and English collaborate to examine
the nature of this split, reflected at Stanford by the tendency to divide the
campus community into “techies” and “fuzzies,” and explore ways to
bridge this cultural gap.

3 units, Aut (Roberts, Saldivar)

99H. Stanford Introductory Seminar: Programming and Problem
Solving Seminar—Preference to freshmen. Students are given five
problems to solve. Each involves programming, but programming is not
sufficient to solve the problem (i.e., the approach to the problem is at least
as important). Students experiment individually and as a group with
techniques, and write a working program as a solution. Group discus-
sions include general problem-solving approaches and concepts relevant
to the problem at hand. Prerequisite: 106B or 106X.

3 units (Ullman) not given 2000-01

99I. Stanford Introductory Seminar: Business on the Information
Highways—Preference to freshmen. Understanding the capabilities of
the Internet and its services. The effect on commerce, education, and
healthcare. Technical and business alternatives. Who will be hurt and
who will benefit from the changes occurring? The central project
develops sections of a Web publication.

3 units, Win (Wiederhold)

99J. Stanford Introductory Seminar: Computer Security in the
Electronic Age—Preference to sophomores. Based on readings and
discussions of current issues in computer security. Topics: the history of
codes and ciphers and a summary of basic mathematics used in current
cryptography; causes of computer vulnerabilities, including program
errors, design flaws, and inherent network and browser limitations;
policies and practices that restrict or monitor access to information.

3 units (Mitchell) not given 2000-01

99K. Stanford Introductory Seminar: Digital Actors—Preference to
sophomores. Digital actors are an emerging field, with applications to
video games, movies, simulation and training, manufacturing, and ani-
mated web pages. Introduces the computational techniques used to create
and animate robotics, geometric computing, computer vision, and graph-
ics. The problem of creating/animating digital actors, technical sub-
problems. Prerequisite: knowledge of elementary geometry. Recom-
mended: some programming experience.

3 units (Latombe) not given 2000-01

99M. Stanford Introductory Seminar: Computer and Information
Security—Preference to freshmen. Topics: aspects of computer securi-
ty, including the damage caused by break-ins, common holes in comput-
er systems, technological solutions for preventing attacks, cryptography,
and legal issues in computer security.

3 units (Boneh) not given 2000-01

99N. Stanford Introductory Seminar: Ruler, Compass, and Com-
puter-Computational Representations of Geometry—Preference to
sophomores. Representations of geometry play an important role in
computer science in the physical world. Models of physical objects and
processes as used in computer graphics, computer vision, and robotics
use geometry as an essential component of representing shape, motion,
and other physical modalities. The mathematical ideas behind common-
ly used representations and algorithms for geometric objects, focusing on
intuitive understanding as opposed to formal development. Prerequisite:
introductory CS class, e.g., 106A, B or X. Recommended: general
background knowledge in mathematics and physics.

3 units, Spr (Guibas)

99P. Stanford Introductory Seminar: Smart Computers and other
Technological Opportunities—Preference to freshmen. How smart are
computers now? How smart can we make them, and how soon, and what
good will they be? Of the current “smart” things, how smart are they and
what genuine benefits are offered? Outside of computers, what are the
technological opportunities for humanity? To what extent is humanity in
difficulty with natural resources? What significant threats are there to
humanity?

3 units (McCarthy) not given 2000-01

99Q. Stanford Introductory Seminar: Universal Ideas in Computa-
tion—Preference to freshmen. Techniques and ideas that cut across
computer science, emphasizing concepts that also show up extensively
in non-computer systems. Examples: indirection (especially naming and
translation); using the past to predict the future; using randomness to
make robust decisions; the pervasiveness of “skew” in data (20% of the
code consumes 80% of CPU cycles, 4% of fighter pilots account for 40%
of all kills); and the universality of scheduling and concurrency control,
which are used to coordinate access to shared resources such as shared
memory, intersections, classrooms, bathroom stalls, etc.

3 units, Spr (Engler)

99R. Stanford Introductory Seminar: Digital Dilemmas—Prefer-
ence to freshmen. The history and evolution of computing and commu-
nication technology, and how it affects the fabric of society. Topics: the
military-academic-industrial research complex, the Cold War, and the
public good; intellectual property meets the Internet, using MP3 and
Napster as a case study; the balance between individual privacy and
freedom and the security and stability of the state, and the effect of strong
cryptography on this balance. Readings, discussion, debates, guest
speakers, field trips.

3 units, Aut (Fox)

UNDERGRADUATE
103A. Discrete Mathematics for Computer Science—The fundamen-
tal mathematical foundations required for computer science. Topics:
logic, relations, functions, basic set theory, proof techniques, combina-
tories, recursion, and recurrence relations. GER:2c (DR:4)

3 units, Aut, Win (Johnson)

103B. Discrete Structures—Continuation of 103A. Topics: analysis of
algorithms, mathematical formulations of basic data models (linear
models, trees, graphs, and sets), regular expressions, grammers. Coreq-
uisite: 106B or 106X.

3 units, Win, Spr (Johnson)

103X. Discrete Structures (Accelerated)—Covers the material in
103A and B in a single quarter. Students who take 103X feel comfortable
with mathematical formalism. GER:2c (DR:4)

*4 units, Win (Dill, Mitchell)

105. Introduction to Computers—For non-technical majors. What
computers are and how they work. Practical experience in programming.
Construction of computer programs and basic design techniques. A
survey of Internet technology and the basics of computer hardware.
Students in technical fields and students looking to acquire programming
skills should take 106A or 106X. Prerequisite: minimal math skills.
GER:2b (DR:6)

*5 units, Aut, Spr (Young)

106A. Programming Methodology—For students in technical disci-
plines. Broad introduction to the engineering of computer applications,
emphasizing software engineering principles: design, decomposition,
information hiding, procedural abstraction, testing, and reusable soft-
ware components. Uses the programming language C, and concentrates
on the development of good programming style and on understanding the

C
om

pu
te

r S
ci

en
ce

* May be taken for 3 units by graduate students.

140

 S
C

H
O

O
L O

F
EN

G
IN

EE
RI

N
G

basic facilities provided by the language. Alternatives: 105, 106X.
GER:2b (DR:6)

*5 units, Aut (Plummer)
Win (Staff)
Spr (Roberts)

106B. Programming Abstractions—Abstraction and its relation to
programming. The software engineering principles of data abstraction,
modules, certain fundamental data structures (e.g., stacks and queues),
and data-directed design. Recursion and recursive data structures (linked
lists and binary trees). Brief introduction to time and space complexity
analysis. Prerequisite: 106A or consent of the instructor, based on prior
exposure to ANSI C. GER:2b (DR:6)

*5 units, Aut (Staff)
Win (Plummer)
Spr (Zelenski)

106X. Programming Methodology and Abstractions (Accelerat-
ed)—Covers most of the material in 106A,B. Students are expected to
have previous programming experience at a level that allows them to
understand the concepts presented in 106A, usually in a language other
than C. First three weeks focus on understanding how the concepts are
expressed in ANSI C. 106B material is covered for the balance. Students
who complete 106A should enroll in 106B. 106X can be taken after 106A
only with consent of instructor. GER:2b (DR:6)

*5 units, Aut (Staff)
Win (Plummer)
Spr (Zelenski)

107. Programming Paradigms—Intense introduction to a variety of
programming paradigms, programming languages, and language imple-
mentations. Topics: the compile-time languages, using advanced mem-
ory management features of imperative and multithreaded C; the func-
tional paradigm, using LISP (or possibly ML); the object-oriented
paradigm, using Java (and possibly Python); and the generic program-
ming paradigm, introducing C++ and templates. Substantial program-
ming projects. Prerequisite: 106B, 106X, or equivalent.

*5 units, Aut, Spr (Cain)

108. Object-Oriented Systems Design—Software design and con-
struction in the context of large OOP libraries. May be taught in C++ or
Java. Topics: review of OOP, the structure of Graphical User Interface
(GUI) OOP libraries, GUI application design and construction, OOP
software engineering strategies, approaches to programming in teams.
Prerequisite: 107.

*4 units, Aut, Win (Parlante)

110. Introduction to Computer Systems and Assembly Language
Programming—Organization of digital computers, buses, registers,
processors, I/O, memory systems, and paged memory. Data representa-
tion, data structures, and computer arithmetic. Instruction sets and
execution; addressing modes. Assembly language programming, includ-
ing subroutines, co-routines, interrupts, and traps. Operating systems
issues and principles of storage management; combines general princi-
ples and practice in implementations. Prerequisite: 106B or 106X.

*4 units, Spr (Staff)

112. Computer Organization and Design—(Enroll in Electrical Engi-
neering 182.)

4 units, Aut, Spr (Staff)

121. Artificial Intelligence—(Only one of 121/221 counts towards CS
degree requirements.) Introduction to the key concepts, representations,
and techniques used in building practical computational systems (“agents”)
that appear to display artificial intelligence (AI), through the use of
sophisticated adaptive information processing algorithms. Topics: histo-
ry of AI, reactive systems, heuristic search, planning, constraint satisfac-

tion, knowledge representation and uncertain reasoning, machine learn-
ing, classification, applications to language, and vision. Prerequisites:
103B or 103X and basic facility with differential calculus, vector
algebra, and probability theory.

