ACCREDITATION

Stanford University is accredited by the Accrediting Commission for Senior Colleges and Universities of the Western Association of Schools and Colleges (WASC), 985 Atlantic Avenue, Suite 100, Alameda, CA 94501; (510) 748-9001. In addition, certain programs of the University have specialized accreditation. For information, contact the Office of the University Registrar.

STATEMENT OF NONDISCRIMINATORY POLICY

Stanford University admits students of either sex and any race, color, religion, sexual orientation, or national and ethnic origin to all the rights, privileges, programs, and activities generally accorded or made available to students at the University. It prohibits discrimination, including harassment, against students on the basis of sex, race, age, color, disability, religion, sexual orientation, national and ethnic origin, and any other characteristic protected by applicable law in the administration of its educational policies, admissions policies, scholarships and loan programs, and athletic and other University-administered programs. The following person has been designated to handle inquiries regarding this policy: the Special Counselor to the President for Campus Relations, Building 170, Main Quad, Stanford University, Stanford, CA 94305-2100; (650) 725-8395 (voice), (650) 723-1216 (TTY), (650) 725-3577 (fax).

ADDITIONAL INFORMATION

Additional information on Stanford University can be obtained through Stanford’s web site at http://www.stanford.edu.

Every effort is made to ensure that the course information, applicable policies, and other materials contained in this bulletin are accurate and current at the time the bulletin goes to press. The University reserves the right to make changes at any time without prior notice. The bulletin is also available on the University’s web site at: http://bulletin.stanford.edu/; check the online version for the currently applicable policies and information.
The Stanford Bulletin is a publication of the Office of the University Registrar, Stanford University

Address:
Office of the University Registrar
Old Union Building
520 Lasuen Mall
Stanford University
Stanford, California 94305-3005

The Stanford Bulletin may be purchased from the Stanford Bookstore. To receive the bulletin via UPS Ground (U.S. only), send a check or money order to the address below that includes $8.00 for the bulletin and $5.95 for shipping and your respective state’s sales tax. California residents send a check or money order for $14.26 (includes state sales tax). For international and credit card purchases, call (800) 533-2670, or go to http://www.stanfordbookstore.com/htmlroot/general/Search.jsp, click on the “starts with” button, and enter “Stanford Bulletin” in the title window. Prices are subject to change. Check or money order in U.S. funds, payable to Stanford Bookstore.

Stanford Bookstore
519 Lasuen Mall
Stanford, California 94305-3079

Telephone number for all University departments: Area code: (650) 723-2300

Editor: Stephen Arod Shirreffs
Editorial Assistant: Philip Lorenz
Special Editorial Assistance: Lindi Press
Student Assistants: Phillip Morrison, Jenny Scholes
Cover Design: Stanford Design Group
Cover Photos: Rod Searcey
Internal Photos: Stephen Arod Shirreffs
<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug 22</td>
<td>Axess opens for course enrollment</td>
</tr>
<tr>
<td>Sep 16</td>
<td>Course enrollment deadline to receive stipend or refund check on first day of term</td>
</tr>
<tr>
<td></td>
<td>First day of quarter; instruction begins</td>
</tr>
<tr>
<td></td>
<td>University fees, last day to pay</td>
</tr>
<tr>
<td></td>
<td>Conferal of degrees, Summer Quarter</td>
</tr>
<tr>
<td>Oct 9</td>
<td>Study list deadline</td>
</tr>
<tr>
<td></td>
<td>Add deadline (courses or units)</td>
</tr>
<tr>
<td></td>
<td>Drop deadline (courses or units); last day for tuition reassessment for dropped courses or units</td>
</tr>
<tr>
<td>Nov 6</td>
<td>Change of grading basis deadline</td>
</tr>
<tr>
<td></td>
<td>Term withdrawal deadline; last day to withdraw from the University with a partial refund</td>
</tr>
<tr>
<td></td>
<td>Course withdrawal deadline; application deadline for Autumn Quarter degree conferral</td>
</tr>
<tr>
<td></td>
<td>Thanksgiving recess (holiday, no classes)</td>
</tr>
<tr>
<td>Dec 4-10</td>
<td>Last opportunity to arrange Incomplete in a course, at last class</td>
</tr>
<tr>
<td>5-11</td>
<td>End-Quarter Period</td>
</tr>
<tr>
<td>9</td>
<td>Last day of classes (unless class meets on Saturday)</td>
</tr>
<tr>
<td>12-16</td>
<td>End-Quarter examinations</td>
</tr>
<tr>
<td>16</td>
<td>Last day to submit University thesis, D.M.A. final project, or Ph.D. dissertation</td>
</tr>
<tr>
<td>Nov 21</td>
<td>Axess opens for course enrollment</td>
</tr>
<tr>
<td>Dec 16</td>
<td>Course enrollment deadline to receive stipend or refund check on first day of term</td>
</tr>
<tr>
<td>Jan 9</td>
<td>Last day to pay University fees; last day to file Leave of Absence; last day to receive full refund for Winter Quarter</td>
</tr>
<tr>
<td>10</td>
<td>First day of quarter; instruction begins</td>
</tr>
<tr>
<td>12</td>
<td>Conferal of degrees, Autumn Quarter</td>
</tr>
<tr>
<td>16</td>
<td>Martin Luther King, Jr., Day (holiday, no classes)</td>
</tr>
<tr>
<td>22</td>
<td>Study list deadline</td>
</tr>
<tr>
<td>29</td>
<td>Add deadline (courses or units)</td>
</tr>
<tr>
<td>Feb 5</td>
<td>Drop deadline (courses or units); last day for tuition reassessment for dropped courses or units</td>
</tr>
<tr>
<td>20</td>
<td>Presidents’ Day (holiday, no classes except Law); change of grading basis deadline</td>
</tr>
<tr>
<td>22</td>
<td>Term withdrawal deadline; last day to withdraw from the University with a partial refund</td>
</tr>
<tr>
<td>Mar 5</td>
<td>Course withdrawal deadline; application deadline for Winter Quarter degree conferral</td>
</tr>
<tr>
<td>12-18</td>
<td>Last opportunity to arrange Incomplete in a course, at last class</td>
</tr>
<tr>
<td>13-19</td>
<td>End-Quarter Period</td>
</tr>
<tr>
<td>17</td>
<td>Last day of classes (unless class meets Saturday)</td>
</tr>
<tr>
<td>20-24</td>
<td>End-Quarter examinations</td>
</tr>
<tr>
<td>24</td>
<td>Last day to submit University thesis, D.M.A. final project, or Ph.D. dissertation</td>
</tr>
<tr>
<td>Mar 13</td>
<td>Axess opens for course enrollment</td>
</tr>
<tr>
<td>24</td>
<td>Course enrollment deadline to receive stipend or refund check on first day of term</td>
</tr>
<tr>
<td>Apr 3</td>
<td>Last day to pay University fees</td>
</tr>
<tr>
<td>3</td>
<td>Last day to file Leave of Absence; last day to receive full refund for Spring Quarter</td>
</tr>
<tr>
<td>4</td>
<td>First day of quarter; instruction begins</td>
</tr>
<tr>
<td>6</td>
<td>Conferal of degrees, Winter Quarter</td>
</tr>
<tr>
<td>16</td>
<td>Study list deadline</td>
</tr>
<tr>
<td>17</td>
<td>Matriculated undergraduate financial aid application, deadline to file</td>
</tr>
<tr>
<td>23</td>
<td>Add deadline (courses or units)</td>
</tr>
<tr>
<td>30</td>
<td>Drop deadline (courses or units); last day for tuition reassessment for dropped courses or units</td>
</tr>
<tr>
<td>May 14</td>
<td>Change of grading basis deadline</td>
</tr>
<tr>
<td>15</td>
<td>Term withdrawal deadline; last day to withdraw from the University with a partial refund</td>
</tr>
<tr>
<td>29</td>
<td>Memorial Day (holiday, no classes); course withdrawal deadline</td>
</tr>
<tr>
<td>Jun 1-7</td>
<td>Last opportunity to arrange Incomplete in a course, at last class</td>
</tr>
<tr>
<td>2-8</td>
<td>End-Quarter Period</td>
</tr>
<tr>
<td>7</td>
<td>Last day of classes</td>
</tr>
<tr>
<td>8</td>
<td>Day before finals, no classes</td>
</tr>
<tr>
<td>9</td>
<td>Last day to submit University thesis, D.M.A. final project, or Ph.D. dissertation</td>
</tr>
<tr>
<td>9-14</td>
<td>End-Quarter examinations</td>
</tr>
<tr>
<td>17</td>
<td>Senior Class Day; Baccalaureate Saturday</td>
</tr>
<tr>
<td>18</td>
<td>Commencement</td>
</tr>
<tr>
<td>SUMMER QUARTER</td>
<td></td>
</tr>
<tr>
<td>Apr 17</td>
<td>Axess opens for course enrollment</td>
</tr>
<tr>
<td>Jun 16</td>
<td>Course enrollment deadline to receive stipend or refund check on first day of term</td>
</tr>
<tr>
<td></td>
<td>Last day to pay University fees</td>
</tr>
<tr>
<td></td>
<td>Last day to file Leave of Absence; last day to receive full refund for Summer Quarter</td>
</tr>
<tr>
<td></td>
<td>First day of quarter; instruction begins</td>
</tr>
<tr>
<td></td>
<td>Study list deadline</td>
</tr>
<tr>
<td></td>
<td>Add deadline (courses or units)</td>
</tr>
<tr>
<td></td>
<td>Drop deadline (courses or units); last day for tuition reassessment for dropped courses or units</td>
</tr>
<tr>
<td></td>
<td>Term withdrawal deadline; last day to withdraw from the University with a partial refund for 8- and 10-week sessions</td>
</tr>
<tr>
<td>Aug 11-17</td>
<td>Course withdrawal deadline; application deadline for Summer Quarter degree conferral</td>
</tr>
<tr>
<td>12-17</td>
<td>Last opportunity to arrange Incomplete in a course, at last class</td>
</tr>
<tr>
<td>17</td>
<td>Last day of classes</td>
</tr>
<tr>
<td>18-19</td>
<td>Eight-week session examinations</td>
</tr>
<tr>
<td>19</td>
<td>Eight-week session closes</td>
</tr>
<tr>
<td>Sept 5</td>
<td>Summer Quarter closes</td>
</tr>
<tr>
<td>22</td>
<td>Last day to submit University thesis, D.M.A. final project, or Ph.D. dissertation</td>
</tr>
</tbody>
</table>
Contents

WELCOME TO STANFORD

6

UNIVERSITY GOVERNANCE AND ORGANIZATION

8
 - Directory .. 8
 - Organization 8

ADMISSION AND FINANCIAL AID

10
 - Admission .. 10
 - Financial Aid 12

TUITION, FEES, AND HOUSING

15
 - Assessments 15
 - Payments ... 17
 - Refunds .. 17
 - Housing .. 18

UNDERGRADUATE DEGREES AND PROGRAMS

20
 - Degree Programs 20
 - Degree Requirements 21
 - Degrees, Honors, and Minors 27

GRADUATE DEGREES

29
 - General Requirements 29
 - Degree-Specific Requirements 32
 - Advising and Credentials 35

ACADEMIC POLICIES AND STATEMENTS

36
 - Registration and Records 36
 - Examinations 39
 - Grading Systems 40
 - Academic Standing 41
 - Statement on Student Academic Grievance Procedures 43

COURSES OF INSTRUCTION

45

GRADUATE SCHOOL OF BUSINESS

46

SCHOOL OF EARTH SCIENCES

47
 - Earth, Energy, and Environmental Sciences Graduate Program (EEES) 47
 - Earth Systems Program 49
 - Geological and Environmental Sciences 55
 - Geophysics .. 66
 - Interdisciplinary Graduate Program in Environment and Resources (IPER) 71
 - Petroleum Engineering 75

SCHOOL OF EDUCATION

82

SCHOOL OF ENGINEERING

99
 - Aeronautics and Astronautics 115
 - Bioengineering 121
 - Chemical Engineering 125
 - Civil and Environmental Engineering 131
 - Computational and Mathematical Engineering, Institute for 146
 - Computer Science 150
 - Electrical Engineering 164
 - Management Science and Engineering 181
 - Materials Science and Engineering 195
 - Mechanical Engineering 202

SCHOOL OF HUMANITIES AND SCIENCES

218
 - African and African American Studies, Program in 219
 - African Studies 223
 - American Studies 225
 - Anthropological Sciences 230
 - Applied Physics 242
 - Archaeology Program 246
 - Art and Art History 250
 - Asian Languages 265
 - Astronomy Course Program 271
 - Athletics, Physical Education, and Recreation 272
 - Biological Sciences 278
 - Division of Marine Biology, Hopkins Marine Station 291
 - Biophysics Program 293
 - Chemistry .. 295
 - Classics ... 299
 - Communication 309
 - Comparative Literature 318
 - Comparative Studies in Race and Ethnicity (CSRE) 326
 - Cultural and Social Anthropology 332
 - Drama .. 343
 - East Asian Studies 353
 - Economics .. 358
 - English ... 369
 - Ethics in Society, Program in 382
 - Feminist Studies 384
 - Financial Mathematics 388
 - French and Italian 390
 - German Studies 405
 - History ... 410
 - History and Philosophy of Science, Program in 430
 - Human Biology, Program in 433
 - Individually Designed Majors, Program for 441
 - Interdisciplinary Studies in Humanities 442
 - International, Comparative and Area Studies, Division of 446
 - International Policy Studies 448
 - Introduction to the Humanities Program 459
 - Jewish Studies, Taube Center for 461
 - Language Center 464
 - Applied Linguistics 465
 - African and Middle Eastern Languages and Literatures 466
 - Chinese Language Courses 467
 - English for Foreign Students 468
 - French Language Courses 468
 - German Language Courses 471
 - Italian Language Courses 471
 - Japanese Language Courses 472
 - Korean Language Courses 472
 - Portuguese Language Courses 473
 - Slavic Language Courses 473
 - Spanish Language Courses 474
 - Special Language Program 475
 - Latin American Studies, Center for 477
 - Linguistics ... 479
 - Literature, Cultures, and Languages, Division of 485
 - Mathematical and Computational Science 486
 - Mathematics .. 488
 - Medieval Studies 496
 - Modern Thought and Literature 498
 - Music .. 500
 - Overseas Studies Program 510
 - Philosophy .. 522
 - Physics .. 533
 - Political Science 543
 - Population and Resource Studies, Morrison Institute for 556
 - Psychology ... 556
 - Public Policy Program 566
 - Religious Studies 569
 - Russian, East European and Eurasian Studies, Center for 576
 - Science, Technology, and Society 580
 - Slavic Languages and Literatures 584
 - Sociology ... 592
 - Space Science and Astrophysics, Center for 604
 - Spanish and Portuguese............................... 605
 - Statistics .. 612
 - Structured Liberal Education, Program in 613
 - Symbolic Systems, Program in 618
 - Urban Studies, Program on 625
 - Washington, Stanford in 629
 - Writing and Rhetoric, Program in 630

SCHOOL OF LAW

632

SCHOOL OF MEDICINE

633
 - Biochemistry 634
 - Biomedical Ethics, Center for 636
 - Biomedical Informatics Program 637
 - Cancer Biology Program 641
 - Comparative Medicine 642
 - Developmental Biology 643
 - Epidemiology Program 644
 - Genetics .. 645
 - Health Research and Policy 647
STANFORD INTRODUCTORY SEMINARS .. 662

ACADEMIC PROGRAMS AND CENTERS, AND INDEPENDENT RESEARCH LABORATORIES, CENTERS, AND INSTITUTES .. 670

- Economic Policy Research, Stanford Institute for .. 670
- Environment, Stanford Institute for .. 670
- Geballe Laboratory for Advanced Materials .. 671
- Ginzton Laboratory, Edward L. ... 671
- Hansen Experimental Physics Laboratory, W. W. (HEPL) 671
- Hoover Institution on War, Revolution and Peace .. 671
- Humanities Center, Stanford ... 671
- Innovations in Learning, The Stanford Center for .. 671
- Interdisciplinary Study of Science and Technology, Center for the 672
- International Studies, The Stanford Institute for (SIIS) 673
- Language and Information, Center for the Study of (CSLI) 674
- Quantitative Study of Society, Stanford Institute for the (SIQSS) 674
- Research on Women and Gender, Institute for .. 674
- Social Science History Institute (SSHI) .. 674
- Stanford Linear Accelerator Center (SLAC) ... 674
- Stanford Synchrotron Radiation Laboratory (SSRL) 675

LIBRARIES AND COMPUTING RESOURCES 675

- Libraries and Academic Information Resources, Stanford University 675
- Libraries-Coordinates .. 676

- Hoover Institution on War, Revolution and Peace 676
- Information Technology Systems and Services (ITSS) 676

THE CONTINUING STUDIES PROGRAM .. 677

- Master of Liberal Arts Program .. 677
- Summer Session ... 678

UNDERGRADUATE EDUCATION ... 679

- Center for Teaching and Learning ... 679
- Freshman and Sophomore Programs .. 680
- Freshman Dean’s Office ... 681
- Undergraduate Advising ... 681
- Undergraduate Research Programs .. 682

STUDENT AFFAIRS .. 683

- Accessible Education, Office of ... 683
- Career Development Center .. 684
- Community Centers ... 684
- Graduate Life Office .. 684
- Haas Center for Public Service ... 684
- Bechtel International Center ... 685
- Judicial Affairs and Student Conduct .. 685
- Residential Education, Office of ... 686
- Student Activities, Office of .. 686
- Tressider Memorial Union .. 686
- Vaden Health Center ... 686

OTHER SERVICES AND PROGRAMS ... 687

- Bookstore ... 687
- Stanford Conference Services .. 687
- Ombuds .. 688
- Police Services .. 688
- Religious Life, Office for ... 688
- Stanford Alumni Association .. 688
- Stanford Events ... 688
- Awards and Honors .. 689
- Exchange Programs and Cross-Enrollment Agreements 690

NONACADEMIC REGULATIONS ... 693

INDEX ... 706

APPENDIX .. 712
On October 1, 1891, more than 500 enthusiastic young men and women were on hand for opening day ceremonies at Leland Stanford Junior University. They came from all over: many from California, some who followed professors hired from other colleges and universities, and some simply seeking adventure in the West. They came to seize a special opportunity, to be part of the pioneer class in a brand new university. They stayed to help turn an ambitious dream into a thriving reality. As a pioneer faculty member recalled, “Hope was in every heart, and the presiding spirit of freedom prompted us to dare greatly.”

For Leland and Jane Stanford on that day, the University was the realization of a dream and a fitting tribute to the memory of their only son, who died of typhoid fever weeks before his 16th birthday, at an age when many young men and women were planning their college education.

From the beginning, it was clear that Stanford would be different. It was coeducational at a time when single-sex colleges were the norm. It was non-sectarian when most private colleges were still affiliated with a church. And it offered a broad, flexible program of study while most schools insisted on a rigid curriculum of classical studies. Though there were many difficulties during the first months (housing was inadequate, microscopes and books were late in arriving from the East) the first year foretold greatness. As Jane Stanford wrote in the summer of 1892, “Even our fondest hopes have been realized.”

What manner of people were this man and this woman who had the intelligence, the means, the faith, and the daring to plan a major university in Pacific soil, far from the nation’s center of culture?

ABOUT LEELAND AND JANE STANFORD

Although he was trained as a lawyer, Leland Stanford came to California in 1852 to join his five brothers in their mercantile business in the gold fields; Jane Stanford followed in 1855. They established large-scale operations in Sacramento, where Mr. Stanford became a leading figure in California business and politics. One of the “Big Four” who built the western link of the first transcontinental railroad, he was elected Governor of California and later United States Senator. One of the founders of the Republican Party in California, he was an ardent follower of Abraham Lincoln and is credited with keeping California in the Union during the Civil War.

THE CASE FOR A LIBERAL EDUCATION

Despite the enormous success they achieved in their lives, Governor and Mrs. Stanford had come from families of modest means and rose to prominence and wealth through a life of hard work. So it was natural that their first thoughts were to establish an institution where young men and women could “grapple successfully with the practicalities of life.” As their thoughts matured, however, these ideas of “practical education” enlarged to the concept of producing cultured and useful citizens who were well prepared for professional success. In a statement of the case for liberal education that was remarkable for its time, Leland Stanford wrote, “I attach great importance to general literature for the enlargement of the liberal education that was remarkable for its time, Leland Stanford wrote, enlarged to the concept of producing cultured and useful citizens who

For Leland and Jane Stanford on that day, the University was the realization of a dream and a fitting tribute to the memory of their only son, who died of typhoid fever weeks before his 16th birthday, at an age when many young men and women were planning their college education.

From the beginning, it was clear that Stanford would be different. It was coeducational at a time when single-sex colleges were the norm. It was non-sectarian when most private colleges were still affiliated with a church. And it offered a broad, flexible program of study while most schools insisted on a rigid curriculum of classical studies. Though there were many difficulties during the first months (housing was inadequate, microscopes and books were late in arriving from the East) the first year foretold greatness. As Jane Stanford wrote in the summer of 1892, “Even our fondest hopes have been realized.”

What manner of people were this man and this woman who had the intelligence, the means, the faith, and the daring to plan a major university in Pacific soil, far from the nation’s center of culture?

current perspectives

In other ways, the University has changed tremendously on its way to recognition as one of the world’s great universities. At the hub of a vital and diverse Bay Area, Stanford is an hour’s drive south of San Francisco and just a few miles north of the Silicon Valley, an area dotted with computer and high technology firms largely spawned by the University’s faculty and graduates. On campus, students and faculty enjoy new libraries, modern laboratories, sports facilities, and comfortable residences. Contemporary sculpture, as well as pieces from the Iris and B. Gerald Cantor Center for Visual Arts at Stanford University’s extensive collection of sculpture by Auguste Rodin, is placed throughout the campus, providing unexpected pleasures at many turns.

The Iris and B. Gerald Cantor Center for Visual Arts at Stanford University opened in January 1999. The center includes the historic Leland Stanford Junior Museum building, the Rodin Sculpture Garden and a new wing with spacious galleries, auditorium, cafe, and bookshop. At the Stanford Medical Center, world-renowned for its research, teaching, and patient care, scientists and physicians are searching for answers to fundamental questions about health and disease. Ninety miles down the coast, at Stanford’s Hopkins Marine Station on the Monterey Bay, scientists are working to better understand the mechanisms of evolution, human development, and ecological systems.

The University is organized into seven schools: Earth Sciences, Education, Engineering, the Graduate School of Business, Humanities and Sciences, Law, and Medicine. In addition, there are more than 30 interdisciplinary centers, programs, and research laboratories (including the Hoover Institution on War, Revolution and Peace; the Stanford Institute for International Studies; the Stanford Linear Accelerator Center; and the Bio-X Scientific Leadership Council) where faculty from many fields bring different perspectives to bear on issues and problems. Stanford’s Overseas Studies Program offers students in all fields remarkable opportunities for study abroad, with campuses in Australia, Beijing, Berlin, Florence, Kyoto, Oxford, Paris, and Santiago.
By any measure, Stanford’s faculty, which numbers approximately 1,800, is one of the most distinguished in the nation. It includes 16 Nobel laureates, 4 Pulitzer Prize winners, 21 National Medal of Science winners, 132 members of the National Academy of Sciences, 223 members of the American Academy of Arts and Sciences, 80 members of the National Academy of Engineering, and 23 members of the National Academy of Education. Yet beyond their array of honors, what truly distinguishes Stanford faculty is their commitment to sharing knowledge with their students. The great majority of professors teach under graduates both in introductory lecture classes and in small freshman, sophomore, and advanced seminars.

Enrollment in Autumn Quarter 2004 totaled 14,846, of whom 6,753 were undergraduates and 8,093 were graduate students. Like the faculty, the Stanford student body is distinguished. Approximately 12 people apply to Stanford for every student who enters the freshman class. 84 Stanford students have been named Rhodes Scholars and 70 have been named Marshall Scholars. The six-year graduation rate for students who entered Stanford University full-time in 1998 was 95.3 percent. Stanford awarded 4,644 degrees in 2004, of which 1,713 were baccalaureate and 2,931 were advanced degrees.

Stanford students also shine in an array of activities outside the classroom, from student government to music, theater, and journalism. Through the Haas Center for Public Service, students participate in dozens of community service activities, such as tutoring programs for children in nearby East Palo Alto, the Hunger Project, and the Arbor Free Clinic.

In the athletic arena, Stanford students have enjoyed tremendous success as well. Stanford fields teams in 34 Division I varsity sports. Of Stanford’s 90 NCAA team titles, 73 have been captured since 1980, placing Stanford at the top among the nation’s most title-winning schools during that time. In 2004-05, Stanford won 2 NCAA team titles in women’s volleyball and women’s tennis, and won the Director’s Cup, emblematic of the top overall athletic program in the country, for the 11th consecutive year. Stanford’s synchronized swimming team also capture the National Championship last year. In 1999-2000, Stanford became the first school in Pac-10 history to win conference championships in football, men’s basketball, and baseball in the same year. Athletic success has reached beyond The Farm, as well, with 43 Stanford athletes and coaches taking part in the 2004 Olympics in Athens. The Cardinal affiliates won 17 medals in Greece with three gold, seven silver and seven bronze. Over the last four summer Olympics, Stanford athletes and coaches have won a combined 64 medals. Intramural and club sports are also popular; over 1,000 students take part in the club sports program, while participation in the intramural program has reached 9,000 with many active in more than one sport.

Stanford graduates can be found in an extraordinary variety of places: in space (Sally Ride, ’73, Ph.D. ’78, was the first American woman in space); on the news (Ted Koppel, M.A. ’62, created the successful program Nightline); off-Broadway (David Henry Hwang, ’79, received a Tony Award for his celebrated work, M. Butterfly); at the helm of major corporations (Scott McNealy, ’80, founded Sun Microsystems, and Chih-yuan (Jerry) Yang, ’94, and David Filo, ’90, founded Yahoo); and on the U.S. Supreme Court (three Stanford graduates, Anthony Kennedy, ’58; William Rehnquist, ‘48, J.D. ’52; and Stephen Breyer, ’59, currently sit on the high court; Sandra Day O’Connor, ’50, J.D. ’52, recently retired from the high court).

LOOKING AHEAD

In her address to the Board of Trustees in July 1904, Jane Stanford said, “Let us not be afraid to outgrow old thoughts and ways, and dare to think on new lines as to the future of the work under our care.” Her thoughts echo in the words of Stanford President John Hennessy, who said in his message in the 2002 Annual Report, “Our bold entrepreneurial spirit has its roots in the founders and our location in the pioneering West. In 1904, Jane Stanford defined the challenge for the young University ... Each generation at Stanford has taken this to heart and boldly launched new efforts, from the classroom to the laboratory ... We will continue to innovate and invest in the future ... The pioneering spirit that led the founders and early leaders to ‘dare to think on new lines’ continues to guide us.”
University Governance and Organization

DIRECTORY

THE BOARD OF TRUSTEES

Victor Arias, Jr., Heidrick & Struggles, 5950 Sherry Lane, Suite 400, Dallas, TX 75225
William M. Barnum, Jr., Brentwood Associates, 11150 Santa Monica Blvd., Suite 1200, Los Angeles, CA 90025
Robert M. Bass, Keystone, Inc., 201 Main Street, Fort Worth, TX 76102
Peter S. Bing, 9700 West Pico Boulevard, Los Angeles, CA 90035
Jon E. Blum, Liberty Square Asset Management, 24 Federal Street, 8th Floor, Boston, MA 02110
Young J. Boozer, III, Colonial Bank, One Commerce Street, Montgomery, AL 36104
T. Robert Burke, Pier 1, Bay 1, San Francisco, CA 94111
Mariani Byerwalter, JDN Corporate Advisory, LLC, 335 W. Santa Inez, Hillsborough, CA 94401
Michael H. Choo, Atticus Capital, LLC, 152 West 57th Street, New York, NY, 10019
Mary B. Cranston, Pillsbury Winthrop, LLP, 50 Fremont Street, San Francisco, CA 94405
Steven A. Denning, General Atlantic LLC, 3 Pickwick Plaza, Suite 200, Greenwich, CT 06830
Ying-Ying Goh, Board of Trustees Office, Building 310, Main Quadrangle, Stanford University, Stanford, CA 94305-2110
John L. Hennessy, Stanford University, Office of the President, Building 10, Main Quadrangle, Stanford, CA 94305-2060
Walter B. Hewlett, Board of Trustees Office, Building 310, Main Quadrangle, Stanford University, Stanford, CA 94305-2110
Pete Higgins, Second Avenue Partners, 1000 Second Avenue, Suite 1200, Seattle, WA 98104
Leslie P. Hume, Board of Trustees Office, Building 310, Main Quadrangle, Stanford University, Stanford, CA 94305-2110
William C. Landreth, Goldman Sachs and Company, 555 California Street, San Francisco, CA 94104
John P. Levin, Folger Levin & Kahn, LLP, Embarcadero Center West, 275 Battery Street, 23rd Floor, San Francisco, CA 94111
Susan R. McCaw, COM Investments, 2300 Carillon Point, Kirkland, WA, 9803
Burton J. McMurtry, 130 Portola Road, Portola Valley, CA 94028
John P. Morgridge, Cisco Systems, Inc., 170 West Tasman Drive, San Jose, CA 95134-1700
Wendy Munger, Board of Trustees Office, Building 310, Main Quadrangle, Stanford University, Stanford, CA 94305-2110
Denise M. O’Leary, Board of Trustees Office, Building 310, Main Quadrangle, Stanford University, Stanford, CA 94305-2110
Ellen Ochoa, NASA Johnson Space Center, Astronaut Office, MC CA, 2101 NASA Road One, Houston, TX 77058
Susan P. Orr, Telosa Software, 610 Cowper Street, Palo Alto, CA 94301
Victoria P. Sant, The Summit Foundation, 2100 Pennsylvania Avenue NW, Suite 525, Washington, DC 20037
Philip G. Satre, Harrah’s Entertainment, Inc., 219 North Center Street, Reno, NV 89501
John H. Scully, SPO Partners & Co., 591 Redwood Highway, Suite 3215, Mill Valley, CA 94941
V. Joy Simmons, Southern California Permanente Medical Group, 1505 North Edgemont, Los Angeles, CA 90027-5209

Ross H. Walker, Wolff Urban Development, 11828 La Grange Avenue, Los Angeles, CA 90025
W. Richard West, Jr., National Museum of the American Indian, Smithsonian Institution, 4th Street & Independence Avenue, SW, 590, P.O. Box 37012, Washington, DC 20013-7012
Ward W. Woods, Bessemer Holdings, 630 Fifth Avenue, New York, NY 10111
Jerry Yang, Yahoo! Inc., 701 First Avenue, Sunnyvale, CA 94089

ADMINISTRATIVE ORGANIZATION

EXECUTIVE OFFICERS, 2005-06

President: John L. Hennessy
Provost: John Etchemendy
Vice President for Business Affairs and Chief Financial Officer: Randall S. Livingston
Senior Vice President for University Resources: John B. Ford
Vice President for Development: Martin Shell
Vice President for Public Affairs: David F. Dewhurst
Vice President and General Counsel: Debra Zumwalt
Vice Provost and Dean of Research and Graduate Policy: Arthur Bienenstock
Vice Provost for Faculty Development: Patricia A. Jones
Vice Provost for Budget and Auxiliary Management: Tim Warner
Vice Provost for Undergraduate Education: John C. Bravman
Vice Provost for Land and Buildings: Robert Reidy
Interim Dean of Student Affairs: Gregory Boardman
Chief Executive Officer, Stanford Management Company: Michael McCaffery
President of Stanford Alumni Association: Howard E. Wolf
University Librarian and Director of Academic Information Resources: Michael A. Keller
Dean of Graduate School of Business: Robert Joss
Dean of Continuing Studies Program: Charles Junkerman
Dean of Religious Life: William McLennan, Jr.
Dean of School of Earth Sciences: Pamela Matson
Dean of School of Education: Debra J. Stipek
Dean of School of Engineering: David J. Plummer
Dean of School of Humanities and Sciences: Sharon R. Long
Dean of School of Law: Larry D. Kramer
Dean of School of Medicine: Philip A. Pizzo
Director of Hoover Institution: John Raisian
Director of Stanford Linear Accelerator Center: Jonathan Dorfan

ORGANIZATION

BOARD OF TRUSTEES

Powers and Duties—The Board of Trustees is custodian of the endowment and all properties of the University. The Board administers the invested funds, sets the annual budget, and determines policies for the operation and control of the University. The powers and duties of the Board of Trustees derive from the Founding Grant, amendments, legislation, and court decrees. In addition, the Board operates under its own bylaws and a series of resolutions on major policy.

Membership—Board membership is set at 35, including the President of the University who serves ex officio and with vote. Trustees serve a five-year term and are eligible for appointment to one additional five-year term. At the conclusion of that term, a Trustee is not eligible for reelection until after a lapse of one year. Eight of the Trustees are elected or appointed in accordance with the Rules Governing the Election or Appointment of Alumni Nominated Trustees. They serve a five-year term.

Officers of the Board—The officers of the board are a chair, one or more vice chairs, a secretary, and an associate secretary. Officers are elected to one-year terms at the annual meeting in June, with the exception of the chair, who serves a two-year term. Their terms of office begin July 1.
Committees — Standing committees of the Board are Academic Policy, Planning, and Management; Alumni and External Affairs; Audit and Compliance; Development; Finance; Land and Buildings; the Medical Center; and Trusteeship. Special committees include Athletics, Compensation, Investment Responsibility, and Litigation.

Meetings — The Board generally meets five times each year.

THE PRESIDENT

The Founding Grant prescribes that the Board of Trustees shall appoint the President of the University and that the Board shall give to the President the following powers:

To prescribe the duties of the professors and teachers.
To prescribe and enforce the course of study and the mode and manner of teaching.
Such other powers as will enable the President to control the educational part of the University to such an extent that the President may justly be held responsible for the course of study therein and for the good conduct and capacity of the professors and teachers.

The President is also responsible for the management of financial and business affairs of the University, including operation of the physical plant.

The President appoints the following, subject to confirmation by the Board: Provost, Vice President for Business Affairs and Chief Financial Officer, Chief Executive Officer of Stanford Management Company, President of Stanford Alumni Association, Vice President for Development, Vice President for Public Affairs, and Vice President and General Counsel.

COMMITTEES AND PANELS

University Committees are appointed by and are primarily responsible to the President. Such committees deal with matters on which the responsibility for recommendation or action is clearly diffused among different constituencies of the University. In accordance with the Report on the Committee Structure of the University, Academic Council members are appointed to University Committees on nomination of the Senate Committee on Committees and student members on nomination of the Associated Students of Stanford University (ASSU) Committee on Nominations. The President takes the initiative in the appointment of staff members to such committees. Although immediately responsible to the President, University Committees may be called upon to report to the Senate of the Academic Council or the ASSU. Charges to such committees are set by the President on recommendation of the Committee on Committees and others. There are nine University Committees, as follows:

Advisory Panel on Investment Responsibility and Licensing (AP-IRL)
Committee on Athletics, Physical Education, and Recreation (C-APER)
Committee on Environmental Health and Safety (C-EH&S)
Committee on Faculty Staff Human Resources (C-FSHR)
Committee on Land and Building Development (C-LBD)
Committee on Public Events (C-PE)
Editorial Board of the University Press (EB-UP)
KZSU Advisory Board (KZSU)
Panel on Outdoor Art (P-OA)

Additionally there are nine standing administrative panels which are appointed by the Vice Provost and Dean of Research and Graduate Policy, and which report through him to the President.

Administrative Panel on Biosafety
Administrative Panel on Human Subjects in Medical Research-01
Administrative Panel on Human Subjects in Medical Research-03
Administrative Panel on Human Subjects in Medical Research-04
Administrative Panel on Human Subjects in Medical Research-05
Administrative Panel on Human Subjects in Medical Research-06
Administrative Panel on Human Subjects in Non-Medical Research-02
Administrative Panel on Laboratory Animal Care
Administrative Panel on Radiological Safety

PROVOST

The Provost, as the chief academic and budget officer, administers the academic program (instruction and research in schools and other academic units) and University services in support of the academic program (budgeting and planning, land and buildings, libraries and information resources, student affairs). In the absence or inability of the President to act, the Provost becomes the Acting President of the University. The Provost shares with the President conduct of the University’s relations with other educational institutions, groups, and associations.

Schools of the University — The program of instruction in the University is organized into seven schools: Graduate School of Business, School of Earth Sciences, School of Education, School of Engineering, School of Humanities and Sciences, School of Law, School of Medicine.

The deans of the schools report to the Provost.

THE ACADEMIC COUNCIL

According to the Articles of Organization of the Faculty, originally adopted by the Board of Trustees in 1904 and revised in 1977, the powers and authority of the faculty are vested in the Academic Council consisting of: (1) the President of the University; (2) tenure-line faculty: Assistant, Associate, and Full Professor; (3) nontenure-line faculty: Associate and Full Professor followed by the parenthetical notation (Teaching), (Performance), (Applied Research), or (Clinical); (4) nontenure-line research faculty: Assistant Professor (Research), Associate Professor (Research), Professor (Research); (5) Senior Fellows in specified policy centers and institutes; and (6) certain specified officers of academic administration.

In the Spring of 1968, the Academic Council approved the charter for a Senate to be composed of 55 representatives elected by the Hare System of Proportional Representation and, as ex officio nonvoting members, deans of the academic schools and certain major officers of academic administration.

In the allocation of representation, each school constitutes a major constituency. The Senate may create from time to time other major constituencies as conditions warrant. Approximately one-half of the representatives are allocated to constituencies on the basis of the number of students in those constituencies and the remainder on the basis of the number of members of the Academic Council from each constituency.

COMMITTEES

Committees of the Academic Council are created by and responsible to the Senate of the Academic Council and are appointed by the Committee on Committees of the Senate. Such committees deal with academic policy matters on which the primary responsibility for action and decision lies with the Academic Council or, by delegation, the Senate. Pursuant to the Senate’s acceptance on September 25, 1969 of the Report from the Committee on Committees of the Committee Structure of the University and subsequent Senate action, the Senate has established seven standing Committees of the Academic Council, as follows:

Committee on Academic Computing and Information Systems (C-ACIS)
Committee on Graduate Studies (C-GS)
Committee on Libraries (C-Lib)
Committee on Research (C-Res)
Committee on Review of Undergraduate Majors (C-RUM)
Committee on Undergraduate Admissions and Financial Aid (C-UAFA)
Committee on Undergraduate Standards and Policy (C-USP)

The Senate has also created a Planning and Policy Board of the Senate to consider long-range strategic issues of concern to the faculty.

Information regarding charges to these committees is available from the Office of the Academic Secretary to the University.
Two weeks after the University opened in 1891, students met to form the Associated Students of Stanford University (ASSU). All registered students are members of the Association. They are governed by the ASSU Constitution and Bylaws, which was last revised and approved by student vote in April 1999, and approved by the President in September 1999.

Executive—The President and Vice President serve as the chief executives and representatives for the Association. The Financial Manager acts as business manager of the ASSU, CEO of Stanford Student Enterprises (SSE) and controller of the Students’ Organizations Fund, in which ASSU and student organization funds are deposited.

Legislative—There are two legislative bodies, an Undergraduate Senate and a Graduate Student Council, that work together to determine the Association’s budgetary, financial, investment, business, and operating policies. In addition, each entity provides funding for student organizations, participates in recommending student appointments to University Committees and advocates on behalf of its constituents. Each body has 15 elected representatives and an elected chair. Both meet regularly to conduct Association business and discuss and act on issues pertinent to student life at Stanford.

ADMISSION

UNDERGRADUATE

MATICULATED STUDY

Stanford’s undergraduate community is drawn from throughout the United States and the world. It includes students whose abilities, intellectual interests, and personal qualities will allow them to benefit from and contribute to the University’s wide range of teaching and research programs in the humanities, natural sciences, social sciences, and engineering. The University admits students who derive pleasure from learning for its own sake; who exhibit energy, creativity, and curiosity; and who have distinguished themselves in and out of the classroom.

Stanford welcomes a diverse community that cuts across many dimensions. The University does not use quotas of any kind in its admission process: it does not favor particular schools or types of schools, nor any geographic region, nor does it have any racial, religious, ethnic, or gender-related targets. The University believes that a student body that is both highly qualified and diverse in terms of culture, socioeconomic status, race, ethnicity, background, work and life experiences, skills, and interests is essential to the educational process. Applications are encouraged from those who would take the initiative and responsibility for their own education and who would provide additional dimensions to the University and its programs.

In order to preserve the residential character of the University and to maintain a favorable student-faculty ratio, Stanford has a limited undergraduate enrollment. The anticipated size of the freshman class is 1,600 students. Some 50-80 transfer students, entering either the sophomore or junior class, are also admitted for Autumn enrollment. Each year, the University receives many more applications from qualified students than there are places available.

Stanford is committed to meeting the University-computed financial need of each admitted student, and admission decisions are made without regard to the applicant’s financial status, except in the case of international students (students who are neither U.S. citizens nor permanent residents).

Application procedures, requirements, and deadlines vary from year to year. See the Undergraduate Admission web site at http://admission.stanford.edu for the most recent information and to request application materials; or call the Office of Undergraduate Admission at (650) 723-2091.

NONMATRICULATED STUDY

Permission to enroll at Stanford as a nonmatriculated student during Autumn, Winter, and Spring quarters is not routinely approved except under extenuating circumstances. Nonmatriculated students authorized to enroll at Stanford University are not admitted to any Stanford degree program and are permitted to register for a specific period, usually one, two, or three quarters. Financial assistance from Stanford University is not available. Permission to enroll as a nonmatriculated student does not imply subsequent admission as a matriculated student. Students interested in nonmatriculated status during the Autumn, Winter, and Spring quarters should contact the Office of the University Registrar, not the Office of Undergraduate Admission.

High School Nonmatriculated Students—Local high school students are eligible to be considered to attend Stanford as nonmatriculated students on a limited basis when they have exhausted all of the courses in a given discipline offered by their high school. Nonmatriculated high school
students are permitted to enroll in one course per quarter and are required to pay the applicable tuition. Permission from the academic department and the Registrar is required.

Summer Session—Students wishing to enroll as nonmatriculated students during Summer Quarter should contact the Summer Session Office for more information about the Summer Visitor Program. Admission to the Summer Visitor Program does not imply regular admission to Stanford for subsequent quarters or to one of Stanford’s regular degree programs.

GRADUATE

MATRICULATED STUDY

Applicants from colleges and universities of recognized standing who hold a U.S. bachelor’s degree or its equivalent are eligible to be considered for admission for graduate study. Details regarding degrees offered in specific departments are given in the *Guide to Graduate Admission* or at http://gradadmissions.stanford.edu. The number of applicants who can be admitted for work in a particular field of study at any time is limited by the facilities and programs of the school or department and by the number of matriculated students who continue their work in that field.

The Coterminal Degree Program—This program permits matriculated Stanford undergraduates to study for bachelor’s and master’s degrees simultaneously in the same or different departments. Application policies and procedures are established by each master’s department. Applicants must have earned a minimum of 120 units toward graduation (UTG) as shown on the undergraduate unofficial transcript. This includes allowable Advanced Placement (AP) and transfer credit. Applicants must submit their application no later than the quarter prior to the expected completion of their undergraduate degree. This is normally the Winter Quarter prior to Spring Quarter graduation. Students who decide to apply for admission to master’s programs after these deadlines are not eligible for the coterminal program and must apply through the regular graduate admission process.

APPLICATION PROCESS

Specific information regarding test requirements, other application procedures and requirements, and closing dates for filing applications and supporting credentials for admission and financial aid are listed in the *Guide to Graduate Admission*.

Graduate fellowship funds and assistantships are generally committed in March for the entire period comprising Autumn, Winter, and Spring quarters of the next academic year. Awards are seldom made to students who enter the University in Winter, Spring, and Summer quarters; such applicants must meet the same financial aid application requirements as those entering in Autumn Quarter.

Applications may be submitted electronically for graduate programs in the schools of Earth Sciences, Education, Engineering, Humanities and Sciences, and the Biosciences (non-M.D. programs in Medicine). Application instructions may be found at http://gradadmissions.stanford.edu.

The *Guide to Graduate Admission* may be obtained from Graduate Admissions, Office of the University Registrar, Old Union, 520 Lasuen Mall, Stanford University, Stanford, California 94305-3005, except for the programs listed following this paragraph. The University prefers that prospective graduate students apply online at http://gradadmissions.stanford.edu. Students who are unable to apply online may send a written request for a paper admissions packet from Graduate Admissions, Office of the University Registrar, Old Union, 520 Lasuen Mall, Stanford University, Stanford, CA 94305-3005. The cost for this packet is $20, which includes a copy of the *Stanford Bulletin*. For admission to the following programs, please apply directly at the address listed following.

Business—Applicants should write to Director of Admissions of the M.B.A., Ph.D., or Sloan program, Graduate School of Business, Stanford University, Stanford, CA 94305-5015 for information and application forms.

Law—Applicants should write to Director of Admissions, School of Law, Stanford University, Stanford, CA 94305-8610. The Law School Admissions Test is required.

M.D. Program—Applicants should see the M.D. admissions web site at http://med.stanford.edu/mdadmissions/ or, for additional information about the M.D. program, write to Stanford University School of Medicine, Office of M.D. Admissions, 251 Campus Drive, MSOB X3C01, Stanford, CA 94305-5404. The American Medical College Application Service (AMCAS) application is available at http://www.aamc.org. Applications and transcripts must be received by AMCAS by October 15. The Medical College Admissions Test is required.

Coterminal Master’s Program—Interested Stanford undergraduates should contact directly the department in which they wish to pursue a master’s degree and must adhere to the application deadlines described in the “Coterminal Degree Program” above.

NONMATRICULATED STUDY

Eligibility for consideration for nonmatriculated status is restricted to two groups of applicants:

1. Stanford alumni who wish to return to Stanford to take courses that are prerequisites for Medical School admission, i.e., undergraduate Biology or Chemistry courses, are eligible to apply for nonmatriculated status. An application form, application fee, statement of purpose, and three letters of recommendation are required. The decision to admit or deny will be made by the Director of Graduate Admissions on the basis of relevant factors, including a 3.0 GPA and positive letters of recommendation.

 Applicants who graduated from other universities are not eligible to take the prerequisites for Medical School at Stanford.

2. Individuals who hold a bachelor’s degree or equivalent and wish to take courses in a specific department that allows non-degree students are eligible to apply for nonmatriculated status. An application form, application fee, statement of purpose, original transcripts, and three letters of recommendation are required. The decision to admit or deny will be made by the chair of the department in which they wish to take courses and conveyed in writing to the Graduate Admissions Office. Applicants will be notified of the decision by the Office of the University Registrar.

Students who are granted nonmatriculated status may register for a maximum of one academic year. Nonmatriculated status is a privilege and not a right; the nonmatriculated status may be revoked at the University’s discretion and after consideration of such factors as the University considers relevant in the particular case at the end of any quarter of enrollment.

Nonmatriculated students are not permitted to enroll in certain courses, such as those in the following departments or programs: film and broadcasting courses in Communication; graduate level courses in Psychology; all courses in Computer Science, Economics, Electrical Engineering, International Policy Studies, and the School of Medicine. Nonmatriculated students receive academic credit for courses satisfactorily completed and may obtain an official transcript. They may use University facilities and services. In classes of limited enrollment, students in degree programs have priority. Nonmatriculated students may apply for housing but will have a low priority for assignment. No fellowships, assistantships, or Stanford loans are available for nonmatriculated students.

Nonmatriculated students who later apply for admission to a degree program must meet the standard admission requirements and should not anticipate special priority because of work completed as a nonmatriculated student. Students who are admitted to a degree program may apply a maximum of 15 units of nonmatriculated study toward the residency requirement for a master’s degree and 30 units for the Engineer or Ph.D. degree.

Application forms for nonmatriculated status during the regular academic year are available from Graduate Admissions, Office of the University Registrar, 520 Lasuen Mall, Old Union Building, Stanford,
visiting researchers are submitted to the Registrar's Office by the department in which they wish to study or check for postdoctoral openings at Stanford. Postdoctoral scholars are appointed at Stanford for fixed terms, typically of one to three years in length.

Postdoctoral appointments are offered to individuals with an earned Ph.D. within the last six years or their equivalent, who are not recognized experts in their fields to engage in research on the Stanford campus using Stanford research facilities. Individuals who have not yet obtained a Ph.D. or its equivalent may be appointed for a limited period, provided they are sponsored by Stanford. Postdoctoral appointments are nonrepresented positions. Postdoctoral scholars are trainees in residence at Stanford University. Stanford expects financial aid applicants to apply for and use resources from state, federal, and private funding sources, contribute from their earnings during nonenrollment periods (for example, summer), and use student loans and earnings from part-time employment during the academic year.

Postdoctoral scholars are trainees in residence at Stanford University. Stanford's policy generally is to exclude undergraduates who are not U.S. citizens or permanent residents, or by a combination of these sources. Scholars may not be self-supporting. In addition, all postdoctoral scholars are eligible for a benefits package including medical, dental, life, and disability insurance. Postdoctoral scholars are normally appointed for 100% time.

All postdoctoral scholars must be registered at Stanford during every academic quarter of their appointment. Registration entails payment of a quarterly postdoctoral fee, which is paid by the academic department or school appointing the scholar. Prospective postdoctoral scholars should write directly to the department in which they wish to study or check for postdoctoral openings at http://postdocs.stanford.edu/prospects/index.htm. For more information, see http://postdocs.stanford.edu/.

VISITING RESEARCHERS

In limited instances, it is to the benefit of Stanford faculty to permit persons who have not yet obtained a Ph.D. (or its foreign equivalent) or who are not recognized experts in their fields to engage in research on the Stanford campus using Stanford research facilities. Such instances include students at other universities who are engaged in graduate-level research in a field of interest to the faculty member, a person doing a laboratory rotation as part of a larger research study or grant, or employees of companies who are conducting research which requires specialized equipment available only at Stanford.

In these instances, since these individuals are not eligible for Visiting Scholar status, they may be eligible to apply to register as nonmatriculated graduate students in the Visiting Researcher category for one year. Invited persons must be qualified to conduct research at a level comparable to that of other Stanford graduate students, and the research must be of benefit to Stanford as well as to the visitor. Application for Admission forms for visiting researchers are submitted to the Registrar’s Office by the department issuing the invitation.

Visiting researchers are charged the TGR (Terminal Graduate Registration) tuition rate quarterly and may waive the University’s student medical insurance plan only if they have comparable coverage with another carrier and submit proof of the comparable coverage prior to the term start date. They may not enroll in or audit any courses, but in quarters they are registered are eligible for the usual student benefits of nonmatriculated student status. Visiting researchers may apply for housing, but will have a low priority for assignments. No fellowships, assistantships, or Stanford loans are available for visiting researchers. Stanford cannot certify visiting researchers for deferment of U.S. educational loans. Citizens of other countries who enter the United States to be visiting researchers at Stanford must have a DS 2019 Certificate (to apply for a J-1 visa) issued by the Bechtel International Center and must register each quarter, including Summer Quarter, to maintain their visa status.

VISAS FOR FOREIGN STUDENTS

Stanford is authorized under federal law to enroll nonimmigrant students. All students who are not U.S. citizens or permanent residents must obtain visas for their stay in the United States. The types of student visas sponsored by Stanford include the following:

1. Student Visa (F-1), obtained with an I-20 Certificate of Eligibility issued by Stanford University. The graduate student on an F-1 visa must enroll in a full course of study. The accompanying spouse or child enters on an F-2 visa. F-2 visa holders may not work.

2. Exchange Visitor Visa (J-1), obtained with a DS-2019 Certificate of Eligibility issued by Stanford University or a sponsoring agency. This visa is required for graduate students sponsored by certain agencies, foundations, and governments. In some cases, Exchange Visitors must leave the United States at the conclusion of their programs, may not change visa status, and may not apply for permanent residency in the United States until they have returned to their home countries for at least two years. The spouse of an Exchange Visitor enters on a J-2 visa and may, in some cases, obtain permission to work.

The certificate of eligibility is issued to a student accepted for admission only upon receipt of evidence of satisfactory proficiency in the English language and certification of adequate financial support. A student transferring from another school must obtain a new visa with a Stanford certificate of eligibility.

Information on visas is sent to admitted graduate students from the Graduate Admissions Office. Information on visas for postdoctoral scholars and visiting researchers may be obtained from the Bechtel International Center.

The University requires that all students who are not U.S. citizens or permanent residents maintain a visa status that allows registration as students.

FINANCIAL AID

UNDERGRADUATE

The University has a comprehensive need-based financial aid program for its undergraduate students (except some international students) who meet various conditions set by federal and state governments, the University, and other outside agencies.

In awarding its own funds, the University assumes that students and their parents accept the first and primary responsibility for meeting educational costs. Stanford’s policy generally is to exclude undergraduates from being considered financially independent of their parents for University-administered scholarship aid unless a student is an orphan, a ward of the court, or at least 25 years of age. Spouses of married undergraduate students share in the responsibility to meet educational costs.

Stanford expects financial aid applicants to apply for and use resources from state, federal, and private funding sources, contribute from their earnings during nonenrollment periods (for example, summer), and use student loans and earnings from part-time employment during the academic year.
to meet educational expenses. If Stanford determines that an applicant and his or her family cannot meet these expenses, the University may offer financial aid funds to help meet these costs.

In awarding financial aid funds to meet computed need (that is, any gap remaining after subtracting the calculated family contribution and government grants from the standard student budget), Stanford first offers “self-help,” which consists of student loans and/or an academic-year earnings expectation. If computed need is greater than the self-help expectation, Stanford awards institutional scholarship to meet the remaining need.

Scholarships from outside sources may change the University’s financial aid award. When a student receives outside scholarships, these funds reduce or eliminate the student’s self-help expectation. If the total in outside scholarships exceeds the self-help expectation, the University then reduces institutional scholarship, dollar for dollar, by any additional amount.

Students are considered for University scholarship eligibility during their first four years of undergraduate enrollment. The Financial Aid Office (FAO) considers applicants for University scholarship eligibility beyond the twelfth quarter only if enrollment is essential in order to complete the minimum requirements for the first baccalaureate degree or major. Students who enroll for a fifth year in pursuit of a coterminal program, a minor, a second major, a second degree, or the B.A. degree are not eligible for University scholarship consideration but may apply for student loans and federal grants. Eligibility for undergraduate federal student aid is limited to a student’s first five years (fifteen quarters) of enrollment.

APPLICATION AND AWARD NOTIFICATION PROCESS

PRIORITY FILING DEADLINES

<table>
<thead>
<tr>
<th>Prospective freshmen</th>
<th>Single-Choice Early Action, November 1, 2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prospective freshmen</td>
<td>Regular Review, February 1, 2006</td>
</tr>
<tr>
<td>Prospective transfers</td>
<td>March 15, 2006</td>
</tr>
<tr>
<td>Returning students</td>
<td>April 15, 2006</td>
</tr>
</tbody>
</table>

APPLICANT DOCUMENTS

U.S. citizens and permanent residents who wish to be considered for all available funding administered by Stanford should submit the following documents:

1. Free Application for Student Aid (FAFSA): file online at http://fafsa.ed.gov. California residents must file the FAFSA and submit a GPA Verification Form to the California Student Aid Commission (CSAC) by March 2, 2006, for Cal Grant consideration.

3. Copies of parents’ 2005 W-2 forms. Continuing students should submit copies directly to the FAO. New applicants should submit signed copies of their parents’ 2005 federal tax returns and W-2 forms to the CSS IDOC service.

U.S. citizens and permanent residents who wish to apply only for federal aid consideration do not need to file the CSS PROFILE; they should file the FAFSA and submit tax documents directly to the FAO.

International students (except Canadians) should complete and submit the International Student Financial Aid Application and Certification of Finances directly to the FAO. Canadians should file the CSS PROFILE and submit tax documents as listed above.

Students whose application materials are filed after the priority filing deadlines, who have not borrowed or worked in prior years, or who have not secured all external funds such as Pell and Cal Grants, can expect higher levels of self-help in their financial aid packages.

Applicants and their parents are required to submit accurate and complete information on all application documents. The University participates in the U.S. Department of Education’s Quality Assurance Program to evaluate the accuracy of aid application data. As part of this program, the FAO may request additional documentation to verify reported data. Students who fail to submit the requested documentation will have their financial aid funds withheld or canceled and their future registration placed on hold. Financial aid awards may change as a result of the verification process.

NOTIFICATION DATES

In December, the FAO notifies Single-Choice Early Action applicants who apply by the November filing date of their financial aid award. The FAO notifies freshman applicants who apply by the February 1 filing date in early April. Transfer applicants who apply by the March 15 filing date are normally notified of their financial aid award within five days of their notice of admission.

The FAO begins mailing award notices to continuing and returning applicants in early August. Applicants who file after the priority filing date may not have a financial aid award or funds secured for disbursement by the Autumn Quarter payment due date.

FINANCING OPTIONS

The federal Parent Loan for Undergraduate Students (PLUS) program is available to help parents cover all or part of the expected family contribution through a low-interest, long-term loan. PLUS loans are available to all parents who meet credit requirements regardless of their computed financial need. See the Financial Aid Office web site at http://financialaid.stanford.edu for details on the PLUS program. Parents should also contact their employers for information about programs that may be available to them as employees’ benefits to help meet college costs.

GRADUATE

Graduate students at Stanford receive funding from a variety of sources. University fellowships, research assistantships, and teaching assistantships are offered primarily to doctoral students. In some cases, master’s students also may receive fellowships and assistantships. In addition, outside agencies provide fellowships to many graduate students at Stanford. Students without fellowships or assistantships, and those whose funding does not cover all of their costs, may need to use student loans, savings, other personal assets, a spouse’s earnings, or parental support to meet their educational expenses.

FELLOWSHIPS AND ASSISTANTSHIPS

Fellowships, research assistantships, and teaching assistantships are important parts of the educational program for graduate students at Stanford. Schools and/or departments determine eligibility for University fellowships and assistantships on the basis of academic merit, program, and the availability of funds. Some departments admit only those students to whom they can offer support or who have guaranteed funds from outside sources. Other departments may offer admission without being able to provide fellowship or assistantship funding.

Fellowship and assistantship funding is provided so that students may focus on their studies; concurrent employment is therefore limited. Students with full assistantships are limited to eight additional hours of employment per week. Students on full fellowships may be paid for up to eight additional hours per week, or may hold a supplemental assistantship appointment up to a maximum of 25% with no additional hourly employment. International students who have Stanford assistantships may not work more than 20 hours per week, including the time required for their assistantship appointments. In Summer Quarter, graduate students who are not required to enroll full-time may be allowed additional employment.

Application procedures and deadlines for admission and University funding are described in the Guide to Graduate Admission and at http://gradadmissions.stanford.edu. Fellowships and assistantships are normally awarded to incoming students between March 15 and April 15, in accordance with the Council of Graduate Schools resolution. Acceptance of University funding obliges the student to inform the department of any additional funds received; in such cases, Stanford funding may be adjusted (see “Outside Fellowships” below). Recipients of all graduate fellowships
and assistantships must enroll in courses for each quarter of their appointment. Students may make arrangements with Student Financial Services to have their assistantship salary credited directly to the University bill through a payroll deduction plan.

OUTSIDE FELLOWSHIPS

Many graduate students hold fellowships won in national competition from outside agencies such as the National Science Foundation. Information on application procedures and terms of such fellowship programs may be obtained from the applicant’s current academic institution or the national office of the agency administering the program. A student who receives support from an outside source must notify his or her Stanford academic department immediately; Stanford funding may be adjusted.

STUDENT LOANS

Graduate students can apply for federal and private student loans through the University’s Financial Aid Office (FAO). Available programs include federal Stafford loans, federal Perkins loans, and Guaranteed Access To Education (GATE) loans. Information on these loan programs can be obtained at http://financialaid.stanford.edu or by calling the FAO at (888) 326-3773 or (650) 723-3058. International students who are not permanent U.S. residents are not eligible for federal or GATE loans.

Application — Students in the Schools of Business, Law, and Medicine (M.D. program) should consult their schools for loan application instructions. The following loan application requirements apply to graduate students in the Schools of Earth Sciences, Education, Engineering, Humanities and Sciences, and Medicine (Ph.D. only):
1. Free Application for Federal Student Aid (FAFSA); file online at http://fafsa.ed.gov.
2. Stanford Graduate Student Loan and Federal Work-Study Application; may be printed from http://financialaid.stanford.edu; submit completed application to the FAO.

Students should complete the application process at least two months prior to the beginning of the quarter in which they need the funds. The FAO will determine eligibility for student loans based on a review of FAFSA and application data, satisfactory academic progress, level of indebtedness, credit history, and availability of funds. Student loan eligibility is affected by fellowship, assistantship, and other funding sources; total funding, including student loans, may not exceed the standard expense budget as determined by the FAO.

Emergency funds — Students may request a cash advance from the Student Financial Services office. Cash advances may not be used to pay University bills.

COTERMINAL STUDENTS

Coterminal students, who are concurrently pursuing bachelor’s and masters degrees, may receive University fellowships and assistantships only after completing 180 units. Most private and federal graduate fellowships are awarded only to students who have received their bachelor’s degrees. Stanford undergraduate scholarships and grants are reserved for students in their first four years of undergraduate study.

HONORS COOPERATIVE PROGRAM

The Honors Cooperative Program (HCP) is the only part-time graduate program offered by Stanford University. It allows working professionals, who may be eligible for tuition support through their employer, an opportunity to earn a graduate degree in engineering, computer science, or biomedical informatics on a part-time basis.

Prospective HCP students apply to the department in which they would like to pursue a graduate degree through the normal graduate admissions process, and compete with all other applicants for admission to the program. Once admitted, HCP students implement degree study through the Stanford Center for Professional Development (SCPD). Courses are delivered online and broadcast locally. HCP students are also welcome to attend classes on campus, and some on-campus attendance may be required depending on the degree track.

To participate, industry students must have the support of their employer as a participating company of the Stanford Center for Professional Development. For more information, see http://scpd.stanford.edu, or phone (650) 725-3000.

VETERANS’ BENEFITS

Liaison between the University, its students, and the various federal, state, and local agencies concerned with veterans’ benefits is provided by the Office of the University Registrar. All students eligible to receive veterans’ benefits while attending the University are urged to complete arrangements with the appropriate agency well in advance of enrollment. In addition, students must have their department approve their study lists as meeting graduation requirements before the Office of the University Registrar can certify the courses for Veterans Affairs.

To comply with federal regulations concerning credit for previous training (38 CFR 21.4253), Stanford University is required to evaluate all previous education and training completed elsewhere to determine what credit, if any, should be granted to students eligible to receive Veterans Administration (VA) educational benefits. Stanford is required to complete an evaluation; credit is granted when appropriate. Credit is evaluated toward the degree program registered with Veterans Affairs as determined by the Office of the University Registrar in conjunction with the relevant academic department(s) or program(s). All relevant University policies regarding transfer credit apply. In addition, this evaluation occurs again each time a student’s degree program is changed.

Subject to current federal and University guidelines, students eligible for receipt of VA educational benefits have their prior education and training evaluated up to the credit limits outlined in the “Residency Policy for Graduate Students” section of this bulletin. As an exception to that policy, students in master’s programs in the schools of Earth Sciences, Education, Engineering, Humanities and Sciences, Law, Medicine, and Graduate Business are allowed a maximum of 6 transfer (quarter) units.

Stanford University is required to certify only those courses that meet minimum graduation requirements. Courses not directly related to a students degree program or courses beyond those required for a specific degree program are not certified.
Tuition, Fees, and Housing

ASSESSMENTS

TUITION

Regular tuition for the 2005-06 academic year, payable Autumn, Winter, and Spring quarters, is as follows:

- All departments and schools (except those below) $10,400
- Graduate Division in Engineering 11,090
- Graduate School of Business, first year 13,780
- Graduate School of Business, second year 13,400
- School of Medicine (M.D. Program) 12,765
- School of Law (payable Autumn and Spring semesters) 17,700
- J.D./M.B.A. Program (payable Autumn and Spring semesters) 18,360

Regular tuition fees apply to the undergraduate Overseas Studies and Stanford in Washington programs. For Summer Quarter tuition rates and policies, see http://summer.stanford.edu/ or the Summer Quarter Time Schedule.

A coterminal student is subject to graduate tuition assessment and adjustment policies once graduate standing is reached. Coterminal students should consult the student policies and procedures for tuition assessment, as described under Residency and Unit Requirements in Coterminal Programs in the “Graduate Degrees” section of this bulletin.

Eligibility for registration at reduced tuition rates is described below. Tuition exceptions may also be made for illness, disability, pregnancy, new-parent relief, or other instances at the discretion of the University Registrar. No reduction in tuition charges is made after the first two weeks of the quarter.

All students are strongly advised, before registering at less than the regular full-tuition rate, to consider the effects of that registration on their degree progress and on their eligibility for financial aid and awards, visas, deferment of student loans, and residency requirements.

The University reserves the right to change at any time, without prior notice, tuition, room fees, board fees, or other charges.

UNDERGRADUATES

During Autumn, Winter, and Spring quarters, undergraduates are expected to register at the regular full-tuition rate. Undergraduates who have completed at least twelve full-time quarters may petition to register at a reduced tuition rate for their final quarter, but must register for at least eight units. Undergraduate dual degree students must complete at least fifteen full-time quarters before petitioning for reduced tuition in their final quarter.

Permit to Attend status can be granted for one quarter on a one-time basis to those for whom it is academically appropriate. The Permit to Attend rate is $2,610 per quarter in 2005-06. Undergraduates in the terminal quarter who are completing honors theses or clearing incomplete grades may petition, on a one-time basis, for Permit to Attend for Services Only (PSO) registration. That rate is $2,610 per quarter in 2005-06 and does not permit any course enrollment or auditing. Further information about the Permit to Attend status is available from the Office of the University Registrar.

During Summer Quarter, all Stanford undergraduates may register on a unit-basis (minimum 3 units).

GRADUATE STUDENTS

Matriculated graduate students are expected to enroll for at least eight units. Schools and departments may set a higher minimum.

The following reduced-tuition categories can be requested by matriculated graduate students in the final stages of their degree programs:

1. Terminal Graduate Registration (TGR): doctoral students who have been admitted to candidacy, completed all required courses and degree requirements other than the University oral exam and dissertation, completed 135 units or 10.5 quarters of residency (if under the old residency policy), and submitted a Doctoral Dissertation Reading Committee form may request Terminal Graduate Registration status to complete their dissertations. Students pursuing Engineer degrees may apply for TGR status after admission to candidacy, completion of all required courses, and completion of 90 units or six quarters of residency (if under the old residency policy). Students enrolled in master’s programs with a required project or thesis may apply for TGR status upon completion of all required courses and completion of 45 units.

TGR status may also be granted for one quarter only to a graduate student who is returning after a leave of absence or after reinstatement, or to graduate students who register for one final term to take a University Oral Examination, submit a dissertation or thesis, or file an Application to Graduate. Doctoral students applying for one quarter TGR status must also meet the doctoral criteria above except that they need only nine quarters of residency. Requirements for one quarter TGR for master’s and Engineer students are as above.

Each quarter, all TGR students must enroll in the 801 (for master’s and Engineer students) or 802 (for doctoral students) course in their department for zero units, in the appropriate section for their adviser. TGR students register at a special tuition rate: $2,610 in 2005-06. Within certain restrictions, TGR students may enroll in additional courses, at the appropriate unit rate.

2. Graduate Final Requirement Registration: graduate students who need only a few remaining units to complete degree requirements or to qualify for TGR status, may register for one quarter on a unit basis (3 to 7 units) to cover the deficiency. This status may be used only once during a degree program.

Additional information on these registration categories is available from the Office of the University Registrar in the Old Union Building.

Matriculated graduate students who have Stanford fellowships or assistantships that require less than full-tuition registration may register at the unit rate required by their award. Honors Cooperative students register at the unit rate.

During the Autumn, Winter, and Spring quarters, matriculated graduate students in most departments may register at the 8-, 9-, or 10-unit rate if their enrollment plans are accepted by their departments. Students in the School of Engineering may register at the 8-, 9-, or 10-unit rate. Students in the schools of Law and Business, or the M.D. program in the School of Medicine, should consult appropriate school officers about tuition reduction eligibility.

Tuition exceptions may also be available for students who are faculty spouses, regular Stanford employees, or full-time educators in the Bay Area.

During Summer Quarter, most matriculated graduate students may register on the unit basis for 3 or more units. Students in schools and departments affiliated with the Honors Cooperative Program, as listed above, may not register for fewer than 11 units (8-unit minimum in Statistics only).

Nonmatriculated graduate students pay the same tuition rates as matriculated students, but must register for at least 8 units. Visiting researchers do not enroll in courses and pay the TGR rate. Within certain restrictions, postdoctoral students may enroll in courses if the appropriate unit rate for tuition is paid.

INTERNATIONAL STUDENTS

F-1 or J-1 visas are required by the U.S. Department of Homeland Security. International students must be registered as full-time students during the academic year. Summer Quarter registration is not required. International graduate students comply with immigration regulations while enrolled for partial tuition if their Stanford fellowships or assistantships require part-time enrollment, if they are in TGR status, or if they are in the final quarter of a degree program. Nonmatriculated international students must register for at least 8 units.
FEES

APPLICATION FEE

Contact the Undergraduate Admission Office for information about the undergraduate application fee and the Graduate Admission section of the Office of the University Registrar for the current graduate application fee. Application fees for the School of Law, the School of Medicine, and the Graduate School of Business vary by program. Fees are payable at the time of application and are not refundable.

ASSU FEES

The Associated Students of Stanford University (ASSU) fees are established by student vote in Spring Quarter. Fees directly fund activities of student organizations and not operations of ASSU. The 2005-06 fees are:

- Undergraduates — Autumn, $84; Winter, $84; Spring, $84
- Law — Autumn, $23; Winter, $22; Spring, $22
- Graduates — Autumn, $23

Fees are assessed each term. All fees are refundable. Refunds can be requested during the first three weeks of each quarter on the ASSU website at http://assu.stanford.edu. Those eligible are mailed refund checks by the eighth week of the academic year.

DOCUMENT FEE

Stanford charges a one-time Document Fee to all students admitted to new degree or non-degree programs in 1993 or later. The fee is paid once only, regardless of the number of degrees a student may ultimately pursue. It covers the cost of a variety of University administrative services such as enrollment and degree certification, course drops and adds done before published deadlines, diplomas, official transcripts and their production, and credential files maintained by the Career Development Center.

HEALTH INSURANCE FEE

The University requires all registered students to carry medical insurance to provide coverage for services not provided by Vaden Health Center. Students are enrolled in and charged for the Stanford student health insurance plan, unless they have completed waiver procedures by the second day of instruction. Those who carry medical insurance through an alternate carrier are generally eligible for waiver of the health insurance fee.

SPECIAL FEES

- New Student Orientation Fee — A fee is charged to all entering undergraduates for the costs of orientation, including room and board, and for the cost of class dues to provide funds for later activities of the class.
- School of Law Course Materials Fee — A fee is charged each semester to School of Law students for supplementary course materials.
- Late Fees — Charges are imposed for late submission of study lists and any changes to the study list after published deadlines. Amounts are listed in the quarterly Time Schedule.
- Laboratory Fee — Students in chemistry laboratory courses are charged a nonrefundable fee.
- Music Practice: Athletics, Physical Education, Recreation; and Dance — Courses for which special fees are charged are indicated in the Time Schedule.
- Dissertation Fee — Each Ph.D., D.M.A., and Ed.D. candidate is charged a fee to cover the cost of microfilming and binding the dissertation and the cost of publishing the abstract.
- International Scholar Service Fee — A one-time fee for visa authorization documents is charged to international postdoctoral and visiting scholars.

HOUSING

Bulletins with further information on housing rates are School of Law for Law School and Overseas Studies for Overseas Centers. See http://summer.stanford.edu for Summer Session rates.

Campus housing rates are generally below local area market rents. The approximate room rates for the 2005-06 academic year are as follows:

<table>
<thead>
<tr>
<th>Residence</th>
<th>Aut</th>
<th>Win</th>
<th>Spr</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undergraduate Single Student</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residence Halls and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>University-operated houses</td>
<td>$1,931</td>
<td>1,684</td>
<td>1,661</td>
<td>5,276</td>
</tr>
<tr>
<td>Theme or self-operated houses</td>
<td>2,397</td>
<td>2,020</td>
<td>1,993</td>
<td>6,410</td>
</tr>
<tr>
<td>Theme house, non-RoW (EAST)</td>
<td>2,316</td>
<td>2,020</td>
<td>1,993</td>
<td>6,329</td>
</tr>
<tr>
<td>Co-ops, Fraternity, Sorority, or student-cleaned houses with professional cooks</td>
<td>2,139</td>
<td>1,802</td>
<td>1,778</td>
<td>5,719</td>
</tr>
<tr>
<td>Mirrielees (apartments)</td>
<td>2,182</td>
<td>1,903</td>
<td>1,877</td>
<td>5,962</td>
</tr>
<tr>
<td>Suites</td>
<td>2,159</td>
<td>1,883</td>
<td>1,857</td>
<td>5,899</td>
</tr>
<tr>
<td>Graduate Single Student</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dormitories (single occupancy)</td>
<td>1,842</td>
<td>1,573</td>
<td>1,532</td>
<td>4,947</td>
</tr>
<tr>
<td>Dormitories (double occupancy)</td>
<td>1,300</td>
<td>1,110</td>
<td>1,081</td>
<td>3,491</td>
</tr>
<tr>
<td>Rains Houses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(apartments)</td>
<td>2,272</td>
<td>1,940</td>
<td>1,889</td>
<td>6,101</td>
</tr>
<tr>
<td>Richard W. Lyman (apartments)</td>
<td>2,272</td>
<td>1,940</td>
<td>1,889</td>
<td>6,101</td>
</tr>
<tr>
<td>Schwab Residential Center</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(apartments)</td>
<td>4,605</td>
<td>3,271</td>
<td>3,228</td>
<td>11,104</td>
</tr>
<tr>
<td>Escondido Village (single student apartments)</td>
<td>2,860</td>
<td>2,443</td>
<td>2,378</td>
<td>7,681</td>
</tr>
<tr>
<td>Studio (single occupancy)</td>
<td>1,542</td>
<td>1,317</td>
<td>1,282</td>
<td>4,141</td>
</tr>
<tr>
<td>1 bedroom (double occupancy)</td>
<td>2,272</td>
<td>1,940</td>
<td>1,889</td>
<td>6,101</td>
</tr>
<tr>
<td>2 bedroom (double occupancy)</td>
<td>1,542</td>
<td>1,317</td>
<td>1,282</td>
<td>4,141</td>
</tr>
<tr>
<td>3 bedroom</td>
<td>2,054</td>
<td>1,754</td>
<td>1,708</td>
<td>5,516</td>
</tr>
<tr>
<td>Couples without Children:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escondido Village</td>
<td>3,871</td>
<td>3,305</td>
<td>3,218</td>
<td>10,394</td>
</tr>
<tr>
<td>2 bedroom loft</td>
<td>4,403</td>
<td>3,760</td>
<td>3,661</td>
<td>11,824</td>
</tr>
<tr>
<td>Students with Children:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escondido Village</td>
<td>1 bedroom</td>
<td>$1,156 per month</td>
<td>3,871</td>
<td>3,305</td>
</tr>
<tr>
<td>2 bedroom</td>
<td>$1,324 per month</td>
<td>4,403</td>
<td>3,760</td>
<td>3,661</td>
</tr>
<tr>
<td>3 bedroom</td>
<td>$1,600 per month</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* All rates are approximate and subject to change.

All rates are per student. Room rates are charged quarterly on the University Bill. Information on payment options and procedures is discussed in housing assignment information from Housing Assignment Services and is available in complete detail from the Student Financial Services Office, Old Union, Room 105, Stanford University, Stanford, CA 94305-3025.

A quarterly house dues fee for students is generally determined by the local residence staff and/or residents of the house and may be included with room and board charges on the University Bill.

MEAL PLANS

Meals play a key role in Residential Education’s mission of community building, leading, and learning. Therefore, residents of University-managed housing with an attached Stanford Dining facility (Brunner, Florence Moore, Lakeside, Manzanita, Murray, Ricker, Stern, Wilbur, and Yost) are required to participate in a meal plan. Stanford Dining provides meal plans that offer maximum flexibility in dining locations.

Stanford Dining serves 19 meals each week: breakfast, lunch and dinner, Monday through Friday, and brunch and dinner on the weekends. There are three meal plans to choose from: 19 meals/week; 14 meals/week plus Cardinal Dollars; and 10 meals/week plus Cardinal Dollars. Each meal plan provides 5 bonus guest meals/quarter. Residents of Yost and Murray houses have a unique meal plan that includes an open kitchen.

Meal plans are billed on a quarterly basis, and the cost is pro-rated according to the number of days in each quarter. Cardinal Dollars provided as part of the 14 meal/week and 10 meal/week plans also vary, depending on the number of days in each quarter.
Students on this meal plan are able to partake of every meal that Stanford Dining serves. Students enter the dining hall and swipe their ID cards once. During this visit, they may make unlimited trips through the food service lines, and eat as much as they want.

14 Meals/week plus Cardinal Dollars—Students begin each week on Sunday with 14 all-you-care-to-eat meals available to them. Each quarter, a set amount of Cardinal Dollars is added to their ID card.

10 Meals/week plus Cardinal Dollars—Students begin each week on Sunday with 10 all-you-care-to-eat meals available to them. Each quarter, a set amount of Cardinal Dollars is added to their ID card.

Open Kitchen—Yost and Murray residents have 10 meals/week cooked and served in their house, one meal that can be used in another dining hall, and each resident is given a set amount of Cardinal Dollars every quarter. Each house also has a discretionary budget to purchase snacks or other food items as agreed upon by the house, available to residents in the open kitchen. Students at Yost and Murray houses are responsible for the cleanliness of the kitchens outside Stanford Dining’s hours of operation.

A complete description of each plan can be found at http://dining.stanford.edu.

CARDINAL DOLLARS

Cardinal Dollars are added to the Stanford ID card, and can be used in any Stanford Dining location, in all the residence dining halls to purchase guest meals in addition to the five guest meals each quarter, for additional meals over the weekly amount provided in the meal plan, and in Stanford Dining’s ten cafés and late night locations (CoHo, Subway, Peet’s Coffee, and Union Square at Tresidder; Olives at Building 160; the Café at the Alumni Center; Linn and Peet’s Coffee in the Clark Center; Late Night at Lakeside; and Stern’s Cyber Café).

Cardinal Dollars purchased as part of a meal plan must be used within each quarter; no more than 50 unused Cardinal Dollars carry over to the following quarter. All Cardinal Dollars expire in June, at the end of the academic year.

Cardinal Dollars that are purchased in addition to a meal plan carry over from quarter to quarter, and from year to year.

Adding Cardinal Dollars to a Stanford ID reduces the need to carry cash and offers the security and convenience of a card. Cardinal Dollars are available ($20 minimum purchase) at Stanford Dining’s Meal Plan Office on the second floor of Tresidder Memorial Union, at the Stanford Dining Central Office on Pampas Lane, or by email. Stanford Dining offers special bonuses on some Cardinal Dollars purchases.

For further information on Cardinal Dollars or Stanford Dining’s meal plans, contact Stanford Dining’s Meal Plan Offices (650-723-4751, 650-725-1508, diningplans@stanford.edu) or see http://dining.stanford.edu.

PAYMENTS

All charges and credits from offices within the University are aggregated in a student’s individual account and presented on the University Bill. Student Financial Services sends the University Bill to students one month before the start of each academic term. For accounts with a balance due, a second bill is mailed one month after the start of the term.

Students may view their account online 24 hours a day, seven days a week, at http://axess.stanford.edu. The bill and a payment stub may be printed using the Online Bill function.

Term fees, such as tuition, fees, room, board, and health insurance, are due and must be received (not postmarked) by 5:00 p.m. the day before the academic term begins. Because the total amount due may change between issuance of the pre-term bill and the start of the academic term due to student-initiated actions or adjustments to financial aid or graduate support, students should check their bill on Axess on or before the fee-payment deadline and remit payment for any remaining balance due.

After the start of the term, adding units may result in additional tuition charges. These charges are to be paid within three business days of posting to the account. Other fees, such as room damage repair charges, petition fees, late fees, lab fees, and other miscellaneous fees, are due 30 days after they are billed.

Fees may be paid: by mail at P.O. Box 20290, Stanford, CA 94309-0490; in person at the Cashier’s Office, 107 Old Union; or at the 24-hour secure drop box on the wall outside the Cashier’s Office. The Cashier’s Office is open from 8:00 a.m. to 5:00 p.m., Monday through Friday, excluding University holidays. Payments received in the drop box after 5:00 p.m. are processed the following business day.

ACCOUNT PENALTIES

Late Fees—Penalties accrue against past-due, unpaid term fees each week for the first six weeks of the academic term, beginning at 5:00 p.m. on the payment deadline. For details, see http://sfs.stanford.edu/sar/univbill.html.

Holds—Accounts past due more than 30 days are placed on hold. Holds block transcripts, diplomas, and enrollment eligibility.

Nonsufficient Funds—An administrative fee of $25 is assessed for each nonsufficient-funds return by the bank. Checks returned NSF are automatically re-presented to the bank for payment. Repeated incidents of NSF returns for a customer may result in suspension of check writing privileges and possible collection actions taken.

FORMS OF PAYMENT

Stanford accepts the following forms of payment: personal check, cashier’s check, money order, travelers checks in U.S. funds drawn on U.S. banks, cash, wire transfer (recommended for foreign students), and scholarship or loan proceeds endorsed to Stanford University. Stanford does not accept postdated checks or payment by credit or debit card. See http://sfs.stanford.edu/wiretransfer for wire transfer instructions.

REFUNDS

TUITION

Students who withdraw from the University before the end of a term may be eligible to receive refunds of portions of their tuition as described below.

ANNULLED REGISTRATION

Students who take a leave of absence from the University voluntarily before the first day of instruction may have their registrations annulled. Tuition is refunded in full. Such students are not included in University records as having registered for the term and new students will not secure any privileges for admission for any subsequent quarter as returning students. An annulment does not automatically cancel health coverage unless the annulment is granted before the first day of instruction. Financial aid recipients should be aware that a proportion of any refund is returned to the various sources of aid.

CANCELLATION OF REGISTRATION OR SUSPENSION FOR CAUSE

Students who have their registrations canceled or are suspended from the University for cause receive refunds on the same basis as those receiving leaves of absence unless otherwise specified in the disciplinary action taken. A student whose registration is canceled less than one week after the first day of instruction for an offense committed during a preceding quarter receives a full refund of tuition fees.
INSTITUTIONAL INTERRUPTION OF INSTRUCTION

It is the University’s intention to do everything reasonably possible to avoid taking the actions described in this paragraph. However, should the University determine that continuation of some or all academic and other campus activities is impracticable, or that their continuation involves a high degree of physical danger to persons or property, activities may be curtailed and students requested or required to leave the campus. In such an event, arrangements will be made as soon as possible to offer students the opportunity to complete their courses, or substantially equivalent work, so that appropriate credit may be given. Alternatively, the University may determine that students will receive refunds on the same basis as those receiving leaves of absence, or on some other appropriate basis.

LEAVE OF ABSENCE

A student in good standing who desires to take a leave of absence from the University after the first day of instruction, but before the end of the first 60 percent of the quarter, may file a petition for a leave of absence and tuition refund with the Office of the University Registrar. A leave of absence after the first 60 percent of the quarter is only granted for approved health and emergency reasons. Students granted a leave of absence are shown on the University transcript as having registered for the term. Courses in which the student was enrolled after the drop deadline will appear on the student’s record and will show the symbol “W” (withdrew). Undergraduates who take an approved leave for a maximum of two years while in good standing may enroll in the University for a subsequent quarter with the privileges of a returning student. Graduate students are subject to special registration requirements (see Leave of Absence in the “Graduate Degrees” section of this bulletin).

TUITION REFUND SCHEDULE

Students who take an approved leave of absence are eligible for a tuition refund during the first 60 percent of the quarter. Refunds are calculated on a per diem basis (including weekends and University holidays) starting the first day of instruction of each quarter. Tuition will be charged on a daily basis (including weekends and University holidays) through the first 60 percent of the quarter. After the first 60 percent of the quarter, students are liable for the full amount of tuition that they were charged. Health insurance charges are not refundable after the first day of instruction.

Per Diem Tuition Charges for Students Who Take a Leave of Absence

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Unit Rate</th>
<th>Unit Rate</th>
<th>Last Date for Tuition Refund</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autumn</td>
<td>$126.83</td>
<td>$82.80</td>
<td>$135.24</td>
</tr>
<tr>
<td>Winter</td>
<td>$140.54</td>
<td>$91.76</td>
<td>$149.86</td>
</tr>
<tr>
<td>Spring</td>
<td>$144.44</td>
<td>$94.31</td>
<td>$154.03</td>
</tr>
<tr>
<td>Summer</td>
<td>$192.59</td>
<td>$125.74</td>
<td>$205.37</td>
</tr>
</tbody>
</table>

For example: an undergraduate, who was charged the tuition rate of $10,400 for Autumn Quarter, becomes ill and informs the Registrar’s Office on the 17th day of the quarter that he or she wants to take a leave of absence. If the petition is approved, the student is charged for 17 days of tuition (17 days x $126.83 per day) or $2,156.11.

Separate schedules exist for students paying the medical, law, graduate business, or summer session rates. These schedules are available at the Office of the University Registrar.

Tuition refunds are calculated based on the date that the student last attended classes.

Students may not be entitled to any financial aid credits such as federal loans or University scholarships or grants that were previously placed on their accounts. The Financial Aid Office can confirm any amounts that may have been withdrawn from a student’s account as a result of not being enrolled.

The amount refundable based on the criteria outlined above, an overpayment of fees, or financial aid awards in excess of fees is presented on the University Bill in Axess. Refunds are processed routinely throughout the term, but students may also request immediate processing of a refund by filing a request through HelpSU, the University’s help request system at http://helpsu.stanford.edu.

Effective 2005-06, a student can receive a refund by direct deposit. Students are advised to maintain up-to-dated direct deposit details in Axess. Students who have not established direct deposit receive a check mailed to the mailing address as recorded in Axess. Checks for those without a mailing address are sent to the permanent home address.

Services regarding refunds may also be requested in person at Student Financial Services, Room 105 Old Union, or by phone at (650) 723-2181, Monday through Friday, 8 a.m. to 5 p.m., except University holidays.

ROO M AND MEAL PLAN REFUNDS

Students assigned to a University residence are subject to the conditions of the University Residence Agreement. Under this agreement, single students and couples without children are required to live somewhere in the University residence system for the entire academic year. Students with children may give notice of termination of occupancy for the end of each academic term. Room refunds are made only when students move out of the residence system and withdraw from the University. Students in all-male fraternities or all-female sororities are billed directly by the fraternity or sorority, and refunds are arranged between the student and the fraternity or sorority.

A meal plan refund is based on the date when a student moves out of his or her University residence. If a student uses the meal plan after that date, an additional daily charge will incur.

Any decision to refund prepaid room and meal plan charges or to waive liability for deferred charges shall ultimately be made at the sole discretion of the University. Students with questions about refunds should contact Housing Assignments (for room refunds) or the central office of Stanford Dining (for meal plan refunds).

HOUSING

University housing is available to enrolled Stanford students. Planning of educational programs, counseling and crisis intervention by residence deans, and administration of residence offices is coordinated for undergraduates by the department of Residential Education (see http://www.stanford.edu/dept/resed/, or phone 650-725-2800), and for graduate students by the Graduate Life Office (see http://www.stanford.edu/group/glo/, or phone 650-723-1171). Dining services, custodial services and maintenance are provided by Residential and Dining Enterprises (see http://www.stanford.edu/dept/hds/ or phone 650-723-2287).

Information on University housing assignments, options, policies, application procedures, and deadlines may be obtained from Housing Assignments, Old Union, Room 214, Stanford University, Stanford, CA 94305-3012, or telephone (650) 725-2810. Information regarding off-campus housing, as well as the off-campus subsidized housing program may be obtained from Community Housing Services, Old Union, Room 214, Stanford University, Stanford, CA 94305-3012, or telephone (650) 723-3906.

UNDERGRADUATE STUDENT RESIDENCES

RESIDENTIAL EDUCATION PROGRAM

The program in Residential Education provides for undergraduates certain dimensions of a college experience within a large research university. The essential conviction behind the Stanford residence program is that formal teaching, informal learning, and personal support in residences play an important role in a Stanford education. Residential Education programs extend the classroom into the residences and complement the academic curriculum with activities and experiences that contribute to students’ preparation for a life of leadership, intellectual engagement, citizenship, and service.
ASSIGNMENT TO UNDERGRADUATE RESIDENCES

Approximately 95 percent of undergraduates live in University housing (excepting students studying abroad during the academic year). All freshmen and transfers are required to live in University residences for educational reasons and are automatically assigned housing following admission. Residence assignments for continuing undergraduates are made on the basis of an annual lottery (called the Draw) and quarterly waiting lists. Undergraduates who enter Stanford as freshmen are guaranteed four years of University housing if they apply by the appropriate Draw deadlines and are willing to live anywhere on campus. Transfer students are guaranteed two or three years of housing, based on their entering class standing. For further information concerning housing eligibility, contact Housing Assignments, (650) 725-2810.

Undergraduate residences include traditional residence halls, language and culture residences, cross cultural theme houses, student-managed and cooperative houses, apartments, suites, fraternities, and sororities.

GRADUATE STUDENT RESIDENCES

RESIDENCE PROGRAM

The University’s philosophy of graduate student housing is based on the premise that supporting high quality graduate scholarship and research is central to the mission of the University. By providing affordable housing in proximity to academic resources, the University creates an environment conducive to research and intellectual dialogue among students, their peers, and faculty members.

ASSIGNMENT TO GRADUATE RESIDENCES

Approximately 60 percent of matriculated graduate students at the home campus live in University housing, and another five percent live in off-campus housing subsidized by the University. Residence assignments are made on the basis of an annual lottery and quarterly waiting lists. New matriculated single students and couples without children who apply for housing by the Lottery deadline and are willing to live in any residence for which they are eligible are guaranteed housing their first year at Stanford. New matriculated doctoral students with children who apply by the Lottery deadline are assured six years of University housing while enrolled. At Stanford University, new matriculated students are students who are in a graduate program for the first time. Students starting a second graduate degree are not considered new students and therefore are not guaranteed housing.

Single graduate students may request assignment to graduate apartments and residence halls, or to spaces in six undergraduate cooperative houses.

One-, two-, three-, and four-bedroom apartments are provided for couples without children and students with children, both graduate and undergraduate, based on student status and the number of dependents. Couple housing is available to students who are married and to students who have a same-sex or opposite-sex domestic partner. At Stanford University, a domestic partnership is defined as an established, long-term partnership with an exclusive mutual commitment in which the partners share the necessities of life and ongoing responsibility for their common welfare. Housing for students with children is available to married couples, domestic partners, and single parents who have dependent children living with them. Housing is not provided for extended families, including the parents and siblings of students, or live-in day care staff.

COMMUNITY HOUSING

Community Housing Services maintains computerized listings of private rooms, houses, and apartments in surrounding communities that are available to students desiring to live off-campus. Students must make rental arrangements directly with landlords. Information and publications on community housing may be obtained from Community Housing Services, Old Union Building, Room 214, Stanford University, Stanford, CA 94305-3012, or telephone (650) 723-3906. During early September, temporary accommodations are available in student residence halls at a modest charge for students searching for off-campus housing for Autumn Quarter. Contact Summer Conference Services for more information at (650) 725-1429.