3 units, Win (Manning)

137. Introduction to Scientific Computing—The fundamental issues
of numerical computation for the mathematical, computational, and
physical sciences, and engineering. Emphasis is from the perspective of
the computer scientist. Use of numerical algorithms in engineering
practice. Problems of accurately computing solutions in the presence of
rounding errors and of computing discrete approximations of solutions
which are defined on the continuum. The taxonomy of problem classes
with methods for their solution and principles useful for analysis of
performance and algorithmic development. Topics: error analysis, the
solution of linear and nonlinear equations, interpolation and numerical
differentiation, the approximation of integrals, and the solution of
differential equations. Prerequisites: 106A; Mathematics 103 or 113 or
equivalents.

*4 units, Aut (Fedkiw)

138. Matlab and Maple for Science and Engineering Applications—
Introduction to use of Matlab and Maple in engineering applications.
Emphasis is on the use of software to solve real problems. How the
algorithms work, primarily so user may understand their possible limi-
tations. How to use packages to solve a variety of introductory but
important problems in: linear systems, eigenvalue problems, ordinary
differential equations, elementary statistics, elementary signal process-
ing (Fourier transforms, wavelets), computer algebra, graphical interfac-
es. Applications for the engineering and physical sciences. Prerequisites:
undergraduate linear algebra and a willingness to program.

*4 units, Win (Staff)

140. Operating Systems and Systems Programming—The funda-
mentals of operating systems design and implementation. Basic struc-
ture; synchronization and communication mechanisms; implementation
of processes, process management, scheduling, and protection; memory
organization and management, including virtual memory; I/O device
management, secondary storage, and file systems. Prerequisite: 108.
Recommended: Electrical Engineering 182.

*4 units, Aut, Win (Engler)

143. Compilers—Principles and practices in the design of programming
language compilers. Topics: lexical analysis; parsing theory (LL, LR,
and LALR parsing); symbol tables; type checking; common representa-
tions for records, arrays, and pointers; runtime conventions for procedure
calls; storage allocation for variables; and generation of unoptimized
code. Students construct simple compiler as programming project.
Prerequisites: 103B or X, 107.

*4 units, Aut, Win (Zelenski)

145. Introduction to Databases—Entity-relationship and relational
data models and approaches to database design. Relational and object-
relational query languages, with substantial coverage of SQL including
SQL3. Algebraic query languages and some database theory. Integrity
constraints, triggers, and views; functional dependencies and normal
forms. Object-oriented database design and query languages including
ODMG standard. Database transactions and security from the applica-
tion perspective. Designing a database for an application. Interactive and
programmatic interfaces to database systems. Introduction to advanced
topics, e.g., data warehouses, data mining, XML, and Web/database
interactions. Individual database application programming project with
extensive use of SQL. Prerequisites: 103B or X, 107.

*4 units, Aut (Ullman)
Spr (Widom)

147. Introduction to Human-Computer Interaction Design—Intro-
duction to the concepts underlying the design of human-computer
interaction: usability and affordances, direct manipulation, systematic

* May be taken for 3 units by graduate students

141

design methods, user conceptual models and interface metaphors, design
languages and genres, human cognitive and physical ergonomics, infor-
mation and interactivity structures, design tools and environments.
Structured around a set of case studies in which notable interface designs
and/or projects are analyzed as illustrative of underlying principles.
Students participate in discussions of cases and do interface analysis and
design exercises.

3-4 units, Aut (Winograd)

148. Introductory Computer Graphics—(For undergraduates; M.S.
students or students with a strong interest in continuing in graphics
should take 248. Only one of 148 or 248 counts towords CS degree
requirements.) Introduction to two- and three-dimensional computer
graphics. Topics: fundamentals of input and display devices, scan
conversion of geometric primitives, two- and three-dimensional trans-
formations and clipping, windowing techniques, curves and curved
surfaces, three-dimensional viewing and perspective, hidden surface
removal, illumination and color models, OpenGL, VRML, and 3-D
modeling tools. Emphasis is on the development of practical skills in
using graphics libraries and tools. Programming on Macintosh using C,
OpenGL, and VRML, with demos in SoftImage. Prerequisites: 107,
Mathematics 103.

3 units, Aut (Staff)

154. Introduction to Automata and Complexity Theory—Regular
sets: finite automata, regular expressions, equivalences among nota-
tions, methods of proving a language not to be regular. Context free
languages: grammars, pushdown automata, normal forms for grammars,
proving languages non-context free. Turing machines: equivalent forms,
undecidability. Nondeterministic Turing machines: properties, the class
NP, complete problems for NP, Cook’s theorem, reducibilities among
problems. Prerequisite: 103B or X.

*4 units, Win (Staff)
Spr (Motwani)

154N. Introduction to NP Completeness—Turing machines: equiva-
lent forms, undecidability. Nondeterministic Turing machines: proper-
ties, the class NP, complete problems for NP, Cook’s theorem, reducibil-
ities among problems. Students participate in approximately the last half
of 154. Prerequisite: a knowledge of formal languages and automata as
in the first part of 154.

2 units, Win (Staff)
Spr (Motwani)

156. Introduction to Verification and Concurrency—A taste of logic:
propositional, predicate, temporal. Specification and verification of
sequential programs: correctness and termination. Concurrent program-
ming: communication and synchronization, principles and algorithms.
Specification of concurrent programs: safety and progress. Verification
of safety properties: invariants. Prerequisite: 103B or X.

3 units (Manna)

157. Logic and Automated Reasoning—Introduction to logic for
computer scientists. An elementary exposition from a computational
point of view, of propositional logic, predicate logic, axiomatic theories,
and theories with equality and induction. Interpretations, models, valid-
ity, proof. Automated deduction: polarity, skolemization, unification,
resolution, equality. Strategies. Applications. Prerequisite: 103B or X.

*4 units, Aut (Manna)
Spr (Genesereth)

157L. Logic and Automated Reasoning Laboratory
1 unit

161. Design and Analysis of Algorithms—Efficient algorithms for
sorting, searching, and selection. Algorithm analysis: worst and average
case analysis. Recurrences and asymptotics. Data structures: balanced

trees, heaps, etc. Algorithm design techniques: divide-and-conquer,
dynamic programming, greedy algorithms, amortized analysis. Algo-
rithms for fundamental graph problems, e.g., depth-first search, connect-
ed components, topological sort, shortest paths. Possible topics: network
flow, string searching, parallel computation. Prerequisite: 103B or X;
Statistics 116.

*4 units, Aut (Plotkin)
Win (Staff)

162. Introduction to Combinatorics and its Applications—(Enroll in
Mathematics 108.)

3 units, Aut (Diaconis)

163. Symmetric Functions and Algebraic Combinatorics—(Enroll in
Mathematics 112.)

3 units, Win (Diaconis)

191. Senior Project—Restricted to Computer Science students. Group
or individual projects under faculty direction. Register using the section
number associated with the instructor.

1-6 units, any quarter (Staff)

191W. Writing Intensive Senior Project—Restricted to Computer
Science students. Group or individual projects under faculty direction.
Register using the section number of an Academic Council member.
(WIM)

1-6 units, any quarter (Staff)

192. Programming Service Project—Restricted to Computer Science
students. Appropriate academic credit (without financial support) is
given for volunteer computer programming work of public benefit and
educational value.

1-3 units, any quarter (Staff)

193D. C++ and Object-Oriented Programming—C++ programming
language and object-oriented programming paradigm. The major fea-
tures of C++ 3.0 and the object design principles which apply generally
in Object Oriented Languages. Intensive programming assignments.
Prerequisites: knowledge of C and basic programming methodology as
developed in 106B or 106X.

3 units, Win (Cain)

193H. Human-Computer Interface Tools—Design-practitioner ori-
ented survey of tools for building interactive interfaces, including
Director, Flash, and Basic Visual. Emphasis is on understanding interac-
tion issues, exploiting tool capabilities, rapid prototyping, and extending
design skills. Prerequisites: programming fundamentals at the level of
106B or 106X.

3 units, Aut (Staff)

193I. Internet Technologies—Programmer-oriented survey of the au-
thoring, distributing, and browsing technologies. The role, use, and
implementation of current Internet tools. Topics: TCP/IP; namespace,
connections, and protocols. Client/server structures. Web/HTTP/HTML
techniques for text, images, links, and forms. Server side programming,
CGI scripts. Security and privacy issues. Programming projects on
client- and server-side may be in Perl or Java. Languages are introduced
as needed. Emphasis is on understanding, exploiting, and extending
Internet technologies. Prerequisites: programming fundamentals at the
level of 106B or 106X, and the ability to build and debug programs in a
Unix environment.

3 units, Spr (Parlante)

193J. Programming in Java—Hands-on experience to gain practical
Java programming skills. Topics: object-oriented programming (classes,
objects, messaging, inheritance), Java language features (interfaces,
exceptions, packages, concurrency, garbage collection), use of the built-
in packages (lang, util, io, networking, awt, swing), applets and servlets,
security and verification, Java implementation and the virtual machine.

C
om

pu
te

r S
ci

en
ce

* May be taken for 3 units by graduate students

142

 S
C

H
O

O
L O

F
EN

G
IN

EE
RI

N
G

Intensive programming assignments. Prerequisite: knowledge of C lan-
guage and programming experience at the level of 106B, 106X.