RESIDENCE DEANS

Residence Deans provide assistance to on- and off-campus students. They can advise students about academic and personal matters, occasionally intervene directly in behavioral problems/mental health concerns, and assist with personal emergencies. Advice is also available on issues of academic probation or suspension, leaves of absence, special concerns of women or minorities, and administrative matters. Residence Deans work closely with the Dean of Students and other University offices. They are assigned to specific residences and to off-campus students; for further information, undergraduates should call Residential Education at (650) 725-2800, and graduate students should call the Graduate Life Office at (650) 723-1171.
Stanford University confers the degree of Bachelor of Arts (B.A.) or the degree of Bachelor of Science (B.S.) on those candidates who have been recommended by the Committee on Undergraduate Standards and Policy (C-USP), who have applied in advance for conferral of the degree, and who have fulfilled the following requirements:

1. A minimum of 180 units of allowable University work. (As described below, units above the allowable limits for activity courses and for courses taken on a satisfactory/no credit and credit/no credit basis cannot be counted towards the 180-unit minimum.)
2. The Writing, General Education, and Language Requirements (see below).
3. Curricular requirements of at least one major department or program and the recommendation of the department(s). (Descriptions of curricular and special degree requirements are included in each department’s section of this bulletin.)
4. Students admitted as freshmen Autumn 2001 and thereafter — A minimum of 135 units (including the last quarter in residence) at Stanford. In special cases, students who have earned at least 135 units in resident work and who have completed the General Education, Writing, and Language Requirements, as well as all major/minor requirements, may petition for a waiver of the last quarter-in-residence requirement.
5. Students admitted as freshmen prior to Autumn Quarter 2001 and students admitted as transfers — A minimum of 90 units (including the last quarter in residence) at Stanford. In special cases, students who have earned at least 90 units in resident work and who have completed the General Education, Writing, and Language Requirements, as well as all major/minor requirements, may petition for a waiver of the last quarter-in-residence requirement.

Stanford confers the Bachelor of Science degree on candidates who fulfill these requirements in the School of Earth Sciences, in the School of Engineering, or in the departments of Applied Physics, Biological Sciences, Chemistry, Mathematics, or Physics in the School of Humanities and Sciences. The University also awards B.S. degrees to candidates in the Program in Science, Technology, and Society; in the Program in Mathematical and Computational Science; in the Program in Symbolic Systems; and, when appropriate, in the Program for Individually Designed Majors. Candidates who fulfill these requirements in other schools or departments receive the Bachelor of Arts degree.

Students who complete the requirements for two or more majors, which ordinarily would lead to the same degree (B.A. or B.S.), should review “The Major” section of this bulletin to ensure that they have an understanding of the requirements for multiple or secondary majors.

The University confers the degree of Bachelor of Arts and Science (B.A.S.) on candidates who have completed, with no overlapping courses, the curricular requirements of two majors which ordinarily would lead to different bachelor’s degrees (that is, a Bachelor of Arts degree and a Bachelor of Science). These students must have applied in advance for graduation with the B.A.S. degree instead of the B.A. or B.S. degree, been recommended by the C-USP, and have fulfilled requirements 1, 2, and 4/5 above in addition to the requirements for multiple majors.

Students who cannot meet the requirements for both majors without overlapping courses are not eligible for the B.A.S., but may apply to have a secondary major recorded on their transcripts. (See “The Major” section below.)

A Stanford undergraduate may work concurrently toward both a B.A. and a B.S. degree. To qualify for both degrees, a student must complete:

1. A minimum of 225 units of University work. (As described below, units above the allowable limits for activity courses and for courses taken on a satisfactory/no credit and credit/no credit basis cannot be counted towards the 225 minimum.)
3. The curricular requirements of two majors (one of which leads to a Bachelor of Arts degree and the other to a Bachelor of Science degree).
4. Students admitted as freshmen Autumn Quarter 2001 and thereafter — A minimum of 180 units (including the last quarter in residence) at Stanford. In special cases, students who have earned at least 180 units in resident work and who have completed the General Education, Writing, and Language Requirements, as well as all major/minor requirements, may petition for a waiver of the last quarter-in-residence requirement.
5. Students admitted as freshmen prior to Autumn Quarter 2001 and students admitted as transfers — A minimum of 135 units (including the last quarter in residence) at Stanford. In special cases, students who have earned at least 135 units in resident work and who have completed the General Education, Writing, and Language Requirements, as well as all major/minor requirements, may petition for a waiver of the last quarter-in-residence requirement.

A student interested in dual bachelor’s degrees should file a “Statement of Intention to Declare Dual Degrees” with the University Registrar’s Office no later than two quarters in advance of completing the program. The statement is submitted on a standard petition form along with recommendations of appropriate representatives of the two departments whose major requirements the student is expecting to fulfill.

Students who do not meet the higher unit and residence requirements of the dual degree option may be eligible instead for the B.A.S. degree as described above.

Stanford does not award a second Bachelor of Arts degree to an individual who already holds a Bachelor of Arts, nor a Bachelor of Science degree to an individual who already holds a Bachelor of Science degree. However, the holder of a Bachelor of Arts degree from Stanford may apply to the Subcommittee on Academic Standing for admission to candidacy for a Bachelor of Science degree, and the holder of a Bachelor of Science degree from Stanford may apply for candidacy for a Bachelor of Arts degree. The Subcommittee on Academic Standing may determine whether the application for a second degree will be approved and/or the conditions a student must meet in order to be allowed to earn a second degree. A recommendation of the major department for the second bachelor’s degree must accompany the application.

Generally, a holder of a B.A. or B.S. degree may not apply for the Bachelor of Arts and Sciences degree, although a student may submit a petition for exception. The Office of the University Registrar’s Degree Progress section in Old Union reviews these petitions. A student approved for this program may register as an undergraduate and is subject to the current rules and regulations affecting undergraduates. Requirements for a second Stanford bachelor’s degree are the same as those described above for dual bachelor’s degrees.

The coterminous degree program allows undergraduates to study for a master’s degree while completing their bachelor’s degree(s) in the same or a different department. Undergraduates with strong academic records may
apply for admission to a coterminus master’s program upon completion of 120 units, but no later than the quarter prior to the expected completion of the undergraduate degree. Full-time enrollment during Summer Quarters, as well as allowable undergraduate transfer credit, are also counted towards quarters of under graduate study. Students who wish to apply for a master’s program after these deadlines must apply through the regular graduate admissions process.

To apply for admission to a coterminus master’s program, students must submit to the prospective graduate department the following: coterminus application, statement of purpose, preliminary program proposal, two letters of recommendation from Stanford professors, and a current Stanford transcript. Graduate Record Examination (GRE) scores or other requirements may be specified by the prospective department.

For coterminus students, the quarter following completion of 12 full-tuition undergraduate quarters is identified as the first graduate quarter for tuition assessment. Beginning with this quarter, coterminus students are subject to graduate student policies and procedures (including those described in the “Graduate Degrees” section of this bulletin) in addition to undergraduate minimum progress standards. These policies include continuous registration or leaves of absence for quarters not enrolled and minimal progress guidelines.

In the first graduate quarter, a coterminus student is assigned an adviser in the master’s department for assistance in planning a program of study to meet the requirements for the master’s degree. The plan is outlined on the Program Proposal for a Master’s Degree, which is approved by the master’s department by the end of the first graduate quarter. Authorizations for master’s programs expire three calendar years from the first graduate quarter. An extension requires review of academic performance by the department.

The specific University residency, unit requirement, and additional policies for a bachelor’s/master’s program are described under Residency and Unit Requirements in Coterminal Programs in the “Graduate Degrees” section of this bulletin. Conferment of each degree is applied for separately by the deadlines given in the University Time Schedule. The master’s degree must be conferred simultaneously with, or after, the bachelor’s degree.

DEGREE REQUIREMENTS

A LIBERAL EDUCATION

As do all major universities, Stanford provides the means for its undergraduates to acquire a liberal education, an education that broadens the student’s knowledge and awareness in each of the major areas of human knowledge, that significantly deepens understanding of one or two of these areas, and that prepares him or her for a lifetime of continual learning and application of knowledge to career and personal life.

The undergraduate curriculum at Stanford allows considerable flexibility. It permits each student to plan an individual program of study that takes into account personal educational goals consistent with particular interests, prior experience, and future aims. All programs of study should achieve some balance between depth of knowledge acquired in specialization and breadth of knowledge acquired through exploration. Guidance as to the limits within which that balance ought to be struck is provided by the University’s General Education Requirements and by the requirements set for major fields of study.

These educational goals are achieved through study in individual courses that bring together groups of students examining a topic or subject under the supervision of scholars. Courses are assigned credit units. To earn a bachelor’s degree, the student must complete at least 180 allowable units and, in so doing, also complete the Writing Requirement, the General Education Requirements, the Language Requirement, and the requirements of a major.

The purpose of the Writing Requirement is to promote effective communication by ensuring that every undergraduate can write clear and effective English prose. Words are the vehicles for thought, and clear thinking requires facility in writing and speech.

The Language Requirement ensures that every student gains a basic familiarity with a foreign language. Foreign language study extends the student’s range of knowledge and expression in significant ways, providing access to materials and cultures that otherwise would be out of reach.

The General Education Requirements provide guidance toward the attainment of breadth and stipulate that a significant share of a student’s work must lie outside an area of specialization. These requirements ensure that every student is exposed to different ideas and different ways of thinking. They enable the student to approach and to understand the important “ways of knowing” to assess their strengths and limitations, their uniqueness, and, no less important, what they have in common with others.

Depth, the intensive study of one subject or area, is provided through specialization in a major field. The major relates more specifically to a student’s personal goals and interests than do the general requirements outlined above. Stanford’s curriculum provides a wide range of standard majors through its discipline-oriented departments, a number of interdisciplinary majors in addition to department offerings, and the opportunity for students to design their own major programs.

Elective courses, which are not taken to satisfy requirements, play a special role in tailoring the student’s program to individual needs. For most students, such courses form a large portion of the work offered for a degree. Within the limitations of requirements, students may freely choose any course for which previous studies have prepared them.

Following are more detailed descriptions of these various requirements and the rationales upon which they are based.

THE GENERAL EDUCATION REQUIREMENTS

PURPOSE

The General Education Requirements are an integral part of undergraduate education at Stanford. Their purpose is: 1) to introduce students to a broad range of fields and areas of study within the humanities, social sciences, natural sciences, applied sciences, and technology; and 2) to help students prepare to become responsible members of society. Whereas the concentration of courses in the major is expected to provide depth, the General Education Requirements have the complementary purpose of providing breadth to a student’s undergraduate program. The requirements are also intended to introduce students to the major social, historical, cultural, and intellectual forces that shape the contemporary world.

Fulfillment of the General Education Requirements in itself does not provide a student with an adequately broad education any more than acquiring the necessary number of units in the major qualifies the student as a specialist in the field. The major and the General Education Requirements are meant to serve as the nucleus around which the student is expected to build a coherent course of study by drawing on the options available among the required and elective courses.

Information regarding courses that have been certified to fulfill the General Education Requirements, and regarding a student’s status in meeting these requirements, is available at the Office of the University Registrar. Course planning and advising questions related to the General Education Requirements should be directed to the Undergraduate Advising Programs.

It is the responsibility of each student to ensure that he or she has fulfilled the requirements by checking in Axess within the Undergraduate Progress function or by checking with the Office of the University Registrar. This should be done at least two quarters before graduation.

Students should be very careful to note which set of General Education Requirements apply to them. The date of matriculation at Stanford determines which requirements apply to an individual student.

During Autumn Quarter 2004-05, the Academic Senate approved modifications to undergraduate General Education Requirements that became effective Autumn Quarter 2005-06 for all matriculated undergraduates who entered Stanford in Autumn Quarter 1996 and thereafter. The purpose of these modifications was 1) to give students a fuller and more articulate understanding of the purposes of the requirements and of a liberal arts education that these requirements embody; 2) to make a place
in the curriculum for ethical reasoning to help make students aware of how pervasive ethical reasoning and value judgments are throughout the curriculum, and 3) to provide some greater freedom of choice by reducing the GERs by one course.

AREA REQUIREMENTS

Following is the new structure for General Education Requirements:

Introduction to the Humanities—one quarter introductory courses followed by two quarter thematic sequences.

Introduction to the Humanities builds an intellectual foundation in the study of human thought, values, beliefs, creativity, and culture. These courses introduce students to methods of inquiry in the humanities: interdisciplinary methods in Autumn Quarter and discipline-based methods in the Winter and Spring quarters.

Disciplinary Breadth—requirement satisfied by completing five courses of which one course must be taken in each subject area.

Disciplinary Breadth gives students educational breadth by providing experience in the areas of Engineering and Applied Sciences, Humanities, Mathematics, Natural Sciences, and the Social Sciences.

Education for Citizenship—requirement satisfied by completing two courses in different subject areas; or completing two Disciplinary Breadth courses which also satisfy different Education for Citizenship subject areas.

Education for Citizenship provides students with some of the skills and knowledge that are necessary for citizenship in contemporary national cultures and participation in the global cultures of the 21st century. Education for Citizenship is divided into four subject areas: Ethical Reasoning, the Global Community, American Cultures, and Gender Studies.

Courses certified as meeting the General Education Requirements must be taken for a letter grade and a minimum of 3 units of credit. A single course may be certified as fulfilling only one subject area within the General Education Requirements; the one exception is that a course may be certified to fulfill an Education for Citizenship subject area in addition to a Disciplinary Breadth subject area.

Courses that have been certified as meeting the requirements are identified throughout this bulletin with the notational symbols listed below. A comprehensive list of certified courses also appears in the Time Schedule of Classes for that quarter.

Disciplinary Breadth

DB-EngrAppSci (formerly GER:2b): Engineering and Applied Sciences

DB-Hum (formerly GER:3a): Humanities

DB-Math (formerly GER:2c): Mathematics

DB-NatSci (formerly GER:2a): Natural Sciences

DB-SocSci (formerly GER:3b): Social Sciences

Education for Citizenship

EC-AmerCul (formerly GER:4b): American Cultures

EC-GlobalCom (formerly GER:4a): Global Community

EC-Gender (formerly GER:4c): Gender Studies

EC-EthicReas: Ethical Reasoning

Continuing undergraduates who entered Stanford prior to Autumn 1996 may elect to complete either the set of Distribution Requirements in effect when they entered or the set of General Education Requirements effective Autumn 1996, revised Autumn 2005, and described above. Note: students will not, however, be permitted to mix the requirements of the two systems or to change from one system to the other after they have elected the system under which they wish to be monitored for graduation. If the 1996 (revised 2005) program of General Education Requirements is chosen, only certified courses passed with a letter grade and taken for 3 or more units can fulfill the requirements.

CREDIT TRANSFER

Students may propose that work taken at another college or university be accepted in fulfillment of a General Education Requirement. In such cases, the Office of the University Registrar’s External Credit Evaluation staff determines, after appropriate faculty consultation, whether the work is comparable to any of the specifically certified courses or course sequences.

THE WRITING AND RHETORIC REQUIREMENT

All instructors at Stanford University expect students to express themselves effectively in writing and speech. The Writing and Rhetoric requirement helps students meet those high expectations.

All candidates for the bachelor’s degree, regardless of the date of matriculation, must satisfy the Writing and Rhetoric requirement. Transfer students are individually advised at the time of matriculation by the Office of the University Registrar’s External Credit Evaluation section and, if necessary, the Program in Writing and Rhetoric (PWR) as to their status with regard to the requirement.

The current Writing and Rhetoric requirement, effective beginning 2003, includes courses at three levels. The first two levels are described in more detail below. Writing-intensive courses that fulfill the third level, the Writing in the Major (WIM) requirement, are designated under individual department listings.

All undergraduates must satisfy the first-level Writing and Rhetoric requirement (WR 1) in one of three ways:

1. PWR 1: a course emphasizing writing and research-based argument.

2. SLE: writing instruction in connection with the Structured Liberal Education program.

3. Transfer credit approved by the Registrar’s External Credit Evaluation office for this purpose.

All undergraduates must satisfy the second-level Writing and Rhetoric Requirement (WR 2) in one of four ways:

1. PWR 2, a course emphasizing writing, research, and oral presentation.

2. SLE: writing instruction in connection with the Structured Liberal Education program.

3. A course offered through a department or program certified as meeting the WR 2 requirement by the Writing and Rhetoric Governance Board. These courses will be designated as DWR 2.

4. Transfer credit approved by the Office of the University Registrar’s External Credit Evaluation section for this purpose.

A complete listing of PWR 1 courses is available each quarter on the PWR web site at http://pwr.stanford.edu, and at the PWR office in Building 460, Room 223. Complete listings of PWR 2 and DWR 2 courses are available to students on the PWR web site the quarter before they are scheduled to complete the WR 2 requirement.

For a full description of the Program in Writing and Rhetoric (PWR), see the “Writing and Rhetoric, Program in” section of this bulletin under the School of Humanities and Sciences.

Students who matriculated prior to Autumn 2003 should consult previous issues of the Stanford Bulletin and the “Writing and Rhetoric, Program in” section of this bulletin under the School of Humanities and Sciences to determine what requirements apply.
THE LANGUAGE REQUIREMENT

To fulfill the Language Requirement, undergraduates who entered Stanford in Autumn 1996 and thereafter are required to complete one year of college-level study or the equivalent in a foreign language. Students may fulfill the requirement in any one of the following ways:

1. Complete three quarters of a first-year, 4-5 units language course at Stanford or the equivalent at another recognized post-secondary institution subject to current University transfer credit policies.

2. Score 4 or 5 on the Language Advanced Placement (AP) test in one of the following languages: French, German, Latin, or Spanish. Advanced Placement (AP) tests in foreign literature do not fulfill the requirement.

3. Achieve a satisfactory score on the SAT II Subject Tests in the following languages taken prior to college matriculation:
 - Chinese 630
 - French 640
 - German 630
 - Latin 630
 - Spanish 630

4. Take a diagnostic test in a particular language which either:
 a) Places them out of the requirement, or
 b) Diagnoses them as needing one, two, or three additional quarters of college-level study. In this case, the requirement can then be fulfilled either by passing the required number of quarters of college-level language study at Stanford or the equivalent elsewhere, or by retaking the diagnostic test at a later date and placing out of the requirement.

Written placements are offered online throughout the summer in Chinese, French, German, Japanese, Russian, Spanish, and Spanish for home background speakers.

For a full description of Language Center offerings, see “Language Center” under the school of Humanities and Sciences’ Course Descriptions.

CREDIT

ADVANCED PLACEMENT

Stanford University allows up to 45 units of credit toward graduation for work completed in high school as part of the College Entrance Examination Board (CEEB) Advanced Placement curriculum. The awarding of such credit is based on CEEB Advanced Placement test scores and is subject to University and department approval.

The faculty of a given department determine whether any credit toward the 180-unit requirement can be based on achievement in the CEEB Advanced Placement Program in their discipline. Stanford departments electing to accept the Advanced Placement (AP) credit are bound by these University policies:

1. Credit is usually granted for an AP score of 4 or 5. Usually, 10 quarter units are awarded (but occasionally fewer than 10). No more than 10 quarter units may be given for performance in a single examination.
2. Whether credit is to be given for an AP score of 3 is a matter for departmental discretion; up to 10 units may be awarded.
3. No credit may be authorized for an AP score lower than 3.

AP SCORING AND PLACEMENT

<table>
<thead>
<tr>
<th>Test Subject</th>
<th>Score</th>
<th>Placement</th>
<th>Quarter Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry</td>
<td>4.5</td>
<td>CHEM 33 or above</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science AB</td>
<td>4.5</td>
<td>CS 106B or 106X, or 107</td>
<td>5</td>
</tr>
<tr>
<td>Computer Science A</td>
<td>4.5</td>
<td>CS 106B or 106X</td>
<td>5</td>
</tr>
<tr>
<td>Economics (Macro and Micro)</td>
<td>8.9,10</td>
<td>ECON 50</td>
<td>5</td>
</tr>
<tr>
<td>French (Language)</td>
<td>5</td>
<td>FRENLANG 22 or (or higher by placement exam only)</td>
<td>10</td>
</tr>
<tr>
<td>German (Language)</td>
<td>5</td>
<td>GERLANG 21 or 21W or (or higher by placement exam only)</td>
<td>10</td>
</tr>
<tr>
<td>Math AB</td>
<td>5</td>
<td>MATH 51</td>
<td>10</td>
</tr>
<tr>
<td>Math BC</td>
<td>4.5</td>
<td>MATH 51</td>
<td>5</td>
</tr>
<tr>
<td>Math AB subscore</td>
<td>3</td>
<td>MATH 42</td>
<td>5</td>
</tr>
<tr>
<td>Physics B</td>
<td>5</td>
<td>PHYSICS 25</td>
<td>8</td>
</tr>
<tr>
<td>Physics C (2 parts)</td>
<td>4.5</td>
<td>PHYSICS 43 and 45 or PHYSICS 41, 43, and 45</td>
<td>4</td>
</tr>
<tr>
<td>Mechanics only</td>
<td>3</td>
<td>PHYSICS 41, 43, and 45</td>
<td>4</td>
</tr>
<tr>
<td>E&M only</td>
<td>4.5</td>
<td>PHYSICS 41 and 45</td>
<td>5</td>
</tr>
<tr>
<td>Both Parts</td>
<td>4.5</td>
<td>PHYSICS 41, 43, and 45</td>
<td>5</td>
</tr>
<tr>
<td>Spanish (Language)</td>
<td>5</td>
<td>SPANLANG 11 or (or higher by placement exam only)</td>
<td>10</td>
</tr>
</tbody>
</table>

1 A minimum score of 4 on both tests receives 5 quarter units.

Stanford University awards advanced placement credit for certain international advanced placement subject examinations. The international test subjects must match the content of the College Entrance Examination Board (CEEB) Advanced Placement test subjects that receive advanced placement credit.

ACTIVITY COURSES

For undergraduates who entered Autumn 1996 and thereafter, a maximum of 8 units of credit earned in activity courses, regardless of the offering department or if accepted as transfer units, count towards the 180 (225 if dual degrees are being pursued) units required for the bachelor’s degree. All activity courses are offered on a satisfactory/no credit basis.

COURSES TAKEN ON SATISFACTORY/NO CREDIT OR CREDIT/NO CREDIT BASIS

For undergraduates who entered Autumn 1996 and thereafter, a maximum of 36 units of credit (including activity courses) taken at Stanford or its overseas campuses for a “CR” or “S” grade may be applied towards the 180 (225 if dual degrees are being pursued) units required for the bachelor’s degree. For those who entered Stanford as transfer students in Autumn 1996 and thereafter, the maximum is 27 units.

Departments may also limit the number of satisfactory or credit courses accepted towards the requirements for a major. Satisfactory/credit courses applied towards a minor may be similarly limited. Courses not letter-graded are not accepted in fulfillment of the General Education Requirements applicable to undergraduate students who entered Stanford in Autumn 1996 and thereafter. Writing in the Major courses are usually offered letter grade only. In those instances where the course is offered for a letter grade or CR/NC, the course must be taken for a letter grade.

INTERNSHIP GUIDELINES

Undergraduate internships should not by themselves carry any credit. However, an individual student may arrange with a faculty member for a research or other academic project to be based on the internship. Arrangements between students and faculty regarding credit are expected to be made well in advance of the internship. Credit should be arranged within departmental rules for directed reading or independent study and should meet the usual department standards. No transfer credit is awarded for internships.
Academic work for credit done elsewhere will be allowed toward a Stanford bachelor's degree under the following rules and conditions:

1. Credit may be granted for work completed at institutions in the U.S. only if the institutions are accredited.
2. Study in institutions outside the U.S., when validated by examination results, tutorial reports, or other official evidence of satisfactory work, may be credited toward a Stanford bachelor's degree, subject to the approval of the credit evaluator and the appropriate departments.
3. Credit is officially allowed only after the student has been conditionally admitted to Stanford.
4. Credit is allowed for work completed at institutions in the U.S. only on the basis of an official transcript received by the Registrar at Stanford directly from the institution where the credit was earned.
5. Credit from another institution will be transferred for courses which are substantially equivalent to those offered at Stanford University on the undergraduate level, subject to the approval of the credit evaluator. A maximum of 20 quarter units may represent courses which do not parallel specific courses at Stanford, again, subject to the approval of the credit evaluator as to quality and suitability.
6. The credit allowed at Stanford for one quarter’s work may not exceed the number of units that would have been permissible for one quarter if the work had been done at Stanford; for work done under a system other than the quarter system, the permissible maximum units are calculated at an appropriate ratio of equivalence.
7. Credit is allowed at Stanford for work graded ‘A,’ ‘B,’ ‘C,’ or ‘Pass’ (where ‘Pass’ is equivalent to a letter grade of ‘C’ or above), but not for work graded ‘D’ or below.
8. No more than 45 (90 for transfer students) quarter units of credit for work done elsewhere will be allowed toward a Stanford bachelor's degree.
9. Credit earned in extension and correspondence courses is transferable only if the university offering the courses allows that credit toward its own bachelor's degree. Such credit is limited to a maximum of 45 quarter units for extension courses, a maximum of 15 quarter units for correspondence and online study, and a maximum of 45 quarter units for the combination of extension, correspondence, and online courses.
10. Credit earned in military training and service is not transferable to Stanford, unless offered by an accredited college or university in the U.S. and evaluated as above by the credit evaluator.

Students may enroll concurrently at Stanford and at another college or university. The following policies apply to Concurrent Enrollment:

1. Students may not exceed 20 quarter units between both schools. This is the same unit maximum for undergraduate students at Stanford. (One semester credit or hour generally equals 1.5 quarter units.)
2. Satisfactory academic progress is determined only by Stanford courses and units. Transfer work completed at other institutions is not considered in this calculation.
3. Students are expected to consult with Transfer/External Credit Evaluation (Old Union, Room 141) if planning to transfer the work back to Stanford. Consultations should be completed prior to enrolling in the transfer institution.

The primary purpose of the major is to encourage each student to explore a subject area in considerable depth. This in-depth study complements the breadth of study promoted by the General Education Requirements and, in many cases, by a student’s choice of electives. Work in depth permits practice in critical analysis and the solving of problems. Because of its depth, such study also provides a sense of how knowledge grows and is shaped by time and circumstances.

The structure of a major should be a coherent reflection of the logic of the discipline it represents. Ideally, the student should be introduced to the subject area through a course providing a general overview, and upper-division courses should build upon lower-division courses. The course of study should, if feasible, give the student the opportunity and responsibility of doing original, creative work in the major subject. Benefits of the major program are greatest when it includes a culminating and synthesizing experience such as a senior seminar, an undergraduate thesis, or a senior project.

Undergraduates must select a major by the time they achieve junior status (90 units completed). All undergraduate major programs listed in this bulletin, except for certain honors degree programs that require application and admission in advance, are open to all students. Students may use Axess to declare, drop or exchange a major at any time. In some departments or programs, though, a late change could easily result in extending the period of undergraduate study. Students who have applied to graduate, wish to declare an individually designed major or pursue a dual B.A./B.S. degree, and coterminal students must use printed forms to select or change a major. Students requiring assistance should contact the Office of the University Registrar.

Faculty set the minimum requirements for the major in each department. These requirements usually allow latitude for tailoring a major program to a student’s specific educational goals. The responsibility for developing a major program within department or program requirements lies ultimately with the individual student working in consultation with the major adviser.

Students pursuing multiple majors must complete a multiple major program form indicating which courses they plan to apply toward each major and any minor(s). Departments must certify that the plan of study meets all requirements for the majors and any minor(s) without unallowable overlaps in course work. To facilitate advance planning, multiple major program forms are available at any time from http://registrar.stanford.edu. This must be submitted to the Office of the University Registrar by the application to graduate deadline for the term in which the student intends to graduate.

When students cannot meet the requirements of multiple majors without overlaps, the secondary major, outlined below, may be relevant.
UNDERGRADUATE MAJOR UNIT REQUIREMENTS

<table>
<thead>
<tr>
<th>Major Department</th>
<th>Units required outside the dept./program</th>
<th>Units required within the dept./program</th>
<th>Total # of units</th>
<th>Notes/Special Requirements</th>
<th>WIM Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Earth Sciences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earth Systems</td>
<td>84-100</td>
<td>28</td>
<td>130</td>
<td>internship, senior seminar</td>
<td>EARTHSYS 210</td>
</tr>
<tr>
<td>Geological & Environmental Sciences</td>
<td>31-36</td>
<td>38-55</td>
<td>69-91</td>
<td>advanced summer field experience</td>
<td>GES 150</td>
</tr>
<tr>
<td>Engr Geol. & Hydrogeology</td>
<td>44-47</td>
<td>45-55</td>
<td>89-102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geophysics</td>
<td>43-45</td>
<td>15</td>
<td>min. 58</td>
<td></td>
<td>GEPHYPS 185</td>
</tr>
<tr>
<td>Petroleum Engineering</td>
<td>74</td>
<td>39-40</td>
<td>111-112</td>
<td></td>
<td>PETENG 180</td>
</tr>
<tr>
<td>School of Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>min. 54</td>
<td>min. 62</td>
<td>min. 116</td>
<td>CHEMENG 185</td>
<td></td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>min. 57</td>
<td>min. 59</td>
<td>min. 116</td>
<td>CEE 100</td>
<td></td>
</tr>
<tr>
<td>Environmental Engineering</td>
<td>min. 57</td>
<td>min. 59</td>
<td>min. 116</td>
<td>CEE 100</td>
<td></td>
</tr>
<tr>
<td>Computer Science</td>
<td>33-57</td>
<td>47-66</td>
<td>97-112</td>
<td>senior project</td>
<td>CS 191W,194,201,294W</td>
</tr>
<tr>
<td>Computer Systems Engineering</td>
<td>43-52</td>
<td>57-66</td>
<td>104-114</td>
<td>senior project</td>
<td>CS 191W,194,201,294W</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>45</td>
<td>68</td>
<td>113</td>
<td>ENGR 102E and EE 108A</td>
<td></td>
</tr>
<tr>
<td>Engineering (Individually Designed)</td>
<td>min. 41</td>
<td>40</td>
<td>90-107</td>
<td>see adviser</td>
<td></td>
</tr>
<tr>
<td>Management Science and Engineering</td>
<td>46-79</td>
<td>45-60</td>
<td>96-134</td>
<td>senior project</td>
<td>MS&E 152W,193W,197</td>
</tr>
<tr>
<td>Material Science and Engineering</td>
<td>53-59</td>
<td>52</td>
<td>105-111</td>
<td>MATSCI 161</td>
<td></td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>69-79</td>
<td>56</td>
<td>125-135</td>
<td>ENGR 102M and ME 203</td>
<td></td>
</tr>
<tr>
<td>Product Design</td>
<td>72-74</td>
<td>31</td>
<td>103-105</td>
<td>ENGR 102M and ME 203</td>
<td></td>
</tr>
<tr>
<td>School of Humanities and Sciences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>African and African American Studies</td>
<td>50</td>
<td>10</td>
<td>60</td>
<td>CSRE senior sem.</td>
<td>AFRICAAM 105</td>
</tr>
<tr>
<td>American Studies</td>
<td>20-25</td>
<td>35-40</td>
<td>60</td>
<td>AMSTUD 160</td>
<td></td>
</tr>
<tr>
<td>Anthropological Sciences</td>
<td>—</td>
<td>45</td>
<td>65</td>
<td>ANTHSCI 190,290A</td>
<td></td>
</tr>
<tr>
<td>Archaeology</td>
<td>45</td>
<td>20</td>
<td>65</td>
<td>ARCHLGY 104</td>
<td></td>
</tr>
<tr>
<td>Art</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>—</td>
<td>56</td>
<td>56</td>
<td>library orientation</td>
<td></td>
</tr>
<tr>
<td>Film and Media Studies</td>
<td>8</td>
<td>59</td>
<td>67</td>
<td>senior seminar</td>
<td></td>
</tr>
<tr>
<td>Studio</td>
<td>—</td>
<td>65</td>
<td>65</td>
<td>library orientation</td>
<td></td>
</tr>
<tr>
<td>Asian American Studies</td>
<td>55</td>
<td>5</td>
<td>60</td>
<td>CSRE senior sem.</td>
<td>See CSRE</td>
</tr>
<tr>
<td>Asian Languages</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chinese</td>
<td>0-16</td>
<td>27-43</td>
<td>min. 43</td>
<td>CHINGEN 133</td>
<td></td>
</tr>
<tr>
<td>Japanese</td>
<td>0-20</td>
<td>23-43</td>
<td>min. 43</td>
<td>JAPANGEN 138</td>
<td></td>
</tr>
<tr>
<td>Biological Sciences</td>
<td>46-56</td>
<td>47-48</td>
<td>93-104</td>
<td>BIOSCI 44X,44Y,54,55, 145,165H,175H,176H BIOHOPK 44Y</td>
<td></td>
</tr>
<tr>
<td>Chemistry</td>
<td>34</td>
<td>52</td>
<td>86</td>
<td>CHEM 134</td>
<td></td>
</tr>
<tr>
<td>Chicana/o Studies</td>
<td>55</td>
<td>5</td>
<td>60</td>
<td>CSRE senior sem.</td>
<td>See CSRE</td>
</tr>
<tr>
<td>Classics</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>CLASSGEN 176</td>
<td></td>
</tr>
<tr>
<td>Communication</td>
<td>5</td>
<td>min. 60</td>
<td>65</td>
<td>COMM 120</td>
<td></td>
</tr>
<tr>
<td>Comparative Literature</td>
<td>60-65</td>
<td>depends on track</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparative Studies in Race & Ethnicity</td>
<td>55</td>
<td>5</td>
<td>60</td>
<td>CSRE senior sem.</td>
<td>CSRE 200X</td>
</tr>
<tr>
<td>Cultural and Social Anthropology</td>
<td>—</td>
<td>40</td>
<td>65</td>
<td>foreign language</td>
<td>CASA 90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2nd-year level</td>
<td></td>
</tr>
<tr>
<td>Major Department</td>
<td>Units required outside the dept./program</td>
<td>Units required within the dept./program</td>
<td>Total # of units</td>
<td>Notes/Special Requirements</td>
<td>WIM Course</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---</td>
<td>------------------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>Drama</td>
<td>—</td>
<td>65</td>
<td>65</td>
<td></td>
<td>DRAMA 160, 163</td>
</tr>
<tr>
<td>East Asian Studies</td>
<td>75</td>
<td>1</td>
<td>75</td>
<td>senior essay; seminar Overseas studies; E. Asian country 1 quarter</td>
<td>CHINGEN 133; JAPANGEN 138; HISTORY 256</td>
</tr>
<tr>
<td>Economics</td>
<td>—</td>
<td>75-80</td>
<td>75-80</td>
<td></td>
<td>ECON 101</td>
</tr>
<tr>
<td>English</td>
<td></td>
<td>60</td>
<td>60</td>
<td></td>
<td>ENGLISH 160</td>
</tr>
<tr>
<td>w/ Creative Writing</td>
<td></td>
<td>60</td>
<td>60</td>
<td>dept. approval</td>
<td></td>
</tr>
<tr>
<td>w/ Interdisciplinary Emphasis</td>
<td></td>
<td>20</td>
<td>50</td>
<td>dept. approval and interdisciplinary paper</td>
<td></td>
</tr>
<tr>
<td>w/ Interdepartmental Emphasis</td>
<td></td>
<td>20</td>
<td>45</td>
<td>20 units in foreign lang. lit.; dept. approval</td>
<td></td>
</tr>
<tr>
<td>Feminist Studies</td>
<td>45</td>
<td>15 core</td>
<td>60</td>
<td>focus statement; practicum</td>
<td>FEMST 103</td>
</tr>
<tr>
<td>French and Italian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>French</td>
<td>max. 24</td>
<td>32 above #100</td>
<td>56 above #100</td>
<td></td>
<td>FREN 130, 131,132,133</td>
</tr>
<tr>
<td>French and English Literatures</td>
<td>max. 24</td>
<td>32 above #100</td>
<td>56 above #100</td>
<td>4 Eng. Lit. courses</td>
<td></td>
</tr>
<tr>
<td>French and Italian Literatures</td>
<td>max. 24</td>
<td>32 above #100</td>
<td>56 above #100</td>
<td>4 Ital. Lit. courses</td>
<td></td>
</tr>
<tr>
<td>French and Philosophy</td>
<td>min. 21</td>
<td>32 above #100</td>
<td>65</td>
<td>Gateway course; Capstone</td>
<td></td>
</tr>
<tr>
<td>Italian</td>
<td>max. 28</td>
<td>32 above #100</td>
<td>60 above #100</td>
<td></td>
<td>ITALLANG 114,115</td>
</tr>
<tr>
<td>Italian and English Literatures</td>
<td>max. 28</td>
<td>32 above #100</td>
<td>56 above #100</td>
<td>4 Eng. Lit. courses</td>
<td></td>
</tr>
<tr>
<td>Italian and French Literatures</td>
<td>max. 28</td>
<td>32 above #100</td>
<td>60 above #100</td>
<td>4 Fr. Lit. courses</td>
<td></td>
</tr>
<tr>
<td>Italian and Philosophy</td>
<td>min. 21</td>
<td>32 above #100</td>
<td>65</td>
<td>Gateway course; Capstone</td>
<td></td>
</tr>
<tr>
<td>German Studies</td>
<td>0-25</td>
<td>35-60</td>
<td>60</td>
<td>3 above #130</td>
<td></td>
</tr>
<tr>
<td>German and Philosophy</td>
<td>min. 21</td>
<td>min. 39</td>
<td>65</td>
<td>Gateway course; Capstone</td>
<td>HISTORY 102,150B, 204E,222,232F,239E, 248,251,253E,254,256, 260,279,299A,B,C,S</td>
</tr>
<tr>
<td>History</td>
<td>—</td>
<td>58-60</td>
<td>58-60</td>
<td>3 above #130</td>
<td></td>
</tr>
<tr>
<td>Human Biology</td>
<td>min. 13</td>
<td>min. 39</td>
<td>min. 84</td>
<td>Internship</td>
<td>HUMBIO 3B</td>
</tr>
<tr>
<td>Interdisciplinary Studies in Humanities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option for Premeds (incl. premed requirements)</td>
<td>approx. 60</td>
<td>28 (honors)</td>
<td>approx. 87</td>
<td>honors only major</td>
<td>HUMNTIES 200A,B,C</td>
</tr>
<tr>
<td>International Relations</td>
<td>55-65</td>
<td>0-10</td>
<td>65</td>
<td>2 yr. foreign lang.; Overseas studies</td>
<td>INTNLREL</td>
</tr>
<tr>
<td>Jewish Studies (Individually Designed)</td>
<td>75-77</td>
<td>—</td>
<td>75-77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linguistics</td>
<td>—</td>
<td>50</td>
<td>50</td>
<td>foreign lang. @ 6th-quarter level</td>
<td>LINGUISTIC 150</td>
</tr>
<tr>
<td>Mathematical & Computational Science</td>
<td></td>
<td></td>
<td>73-78</td>
<td></td>
<td>MATH 109,110,120, STATS 166</td>
</tr>
<tr>
<td>Mathematics</td>
<td>up to 15 units</td>
<td>49</td>
<td>64</td>
<td></td>
<td>MATH 109,110,120,171</td>
</tr>
<tr>
<td>Music</td>
<td>—</td>
<td>67</td>
<td>66-76</td>
<td>piano-proficiency & ear-training exam</td>
<td></td>
</tr>
<tr>
<td>Music, Science, & Technology</td>
<td>—</td>
<td>66</td>
<td>66-76</td>
<td>piano-proficiency & ear-training exam</td>
<td>MUSIC 151</td>
</tr>
<tr>
<td>Native American Studies</td>
<td>55</td>
<td>5</td>
<td>60</td>
<td>CSRE Senior Sem.</td>
<td></td>
</tr>
<tr>
<td>Philosophy</td>
<td>—</td>
<td>55</td>
<td>55</td>
<td>course in 194 series</td>
<td>PHIL 80</td>
</tr>
<tr>
<td>Philosophy and Literature</td>
<td>min. 15</td>
<td>min. 47</td>
<td>65</td>
<td>Gateway course; 194</td>
<td></td>
</tr>
<tr>
<td>Philosophy and Religious Studies</td>
<td>—</td>
<td>60</td>
<td>60</td>
<td>3 seminars; 20 units in each dept. + 20 advanced units from both depts.</td>
<td>PHIL 80 or RELIGST 112,290</td>
</tr>
<tr>
<td>Major Department</td>
<td>Units required outside the dept./program</td>
<td>Units required within the dept./program</td>
<td>Total # of units</td>
<td>Notes/Special Requirements</td>
<td>WIM Course</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
<td>-----------------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>Physics</td>
<td>18-21</td>
<td>56-61</td>
<td>77-79</td>
<td></td>
<td>PHYSICS 107</td>
</tr>
<tr>
<td>Political Science</td>
<td>0-10</td>
<td>50-60</td>
<td>60</td>
<td>POLISCI 110C,124R,215,221R,221S,231S,299</td>
<td></td>
</tr>
<tr>
<td>Psychology</td>
<td>10</td>
<td>60</td>
<td>70</td>
<td>PSYCH 60,70,75,110</td>
<td></td>
</tr>
<tr>
<td>Public Policy</td>
<td>55</td>
<td>28</td>
<td>83</td>
<td>minimum 15 units in concentration; Senior Seminar</td>
<td>PUBLPOL 104</td>
</tr>
<tr>
<td>Religious Studies</td>
<td>—</td>
<td>60</td>
<td>60</td>
<td>Gateway course, majors’ seminar, senior essay or honors thesis, senior colloquium</td>
<td>RELIGST 290</td>
</tr>
<tr>
<td>Science, Technology, & Society</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>STS 110</td>
</tr>
<tr>
<td>B.A.</td>
<td>37</td>
<td>32</td>
<td>69</td>
<td>min. 12 units in technical literacy</td>
<td></td>
</tr>
<tr>
<td>B.S.</td>
<td>50</td>
<td>32</td>
<td>82</td>
<td>min. 50 units in technical depth</td>
<td></td>
</tr>
<tr>
<td>Russian Language and Literature</td>
<td>—</td>
<td>52</td>
<td>52</td>
<td>1st- and 2nd- year Russian</td>
<td></td>
</tr>
<tr>
<td>Russian Language, Culture, & History</td>
<td>12-16</td>
<td>35-39</td>
<td>52</td>
<td>1st- and 2nd- year Russian</td>
<td></td>
</tr>
<tr>
<td>Russian Literature and Philosophy</td>
<td>21</td>
<td>40</td>
<td>67</td>
<td>Gateway course; Capstone</td>
<td></td>
</tr>
<tr>
<td>Sociology</td>
<td>—</td>
<td>60</td>
<td>60</td>
<td></td>
<td>SOC 200</td>
</tr>
<tr>
<td>Spanish & Portuguese</td>
<td>20-25</td>
<td></td>
<td>50</td>
<td>SPANLANG 102, 102B</td>
<td></td>
</tr>
<tr>
<td>Symbolic Systems</td>
<td>71</td>
<td>2</td>
<td>73</td>
<td>—</td>
<td>PHIL 80</td>
</tr>
<tr>
<td>Urban Studies</td>
<td>36</td>
<td>37</td>
<td>73</td>
<td>25 units in concentration; capstone courses</td>
<td>URBANST 201, 202</td>
</tr>
</tbody>
</table>

SECONDARY MAJOR

In some cases, students may complete course requirements for more than one major, but they may not meet the requirements outlined for the multiple major option. For example, the student may develop a course plan in which courses requisite for one major overlap with requirements for another. In these cases, the student may declare a secondary major which will result in the transcript bearing an annotation that the course requirements for that major have also been met. Secondary majors are not listed on the diploma.

LIMITS OF THE MAJOR

In order to achieve the values of study in depth, a well-structured major should constitute approximately one-third of a student’s program (55-65 units). To ensure the values of breadth, a major should comprise no more than two-thirds of a student’s program (115-125 units). And, to avoid intellectual parochialism, a major program should not require a student to take more than about one-third of his or her courses from within a single department.

Major requirements in cognate subjects essential to the structure of a given major should be counted as part of the major program in applying these guidelines. Department or school requirements designed to provide extra disciplinary breadth should not be counted.

For a limited number of qualified students, many departments and programs offer special programs leading to degrees with honors. A student may apply to the major department or program for acceptance into the honors program. Demands on the student may vary, but all honors programs encourage creative, independent work at an advanced level in addition to the major requirements.

The guidelines set forth here are deliberately general; implementation must take into account the specific needs of a student’s program and the nature of the discipline or disciplines involved. The exercise of responsibility in achieving the desired educational balance belongs first with the student, who, after all, has the strongest interest in the value of his or her education. It belongs secondarily to departments and major programs, which must set the requirements of competence in the many majors offered.

DEGREES, HONORS, AND MINORS

CONFERRAL OF DEGREES

Upon recommendation to the Senate of the Academic Council by the faculty of the relevant departments or schools and the Committee on Undergraduate Standards and Policy, degrees are awarded four times each year, at the conclusion of Autumn, Winter, Spring, and Summer quarters. All diplomas, however, are prepared and awarded in Spring Quarter. Stanford University awards no honorary degrees.

Students must apply for conferral of an undergraduate or graduate degree by filing an Application to Graduate by the deadline for each term. The deadlines are published in the Time Schedule of Classes. A separate application must be filed for each degree program and for each conferral term. Applications are filed through Axess, the online service which allows students to update their administrative/academic records.

Requests for conferral are reviewed by the Office of the University Registrar and the student’s department, to verify completion of degree requirements. Course enrollment is required in the conferral term or the term immediately preceding. Students with unmet financial obligations resulting in the placement of a hold on their registration will not receive a transcript, statement of completion, degree certificate, or diploma until the hold is released by Student Financial Services.
Students are typically expected to apply to graduate during the term in which they expect to be awarded a degree. The University, however, reserves the right to confer a degree on a student who has completed all of the requirements for a degree even though the student has not applied to graduate; such an individual would then be subject to the University’s usual rules and restrictions regarding future enrollment or registration.

Students who wish to withdraw a request for conferral or make changes to the Application to Graduate should notify the Office of the University Registrar in writing. Students who withdraw their graduation applications or fail to meet degree requirements must reapply to graduate in a subsequent term.

THE UNDERGRADUATE MINOR

Students completing a bachelor’s degree may elect to complete one or more minors in addition to the major. Minors must be officially declared by students no later than the deadline for their application(s) to graduate, according to declaration procedures developed and monitored by the Registrar. Earlier deadlines for declaration of the minor may be set by the offering school or department. Satisfactory completion of declared minors is noted on the students’ transcripts after degree conferral.

A minor is a coherent program of study defined by the department or degree program. It may be a limited version of a major concentration or a specialized subset of a field. A minor consists of no fewer than six courses of 3 or more units to a maximum of 36 units of letter-graded work, except where letter grades are not offered. Departments and degree programs establish the structure and requirements of each minor in accordance with the policy above and within specific guidelines developed by the deans of schools. Programs which do not offer undergraduate degrees may also make proposals to their cognizant deans to establish a minor. Requirements for each minor are described in the individual department or program listings in this bulletin.

Students may not overlap (double-count) courses for completing major and minor requirements, unless:

1. Overlapping courses constitute introductory skill requirements (for example, introductory math or a foreign language), or
2. Overlapping courses enable the student to meet school requirements (for example, for a major within the School of Engineering and a minor). Currently, only the School of Engineering has school requirements for its undergraduate majors.

Undergraduate students use Axess to declare or drop a minor. Students with questions about declaring minors or double-counting courses towards combinations of majors and/or minors should consult with the departments or programs involved or the Office of the University Registrar, Old Union.

BACCALAUREATE HONORS

With Distinction—In recognition of high scholastic attainment, the University, upon recommendation of a major department or program, awards the Bachelor’s Degree with Distinction. Distinction is awarded to 15% of the graduating class based on cumulative grade point averages. Distinction is calculated at the end of the Winter Quarter for each graduating class.

Students are also urged to consider the departmental honors programs that may give depth to their major study and to consider, as well, how the interdisciplinary honors programs might contribute to the quality of their undergraduate education.

Departmental Honors Programs—In recognition of successful completion of special advanced work, departments may recommend their students for honors in the major. Departmental honors programs demand independent creative work at an advanced level in addition to major requirements.

Interdisciplinary Honors Programs—In recognition of successful completion of honors program requirements, the following interdisciplinary programs can recommend students majoring in any field for honors in their program:

Education
Environmental Science, Technology, and Policy
Ethics in Society
Feminist Studies
International Security Studies
Humanities
Latin American Studies
Science, Technology, and Society

The interdisciplinary honors programs are designed to complement study in a department major. The requirements for these honors programs are described in the department sections of this bulletin.

Foreign Language Proficiency—The notation “proficiency in (language)” appears on the official transcripts of those students whose levels of achievement are found by procedures established by the language department to be roughly equivalent to knowledge an excellent student can be expected to demonstrate late in the third quarter of the third year of study in that language.
Graduate Degrees

GENERAL REQUIREMENTS

For each Stanford advanced degree, there is an approved course of study which meets University and department requirements. The University’s general requirements, applicable to all graduate degrees at Stanford, are described below. University requirements pertaining to only a subset of advanced degrees are described in the “Degree-Specific Requirements” section. See the “Graduate Programs” section of each department’s listing for specific department degree requirements. Additional information on professional school programs is available in the bulletins of the Graduate School of Business, the School of Law, and the School of Medicine.

ENROLLMENT REQUIREMENTS

Graduate students must enroll in courses for all terms of each academic year (Autumn, Winter, and Spring quarters or, for Law students, Autumn and Spring semesters) from the admission term until conferral of the degree. The only exception to this requirement occurs when the student is granted an official leave of absence. Failure to enroll in courses for a term during the academic year without taking a leave of absence results in denial of further enrollment privileges unless and until reinstatement to the degree program is granted and the reinstatement fee paid. Registration in Summer Quarter is not required and does not substitute for registration during the academic year. Students possessing an F1 or J1 student visa may be subject to additional course enrollment requirements in order to retain their student visas.

In addition to the above requirement for continuous registration during the academic year, all graduate students are required by the University to be registered:

1. In each term during which any official department or University requirement is fulfilled, including qualifying exams or the University oral exam.
2. In any term in which a University dissertation/thesis is submitted or at the end of which a graduate degree is conferred, unless the student was registered the prior term.
3. Normally, in any term in which the student receives financial support from the University.
4. In any term for which the student needs to use University facilities.
5. For international students, in any term of the academic year (summer may be excluded) for which they have non-immigrant status (i.e., a J-1 or F-1 visa).

Individual students may also find themselves subject to the registration requirements of other agencies (for example, external funding sources such as federal financial aid). Course work and research are expected to be done on campus unless the department gives prior approval for study in absentia and a petition for in absentia registration is approved by the Office of the University Registrar.

LEAVES OF ABSENCE

Graduate students who do not meet the requirement for continuous registration during the academic year must obtain an approved leave of absence, in advance, for the term(s) they will not be registered. The leave of absence must be reviewed for approval by the chair or director of graduate studies of the student’s major department and, if the student is in the United States on a foreign student visa, by the Bechtel International Center. The granting of a leave of absence is at the discretion of the department and subject to review by the Office of the University Registrar.

New graduate students and approved coterminal students may not take a leave of absence during their first quarter. Coterminal students are required to register their first graduate quarter. However, new Stanford students may request a deferment from the department.

Leaves of absence are granted for a maximum of one calendar year. Leaves requested for a longer period are approved only in exceptional circumstances (for example, mandatory military service). An extension of leave (a maximum of one year) for students in master’s programs or for doctoral students is approved only in unusual circumstances. Extension requests must be made before the expiration of the original leave of absence. Leaves of absence may not exceed a cumulative total of two years.

Students on leave of absence are not registered at Stanford and, therefore, do not have the rights and privileges of registered students. They cannot fulfill any official department or University requirements during the leave period.

Students on leave may complete course work for which an Incomplete grade was awarded in a prior term and are expected to comply with the maximum one-year time limit for resolving incompletes; a leave of absence does not stop the clock on the time limit for resolving incompletes.

REINSTATEMENT

Students who fail to either enrolled by the study list deadline or approved for a leave of absence by the start of a term are required to apply for reinstatement through the Graduate Admissions Office before they can return to the same degree program. The decision to approve or deny reinstatement is made by the student’s department or program. Departments are not obliged to approve reinstatements of students. Reinstatement decisions are made in the discretion of the department or the program and may be based on the applicant’s academic status when last enrolled, activities while away from campus, the length of the absence, the perceived potential for successful completion of the program, and the ability of the department to support the student both academically and financially, as well as any other factors or considerations regarded as relevant by the department or program.

Reinstatement information is available from the Graduate Admissions Office. A fee is required. Reinstatement applications must be submitted prior to the first day of the term for which reenrollment is requested if the student is registering for courses.

RESIDENCY POLICY FOR GRADUATE STUDENTS

Each type of graduate degree offered at Stanford (for example, Master of Science, Doctor of Philosophy) has a residency requirement based on the number of academic units required for the degree. These residency requirements and the maximum allowable transfer units for each degree type are listed below.

The unit requirements for degrees can represent solely course work required for the degree or a combination of course work, research, and a thesis or dissertation. Academic departments and schools offering degrees may establish unit requirements that are higher than the minimum University residency requirement, but they may not have a residency requirement that is lower than the University standard. In addition to the University’s residency requirement based on a minimum number of units for each degree, the School of Medicine and the Graduate School of Business may establish residency requirements based on the number of quarters of full-time registration in which students are enrolled to earn a degree. However, in no case may a student earn fewer units than the University minimum for each degree. All residency requirements are published in the Stanford Bulletin. Students should consult the Stanford Bulletin or their academic department to determine if their degree program has residency requirements that exceed the minimum.

Students eligible for Veterans’ Affairs educational benefits should refer to the Veterans Benefits section of “Admissions and Financial Aid” above.

It continues to be Stanford University’s general policy that units are applicable toward only one degree. Units may not normally be duplicated or double-counted toward the residency requirement for more than one degree. Exceptions to this general policy for specified combinations of degree types may be approved by agreement of the Vice Provost and Dean of Research and Graduate Policy and the deans of the schools affected, with review by the Committee on Graduate Studies.

Only completed course units are counted toward the residency requirement. Courses with missing, incomplete, in progress, or failing grades do not count toward the residency requirement.
Terminal Graduate Registration (TGR) is available to graduate students who have met all of the following criteria: (1) completion of the University’s residency requirement; (2) completion of all course work required for the degree with grades recorded in all courses; (3) completion of any qualifying examinations or research work required by the school or department; (4) establishment of a reading committee for the dissertation; and (5) completion of any other requirements stipulated by the students’ academic department.

This policy is effective for students who enter graduate programs beginning in the Autumn Quarter of the 2001-02 academic year. (For information about the residency policy in effect for students who entered prior to Autumn Quarter 2001, see the Stanford Bulletin 2000-01.)

UNIVERSITY MINIMUM RESIDENCY REQUIREMENTS FOR GRADUATE DEGREES

<table>
<thead>
<tr>
<th>Degree Type</th>
<th>Minimum # of Units</th>
<th>Maximum Allowable Transfer Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.A., M.S., M.F.A., M.A.T., M.L.A.</td>
<td>45</td>
<td>0††</td>
</tr>
<tr>
<td>Engineer*</td>
<td>90</td>
<td>45</td>
</tr>
<tr>
<td>Ed.S.</td>
<td>90</td>
<td>45</td>
</tr>
<tr>
<td>M.B.A.</td>
<td>90</td>
<td>0††</td>
</tr>
<tr>
<td>Ph.D., D.M.A., Ed.D. †</td>
<td>135</td>
<td>45</td>
</tr>
<tr>
<td>M.D.</td>
<td>235</td>
<td>90</td>
</tr>
<tr>
<td>I.D.</td>
<td>86 (semester)</td>
<td>30</td>
</tr>
<tr>
<td>M.L.S.</td>
<td>30 (semester)</td>
<td>0††</td>
</tr>
<tr>
<td>L.S.M.</td>
<td>26 (semester)</td>
<td>0††</td>
</tr>
<tr>
<td>L.S.D.</td>
<td>26 (semester)</td>
<td>0††</td>
</tr>
<tr>
<td>L.L.M.</td>
<td>26 (semester)</td>
<td>0††</td>
</tr>
</tbody>
</table>

* Units completed at Stanford toward a master’s degree or accepted as transfer credit in an Engineering discipline may be used toward the 90-unit residency requirement for the Engineer degree.
† Students in the Ph.D. programs in the Biomedical Sciences usually require substantially more than 135 units.
** Up to 45 units completed at Stanford toward a master’s degree or accepted as transfer credit may be used toward the 135 required for the doctoral degree. At least 90 units of work at Stanford are necessary to complete the 135 units.
†† Students eligible for Veterans Affairs educational benefits should refer to the Veterans Benefits section of “Admissions and Financial Aid” above.

RESIDENCY REQUIREMENT IN COTERMINAL PROGRAMS

The University minimum requirements for the coterminal bachelor’s/master’s program are 180 units for the bachelor’s degree plus 45 (or higher departmental requirement, as determined by each graduate department) unduplicated units for the master’s degree. The requirements for the coterminal program with dual undergraduate degrees are 225 units for the two bachelor’s degrees, and 45 units for the master’s degree. For the 45-unit University minimum for the master’s degree, all courses must be at or above the 100 level and 50 percent must be courses designated primarily for graduate students (typically at least at the 200 level). Department requirements may be higher. Units for a given course may not be counted to meet the requirements of more than one degree, that is, no units may be double-counted. No courses taken more than two quarters prior to admission to the coterminal master’s program may be used to meet the 45-unit University minimum requirement for the master’s degree.

Tuition Rate for Graduate Engineering — The tuition rate for graduate Engineering is higher than for undergraduate programs. Students enrolled in a coterminal program in the School of Engineering begin to pay the higher graduate Engineering tuition rate after 12 full-tuition undergraduate quarters.

Coterminal students in the School of Engineering, with two undergraduate degrees, are assessed the graduate Engineering tuition rate in the quarter after they have been enrolled for 15 full-tuition quarters. Engineering coterminal students would also start paying the graduate Engineering tuition rate if any undergraduate degree is conferred or if they are granted any graduate aid. Once charged under the graduate Engineering tuition schedule, the tuition will not revert thereafter to the undergraduate rate.

For additional information on the coterminal bachelor’s/master program, see Coterminal Bachelor’s and Master’s Degrees in the “Undergraduate Degrees” section of this bulletin.

TRANSFER CREDIT FOR GRADUATE WORK DONE ELSEWHERE

After at least one quarter of enrollment, students pursuing an Engineer, D.M.A., or Ph.D. may apply for transfer credit for graduate work done at another institution. Engineer candidates who also earned their master’s at Stanford are not eligible for transfer residency credit, nor are any master’s degree students.

Students enrolled at Stanford who are going to study elsewhere during their degree program should obtain prior approval of any transfer credit sought before their departure. (One semester unit or hour equals 1.5 quarter units.)

The following criteria are used by the department in determining whether, in its discretion, it will award transfer credit for graduate-level work done at another institution:

1. Courses should have comparable Stanford counterparts that are approved by the student’s department. A maximum of 12 units of courses with no Stanford counterparts and/or research units may be granted transfer credit.
2. The student must have been enrolled in a student category which yields graduate credit. The maximum amount of credit given for extension and nonmatriculated (non-degree) courses is one quarter. No transfer credit is given for correspondence work.
3. Courses must have been taken after the conferral of the bachelor’s degree. The only exception is for work taken through programs structured like the Stanford coterminal bachelor’s/master’s program.
4. Courses must have been completed with a grade point average (GPA) of 3.0 (B) or better. Pass grades are accepted only for courses for which letter grades were not an option and for which the standard of passing is ‘B’ quality work.
5. Courses must have been taken at a regionally accredited institution in the U.S. or at an officially recognized institution in a foreign country. Courses taken at foreign universities must be at the level of study comparable to a U.S. graduate program.

The Application for Transfer Credit for Graduate Work Done Elsewhere is reviewed by the department and the Office of the University Registrar.

GRADUATE UNITS REQUIREMENTS

The University’s expectation is that the units counted towards all graduate degrees are primarily in graduate courses. All units must be in courses at or above the 100 level and at least 50 percent of those must be courses designated primarily for graduate students (typically at least at the 200 level). Units earned in courses below the 100 level may not be counted towards the minimum unit requirement for the master’s degree. Department specifications for the level of course work accepted for a particular master’s degree program may be higher than the University’s specifications.

POLICY ON MINIMUM PROGRESS REQUIREMENTS FOR GRADUATE STUDENTS

The academic requirements for graduate students include timely completion of University, department, and program requirements, such as admission to candidacy, successful completion of qualifying exams, and so on. Graduate students must also meet the following standards of minimum progress as indicated by units and grades. (These standards apply to all advanced degree programs except the School of Business Ph.D., and the M.B.A., J.D., L.L.M., J.S.M., J.S.D., M.D., and M.L.A., which follow guidelines issued by the respective schools and are described in their respective school bulletins.)

Graduate students enrolled for 11 or more units must pass at least 8 units per term by the end of each term. Those registered for fewer than 11 units must pass at least 6 units per term by the end of each term, unless other requirements are specified in a particular case or for a particular program.
In addition, graduate students must maintain a 3.0 (B) grade point average overall in courses applicable to the degree.

Department requirements for minimum progress that set a higher standard for units to be completed, or a higher or lower standard for grade point average to be maintained, take precedence over the University policy; any such different standards must be published in the Stanford Bulletin.

Students identified as not meeting the requirements for minimum progress are reviewed by their departments to determine whether the problem lies with administrative matters such as reporting of grades or with academic performance. Students have the opportunity to explain any special circumstances. Approval for continuation in the degree program is contingent on agreement by the student and department to a suitable plan to maintain appropriate progress in subsequent quarters. Dismissal of graduate students is addressed in separate guidelines.

Graduate students who have been granted Terminal Graduate Registration (TGR) status must enroll each term in the TGR course (801 for master’s and Engineer programs or 802 for doctoral programs) in their department in the section appropriate for the adviser. An ‘N’ grade signifies satisfactory progress must be received each quarter to maintain registration privileges. An ‘N-’ grade indicates unsatisfactory progress. The first ‘N-’ grade constitutes a warning. A second consecutive ‘N-’ grade will normally cause the department to deny the student further registration until a written plan for completion of degree requirements has been approved by the department. Subsequent ‘N-’ grades are grounds for dismissal from the program.

GUIDELINES FOR DISMISSAL OF GRADUATE STUDENTS FOR ACADEMIC REASONS

Admission to graduate programs at Stanford is highly selective. It is anticipated that every admitted student will be able to fulfill the requirements for the advanced degree. This document provides guidelines to be used in the unusual circumstance that a department must consider dismissal of a graduate student for academic reasons. These guidelines apply to all advanced degree programs except those in the schools of Law and Business and the M.D. program in the School of Medicine, which follow guidelines issued by the respective schools.

The principal conditions for continued registration of a graduate student are the timely completion of the University, department, and program requirements for the degree, and fulfillment of minimum progress requirements. The guidelines that follow specify procedures for dismissal of graduate students who are not meeting these conditions. In such cases, a departmental committee (hereafter “the committee”), whether the department’s committee of the faculty or other committee authorized to act on the department’s behalf such as the departmental graduate studies committee, will:

1. Where possible and as early as possible, warn the student, in writing, of the situation and deficiency. A detailed explanation of the reason for the warning should be provided.
2. Consider extenuating circumstances communicated by the student.
3. Decide the question of dismissal by majority vote of the committee (with at least three faculty members participating in the committee’s deliberation), and communicate the decision to the student in writing.
4. Place a summary of department discussions, votes, and decisions in the student’s file.
5. Provide students the opportunity to examine their department files, if requested.
6. Provide students with information on their rights to appeal under the Student Academic Grievance Procedures. (These are included in the Stanford Bulletin.)

Careful records of department decisions safeguard the rights of both students and faculty.

ADDITIONAL SPECIFICS FOR DEGREES WITH CANDIDACY

Before Candidacy — The committee may vote to dismiss a student who is not making minimum progress or completing requirements in a timely way before review for admission to candidacy. Before considering dismissal, the committee should communicate with the student (which may include a meeting with the student) concerning his or her academic performance and how to correct deficiencies, where such deficiencies are deemed correctable.

In a review for admission to candidacy, if the committee votes not to recommend the student for admission to candidacy, the vote will result in the dismissal of the student from the program. The department chair, or Director of Graduate Studies, or the student’s adviser shall communicate the department’s decision to the student in writing and orally. The student may submit a written request for reconsideration. The committee shall respond in writing to the request for reconsideration; it may decline to reconsider its decision.

During Candidacy — When a student admitted to candidacy is not making minimum progress or not completing University, department, or program requirements in a timely manner, the student’s adviser, the Director of Graduate Studies, or department chair, and other relevant faculty should meet with the student. A written summary of these discussions shall be sent to the student and the adviser and added to the student’s department file. The summary should specify the student’s academic deficiencies, the steps necessary to correct them (if deemed correctable), and the period of time that is allowed for their correction (normally one academic quarter). At the end of the warning period, the committee should review the student’s progress and notify the student of its proposed actions. If the student has corrected the deficiencies, he or she should be notified in writing that the warning has been lifted.

If the deficiencies are not deemed correctable by the committee (for example, the failure of a required course or examination, or a pattern of unsatisfactory performance) or if, at the end of the warning period, the student has not in the view of the committee corrected the deficiencies, the committee may initiate proceedings for dismissal. The student shall be notified, in writing, that the case of dismissal will be considered at an impending committee meeting. The student has the right to be invited to attend a portion of the scheduled meeting to present his or her own case; a student may also make this case to the committee in writing.

After full discussion at the committee meeting, the committee, without the student present, shall review the case and vote on the issue of dismissal. The student shall be sent a written summary of the discussion, including the committee’s decision and the reasons for it. The student may submit a written request for reconsideration. The committee’s response to the request for reconsideration shall be made in writing; it may decline to reconsider its decision.

CONFERRAL OF DEGREES

Upon recommendation to the Senate of the Academic Council by the faculty of the relevant departments or schools and the Committee on Graduate Studies, degrees are awarded four times each year, at the conclusion of Autumn, Winter, Spring, and Summer terms. All diplomas, however, are prepared and awarded in Spring Quarter. Stanford University awards no honorary degrees.

Students must apply for conferral of a graduate degree by filing an Application to Graduate by the deadline for each term. The deadlines are published in the Time Schedule of Classes. A separate application must be filed for each degree program and for each conferral term. Applications are filed through Axess, the online service which allows students to update their administrative/academic records.

Requests for conferral are reviewed by the Office of the University Registrar and the student’s department to verify completion of degree requirements. Students must either be registered or on graduation quarter in the term of degree conferral; see “Graduation Quarter” below in this section of this Bulletin. Students with unmet financial obligations resulting in the placement of a hold on their registration will not receive a transcript.
GRADUATE DEGREES

Both applications require payment of a fee. After, the student is required to apply for reinstatement (if returning to wish to withdraw and the effective date. To return to graduate study there also are required to submit verification of sufficient funding to complete also obtain the approval of the Foreign Student Adviser at the Bechtel programs or departments.

Decisions on the petitions are made by the programs or departmenst to which they are directed, and are at the discretion of those recommendation. Decisions on the petitions are made by the programs or departments in which admission is requested. If applying for a higher degree program, students may also be required to submit other application materials such as GRE Subject Test scores, a statement of purpose, or new letters of recommendation. Decisions on the petitions are made by the programs or departments to which they are directed, and are at the discretion of those programs or departments.

It is important that the attempt to add or change degree programs be made while enrolled. Otherwise, a new Application for Graduate Admission must be submitted and an application fee paid. The Graduate Program Authorization Petition is submitted directly to the department in which admission is requested. If applying for a higher degree program, students may also be required to submit other application materials such as GRE Subject Test scores, a statement of purpose, or new letters of recommendation. Decisions on the petitions are made by the programs or departments to which they are directed, and are at the discretion of those programs or departments.

International students changing departments or degree programs must also obtain the approval of the Foreign Student Adviser at the Bechtel International Center. If the requested change lengthens their stay, they also are required to submit verification of sufficient funding to complete the new degree program.

Students who wish to terminate study in a graduate program should submit to the department a letter indicating the program from which they wish to withdraw and the effective date. To return to graduate study thereafter, the student is required to apply for reinstatement (if returning to the same degree program) or admission (if applying to a different program). Both applications require payment of a fee.

CHANGES OF DEGREE PROGRAMS

Graduate students are admitted to Stanford for a specific degree program. Students who have attended Stanford for at least one term and who are currently enrolled or on an approved leave of absence may submit a Graduate Program Authorization Petition to make one of the following changes: (1) change to a new degree program in the same department; (2) change to a new degree program in a different department; (3) add a new degree program in the same or a different department to be pursued with the existing program. Coterminal students must have the bachelor’s degree conferred before adding a second advanced degree program.

It is important that the attempt to add or change degree programs be made while enrolled. Otherwise, a new Application for Graduate Admission must be submitted and an application fee paid. The Graduate Program Authorization Petition is submitted directly to the department in which admission is requested. If applying for a higher degree program, students may also be required to submit other application materials such as GRE Subject Test scores, a statement of purpose, or new letters of recommendation. Decisions on the petitions are made by the programs or departments to which they are directed, and are at the discretion of those programs or departments.

International students changing departments or degree programs must also obtain the approval of the Foreign Student Adviser at the Bechtel International Center. If the requested change lengthens their stay, they also are required to submit verification of sufficient funding to complete the new degree program.

Students who wish to terminate study in a graduate program should submit to the department a letter indicating the program from which they wish to withdraw and the effective date. To return to graduate study thereafter, the student is required to apply for reinstatement (if returning to the same degree program) or admission (if applying to a different program). Both applications require payment of a fee.

DEGREE-SPECIFIC REQUIREMENTS

MASTER OF ARTS AND MASTER OF SCIENCE

In addition to completing the general requirements for advanced degrees and the requirements specified by their department, candidates for a Master of Arts (M.A.) or Master of Science (M.S.) degree must complete their degree requirements within the time limit specified below and must outline an acceptable program of study on the Master’s Degree Program Proposal.

MASTER’S PROGRAM PROPOSAL

Students pursuing an M.A., M.F.A., M.A.T., or M.S. are required to submit an acceptable program proposal to their department during the first quarter of enrollment. Coterminal students must submit the proposal during the first quarter after admission to the coterminal program. The program proposal establishes a student’s individual program of study to meet University and department degree requirements. Students must amend the proposal formally if their plans for meeting degree requirements change.

In reviewing the program proposal or any subsequent amendment to it, the department confirms that the course of study proposed by the student fulfills all department course requirements (for example, requirements specifying total number of units, course levels, particular courses, sequences, or substitutes). The department confirms that all other department requirements (for example, required projects, foreign language proficiency, or qualifying exams) are listed on the form and that all general University requirements (minimum units, residency, and so on) for the master’s degree will be met through the proposed program of study.

TIME LIMIT FOR COMPLETION OF THE MASTER’S DEGREE

All requirements for a master’s degree must be completed within three years after the student’s first term of enrollment in the master’s program (five years for Honors Cooperative students). Students pursuing a coterminal master’s degree must complete their requirements within three years of their first quarter of graduate standing.

The time limit is not automatically extended by a student’s leave of absence. All requests for extension, whether prompted by a leave or some other circumstance, must be filed by the student before the conclusion of the program’s time limit. Departments are not obliged to grant an extension. The maximum extension is one additional year. Extensions require review of academic progress and any other factors regarded as relevant by the department, and approval by the department; such approval is at the department’s discretion.

MASTER OF BUSINESS ADMINISTRATION

The degree of Master of Business Administration (M.B.A.) is conferred on candidates who have satisfied the requirements established by the faculty of the Graduate School of Business and the general requirements for advanced degrees. Full particulars concerning the school requirements are found in the Graduate School of Business bulletin. The M.B.A. must be completed within the time limit for completion of the master’s degree.

MASTER OF ARTS IN TEACHING

The program leading to the Master of Arts in Teaching (M.A.T.) is designed for experienced teachers or for individuals who have previously completed programs of teacher preparation. In addition to completing the general requirements for advanced degrees and the program requirements specified by the School of Education and by one of the academic departments participating jointly in the program, M.A.T. candidates must fulfill the requirements for a master’s program proposal as specified above and complete their degrees within the time limit for completion of the master’s degree.
MASTER OF FINE ARTS

In addition to completing the general requirements for advanced degrees and the program requirements specified in the “Art and Art History” section of this bulletin, candidates for the degree of Master of Fine Arts (M.F.A.) must fulfill the requirements for a master’s program proposal and complete their degrees within the time limit for completion of the master’s degree, as specified above.

ENGINEER

In addition to completing the general requirements for advanced degrees and the requirements specified by their department, candidates for the degree of Engineer must be admitted to candidacy and must complete a thesis per the specifications below.

CANDIDACY

The Application for Candidacy for Degree of Engineer is an agreement between the student and the department on a specific program of study to fulfill degree requirements. Students must apply for candidacy by the end of the second quarter of the program. Honors Cooperative students must apply by the end of the fourth quarter of the program. Candidacy is valid for five calendar years.

THESIS

A University thesis is required for the Engineer degree. Standards for professional presentation of the thesis have been established by the Committee on Graduate Studies and are detailed in Directions for Preparing Theses for Engineer Degrees, available from the Office of the University Registrar, Old Union.

The deadline for submission of theses for degree conferral in each term is specified by the University calendar. Three copies of the thesis, bearing the approval of the adviser under whose supervision it was prepared, must be submitted to the Office of the University Registrar before the quarterly deadline listed on the University calendar. A fee is charged for binding copies of the thesis.

Course enrollment is required for the term, or the immediately preceding term, in which the thesis is submitted. The period between the last day of final exams of one term and the first day of the subsequent term is considered an extension of the earlier term. Students submitting a thesis during this period would meet the registration requirement but would be eligible for degree conferral only in the subsequent term.

EDUCATIONAL SPECIALIST

In addition to completing the general requirements for advanced degrees and the program requirements specified in the “Education” section of this bulletin, candidates for the degree of Educational Specialist (Ed. S.) must complete a field-based project.

MASTER OF LEGAL STUDIES

Admission to study for the Master of Legal Studies degree (M.L.S.), a nonprofessional degree, is granted to students who hold the Doctor of Philosophy (Ph.D.) or other nonlaw doctoral degree, or who have been admitted to a nonlaw doctoral program and have completed a program of study amounting to 45 quarter units or 30 term units of work toward the doctorate, and who meet an admission standard equivalent to that required of candidates for the Doctor of Jurisprudence degree.

The M.L.S. degree is conferred upon candidates who, in not fewer than two academic terms in residence and in not more than two consecutive academic years, successfully complete 30 term units of work in the School of Law, including three first-year courses in the first Autumn term and at least one course or seminar requiring a research paper. All work shall conform to the rules and regulations of the University and the School of Law.

DOCTOR OF JURISPRUDENCE

The degree of Doctor of Jurisprudence (J.D.) is conferred on candidates who satisfactorily complete courses in law totaling the number of units required under the current Faculty Regulations of the School of Law over not less than three academic years and who otherwise have satisfied the requirements of the University and the School of Law.

MASTER OF LAWS

The degree of Master of Laws (L.L.M.) is conferred upon candidates who have completed one academic year (26 semester units) in residence in accordance with the rules of the University and the School of Law.

The degree is designed for foreign graduate students trained in law and is available only to students with a primary law degree earned outside the United States. The L.L.M. program offers students a choice of two areas of specialization: Corporate Governance and Practice, or Law, Science, and Technology.

MASTER OF THE SCIENCE OF LAW

The degree of Master of the Science of Law (J.S.M.) is conferred upon candidates who have completed one academic year (26 term units) with distinction in accordance with the rules of the University and the School of Law.

The degree is primarily designed for those qualified students who hold a J.D. or its equivalent and who are at the Stanford School of Law for independent reasons (for example, as teaching fellows) and who wish to combine work toward the degree with their primary academic activities. Specially qualified lawyers, public officials, academics, and other professionals who have worked outside the United States may apply for the degree through the Stanford Program in International Legal Studies (SPILS). Full particulars concerning requirements may be found in the Stanford University bulletin School of Law.

DOCTOR OF THE SCIENCE OF LAW

The degree of the Doctor of the Science of Law (J.S.D.) is conferred upon candidates who hold a J.D. or its equivalent, who complete one academic year in residence, and who, as a result of independent legal research, present a dissertation that is, in the opinion of the faculty of the School of Law, a contribution to knowledge. Such work and dissertation shall conform to the rules of the School of Law and the University, as described below in the “Doctor of Philosophy” section.

Candidacy is limited to students of exceptional distinction and promise. Full particulars concerning requirements may be found in the Stanford University bulletin School of Law.

DOCTOR OF MUSICAL ARTS

The degree of Doctor of Musical Arts (D.M.A.) is conferred on candidates who have satisfied the general requirements for advanced degrees, the program requirements specified in the “Music” section of this bulletin, and the candidacy requirement as described below in the “Doctor of Philosophy” section.

DOCTOR OF EDUCATION

In addition to completing the general requirements for advanced degrees and the requirements specified by the School of Education, candidates for the Doctor of Education (Ed.D.) degree must fulfill the following requirements as detailed in the “Doctor of Philosophy” section below: candidacy, University oral examination, and dissertation.

DOCTOR OF MEDICINE

Candidates for the degree of Doctor of Medicine (M.D.) must satisfactorily complete the required curriculum in medicine. The requirements for the M.D. degree are detailed online at http://med.stanford.edu/.

DOCTOR OF PHILOSOPHY

The degree of Doctor of Philosophy (Ph.D.) is conferred on candidates who have demonstrated to the satisfaction of their department or school substantial scholarship, high attainment in a particular field of knowledge, and ability to do independent investigation and present the results of such research. They must satisfy the general requirements for advanced degrees, the program requirements specified by their departments, and the doctoral requirements described below. The option for a Ph.D. minor is also described below, though it is not a Ph.D. requirement.
CANDIDACY
Admission to a doctoral degree program is preliminary to, and distinct from, admission to candidacy. Admission to candidacy for the doctoral degree is a judgment by the faculty of the student’s potential to successfully complete the requirements of the degree program. Students are expected to complete department qualifying procedures and apply for candidacy by the end of their second year in the Ph.D. program. Honors Cooperative students must apply by the end of their fourth year.

The Application for Candidacy specifies a departmentally approved program of study to fulfill degree requirements, including required course work, language requirements, teaching requirements, dissertation (final project and public lecture-demonstration for D.M.A.), and University oral examination (for Ph.D. and Ed.D.). At least 3 units of work must be taken with each of four Stanford faculty members.

If the Ph.D. student is pursuing a minor, approval by the department awarding the minor is also required on the Application for Candidacy.

TIME LIMIT FOR COMPLETION OF A DEGREE WITH CANDIDACY
All requirements for the degree must be completed before candidacy expires. Candidacy is valid for five years unless terminated by the department (for example, for unsatisfactory progress). The time limit is not automatically extended by a student’s leave of absence. All requests for extension, whether prompted by a leave or some other circumstance, must be filed by the student before the conclusion of the program’s time limit. Departments are not obligated to grant an extension. Students may receive a maximum of one additional year of candidacy per extension. Extensions require review by the department of a dissertation progress report, a timetable for completion of the dissertation, any other factors regarded as relevant by the department, and approval by the department; such approval is at the department’s discretion.

TEACHING AND RESEARCH REQUIREMENTS
A number of departments require their students to teach (serving as a teaching assistant) or assist a faculty member in research (serving as a research assistant) for one or more quarters as part of their doctoral programs. Detailed information is included in the department sections of this bulletin.

FOREIGN LANGUAGE REQUIREMENT
Some departments require a reading knowledge of one or more foreign languages as indicated in department sections of this bulletin. Fulfillment of language requirements must be endorsed by the chair of the major department.

UNIVERSITY ORAL EXAMINATION
Passing a University oral examination is a requirement of the Ph.D. degree. The purpose of the examination is to test the candidate’s command of the field of study and to confirm fitness for scholarly pursuits. Departments determine when, after admission to candidacy, the oral examination is taken and whether the exam will be a test of knowledge of the field, a review of a dissertation proposal, or a defense of the dissertation.

Students must be registered in the term in which the University oral examination is taken. The period between the last day of final exams of one term and the day prior to the first day of the following term is considered an extension of the earlier term. Candidacy must also be valid.

The University Oral Examination Committee consists of at least five Stanford faculty members: four examiners and the committee chair from another department. All members are normally on the Stanford Academic Council, and the chair must be a member. Emeritus faculty are also eligible to serve as examiners or chair of the committee. (A petition for appointment of an examining committee member who is not on the Academic Council may be approved if that person contributes an area of expertise that is not readily available from the faculty.) The chair of the examining committee may not have a full or joint appointment in the adviser’s or student’s department, but may have a courtesy appointment in the department. The chair can be from the same department as any other member(s) of the examining committee and can be from the student’s minor department provided that the student’s adviser does not have a full or joint appointment in the minor department.

The University Oral Examination form must be submitted to the department graduate studies administrator at least two weeks prior to the proposed examination date. The examination is conducted according to the major department’s adopted practice, but it should not exceed three hours in length, and it must include a period of private questioning by the examining committee.

Responsibility for monitoring appointment of the oral examination chair rests with the candidate’s major department. Although the department cannot require the candidate to approach faculty members to serve as chair, many departments invite students and their advisers to participate in the process of selecting and contacting potential chairs.

If the candidate passes the examination if the examining committee casts four favorable votes out of five or six, five favorable votes out of seven, or six favorable votes out of eight. Five members present and voting constitute a quorum. If the committee votes to fail a student, the committee chair sends within five days a written evaluation of the candidate’s performance to the major department and the student. Within 30 days after receipt of the examining committee’s evaluation and recommendation, the chair of the student’s major department must send the student a written statement indicating the final action of the department.

DISSERTATION
An approved doctoral dissertation is required for the Ph.D. and J.S.D. degrees. The doctoral dissertation must be an original contribution to scholarship or scientific knowledge and must exemplify the highest standards of the discipline. If it is judged to meet this standard, the dissertation is approved for the school or department by the doctoral dissertation reading committee. Each member of the reading committee signs the signature page of the dissertation to certify that the work is of acceptable scope and quality. One reading committee member reads the dissertation in its final form and certifies on the Certificate of Final Reading that department and University specifications have been met.

Dissertations must be in English. Approval for writing the dissertation in another language is normally granted only in cases where the other language or literature in that language is also the subject of the discipline. Such approval is routinely granted for dissertations in the Division of Literatures, Cultures, and Languages, in accordance with the policy of the individual department. Dissertations written in another language must include an extended summary in English.

Directions for preparation of the dissertation are available from the Office of the University Registrar, Old Union. The signed dissertation copies and accompanying documents must be submitted to the Office of the University Registrar on or before the quarterly deadline indicated in the University’s academic calendar. A fee is charged for the microfilming and binding of the dissertation copies.

Students must either be registered or on graduation quarter in the term they submit the dissertation; see “Graduation Quarter” below in this section of this Bulletin. At the time the dissertation is submitted, an Application to Graduate must be on file, all of the department requirements must be complete, and candidacy must be valid through the term of degree conferral.

DOCTORAL DISSERTATION READING COMMITTEE
The Doctoral Dissertation Reading Committee consists of the principal dissertation adviser and two other readers. At least one member must be from the student’s major department. Normally, all members are on the Stanford Academic Council. The student’s department chair may, in some cases, approve the appointment of a reader who is not on the Academic Council, if that person is particularly well qualified to consult on the dissertation topic and holds a Ph.D. or equivalent foreign degree.

Former Stanford Academic Council members, emeritus professors, and non-Academic Council members may serve on a reading committee. If they are to serve as the principal dissertation adviser, however, the appointment of a co-adviser who is currently on the Academic Council is required.
The reading committee, as proposed by the student and agreed to by the prospective members, is endorsed by the chair of the major department on the Doctoral Dissertation Reading Committee form. This form must be submitted before approval of Terminal Graduate Registration (TGR) status or before scheduling a University oral examination that is a defense of the dissertation. The reading committee may be appointed earlier, according to the department timetable for doctoral programs. All subsequent changes to the reading committee must be approved by the chair of the major department.

PH.D. MINOR

Students pursuing a Ph.D. may pursue a single minor in another department or program to complement their Ph.D. program. This option is not available to students pursuing other graduate degrees. Ph.D. candidates cannot pursue a minor in their own major department or program.

Except for a Ph.D. minor in Applied Linguistics, only departments that offer a Ph.D. may offer a minor, and those departments are not required to do so. The minor should represent a program of graduate quality and depth, including core requirements and electives or examinations. The department offering the minor establishes the core and examination requirements. Elective courses are planned by the students in conjunction with their minor and Ph.D. departments.

The minimum University requirement for a Ph.D. minor is 20 units of course work at the graduate level (courses numbered 200 and above). If a minor department chooses to require those pursuing the minor to pass the Ph.D. qualifying or field examinations, the 20-unit minimum can be reduced. All of the course work for a minor must be done at Stanford.

Units taken for the minor can be counted as part of the overall requirement for the Ph.D. of 135 units of graduate course work done at Stanford. Courses used for a minor may not be used also to meet the requirements for a master’s degree.

A Ph.D. minor form outlining a program of study must be approved by the major and minor departments. This form is submitted at the time of admission to candidacy and specifies whether representation from the minor department on the University oral examination committee is required.

GRADUATION QUARTER

Registration is required for the term in which a student submits a dissertation or has a degree conferred. Students who meet the following conditions are eligible to be assessed a special tuition rate for the quarter in which they are receiving a degree:

1. All course work and residency requirements have been completed.
2. A graduate or professional student must have enrolled in the term immediately preceding the term chosen as the graduation quarter.
3. The student has formally applied to graduate.
4. The student has only to submit the dissertation or thesis or project by the deadline for submission in the term designated as the graduation quarter.

5. The student has filed all necessary forms regarding graduation quarter before the first day of the term chosen as graduation quarter. Students on graduation quarter are registered at Stanford and, therefore, have the rights and privileges of registered students. Only one graduation quarter may be requested for each degree program. There is a registration fee of $100 for the graduation quarter.

ADVISING AND CREDENTIALS

ADVISING

By the start of their first term, students should be paired by the department with faculty advisers who assist them in planning a program of study to meet degree requirements. The department should also ensure that doctoral students are informed in a timely fashion about procedures for selecting a dissertation adviser, reading committee members, and orals committee members. Departments should make every effort to assist doctoral students who are not admitted to candidacy in finding an appropriate adviser.

Students are obliged to follow department procedures for identifying advisers and committee members for their dissertation reading and orals examinations.

Occasionally, a student’s research may diverge from the area of competence of the adviser, or irreconcilable differences may occur between the student and the faculty adviser. In such cases, the student or the faculty adviser may request a change in assignment. If the department decides to grant the request, every reasonable effort must be made to pair the student with another suitable adviser. This may entail some modification of the student’s research project.

In the rare case where a student’s dissertation research on an approved project is in an advanced stage and the dissertation adviser is no longer available, every reasonable effort must be made to appoint a new adviser, usually from the student’s reading committee. This may also require that a new member be added to the reading committee before the draft dissertation is evaluated, to keep the reconstituted committee in compliance with the University requirements for its composition.

PUBLIC SCHOOL CREDENTIALS

Stanford University is accredited by the California Commission on Teacher Credentialing and the National Council for Accreditation of Teacher Education and is authorized to recommend candidates for credentials. The University offers a complete training program for the Single Subject Teaching Credential. The Multiple Subject Teaching Credential is only available to Stanford undergraduates who are admitted to the coterminal program. Upon completion of a Stanford approved program, the credentials will allow teachers to serve in California public schools.

Current Stanford undergraduates wishing to complete the requirements for a teaching credential should apply to the coterminal program at the School of Education. All other applicants should apply directly to the Stanford Teacher Education Program (STEP) at the School of Education.
ACADEMIC POLICIES AND STATEMENTS

COMPLIANCE WITH UNIVERSITY POLICIES

Registration as a student constitutes a commitment by the student to abide by University policies, rules, and regulations, including those concerning registration, academic performance, student conduct, health and safety, use of the libraries and computing resources, operation of vehicles on campus, University facilities, and the payment of fees and assessments. Some of these are set forth in this bulletin while others are available in relevant University offices.

Students should take responsibility for informing themselves of applicable University policies, rules, and regulations. A collection is available on the Stanford University policy web site at http://www.stanford.edu/home/administration/policy.html. Many are also set forth in the Research Policy Handbook and the Graduate Student Handbook.

The University reserves the right to withhold registration privileges or to cancel the registration of any student who is not in compliance with its policies, rules, or regulations.

REGISTRATION AND RECORDS

REGISTRATION AND STUDY LISTS

As early as possible, but no later than the second Sunday of the quarter, students (including those with TGR status) must submit to the Office of the University Registrar, via Axess, a study list to enroll officially in classes for the quarter. Students may not enroll in more units than their tuition charge covers, nor enroll in courses for zero units unless those courses, like TGR, are defined as zero-unit courses. Undergraduates are subject to academic load limits described in the “Amount of Work” section below.

The University reserves the right to withhold registration from, and to cancel the advance registration or registration of, any student having unmet obligations to the University.

For full registration procedures, see the quarterly Time Schedule.

STUDY LIST CHANGES

Students may add courses or units to their study lists through the end of the third week of classes. (Individual faculty may choose to close their classes to new enrollments at an earlier date.) Courses or units may be added only if the revised program remains within the normal load limits.

Courses or units may be dropped by students through the end of the fourth week of classes, without any record of the course remaining on the student’s transcript. No drops are permitted after this point, regardless of the grade or notation recorded in the course.

A student may withdraw from a course after the drop deadline through the end of the eighth week of each quarter. In this case, a grade notation of ‘W’ (withdraw) is automatically recorded on the student’s transcript for that course. Students who do not officially withdraw from a class by the end of the eighth week are assigned the appropriate grade or notation by the instructor to reflect the work completed.

Through the end of the sixth week of classes, students may choose the grading option of their choice in courses where an option is offered.

If the instructor allows a student to take an ‘I’ (incomplete) in the course, the student must make the appropriate arrangements for that with the instructor by the last day of classes.

These policies reflect changes adopted by the Faculty Senate on June 2, 1994 which were effective Autumn Quarter 1995-96. The deadlines described above follow the same pattern each quarter but, due to the varying lengths of Stanford’s quarters, they may not always fall in exactly the week specified. Students should consult the Time Schedule for the deadline dates each term. Other deadlines may apply in Law, Graduate Business, Medicine, and Summer Session.

REPEATED COURSES

Students may not enroll in courses for credit for which they received either Advanced Placement or transfer credit.

Some Stanford courses may be repeated for credit; they are specially noted in this bulletin. Most courses may not be repeated for credit. Under the general University grading system, when a course which may not be repeated for credit is retaken by a student, the following special rules apply:

1. A student may retake any course on his or her transcript, regardless of grade earned, and have the original grade, for completed courses only, replaced by the notation ‘RP’ (repeated course). When retaking a course, the student must enroll in it for the same number of units originally taken. When the grade for the second enrollment in the course has been reported, the units and grade points for the second course count in the cumulative grade point average in place of the grade and units for the first enrollment in the course. Because the notation ‘RP’ can only replace grades for completed courses, the notation ‘W’ cannot be replaced by the notation ‘RP’ in any case.

2. A student may not retake the same course for a third time unless he or she received a ‘NC’ (no credit) or ‘NP’ (not passed) when it was taken and completed the second time. When a student completes a course for the third time, grades and units for both the second and third completions count in the cumulative grade point average. The notation ‘W’ is not counted toward the three-retake maximum.

These policies reflect changes adopted by the Faculty Senate on June 2, 1994.

AMOUNT OF WORK

The usual amount of work for undergraduate students is 15 units per quarter: 180 units (225 for dual degree students) are required for graduation. Registration for fewer than 12 units is rarely permitted and may cause the undergraduate to be ineligible for certification as a full-time student. The maximum is 20 units (21 if the program includes a 1-unit activity course). The maximum may be exceeded by seniors only once for compelling reasons. A past superior academic performance is not considered to be sufficient justification for exceeding the maximum. Petitions for programs of fewer than 12 or more than 20 units must be signed by the student’s adviser and submitted for consideration to the Office of the University Registrar, Old Union, room 141. For additional information regarding satisfactory academic progress, refer to the “Academic Standing” section of this bulletin (below).