3 units, Win (Cain)

193K. Advanced Java Applications—Tour of the advanced applica-
tions possible in Java. Possible topics: portable GUIs in Swing and
distributed applications with RMI, and the various supporting technolo-
gies, e.g., concurrency, reflection, and serialization. Prerequisite: mas-
tery of Java, e.g., 193J.

2 units, Spr (Parlante)

193L. Programming in LISP—Introduction to problem solving in the
LISP language, focusing on the functional programming paradigm.
Topics: recursion, list manipulation, mapping, functional arguments,
destructive processing, macros, I/O, Lisp implementation, environ-
ments, packages, efficiency, object-oriented programming, classes, and
methods. Term project. Prerequisite: 106B or 106X, or equivalent.

3 units (McCarthy)

193W. Microsoft Windows Programming—The fundamentals of pro-
gramming on the Microsoft Windows platform, focusing on the use of
Microsoft Foundation Class (MFC) framework. Other aspects of Win-
dows programming including Microsoft’s COM and OLE object mod-
els. Requires a significant amount of programming. Prerequisite: knowl-
edge of C++ at the level of 108 or 193D.

3 units, Win (Young)

194. Software Project—Student teams complete a significant program-
ming project through the phases of design, specification, coding, and
testing under faculty supervision. Lectures on software engineering
methodologies. Implementation; well-written proposal, specification,
and software design document; demonstration of a prototype design and
the final product. Prerequisite: 108. (WIM)

3 units, Win (Young)
Spr (Plummer)

196. Microcomputer Consulting—Overview of computer consulting,
focusing on Macintosh and IBM-compatible systems. Topics: operating
systems, networks, troubleshooting, and consulting methodology. Bi-
weekly lectures emphasize on-campus computing environments. Stu-
dents work as consultants in campus computer clusters and in residences.
Prerequisite: 1C.

2 units, Aut, Spr (Staff)

197. Mainframe and Workstation Computer Consulting—Comput-
er consulting in a workstation and server environment, focusing on the
UNIX operating system under the SUN, HP, and SGI hardware systems.
Topics: UNIX fundamentals, consulting tips, networking, and systems
administration. Students work as on-duty consultants at the Sweet Hall
and Terman computer clusters. Pre- or corequisite: 1U.

2 units, Win, Spr (Staff)

198. Teaching of Computer Science—Teach a small discussion section
of 106A while learning the fundamentals of teaching a programming
language at the introductory level. Two workshops/one meeting weekly
on introductory material in general, 106 specifically, and teaching
techniques. Application and interview required; see the 198 coordinator
in CS for information. Prerequisite: 106B or 106X.

4 units, Aut, Win, Spr (Roberts, Chong, Burgess)

199. Independent Work—Special study under faculty direction, usual-
ly leading to a written report. Letter grade given; if this is not appropriate,
enroll in 199P. Register using the section number associated with the
instructor.

any quarter (Staff)

199P. Independent Work—Like 199, but graded Satisfactory/No Credit.
any quarter (Staff)

UNDERGRADUATE AND GRADUATE
200. Undergraduate Colloquium—Strongly recommended for junior-
year CS majors as a way to build contacts with faculty. Weekly presen-
tations by faculty and people from industry informally describing their
views of computer science as a field and their experience as computer
scientists. (AU)

1 unit, Aut (Plummer)

201. Computers, Ethics, and Social Responsibility—Primarily for
majors entering computer-related fields. Analysis of the ethical and
social issues related to the development and use of computer technology.
Introduction to the relevant background in ethical theory, and the social,
political, and legal considerations. Analysis of scenarios in specific
problem areas: privacy, reliability and risks of complex systems, and the
responsibility of professionals for the applications and consequences of
their work. Prerequisite: 106B or 106X. (WIM)

*4 units, Win (Roberts)

205. Mathematical Methods for Robotics and Vision—Overview of
some of the mathematical background necessary for research in robotics
and vision. Possible topics: geometric meaning of linear algebra con-
cepts; Singular Value Decomposition; Schur Decomposition; differen-
tial equations; dynamic systems and stochastic estimation (Kalman
filtering); vector and tensor calculus; calculus of variations. Prerequi-
sites: 106B or 106X; Mathematics 51 and 113; or equivalents.

3 units, Aut (Tomasi)

206. Technical Foundations of Electronic Commerce—As the inter-
net and wide-area networks are increasingly used to conduct commerce,
computer scientists need to understand the nature of economic mecha-
nisms, e.g., auctions, and devise the ways to implement them efficiently.
Relevant economic theories. Lab to design and implement a substantial
application in small groups. Prerequisites: sufficient mathematical ma-
turity to follow basic combinatorial and probabilistic arguments, and
ability to code in either C++ or Java.

3 units, Spr (Shoham, Boneh, Ullman)

211. Logic Design—(Enroll in Electrical Engineering 275.)
3 units, Aut, Win (McCluskey)

212. Computer Architecture and Organization—(Enroll in Electrical
Engineering 282.)

3 units, Aut, Win (Staff)

221. Artificial Intelligence: Principles and Techniques—(Only one of
121 or 221 counts towards CS degree requirements.) Broad technical
introduction to core concepts and techniques in artificial intelligence.
Topics: search, planning, constraint satisfaction. knowledge representa-
tion, probabilistic models, machine learning, neural networks, vision,
robotics, and natural language understanding. Prerequisites: 103B or
106X, or 109 and 157, or Philosophy 160A and exposure to basic
concepts in probability. Recommended: facility with basic differential
calculus.

*4 units, Aut (Koller)

222. Knowledge Representation—Declarative knowledge representa-
tion methods in artificial intelligence. Topics: time and action, defaults,
compositional modeling, object-oriented representation, inheritance,
ontologies, knowledge on the Web, knowledge servers, multiple views,
qualitative modeling. Prerequisite: basic familiarity with logic. Recom-
mended: prior exposure to artificial intelligence as in 121/221.

3 units, Win (Fikes)

223A. Introduction to Robotics—Topics: manipulator kinematics and
inverse kinematics; manipulator dynamics, motion, and force control;

* May be taken for 3 units by graduate students

143

motion planning and robot programming. Recommended: knowledge of
matrix algebra.

3 units, Win (Khatib)

223B. Introduction to Computer Vision—Fundamental issues and
techniques of computer vision. Image formation, edge detection and
image segmentation, stereo, motion, shape representation, recognition.
Project or final. Prerequisite: 205 or equivalent.

3 units, Win (Tomasi)

224M. Multi-Agent Systems—Aimed at advanced undergraduate,
master’s levels, and interested Ph.D. students. Various aspects of extend-
ing AI theories and techniques from the single-agent case to the multi-
agent (MA) case. Topics: MA knowledge representation, planning,
reasoning under uncertainty, learning, coordination mechanisms, and
automated negotiation. Emphasis is on representation techniques and
algorithms, the former drawn from logic, decision theory, and game
theory. There are no programming assignments or textbooks on the topic.
Limited enrollment. Prerequisites: knowledge of basic probability theo-
ry, first-order logic, and algorithms.

3 units, Win (Shoham)

224N. Natural Language Processing—(Enroll in Linguistics 237.)
3 units, Spr (Manning)

225A. Experimental Robotics—Hands-on experience with robotic
manipulation and navigation systems. Topics: kinematic and dynamic
control of motion, compliant motion and force control, sensor-based
collision avoidance, motion planning, assembly planning, task specifica-
tions, and robot-human interfaces. Limited enrollment. Prerequisite:
223A.

3 units, Spr (Khatib)

225B. Robot Programming Laboratory—Hands-on introduction to
the techniques of robot programming for robotics and non-robotics
students. Series of guided exercises in which students program mobile
robots to exhibit increasingly complex behavior (simple dead reckoning
and reactivity, planning and map building, communication and cooper-
ation). Topics: basics of motor control and sensor characteristics; sensor
fusion, model construction, and robust estimation; control regimes
(fuzzy control and potential fields); active perception; reactive planning
architectures; various topics in sensor-based control, including vision-
guided navigation. Student programmed robot contest. Programming is
in C on Unix or Windows machines, done in teams. Prerequisites: Basic
programming skills at the level of 106B, 106X, 205, or equivalent.

*4 units, Aut (Konolige)

226. Knowledge-Based Systems and Applications—Knowledge-based
(expert) system technology is the most widely-used application technol-
ogy to emerge from AI. Topics: basics of KBS and ES; tech transfer from
research to industry; knowledge engineering, KB programming, knowl-
edge acquisition methodology; evolution of the technology as applied to
business and government problems, current and future impact. Case
studies, readings. System building project possible. Some guest lectures.

3 units, not given 2000-01

227. Reasoning Methods in AI—Technical presentation of algorithmic
techniques for problem solving in AI. Combines formal algorithmic
analysis with description of recent applications. Topics: propositional
satisfiability, constraint satisfaction, planning and scheduling, diagnosis
and repair. Focus is on recent results. Prerequisites: familiarity with the
basic notions in data structures and design and with techniques in the
design and analysis of algorithms. Recommended: previous or concur-
rent course in AI.