Matriculated graduate students are expected to enroll for at least eight units; schools and departments may set a higher minimum. Petitions for programs of fewer than 8 must be signed by the student’s department and submitted for consideration to the Office of the University Registrar. Graduate students are normally expected to enroll in no more than 24 units; registration for more than 24 units must be approved by the department. Under certain circumstances, graduate students may register on a part-time basis. See the “Tuition, Fees, and Housing” section of this bulletin.

During the eight-week Summer Quarter, 16 units is the maximum for all students. For details, see http://summer.stanford.edu.

UNIT OF CREDIT

Every unit for which credit is given is understood to represent approximately three hours of actual work per week for the average student. Thus, in lecture or discussion work, for 1 unit of credit, one hour per week may be allotted to the lecture or discussion and two hours for preparation or subsequent reading and study. Where the time is wholly occupied with studio, field, or laboratory work, or in the classroom work of conversa-
tion classes, three full hours per week through one quarter are expected of the student for each unit of credit; but, where such work is supplemented by systematic outside reading or experiment under the direction of the instructor, a reduction may be made in the actual studio, field, laboratory, or classroom time as seems just to the department.

AUDITING

No person shall attend any class unless he or she is a fully registered student enrolled in the course or meets the criteria for auditors. Auditors are not permitted in courses that involve direct participation such as language or laboratory science courses, fieldwork, art courses with studio work, or other types of individualized instruction. Auditors are expected to be observers rather than active participants in the courses they attend, unless the instructors request attendance on a different basis. Stanford does not confer credit for auditing, nor is a permanent record kept of courses audited. Students who have been suspended are not permitted to audit.

In all cases of auditing, the instructor’s prior consent and the Office of the University Registrar’s prior approval are required. Further information is available from the Office of the University Registrar.

LEAVES OF ABSENCE AND REINSTATEMENT (UNDERGRADUATE)

Undergraduates are admitted to Stanford University with the expectation that they will complete their degree programs in a reasonable amount of time, usually within four years. Students have the option of taking a leave of absence for up to one year upon filing a petition to do so with the Office of the University Registrar and receiving approval. The leave may be extended for up to one additional year provided the student files (before the end of the initial one-year leave) a petition for the leave extension with the Office of the University Registrar and receives approval. Undergraduates who take an approved leave of absence while in good standing may enroll in the University for the subsequent quarter with the privileges of a returning student.

Students who wish to withdraw from the current quarter, or from a quarter for which they have registered in advance and do not wish to attend, must file a leave of absence petition with the Office of the University Registrar. More information is available in the “Refunds” section of this bulletin.

Students who have not enrolled at Stanford for more than two years must apply for reinstatement. The University is not obliged to approve reinstatements of students. Applications for reinstatement will be reviewed by the University Registrar and are subject to the approval of the Faculty Senate Committee on Undergraduate Standards and Policy or its designees. The Committee or its designees may determine whether the application for reinstatement will be approved or not, and/or the conditions a student must meet in order to be reinstated. Reinstatement decisions may be based on the applicant’s status when last enrolled, activities while away from campus, the length of the absence, the perceived potential for successful completion of the program, as well as any other factors or considerations regarded as relevant to the University Registrar or the Committee.

Applications for reinstatement must be submitted to the Office of the University Registrar no later than four weeks prior to the start of the term in which the student seeks to enroll in classes. Petition information and instructions may be obtained by contacting the Office of the University Registrar.

Leaves of absence for and reinstatements of graduate students are addressed in the “Graduate Degrees” section of this bulletin.

RECORDS

TRANSCRIPTS

Transcripts of Stanford records are issued by the Office of the University Registrar upon the student’s request when submitted in writing or via the online Axess system. There is no charge for official transcripts. The courses taken and grades given in one quarter will not appear on any student’s transcript until all grades received by the grade deadline have been recorded; generally, this is two weeks after final exams. The University reserves the right to withhold transcripts or records of students with unmet obligations to the University.

CERTIFICATION OF ENROLLMENT OR DEGREES

The Office of the University Registrar can provide oral or written confirmation of registration, enrollment, or degree status. The printed certification can be used whenever enrollment or degree verification is required for car insurance, loan deferments, medical coverage, scholarship purposes, and so on. Using Axess, students are able to order an official certification, at no charge, that can be picked up at the Office of the University Registrar on the next business day. Certification of full- or part-time enrollment cannot be provided until after the first day of the term and the study list is filed.

Degrees are conferred quarterly, but diplomas are issued at the Commencement exercises which are held only in June. After conferral, the degree awarded to a student can be verified by contacting the Office of the University Registrar for an official transcript, a certification form, or the National Student Clearinghouse. Requests for transcripts must be made by the student in writing or through Axess.

Full-time enrollment for undergraduates is considered to be enrollment in a minimum of 12 units of course work per quarter at Stanford. Work necessary to complete units from previous quarters will not count toward the 12 units necessary for full-time status in the current quarter. Enrollment in 8 to 11 units is considered half-time enrollment. Enrollment in 1 to 7 units is considered less-than-half-time, or part-time enrollment. During Summer Quarter, all graduate students who hold appointments as research or teaching assistants are considered to be enrolled on at least a half-time basis.

All undergraduate students validly registered at Stanford are considered to be in good standing for the purposes of enrollment certification.

Stanford uses the following definitions (in units) to certify the enrollment status of graduate and professional students each quarter:

<table>
<thead>
<tr>
<th>Enrollment Status</th>
<th>Graduate (M.B.A., Sloan)</th>
<th>Law</th>
<th>Medicine (M.D.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full time</td>
<td>8 or more</td>
<td>11 or more</td>
<td>10 or more</td>
</tr>
<tr>
<td>Half time</td>
<td>6 or 7</td>
<td>6-10</td>
<td>6-9</td>
</tr>
<tr>
<td>Part time</td>
<td>5 or fewer</td>
<td>5 or fewer</td>
<td>5 or fewer</td>
</tr>
</tbody>
</table>

TGR students enrolled in a course numbered 801 or 802 are certified as full time.

Only information classified by the University as directory information (see below) can be confirmed to inquirers other than the student.

PRIVACY OF STUDENTS RECORDS

NOTIFICATION OF RIGHTS UNDER FERPA

The Family Educational Rights and Privacy Act of 1974 (FERPA) affords students certain rights with respect to their education records. They are:

1. The right to inspect and review the student’s education records within 45 days of the date the University receives a request for access.

 The student should submit to the Registrar, Dean, chair of the department, or other appropriate University official, a written request that identifies the record(s) the student wishes to inspect. The University official will make arrangements for access and notify the student of the time and place where the records may be inspected. If the records are not maintained by the University official to whom the request was submitted, that official shall advise the student of the correct official to whom the request should be addressed.

2. The right to request the amendment of the student’s education records that the student believes are inaccurate or misleading.

 A student may ask the University to amend the record that he or she believes is inaccurate or misleading. The student should write the University official responsible for the record, clearly identify the part
of the records he or she wants changed, and specify why it is inaccurate or misleading.

If the University decides not to amend the record as requested by the student, the University will notify the student of the decision and advise the student of his or her right to a hearing regarding the request for amendment.

Additional information regarding the hearing procedures will be provided to the student when notified of the right to a hearing.

3. The right to consent to disclosures of personally identifiable information contained in the student’s education records, except to the extent that FERPA authorizes disclosure without consent.

One exception which permits disclosure without consent is disclosure to school officials with legitimate educational interests. A school official is a person employed by the University in an administrative, supervisory, academic or research, or support staff position (including law enforcement unit personnel and health staff); a person or company with whom the University has contracted (such as an attorney, auditor, or collection agent); a person serving on the Board of Trustees; or a student serving on an official committee, such as a disciplinary or grievance committee, or assisting another school official in performing his or her tasks. A school official has a legitimate educational interest if the official needs to review an education record in order to fulfill his or her professional responsibility.

Another exception is that the University discloses education records without consent to officials of another school, in which a student seeks or intends to enroll, upon request of officials at that other school.

4. The right to file a complaint with the U.S. Department of Education concerning alleged failures by the University to comply with the requirements of FERPA.

The name and address of the office that administers FERPA is:

DIRECTORY INFORMATION
The University regards the following items of information as “directory information,” that is, information that the University may make available to any person upon specific request (and without student consent):

Name
Date of birth
Birth location
Campus work address and phone number
Current mailing address
Stanford Directory (local) address and phone number
Stanford student residence address
Primary email address
ID card photographs (for classroom use only)
Academic information, including class, degree(s), major(s), minor(s), prior institution, and active terms

Students may prohibit the release of any of the items listed above (except name) by designating which items should not be released on the Privacy function of Axess. Students may prohibit the release of their name (and consequently all other information) after an appointment with a University Assistant Registrar to discuss the ramifications of this action.

Students, faculty, and others with questions regarding student records should contact the Office of the University Registrar.

CONSENT TO USE OF PHOTOGRAPHIC IMAGES
Registration as a student and attendance at or participation in classes and other campus and University activities constitutes an agreement by the student to the University’s use and distribution (both now and in the future) of the student’s image or voice in photographs, videotapes, electronic reproductions, or audiotapes of such classes and other campus and University activities.

If any student in a class where such photographing or recording is to take place does not wish to have his or her image or voice so used, the student should raise the matter in advance with the instructor.

STANFORD UNIVERSITY ID NUMBER
The Stanford University ID is a number assigned to each student’s academic record for unique identification. It is printed on the Stanford University ID card and on documents distributed by the Office of the University Registrar and other administrative offices.

SUNET ID
The SUNet ID provides access to the Stanford University Network (SUNet) and its services, and identifies authorized users of these services. Each member of the Stanford electronic community creates a unique SUNet ID and password for him/herself.

SUNET IDs provide:
- Axess services
- Email service
- Storage space within Stanford’s distributed file system
- Usenet newsgroups
- World wide web services, including serving of personal web pages on the Leland system and access to Stanford Web Resources

IDENTIFICATION CARDS
ID cards are available to registered students, faculty, and regular staff through the Stanford Card ID Office, Old Union, Room 100. The ID card serves as an identification card, an electronic key, and a debit card, allowing cardholders to use services for which they have privileges, to enter facilities, and to make purchases.

Married students or students with a domestic partner (same or opposite sex) may obtain a courtesy identification card for their spouse/partner through the Stanford Card ID Office, Old Union. The spouse/partner card enables use of some campus services during terms for which the student is registered.

Similar courtesy cards are also available to the spouses and same-sex partners of faculty and regular staff.

ID cards bear a photograph of the cardholder. This photograph is maintained in an online database and, as stated above in Directory Information, is available for classroom use upon specific request and without student consent unless the student has designated that the photograph not be released. Photographs can be designated as private using the Privacy function of Axess.

PERSONAL IDENTIFICATION NUMBERS
Students eligible to use online services such as Axess, obtain a PIN through the Office of the University Registrar. The PIN, coupled with the assigned University identification number, uniquely identifies the student and serves in a place of a signature on electronic forms. The PIN and SUNet ID password must remain confidential. It is a violation of University policy to use another’s PIN or identification number to misrepresent yourself in any way. Use of another student’s PIN or SUNet ID password can result in loss of student privileges or other disciplinary action.
EXAMINATIONS

MIDTERMS

Classes that give midterm examinations outside of regular class hours must: (1) announce the date and time during the first week of the academic quarter, and (2) provide reasonable alternative times to those students for whom these announced times are not convenient. According to Honor Code interpretations and applications, different examinations may be given at these alternative times.

END-QUARTER POLICY STATEMENT

The End-Quarter Period is a time of reduced social and extracurricular activity preceding final examinations. Its purpose is to permit students to concentrate on academic work and to prepare for final examinations.

In Autumn, Winter, and Spring quarters, End-Quarter starts seven full days (to begin at 12:01 a.m.) prior to the first day of final exams. In Spring Quarter, final examinations begin on Friday; no classes are held on Thursday, the day before. In Summer Quarter, this consists of the weekend and the four class days preceding the final examinations, which take place on Friday and Saturday of the eighth week. (See the Time Schedule for dates.)

During the End-Quarter Period, classes are regularly scheduled and assignments made; this regular class time is used by instructors in whatever way seems best suited to the completion and summation of course material. Instructors should neither make extraordinary assignments nor announce additional course meetings in order to “catch up” in course presentations that have fallen behind. They are free, however, and even encouraged to conduct optional review sessions and to suggest other activities that might seem appropriate for students preparing for final examinations.

No graded homework assignments, mandatory quizzes, or examinations should be given during the End-Quarter Period except:

1. In classes where graded homework assignments or quizzes are routine parts of the instruction process,
2. In classes with laboratories where the final examination will not test the laboratory component. In such a case, the laboratory session(s) during the End-Quarter Period may be used to examine students on that aspect of the course.

Major papers or projects about which the student has had reasonable notice may be called due in the End-Quarter Period.

Take-home final examinations, given in place of the officially scheduled in-class examination, may be distributed in the End-Quarter Period. Although the instructor may ask students to return take-home examinations early in the final examination period, the instructor may not call them due until the end of the regularly scheduled examination time for that course. Such a policy respects the principle that students’ final examinations are to be scheduled over a period of several days.

End-quarter examinations may not be held during this period. This policy preserves the instruction time for courses and protects the students’ opportunities for extensive review and synthesis of their courses.

During the End-Quarter Period, no musical, dramatic, or athletic events involving compulsory student participation may be scheduled, unless approved by the Committee on Undergraduate Standards and Policy (C-USP), or may routine committee meetings be scheduled (such as those of the ASSU, the Senate of the Academic Council, or the committees of the President of the University) when such meetings normally would involve student participation.

Note — Students who believe that there are faculty who are violating End-Quarter policy should contact the Office of the University Registrar.

END-QUARTER EXAMINATIONS

Examinations are part of the process of education at the same time that they are a means to measure the student’s performance in course work. Their structure, content, frequency, and length are to be determined in accordance with the nature of the course and the material presented in it, subject only to the limitations contained herein.

Great flexibility is available regarding the types of examinations that an instructor may choose to employ. Examinations, including final examinations, may be, for example, in-class essay examinations, take-home essay examinations, objective examinations, oral examinations, or appropriate substitutes such as papers or projects. Instructors may use any type of examination, paper, or project, or any combination thereof, guided only by the appropriateness of the types of examinations, papers, or projects for the material upon which the student is being examined.

When the final examination is an in-class examination, the following regulations apply:

1. A three-hour period is reserved during examination week for the final examination in each course of more than 2 units. This examination period must be available for students, but not necessarily in its entirety, if an in-class examination is given. In courses with extraordinary meeting times, such that ambiguity might exist as regards the period reserved for the final examination, the schedule should be clarified and students informed no later than the end of the second week of the quarter.
2. Examinations in 1- or 2-unit courses must be completed by the end of the last class meeting before the End-Quarter Period, except in Summer Quarter when examinations must be completed during the last regularly scheduled class session.

When the final examination or its appropriate substitute is not an in-class examination (for example, when an instructor chooses to employ a take-home examination, paper, or project in lieu of an in-class examination), the following regulations apply:

1. The schedule and format of the final examination or its appropriate substitute shall be made known not later that the end of the second week of the quarter and, if changed subsequently, may be only an option of the plan originally announced by the instructor.
2. Although the instructor may ask students to return take-home examinations early in the final examination period, the instructor may not call them due until the end of the regularly scheduled examination time for that course.

In submitting official Study Lists, students commit to all course requirements, including the examination procedures chosen and announced by the course instructor. In selecting courses, students should take cognizance of the official schedule of final examinations announced in the quarterly Time Schedule. Students anticipating conflicts in final examination schedules should seek to resolve these with the instructors involved before submitting Study Lists at the end of the second week of the quarter. If accommodation cannot be made at that time, the student should revise his or her Study List in order to be able to meet the required final examination.

If unforeseen circumstances prevent the student from sitting for the regularly scheduled examination, instructors should make alternative arrangements on an individual basis. Such unforeseen circumstances include illness, personal emergency, or the student’s required participation in special events (for example, athletic championships) approved as exceptions by the Committee on Undergraduate Standards and Policy (C-USP).

STATEMENT CONCERNING EARLY EXAMINATIONS

Students are reminded that taking final examinations earlier than the scheduled time is a privilege, not a right. They should request this privilege only in the event of extraordinary circumstances.

Since the final examination schedule is published quarterly in the Time Schedule at the time of course selection and enrollment, students are expected to make their academic plans in light of known personal circumstances that may make certain examination times difficult for them.

In general, faculty members are discouraged from giving final examinations earlier than the published and announced times. If faculty nevertheless decide to administer early examinations, either the questions should be completely different from those on the regularly scheduled examination or the early examination should be administered in a highly controlled setting. An example of such a setting would be a campus seminar room
where the examination questions would be collected along with students’ work and students would be reminded of their Honor Code obligations not to share information about the examination contents. Giving students easy opportunities to abuse the integrity of an examination is unfair to honest students and inconsistent with the spirit of the Honor Code.

Academic fields differ in the degree to which early examination requests present dilemmas for faculty. If, for example, an examination format consists of a small number of essay questions, where students would be greatly advantaged by knowing the question topics, faculty should be especially reluctant to allow early examinations unless they are willing to offer totally different examinations or a different kind of academic task, for example, a final paper in lieu of an examination.

GRADING SYSTEMS

GENERAL UNIVERSITY

The general University grading system is applicable to all schools of Stanford University except the Graduate School of Business, the School of Law, and M.D. students in the School of Medicine. Note that the GPA (grade point average) and rank in class are not computed under the general University grading system. Stanford does use an internal-only GPA which is based on units completed up to the time of conferment of the first bachelor’s degree. This information is used for internal purposes only and is not displayed on the official transcript which is sent outside the University. Most courses are graded according to the general University grading system. However, courses offered through Law, Business, and Medicine are graded according to those schools’ grading systems, even in cases where students in other programs are enrolled in their classes. Note also that, as to graduate students, there may be departmental requirements as to grades that must be maintained for purposes of minimum academic progress.

DEFINITION AND EXPLANATION

The following reflects changes adopted by the Faculty Senate on June 2, 1994 and effective Autumn Quarter 1995-96. All grades/notations for courses taken in 1995-96 or later are to be visible on student transcripts.

A Excellent
B Good
C Satisfactory
D Minimal pass
(Plus (+) and minus (-) may be used as modifiers with the above letter grades)
NP Not Passed
NC No Credit (unsatisfactory performance, ‘D+’ or below equivalent, in a class taken on a satisfactory/no credit basis)
CR Credit (student-elected satisfactory; A, B, or C equivalent)
S No-option Satisfactory; A, B, or C equivalent
L Pass, letter grade to be reported
W Withdraw
N Continuing course
I Incomplete
RP Repeated Course
* No grade reported
NC The notation ‘NC’ represents unsatisfactory performance in courses taken on a satisfactory/no credit basis. Performance is equivalent to letter grade ‘D+’ or below.
NP The notation ‘NP’ is used by instructors in courses taken for a letter grade that are not passed.
CR In a course for which some students will receive letter grades, the ‘CR’ represents performance that is satisfactory or better when the student has elected the ‘CR’ grading option.
S For an activity course or a course in which the instructor elects to grade students only on a satisfactory/no credit basis, the ‘S’ represents performance that is satisfactory or better. For such a course, no letter grades may be assigned for satisfactorily completed work.

It should be noted that the Registrar is unable to record course grades submitted when the instructor has not observed the required distinction between ‘S’ and ‘CR.’ The “satisfactory” options are intended to relieve the pressure on students for achievement in grades. The “satisfactory” options in no way imply fewer or different course work requirements than those required of students who elect evaluation with a letter grade. A department may limit the number of “satisfactory” courses to count for a major program. For those students admitted as freshmen for Autumn Quarter 1996-97 or later, no more than 36 units of Stanford course work (including activity courses) in which a ‘CR’ or ‘S’ was awarded can be applied toward the 180 (225 if dual degrees are being pursued) units required for a bachelor’s degree. Students who enter Stanford as transfer students in 1996-97 or later are limited to 27 ‘CR’ or ‘S’ units applied to the 180/225 minimum.

L The ‘L’ is a temporary notation that represents creditable completion of a course for which the student will receive a permanent letter grade before the start of the next quarter. The ‘L’ is given when the instructor needs additional time to determine the specific grade to be recorded, but it is not appropriate if additional work is expected to be submitted by the student. A student receives unit credit for work graded ‘L.’

N The ‘N’ indicates satisfactory progress in a course that has not yet reached completion. Continuation courses need not continue at the same number of units, but the grade for all quarters of such a course must be the same.

N- The ‘N-’ grade indicates unsatisfactory progress in a continuing course. The first ‘N-’ grade constitutes a warning. The adviser, department chair, and students should discuss the deficiencies and agree on the steps necessary to correct them. A second consecutive ‘N-’ will normally cause the department to deny the student further registration until a written plan for the completion of the degree requirements has been submitted by the student and accepted by the department. Subsequent ‘N-’ grades are grounds for dismissal from the program.

I The ‘I’ is restricted to cases in which the student has satisfactorily completed a substantial part of the course work. No credit will be given until the course is completed and a passing grade received. When a final grade is received, all reference to the initial ‘I’ is removed.

In courses taken before 1994-95, satisfactory completion of the course work when an ‘I’ has been given is expected within a year from the date of the course’s final examination, but an alternate time limit may be set by the instructor. Students may petition that these courses with an ‘I’ grade be removed from their records.

In a course taken in 1994-95 or later, ‘I’ grades must be changed to a permanent notation or grade within a maximum of one year. If an incomplete grade is not cleared at the end of one year, it is changed automatically by the Office of the University Registrar to an ‘NP’ (not passed) or ‘NC’ (no credit) as appropriate for the grading method of the course. Students must request an incomplete grade by the last class meeting. Faculty may determine whether to grant the request or not. Faculty are free to determine the conditions under which the incomplete is made up, including setting a deadline of less than one year.

RP The notation ‘RP’ (meaning Repeated Course) replaces the original grade recorded for a course when a student retakes a course. (See the “Repeated Courses” section of this bulletin, above.)
W The notation ‘W’ (meaning Withdraw) is recorded when a student withdraws from a course.

The ‘*’ symbol appears when no grade has been reported to the Registrar for courses taken prior to 2001-02. The ‘**’ symbol remains on the transcript until a grade has been reported.
REPORTING OF GRADES

All grades must be reported within 96 hours after the time and day reserved for the final examination, and in no case later than noon of the fourth day (including weekends) after the last day of the final examination period.

In the case of degree candidates in Spring Quarter, final grades must be reported by noon of the day following the end of the final examination period.

REVISION OF END-QUARTER GRADES

When duly filed with the Office of the University Registrar, end-quarter grades are final and not subject to change by reason of a revision of judgment on the instructor’s part; nor are passing grades to be revised on the basis of a second trial (for example, a new examination or additional work undertaken or completed after the end of the quarter). Changes may be made at any time to correct an actual error in computation or transcription, or where some part of the student’s work has been unintentionally overlooked; that is, if the new grade is the one that would have been entered on the original report had there been no mistake in computing and had all the pertinent data been before the instructor, the change is a proper one.

If a student questions an end-quarter grade based on the grading of part of a specific piece of work (for example, part of a test) on the basis of one of the allowable factors mentioned in the preceding paragraph (for example, an error in computation or transcription, or work unintentionally overlooked, but not matters of judgment as mentioned below), the instructor may review the entire piece of work in question (for example, the entire test) for the purpose of determining whether the end-quarter grade was a proper one. In general, changing an end-quarter grade is permitted on the basis of the allowable factors already mentioned whether an error is discovered by the student or the instructor; however, changing a grade is not permitted by reason of revision of judgment on the part of the instructor.

In the event that a student disputes an end-quarter grade, the established grievance procedure should be followed (see the “Statement on Student Academic Grievance Procedures” section of this bulletin).

GRADUATE SCHOOL OF BUSINESS

Effective September 2000, all courses offered by the Graduate School of Business will be graded according to the following five-level scheme:

H Honors. Work that is of truly superior quality.
HP High Pass. A passing performance, and one that falls approximately in the upper quarter of passing grades.
P Pass. A passing performance that falls in the center of the distribution of all passing grades.
LP Low Pass. A passing performance that falls approximately in the lower quarter of passing grades.
U Unsatisfactory. A failing performance. Work that does not satisfy the basic requirements of the course and is deficient in significant ways.

Students in some GSB courses may elect to take the course on a pass/fail basis, where any passing grade (H, HP, P, or LP) is converted to Pass, and U is converted to Fail. Students wishing to take a GSB course on a pass/fail basis should consult the GSB Registrar for rules and procedures. Prior to 2001-02, an asterisk (*) notation was placed when no grade was reported.

SCHOOL OF LAW

The two grading systems previously employed at the School of Law were revised effective September 2001. Under the numerical system (with letter equivalents), the range of satisfactory grades runs from 4.3 to 2.5 as outlined in the following distribution. Below the grade of 2.5 is one level of restricted credit (2.2) and one level of failure (2.1). The number grades with letter equivalents are as follows:

<table>
<thead>
<tr>
<th>Number Grades</th>
<th>Letter Equivalents</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3, 4.2</td>
<td>A+</td>
</tr>
<tr>
<td>4.1, 4.0, 3.9</td>
<td>A</td>
</tr>
<tr>
<td>3.8, 3.7, 3.6, 3.5</td>
<td>A-</td>
</tr>
<tr>
<td>3.4, 3.3, 3.2</td>
<td>B+</td>
</tr>
<tr>
<td>3.1, 3.0, 2.9</td>
<td>B</td>
</tr>
<tr>
<td>2.8, 2.7, 2.6, 2.5</td>
<td>B-</td>
</tr>
</tbody>
</table>

Students may elect to take a limited number of courses on a credit/restricted credit/no credit system (K/RK/NK). ‘K’ will be awarded for work that is comparable to numerical grades 4.3 to 2.5, ‘RK’ for Restricted Credit-level work (2.2), and ‘NK’ for Failure-level work (2.1). A limited number of courses are offered on a mandatory credit (KM)/no credit (NK) basis. ‘N’ is a temporary notation used in a continuing course; it is replaced with a final grade upon completion of the course series. Prior to 2001-02 an asterisk (*) notation was placed when no grade has been reported.

SCHOOL OF MEDICINE

In general, the following grades are used in reporting on the performance of students in the M.D. program:

Pass (+) Indicates that the student has demonstrated to the satisfaction of the department or teaching group responsible for the course that he or she has mastered the material taught in the course.
Fail (-) Indicates that the student has not demonstrated to the satisfaction of the department or teaching group responsible for the course that he or she has mastered the material taught in the course.
Incomplete Indicates that extenuating medical or personal circumstances have prevented the student from completing the course requirements. This grade shall be given when requested by the student with the prior approval of the Dean for Student Affairs in the School of Medicine.
Exempt Indicates a course that is exempted by examination. No units are awarded for courses completed.

In general, a “Fail” grade can be cleared by repeating and passing the particular course or by other arrangement prescribed by the department or teaching group. An “Incomplete” grade can be made up in a manner specified by the department or teaching group within a reasonable time; if the deficiency is not made up within the specified time, the “Incomplete” grade becomes a “Fail” grade. The opportunity to clear a “Fail” grade or an “Incomplete” grade cannot be extended to individuals who are not registered or eligible to register as students in the M.D. program. For more specific information, see http://med.stanford.edu/md/.

ACADEMIC STANDING

Undergraduates matriculating in Autumn 1999 and thereafter are required to adhere to the academic standards described below. The standards include maintaining a minimum 2.0 cumulative GPA and a quantitative unit requirement for good academic standing. In addition, a minimum 2.0 cumulative GPA is required for conferral of a baccalaureate degree.

Undergraduates matriculating prior to Autumn 1999 are required to adhere to the academic standards described below but are exempt from the minimum 2.0 cumulative GPA requirement for academic standing purposes. However, departments can elect to require a minimum GPA for course work applicable to the major and the minor. Refer to departmental literature for specific requirements.

Undergraduate students normally are expected to plan their academic programs so that they can complete 180 units in four years (twelve quarters), including the requirements for a major and the General Education, Writing, and Language Requirements. Satisfactory academic progress is, on average, 45 units per academic year for four years leading to at least 180 units, a cumulative grade point average of at least 2.0, and a baccalaureate degree.

While undergraduates are expected to register for a minimum of 12 units, they are required to complete at least 9 units each quarter (by the end of the final exam period) and at least 36 units in their most recent three quarters of Stanford enrollment (by the end of the third final exam period). In addition, students are expected to maintain a cumulative grade point average of at least 2.0. Transfer work completed at other institutions is not considered in this calculation.

41
A student earning fewer than 9 units per quarter or fewer than 36 units in three quarters, or earning less than a 2.0 cumulative grade point average, is placed on probation. Students on probation or provisional registration status (see definitions below) are required to complete a minimum of 12 units per quarter (by the end of the final quarter examination period for each quarter) for each quarter for three consecutive quarters, and maintain a cumulative grade point average of at least 2.0 to attain good academic standing (a Stanford Summer Session Quarter counts toward the three consecutive quarter requirement if 11 or more units are completed). The faculty Subcommittee on Academic Standing may stipulate otherwise by acting upon a petition for fewer units.

Full-time enrollment is considered to be enrollment in a minimum of 12 units of course work per quarter at Stanford. Under extenuating circumstances, students may petition to the faculty Subcommittee on Academic Standing to take fewer units. Work necessary to complete units from previous quarters does not count toward the 12 units necessary for full-time enrollment in the current quarter. All students registering for fewer than 12 units should consider the effects of that registration on their degree progress, visas, deferments of student loans, residency requirements, and their eligibility for financial aid and awards.

All undergraduate students validly registered at Stanford are considered to be in good standing for the purposes of enrollment certification and athletic participation.

Units are granted for courses completed with grades ‘A,’ ‘B,’ ‘C,’ ‘D,’ ‘Satisfactory’ (‘CR’ or ‘S’), and ‘L.’ Courses graded ‘N’ are counted provisionally as units completed, provided the student enrolls in the continuing segment of that course the following quarter. When the course is completed, the student receives the units for which he or she enrolled. No units are granted for a course in which the student receives an ‘I’ or an ‘*’ until the course is completed satisfactorily and the final grade reported. (See “Grading Systems” above.)

PROBATION

A student who fails to complete at least 36 units of work in his or her most recent three quarters of enrollment at the University, or who fails to complete by the end of the final examination period at least 9 quarter units of work in his or her most recent quarter of enrollment at the University, or who has a cumulative grade point average of less than 2.0, shall be placed on probation (warning status).

A student shall be removed from probation after three consecutive subsequent quarters of enrollment at the University if, in each quarter, he or she completes a minimum of 12 units of new course work by the end of the final examination period and maintains a cumulative grade point average of at least 2.0. A student may also be removed from probation at the discretion of the faculty Subcommittee on Academic Standing as a result of a review of individual records.

PROVISIONAL REGISTRATION

A student who, while on probation, fails in any quarter of registration to complete a minimum of 12 units of new course work by the end of the final examination period or fails to achieve a cumulative grade point average of at least 2.0, shall be placed on provisional registration status. Provisional registration requires that a student submit a properly endorsed petition to return to Stanford.

A student shall be removed from provisional registration after three consecutive subsequent quarters of enrollment at the University if, in each quarter, he or she completes a minimum of 12 units of new course work by the end of the final examination period and maintains a cumulative grade point average of at least 2.0. A student may also be removed from provisional registration at the discretion of the subcommittee as a result of a review of individual records.

SUSPENSION

A student who, while on provisional registration, fails to complete a minimum of 12 units of new course work by the end of the final examination period, or who fails to maintain a cumulative grade point average of at least 2.0, shall be suspended. In addition, and on occasion, a student may also be suspended directly from probation.

In general, students suspended for the first time are suspended for one year. Students suspended a subsequent time are suspended for three years.

Students suspended for one year are not eligible to enroll for four quarters (including Summer Quarter) following the quarter in which the suspension was issued. Students suspended for three years are not eligible to enroll for twelve quarters (including Summer Quarter) following the quarter in which the suspension was issued. Students are required to submit a properly endorsed petition for provisional registration to request reenrollment after the suspension period has been completed.

Return from Suspension — Students who have been suspended are required to petition for provisional registration to return after their suspension has been completed.

Appeal of Suspension — Students who have been suspended, and who believe they have a compelling reason to appeal their suspension, without a break in enrollment, are required to submit a petition for provisional registration.

Early Return from Suspension — Students who have been suspended and who believe they have a compelling reason to return early from their suspension are required to submit a petition for provisional registration.

PETITIONING

Specific instructions including deadlines for requesting provisional registration or an early return from suspension should be obtained from the Office of the University Registrar’s Academic Standing section, Old Union, room 141. The Faculty Senate Subcommittee on Academic Standing, or those designated by the subcommittee, shall act upon all requests concerning academic standing, including requests for provisional registration. Questions concerning academic standing or the petitioning process should be directed to the Office of the University Registrar’s Academic Standing section.

Late petitions to return from suspension, appeal a suspension, or return early from suspension will not be considered. Students are strongly encouraged to submit petitions as early as possible.

Students applying for financial aid and/or on-campus housing should be aware of the deadlines and procedures for those offices.

NOTIFICATION

Written notification that a student is on probation, provisional registration, or suspension is sent to the student and to the student’s academic adviser as soon as possible after the close of the quarter. Students also receive written notification of the outcome of their provisional registration petition.
STATEMENT ON STUDENT ACADEMIC GRIEVANCE PROCEDURES

The following policy was effective beginning in the 1999-2000 academic year and is subject to periodic review.

1. Coverage

a) Any Stanford undergraduate or graduate student who believes that he or she has been subjected to an improper decision on an academic matter is entitled to file a grievance to obtain an independent review of the allegedly improper decision, followed by corrective action if appropriate. A grievance is a complaint in writing made to an administrative officer of the University concerning an academic decision, made by a person or group of persons acting in an official University capacity, that directly and adversely affects the student as an individual in his or her academic capacity.

b) Grievance procedures apply only in those cases involving a perceived academic impropriety arising from a decision taken by: (1) an individual instructor or researcher; (2) a school, department, or program; (3) a committee charged to administer academic policies of a particular school, department, or program; (4) the University Registrar or a Senate committee or subcommittee charged to administer academic policies of the Senate of the Academic Council. They do not pertain to complaints expressing dissatisfaction with a University policy of general application challenged on the grounds that the policy is unfair or inadvisable, nor do they pertain to individual school, department, or program academic policies, as long as those policies are not inconsistent with general University policy.

c) Individuals should be aware that the University Ombudsperson’s Office is available to all Stanford students, faculty, and staff to discuss and advise on any matter of University concern and frequently helps expedite resolution of such matters. Although it has no decision-making authority, the Ombudsperson’s Office has wide powers of inquiry, including into student complaints against instructors.

2. Grievance and Appeal Procedures

a) Informal Attempts at Resolution: the student first should discuss the matter, orally or in writing, with the individual(s) most directly responsible. If no resolution results, the student should then consult with the individual at the next administrative level, for example, the chair or director of the relevant department or program, or, for those cases in which there is none, with the school dean. At this stage, the department chair or program director, if any, may inform the dean that the consultation is taking place and may solicit his or her advice on how to ensure that adequate steps are taken to achieve a fair result. Efforts should be made to resolve the issues at an informal level without the complaint escalating to the status of a formal grievance.

b) The Filing of the Grievance:

1. If informal means of resolution prove unsatisfactory, the student should set forth in writing a statement of the decision that constitutes the subject matter of the dispute, the grounds on which it is being challenged, and the reasons why the grievant believes that the decision was improperly taken. The statement should also include a description of the remedy sought and the informal efforts taken to date to resolve the matter. It is at this point that the complaint becomes a formal grievance. The written grievance should specifically address the matters set forth in the Standards for Review, as stated in Section 4 below. The grievance should include an allegation of any adverse effects on the grievant, known to the grievant at the time of filing.

2. The grievance document should be submitted to the dean of the school in which the grievance arose; for a grievance concerning a decision of the University Registrar or of a Senate committee or subcommittee, the procedures set forth herein for grievances and appeals shall be modified as stated in Section 3 below. A grievance must be filed in a timely fashion, that is, normally within 30 days of the end of the academic quarter in which the adverse decision occurred or should reasonably have been discovered. A delay in filing a grievance may, taking all circumstances into account, constitute grounds for rejection of the grievance.

c) The Response to the Grievance:

1. The relevant dean shall consider the grievance. The dean may attempt to resolve the matter informally or make whatever disposition of the grievance that he or she deems appropriate. The dean may, in appropriate cases, remand the grievance to a lower administrative level (including to the level at which the grievance arose) for further consideration.

2. The dean may also refer the grievance, or any issue therein, to any person (the “grievance officer”) who shall consider the matter and report to the dean as the latter directs. The dean shall inform the grievant (and the party against whose decision the grievance has been filed) in writing of the disposition made of the grievance and the grounds for the disposition at the earliest practicable date after his or her receipt of the grievance.

5. Normally, no more than 60 days should elapse between the filing of a grievance and the disposition by the dean. If, because of absence of key persons from the campus or other circumstances or exigencies, the dean decides that prompt disposition is not possible, he or she shall inform the grievant (and the party against whose decision the grievance has been filed) of that in writing, giving the grounds therefore and an estimate of when a disposition can be expected.

4. Should attempts to resolve the matter informally not be successful, the dean shall decide the grievance, and shall notify the grievant (and the party against whose decision the grievance has been filed) in writing of the disposition made of the grievance and the grounds for the disposition at the earliest practicable date after his or her receipt of the grievance.

5. Normally, no more than 60 days should elapse between the filing of a grievance and the disposition by the dean. If, because of absence of key persons from the campus or other circumstances or exigencies, the dean decides that prompt disposition is not possible, he or she shall inform the grievant (and the party against whose decision the grievance has been filed) of that in writing, giving the grounds therefore and an estimate of when a disposition can be expected.

d) The Filing of an Appeal:

1. If the grievant is dissatisfied with the disposition of the grievance, he or she may appeal the decision to the Provost within 60 days after the receipt of the disposition. The appeal must specify the particular substantive or procedural bases of the appeal (that is, the appeal must be made on grounds other than general dissatisfaction with the disposition) and must be directed only to issues raised in the grievance as filed or to procedural errors in the grievance process itself, and not to new issues. The appeal shall contain the following:

 a. A copy of the original grievance and any other documents submitted by the grievant in connection therewith.

 b. A copy of the determination made by the dean on that grievance.

 c. A statement of why the reasons for the determination of the dean are not satisfactory to the grievant. This statement should specifically address the matters set forth in the Standards for Review in Section 4 below.

2. The appeal must specify the particular substantive or procedural bases of the appeal (that is, the appeal must be made on grounds other than general dissatisfaction with the disposition) and must be directed only to issues raised in the grievance as filed or to procedural errors in the grievance process itself, and not to new issues. The appeal shall contain the following:

 a. A copy of the original grievance and any other documents submitted by the grievant in connection therewith.

 b. A copy of the determination made by the dean on that grievance.

 c. A statement of why the reasons for the determination of the dean are not satisfactory to the grievant. This statement should specifically address the matters set forth in the Standards for Review in Section 4 below.

3. The grievant shall file his or her appeal at the earliest practicable date after the grievant’s receipt of the determination by the dean. Normally, no more than 30 days should elapse between the transmittal of the dean’s decision on the grievance and the filing of the appeal.
appeal. A delay in filing an appeal may, taking all circumstances into account, constitute grounds for rejection of the appeal.

e) The Response to the Appeal:

1. The Provost may attempt to resolve the matter informally, or refer the appeal, or any issue thereof, to any person (the “grievance appeal officer”) who shall consider the matter and report to the Provost as the latter directs. The Provost may also, in appropriate cases, remand the matter to a lower administrative level (including to the level at which the grievance arose) for further consideration.

2. The Provost shall inform the grievant (and the party against whose decision the grievance has been filed) in writing of any referral of the matter and shall specify the matters referred, the directions to the person to whom the referral is made (including the time frame within which the person is to report back to the Provost), and the name of that person.

3. Should attempts be made to resolve the matter informally not be successful, the Provost shall decide the appeal, and shall notify the grievant (and the party against whose decision the grievance has been filed) in writing of the disposition made of the grievance and the grounds for the disposition at the earliest practicable date after his or her receipt of the appeal. The decision of the Provost shall be final, unless the grievant requests a further appeal to the President pursuant to Section 2f below, and the President agrees to entertain this further appeal.

4. Normally no more than 45 days should elapse between the filing of the appeal and the disposition by the Provost. If, because of absence of key persons from the campus or other exigencies, the Provost judges that prompt disposition is not possible, he or she shall inform the grievant (and the party against whose decision the grievance has been filed) of the fact in writing, giving the grounds therefore and an estimate of when a disposition can be expected.

f) The Request to the President: If the student is dissatisfied with the disposition of the appeal by the Provost, he or she may write to the President of the University giving reasons why he or she believes the grievance result to be wrong (following the general format set forth in Section 2d 2 above). No more than 30 days should elapse between the transmittal of the Provost’s disposition and the written statement to the President urging further appeal. In any case, the President may agree or decline to entertain this further appeal. If the President declines to entertain the further appeal, the decision of the Provost shall be final. If the President decides to entertain the further appeal, he or she shall follow the general procedures set forth in Section 2e above, and the decision of the President shall be final.

3. Grievances Concerning Decisions of the University Registrar or of a Senate Committee or Subcommittee

a) For a grievance concerning a decision of the University Registrar or of a Senate committee or subcommittee, the grievant shall file his or her grievance with the Provost, rather than with the dean, and the Provost shall handle that grievance in accordance with the procedures set forth in Section 2c above.

b) There shall be no appeal of the Provost’s disposition of that grievance, except as may be available under Section 2f above.

4. Standards for Review and Procedural Matters

a) The review of grievances or appeals shall usually be limited to the following considerations:

1. Were the proper facts and criteria brought to bear on the decision? Were improper or extraneous facts or criteria brought to bear that substantially affected the decision to the detriment of the grievant?

2. Were there any procedural irregularities that substantially affected the outcome of the matter to the detriment of the grievant?

3. Given the proper facts, criteria, and procedures, was the decision one which a person in the position of the decision maker might reasonably have made?

b) The time frames set forth herein are guidelines. They may be extended by the relevant administrative officer in his or her discretion for good cause.

c) Questions concerning the filing and appeal of grievances should be directed to the Office of the Provost.
Unless otherwise specified, courses numbered from 1 through 99 are primarily for first- and second-year undergraduates; courses numbered from 100 through 199 are for third- and fourth-year undergraduates; and those from 200 through 699 are for graduate students.

Amendments to course offerings announced in the StanfordBulletin are found in the Time Schedule of Classes, issued quarterly.

Beginning in Autumn Quarter 2005, a modified and redefined set of undergraduate General Education Requirements, designated in this bulletin as GERs, went into effect. These requirements are described on pages 21-22 of this bulletin. All undergraduates who matriculated after Autumn Quarter 1996 are now subject to the set of GERs outlined in this bulletin. Undergraduates who matriculated prior to Autumn Quarter 1996 should consult the Office of the University Registrar for information about which requirement set applies to them. Graduate students should ignore GERs since these requirements do not apply to them.

SUMMER SESSION

Summer session courses are eight weeks in length, except in certain departments that offer ten-week courses.

This bulletin includes, for the Summer Session, only those courses that can be tentatively scheduled at publication time by each department. For the complete list of courses and faculty, refer to http://summer.stanford.edu, updated in February.

SUBJECT CODES

Throughout the bulletin, Axess subject codes have been printed wherever relevant. A complete list of subject codes is printed in the Appendix on the last page of this bulletin.

LANGUAGE COURSES

All courses in language instruction, except classes in Latin, classical Greek, classical Chinese, and classical Japanese, are listed in the “Language Center” section of this bulletin. Foreign language literature and general interest courses are listed in the sections of the relevant department.

TIME SCHEDULE OF CLASSES

Each quarter, the Office of the University Registrar produces a printed Time Schedule of Classes. Changes to course listings made subsequent to the printing of this bulletin are reflected in this publication. Students

DEAN: Robert L. Ross

SENIOR ASSOCIATE DEANS: Mary E. Barth, David M. Kreps, D. John Roberts, Daniel N. Rudolph, Kenneth J. Singleton

ASSOCIATE DEANS: Gale H. Bitter, Christina Einstein, Sharon J. Hoffman, David Kennedy, Karen A. Wilson

ASSISTANT DEANS: Derrick Bolton, Andrew Chan, Randy Yee

PROFESSOR (Teaching): George G. C. Parker

ASSOCIATE PROFESSOR (Teaching): James A. Phillips, Jr.
SCHOOL OF EARTH SCIENCES

Dean: Pamela A. Matson

The School of Earth Sciences includes the departments of Geological and Environmental Sciences, Geophysics, Petroleum Engineering, the interdisciplinary Earth Systems undergraduate program, and the graduate level Interdisciplinary Program in Environment and Resources (IPER) and the Earth, Energy, and Environmental Sciences Graduate Program (EEES). The Earth Systems Program offers study of biophysical and social dimensions of the Earth system focusing on environment and resource issues.

The aims of the school are (1) to prepare students for careers in the fields of biogeochemistry, environment and sustainable resource studies, geology, geochemistry, geomechanics, geophysics, geostatistics, hydrogeology, petroleum engineering, and petroleum geology; (2) to conduct research in the Earth sciences; and (3) to provide opportunities for Stanford undergraduates to learn about the planet’s history, to understand the natural energy and resource base that supports humanity, and to appreciate the geological and geophysical hazards that affect human societies, as well as those factors that contribute to the quality of our environment.

To accomplish these objectives, the school offers a variety of programs adaptable to the needs of the individual student: four-year undergraduate programs leading to the degree of Bachelor of Science (B.S.); five-year programs leading to the coterminal Bachelor of Science and Master of Science (M.S.); and graduate programs offering the degrees of Master of Science, Engineer, and Doctor of Philosophy as described below. Details of individual degree programs are found in the section for each department or program. In addition, it is possible for an undergraduate to develop an individually designed major in the Earth Sciences.