3 units, Spr (Nayak)

228. Probabilistic Models in Artificial Intelligence—Probabilistic
modeling languages suitable for representing complex domains, algo-

rithms for reasoning and decision making using these representations,
and learning these representations from data. Focus is on graphical
modeling languages such as Bayesian belief networks, extensions to
temporal modeling using hidden Markov models and dynamic Bayesian
networks, and extensions to decision making using influence diagrams
and Markov decision processes. Recent applications to domains (speech
recognition, medical diagnosis, data mining, statistical text modeling,
and robot motion planning). Prerequisites: understanding of basic con-
cepts in probability theory and in design and analysis.

3 units, Win (Koller)

229. Statistical Learning—Survey of major research areas in pattern
recognition and statistical learning. Topics: foundations of statistical
pattern recognition, parametric and non-parametric density estimation,
linear and nonlinear classifiers, decision trees, Bayesian and neural
networks, reinforcement learning, learning theory, and recent trends
(e.g., boosting and support vector machines). Focus is on the underlying
concepts and their application to various problems in vision, speech,
language processing, animation, control, etc. Prerequisites: background
in linear algebra, basic probability theory, and statistics; ability to write
computer programs in one or more commonly used languages.

3 units, Win (Bregler)

237. Advanced Numerical Analysis—Three-quarter graduate sequence
designed to acquaint students in mathematical and physical sciences and
engineering with the fundamental theory of numerical analysis. Exam-
ples from applications.

237A. Numerical Linear Algebra—First in a three-quarter gradu-
ate sequence. Solution of systems of linear equations: direct methods,
error analysis, structured matrices; iterative methods and least squares.
Parallel techniques. Prerequisites: 106A, 137, Mathematics 103 or
113.

3 units, Aut (Golub)
237B. Numerical Solution of Initial Value Problems—Linear
multistep methods and Runge-Kutta methods for ordinary differen-
tial equations: zero-stability, A-stability, and convergence. Differen-
tial algebraic equations. Parabolic partial differential equations: sta-
bility, convergence, and qualitative properties. Hyperbolic partial
differential equations: stability convergence and qualitative proper-
ties. Prerequisites: Mathematics 130, 131.

3 units, Win (Staff)
237C. Numerical Solution of Boundary Value Problems—Ellip-
tic partial differential equations: finite difference, finite element, and
spectral methods. Iterative methods for solution of resulting algebra-
ic equations: SOR, fast Poisson solvers, domain decomposition, mul-
tigrid methods, and Newton iteration. Prerequisites: Mathematics 130,
131.

3 units, Spr (Staff)

238. Parallel Methods in Numerical Analysis—Recent developments
in parallel computer technology have made it necessary to reformulate
numerical algorithms to exploit the full potential of this technology.
Emphasis is on the different techniques for obtaining maximum parallel-
ism in various numerical algorithms, especially those occurring when
solving matrix problems and partial differential equations, and the
subsequent mapping onto the computer. Implementation issues on par-
allel computers. Topics: parallel architecture, programming models,
matrix computations, FFT, fast multiple methods, domain decomposi-
tion, graph partitioning. Prerequisite: 237A or Mechanical Engineering
200A, or consent of instructor. Recommended: familarity with differen-
tial equations, and experience in advanced programming language such
as F90, C, C++.

3 units, Win (Staff)

240. Advanced Topics in Operating Systems—Advanced study in OS
topics and exposure to recent developments in OS research. Readings/
lectures on classic and new papers. Topics: virtual memory management,
synchronization and communication, file systems, protection and secu-

C
om

pu
te

r S
ci

en
ce

* May be taken for 3 units by graduate students.

144

 S
C

H
O

O
L O

F
EN

G
IN

EE
RI

N
G

rity, operating system extension techniques, fault tolerance, and the
history and experience of systems programming. Prerequisite: 140 or
equivalent.

3 units, Win (Staff)
Spr (Rosenblum)

241. Advanced Topics in Internet Technologies and Systems—
Architecture, design, and implementation of Internet-scale software
infrastructure (services and applications). Achieving scalability, high
availability, and robustness through modular software structure and
performance tradeoffs, including harvest vs. yield and consistency vs.
availability. Cluster-based runtime systems for Internet workloads, im-
plementation and deployment challenges, economics of deploying and
operating a service. Extending Internet services to mobile and post-PC
computing devices. Service-centric view of the Internet, including com-
position of services and mass customization. Research agenda for
Internet-scale services. Project: build and deploy an Internet-scale ser-
vice prototype. Limited enrollment. Prerequisites: 193I or equivalent
experience; 240 and 244A.

3 units, Win (Fox)

242. Programming Languages—The basic elements of programming
languages and programming paradigms: functional, imperative, and
object-oriented. Introduction to formal semantic methods. Modern type
systems, higher-order functions and closure, exceptions and continua-
tions. Runtime support for different language features. Emphasis is on
separating the different elements of programming languages and styles.
First half uses Lisp and ML to illustrate concepts; second half a selection
of object-oriented languages. Prerequisite: 107, or experience with Lisp,
C and some object-oriented language.

3 units, Aut (Mitchell)

243. Advanced Compiling Techniques—The theoretical and practical
aspects of building modern compilers. Topics: intermediate representa-
tions, basic blocks and flow-graphs, dataflow analysis, register alloca-
tion, global code optimizations, and interprocedural analysis. Prerequi-
site: 143 or equivalent.

*4 units, Win (Lam)

244A. Introduction to Computer Networks—The principles and prac-
tice of computer networking, with emphasis on the Internet. The struc-
ture and components of computer networks, packet switching, layered
architectures, TCP/IP, physical layer, error control, window flow con-
trol, local area networks (Ethernet, Token Ring; FDDI), network layer,
congestion control, quality of service, multicast. Students enrolling in
244A Winter Quarter must have completed 140, or equivalent.

*4 units, Aut (Tobagi) (enroll in Electrical Engineering 284)
Win (McKeown)

244B. Distributed Systems—Distributed operating systems and appli-
cations issues, emphasizing high-level protocols and distributed state
sharing as the key technologies. Topics: distributed shared memory,
object-oriented distributed system design, distributed directory services,
atomic transactions and time synchronization, file access, process sched-
uling, process migration and remote procedure call focusing on distribu-
tion, scale, robustness in the face of failure, and security. Prerequisites:
240, 244A.

3 units, Spr (Staff)

244C. Distributed Systems Project—Companion project option for
students taking 244B. Corequisite: 244B.

3-6 units, Spr (Staff)

245. Database System Principles—File organization and access, buffer
management, performance analysis, and storage management. Database
system architecture, query optimization, transaction management, re-
covery, concurrency control. Reliability, protection, and integrity. De-

sign and management issues. Prerequisites: 145, 161.
3 units, Win (Garcia-Molina)

247A. Human-Computer Interaction: Interaction Design Studio—
Intended as preparation for project-based courses, e.g., 377 and 447/
Mechanical Engineering 293. Systematic presentation and experience
with the methods used in interaction design, including needs analysis,
user observation, idea sketching, concept generation, scenario-building,
storyboards, user character stereotypes, usability analysis, and market
strategies. Prerequisite: 147 or Mechanical Engineering 101.

3-4 units, Aut, Win, Spr (Staff)

247B. Contextual and Organizational Issues in Human-Computer
Interaction—(Enroll in Management Science and Engineering 430.)

 3-4 units, Spr (Hinds)

248. Introduction to Computer Graphics—(Only one of 148 or 248
counts towards CS degree requirements.) The fundamentals of input,
display, and hardcopy devices, scan conversion of geometric primitives,
2D and 3D geometric transformations, clipping and windowing, scene
modeling and animation, algorithms for visible surface determination,
introduction to local and global shading models, color, and photorealistic
image synthesis. Written assignments and programming projects. Pre-
requisites: 107, Mathematics 103 or equivalent.

*5 units, Aut (Levoy)

248V. Introduction to Scientific Visualization—Alternative introduc-
tion to computer graphics, emphasizing techniques for visualizing mul-
tidimensional data, especially continuous functions of two and three
dimensions. Topics: the graphics pipeline, visualization of scalar, vector,
and tensor fields, volume rendering, isosurface extraction, display of
level sets and polygon meshes, and programming toolkits and interactive
systems for data visualization; the design of visual metaphors for medical
imaging, fluid flow, geophysics, meteorology, and other applications.
Written assignments and programming projects. Not a substitute for 248
as a prerequisite for upper-level graphics courses. Prerequisites: basic
calculus, linear algebra, and ability to program in C or C++.

*4 units, Spr (Fedkiw, Levoy)

249. Object-Oriented Programming from a Modeling and Simula-
tion Perspective—Object-oriented programming techniques and is-
sues, emphasizing programming as modeling and simulation. Topics:
large-scale software development approaches, encapsulation, use of
inheritance and dynamic dispatch, design of interfaces and interface/
implementation separation, exception handling, design patterns, mini-
malizing dependencies and value-oriented programming. The role of
programming conventions/style/restrictions in surviving object-orient-
ed programming for class libraries, frameworks, and programming-in-
the-large; general techniques for object-oriented programming. Prereq-
uisites: knowledge of C and basic programming methodology as devel-
oped in 106B or 106X, 107, basic knowledge of C++ (may be taken
concurrently). Recommended: 193D.

3-5 units, Win (Staff)

255. Introduction to Cryptography and Computer Security—In-
tended for advanced undergraduates and graduate students. Introduction
to the basic theory and practice of cryptographic techniques used in
computer security. Topics: encryption (single and double-key), digital
signatures, pseudo-random bit generation, authentication, electronic
commerce (anonymous cash, micropayments), key management, zero-
knowledge protocols. Prerequisite: basic understanding of probability
theory.

3 units, Win (Boneh)

256. Formal Methods for Reactive Systems—Formal methods for
specification, verification, and development of concurrent and reactive
programs. Reactive systems: syntax and semantics, fairness require-
ments. Specification language: temporal formulas (state, future, and

* May be taken for 3 units by graduate students.

145

past) and w-automata. Hierarchy of program properties: safety, guaran-
tee, obligation, response, persistence, and reactivity. Deductive verifica-
tion of programs: verification diagrams and rules, completeness. Modu-
larity. Parameterized programs. Algorithmic verification of finite-state
programs. Prerequisite: 157 or Philosophy 160A, or equivalent.

3 units, Win (Manna)

256L. Formal Methods for Concurrent and Reactive Systems Lab-
oratory

2 units, Win (Manna)

257. Automated Deduction and its Applications—Proving theorems
and extracting information from proofs. Uses in software engineering
(program specification, synthesis, and verification) and artificial intelli-
gence (commonsense and robotic planning, natural-language under-
standing). The foundations of logic programming. Deductive tableaux,
nonclausal resolution, skolemization, building theories into unification
and inference rules, term rewriting, inductive theorem proving. The
design of theorem provers. Prerequisite: 157.

3 units (Staff)

258. Introduction to Programming Language Theory—Syntactic,
operational, and semantic issues in the mathematical analysis of pro-
gramming languages. Type systems and non-context-free syntax. Uni-
versal algebra and algebraic data types. Operational semantics given by
rewrite rules; confluence and termination. Scott-semantics for languages
with higher-type functions and recursion. Treatment of side-effects.
Prerequisites: 154, 157 or Philosophy 160A.

3 units, Win (Mitchell)

260. Concrete Mathematics—Mathematics for the analysis of algo-
rithms: recurrences, summations, generating functions, asymptotics.
Elementary combinatorics, discrete probability, and number theory.
Prerequisites: 103B or 103X, Mathematics 42, or equivalent.

3 units (Staff)

261. Optimization and Algorithmic Paradigms—Algorithms for net-
work optimization: max-flow, min-cost flow, matching, assignment, and
min-cut problems. Introduction to linear programming. Use of LP
duality for design and analysis of algorithms. Approximation algorithms
for NP-complete problems such as Steiner Trees, Traveling Salesman,
and scheduling problems. Randomized algorithms. Introduction to on-
line algorithms.

3 units, Win (Plotkin)

270A. Introduction to Medical Informatics: Fundamental Meth-
ods—(Same as Biomedical Informatices 210A.) Issues in the modeling,
design, and implementation of computational systems for use in biomed-
icine. Topics: controlled terminologies in medicine and biological sci-
ence, ontologies, fundamental algorithms, basic knowledge representa-
tion, information dissemination and retrieval. Emphasis is on the princi-
ples of modeling data and knowledge in biomedicine and on the transla-
tion of resulting models into useful automated systems.

3 units, Aut (Musen, Altman)

270B. Introduction to Medical Informatics: Systems and Require-
ments—(Same as Biomedical Informatics 210B.) Survey of the major
application areas in medical informatics, including clinical information
systems, imaging systems, bioinformatics, public policy, decision sup-
port, and signal processing. Emphasis is on the system requirements,
relevant data, algorithms, and implementation issues in each area.
Prerequisite: 270A.

3 units, Win (Shahar, Dev)

271. Decision-Making Methods for Biomedicine—For undergradu-
ates or graduate students, building on concepts introduced in 270B.
Intermediate biomedical decision making and survey of the methods for
the implementation of such concepts in computer-based decision-sup-

port tools. Emphasis is on Bayesian statistics, decision analysis, cost-
benefit analysis, neural networks, artificial intelligence/expert systems,
belief networks, influence diagrams, and the synergies among such
approaches. Prerequisites: 270B and at least one programming course.

3 units (Higgens, Garber, Owens, Sanders) not given 2000-01

272. Medical Informatics Project Course—(Same as Biomedical
Informatics 212.) For students who have completed 270A, 270B, 271 or
274, and who wish to implement those ideas in a computer program.
Students may take 274 concurrently and complete a project that is
coordinated between the two courses. Prerequisites: programming expe-
rience, 270B.

3 units, Sum (Altman, Koza)

274. Representations and Algorithms for Computational Molecular
Biology—(Same as Biomedical Informatics 214.) Introduction to basic
computational issues and methods used in bioinformatics, including
access and use of biological data sources on the Internet. Topics: basic
algorithms for alignment of biological sequences and structures, com-
puting with strings, phylogenetic tree construction, hidden Markov
models, computing with networks of genes, basic structural computa-
tions on proteins, protein structure prediction, protein threading tech-
niques, homology modeling, molecular dynamics and energy minimiza-
tion, statistical analysis of 3D biological data, integration of diverse data
sources, knowledge representation and controlled terminologies for
molecular biology, graphical display of biological data, genetic algo-
rithms and genetic programming applied to biological problems. See
instructor for unit options. Prerequisites: programming skills and under-
standing of matrix algebra.

1-4 units, Spr (Altman, Koza)

275A. Musical Information: An Introduction—(Enroll in Music 253.)
1-4 units, Win (Selfridge-Field)

275B. Seminar: Musical Representation and Computer Analysis—
(Enroll in Music 254.)

1-4 units, Spr (Selfridge-Field)

298. Seminar on Teaching Introductory Computer Science—Oppor-
tunity for faculty and undergraduate and graduate students who are
interested in teaching to discuss specific topics raised by teaching
computer science at the introductory level. Prerequisite: consent of
instructor.

1-3 units, Aut, Win, Spr (Roberts)

PRIMARILY FOR GRADUATE STUDENTS
300. Departmental Lecture Series—For first-year Computer Science
Ph.D. students. Presentations by members of the department faculty, each
describing informally his or her current research interests and views of
computer science as a whole. (AU)

1 unit, Aut (Staff)

309. Industrial Lectureships in Computer Science—The department
invites an outstanding computer scientist to give a course in his/her
specialty. Lecturers and topics change yearly; courses may be taken
repeatedly. See Time Schedule for offerings.

3 units

312. Processor Design—(Enroll in Electrical Engineering 382.)
3 units (Staff) given 2001-02

315A. Parallel Computer Architecture and Programming—The
principles and tradeoffs in the design of parallel architectures. Emphasis
is on naming, latency, bandwidth, and synchronization in parallel ma-
chines. Case studies on shared-memory, message-passing, dataflow, and
data-parallel machines illustrate techniques. Architectural studies and
lectures on techniques for programming parallel computers. Program-
ming assignments on one or more commercial multiprocessors. Prereq-

C
om

pu
te

r S
ci

en
ce

146

 S
C

H
O

O
L O

F
EN

G
IN

EE
RI

N
G

uisites: Electrical Engineering 282, and reasonable programming expe-
rience.

3 units (Staff) not given 2000-01

315B. Parallel Programming Project—Continuation of 315A. A sig-
nificant parallel programming project is required using shared-memory,
message-passing, or data-parallel machines. Lectures on parallel pro-
gramming languages and their implementation, performance debugging
of parallel programs, parallel data structures and algorithms. Prerequi-
site: 315A or consent of instructor.

3 units (Staff)

316A. Logic Synthesis of VLSI Circuits—(Enroll in Electrical Engi-
neering 318.)

3 units, Win (DeMicheli)

316B. Computer-Aided System Design Laboratory—(Enroll in Elec-
trical Engineering 319.)

3 units, Spr (DeMicheli)

317. Fault Tolerant Computing Systems—(Enroll in Electrical Engi-
neering 489.)

3 units (Staff) alternate years, given 2001-02

318. Testing Aspects of Computer Systems—(Enroll in Electrical
Engineering 488.)

3 units, alternate years, given 2001-02

319. Topics in Digital Systems—Advanced material is often taught for
the first time as a “topics” course, perhaps by a faculty member visiting
from another institution. Students may therefore enroll repeatedly in a
course with this number. See Time Schedule for topics currently being
offered.

by arrangement

323. Common Sense Reasoning in Logic—Formalizing common sense
knowledge and reasoning using situation calculus with nonmonotonic
logics, especially circumscription. Variations of situation calculus. For-
malizing context. Formalizing facts about knowledge. Prerequisite:
basic knowledge of logic such as 157, or Philosophy 160A.

3 units, Aut (McCarthy)

326A. Motion Planning—For students interested in computer graphics,
geometrical computing, robotics, and/or artificial intelligence. Comput-
ing object motions is central to many application domains (e.g., design,
manufacturing, robotics, animated graphics, medical surgery, drug de-
sign). Basic path planning methods generate collision-free paths among
static obstacles. Extensions include uncertainty, mobile obstacles, ma-
nipulating movable objects, and maneuvering with kinematic con-
straints. Configuration space is a unifying concept, geometric arrange-
ments are a basic combinatorial structure. Theoretical methods with
applications in various domains: assembly planning, radiosurgery, graphic
animation of human figures.