UNDERGRADUATE PROGRAMS

Any undergraduate student admitted to the University may declare a major in one of the Earth Science departments or programs by contacting the appropriate department or program office. Students interested in creating an individually designed major should visit the dean’s office.

Specific requirements for the B.S. degree are listed in each department or program section. Departmental academic advisers work with students to define a career or academic goal and assure that the student’s curricular choices are appropriate to the pursuit of that goal. Advisers can help devise a sensible (and enjoyable) course of study that meets degree requirements and provides the student with opportunities to experience advanced courses, seminars, and research projects. To maximize such opportunities, students are encouraged to complete basic science and mathematics courses in high school or during their freshman year.

Each department offers an honors program involving research during the senior year. Each department also offers an academic minor for those undergraduates majoring in compatible fields. For the Earth Systems Program, an honors program in Environmental Science, Technology, and Policy is available through the Institute for International Studies.

COTERMINAL BACHELOR’S AND MASTER’S DEGREES

The Stanford coterminal degree plan enables an undergraduate to embark on an integrated program of study leading to the master’s degree before requirements for the bachelor’s degree have been completed. This may result in more expeditious progress towards the advanced degree than would otherwise be possible, making the program especially important to Earth scientists because the master’s degree provides an excellent basis for entry into the profession. The coterminal plan permits students to be admitted to a graduate program as early as their eighth quarter at Stanford, or after earning 105 units, and no later than the eleventh quarter.

Under the plan, the student may meet the degree requirements in the more advantageous of the following two ways: by first completing the 180 units required for the B.S. degree and then completing the three quarters required for the M.S. degree; or by completing a total of 15 quarters during which the requirements for the two degrees are completed concurrently. In either case, the student has the option of receiving the B.S. degree upon meeting all the B.S. requirements or of receiving both degrees at the end of the coterminal program. Students earn degrees in the same department or program, in two different departments, or even in different schools; for example, a B.S. in Physics and an M.S. in Geological and Environmental Sciences. Students are encouraged to discuss the coterminal program with their advisers during their junior year. Additional information is available in the individual department offices.

GRADUATE PROGRAMS

Admission to the Graduate Program — A student who wishes to enroll for graduate work in the school must be qualified for graduate standing in the University and also must be accepted by one of the school’s three departments or the interdisciplinary Ph.D. program. One requirement for admission is submission of scores on the verbal and quantitative sections of the Graduate Record Exam. Admission to one department of the school does not guarantee admission to other departments.

Faculty Adviser — Upon entering a graduate program, the student should report to the head of the department or program who arranges with a member of the faculty to act as the student’s adviser, if that has not already been established through prior student-faculty discussions. The student, in consultation with the adviser, then arranges a course of study for the first quarter and ultimately develops a complete plan of study for the degree sought.

Financial Aid — Detailed information on scholarships, fellowships, and research grants is available from the school’s individual departments and programs. Applications should be filed by the various dates listed in the application packet for awards that become effective in Autumn Quarter of the following academic year.

EARTH, ENERGY, AND ENVIRONMENTAL SCIENCES GRADUATE PROGRAM (EEES)

Director: Kevin R. Arrigo
Associate Director: Deana Fabbro-Johnston
Academic Oversight Committee: Kevin Arrigo (Geophysics), Biondo Biondi (Geophysics), Jef Caers (Petroleum Engineering), Louis Durlofsky (Petroleum Engineering), Scott Fendorf (Geological and Environmental Sciences), Adina Paytan (Geological and Environmental Sciences)

Program Offices: Mitchell Bldg., Rm. 138
Mail Code: 2210
Phone: (650) 725-3183
Email: deana@stanford.edu
Web Site: http://earthsci.stanford.edu/EEES/

The goal of the Earth, Energy, and Environmental Sciences (EEES) is to complement the disciplinary Earth Science and Engineering programs offered within the departments of the School of Earth Sciences and to train graduate students to integrate knowledge from these disciplines through tools and methods needed to evaluate the linkages among physical, chemical, and biological systems of the Earth, and understand the dynamics or evolution of these integrated systems and the resources they provide.

Students in EEES must make significant headway in, and combine insights from, more than one scientific discipline. For example, a student whose goal is to understand the structure of the Earth’s interior using computational methods might design a study plan that includes high-level mathematics, numerical modeling, and geophysical imaging techniques. A student interested in water management might integrate water flow analysis and modeling, geophysical imaging, geostatistics, and satellite
remote sensing of changes in agricultural intensity and land use. A student interested in marine carbon cycling might use knowledge and tools from numerical modeling, marine biogeochemistry and geochemistry, oceanography, and satellite imaging. The key to the program is its academic flexibility and ability to exploit an increasingly interdisciplinary faculty, particularly in the School of Earth Sciences, but also in the greater Stanford community.

GRADUATE PROGRAMS

To ensure that students are appropriately placed in this program, a statement of purpose submitted with the application for admission must reflect the student’s reasoning for pursuit of a crossdisciplinary program of study in contrast to a more traditional disciplinary one readily provided by a department in the School of Earth Sciences.

Prospective applicants should identify and contact an appropriate member of the School of Earth Sciences faculty prior to submitting a formal application for admission. This faculty sponsor should be prepared to serve as one of the student’s research advisers and on the thesis committee. The faculty sponsor must submit a statement to the program outlining reasons for the student’s admission to EEES rather than a disciplinary departmental program.

The University’s basic requirements for the M.S. and Ph.D. degrees are discussed in the “Graduate Degrees” section of this bulletin.

MASTER OF SCIENCE

The objective of the M.S. degree in Earth, Energy, and Environmental Sciences is to prepare the student either for a professional career or for doctoral studies.

Students in the M.S. degree program must fulfill the following requirements:

1. Complete a 45-unit program of study, of which a minimum of 30 units must be course work, with the remainder consisting of no more than 15 research units.
2. Course work units must be divided among two or more scientific and/or engineering disciplines and can include the three core courses required for the Ph.D. degree.
3. The program of study must be approved by the research adviser and the academic oversight committee.
4. All students are required to complete a M.S. thesis, approved by the student’s thesis committee.

DOCTOR OF PHILOSOPHY

In addition to the University’s basic requirements for the doctorate, the Interdepartmental Program in Earth, Energy, and Environmental Sciences has the following requirements:

1. Prior to the formation of a thesis committee, the student works with research advisers and the academic oversight committee to design a course of study with depth in at least two areas of specialization and preparation in analytical methods and skills. Ph.D. students must take the three core courses: EEES 300, Earth Sciences Seminar; EEES 301, Earth Dynamics; and EEES 302, Challenges and Best Practices in Crossdisciplinary Research and Teaching. The research advisers and academic oversight committee have primary responsibility for the adequacy of the course of study.
2. Students must complete a minimum of 13 courses, including the three core courses and five courses from each of the two areas of specialization. At least half of the ten non-core classes must be at a 200 level or higher and all must be taken for a letter grade. Students obtaining their M.S. from within the program can apply all master’s units toward Ph.D. requirements. Students with an M.S. degree or other specialized training from outside EEES may be able to waive some of the non-core course requirements, depending on the nature of the prior courses or training. The number and distribution of courses to be taken by these students is determined with input from the research advisers and academic oversight committee.
3. During Spring Quarter of each year, students must undergo an annual review by their thesis committee to allow the committee to monitor the progress of the student and make recommendations, where necessary.

4. Prior to taking the oral qualifying examination at or before the end of their 6th academic quarter, the student must have completed 24 units of letter-graded course work, developed a written crossdisciplinary dissertation proposal suitable for submission to a funding organization, and selected a thesis committee.
5. To be admitted to candidacy for the Ph.D. degree, the student must pass an oral qualifying examination. At least two of the minimum four-member examining committee must be faculty within the School of Earth Sciences. During the exam, students present and defend, their proposed thesis research work; the exam generally takes the form of a 20–30 minute presentation by the student, followed by 1–2 hours of questioning.
6. The research advisers and two other faculty members comprise the dissertation reading committee. Upon completion of the thesis, the student must pass a University Oral Examination in defense of the dissertation.

In addition to the three core courses, students can select other courses from departments of the School of Earth Sciences and other University departments as appropriate. All courses must be approved by the student’s thesis committee or by the academic oversight committee.

Additional information may be found in the *Graduate Student Handbook* at http://www.stanford.edu/dept/DoR/GSH/.

COURSES

Additional courses may be listed in the quarterly *Time Schedule*.

EEES 300. Earth Sciences Seminar — (Same as GES 300, GEOPHYS 300, EARTH SYS 300, IPER 300, PETENG 300.) Required EEES core course. Research questions, tools, and approaches of faculty members from all departments in the School of Earth Sciences. Goals are to: inform new graduate students about the school’s range of scientific interests and expertise; and introduce them to each other across departments and research groups. Two faculty members present work at each meeting. May be repeated for credit.

1 unit, Aut (Matson, Graham)

EEES 301. Earth Dynamics — Required EEES core course. Features and dynamics characteristic of the atmosphere, ocean, and solid earth, and the physical, chemical, and biological connections that link them.

1 unit, Win (Staff)

EEES 302. Challenges and Best Practices in Crossdisciplinary Research and Teaching — Required EEES core course. Cross disciplinary research in science and engineering presented by Earth Sciences faculty. Pedagogical tools to present interdisciplinary concepts to a non-specialist audience.

1 unit, Spr (Staff)

EEES 400. Research in Earth, Energy, and Environmental Sciences

1-10 units, Aut, Win, Spr, Sum (Staff)
The following is an outline of the sequential topics covered and skills developed in this major.

1. The fundamental components of the Earth Systems Program help students understand current environmental problems against the backdrop of natural change. Training in the fundamentals comes through introductory course work in geology, biology, and economics. Depending on the Earth Systems track chosen, training may also include introductions to the study of energy systems, microbiology, oceans, or soils. As students begin to question the role that humans play in affecting these systems, they find that many programs and departments at Stanford offer courses that approach this question from different directions. Students are encouraged to come to the Earth Systems office for course selection advice or to pick up a current list of environmental courses at Stanford.

2. Focus is on the fundamental interactions among the physical, biological, and human components of the Earth System: the dynamics of the interplay between natural variation and human-imposed influences must be understood to achieve effective solutions to environmental problems.

Several Earth Systems courses introduce students to the dynamic and multiple interactions that characterize global change problems. They include the introductory course, EARTHSYS 10, Introduction to Earth Systems, and three core courses concerning, respectively, the geosphere, the biosphere and the atmosphere: EARTHSYS 110. Geosphere, EARTHSYS 111. Biology and Global Change, and EARTHSYS 112. Environmental Economics and Policy.

Competence in understanding system-level interactions is critical to development as an Earth Systems thinker, so additional classes that meet this objective are excellent choices as electives. More information on such classes is available in the program office.

3. Development of skills to recognize, quantify, and report change in the environment: key analytical and computational tools and measurement systems are used for insight into global and regional environmental change, and in the development of solutions.

The test of an Earth Systems degree is the student’s ability to recognize, describe, quantify, and help solve complex problems that face our society. Through required cognates and specific track classes, students build skills in these areas. For example, training in satellite remote sensing and geographic information systems is either required or highly recommended for all tracks. Quantification of environmental problems requires solid training in calculus, linear algebra, chemistry, physics, programming, and statistics. These courses are required of all majors. Specialized training, such as in laboratory or field methods, may be necessary and is highly recommended.

Having the ability to effectively communicate ideas and results is critical. Indeed, workable solutions to our environmental problems begin with common understanding of the issues. Writing intensive courses (WIM) help students to communicate complex concepts to expert and non-expert audiences alike. Stanford requires that each student complete one WIM course in his or her major. The WIM requirement is met through completion of the Senior Seminar. Several Earth Systems courses focus on effective written and oral communication.

4. Work to design solutions to environmental problems that take into consideration natural processes as well as human needs: human needs must be met in sustainable ways that focus on ecosystem health, human prosperity, and long-term effectiveness.

Many courses at Stanford focus on solutions. A comprehensive list of environmental courses, and advice on those that focus on problem solving, is available in the program office. Students can also review the quarterly Time Schedule for solution-based courses. Among others, the following departments and programs may provide subject areas that are a useful guide: Anthropological Sciences, Biological Sciences, Civil and Environmental Engineering, Earth Systems, Economics, Geological and Environmental Sciences, Geophysics, Human Biology, International Policy Studies, International Relations, Latin American Studies, Law, Petroleum Engineering, Political Science, Public Policy, and Urban Studies. Earth Systems emphasizes the importance of workable solutions in several
ways, including a required 9-unit internship, knowledge synthesis in the Senior Seminar, an optional upper division course on environmental problem solving, or an honors through the Goldman Environmental Honors Program. Potential honors students must complete the Geosphere, Biosphere, Anthrosphere sequence by the end of the junior year.

Students interested in Earth Systems should come to the program office for current information on our curriculum, alumni career paths, environmental jobs and internships, and undergraduate honors options. The Earth Systems Program provides an advising network that includes faculty, staff, and student peer advisers.

UNDERGRADUATE PROGRAMS

BACHELOR OF SCIENCE

The B.S. in Earth Systems (ESYS) requires the completion of at least 110 units that can be divided into three levels of courses. The student must complete a series of courses comprising a broad base of specialized study and must complete five required and three elective courses in that track. Finally, the student must carry out a senior-level research or internship project and participate in the senior seminar (WIM). Note: students interested in earning a California Teaching Credential for general high school science through the STEP Program should contact the program office for specific guidelines. The Education Track has State of California specific cognate requirements which vary from the other tracks.

REQUIRED CORE

<table>
<thead>
<tr>
<th>Course No. and Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>EARTHSYS 10. Introduction to Earth Systems</td>
<td>4</td>
</tr>
<tr>
<td>EARTHSYS 110. Geosphere</td>
<td>3</td>
</tr>
<tr>
<td>EARTHSYS 111. Biology and Global Change</td>
<td>3</td>
</tr>
<tr>
<td>EARTHSYS 112. Environmental Economics and Policy</td>
<td>5</td>
</tr>
<tr>
<td>EARTHSYS 210. Senior Seminar</td>
<td>4</td>
</tr>
<tr>
<td>EARTHSYS 260. Internship or EARTHSYS 250. Directed Research</td>
<td>9</td>
</tr>
</tbody>
</table>

REQUIRED COGNATE COURSES

<table>
<thead>
<tr>
<th>Biology (any one course below):</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOSCI 41. Genetics, Biochemistry, and Molecular Biology</td>
<td>5</td>
</tr>
<tr>
<td>or BIOSCI 43. Plant Biology, Evolution, and Ecology</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chemistry:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 31A. Chemical Principles I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 31B. Chemical Principles II</td>
<td>4</td>
</tr>
<tr>
<td>or CHEM 31X. Chemical Principles</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 33. Organic Chemistry</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Computer Programming:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>or CS 138. Matlab and Maple for Science and Engineering Applications</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Economics:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 1. Elementary Economics</td>
<td>5</td>
</tr>
<tr>
<td>ECON 50. Economic Analysis I</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Geological and Environmental Sciences:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EGS 1. Fundamentals of Geology</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mathematics:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 19. Calculus and Analytic Geometry</td>
<td>3</td>
</tr>
<tr>
<td>MATH 20. Calculus and Analytic Geometry</td>
<td>3</td>
</tr>
<tr>
<td>MATH 21. Calculus and Analytic Geometry</td>
<td>3</td>
</tr>
<tr>
<td>or MATH 41. Calculus and Analytic Geometry</td>
<td>4</td>
</tr>
<tr>
<td>MATH 42. Calculus and Analytic Geometry</td>
<td>4</td>
</tr>
<tr>
<td>and MATH 51. Linear Equations and Differential Calculus</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Probability and Statistics (any one course below):</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOSCI 141. Biostatistics</td>
<td>4</td>
</tr>
<tr>
<td>ECON 102A. Introduction to Statistical Methods</td>
<td>5</td>
</tr>
<tr>
<td>GES 160. Statistical Methods for Earth and Environmental Sciences</td>
<td>5</td>
</tr>
<tr>
<td>GES 161. Geostatistics</td>
<td>4</td>
</tr>
<tr>
<td>STATS 110. Statistical Methods in Engineering and Physical Sciences</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physics:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSICS 53. Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS 51. Light and Heat*</td>
<td>4</td>
</tr>
<tr>
<td>(Additional physics cognate for Energy Track): PHYSICS 55. Electricity and Magnetism</td>
<td>3</td>
</tr>
</tbody>
</table>

* Students may take either PHYSICS 51 or CHEM 33; Biosphere students must take CHEM 33.

More extensive work in mathematics and physics may be expected for those planning graduate study. Graduate study in ecology and evolutionary biology and in economics requires familiarity with differential equations, linear algebra, and stochastic processes. Graduate study in geology, oceanography, and geophysics may require more physics and chemistry. Check with your adviser about recommendations beyond the requirements specified above.

TRACKS

GEOSPHERE

ADDITIONAL COGNATES:

| GES 90. Introduction to Geochemistry | 3 |
| GES 102. Earth Materials | 5 |

<table>
<thead>
<tr>
<th>Earth’s Surface and Fluid Envelopes:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Choose one from these three:</td>
<td></td>
</tr>
<tr>
<td>GES 8. The Oceans: An Introduction to the Marine Environment</td>
<td>3</td>
</tr>
<tr>
<td>GES 159. Marine Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>GEOPHYS 130. Biological Oceanography</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plus one of the two following groups of courses:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOPHYS 104. The Water Course or GES 175. Science of Soils</td>
<td>3</td>
</tr>
<tr>
<td>or GES 130. Environmental Earth Science I: Soil Physics and Hydrology</td>
<td>3</td>
</tr>
<tr>
<td>or GES 131. Environmental Earth Science II: Fluvial Systems & Landscape Evolution</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Human Society in the Geosphere:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE 173A. Energy Resources or PETENG 101. Energy and the Environment</td>
<td>3</td>
</tr>
<tr>
<td>and one from the following list:</td>
<td></td>
</tr>
<tr>
<td>EARTHSYS 113. Earthquakes and Volcanoes</td>
<td>3</td>
</tr>
<tr>
<td>EARTHSYS 169. Science and Politics of Radioactive Waste Management</td>
<td>3</td>
</tr>
<tr>
<td>EARTHSYS 180. Fundamentals of Sustainable Agriculture</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measuring and Observing the Earth (choose two):</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>or choose one course from the previous list and one from the following:</td>
<td></td>
</tr>
<tr>
<td>GES 142. Remote Sensing of Land Use and Land Cover Change</td>
<td>5</td>
</tr>
<tr>
<td>EARTHSYS 189. Field Studies in Earth Systems</td>
<td>5</td>
</tr>
</tbody>
</table>

BIOSPHERE

BIOSCI 41. Genetics, Biochemistry, and Molecular Biology	5
BIOSCI 42. Cell Biology and Animal Physiology	5
BIOSCI 43. Plant Biology, Evolution, and Ecology	5

<table>
<thead>
<tr>
<th>Biogeochemistry (choose one):</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOSCI 124. Plant Physiological Ecology</td>
<td>4</td>
</tr>
<tr>
<td>BIOSCI 216. Terrestrial Biogeochemistry</td>
<td>4</td>
</tr>
<tr>
<td>EARTHSYS 189. Field Studies in Earth Systems</td>
<td>5</td>
</tr>
<tr>
<td>GES 159. Marine Chemistry</td>
<td>2-4</td>
</tr>
<tr>
<td>GES 175. Science of Soils</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conservation Biology (choose one):</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HUMBIO 119. Conservation Biology or BIOSCI 125. Ecosystems of California</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ecology (choose two):</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOSCI 101. Ecology</td>
<td>4</td>
</tr>
<tr>
<td>BIOSCI 125. Ecosystems of California</td>
<td>3-4</td>
</tr>
<tr>
<td>BIOSCI 136. Evolutionary Paleobiology</td>
<td>4</td>
</tr>
<tr>
<td>BIOSCI 145. Behavioral Ecology</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ecosystems and Society (choose one):</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTHSCI 124. Perspectives on Sustainable Development in Latin America</td>
<td>5</td>
</tr>
<tr>
<td>ANTHSCI 160B. Conservation Anthropology</td>
<td>5</td>
</tr>
<tr>
<td>ANTHSCI 162. Indigenous Peoples and Environmental Problems</td>
<td>3-5</td>
</tr>
<tr>
<td>ANTHSCI 164A. Ethnoecology</td>
<td>5</td>
</tr>
</tbody>
</table>

ANTHROSPHERE

<table>
<thead>
<tr>
<th>Economics and Environmental Policy (choose three):</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 51. Economic Analysis II</td>
<td>5</td>
</tr>
<tr>
<td>ECON 102B. Introduction to Econometrics</td>
<td>5</td>
</tr>
<tr>
<td>ECON 106. The World Food Economy</td>
<td>5</td>
</tr>
<tr>
<td>ECON 118. Economics of Development</td>
<td>5</td>
</tr>
<tr>
<td>ECON 150. Economics and Public Policy</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Legal and Political Institutions and the Environment (choose one):</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 154. Economics of Legal Rules and Policy</td>
<td>5</td>
</tr>
<tr>
<td>PUBLPOL 101. Politics and Public Policy</td>
<td>5</td>
</tr>
</tbody>
</table>
LAND MANAGEMENT

The Natural Environment (choose one from each grouping):

GES 175. Science of Soils 4
or EARTHSYS 189. Field Studies in Earth Systems 5
or GES 130. Environmental Earth Sciences I: Soil Physics & Hydrology 3
or GES 131. Environmental Earth Sciences II: Fluvial Systems and Landscape Evolution 4
HUMBIO 119. Conservation Biology 3-4
or BIOSCI 125. Ecosystems of California 3-4

GEOPHYS 140. Introduction to Remote Sensing 3
or GES 142. Remote Sensing of Land Cover and Land Use 4
or GES 144. Fundamentals of GIS 4

The Managed Environment (choose one):

EARTHSYS 180. Sustainable Agriculture 3
ECON 106. The World Food Economy 5
GEOPHYS 104. The Water Course 3

The Built Environment (choose one from each grouping):

URBANST 110. Introduction to Urban Studies 4
or URBANST 113. Introduction to Urban Design 5
C/E 164. Introduction to Physical Oceanography 4
or URBANST 163. Land Use Control 4
C/E 176A. Energy Efficient Building Design 4
or CEE 148. Design and Construction of Affordable Housing 4
C/E 171. Environmental Planning Methods 4

ENERGY SCIENCE AND TECHNOLOGY

C/E 173B. The Coming Energy Revolution 3
C/E 176A. Energy Efficient Buildings 4
C/E 176B. Electric Power: Generation and Conservation 4
EARTHSYS 103. Energy Resources 3
or EARTHSYS 101. Energy and the Environment 3
ENGR 30. Engineering Thermodynamics 3

OCEANS

GES 8. The Oceans: An Introduction to the Marine Environment 3

Physics of the Sea

C/E 164. Introduction to Physical Oceanography 4

Biological Oceanography

GEOPHYS 130. Biological Oceanography 4

Marine Chemistry

GES 159. Marine Chemistry 3

Remote Sensing of the Ocean

GEOPHYS 141. Remote Sensing of the Ocean 4

EDUCATION

New track designed in concert with Stanford’s STEP Program to meet the State of California’s Commission on Teaching Credentialing requirement for general science.

COGNATES AND CORE:

EARTHSYS 10. Introduction to Earth Systems 4
EARTHSYS 110. Geosphere 3
EARTHSYS 111. Biology and Global Change 3
EARTHSYS 112. Environmental Economics and Policy 5
EARTHSYS 210. Senior Seminar 4
EARTHSYS 260 Internship 9
BIOSCI 41. Genetics, Biochemistry, and Molecular Biology 5
BIOSCI 42. Cell Biology and Animal Physiology 5
BIOSCI 43. Plant Biology, Evolution, and Ecology 5
C/E 63. Weather and Storms 3
CHEM 31A. Chemical Principles I 4
CHEM 31B. Chemical Principles II or CHEM 31X. Chemical Principles 4
CHEM 33. Structure and Reactivity 5
ECON 1. Elementary Economics 5
ECON 50. Economics Analysis I 5
GES 1. Fundamentals of Geology 5
GES 8. The Oceans: An Introduction to the Marine Environment 3
GES 160. Statistical Methods for Earth and Environmental Sciences or GES 161. Geostatistics 4
MATH 19. Calculus and Analytic Geometry 3
MATH 20. Calculus and Analytic Geometry 3
MATH 21. Calculus and Analytic Geometry 4
or MATH 41. Calculus and Analytic Geometry 5
MATH 42. Calculus and Analytic Geometry 5
MATH 51. Linear Equations and Differential Calculus 5
PHYSICS 15. The Nature of the Universe 3

PHYSICS 51. Light and Heat 4
PHYSICS 53. Mechanics 4
PHYSICS 55. Electricity and Magnetism 4
Science Education Track Courses:

EARTHSYS 195. Directed Reading on California Geology 1
EARTHSYS 189. Field Studies in Earth Systems 5
EDUC 180. Directed Reading in Education 1-15
STS 101. Science, Technology, and Contemporary Society 4-5

DEVELOPMENT PSYCHOLOGY (CHOOSE ONE):

PSYCH 60. Introduction to Development Psychology 3
PSYCH 146. Observation of Children 3-5
PSYCH 147. Development in Early Childhood 3-5
HUMBIO 126. Adolescent Development 4
EDUC 239. Contemporary Social Issues in Child & Adolescent Dev’t 4

TEACHING PRACTICUM COURSE:

EDUC 101X. Undergraduate Teaching Practicum 3-5

All students completing the Education track must:

1. be jointly advised during the undergraduate degree by Julie Kennedy and a faculty adviser from the STEP Program.
2. enroll in the coterminal STEP Program in the School of Education upon completion of the undergraduate degree.

Note: Students who begin study in the Education Track and subsequently choose not to enroll in the STEP Program must complete the degree requirements for one of the remaining Earth Systems tracks. Degrees are not awarded for the Education Track without subsequent enrollment in STEP.

UPPER-DIVISION ELECTIVES

Three intermediate to advanced courses, 100 level or above, minimum of 3 units, consistent with the primary track are required of all majors and must be approved. Eligible upper-division electives are listed below. Additional courses may be selected; see the program office for the most current list.

GEOSPHERE TRACK

Note: Only two electives are required for the Geosphere track.

BIOSCI 121. Biogeography 3
BIOSCI 216. Terrestrial Biogeochemistry 3
EARTHSYS 103. Energy Resources 3
GES 110. Structural Geology 5-6
GES 111. Structural Geology and Rock Mechanics 4
GES 164. Stable Isotopes 3
GES 185. Volcanology 4
PETENG 260. Groundwater Pollution and Oil Spills: Environmental Problems in the Petroleum Industry 3

BIOSPHERE TRACK

BIOHOPK 161H. Invertebrate Zoology 5
BIOHOPK 163H. Oceanic Biology 4
BIOHOPK 164H. Marine Botany 4
BIOSCI 125. Ecosystems of California 3-4
BIOSCI 139. Biology of Birds 3
BIOSCI 184. Principles of Biostatistics 4
BIOSCI 215. Biochemical Evolution 3
BIOSCI 216. Ecosystem Ecology and Global Biogeochemistry 3
BIOSCI 283. Theoretical Population Genetics 3

ANTHROSPHERE TRACK

ANTHSCI 25. Human Ecology of the Amazon 5
ANTHSCI 172. Indigenous Forest Management 5
C/E 171. Environmental Planning Methods 4
ECON 158. Antitrust and Regulation 5
ECON 165. International Economics 5
ECON 243. Economics of the Environment 5
MS&E 243. Energy and Environmental Policy Analysis 2-3
PUBLPOL 103A. Introduction to Political Philosophy 3
URBANST 163. Land Use Control 4

LAND MANAGEMENT TRACK

ANTHSCI 162. Indigenous Peoples and Environmental Problems 3-5
HISTORY 164. American Spaces 5
HISTORY 254. Nature 5
The student must devise a program of study that shows a level of specialization appropriate to the master’s level, as determined in consultation with the adviser. At least 22 units must be at the 200-level or above. The program should demonstrate further specialization and focus within the student’s undergraduate track.

With the adviser’s approval, 9 units may be in the form of research. This may culminate in the preparation of a master’s thesis; however, a thesis is not required for the degree. Master’s students must take part in the Winter Quarter master’s seminar (EARTHSYS 290) and have additional responsibilities appropriate to the master’s level (thesis presentation, modeling problems, and so on), 2 units.

Amore detailed description of the coterminal master’s degree program may be obtained from the program office. For University coterminal degree program rules and University application forms, see http://Registrar.stanford.edu/publications/#coterm.

COURSES

WIM indicates that the course satisfies Writing in the Major requirements.

UNDERGRADUATE

EARTHSYS 10. Introduction to Earth Systems — For non-majors and prospective Earth Systems majors. Multidisciplinary approach using the principles of geology, biology, engineering, and economics to describe how the Earth operates as an interconnected, integrated system. Goal is to understand global change on all time scales. Focus is on sciences, technological principles, and sociopolitical approaches applied to solid earth, oceans, water, energy, and food and population. Case studies: environmental degradation, loss of biodiversity, and resource sustainability. GER:DB-NatSci

4 units, Win (Ernst)

3 units, Win (Gerritsen, Durlofsky, Kovscek)

EARTHSYS 102. Renewable Energy Sources and Greener Energy Processes — (Same as PETENG 102.) The energy sources that power society are rooted in fossil energy although energy from the core of the Earth and the sun is almost inexhaustible; but the rate at which energy can be drawn from them with today’s technology is limited. The renewable energy resource base, its conversion to useful forms, and practical methods of energy storage. Geothermal, wind, solar, and tidal energies; resource extraction and its consequences. Recommended: 101, MATH 21 or 42. GER:DB-EngrAppSci

3 units, Spr (Horne, Kovscek)

EARTHSYS 103. Energy Resources — (Same as CEE 173A/207A.) Overview of oil, natural gas, coal, nuclear, hydro, solar, geothermal, biomass, wind, and ocean energy resources in terms of supply, distribution, recovery and conversion, environmental impacts, economics, policy, and technology. The opportunities for energy efficiency, electric power basics, the changing role of electric utilities, transportation basics, and energy use in developing countries. Field trips. Recommended: CEE 70. GER:DB-EngrAppSci

4-5 units, Aut (Woodward)

EARTHSYS 104. The Water Course — (Same as GEOPHYS 104.) The pathway that water takes from rainfall to the tap using student home towns as an example. How the geological environment controls the quantity and quality of water; taste tests of water from around the world. Current U.S. and world water supply issues. GER:DB-NatSci

3 units, Win (Knight)
EARTHSYS 106. Antarctic Marine Geology—(Enroll in GES 206.)
3 units (Dunbar, Cooper) alternate years, given 2006-07

EARTHSYS 110. Geosphere—(Same as GEOPHYS 102.) Large-scale natural systems of the solid earth, oceans, and atmosphere, their variation through space and time, and the implications of these systems impact and are being impacted by humankind. Topics include plate tectonics and its relationship to natural hazards and climate, large-scale ocean and atmospheric systems, energy systems, and the linkages among these topics. Prerequisites: EARTHSYS 10, GES 1. GER:DB-NatSci
3 units, Aut (Zoback, Arrigo)

EARTHSYS 111. Biology and Global Change—(Same as BIOSCI 117.) The biological causes and consequences of anthropogenic and natural changes in the atmosphere, oceans, and terrestrial and freshwater ecosystems. Topics: glacial cycles and marine circulation, greenhouse gases and climate change, tropical deforestation and species extinctions, and human population growth and resource use. Prerequisite: Biological Sciences or Human Biology core or graduate standing. GER:DB-NatSci
3 units, Win (Vitousek)

5 units, Spr (Gouldier)

EARTHSYS 113. Earthquakes and Volcanoes—(Same as GEOPHYS 113.) Earthquake location, magnitude and intensity scales, seismic waves, styles of eruptions and volcanic hazards, tsunami waves, types and global distribution of volcanoes, volcano forecasting. Plate tectonics as a framework for understanding earthquake and volcanic processes. Forecasting; earthquake resistant design; building codes; and probabilistic hazard assessment. For non-majors and potential earth scientists. GER:DB-EngrAppSci
3 units, Win (Beroza, Segall)

EARTHSYS 120. Planetary and Early Biological Evolution Seminar—(Enroll in GES 120/220.)
2-3 units, Spr (Lowe)

EARTHSYS 124/224. Environmental Justice—Focus is on whether minorities and low income citizens suffer disproportionate environmental and health impacts resulting from government and corporate decision making in contexts such as the siting of industrial facilities and waste dumps, toxic chemical use and distribution, and the enforcement of environmental mandates and policies. The political economy of decision making. Case studies.
4 units, Aut (Burns)

EARTHSYS 130/230. Biological Oceanography—(Same as GEOPHYS 130/231.) Required for Earth Systems students in the oceans track. Interdisciplinary. How oceanic environments control the form and function of marine life. Topics: distributions of planktonic productivity and abundance, nutrient cycling, the role of ocean biology in the climate system, expected effects of climate changes on ocean biology. Possible local field trips on weekends. Prerequisites: BIOSCI 43 and GES 8 or equivalent. Corequisite: GES 159/259.
2-4 units, Spr (Arrigo)

EARTHSYS 138. Urbanization, Global Change, and Sustainability—(Enroll in GES 138.)
3 units (Seto) not given 2005-06

EARTHSYS 140. Introduction to Remote Sensing—(Enroll in GEOPHYS 140.)
3 units, Aut (Zebker)

EARTHSYS 141/241. Remote Sensing of the Oceans—(Same as GEOPHYS 141/241.) How to observe and interpret physical and biological changes in the oceans using satellite technologies. Topics: principles of satellite remote sensing, classes of satellite remote sensors, converting radiometric data into biological and physical quantities, sensor calibration and validation, interpreting large-scale oceanographic features. GER:DB-NatSci
4 units, Win (Arrigo)

EARTHSYS 142/242. Remote Sensing of Land Use and Land Cover—(Same as GES 142.) The use of satellite remote sensing to monitor land use and land cover, with emphasis on terrestrial changes. Topics include pre-processing data, biophysical properties of vegetation observable by satellite, accuracy assessment of maps derived from remote sensing, and methodologies to detect changes such as urbanization, deforestation, vegetation health, and wildfires.
4 units (Seto) not given 2005-06

EARTHSYS 144. Fundamentals of Geographic Information Science (GIS)—(Enroll in GES 144.)
4 units, Spr (Seto)

EARTHSYS 145/245. Energy Flow and Policy: The Pacific Rim—(Same as GES 145/245.) Factors shaping energy use and development throughout the Pacific Rim. Topics include fossil and alternative energy resources, supply and trade vulnerabilities, the geopolitics of energy use, and the environmental and social impacts of waste streams. Class develops a game simulation based on critical energy issues, student-initiated energy projections, and assessment of the principal stakeholders.
3 units, Win (Howell)

EARTHSYS 147/247. Controlling Climate Change in the 21st Century—(Same as BIOSCI 147/247.) The science, economics, and environmental diplomacy of global climate change. Topics: the science of climate change, climate change and global environmental law; global economic approaches to carbon abatement, taxes, and tradable permits; joint implementation, consensus, and division in the EU; gaining the support of China, other developing countries, and U.S. corporations; alternative energy and energy efficiencies for less carbon-intensive electric power and transport. GER:DB-NatSci
3 units (Schneider, Roencranz) alternate years, given 2006-07

EARTHSYS 159. Marine Chemistry—(Enroll in GES 159/259.)
2-4 units, Spr (Paytan)

EARTHSYS 164. Introduction to Physical Oceanography—(Same as CEE 164/262D.) The dynamic basis of oceanography. Topics: physical environment; conservation equations for salt, heat, and momentum; geostrophic flows; wind-driven flows; the Gulf Stream; equatorial dynamics and ENSO; thermohaline circulation of the deep oceans; and tides. Prerequisite: PHYSICS 41 (formerly 53). GER:DB-NatSci
4 units, Win (Fong)

EARTHSYS 165. Ethnoecology—(Enroll in ANTHSCI 164A/264A.)
5 units (Irvine) not given 2005-06

EARTHSYS 167/267. Social Policy for Sustainable Resource Use—(Same as ANTHSCI 167/267.) The development of social policies that foster a positive human role in the ecosystem. Goal is to develop group skills in a team setting while researching case studies of forest peoples impacted by integration into the global economy. The case of voluntary forest product certification under the Forest Stewardship Council system. Local participation in policy development, the effectiveness of certification, tenure and institutional aspects of sustainability, indigenous rights and forest conservation, and the role of local communities and workers in sustaining forests over the long term. Prerequisite: consent of instructor. (HEF II, IV, V; DA-A) GER:DB-SocSci
5 units, Spr (Irvine)
EARTHSYS 167C/267C. Managing the Commons: Evolving Theories for Sustainable Resource Use—(Same as ANTHSCI 167C/267C.) Development of common property theory since Hardin’s article on the tragedy of the commons. Interdisciplinary theorizing about sustainable management of common-pool resources such as grazing, forest, or marine resources; debates about sustainability of commons management within heterogeneous state and global systems; and new commons such as atmosphere or the information commons. Links among theory, methods, and policy. Prerequisite: 190 or consent of instructor. (HEF II, III, IV)
5 units (Irvin) not given 2005-06

EARTHSYS 175/275. California Coast: Science, Policy, and Law—(Same as CEE 175A/275A, LAW 514.) Interdisciplinary. The legal, science, and policy dimensions of managing California’s coastal resources. Coastal land use and marine resource decision making. The physics, chemistry, and biology of the coastal zone, tools for exploring data from the coastal ocean, and the institutional framework that shapes public and private decision making. Field work: how experts from different disciplines work to resolve coastal policy questions.
3-4 units, Aut (Caldwell, Boehm, Sivas)

EARTHSYS 180/280. Fundamentals of Sustainable Agriculture—(Same as BIOSCI 180/280.) Ecological, economic, and social dimensions of sustainable agriculture in the context of a growing world population. Focus is on management and technological approaches, and historical content of agricultural growth and change, organic agriculture, soil and water resource management, nutrient and pest management, biotechnology, ecosystem services, and climate change. GER:DB-NatSci
3 units (Naylor, Daily) alternate years, given 2006-07

EARTHSYS 189. Field Studies in Earth Systems—(Same as BIOSCI 206.) For advanced upper-division undergraduates and graduate students. Field-based, focusing on the components and processes by which terrestrial ecosystems function. Topics from biology, chemistry, ecology, geology, and soil science. Lecture, field, and lab studies emphasize standard field techniques, experimental design, analysis of data, and written and oral presentation. Small team projects test the original questions in the functioning of natural ecosystems. Admission by application; see Time Schedule. Prerequisites: BIOSCI 141 or GES 160, or equivalent.
GER:DB-NatSci
5 units (Chiariello, Fendorf, Matson, Miller) alternate years, given 2006-07

EARTHSYS 195. Directed Reading on California Geology—For Earth Systems education track. Teacher preparation in California geology with focus on regional variability. Preparation of field trip exercises appropriate for K-12 age groups.
1 unit, Aut, Win, Spr (J. Kennedy)

EARTHSYS 210. Senior Seminar—Oral and written communication skills. Each student presents results of the Earth Systems internship and leads discussion. Group project analyzing local environmental problems with Earth Systems approach. Peer reviews of internship papers. WIM
4 units, Aut, Spr (J. Kennedy)

EARTHSYS 250. Directed Research—Independent research related to student’s primary track, carried out after the junior year, during the summer, and/or during the senior year. Student develops own project with faculty supervision. 10-15 page thesis. May be repeated for credit.
1-9 units, Aut, Win, Spr, Sum (Staff)

EARTHSYS 259. Marine Chemistry—(Enroll in GES 159/259.)
2-4 units, Spr (Paytan)

EARTHSYS 260. Internship—Supervised field, lab, private sector, or advocacy project, normally through an internship sponsored by government agencies or research institutions, or independently developed by the student with the written approval of the Associate Director of Academics. 10-15 page report.
1-9 units, Aut, Win, Spr, Sum (J. Kennedy)

EARTHSYS 290. Master’s Seminar—Open to Earth Systems master’s students only. Independent research, oral presentation of results, and preparation of an original proposal for innovative Earth Systems science/policy research.
2 units, Win (J. Kennedy)

1-9 units, Aut, Win, Spr, Sum (Staff)

EARTHSYS 298. Advanced Topics in Earth Systems—For Earth Systems master’s students only. Continuation of EARTHSYS 290. May be repeated for credit.
2 units, Spr (J. Kennedy)

EARTHSYS 299. M.S. Thesis
1-9 units, Aut, Win, Spr, Sum (Staff)

EARTHSYS 300. Earth Sciences Seminar—(Same as GES 300, GEO-PHYS 300, IPER 300, PETENG 300.) Required for incoming graduate students except coterm students. Research questions, tools, and approaches of faculty members from all departments in the School of Earth Sciences. Goals are: to inform new graduate students about the school’s range of scientific interests and expertise; and introduce them to each other across departments and research groups. Two faculty members present work at each meeting. May be repeated for credit.
1 unit, Aut (Matson, Graham)

EARTHSYS 323. Stanford at Sea—(Same as GES 323, BIOHOPK 182H/323H.) Five weeks of marine science including oceanography, marine physiology, policy, maritime studies, conservation, and nautical science at Hopkins Marine Station, followed by five weeks at sea aboard a sailing research vessel in the Pacific Ocean. Shore component comprised of three multidisciplinary courses meeting daily and continuing aboard ship. Students develop an independent research project plan while ashore, and carry out the research at sea. In collaboration with the Sea Education Association of Woods Hole, MA. GER:DB-NatSci
16 units (Block, Dunbar, Micheli) alternate years, given 2006-07

OVERSEAS STUDIES

Courses approved for the Earth Systems major and taught overseas can be found in the “Overseas Studies” section of this bulletin, or in the Overseas Studies office, 126 Sweet Hall.

AUSTRALIA

EARTHSYS 120X. Coral Reef Ecosystems—(Same as BIOSCI 109Z, HUMBIO 61X.)
3 units, Win (Arrigo, Dove, Hoegh-Guldberg)

EARTHSYS 121X. Coastal Resource Management—(Same as BIOSCI 110Z, HUMBIO 62X.)
3 units, Win (Johnstone)

EARTHSYS 122X. Coastal Forest Ecosystems—(Same as BIOSCI 111Z, HUMBIO 63X.)
3 units, Win (Duke, Pole)

BEIJING

EARTHSYS 105X. Environmental Challenges in China’s Development
4 units, Aut (Li)

SANTIAGO

EARTHSYS 110X. Living Chile: A Land of Extremes—(Same as LATINAM 58X.)
5 units, Aut (Poblete, Ginocchio)
GEOLOGICAL AND ENVIRONMENTAL SCIENCES

Chair: C. Page Chamberlain

Associate Chair: Keith Loague

Associate Professor: Scott E. Fendorf

Assistant Professors: Christopher Francis, George Hilley, Adina Paytan, Karen Seto

Professors (Research): Atilla Aydin, J. Michael Moldovan

Lecturers: Anne E. Egger, Bob Jones

Courtesy Professors: Ronaldo I. Borja, Peter Kitaniudis, James O. Leckie, Stephen Monismith, Peter M. Vitousek

Courtesy Associate Professors: Kevin R. Arrigo, David L. Freyberg, Elizabeth Hadly, Simon L. Klemperer, Anders Nilsson, Alfred M. Spormann

Courtesy Assistant Professor: Gregory P. Asner

Consulting Professors: Alan Cooper, Francois Farges, Thomas L. Holzer, Paul Hsieh, Jack J. Lissauer, Mark S. Marley, Timothy R. McHargue, Kevin Zahnle

Consulting Associate Professors: Marco Antonellini, Trevor Dumitru, Joseph Wooden, Robyn Wright-Dunbar

Visiting Professors: Joel Blum, Douglas Burbank, Gary Byerly, Ricardo Olea, Alexey Soloviev, Robert Stern, Manfred Strecker, Jing sui Yang

* Recalled to active duty
†† Joint appointment with the Stanford Institute for International Studies
** Joint appointment with Petroleum Engineering
*** Joint appointment with Statistics

Department Office: Braun Hall, Building 320
Mail Code: 94305-2115
Phone: (650) 723-0847
Email: ges-dep@pangea.stanford.edu
Web Site: http://pangea.stanford.edu/GES/

Courses given in Geological and Environmental Sciences have the subject code GES. For a complete list of subject codes, see Appendix.

The geological and environmental sciences are naturally interdisciplinary, and include: the study of processes that shape the Earth’s surface; records of Earth’s history, including climate, as documented in rocks, sediments, and ice; changes in the oceans and atmosphere; chemical and physical properties of minerals, rocks, soils, sediments, water, and ice, and their interactions; interactions between Earth materials and microbes; sources of energy resources and economic minerals; contamination of natural waters and soils; biogeochemical cycles over multiple timescales; planetary geology and astrobiology; remote sensing and classification of land use and land cover; and natural hazards like volcanoes, earthquakes, and landslides.

Most students and faculty within the department spend time in the field; recent field sites include areas in California, Chile, Antarctica, Easter Island, Hawaii, the Kamchatka Peninsula, Utah, Nevada, and S.E. Asia. Departmental facilities that model, simulate, or digitize field data and samples include laboratories that provide access to state-of-the-art techniques including stable isotope analysis, geochronology, thermochronology, electron and ion microprobe analysis, nuclear magnetic resonance, scanning electron microscopy, and geographic information systems (GIS) analysis. Facilities at the Stanford Linear Accelerator Center (SLAC), the Stanford Synchrotron Radiation Laboratory (SSRL), and the U.S. Geological Survey in Menlo Park are available to researchers in the earth sciences.

UNDERGRADUATE PROGRAMS

BACHELOR OF SCIENCE

The undergraduate program leading to the Bachelor of Science (B.S.) degree in Geological and Environmental Sciences (GES) is designed to leverage the diversity of the field and provide background for a wide variety of careers. Students who complete the undergraduate GES major or minor have gone on to graduate school in the earth sciences and/or employment in geological consulting, environmental engineering, land use planning, law, public service, teaching and other professions in which an understanding of the earth and a background in science are important. Students interested in the GES major should consult with the undergraduate program coordinator for information about options within the curriculum and potential career paths.