3 units (Latombe) not given 2000-01

327A. Advanced Robotic Manipulation—Topics: redundant manipu-
lators, robot motion/force control; kinematic singularities; inertial prop-
erties, dynamic performance, and robot design; macro/mini manipulator
systems; mobile manipulator platforms; cooperative robots; sensor-
based primitives, artificial potential field and force strategies. Prerequi-
sites: 223A, consent of instructor.

3 units, Spr (Khatib)

328. Topics in Computer Vision—Fundamental issues of, and mathe-
matical models for, computer vision. Sample topics: camera calibration,
texture, stereo, motion, shape representation, image retrieval, experi-
mental techniques. Student papers and project. Prerequisites: 205, 223B,
or equivalents.

3 units, Apr (Tomasi) alternate years, not given 2001-02

329. Topics in Artificial Intelligence—Advanced material is often
taught for the first time as a “topics” course, perhaps by a faculty member
visiting from another institution. Students may therefore enroll repeated-
ly in a course with this number.

1-3 units

336. Advanced Methods in Matrix Computation—Eigenvalue prob-
lems: perturbation theory, Lanczos method, Jacobi method. Parallel
implementation. Singular value problems. Generalized eigenvalue prob-
lems. Polynomial equations. Prerequisite: 237A.

3 units (Golub)

337. Numerical Methods for Initial Boundary Value Problems—
Initial boundary value problems are solved in different areas of engineer-
ing and science modeling phenomena, e.g., wave propagation and
vibration, fluid flow, etc. Numerical techniques for such simulations are
discussed in the context of applications. Emphasis is on stability and
convergence theory for methods for hyperbolic and parabolic initial
boundary value problems, and the development of efficient methods for
these problems.

3 units, Spr (Staff)

339. Topics in Numerical Analysis—Advanced material is often taught
for the first time as a “topics” course, perhaps by a faculty member
visiting from another institution. Students may therefore enroll repeated-
ly in a course with this number. See Time Schedule for current topics.

2-3 units, Aut (Van Huffel) alternate years, not given 2001-02
Win (Golub)

341. Advanced Topics in Data Communication—Readings/discus-
sion are combined with topical lectures to familiarize students with a core
of classic and new papers in the field of data networking. Emphasis is on
understanding and applying existing work to new problems in the field,
especially high-speed networking. Topics: network theory (the end-to-
end argument), transport protocol performance (header prediction, check-
sum efficiency), cell relay (e.g., ATM and SONET), congestion control
(Parekh’s thesis, leaky bucket, fair queueing) and high-speed switching
(input vs. output queueing, crossbars and banyans). Prerequisite: 244A.

3 units (Partridge)

342. Programming Language Design—Problems of programming
language design and comparison of traditional solutions. Possible topics:
formal semantics, implementation considerations, extensibility, very
high level languages, evaluation of language designs, the innovative
features of a variety of modern programming languages. Prerequisites:
242, 243.

3 units (Mitchell)

343. Topics in Compilers—Advanced topics in compilers. Topics
change every quarter; course may be taken repeatedly for credit. Prereq-
uisite: 243.

3 units, Spr (Lam)

344. Projects in Computer Networks—For students with a strong
interest in computer networks from novel applications to physical layer
coding schemes; software to hardware; theory to design-and-build.
Teams of two or more complete a small research project of sufficient
quality and interest to merit presentation at a conference, or to form the
basis of a new business, e.g., studies of network traces, network traffic
visualization tools, home-networking, analysis of performance of cable-
modems, novel web applications, or novel router architecture. Enroll-
ment limited to 20. Prerequisites: 244A; or Electrical Engineering 284
and 384A. Recommended: 244B; and Electrical Engineering 384B or
384C.

3 units, Aut (McKeown) alternate years, not given 2001-02

345. Advanced Topics in Database System—Advanced topics in the
area of database and information systems. Content differs in each

147

C
om

pu
te

r S
ci

en
ce

offering; may be taken multiple times for credit. Prerequisite: 145.
3 units, Spr (Staff)

346. Database System Implementation—A major database system
implementation project realizes the principles and techniques covered in
earlier courses. Students independently build a complete database man-
agement system, from file structures through query processing, with a
personally designed feature or extension. Lectures on project details and
advanced techniques in database system implementation, focusing on
query processing and optimization. Guest speakers from industry on
commercial DBMS implementation techniques. Prerequisites: 145, 245.
Recommended: programming experience in C++.

*5 units, Aut (Widom)

347. Transaction Processing and Distributed Databases—The prin-
ciples and system organization of distributed databases. Data fragmen-
tation and distribution, distributed database design, query processing and
optimization, distributed concurrency control, reliability and commit
protocols, and replicated data management. Distributed algorithms for
data management: clocks, deadlock detection, and mutual exclusion.
Heterogeneous and federated distributed database systems. Overview of
commercial systems and research prototypes. Prerequisites: 145, 245.

3 units, Spr (Garcia-Molina)

348A. Computer Graphics: Mathematical Foundations—The math-
ematical tools needed for the geometrical aspects of computer graphics.
Fundamentals: homogeneous coordinates, transformations, and per-
spective. Theory of parametric and implicit curve and surface models:
polar forms, Bezier arcs and de Casteljau subdivision, continuity con-
straints, B-splines, tensor product, and triangular patch surfaces. Repre-
sentations of solids and conversions among them. Subdivision surfaces
and multiple-solution representations of geometry. Mesh generation,
simplification, and compressions. Geometric algorithms for graphics
problems, with applications to ray tracing, hidden surface elimination,
etc. Prerequisites: linear algebra and discrete algorithms.

*4 units, Win (Guibas)

348B. Computer Graphics: Image Synthesis Techniques—Interme-
diate level, emphasizing the sampling, shading, and display aspects of
computer graphics. Topics: local and global illumination methods in-
cluding radiosity and distributed ray tracing, texture generation and
rendering, volume rendering, strategies for anti-aliasing and photo-
realism, human vision and color science as they relate to computer
displays, and high-performance architectures for graphics. Written as-
signments and programming projects. Prerequisite: 248 or equivalent.
Recommended: exposure to Fourier analysis or digital signal processing.

*4 units, Spr (Hanrahan)

348C. Computer Graphics: Animation Techniques—Overview of
computer animation techniques. Topics: traditional principles of anima-
tion, physical simulation, procedural methods, and motion capture based
animation. Focus is on computer science aspects of animation. The
basics, e.g., kinematic and dynamic modeling techniques to exploration
of current research topics such as motion re-targeting, learning move-
ments and behaviors, and video based modeling and animation). Hands-
on animation experience through class projects.

3 units, Spr (Bregler)

348D. Vision and Image Processing—(Enroll in Psychology 267.)
1-3 units (Heeger) alternate years, given 2001-02

349. Topics in Programming Systems—Advanced material often
taught for the first time as a “topics” course, perhaps by a faculty member
visiting from another institution. Students may enroll repeatedly in a
course with this number. See Time Schedule for topics currently being
offered.

3 units, Spr (Prabhakar)

351. Topics in Complexity Theory and Lower Bounds—Focus is on
one of: basic machine models and complexity measures—their proper-
ties and relationships, complexity classes and their properties, reductions
and complete problems, concrete representative problems from impor-
tant complexity classes. Techniques for establishing limits on the possi-
ble efficiency of algorithms, and concrete lower bounds based on the
following models of computation: decision trees, straight line programs,
communication games, branching programs, PRAMs, boolean circuits.
Approximation algorithms and the complexity of approximations. Pseu-
do-randomness and cryptography. Prerequisite: 154, or equivalent.

3 units (Motwani) alternate years, given 2001-02

352. Foundations of Control Structures—Theory of constructs for
controlling program execution. Theories of serial control: verification
conditions, partial correctness assertions, weakest preconditions, dy-
namic logic. Models of serial control: state functions and relations,
regular expressions, dynamic algebras. Theories of parallel control:
temporal logic, process algebra, CCS, CSP. Models of parallel control:
state trajectories, synchronization trees, execution traces, partial orders,
Petri nets, event structures, metric spaces, non-well-founded sets. No-
tions of time: ordered, real, probabilistic, linear, branching. Semantic
equivalences. Structural operational semantics. Related soundness, com-
pleteness, and complexity issues. Prerequisite: 258 or consent of instruc-
tor.

3 units (Pratt)

353. Algebraic Logic—Algebraic methods relevant to computer sci-
ence. Lattice theory: partial orders, monoids, closure systems, topolo-
gies, fixpoint theorems. Universal algebra: HSP, free algebras, equation-
al theories, Birkhoff’s theorem, completeness of equational logic. Alge-
bras for logic: Boolean, Heyting, cylindric. Categories: limits, adjunc-
tions, algebraic theories, enriched categories. Prerequisite(s): 157; or
Philosophy 160A, 161; or equivalents.

3 units, Aut (Pratt)

354. Probabilistic Reasoning in Computing—The basics of (Baye-
sian) probability theory as applied to computing and intelligence sys-
tems. Emphasis is on working through applications and understanding
relevant theory. Relevant probability theory and techniques: interpreta-
tions, graphical and network models, information theory, decision theo-
ry, inference, and “alternative” approaches. Probabilistic aspects of
computational problems in learning, search, data analysis, neural, and
dynamic systems. Some topics by guest lecturers. Prerequisites: 106B or
106X, 221, a knowledge of basic statistical measures as in Psychology
60, and basic math.

3 units (Staff)

355. Advanced Topics in Cryptography—For graduate students. Top-
ics: pseudo-random generation, zero knowledge protocols, elliptic curve
systems, threshold cryptography, security analysis using random ora-
cles, lower and upper bounds on factoring and discrete log. Prerequisite:
255.

3 units, Spr (Boneh)

356. Automatic Formal Verification Techniques—Automatic meth-
ods for formally verifying hardware, protocol, and software system
designs. Topics: state graph and automata models of system behavior.
Automata on infinite strings. Linear and branching-time temporal logic.
Model-checking. Modeling real-time systems. Analysis methods based
on Boolean formulas, and other ways of coping with the “state explosion
problem.” Exploiting abstractions. Applications to circuits, algorithms,
and protocols. Case studies use a variety of verification tools. Prerequi-
site: 154 or 254. Recommended: good understanding of basic automata
and complexity theory, and undergraduate-level background in comput-
er science.

3 units (Dill) alternate years, given 2001-02

* May be taken for 3 units by graduate students.

148

 S
C

H
O

O
L O

F
EN

G
IN

EE
RI

N
G

357. Topics in Formal Methods—Formal methods for the specifica-
tion, verification, analysis, and systematic development of real-time and
hybrid systems. Hybrid systems involve continuous changes and discrete
transitions. Computational models: timed and phase transition systems,
timed and hybrid automata. Specification: timed and hybrid statecharts,
metric and hybrid temporal logics, duration calculus. Statecharts. Struc-
tured specification. Verification rules and diagrams. Refinement tech-
niques. Algorithmic verification of finite-state systems. Advanced re-
search topics. Prerequisite: 256 or equivalent.

3-5 units, Spr (Manna, Sipma)

358. Topics in Programming Language Theory—Possible topics of
current research interest in the mathematical analysis of programming
languages: structured operational semantics, domain theory, semantics
of concurrency, rich type disciplines, problems of representation inde-
pendence, and full abstraction. May be repeated for credit. Prerequisites:
154, 157, 258, or equivalents.

3 units (Mitchell)

359. Topics in Theory of Computation—Advanced material is often
taught for the first time as a “topics” course, perhaps by a faculty member
visiting from another institution. Students may therefore enroll repeated-
ly in a course with this number. See Time Schedule for topics currently
being offered.

361A. Advanced Algorithms—Advanced data structures: union-find,
self-adjusting data structures and amortized analysis, dynamic trees,
Fibonacci heaps, universal hash function and sparse hash tables, persis-
tent data structures. Advanced combinatorial algorithms: algebraic (ma-
trix and polynomial) algorithms, number theoretic algorithms, group
theoretic algorithms and graph isomorphism, on-line algorithms and
competitive analysis, strings and pattern matching, heuristic and proba-
bilistic analysis (TSP, satisfiability, cliques, colorings), local search
algorithms. Prerequisite: 161 or 261, or equivalents.

3 units (Motwani) alternate years, given 2001-02

361B. Advanced Algorithms—Topics: exact and approximate algo-
rithms for various combinational optimization problems, e.g., general-
ized and multicommodity flow, constrained forest problems, scheduling,
and the max-cut problem multidimensional search. Linear program-
ming; LP duality, ellipsoid dimension. Lattice reduction and strongly-
polynomial algorithms.

3 units, Spr (Plotkin) alternate years, not given 2001-02

365. Randomized Algorithms—Design and analysis of algorithms that
use randomness to guide their computations. Basic tools, from probabil-
ity theory and probabilistic analysis, that are recurrent in algorithmic
applications. Randomized complexity theory and game-theoretic tech-
niques. Algebraic techniques. Probability amplification and derandom-
ization. Applications: sorting and searching, data structures, combinato-
rial optimization and graph algorithms, geometric algorithms and linear
programming, approximation and counting problems, parallel and dis-
tributed algorithms, on-line algorithms, number-theoretic algorithms.
Prerequisites: 161 or 261, Statistics 116, or equivalents.

3 units (Motwani) alternate years, not given 2001-02

367A. Parallel Computation—Introduction to theoretical issues in
parallel computation. Properties of parallel computation models and
algorithm design techniques specific to each model, including systolic
arrays, mesh-connected computers, hypercube-related networks, and
PRAM. Topics: algorithms for sorting, connected components, shortest
paths, and other basic problems. Upper and lower bounds for randomized
and deterministic routing on hypercube and related networks. Tech-
niques for reducing the processor-time product for PRAM algorithms.

3 units (Plotkin)

367B. Parallel Computation—Advanced parallel algorithms. Focus is
on developing techniques for the design of parallel algorithms on the
PRAM model of computation and its derivatives. Possible topics: effi-

cient randomized parallel algorithms for symmetry-breaking and related
problems. Derandomization techniques. Parallel sorting. Deterministic
and randomized parallel algorithms for flows and related problems;
assignment problem, matching in general graphs. Evaluation of straight-
line code, P-complete problems.

3 units (Plotkin)

368. Geometric Algorithms—Graduate-level introduction to the basic
techniques used in the design and analysis of efficient geometric algo-
rithms including: convexity, triangulation, sweeping, partitioning, and
point location. Voroni and Delaunay diagrams. Intersection and visibil-
ity problems. Recent developments using random sampling methods.
Emphasizes data structures of general usefulness in geometric comput-
ing and the conceptual primitives appropriate for manipulating them.
Impact of numerical issues in geometric computation. Applications to
motion planning, visibility preprocessing, model-based recognition, and
GIS. Prerequisite: 161.

3 units, Spr (Guibas)

369. Topics in Analysis of Algorithms—Advanced material is often
taught for the first time as a “topics” course, perhaps by a faculty member
visiting from another institution. Students may therefore enroll repeated-
ly in a course with this number. See Time Schedule for topics currently
being offered.

3 units

377. Topics in Human-Computer Interaction—Topics of current
research interest in human-computer interaction. Contents change each
quarter. May be repeated for credit.

3-4 units, Aut, Win, Spr

378. Phenomenological Foundations of Cognition, Language, and
Computation—Critical analysis of theoretical foundations of the cog-
nitive approach to language, thought, and computation. Contrasts of the
rationalistic assumptions of current linguistics and artificial intelligence
with alternatives from phenomenology, theoretical biology, critical
literary theory, and socially-oriented speech act theory. Emphasis is on
the relevance of theoretical orientation to the design, implementation,
and impact of computer systems as it affects human-computer interac-
tion.

3-4 units, Spr (Winograd)

379. Interdisciplinary Topics—Advanced material that relates com-
puter science to other disciplines is often taught for the first time as a
“topics” course, perhaps by a faculty member visiting from another
institution. Students may therefore enroll repeatedly in a course with this
number. See Time Schedule for topics being currently offered.

by arrangement

390A,B,C. Curricular Practical Training—Provides educational op-
portunities in high-technology research and development labs in the
computing industry. Qualified computer science students engage in
internship work and integrate that work into their academic program.
Students register during the quarter they are employed and must com-
plete a research report outlining their work activity, problems investigat-
ed, key results, and any follow-on projects they expect to perform. Meets
the requirements for Curricular Practical Training for students on F-1
visas. 390 A, B and C may each be taken only once.

1 unit, any quarter (Motwani)

393. Computer Laboratory—For CS graduate students. A substantial
computer program is designed and implemented; written report required.
Recommended as a preparation for dissertation research. Register using
the section number associated with the instructor. Prerequisite: consent
of instructor.

any quarter (Staff)

394. Business Management for Computer Scientists and Electrical
Engineers—Focus is on the functional areas necessary for making

149

successful business decisions. Topics: corporate strategy, new product
development, marketing, sales, distribution, customer service, and fi-
nancial accounting. How to identify and analyze issues in each of these
areas in a rapidly changing world. A framework and tool set is developed
for formulating, evaluating, and recommending action from the general
manager point of view and for communicating and defending ideas in a
team environment. Enrollment limited to 60. See http://www.stanford.edu/
class/cs394/ . Prerequisite: graduate student in Computer Science or
Electrical Engineering.

3-4 units (Gibbons, Liddle) not given 2000-01

395. Independent Database Project—For graduate students in Com-
puter Science. Use of database management or file systems for a
substantial application or implementation of components of database
management system. Written analysis and evaluation required. Register
using the section number associated with the instructor. Prerequisite:
consent of instructor.

any quarter (Staff)

399. Independent Project
1-9 units, any quarter (Staff)

399P. Independent Project—Graded satisfactory/no credit.
1-9 units, any quarter (Staff)

EXPERIMENTAL
409. Formal Software Development—Introduction to formal methods
for software development and the automation of these methods. Focus
is on the composition of large formal specifications, and the refinement
of specifications into efficient code. The foundations for specification
composition and refinement are provided by category-theoretic concepts,
e.g., colimits and sheaves. Topics: application-specific domain theories,
formal requirement specifications, representation and use of program-
ming knowledge, software architectures, algorithm and data structure
design, program optimization techniques, datatype refinement, code
generation, and system support. Hands-on exercises with a working sys-
tem.