The major requires at least 80 units; letter grades are required in all courses if available. Students complete a core sequence of GES courses that introduce earth processes and the properties of earth materials. With this foundation, they focus on a more specialized area within the geological and environmental sciences. The curriculum thus includes courses in chemistry, physics, biology, and mathematics. In addition, nearly all GES students conduct independent research projects, either over the summer or as part of a year-long honors thesis.

The study of earth processes in the natural laboratory of the field is a fundamental component of the major, and most GES courses include field trips. Students must complete at least six weeks of directed field research either through departmental offerings (GES 190) or through a field camp offered at another school.

Near the end of the undergraduate program and to fulfill the Writing-in-the-Major requirement, students take a writing-intensive senior seminar (GES 150), in which students share their knowledge with each other while addressing issues at the forefront of the earth sciences.

COURSE SEQUENCE (80-91 UNITS TOTAL)

CORE GEOLOGICAL AND ENVIRONMENTAL SCIENCES COURSES

Course No. and Subject Units

Core Geologic and Environmental Sciences Courses (80-91 Units Total)

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>GES 1. Fundamentals of Geology</td>
<td>5</td>
</tr>
<tr>
<td>or GES 49N. Field Trip to Death Valley and Owens Valley</td>
<td>3</td>
</tr>
<tr>
<td>GES 2. Earth History</td>
<td>3</td>
</tr>
<tr>
<td>GES 102. Earth Materials</td>
<td>5</td>
</tr>
<tr>
<td>GES 103. Rocks in Thin Section</td>
<td>2</td>
</tr>
<tr>
<td>GES 150. Senior Seminar: Issues in the Earth Sciences (WIM)</td>
<td>3</td>
</tr>
<tr>
<td>GES 190. Other field course, or field research (6 weeks)</td>
<td>3-5</td>
</tr>
</tbody>
</table>

Four of the following five groups of courses (others may count as electives):

GES 90. Introduction to Geochemistry | 3-4 |
GES 110. Structural Geology and Tectonics | 5 |
GES 111. Structural Geology and Rock Mechanics | 3 |
GES 151. Sedimentary Geology and Petrography | 4 |
GES 175. Science of Soils | 4 |
GES 130. Environmental Earth Sciences I | 5 |
GES 170. Environmental Geochemistry | 4 |
GES 180. Igneous Processes | 3-5 |
GES 181. Metamorphic Processes | 3-5 |

REQUIRED SUPPORTING MATHEMATICS

Choose one of the following equivalent series:

MATH 19. Calculus | 3 |
MATH 20. Calculus | 3 |
MATH 21. Calculus | 4 |
or
MATH 41. Calculus | 5 |
MATH 42. Calculus | 5 |

Choose at least one of the following (the entire series is recommended for students who plan to pursue graduate studies in the sciences or engineering):

MATH 51. Multivariate Mathematics | 5 |
MATH 52. Multivariate Mathematics | 5 |
MATH 53. Multivariate Mathematics | 5 |
REQUIRED SUPPORTING COGNATE SCIENCES

Students must complete course sequences from two of the three fields of cognate sciences: chemistry, physics, and biological sciences. Advanced placement credit may be accepted for these courses as determined by the relevant departments.

Chemistry:
- CHEM 31A,B. Chemical Principles I/II 8
- or CHEM 31X. Chemical Principles 4
- CHEM 135. Physical Chemistry Principles 3
- or CHEM 171. Physical Chemistry 3
- or GES 171. Geochemoical Thermodynamics 3

Physics:
- PHYSICS 22. Mechanics and Heat Lab 1
- PHYSICS 23. Electricity and Optics 3
- PHYSICS 24. Electricity and Optics Lab 1
- or PHYSICS 45 (formerly 51). Light and Heat 4
- PHYSICS 46 (formerly 52). Light and Heat Lab 1
- PHYSICS 41 (formerly 53). Mechanics 4
- or PHYSICS 41 (formerly 53). Mechanics 4
- PHYSICS 43 (formerly 55). Electricity and Magnetism 3
- PHYSICS 44 (formerly 56). Electricity and Magnetism Lab 1

Biology:
- BIOSCI 41. Genetics, Biochemistry, and Molecular Biology 5
- BIOSCI 42. Cell Biology and Animal Physiology 5
- or BIOSCI 43. Plant Biology, Evolution, and Ecology 5
- or BIOSCI 101. Ecology 3

ELECTIVES (19 UNITS)

Majors must complete at least 19 units of upper-division electives. A majority (at least 10) of these units must be from courses within GES (excluding GES 7), introductory seminars (GES 30-60), GES 200, and GES 201. Many courses from departments other than GES are also approved electives; this list is available from the undergraduate program coordinator and at http://pangea.stanford.edu/GES/undergraduates. Additional courses may satisfy this requirement but require prior approval from the undergraduate program director. A maximum of 3 elective units may be fulfilled by GES 192, 198, or an upper-level seminar. Honors research (GES 199) may fulfill up to 6 elective units. Students should discuss their electives with an adviser.

FIELD RESEARCH (6 WEEKS)

Majors must complete six weeks of field research in geology through departmental offerings (GES 190), at another university, or through a faculty-directed field research project that involves learning and application of field techniques and the preparation of a written report.

ENGINEERING GEOLOGY AND HYDROGEOLOGY SPECIALIZED CURRICULUM

The Engineering Geology and Hydrogeology curriculum is intended for undergraduates interested in the application of geological and engineering data and principles to the study of rock, soil, and water to recognize and interpret geological and environmental factors affecting engineering structures and groundwater resources. Students learn to characterize and assess the risks associated with natural geological hazards, such as landslides and earthquakes, and with groundwater flow and contamination. The curriculum prepares students for graduate programs and professional careers in engineering, and environmental geology, geology, geotechnical engineering, and hydrogeology. Students interested in this curriculum should contact a faculty adviser: Professor Loague, Pollard, or Gorelick.

GES majors who elect the Engineering Geology and Hydrogeology curriculum are expected to complete a core course sequence and a set of courses in supporting sciences and mathematics. The core courses come from Earth Sciences and Engineering. Any substitutions for core courses must be approved by the faculty adviser and through a formal petition to the undergraduate program director. In addition, four elective courses, consistent with the core curriculum and required of all majors, are selected with the advice and consent of the adviser. Typically, electives are selected from the list below. Letter grades are required if available.

COURSE SEQUENCE (88-99 UNITS TOTAL)

REQUIRED GEOLOGICAL AND ENVIRONMENTAL SCIENCES (38-39 UNITS)

Course No. and Subject	**Units**
GES 1. Fundamentals of Geology | 5
GES 102. Earth Materials | 5
GES 111. Structural Geology and Rock Mechanics | 3
GES 115. Engineering Geology Practice | 3
GES 144. Fundamentals of GIS | 4
GES 150. Senior Seminar: Issues in the Earth Sciences (WIM) | 3
GES 160. Statistical Methods for Earth and Environmental Sciences: General Introduction | 4
or GES 161. Statistical Methods for the Earth and Environmental Sciences: Geostatistics | 3-4
GES 230. Physical Hydrogeology | 4
GEOPHYS 190. Applied Geophysical Methods | 3

REQUIRED ENGINEERING (20 UNITS)

CEE 101A. Mechanics of Materials | 4
CEE 101B. Mechanics of Fluids | 4
CEE 101C. Geotechnical Engineering | 4
CS 106A. Programming Methodology | 5

REQUIRED SUPPORTING SCIENCES AND MATHEMATICS (23-27 UNITS)

Course No. and Subject

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 31A,B. Chemical Principles I/II</td>
</tr>
<tr>
<td>or CHEM 31X. Chemical Principles</td>
</tr>
<tr>
<td>MATH 51. Multivariate Mathematics</td>
</tr>
<tr>
<td>MATH 52. Multivariate Mathematics</td>
</tr>
<tr>
<td>MATH 53. Multivariate Mathematics</td>
</tr>
<tr>
<td>PHYSICS 41. Mechanics</td>
</tr>
</tbody>
</table>

SUGGESTED ELECTIVES (11-20 UNITS)

Choose four courses from the following list or, with faculty approval, four related courses:

Required courses:
- CHEE 180. Structural Analysis 4
- CHEE 270. Movement, Fate, and Effects of Contaminants in Surface Waters and Groundwater 3
- CHEE 293. Foundation Engineering 3
- CHEE 296. Experimental Soil Mechanics 2
- ENGR 30. Engineering Thermodynamics 3
- ENGR 50. Introductory Science of Materials 4
- GEOG 150. General Geophysics 4
- GES 130. Environmental Earth Sciences I 3
- GES 131. Environmental Earth Sciences II 3
- GES 215A.B. Advanced Structural Geology and Rock Mechanics 3-5
- GES 217. Characterization and Hydraulics of Rock Fracture 3
- GES 231. Contaminant Hydrogeology 4
- GES 235. Role of Fluids in Geologic Processes 3
- GES 237. Surface and Near-Surface Hydrologic Response 3
- MATH 103. Matrix Theory and its Applications 3
- ME 80. Strength of Materials 3

MINORS

The minor in GES consists of a small set of required courses plus 12 elective units. A wide variety of courses may be used to satisfy these elective requirements.

Required courses:
- Course No. and Subject	**Units**
GES 1. Fundamentals of Geology | 5
or GES 49N. Field Trip to Death Valley and Owens Valley | 3
GES 2. Earth History | 3
GES 102. Earth Materials | 5

ELECTIVES (12 UNITS)

Electives must include at least three courses from the list below:

Units

<table>
<thead>
<tr>
<th>Course No. and Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>GES 8. The Oceans</td>
</tr>
<tr>
<td>GES 90. Introduction to Geochemistry</td>
</tr>
<tr>
<td>GES 103. Rocks in Thin Section</td>
</tr>
<tr>
<td>GES 110. Structural Geology</td>
</tr>
<tr>
<td>GES 111. Structural Geology and Rock Mechanics</td>
</tr>
<tr>
<td>GES 130. Environmental Earth Sciences I</td>
</tr>
<tr>
<td>GES 131. Environmental Earth Sciences II</td>
</tr>
<tr>
<td>GES 144. Fundamentals of GIS</td>
</tr>
</tbody>
</table>
GES 151. Sedimentary Geology and Petrography 4
GES 170. Environmental Geochemistry 4
GES 175. Science of Soils 4
GES 180. Igneous Processes 3-5
GES 181. Metamorphic Processes 3-5
GES 185. Volcanology 4

Students pursuing a minor in GES are encouraged to take one of the freshman or sophomore seminars (courses with numbers 38-59) and to participate in the senior seminar (GES 150) and in field research (GES 190). Up to 3 units of Stanford Introductory Seminars may be used in fulfilling the 12-unit requirement above.

HONORS PROGRAM

The honors program provides an opportunity for year-long independent study and research on a topic of special interest, culminating in a written thesis. Students select research topics in consultation with the faculty adviser of their choosing. Research undertaken for the honors program may be of a theoretical, field, or experimental nature, or a combination of these approaches. The honors program is open to students with a GPA of at least 3.5 in GES courses and 3.0 in all University course work. Modest financial support is available from several sources to help defray laboratory and field expenses incurred in conjunction with honors research. Interested students must submit an application, including a research proposal, to the department by the end of their junior year.

Upon approval of the research proposal and entrance to the program, course credit for the honors research project and thesis preparation is assigned by the student’s faculty adviser within the framework of GES 199; the student must complete a total of 9 units over the course of the senior year. Up to 6 units of GES 199 may be counted towards the elective requirement, but cannot be used as a substitute for regularly required courses.

Both a written and oral presentation of research results are required. The thesis must be read, approved, and signed by the student’s faculty adviser and a second member of the faculty. In addition, honors students must participate in the GES Honors Symposium in which they present their research to the broader community. Honors students in GES are also eligible for the Firestone and Golden medals, awarded by the Undergraduate Research Programs for exceptional theses.

COTERMINAL B.S. AND M.S. DEGREES

The coterminal B.S./M.S. program offers students the opportunity to pursue graduate research and an M.S. degree concurrently with or subsequent to their B.S. studies. The M.S. degree can serve as an entrance to a professional degree in subdisciplines within the earth sciences such as engineering geology and environmental geology, or to graduate course work and research as an intermediate step to pursuit of the Ph.D. Regardless of professional goals, coterminal B.S./M.S. students are treated as members of the graduate community and are expected to meet all of the standards set for regular M.S. students. Applicants must have earned no fewer than 120 units toward graduation, and must submit their application no later than the quarter prior to the expected completion of their undergraduate degree, normally the Winter Quarter prior to Spring Quarter graduation. The application includes a statement of purpose, a current Stanford transcript, official Graduate Record Examination (GRE) scores, letters of recommendation from two members of the Stanford faculty (at least one of whom must be in the GES department), and a list of courses in which they intend to enroll to fulfill the M.S. degree requirements. Specific research interests should be noted in the statement of purpose and discussed with a member of the GES faculty prior to submission of the application. Coterminal students must complete a thesis describing research results. For University coterminal degree program rules and University application forms, see http://registrar.stanford.edu/publications/#Coterm.

Students must meet all requirements for both the B.S. and M.S. degrees. Students may either (1) complete 180 units required for the B.S. degree and then complete three full-time quarters (45 units at the 100-level or above) for the M.S. degree, or (2) complete a total of fifteen quarters during which the requirements of the two degrees are fulfilled concurrently. At least half of the courses used to satisfy the 45-unit requirement must be designated as being primarily for graduate students, normally at the 200-level or above. No more than 15 units of thesis research may be used to satisfy the 45-unit requirement. Further information about this program may be obtained from the GES office.

GRADUATE PROGRAMS

Graduate studies in the Department of Geological and Environmental Sciences (GES) involve academic course work and independent research. Students are prepared for careers as professional scientists in research, education, or the application of the earth sciences to mineral, energy, and water resources. Programs lead to the M.S., Engineer, and Ph.D. degrees. Course programs in the areas of faculty interest are tailored to the student’s needs and interests with the aid of his or her research adviser. Students are encouraged to include in their program courses offered in other departments in the School of Earth Sciences as well as in other departments in the University. Diplomas designate degrees in Geological and Environmental Sciences and may also indicate the following specialized fields of study: Geostatistics and Hydrogeology.

Admission—For admission to graduate work in the department, the applicant must have taken the Aptitude Test (verbal, quantitative, and analytical writing assessment) of the Graduate Record Examination. In keeping with University policy, applicants whose first language is not English must submit TOEFL (Test of English as a Foreign Language) scores from a test taken within the last 18 months. Individuals who have completed a B.S. or two-year M.S. program in the U.S. or another English-speaking country are not required to submit TOEFL scores. Previously admitted students who wish to change their degree objective from M.S. to Ph.D. must petition the GES Admissions Committee.

FIELDS WITH DIPLOMA DESIGNATION

Hydrogeology—The Hydrogeology program, which leads to an M.S., Engineer, or Ph.D. degree in GES, balances research in the purely scientific and applied aspects of groundwater resources and near-surface processes.

The program requires students to obtain a broad background in earth sciences and engineering. Students in the program must have a strong general scientific background in basic physics, chemistry, computer science, and mathematics, and a demonstrated aptitude for solving quantitative problems. They must complete a core curriculum involving courses in fluid mechanics, hydrogeology, hydrology, and water quality. A list of required and recommended courses is supplied upon request.

Geostatistics—The Geostatistics program leads to an M.S. or Ph.D. degree in GES. Strong interactions have been developed with faculty and students in the departments of Geophysics and Petroleum Engineering.

The program requires a geological background and a fair level of calculus and programming (Fortran and/or C++). Recent graduates have found jobs in the extractive (mining, oil) and environmental (EPA) fields.

MASTER OF SCIENCE

Objectives—The purpose of the master’s program in Geological and Environmental Sciences is to continue a student’s training in one of a broad range of earth science disciplines and to prepare students for either a professional career or doctoral studies.

Procedures—The graduate coordinator of the department appoints an academic adviser during registration with appropriate consideration of the student’s background, interests, and professional goals. In consultation with the adviser, the student plans a program of course work for the first year. The student should select a thesis adviser within the first year of residence and submit to the thesis adviser a proposal for thesis research as soon as possible. The academic adviser supervises completion of the department requirements for the M.S. program (as outlined below) until the research proposal has been accepted; responsibility then passes to the thesis adviser. The student may change either thesis or academic advisers by mutual agreement and after approval of the graduate coordinator.

Requirements—The University’s requirements for M.S. degrees are outlined in the “Graduate Degrees” section of this bulletin. Practical training (GES 385) may be required by some programs, with adviser ap-
1. A minimum of 45 units of course work at the 100 level or above.
 a. Half of the courses used to satisfy the 45-unit requirement must be
 intended as being primarily for graduate students, usually at the
 200 level or above.
 b. No more than 15 units of thesis research may be used to satisfy the
 45-unit requirement.
 c. Some students may be required to make up background deficiencies
 in addition to these basic requirements.
2. By the end of Winter Quarter of their first year in residence, students
 must complete at least three courses taught by a minimum of two
 different GES faculty members.
3. Each student must have a research adviser who is a faculty member in
 the department and is within the student’s thesis topic area or
 specialized area of study.
4. Each student must complete a thesis describing his or her research. Thesis
 research should begin during the first year of study at Stanford and should
 be completed before the end of the second year of residence.
5. Early during the thesis research period, and after consultation with the
 student, the thesis adviser appoints a second reader for the thesis, who
 must be approved by the graduate coordinator; the thesis adviser is
 the first reader. The two readers jointly determine whether the thesis
 is acceptable for the M.S. degree in the department.

ENGINEER DEGREE

The Engineer degree is offered as an option for students in applied disciplines who wish to obtain a graduate education extending beyond that of an M.S., yet do not have the desire to conduct the research needed to obtain a Ph.D. A minimum of two years (six quarters) of graduate study is required. The candidate must complete 90 units of course work, no more than 10 of which may be applied to overcoming deficiencies in undergraduate training. The student must prepare a substantial thesis that meets the approval of the thesis adviser and the graduate coordinator.

DOCTOR OF PHILOSOPHY

Objectives — The Ph.D. is conferred upon candidates who have demonstrated substantial scholarship, high attainment in a particular field of knowledge, and the ability to conduct independent research. To this end, the objectives of the doctoral program are to enable students to develop the skills needed to conduct original investigations in a particular discipline or set of disciplines in the earth sciences, to interpret the results, and to present the data and conclusions in a publishable manner.

Requirements — The University’s requirements for the Ph.D. degree are outlined in the “Graduate Degrees” section of this bulletin. Practical training (GES 385) may be required by some programs, with adviser approval, depending on the background of the student. A summary of additional department requirements is presented below:

1. Ph.D. students must complete the required courses in their individual program or in their specialized area of study with a grade point average (GPA) of 3.0 (B) or higher, or demonstrate that they have completed the equivalents elsewhere. Ph.D. students must complete a minimum of four upper-division courses of at least 3 units each from four different faculty members on the Academic Council in the University. By the end of Winter Quarter of their first year in residence, students must complete at least three courses taught by a minimum of two different GES faculty members.
2. Each student must qualify for candidacy for the Ph.D. by the end of the sixth quarter in residence, excluding summers. Department procedures require selection of a faculty thesis adviser, preparation of a written research proposal, approval of this proposal by the thesis adviser, selection of a committee for the Ph.D. qualifying examination, and approval of the membership by the graduate coordinator and chair of the department. The research examination consists of three parts: oral presentation of a research proposal, examination on the research proposal, and examination on subject matter relevant to the proposed research. The exam should be scheduled for prior to May 1, so that the outcome of the exam is known at the time of the annual spring evaluation of graduate students.
3. Upon qualifying for Ph.D. candidacy, the student and thesis adviser, who must be a department faculty member, choose a research committee that includes a minimum of two faculty members in the University in addition to the adviser. Annually, in the month of March or April, the candidate must organize a meeting of the research committee to present a brief progress report covering the past year.
4. Under the supervision of the research advisory committee, the candidate must prepare a doctoral dissertation that is a contribution to knowledge and is the result of independent research. The format of the dissertation must meet University guidelines. The student is strongly urged to prepare dissertation chapters that, in scientific content and format, are readily publishable.
5. The doctoral dissertation is defended in the University oral examination. The research adviser and two other members of the research committee are determined to be readers of the draft dissertation. The readers are charged to read the draft and to certify in writing to the department that it is adequate to serve as a basis for the University oral examination. Upon obtaining this written certification, the student is permitted to schedule the University oral examination.

PH.D. MINOR

Candidates for the Ph.D. degree in other departments who wish to obtain a minor in Geological and Environmental Sciences must complete, with a GPA of 3.0 (B) or better, 20 units in the geosciences in lecture courses intended for graduate students. The selection of courses must be approved by the student’s GES adviser and the department chair.

COURSES

WIM indicates that the course satisfies the Writing in the Major requirement. (AU) indicates that the course is subject to the University Activity Unit limitations (8 units maximum).

UNDERGRADUATE

GES 1. Fundamentals of Geology — For non-majors or prospective majors in Geological and Environmental Sciences or Earth Systems. Topics include: processes that shape the Earth’s landforms, produce minerals and rocks, create soils, deform its crust, and move continents; surficial processes involving water, wind, and ice, and their role in erosion and sediment production; processes within the Earth’s interior with emphasis on global tectonics; determining the ages of rocks and geologic events; hazards including earthquakes, volcanoes, flooding, landslides, and their mitigation; and nonrenewable resources, energy, and environmental problems. Field trip; lab. Recommended: high school chemistry and physics. GER:DB-NatSci 5 units, Aut (Egger), Spr (Wright-Dunbar)

GES 2. Earth History — For non-majors and prospective Earth Systems or Geology majors. Overview of how the Universe evolved from the creation of the elements to the origin of human beings. The origin of the Universe, solar system, and Earth’s atmosphere, oceans, and continents. The origin of life, its evolution from its beginnings to the rise of metazoans and development of human beings, and the relationship between geological and biological evolution. Future scenarios for Earth, including human impact on earth systems and how human beings are modifying the atmosphere, oceans, and land. GER:DB-NatSci 3 units, Win (Hilley)

GES 7A, 7B. An Introduction to Wilderness Skills — Living, traveling, and working in the wilderness for those planning fieldwork in the backcountry. Geological processes, land management, environmental ethics, first aid, animal tracking, and plant ecology. Four weekend outings focus on minimum impact backcountry skills including ski techniques, backpacking, caving, food preparation, orienteering, rock climbing, snow shelter building, and telemarking. 7A emphasizes navigation on foot and rock climbing; 7B emphasizes winter camping skills and backcountry skiing. Food, group, and major personal gear provided. Fee. Preregistra-
tion required at www.stanford.edu/class/ges7. (AU)
1 unit, Aut, Win (Bird)

GES 7C. Advanced Wilderness Skills—Mountaineering techniques and issues of interest to students experienced with outdoor travel. Fee for food and transportation. Preregistration required through OEP at http://www.stanford.edu/class/ges7.
1 unit, Aut, Win (Bird)

GES 8. The Oceans: An Introduction to the Marine Environment—For non-majors and prospective earth science and environmental majors. Topics: topography and geology of the sea floor; evolution of ocean basins; the circulation of the ocean and atmosphere; the nature of sea water, waves, tides, and the history of the major ocean basins. The interface between continents and ocean basins, emphasizing estuaries, beaches, and continental shelves with California margin examples. Relationships among the distribution of inorganic constituents; ocean circulation; biologic productivity; and marine environments from deep sea to the coast. One-day field trip to measure and analyze waves and currents. GER:DB-NatSci
3 units (Ingle)

GES 43N. Environmental Problems—Stanford Introductory Seminar. Preference to freshmen. Components of multidisciplinary environmental problems and ethical questions associated with decision making in the regulatory arena. Students lead discussions on environmental issues such as groundwater contamination from point and nonpoint sources, cumulative watershed effects related to timber and mining practices, acid rain, subsurface disposal of nuclear waste, pipelines, slope stability, and oil tanker spills. GER:DB-NatSci
3 units, Win (Laague)

GES 45N. The Ocean Around Us—Stanford Introductory Seminar. Preference to freshmen. The geology, chemistry, physics, and biology of the oceans, and human interactions with them. Four required half-day field trips examine the oceanic environments of the Bay Area.
3 units, Aut (Paytan) alternate years, not given 2006-07

GES 48N. Volcanoes of the Eastern Sierra Nevada—Preference to freshmen. Skills in researching primary sources in scientific literature and written and oral presentation of results. Topics: young volcanoes, hot springs, earthquake faults, glacial features, paleoecology, and saline lakes of the eastern Sierra Nevada. Four-day field trip over Memorial Day weekend. Term project is written as a chapter for a class-produced field trip guidebook. Oral presentation on the outing at the field trip stop described in the guidebook chapter. Camping and light hiking.
2 units, Spr (Mahood)

GES 50Q. The Coastal Zone Environment—Stanford Introductory Seminar. Preference to sophomores. The oceanographic, geological, and biological character of coastal zone environments, including continental shelves, estuaries, and coastal wetlands, with emphasis on San Francisco Bay. Five required field trips examine estuarine and coastal environments, and agencies and facilities that manage these resources. Students present original research. Prerequisite: beginning course in Biology such as BIOSCI 51, Chemistry such as CHEM 30 or 31, Earth Sciences such as GES 1 or 2, or Earth Systems such as EARTHSYS 10. GER:DB-NatSci
3 units, Win (Ingle)

GES 51Q. Pangea, Germs, and Arsenic—Stanford Introductory Seminar. Preference to sophomores. The relationship between the geosphere and biosphere. How geological processes affect biological evolution and human health; how chemical, biological, and geological processes have altered the environment; and how anthropogenic activities affect the environment and human health. Student debate on a current environmental health issue such as how the Environmental Protection Agency sets the maximum arsenic level in drinking water. GER:DB-NatSci
3 units, Win (Brown, Spormann, Ernst)

GES 52Q. Geologic Development of California—Stanford Introductory Seminar. Preference to sophomores. Field-based study of the crustal evolution of California in post-Paleozoic time, and covering the geotectonic development of most of the state. Weekend field trips to the Eastern Coast Ranges (two days); Mount Shasta and the central Klamath Mountains (four days); Point Lobos and the Big Sur coast (two days). Camping and hiking. Term paper. Recommended: introductory geology. GER:DB-NatSci
5 units, Spr (Ernst)

GES 53Q. In the Beginning: Theories of the Origin of the Earth, Solar System, and Universe—Stanford Introductory Seminar. Preference to sophomores. What happened in the first few seconds following the Big Bang? Where did all the elements in the periodic table come from? When and how did the Earth, Moon, and solar system form? When and where did life begin on Earth? The history and evolution of theories of the origin of the Earth, Moon, solar system, and the Universe. GER:DB-NatSci
3 units, Win (McWilliams)

GES 54Q. California Landforms and Plate Tectonics—Stanford Introductory Seminar. Preference to sophomores. The forces of plate tectonics at work on the landscape of California. The principles of rock deformation introduced with laboratory experiments. Landforms resulting from deformation of the earth analyzed with digital and photographic images. Field trips relate these large-scale structures to human perspective. Final paper involves literature research on active deformation and earthquakes in a region of the student’s choice. GER:DB-NatSci
3 units, Aut (Miller)

GES 55Q. The California Gold Rush: Geologic Background and Environmental Impact—Stanford Introductory Seminar. Preference to sophomores. Topics include: geologic processes that led to the concentration of gold in the river gravels and rocks of the Mother Lode region of California; and environmental impact of the Gold Rush due to population increase, mining operations, and high concentrations of arsenic and mercury in sediments from hard rock mining and milling operations. Field trip to the Mother Lode region. Recommended: introductory geology. GER:DB-NatSci
3 units, Spr (Bird)

GES 56Q. Changes in the Coastal Ocean: The View From Monterey and San Francisco Bays—Stanford Introductory Seminar. Preference to sophomores. Recent changes in the California current, using Monterey Bay as an example. Current literature introduces principles of oceanography. Visits from researchers from MBARI, Hopkins, and UCSC. Optional field trip to MBARI and Monterey Bay. GER:DB-NatSci
3 units, Spr (Dunbar)

GES 57Q. How to Critically Read and Discuss Scientific Literature—Stanford Introductory Seminar. Preference to sophomores. Topics: how to approach the reading of scientific articles, and how to understand and evaluate the information contained in them through guided reading, and a review of such papers.
3 units, Win (Paytan)

GES 90. Introduction to Geochemistry—The chemistry of the solid Earth and its atmosphere and oceans, emphasizing the processes that control the distribution of the elements in the earth over geological time and at present, and on the conceptual and analytical tools needed to explore these questions. The basics of geochemical thermodynamics and isotope geochemistry. The formation of the elements, crust, atmosphere and oceans, global geochemical cycles, and the interaction of geochemistry, biological evolution, and climate. Recommended: introductory chemistry. GER:DB-NatSci
3-4 units, Win (Stebbins)

GES 102. Earth Materials—The minerals, rocks, soils, and liquids that comprise the Earth. How to identify, classify, and interpret rock-forming minerals and igneous, metamorphic, and sedimentary rock types. Emphasis is on information provided by common minerals and rocks about the Earth’s major processes including magmatism, metamorphism,
weathering, erosion, and deposition; the relationship of these processes to plate tectonics and earth cycles. Prerequisite: introductory geology course. Recommended: introductory chemistry. GER:DB-NatSci
5 units, Aut (Brown, Chamberlain)

GES 103. Rocks in Thin Section — How to identify minerals and common mineral associations in igneous, metamorphic, and sedimentary rocks. How to describe typical crystallization relations and textures of igneous rocks, mineral growth and reaction relations in metamorphic rocks, and deformational textures and their relation to mineral growth. The petrographic microscope. Prerequisite: 102.
2 units, Win (Miller)

GES 107. Astrobiology and Space Exploration — (Enroll in HUMBIO 107.)
4 units, Win (Rothschild)

GES 110. Structural Geology and Tectonics — Theory, principles, and techniques to interpret and measure structures in naturally deformed rocks. Topics: the properties, rheology, and mechanisms of deformation of rocks and minerals; techniques of data collection in the field; lab and computer analysis of structural data; geometry and development of faults and folds; interpretation of geologic maps and construction of geologic cross-sections; strain measurement and structural analysis of metamorphic tectonites; the evolution of mountain belts, formation of rift-related sedimentary basins, and development of strike-slip fault systems. Prerequisites: 1, calculus. Recommended: 102. GER:DB-NatSci
5 units, Spr (Miller)

GES 111. Structural Geology and Rock Mechanics — (Same as CEE 195.) Combines quantitative field data with geometric, conceptual, and mechanical models. The evolution of the Earth’s crust, mitigation of geologic hazards, and flow of fluids in groundwater aquifers and hydrocarbon reservoirs. Data sets from surveying and mapping campaigns employing lab-based laser scanning, field-based total stations, airborne laser swath mapping, satellite global positioning system, and 3D seismic reflection surveys. Data described using differential geometry and structures modeled using continuum mechanics to address origins and interpretations of geological structures. Introduction to MATLAB. Prerequisites: GES 1, MATH 51, 52. GER:DB-NatSci
3 units, Win (Pollard)

GES 115. Engineering Geology Practice — (Same as CEE 196.) The application of geologic fundamentals to the planning and design of civil engineering projects. Field exercises and case studies emphasize the impact of site geology on the planning, design, and construction of civil works such as buildings, foundations, transportation facilities, excavations, tunnels and underground storage space, and water supply facilities. Topics: Quaternary history and tectonics, formation and physical properties of surficial deposits, site investigation techniques, geologic hazards, and professional ethics. Prerequisite: GES 1 or consent of instructor. GER:DB-NatSci
3 units (Holzer) alternate years, given 2006-07

GES 120. Planetary and Early Biological Evolution Seminar — (Graduate students register for 220.) Interdisciplinary. For upper division science undergraduates and graduate students. Synthesis of biology, geology, physics, and chemistry. Recent approaches for identifying traces of past life on Earth. How to look for life on other planets such as Mars, Europa, and Titan. May be repeated for credit.
2-3 units, Spr (Lowe)

GES 121. What Makes a Habitable Planet? — Physical processes affecting habitability such as large impacts and the atmospheric greenhouse effect, comets, geochemistry, the rise of oxygen, climate controls, and impact cratering. Detecting and interpreting the spectra of extrasolar terrestrial planets. Student-led discussions of readings from the scientific literature. Team taught by planetary scientists from NASA Ames Research Center.
3 units (Lissauer, Marley, Zahnle) not given 2005-06

3 units, Aut (Loague)

3 units, Win (Loague)

GES 138. Urbanization, Global Change, and Sustainability — The relationship between urbanization and global change at local, regional, and global scales. Global environmental change as driver and outcome of human (economic, political, cultural, and social) and physical (urban structure, expansion, and land use) processes in urban areas. Urbanization as a demographic and biophysical phenomenon. Topics include the human and biophysical dimensions of global environmental change as relevant to the process of urbanization, environmental implications of urban processes and form, urban ecological services, and urban climate.
3 units (Seto) not given 2005-06

GES 140. Introduction to Remote Sensing — (Enroll in GEOPHYS 140.)
3 units, Aut (Zebker)

GES 141. Remote Sensing of the Oceans — (Enroll in EARTHSYS 141/241, GEOPHYS 141/241.)
4 units, Win (Arrigo)

GES 142. Remote Sensing of Land Use and Land Cover — (Same as EARTHSYS 142/242.) The use of satellite remote sensing to monitor land use and land cover, with emphasis on terrestrial changes. Topics include pre-processing data, biophysical properties of vegetation observable by satellite, accuracy assessment of maps derived from remote sensing, and methodologies to detect changes such as urbanization, deforestation, vegetation health, and wildfires.
4 units (Seto) not given 2005-06

GES 144. Fundamentals of Geographic Information Science (GIS) — Survey of geographic information including maps, satellite imagery, and census data, approaches to spatial data, and tools for integrating and examining spatially-explicit data. Emphasis is on fundamental concepts of geographic information science and associated technologies. Topics include geographic data structure, cartography, remotely sensed data, statistical analysis of geographic data, spatial analysis, map design, and geographic information system software. Computer lab assignments. GER:DB-NatSci
4 units, Spr (Seto)

GES 145. Energy Flow and Policy: The Pacific Rim — (Graduate students register for 245; same as EARTHSYS 145/245.) Factors shaping energy use and development throughout the Pacific Rim. Topics include fossil and alternative energy resources, supply and trade vulnerabilities, the geopolitics of energy use, and the environmental and social impacts of waste streams. Class develops a game simulation based on critical energy issues, student-initiated energy projections, and assessment of the principal stakeholders.
3 units, Win (Howell)

GES 147. Controlling Climate Change in the 21st Century — (Enroll in EARTHSYS 147/247, BIOSCI 147/247.)
3 units (Schneider, Rosencranz) alternate years, given 2006-07
GES 150. Senior Seminar: Issues in Earth Sciences—Focus is on written and oral communication in a topical context. Topics from current frontiers in earth science research and issues of concern to the public. Readings, oral presentations, written work, and peer review. May be repeated for credit. WIM
3 units, Win (Egger, Bird)

GES 151. Sedimentary Geology and Petrography: Depositional Systems—Topics: weathering, erosion and transportation, deposition, origins of sedimentary structures and textures, sediment composition, diagenesis, sedimentary facies, tectonics and sedimentation, and the characteristics of the major siliciclastic and carbonate depositional environments. Lab: methods of analysis of sediments in hand specimen and thin section. Field trips. Prerequisites: 1, 102, 103. GER:DB-NatSci
4 units, Win (Graham, Lowe)

GES 159. Marine Chemistry—Graduate students register for 259.) The oceans are in interactive contact with the atmosphere, biosphere, and lithosphere, and virtually all elements pass through the ocean. First-order processes that take place within the sea and affect its chemistry. What controls the distribution of chemical species in water and sediments? How long do elements spend in the ocean? How do marine chemical processes interact with ocean biological, geological, and physical processes? Prerequisite: GES 8 or consent of instructor. Corequisite: EARTHSYS 130/230 or GEOPHYS 130/231.
2-4 units, Spr (Paytan)

GES 160. Statistical Methods for Earth and Environmental Sciences: General Introduction—Extracting information from data using statistical summaries and graphical visualization, statistical measures of association and correlation, distribution models, sampling, error estimation and confidence intervals, linear models and regression analysis, introduction to time-series and spatial data with geostatistics, applications including environmental monitoring, natural hazards, and experimental design. Either or both of 160 and 161 may be taken. GER:DB-NatSci
3-4 units, Aut (Switzer)

GES 161. Statistical Methods for the Earth and Environmental Sciences: Geostatistics—(Same as PETENG 161.) Statistical analysis and graphical display of data, common distribution models, sampling, and regression. The variogram as a tool for modeling spatial correlation; variogram estimation and modeling; introduction to spatial mapping and prediction with kriging; integration of remote sensing and other ancillary information using co-kriging models; spatial uncertainty; introduction to geostatistical software applied to large environmental, climatological, and reservoir engineering databases; emphasis is on practical use of geostatistical tools. GER:DB-NatSci
3-4 units, Aut (Switzer)

GES 164. Stable Isotopes—Light stable isotopes and their application to geological, ecological, and environmental problems. Isotopic systematics of hydrogen, carbon, nitrogen, oxygen, and sulfur; chemical and biogenic fractionation of light isotopes in the atmosphere, hydrosphere, and rocks and minerals. GER:DB-NatSci
3 units, Win (Caers)

GES 164L. Stable Isotopes Laboratory—Practical laboratory for GES 164.
2-3 units, Win (Chamberlain)

GES 165. Radiogenic Isotopes and Geochronology—Applications to geological and geophysical problems. Topics: nuclear structure, isotope systematics, decay schemes for the principal nuclides used in earth sciences, equilibrium and disequilibrium, diffusion and transport phenomena, blocking (closure) of isotopic and magnetic systems, creation and annealing of fission tracks, neutron activation, a review of geologic timescales, chronostatigraphy, magnetostratigraphy, and cosmogenic exposure ages. Alpha counting, mass spectrometry by gas source, solid source, ion probe and accelerator methods. Fundamentals of K-Ar, Ar-Ar, Rb-Sr, U-Pb fission track (U+Th)/He, and cosmogenic isotope methods. Recommended: undergraduate calculus, chemistry, geology, and physics. GER:DB-NatSci
3 units, Win (McWilliams)

GES 165L. Geochronology and Thermochronology Laboratory—Practical laboratory for 165.
1-2 units, Win (McWilliams)

GES 166. Soil Chemistry—Graduate students register for 266.) Practical and quantitative treatment of soil processes affecting chemical reactivity, transformation, retention, and bioavailability. Principles of primary areas of soil chemistry: inorganic and organic soil components, complex equilibria in soil solutions, and adsorption phenomena at the solid-water interface. Processes and remediation of acid, saline, and wetland soils. Recommended: soil science and introductory chemistry and microbiology. GER:DB-NatSci
4 units, Win (Fendorf)

GES 170. Environmental Geochemistry—Solid, aqueous, and gaseous phases comprising the environment, their natural compositional variations, and chemical interactions. Contrast between natural sources of hazardous elements and compounds and types and sources of anthropogenic contaminants and pollutants. Chemical and physical processes of weathering and soil formation. Chemical factors that affect the stability of solids and aqueous species under earth surface conditions. The release, mobility, and fate of contaminants in natural waters and the roles that water and dissolved substances play in the physical behavior of rocks and soils. The impact of contaminants and design of remediation strategies. Case studies. Prerequisite: 90 or consent of instructor. GER:DB-NatSci
4 units, Win (Brown)

GES 171. Geochemical Thermodynamics—Introduction to the application of chemical principles and concepts to geologic systems. The chemical behavior of fluids, minerals, and gases using simple equilibrium approaches to modeling the geochemical consequences of diagenetic, hydrothermal, metamorphic, and igneous processes. Topics: reversible thermodynamics, solution chemistry, mineral-solution equilibria, reaction kinetics, and the distribution and transport of elements by geologic processes. Prerequisite: 80. GER:DB-NatSci
3 units, Aut (Bird)

4 units, Spr (Fendorf)

GES 180. Igneous Processes—For juniors, seniors and beginning graduate students in earth sciences. Structure and physical properties of magmas; use of phase equilibria and mineral barometers and thermometers to determine conditions of magmatic processes; melting and magmatic lineages as a function of tectonic setting; processes that control magma composition including fractional crystallization, partial melting, and assimilation; petrogenetic use of trace elements and isotopes. Labs emphasize identification of volcanic and plutonic rocks in thin section and interpretation of rock textures. May be taken for 3 units without lab. Prerequisite: 102, 103, or consent of instructor.
3-5 units, Spr (Stebbins) alternate years, not given 2006-07

GES 181. Metamorphic Processes—For juniors, seniors and beginning graduate students in earth sciences. Thermodynamics and phase equilibria of multiple component systems; use of phase equilibria to determine pressure and temperature of metamorphic assemblages; use of the Gibbs method to reconstruct pressure-temperature paths of metamorphic rocks; metamorphic thermochronology; heat flow in the continental crust; links between tectonics and metamorphism; and the role of heat and mass transfer in the Earth’s crust. Labs emphasize identification of metamorphic rocks and minerals for common pelitic and basic rocks and interpretation of rock textures. May be taken for 3 units without lab. Prerequisites: 102, 103.
3-5 units (Chamberlain) not given 2005-06
GES 182. Field Seminar on Continental-Margin Volcanism—For juniors, seniors, and graduate students in the earth sciences and archeology. One weekend-long, and two one-day field trips to study Cenozoic volcanism associated with subduction and with passage of the Mendocino Triple Junction off the west coast of California: Mt. Lassen/Mt. Shasta/Modoc plateau; Clear Lake/Sonoma volcanics; Pinnacles National Monument. Andesite and basalt lavas, cinder cones, mixed magmas, blast deposit, debris avalanches, volcanic mudflows, hydrologic controls of springs in volcanic terrains, hydrothermal alteration and modern geothermal systems, Hg mineralization, obsidian source. Prerequisite: 1, 80 or equivalent.
2 units (Mahood) not given 2005-06

GES 183. California Desert Geology—Field seminar. For upper division undergraduates and graduate students in the earth sciences and archaeology. Six-day field trip over Spring Break to Mojave Desert, Death Valley, and Owens Valley. Basin-and-range faulting, alluvial fans, playas, sand dunes, metamorphic rocks, granites of the Sierra Nevada, obsidian lava flows and the deposits of major explosive eruptions, hot springs and ore deposits, and desert landscapes. Camping and moderate hiking.
1 unit (Mahood) not given 2005-06

GES 185. Volcanology—For juniors, seniors, and beginning graduate students in earth sciences and Archaeology. How volcanic landforms and deposits relate to the composition and physical properties of magmas and the modes of emplacement. Labs emphasize recognizing types of lavas and products of explosive eruptions. Volcanic hazards and the effects of eruptions on climate and the atmosphere; volcanic-hosted geothermal systems and mineral resources. Required four-day field trip over Memorial Day weekend to study silicic and mafic volcanism associated with the western margin of the Basin and Range province. Prerequisite: 1, 102 or equivalent. GER:DB-NatSci
4 units, Spr (Mahood) alternate years, not given 2006-07

GES 186. Geoarchaeology—(Graduate students register for 286; same as ARCHLGY 118/218.) For juniors, seniors, and beginning graduate students with interests in archaeology or geosciences, Geological concepts, techniques, and data in the study of artifacts and the interpretation of the archaeological record. Topics include: sediments and soils; sedimentary settings of site formation; postdepositional processes that disturb sites; paleoenvironmental reconstruction of past climates and landscapes using plant and animal remains and isotopic studies; raw materials (minerals, metals, stone, shells, clay, building materials) and methods used in sourcing; estimating age based on stratigraphic and radiometric techniques. Weekly lab; weekend field trips to local archaeological/geological sites.
GER:DB-NatSci
5 units, Win (Mahood)

GES 189. Field Studies in Earth Systems—(Enroll in EARTHSYS 189, BIOSCI 206.)
5 units (Chiarrello, Fendorf, Matson, Miller) alternate years, given 2006-07

GES 190. Field Research—Two-three week field research projects. Written report required. May be repeated three times.
1-4 units, Aut, Win, Spr, Sum (Staff)

GES 192. Undergraduate Research in Geological and Environmental Sciences—Field-, lab-, or literature-based. Faculty supervision. Written reports.
1-10 units, Aut, Win, Spr, Sum (Staff)

GES 197. Senior Thesis—For seniors who wish to write a thesis based on research in 192 or as a summer research fellow. May not be repeated for credit; may not be taken if enrolled in 199.
3-5 units, Aut, Win, Spr, Sum (Staff)

GES 198. Special Problems in Geological and Environmental Sciences—Reading and instruction under faculty supervision. Written reports.
1-10 units, Aut, Win, Spr, Sum (Staff)

GES 199. Honors Program—Research on a topic of special interest. See “Undergraduate Honors Program” above.
1-10 units, Aut, Win, Spr, Sum (Staff)

GRADUATE

GES 200. Professional Development in Geoscience Education
1 unit, Aut, Spr (McWilliams)

GES 201. Science Course Design—(Same as CTL 201.) For students interested in an academic career and who anticipate designing science courses at the undergraduate or graduate level. Goal is to apply research on science learning to the design of effective course materials. Topics include syllabus design, course content and format decisions, assessment planning and grading, and strategies for teaching improvement.
2-3 units, Aut (Wright-Dunbar)

GES 202. Reservoir Geomechanics—(Enroll in GEOPHYS 202.)
3 units, Win (Zoback)

GES 205. Advanced Oceanography—For upper-division undergraduates and graduate students in the earth, biologic, and environmental sciences. Topical issues in marine science/oceanography. Topics vary each year following or anticipating research trends in oceanographic research. Focus is on links between the circulation and physics of the ocean with climate in the N. Pacific region, and marine ecologic responses. Participation by marine scientists from research groups and organizations including the Monterey Bay Aquarium Research Institute.
3 units, Aut (Dunbar)

GES 206. Antarctic Marine Geology—For upper-division undergraduates and graduate students. Intermediate and advanced topics in marine geology and geophysics, focusing on examples from the Antarctic continental margin and adjacent Southern Ocean. Topics: glaciers, icebergs, and sea ice as geologic agents (glacial and glacial marine sedimentology, Southern Ocean current systems and deep ocean sedimentation). Antarctic biostratigraphy and chronosтратigraphy (continental margin evolution). Students interpret seismic lines and sediment core/well log data. Examples from a recent scientific drilling expedition to Prydz Bay, Antarctica. Up to two students may have an opportunity to study at sea in Antarctica during Winter Quarter. GER:DB-NatSci
3 units (Dunbar, Cooper) alternate years, given 2006-07

GES 210. Geologic Evolution of the Western U.S. Cordillera—For undergraduates and graduates. The evolution of the mountain belt from its Precambrian inception to its contemporary history of extension and strike-slip faulting, based on the description, analysis, subduction, and interpretation of the rock record through time. Characteristic structural styles developed during crustal shortening, extension, and strike-slip tectonic regimes; tectonic controls on sedimentary basin formation; plate-margin magmatism and metamorphism; and the relation of plate motions to the land geologic record. Crustal-scale processes and driving mechanisms common to mountain chains.
2-3 units (Miller) not given 2005-06

GES 211. Topics in Regional Geology and Tectonics—May be repeated for credit.
2-3 units, Spr (Miller)

GES 212. Topics in Tectonic Geomorphology—For upper-division undergraduates and graduate students. Topics vary and may include coupling among erosional, tectonic, and chemical weathering processes at the scale of orogens; historical review of tectonic geomorphology; hillslope and fluvial process response to active uplift; measures of landscape form and their relationship to tectonic uplift and bedrock lithology. May be repeated for credit.
1 unit, Aut (Hilley)

GES 215A. Advanced Structural Geology and Rock Mechanics—(Same as CEE 297G.) Quantitative field and laboratory data and solutions to initial and boundary-value problems of continuum mechanics introduce conceptual and mechanical models for tectonic processes in Earth’s crust that lead to the development of geological structures including folds,
faults, fractures and fabrics. Topics include: techniques and tools for structural mapping; using differential geometry to characterize structures; dimensional analysis and scaling relations; kinematics of deformation and flow; traction and stress analysis. Data sets analyzed using MATLAB. Prerequisites: GES 1, MATH 53, MATLAB or equivalent.