3 units (Smith, Green) alternate years, given 2001-02

426. Genetic Algorithms and Genetic Programming—The genetic
algorithm is a domain-independent algorithm for search, optimization,
and machine learning patterned after Darwinian natural selection and
naturally occurring genetic operators such as recombination; mutation;
gene duplication, deletion, regulation; and embryonic development.
Genetic programming is a domain-independent automatic programming
technique that extends the genetic algorithm to the breeding of popula-
tions of computer programs capable of producing human-competitive
results. Topics: introduction to genetic algorithms and genetic program-
ming; the mathematical basis for genetic algorithms; implementation on
parallel computers and field-programmable gate arrays; applications to
problems of system identification, control, classification, analysis of
genome and protein sequences; automatic synthesis of the design of
topology, sizing, placement, and routing of analog electrical circuits;
automatic synthesis of controllers; and automatic synthesis of other
complex network structures.

3 units, Spr (Koza)

444A. Software Development for Critical Applications—Introduc-
tion to current methods for developing safety-critical software (e.g., fly-
by-wire avionics); and mission-critical software (e.g., Internet com-
merce). Topics: basic terminology, failure and fault taxonomies, hazard
analysis techniques, failure mode analysis, fault tree analysis, software
standards, formal methods, testing requirements, fault tolerance, proba-
bilisitic models, and engineering techniques for critical systems from
embedded systems to large-scale Internet applications. Students apply
analysis techniques to example systems, use tools for specification, and
implement example algorithms and applications.

3 units, Aut (Dill, Fox)

444N. Mobile and Wireless Networks and Applications—How mo-
bility affects networks, systems, and applications. Mobility of devices
and end-users has behavioral implications at all layers of the traditional
Internet protocol stack, from the MAC layer up through the application
layer. Handling mobility efficiently requires more information sharing
between network layers than is typically considered. Topics: how mobil-
ity affects the layers of the protocol stack; and how it affects different
functional aspects of systems, including security, privacy, file systems,
resource discovery, resource management (including energy usage),
personal on-line identities, and other areas. Emerging applications en-
abled by mobility. “Traditional” wireless networks, in which an under-
lying infrastructure is assumed; ad hoc mobile wireless networks, in
which nodes may come and go and must form their own network
infrastructure on the fly. Student groups design and implement mobile
applications and system features of their choosing using network tech-
nologies such as WaveLan, Metricom’s Ricochet network, the Palm-7,
and Bluetooth. Prerequisites: 240, 244A, 244B, or equivalents.

3 units (Baker) not given 2000-01

446. Tools and Processes for Software—The fundamental concepts of
software engineering: life-cycle models (waterfall, spiral, etc.), project
and software metrics, quality assurance, software reuse. The develop-
ment process: business process modeling, requirements engineering,
analysis, design, implementation, testing, maintenance. Introduction to
modeling techniques (UML and design patterns). Research challenges,
with reviews of ongoing research by faculty and outside speakers on such
topics as specification validation and software composition. Readings
and modeling exercises. Focus throughout is on large-scale software
development as seen in industry. UML and software development
process may be taken for 1 unit. Prerequisites: prior software experience;
graduate standing or consent of instructor.

1-3 units, not given 2000-01

447. Interdisciplinary Interaction Design—(Same as Mechanical
Engineering 293.) Small teams develop innovative technology proto-
types that combine product and interaction design. Focus is on software
and hardware interfaces, interaction, design aesthetics, and some under-
pinnings of successful design: a reflective, interactive design process,
group dynamics of effective interdisciplinary teamwork, and working
with users. Prerequisite: 247A.

3-4 units, Spr (Winograd, Kelley)

448. Topics in Computer Graphics—In-depth study of an active
research topic in computer graphics. Topic changes each quarter, e.g.,
exotic input and display technologies, graphics architectures, topics in
modeling shape and motion, experiments in digital television, interactive
workplaces, introduction to hand-drawn cartoon animation. Readings
from literature and a project. May be taken repeatedly for credit.
Prerequisite: 248 or consent of instructor.

448A. Experiments in Motion Capture
3 units, Aut (Bregler)

448B. Motion Study: An Introduction to Animation, Cartoon
Physics, and Funny Walks—Preference to CS students with a graph-
ics or animation specialization, and Art students from the Digital Arts
program. Hands-on animation, providing a foundation for future work
in computer graphics, digital art, and animation. The techniques, tools,
and methods used by traditional animators. Through lectures, hands-
on exercises, motion analysis, and screenings, students learn a vari-
ety of animation techniques and gain a basic control of timing, spac-
ing, weight, and expressive motion. At the end of quarter, students have
a short reel of their work plus new insight into the art of animation.
Enrollment limited to 15. See http://graphics.stanford.edu/courses/
cs448b/ .

3 units, Aut (Loeb)
448C. Interactive Workplaces

3 units, Aut (Hanrahan)

 C
om

pu
te

r S
ci

en
ce

http://www.stanford.edu/class/cs394/
http://www.stanford.edu/class/cs394/
http://graphics.stanford.edu/courses/cs448b/
http://graphics.stanford.edu/courses/cs448b/

150

 S
C

H
O

O
L O

F
EN

G
IN

EE
RI

N
G

468. Topics in Geometric Algorithms—Advanced seminar covering
different topics related to geometric computing. Recent offerings: shape
matching, proximity and nearest-neighbor problems, visibility and mo-
tion planning, and collision detection. Readings from the literature and
a presentation or a project required. May be taken multiple times for
credit. Prerequisite: 368, or consent of instructor.

2 units, Aut, Win (Guibas)
Spr (Staff)

499. Advanced Reading and Research—For CS graduate students.
Register using the section number associated with the instructor. Prereq-
uisite: consent of instructor.

any quarter (Staff)

GRADUATE SEMINARS
510. Digital Systems Reliability Seminar—(Enroll in Electrical Engi-
neering 385A.)

1-4 units, Aut, Win, Spr, Sum (McClusky)

523. Readings in Artificial Intelligence—Primarily for students plan-
ning to take the AI qualifying exam. A series of lectures and discussions
on readings in all areas of artificial intelligence research. Prerequisite:
221.

3 units, Win (Staff)

525. Seminar on Knowledge Acquisition for Expert Systems—
(Enroll in Biomedical Informatics 230.)

2 units, Spr (Musen) alternate years, not given 2001-02

528. Broad Area Colloquium for Artificial Intelligence, Geometry,
Graphics, Robotics, and Vision—Weekly series of informal research
talks on topics related to perceiving, modeling, manipulating, and
displaying the physical world. The computational models and numerical
methods underlying these topics. Brings together faculty and students in
these five closely related areas. (AU)

1 unit, Aut, Win, Spr (Staff)

530. Applied Mathematics/Scientific Computing Seminar—(AU)
1 unit, Aut, Win, Spr (Staff)

531. Numerical Analysis/Scientific Computing Seminar—(AU)
1 unit, Aut, Win, Spr (Staff)

540. Seminar on Computer Systems—(Enroll in Electrical Engineer-
ing 380.)

1 unit, Aut, Win, Spr (Allison, Wharton)

545. Database Research Seminar—Presentations of current research
and industrial innovation in information systems, sponsored by Infolab
faculty. Topics: fundamental database technology, digital libraries,

knowledge-based processing and advanced applications. Interaction
with speakers. (AU)

1 unit, Aut, Spr (Wiederhold, Decker)

545I. Advanced Image Databases Seminar—Reading/demonstrations/
analysis devoted to image and video databases as created by photograph-
ic, medical, and commercial sources. Emphasis is on combining image-
derived and textual descriptors to retrieve on-line images. Issues: data
structures and indexing schemes for real-time interaction, high-dimen-
sional feature vectors for fast retrieval, metrics of closeness between
query and stored vectors. Presentations by commercial and research
image retrieval organizations illustrate the strengths and weaknesses of
specific techniques. May be combined with a 395 project. (AU)

1 unit, Win (Firschein, Wiederhold)

547. Human-Computer Interaction Seminar—Weekly speakers on
topics related to human-computer interaction design. (AU)

1 unit, Aut, Win, Spr (Winograd)

548. Distributed Systems Research Seminar—Recent research in
distributed operating systems, computer communications, parallel ma-
chines, parallel programming, and distributed applications. Invited speak-
ers from Stanford and elsewhere present topics and results of current
interest. (AU)

1 unit, Spr (Staff)

559. Seminar on Mathematical Theory of Computation—Possible
topics (vary each year): logic and its relation to computation, program-
ming language analysis and design, specification and verification of
software and hardware systems, theories of concurrency, approaches to
static analysis and program state. Invited speakers present recent results
and summaries of articles from the current literature. (AU)

1 unit, by arrangement (Mitchell)

579. Frontiers in Interdisciplinary Biosciences—(Cross-listed in
multiple departments in the schools of Humanities and Sciences, Engi-
neering, and Medicine; students should enroll directly through their
affiliated department, if at all possible.) Introduction to cutting-edge
research involving interdisciplinary approaches to bioscience and bio-
technology; for specialists and non-specialists. Associated with Stan-
ford’s Clark Center for Interdisciplinary Bioscience, and held in con-
junction with a seminar series meeting twice monthly during 2000-01.
Leading investigators from Stanford and throughout the world speak on
their research; students also meet separately to present and discuss the
ever-changing subject matter, related literature, and future directions.
Prerequisite: keen interest in all of science, with particular interest in life
itself. Recommended: basic knowledge of biology, chemistry, and
physics.

2 units, Aut, Win, Spr (S. Block)