3-5 units, Aut (Pollard)

GES 215B. Advanced Structural Geology and Rock Mechanics—(Same as CEE 297H.) Field equations for elastic solids and viscous fluids derived from conservation laws to develop mechanical models for tectonic processes and their structural products. Topics include: conservation of mass and momentum in a deformable continuum; linear elastic deformation and elastic properties of rock; brittle deformation including fracture and faulting; linear viscous flow including folding, model development, and methodology. Models constructed and solutions visualized using MATLAB. Prerequisite: GES 215A.

3-5 units, Win (Pollard)

GES 216. Rock Fracture Mechanics—Principles and tools of elasticity theory and fracture mechanics are applied to the origins and physical behaviors of faults, dikes, joints, veins, solution surfaces, and other natural structures in rock. Field observations, engineering rock fracture mechanics, and the elastic theory of cracks. The role of natural fractures in brittle rock deformation, and fluid flow in the Earth’s crust with applications to crustal deformation, structural geology, petroleum geology, engineering, and hydrogeology. Prerequisite: 215 or equivalent.

3-5 units (Pollard) alternate years, given 2006-07

GES 217. Faults, Fractures, and Fluid Flow—Process-based approach to rock failure; the microstructures and overall architectures of the failure products including faults, joints, solution seams, and types of deformation bands. Fluid flow properties of these structures are characterized with emphasis on sealing and transmitting of faults and their role in hydrocarbon flow, migration, and entrapment. Case studies of fracture characterization experiments in aquifers, oil and gas reservoirs, and waste repository sites. Guest speakers; weekend field trip. Prerequisite: first-year graduate student in Earth Sciences.

3 units, Win (Aydin)

GES 218. Communicating Ocean Science—For undergraduates and graduate students interested in teaching science in local schools. Inquiry-based science teaching methods. How to communicate scientific knowledge and improve presentations. Six weeks of supervised teaching in a local school classroom. Prerequisite: course in introductory biology, geology, chemistry, or marine sciences.

3 units, Aut (Paytan)

GES 219. Paleoenography—For upper-division undergraduates and graduate students. How can we learn about the chemistry, circulation, biology, and geology of past oceans and why is this of interest? Evidence for substantial changes in Earth’s climate and surficial environment in the sedimentary record. Fundamentals of gathering and interpreting this information in the context of how earth processes functioned in the past and their relevance for the future habitability of Earth.

1-3 units, Win (Paytan)

GES 220. Planetary and Early Biological Evolution Seminar—(For graduate students; see 120.)

2-3 units, Spr (Lowe)

GES 222. Planetary Systems: Dynamics and Origins—For students with a background in astronomy, earth sciences, geophysics, or physics. Motions of planets, moons, and small bodies; energy transport in planetary systems; meteorites and the constraints they provide on the formation of the solar system; asteroids and Kuiper belt objects; comets; planetary rings; planet formation; and extrasolar planets. In-class presentation of student papers.

3-4 units, Aut (Lissauer)

GES 223. Planetary Systems: Atmospheres, Surfaces, and Interiors—Focus is on physical processes, such as radiation transport, atmospheric dynamics, thermal convection, and volcanism, shaping the interiors, surfaces, and atmospheres of the major planets in the solar system. How these processes manifest themselves under various conditions in the solar system. Case study of the surface and atmosphere of Mars. Application of comparative planetary science to extrasolar planets and brown dwarfs. In-class presentation of student papers.

3 units, Win (Marley)

GES 225. Isotopes in Geological and Environmental Research—For upper-division undergraduates and graduate students. The applications of isotopic systems in geological, oceanographic, and environmental studies at low temperature. The use of isotopes as tracers for weathering rate, biogeochemical cycling, food-web structures, ecology, paleochemistry, provenance, circulation, and anthropogenic and extraterrestrial inputs. Emphasis is on developing skills in reading and evaluation of scientific papers, manuscript reviews, and proposal preparation. Prerequisite: 163, 164, or consent of instructor.

1-3 units (Paytan) not given 2005-06

4 units, Aut (Gorelick)

4 units, Spr (Staff)

GES 235. Role of Fluids in Geologic Processes—The principles governing groundwater flow and its interaction with crustal stress, heat flow, and chemical mass transport. Topography-driven flow of groundwater on a regional scale; compaction-driven flow in the sedimentary basin; development of anomalous fluid pressure; the role of fluid in tectonism; migration and entrainment of petroleum; density driven flow and thermal anomaly; formation of mineral deposits. Prerequisite: 230.

2-3 units, Spr (Hsieh)

GES 236. Hydraulic and Tracer Tests for Groundwater Resource Evaluations—Theory and application of hydraulic and tracer tests to determine flow and the transport properties of aquifers. Analysis of well tests in single-layer aquifers and multiple aquifer-aquitard systems; water table conditions; anisotropy; double-porosity; effects due to wellbore storage, wellbore skin, aquifer boundaries, and heterogeneities such as faults and fracture zones; natural and forced gradient tracer tests.

2-3 units (Hsieh) not given 2005-06

3 units, Aut (Loague)

GES 238. Soil Physics—Advanced. Physical properties of the soil solid phase emphasizing the transport, retention, and transformation of water, heat, gases, and solutes in the unsaturated subsurface. Agricultural systems. Prerequisite: elementary calculus.

3 units (Loague) not given 2005-06
GES 240. Geostatistics for Spatial Phenomena—(Same as PETENG 240.) Probabilistic modeling of spatial and/or time dependent phenomena. Kriging and cokriging for gridding and spatial interpolation. Integration of heterogeneous sources of information. Multiple-point geostatistics and training image-based stochastic imaging of reservoir/field heterogeneities. Introduction to GSLIB and SGEAMS software. Case studies from the oil and mining industry and environmental sciences. Prerequisites: introductory calculus and linear algebra, STATS 116, GES 161 or equivalent.
3–4 units, Win (Journel)

GES 241. Practice of Geostatistics and Seismic Data Integration—(Enroll in GEOPHYS 241, PETENG 241.)
3–4 units, Spr (Caers, Mukerji)

GES 242. Topics in Advanced Geostatistics—(Same as PETENG 242.) Conditional expectation theory and projections in Hilbert spaces; parametric versus non-parametric geostatistics; Boolean, Gaussian, fractal, indicator, and annealing approaches to stochastic imaging; multiple point statistics inference and reproduction; neural net geostatistics; Bayesian methods for data integration; techniques for upscaling hydrodynamic properties. May be repeated for credit. Prerequisites: 240, advanced calculus, C++/Fortran.
3–4 units (Journal) alternate years, given 2006-07

GES 245. Energy Flow and Policy: The Pacific Rim—(For graduate students; see 145; same as EARTHSYS 145/245.)
3 units, Win (Howell)

GES 246. Reservoir Characterization and Flow Modeling with Outcrop Data—(Same as PETENG 246.) Project addresses a reservoir management problem by studying an outcrop analog, constructing geostatistical reservoir models, and performing flow simulation. How to use outcrop observations in quantitative geological modeling and flow simulation. Relationships between disciplines. Weekend field trip.
3 units, Aut (Aziz, Graham, Journel)

GES 249. Petroleum Geochemistry in Environmental and Earth Science—How molecular fossils in crude oils, oil spills, refinery products, and human artifacts identify their age, origin, and environment of formation. The origin and habitat of petroleum, technology for its analysis, and parameters for interpretation, including: origins of molecular fossils; function, biosynthesis, and precursors; tectonic history related to the evolution of life, mass extinctions, and molecular fossils; petroleum refinery processes and the kinds of molecular fossils that survive; environmental pollution from natural and anthropogenic sources including how to identify genetic relationships among crude oil or oil spill samples; applications of molecular fossils to archaeology; worldwide petroleum systems through geologic time.
3 units, Win (Moldowan)

GES 250. Sedimentation Mechanics—The mechanics of sediment transport and deposition and the origins of sedimentary structures and textures as applied to interpreting ancient rock sequences. Dimensional analysis, fluid flow, drag, boundary layers, open channel flow, particle settling, erosion, sediment transport, sediment gravity flows, soft sediment deformation, and fluid escape. Field trip required.
4 units, Aut (Lowe)

GES 251. Sedimentary Basins—Analysis of the depositional framework and tectonic evolution of sedimentary basins. Topics: tectonic and environmental controls on facies relations, synthesis of basin development through time in terms of depositional systems and tectonic settings. Weekend field trip required. Prerequisites: 110, 151.
3 units, Aut (Graham)

GES 252. Sedimentary Petrography—Siliciclastic sediments and sedimentary rocks. Research in modern sedimentary mineralogy and petrography and the relationship between the composition and texture of sediments and their provenance, tectonic settings, and diagenetic histories. Topics vary yearly. Prerequisite: 151 or equivalent.
4 units (Lowe) not given 2005-06

3 units (Graham) alternate years, given 2006-07

GES 254. Carbonate Sedimentology—The formation and post-depositional alteration of carbonate sediments and sedimentary structures primarily formed by organisms. Emphasis is on interacting influences of carbonate producing environments and other ecological, physical, and chemical considerations. Carbonate deposit stratigraphy and the development of carbonate terrains in contrasting tectonic settings. The post-depositional history and petrographic development of carbonate structures and carbonate rocks. Paleocological aspects of carbonate sediments as proxies in broader geological context.
3 units (Constantz) alternate years, given 2006-07

GES 258. Introduction to Depositional Systems—The characteristics of the major sedimentary environments and their deposits in the geologic record, including alluvial fans, braided and meandering rivers, aeolian systems, deltas, open coasts, barred coasts, marine shelves, and deep-water systems. Emphasis is on subdivisions; morphology; the dynamics of modern systems; and the architectural organization and sedimentary structures, textures, and biological components of ancient deposits.
3 units (Lowe) not given 2005-06

GES 259. Marine Chemistry—(For graduate students; see 159.)
2–4 units, Spr (Paytan)

GES 260. Laboratory Methods in Organic Geochemistry—Knowledge of components in geochemical mixtures to understand geological and environmental samples. The presence and relative abundance of these compounds provides information on the biological source, depositional environment, burial history, biodegradation, and toxicity of organic materials. Laboratory methods to detect and quantify components of these mixtures. Methods for separation and analysis of organic compounds in geologic samples: extraction, liquid chromatography, absorption by zeolites, gas chromatography and gas chromatography-mass spectrometry. Student samples considered as material for analysis. Recommended: 249.
2–3 units, Spr (Moldowan)

GES 261. Physics and Chemistry of Minerals and Mineral Surfaces—The concepts of symmetry and periodicity in crystals; the physical properties of crystals and their relationship to atomic-level structure; basic structure types; crystal chemistry and bonding in solids and their relative stability; the interaction of x-rays with solids and liquids (scattering and spectroscopy); structural variations in silicate glasses and liquids; UV-visible spectroscopy and the color of minerals; review of the mineralogy, crystal chemistry, and structures of selected rock-forming silicates and oxides; mineral surface and interface geochemistry.
4 units, Spr (Brown)

GES 264. Aquatic Chemistry—(Enroll in CEE 273.)
3 units, Aut (Robertson)

GES 265. Microbially Mediated Redox Processes—Chemical and biologically mediated oxidation and reduction processes within soils, sediments, and surface/subsurface waters. Emphasis is on reactions and processes at the solid-water interface. Topics include electron transfer processes, dissimilatory metal reduction, redox reaction rates, alterations in mineralogy, and modifications in chemical behavior with changes in redox state.
3 units (Fendorf, Francis) not given 2005-06

GES 266. Soil Chemistry—(For graduate students; see 166.)
4 units, Win (Fendorf)

solutions in geologic systems. Emphasis is on the generation and utility of phase diagrams depicting solution-mineral interaction relevant to phase relations associated with weathering diagenetic, hydrothermal, and metamorphic processes, and the prediction of temperature, pressure, and the chemical potential of thermodynamic components compatible with observed mineralogic phase relations in geologic outcrops. Individual research topics. Prerequisite: 171.

3 units, Win (Bird)

GES 268. Geomicrobiology — How microorganisms shape the geochemistry of the Earth’s crust including oceans, lakes, estuaries, subsurface environments, sediments, soils, mineral deposits, and rocks. Topics include mineral formation and dissolution; biogeochemical cycling of elements (carbon, nitrogen, sulfur, and metals); geochemical and mineralogical controls on microbial activity, diversity, and evolution; life in extreme environments; and the application of new techniques to geomicrobial systems. Recommended: introductory chemistry and micro-biology such as CEE 274A.

3 units, Win (Francis)

GES 269. Environmental Microbial Genomics — The application of molecular and environmental genomic approaches to the study of biogeochemically-important microorganisms in the environment without the need for cultivation. Emphasis is on genomic analysis of microorganisms by direct extraction and cloning of DNA from natural microbial assemblages. Microbial energy generation and nutrient cycling, genome structure, gene function, physiology, phylogenetic and functional diversity, evolution, and population dynamics of uncultured communities.

1-3 units (Francis) not given 2005-06

GES 275. Electron Probe Microanalytical Techniques — The practical and theoretical aspects of x-ray generation and detection, and the behavior of electron beams and x-rays in solids. The basic principles needed to quantitatively analyze chemically complex geological materials. Operation of the JEOL 733 electron microprobe and associated computer software for quantitatively analyzing materials. X-ray chemical mapping. Enrollment limited to 8.

2-3 units, Win (Jones)

GES 284. Field Seminar on Eastern Sierran Volcanism — For graduate students in the earth sciences and archaeology. Four-day trip over Memorial Day weekend to study silicic and mafic volcanism associated with the western margin of the Basin and Range province: basaltic lavas and cinder cones erupted along normal faults bounding Owens Valley, Long Valley caldera, postcaldera rhyolite lavas, hydrothermal alteration and hot springs, Holocene rhyolite lavas of the Inyo and Mono craters, volcanism of the Mono Basin with subaqueous basic eruptions, floating pumice blocks, and cryptodomes punching up lake sediments. If snow-level permits, silicic volcanism associated with the Bodie gold district. Prerequisite: 1, 102 or equivalent.

1 unit, Spr (Mahood)

GES 285. Petrogenesis of Crustal Magmatism — Radiogenic isotopes, stable isotopes, and trace elements applied to igneous processes; interaction of magmas with mantle and crust; convergent-margin magmatism; magmatism in extensional terrains; origins of rhyolites; residence times of magmas and magma chamber processes; granites as imperfect mirrors of their source regions; trace element modeling of igneous processes; trace element discriminant diagrams in tectonic analysis; sources of ore forming metals. Topics emphasize student interest. Prerequisite: 180 or equivalent.

3 units (Mahood) not given 2005-06

GES 286. Geoarchaeology — (For graduate students; see 186; same as ARCHLGY 118/218.)

5 units, Win (Mahood)

GES 287. Tectonics, Topography, and Climate Change — For upper-division undergraduates and graduate students. The links between tectonics and climate change with emphasis on the Cenozoic era. Focus is on terrestrial climate records and how they relate to large-scale tectonics of mountain belts. Topics include stable isotope geochemistry, geochronology, chemical weathering, stratigraphy of terrestrial rocks, paleofauna and flora, climate proxies and records, and Cenozoic tectonics. Guest speakers, student presentations, required field trip.

3 units (Chamberlain) not given 2005-06

GES 300. Earth Sciences Seminar — (Same as GEOPHYS 300, EARTHSYS 300, IPER 300, PETENG 300.) Required for incoming graduate students except cotermers. Research questions, tools, and approaches of faculty members from all departments in the School of Earth Sciences. Goals are: to inform new graduate students about the school’s range of scientific interests and expertise; and introduce them to each other across departments and research groups. Two faculty members present work at each meeting. May be repeated for credit.

1 unit, Aut (Matson, Graham)

GES 314. Structural Geology and Geomechanics — Research seminar. May be repeated for credit.

1 unit, Aut, Win, Spr (Staff)

GES 322A,B,C. Seminar in Biogeochemistry — Current topics. May be repeated for credit.

1-2 units (Matson) not given 2005-06

GES 323. Stanford at Sea — (Same as BIOHOPK 182H/323H, EARTHSYS 323.) Five weeks of marine science including oceanography, marine physiology, policy, maritime studies, conservation, and nautical science at Hopkins Marine Station, followed by five weeks at sea aboard a sailing research vessel in the Pacific Ocean. Shore component comprised of three multidisciplinary courses meeting daily and continuing aboard ship. Students develop an independent research project plan while ashore, and carry out the research at sea. In collaboration with the Sea Education Association of Woods Hole, MA. GER:DB-NatSci

16 units (Block, Dunbar, Micheli) alternate years, given 2006-07

GES 324. Seminar in Oceanography — Current topics. May be repeated for credit.

1-2 units, Aut, Win, Spr (Arrigo, Paytan)

GES 326. Isotopes and Biogeochemical Tracers in the Hydrological Cycle — Practical applications of environmental isotopes. The systematics of isotope fractionations and the distributions of isotopes in natural systems. Focus is on applications of isotopes for tracing waters, solutes, and biogeochemical reactions in hydrologic systems. Hydrological topics include tracing sources of ground and surface water, isotope hydrograph separations, groundwater influence on coastal systems, rock-water interactions, recharge rate, and groundwater dating. Biogeochemical topics include sources of contaminants, biogeochemical reaction mechanisms, nutrient sources and pathways, and food web studies.

3 units (Paytan, Kendall, Bullen) not given 2005-06

GES 327. The Glacial World — (Same as GEOPHYS 327.) The environmental changes that took place on Earth between the last glacial maximum (LGM) and the present. Focus is on the cause of the low atmospheric CO2 concentrations characteristic of the LGM and what conditions explain these reduced CO2 levels. How changes in sea level, marine primary production, ocean circulation, and elemental cycling may have contributed to past global changes.

2-3 units (Arrigo, Paytan) not given 2005-06

GES 329. Advanced Topics in Near-Surface Hydrologic Processes — Classic studies and current research in hydrology, geomorphology, and soil physics. Topics: nonpoint source groundwater contamination (agriculture), evapotranspiration, unsaturated fluid flow and solute transport, rainfall-runoff mechanisms, slope stability, restoration geomorphology. May be repeated for credit.

1-3 units, Aut, Win, Spr (Loague)

GES 330. Advanced Topics in Hydrogeology — Topics: questioning classic explanations of physical processes; coupled physical, chemical, and biological processes affecting heat and solute transport.

1-2 units, Aut, Win (Gorelick)
GES 332A,B. Seminar in Hydrogeology — Current topics. May be repeated for credit. Autumn Quarter has open enrollment. For Winter Quarter, consent of instructor is required.
1 unit, Aut, Win (Gorelick)

GES 342A,B,C. Geostatistics — Classic results and current research. Topics based on interest and timeliness. May be repeated for credit.
1-2 units, A: Aut, B: Win, C: Spr (Journel)

GES 343. Geographic Science Seminar: Why Space Matters — Current environmental research that incorporates geographic and spatial analysis using technological and analytical methods such as spatial econometrics, geostatistics, remote sensing, and GIS. May be repeated for credit.
1 unit, Spr (Seto)

GES 355. Advanced Stratigraphy Seminar and Field Course — Student-led presentations; poster-sized display on assigned topic; field trip.
1-3 units (Graham) not given 2005-06

GES 365. Current Topics in Isotope Geology — Current topics. May be repeated for credit.
1 unit, Aut, Win, Spr (McWilliams)

GES 385. Practical Experience in the Geosciences — On-the-job training in the geosciences. May include summer internship; emphasizes training in applied aspects of the geosciences, and technical, organizational, and communication dimensions. Meets USCIS requirements for F-1 curricular practical training.
1 unit, Aut, Win, Spr, Sum (Staff)

GES 398. Current Topics in Ecosystem Modeling — Current topics. May be repeated for credit.
1-2 units (Matson) not given 2005-06

GES 399. Advanced Projects — Graduate research projects that lead to reports, papers, or other products during the quarter taken. On registration, students designate faculty member and agreed-upon units.
1-10 units, Aut, Win, Spr, Sum (Staff)

GES 400. Graduate Research — Faculty supervision. On registration, students designate faculty member and agreed-upon units.
1-15 units, Aut, Win, Spr, Sum (Staff)

GEOPHYSICS

Emeriti: Antony Fraser-Smith, Robert Kovach, George A. Thompson*
Chair: Rosemary Knight

Professors: Gregory Beroza, Jon F. Claerbout, Steven Gorelick, †† Jerry M. Harris, Simon Klemperer, Rosemary J. Knight, Marcia McNutt, ** Almros M. Nur, Joan Roughgarden, † Paul Segall, Norman H. Sleep, Mark D. Zoback

Associate Professors: Kevin Arrigo, Azadeh Tabazadeh, Howard Zebker**

Professor (Research): Gerald M. Mavko

Associate Professor (Research): Biondo Biondi

Courtesey Professors: Stephen A. Graham, David D. Pollard

Consulting Professors: James Berryman, William Ellsworth, Walter Mooney, Louise Pellerin, Steven R. Pride, David Scholl

Consulting Associate Professor: Stewart Levin

Visiting Professor: Robert J. Stern

Senior Research Scientist: Jack Dvorkin

Research Associates: Gry Berg, Robert Clapp, Paul Hagen, Eiji Kurashimo, Tapan Mukerji, Youli Quan, David Robinson, Tiziana Vanorio

* Recalled to active duty
† Joint appointment with Biological Sciences
** Joint appointment with Electrical Engineering
†† Joint appointment with Geological and Environmental Sciences
***Joint appointment with Monterey Bay Aquarium Research Institute

Department Offices: Mitchell Building, Room 365
Mail Code: 94305-2215
Phone: (650) 723-4746
Email: kirsti@pangea.stanford.edu
Web Site: http://pangea.stanford.edu/GP/

Courses given in Geophysics have the subject code GEOPHYS. For a complete list of subject codes, see Appendix.

Geophysics is the branch of earth science concerned with exploring and analyzing active processes of the earth through physical measurement. The undergraduate and graduate programs are designed to provide a background of fundamentals in science, and courses to coordinate these fundamentals with the principles of geophysics. The program leading to the Bachelor of Science (B.S.) in Geophysics permits many electives and a high degree of flexibility for each individual student. Graduate programs provide specialized training for professional work in resource exploration, research, and education and lead to the degrees of Master of Science and Doctor of Philosophy.

The Department of Geophysics is housed in the Ruth Wattis Mitchell Earth Sciences Building. It has numerous research facilities, among which are a state-of-the-art broadband seismic recording station, high pressure and temperature rock properties and rock deformation laboratories, computers, various instruments for field measurements including seismic recorders, nine dual frequency GPS receivers, and field equipment for measuring in-situ stress at great depth. Current research activities include biogeochemical cycling; crustal deformation; earthquake archaeology; earthquake seismology and earthquake mechanics; reflection, refraction, and tomographic seismology; rock mechanics, rock physics; seismic studies of the continental remote sensing; lithosphere, and environmental geophysics; and synthetic aperture radar studies.

UNDERGRADUATE PROGRAMS

BACHELOR OF SCIENCE

Objectives — To provide a solid background in the essentials of math, physics, and geology, while at the same time providing knowledge about the entire spectrum of geophysics ranging from exploration geophysics to earthquake seismology and plate tectonics. Students are prepared for either an immediate professional career in the resources and environmental sciences industries or future graduate study.

The following courses are required for the B.S. degree in Geophysics.
A written report on original research or an honor’s thesis is also required through participation in three quarters of Research Seminar (the GEOPHYS 185 series) during the senior year. Seniors in Geophysics who expect to do graduate work are urged to take the Graduate Record Examination as early as is convenient in their final undergraduate year.

CURRICULUM

Course No. and Subject

CHEM 31. Chemical Principles
EE 141 or PHYSICS 120. Electromagnetic Fundamentals
GES 1. Fundamentals of Geology
GEOPHYS 185. Research Seminars
MATH 19, 20, 21 or 41, 42, or 51, 52
MATH 130. Ordinary Differential Equations
PHYSICS 41. Mechanics
PHYSICS 110. Intermediate Mechanics

9 units of Geophysics electives selected from GEOPHYS 40, 104, 106, 130, 141, 150, 160, 182, 183, 190, 262

9 units of other Earth Science electives selected from GES 90, 102, 110, 111; or

PETENG 120

Recommended elective: CS 106A, Programming Methodology

MINORS

The Geophysics minor provides students with a general knowledge of geophysics in addition to a background in the related fields of physics, mathematics, and geology.

Curriculum—

EARTHYS 110. Geosphere or GES 1. Fundamentals of Geology
GEOPHYS 150. General Geophysics or 190. Environmental Geophysics

MATH 41. Single Variable Calculus

PHYSICS 41. Mechanics

Two approved Geophysics courses of 3 units each

HONORS PROGRAM

The department offers a program leading to the B.S. degree in Geophysics with Honors. The guidelines are:

1. Select a research project, either theoretical, field, or experimental, that has the approval of an adviser.
2. Submit a proposal to the department, which will decide on its suitability as an honors project. Necessary forms are in the department office.
3. Course credit for the project is assigned by the adviser within the framework of GEOPHYS 205.
4. The decision whether a given independent study project does or does not merit an award of honors shall be made jointly by the department and the student’s adviser. This decision shall be based on the quality of both the honors work and the student’s other work in earth sciences.
5. The work done on the honors program should not be used as a substitute for regularly required courses.

COTERMINAL B.S./M.S. PROGRAM

The department offers a coterminal program. Interested individuals should check with a member of the department faculty for details. For University coterminel degree program rules and University application forms, see http://registrar.stanford.edu/publications/#Coterm.

GRADUATE PROGRAMS

University requirements for the M.S. and Ph.D. are described in the “Graduate Degrees” section of this bulletin. Lecture course units applied to graduate degree program requirements must be taken for a letter grade if the course is offered for letter grade.

Transfer credit — An incoming student with a relevant Master of Science degree may apply for a departmental waiver of up to 18 units of the 45 units required for the Ph. D. degree (see “Doctor of Philosophy” section below). Students without an M.S. degree may apply for waivers for individual courses taken in post-baccalaureate study at other institutions. Credit for courses generally requires that students identify an equivalent Stanford course and obtain the signature of the Stanford faculty responsible for such a course stating its equivalence.

Waiving of any course requirements or substitution of electives other than those listed below requires the written consent of the student’s faculty adviser and the Geophysics graduate coordinator.

MASTER OF SCIENCE

Objectives — To enhance the student’s training for professional work in geophysics through the completion of fundamental courses, both in the major fields and in related sciences, and to begin independent work and specialization.

Requirements for the Degree — The candidate must complete 45 units from the following groups of courses:

1. Complete 15 units of Geophysics lecture courses with at least nine units numbered 200 level or higher.
2. Complete six units numbered 100 level or higher and three units of 200 level, non-Geophysics lecture courses in earth sciences.
3. Complete one to four electives selected from courses numbered 100 or higher from mathematics, chemistry, engineering, physics, relevant biology, computer science, ecology, hydrology or earth science. At least one course must be numbered 200 level or higher.
4. At least 9, but not more than 18, of the 45 units must be independent work on a research problem resulting in a written report accepted and archived by the candidate’s faculty adviser. Normally, this research is undertaken as part of the candidate’s participation in multiple quarters of research seminar (the GEOPHYS 385 series). A summer internship is encouraged as a venue for research, but no academic credit is given.
5. Submit a program proposal for approval by a faculty adviser in the first quarter of enrollment.
6. Each candidate must present and defend the results of his or her research at a public oral presentation attended by at least two faculty members.

DOCTOR OF PHILOSOPHY

Objectives — The Ph.D. degree is conferred upon evidence of high attainment in Geophysics, and ability to conduct an independent investigation and present the results of such research.

Requirements for the Degree — A minimum of 135 units of study at Stanford must be satisfactorily completed. An acceptable program normally consists of at least 45 lecture units in the areas listed following. Up to 18 lecture units in categories 2, 4, and 6 may be satisfied by courses taken elsewhere if the previous course duplicates an existing Stanford course and the Stanford faculty member responsible for the course concurs.

1. ENGR 202W.
2. 12 units of Geophysics lecture courses numbered 100 or higher.
3. 12 units of Geophysics lecture courses numbered 200 or higher, taken from at least four faculty members with different research specializations.
4. One 3-unit lecture course numbered 100 or higher in mathematics, science, or engineering covering mathematical methods, continuum or fluid mechanics, or Fourier/spectral analysis.
5. 9 units of 200-level or higher courses in math, science, engineering, or other quantitative science.
6. 6 units of non-Geophysics lecture courses numbered 100 or higher in Earth or planetary sciences, ecology, hydrology, chemistry, or relevant biology.
7. One 3-unit non-Geophysics lecture course numbered 200 or higher in Earth or planetary science, ecology, hydrology, chemistry, or relevant biology.
8. Sufficient units of independent work on a research problem to meet the 135-unit University requirement. 12 units must be met by participation in the GEOPHYS 385 series. Students are encouraged to participate in the GEOPHYS 385 series from more than one faculty member or group.
9. Two quarters of quarter-time teaching experience.

The student’s record must indicate outstanding scholarship, and deficiencies in previous training must be removed. Experience as a teaching
assistant (quarter-time for at least two academic quarters) is required for the Ph.D. degree. The student must pass the departmental oral examination by presenting and defending a written research paper or proposal by the end of the sixth academic quarter (third academic quarter for students with an M.S. degree); prepare under faculty supervision a dissertation that is a contribution to knowledge and the result of independent work expressed in satisfactory form; and pass the University oral examination. The Ph.D. dissertation must be submitted in its final form within five calendar years from the date of admission to candidacy.

Upon formal acceptance into a research group, the student and faculty adviser form a supervising committee consisting of at least three members who are responsible for overseeing satisfactory progress toward the Ph.D. degree. At least two committee members must be Geophysics faculty members. The committee conducts the department oral examination, and meets thereafter annually with the student to review degree progress. The Geophysics faculty monitor progress of all students who have not yet passed their department oral examination by carrying out an annual performance appraisal at a closed faculty meeting.

COURSES

GEOPHYS 25. Planetary Habitability — Hands-on introduction to astrobiology. Are human beings alone; are microbes common in the universe? Historical development and modern status of topics such as: the vastness of space and time; star evolution; planetary climate; effects of geological processes and asteroid impacts on life; other habitable places in the solar system with updates on Mars; the Earth as a biological organism; maintenance of society for a geologically long time; and the search for intelligent extraterrestrials. Outdoor lab exercises designed to work in K-12 science classes. Non-science majors welcome.

3 units, Aut (Sleep)

GEOPHYS 30Q. The 1906 San Francisco Earthquake — Stanford Introductory Seminar. Preference to sophomores. The impact of this event on the history of N. California and on the scientific study of earthquakes. What happened during the earthquake and the days that followed, and what experts think might happen the next time a large earthquake strikes the San Francisco Bay Area. Field trips to the San Andreas Fault and to San Francisco to view the source and effects of the earthquake first hand.

2 units, Win (Beroza)

GEOPHYS 40. 1906 Earthquake Centennial Seminar — (Same as CEE 40.) Lecture series over Autumn and Winter quarters. The 1906 San Francisco earthquake, its effects on San Francisco and the Bay Area, and ensuing advances in earthquake science, engineering, and risk mitigation.

1 unit, Aut (Deierlein)

GEOPHYS 60Q. Man versus Nature: Coping with Disasters Using Space Technology — Stanford Introductory Seminar. Preference to sophomores. Natural hazards (earthquakes, volcanoes, floods, hurricanes, and fires) affect thousands of people everyday. Disasters such as asteroid impacts periodically obliterate many species of life. Spaceborne imaging technology makes it possible to respond quickly to such threats to mitigate consequences. How these new tools are applied to natural disasters, and how remotely sensed data are manipulated and analyzed. Basic scientific issues, political and social consequences, costs of disaster mitigation, and how scientific knowledge affects policy.

GER:DB-EngrAppSci

3 units, Aut (Zebker)

GEOPHYS 100. Directed Reading

1-2 units, Aut, Win, Spr, Sum (Staff)

GEOPHYS 102. Geosphere — (Same as EARTHSYS 110.) Large-scale natural systems of the solid earth, oceans, and atmosphere, their variation through space and time, and the implications of how these systems impact and are being impacted by humankind. Topics include plate tectonics and its relationship to natural hazards and climate, large-scale ocean and atmospheric systems, energy systems, and the linkages among these topics. Prerequisites: EARTHSYS 10, GES 1. GER:DB-NatSci

3 units, Aut (Zoback, Arigo)

GEOPHYS 104. The Water Course — (Same as EARTHSYS 104.) The pathway that water takes from rainfall to the tap using student home towns as an example. How the geological environment controls the quantity and quality of water; taste tests of water from around the world. Current U.S. and world water supply issues. GER:DB-NatSci

3 units, Win (Knight)

GEOPHYS 106. Planetary Exploration — (Enroll in EE 106.)

3 units, Spr (Fraser-Smith)

GEOPHYS 112. Exploring Geosciences with MATLAB — Introduction to efficient use of Matlab as a tool for research in engineering and earth sciences. Hands-on, computer-based exercises explore the 2-D and 3-D visualization features, numerical capabilities, and various Matlab toolboxes, addressing simple problems in widely applicable areas such as data analysis, statistics, regressions, least-squares, Fourier transforms and filtering in 1- and 2-D, simple spectral analysis, differential equations, and simulations.

1-3 units, Aut (Mukerji)

GEOPHYS 113. Earthquakes and Volcanoes — (Same as EARTHSYS 113.) Earthquake location, magnitude and intensity scales, seismic waves, styles of eruptions and volcanic hazards, tsunami waves, types and global distribution of volcanoes, volcano forecasting. Plate tectonics as a framework for understanding earthquake and volcanic processes. Forecasting; earthquake resistant design; building codes; and probabilistic hazard assessment. For non-majors and potential earth scientists.

GER:DB-EngrAppSci

3 units, Aut (Beroza, Segall)

GEOPHYS 120. Frontiers of Geophysical Research at Stanford: Faculty Lectures — Required for new students entering the department. Second-year and other graduate students may attend either for credit or as auditors. Department and senior research staff lectures introduce the frontiers of research problems and the methods being employed or developed in the department and unique to department faculty and students: what the current research is, why the research is important, what methodologies and technologies are being used, and what the potential impact of the results might be.

1 unit, Aut (Harris)

GEOPHYS 130/231. Biological Oceanography — (Graduate students register for 231; same as EARTHSYS 130/230.) Required for Earth Systems students in the oceans track. Interdisciplinary look at how oceanic environments control the form and function of marine life. Topics: distributions of planktonic production and abundance, nutrient cycling, the role of ocean biology in the climate system, expected effects of climate changes on ocean biology. Possible local field trips on weekends. Prerequisites: BIOSCI 43 and GES 8 or equivalent. Corequisites: GES 159/259.

2-4 units, Spr (Arrigo)

GEOPHYS 140. Introduction to Remote Sensing — Global change science as viewed using space remote sensing technology. Global warming, ozone depletion, the hydrologic and carbon cycles, topographic mapping, and surface deformation. Physical concepts in remote sensing. EM waves and geophysical information. Sensors studied: optical, near and thermal IR, active and passive microwave. GER:DB-EngrAppSci

3 units, Aut (Zebker)

GEOPHYS 141/241. Remote Sensing of the Oceans — (Graduate students register for 241; same as EARTHSYS 141/241.) How to observe and interpret physical and biological changes in the oceans using satellite technologies. Topics: principles of satellite remote sensing, classes of satellite remote sensors, converting radiometric data into biological and physical quantities, sensor calibration and validation, interpreting large-scale oceanographic features. GER:DB-NatSci

4 units, Win (Arrigo)

GEOPHYS 142. Remote Sensing of Land Use and Land Cover — (Enroll in GES 142, EARTHSYS 142/242.)

4 units (Seto) not given 2005-06
GEOPHYS 144. Fundamentals of Geographic Information Science (GIS) — (Enroll in GES 144.)
4 units, Spr (Seto)

GEOPHYS 150. General Geophysics and Physics of the Earth — Elementary study of gravitational, magnetic, seismic, and thermal properties of the Earth. Earth’s crust, mantle, core. Plate tectonics and mantle convection. Probing earth structure with seismic waves. Measurements, interpretation, and applications to earth structure and exploration. Prerequisites: calculus, first-year college physics. GER:DB-NatSci
3 units, Win (Sleep, Klemperer)

GEOPHYS 160. Waves — Topics: derivation of wave equations and their solutions in 1-D, 2-D, and 3-D; amplitude, polarization, phase and group velocities, attenuation, and dispersion; reflection and transmission at single and multiple interfaces; ray theory. Applications from acoustics, elastodynamics, and electromagnetics. Prerequisites: differential/integral calculus and complex functions. GER:DB-NatSci
3 units, Win (Harris, Claerbout, Beroza)

GEOPHYS 162. Laboratory Methods in Geophysics — Lectures, laboratory experiments, and demonstrations explore principles and measurements of geophysical properties such as velocity, attenuation, porosity, permeability, electrical resistivity, and magnetic susceptibility. A foundation for conducting experiments and for assessing accuracy and variability in reported experimental data. No previous laboratory experience required.
1-3 units, Spr (Prasad)

GEOPHYS 180. Geophysical Inverse Problems — Fundamental concepts of inverse theory, with application to geophysics. Inverses with discrete and continuous models, generalized matrix inverses, resolving kernels, regularization, use of prior information, singular value decomposition, nonlinear inverse problems, back-projection techniques, and linear programming. Application to seismic tomography, earthquake location, migration, and fault-slip estimation. Prerequisite: MATH 103.
GER:DB-Math
3 units, not given 2005-06 (Beroza, Segall)

GEOPHYS 182. Reflection Seismology — The principles of seismic reflection profiling, focusing on methods of seismic data acquisition and seismic data processing for hydrocarbon exploration. GER:DB-NatSci
3 units (Klemperer) alternate years, given 2006-07

GEOPHYS 183. Reflection Seismology Interpretation — The structural and stratigraphic interpretation of seismic reflection data, emphasizing hydrocarbon traps in two and three dimensions, hydrocarbon trapping mechanisms, and strategies for locating structures. Prerequisites: 182, or consent of instructor.
1-4 units, Aut (Klemperer, Graham)

GEOPHYS 184. Seismic Reflection Processing — Workshop experience in computer processing of seismic reflection data. Students individually process a commercial seismic reflection profile from field tapes to migrated stack, using interactive software on a workstation. Prerequisite: consent of instructor. GER:DB-NatSci
3 units, Win (Klemperer)

GEOPHYS 185. Research Seminar Series — (Graduate students register for 385 series.) Limited to Geophysics undergraduates and coterminal master’s candidates. Undergraduates participate directly in an ongoing research project: experimental and computational work, joining in reading and studying groups, giving seminar papers, and doing original research for the undergraduate thesis. Prerequisite: consent of instructor. WIM

GEOPHYS 185A. Reflection Seismology — (Graduate students register for 385A.) Research in reflection seismology and petroleum prospecting. May be repeated for credit.
1-2 units, Aut, Win, Spr, Sum (Biondi, Claerbout)

GEOPHYS 185B. Environmental Geophysics — (Graduate students register for 385B.) Research on the use of geophysical methods for near-surface environmental problems. May be repeated for credit.
1-2 units, Aut, Win, Spr, Sum (Knight)

GEOPHYS 185C. Topics in Biological Oceanography — (Graduate students register for 385C.) Research on biological processes of the ocean’s crust. May be repeated for credit.
1-2 units, Aut, Win, Spr, Sum (Arrigo)

GEOPHYS 185D. Tectonophysics — (Graduate students register for 385D.) Research in interdisciplinary problems involving the state and movement of fluids in the Earth’s crust. Content varies each quarter. May be repeated for credit.
1-3 units, Aut, Win, Spr, Sum (Nur)

GEOPHYS 185E. Tectonics — (Graduate students register for 385E.) Research on the origin, major structures, and tectonic processes of the Earth’s crust. Emphasis is on understanding the formation and evolution of the Earth’s crust. May be repeated for credit.
1-2 units, Aut, Win, Spr, Sum (Klemperer, Sleep, Thompson)

GEOPHYS 185K. Crustal Mechanics — (Graduate students register for 385K.) Research in areas of petrophysics, seisoplogy, in situ stress, and subjects related to characterization of the physical properties of rock in situ. May be repeated for credit.
1-2 units, Aut, Win, Spr (Zoback)

GEOPHYS 185L. Earthquake Seismology, Deformation, and Stress — (Graduate students register for 385L.) Research on seismic source processes, crustal stress, and deformation associated with faulting and volcanoism. May be repeated for credit.
1-2 units, Aut, Win, Spr (Segall, Zoback, Beroza)

GEOPHYS 185S. Seismic Tomography — (Graduate students register for 385S.) Research in transmission and reflection tomography, including topics on forward modeling, inversion, and data acquisition. May be repeated for credit.
1-2 units, Aut, Win, Spr (Harris)

GEOPHYS 185V. Poroelasticity — (Graduate students register for 385V.) Research on the mechanical properties of porous rocks: dynamic problems of seismic velocity, dispersion, and attenuation; and quasi-static problems of faulting, fluid transport, crustal deformation, and loss of porosity. Participants define, investigate, and present an original problem of their own. May be repeated for credit.
1-2 units, Aut, Win, Spr (Zoback)

GEOPHYS 185Y. Theoretical Ecology — (Graduate students register for 385Y; same as BIOSCI 384.) Recent and classical research papers in ecology, and presentation of work in progress by participants. Prerequisite: consent of instructor.
1-2 units, Aut, Win, Spr (Roughgarden)

GEOPHYS 185Z. Radio Remote Sensing — (Graduate students register for 385Z.) Research applications, especially crustal deformation measurements. Recent instrumentation and system advancements. May be repeated for credit.
1-2 units, Aut, Win, Spr (Zebker)

GEOPHYS 190. Near-Surface Geophysics — Applications of geophysical methods for imaging and characterizing the top 100 meters of the Earth. Focus is on the use of electrical and seismic methods for environmental and engineering applications. Introduction to the link between electrical and elastic properties of rocks, soils, and sediments, and their physical, chemical, and biological properties. Surface and borehole methods used for data acquisition. GER:DB-EngrAppSci
3 units, Spr (Knight)

GEOPHYS 200. Fluids and Tectonics — Interdisciplinary problems involving the state and movement of fluids in the Earth’s crust: basics of the coupling in porous and cracked rocks between chemical transport, fluid flow, deformation and stress, and waves; applications to gas hydrates under the oceans; pore pressure in faulting and aseismic slip; sediment transport and seismic reflection; deformation by pressure solution and stylolites; the opening of backarc basins, and time/space patterns of large earthquakes. Prerequisite: consent of instructor.
3 units, Aut, Win, Spr (Nur)
GEOPHYS 202. Reservoir Geomechanics—Basic principles of rock mechanics and the state of stress and pore pressure in sedimentary basins related to exploitation of hydrocarbon and geothermal reservoirs. Mechanisms of hydrocarbon migration, exploitation of fractured reservoirs, reservoir compaction and subsidence, hydraulic fracturing, utilization of directional and horizontal drilling to optimize well stability.
3 units, Win (Zoback)

GEOPHYS 205. Honors Program—Experimental, observational, or theoretical honors project and thesis in geophysics under supervision of a faculty member. Students who elect to do an honors thesis should begin planning it no later than Winter Quarter of the junior year. Prerequisites: superior work in the earth sciences and approval of the department.
1-3 units, Aut, Win, Spr, Sum (Staff)

3-4 units, Aut (Claerbout)

GEOPHYS 211. Environmental Sounds Image Estimation—Imaging principles exemplified by means of imaging geophysical data of various uncomplicated types (bathymetry, altimetry, velocity, reflectivity). Adjoints, back projection, conjugate-gradient inversion, preconditioning, multidimensional autoregression and spectral factorization, the helical coordinate, and object-based programming. Common recurring issues such as limited aperture, missing data, signal/noise segregation, and nonstationary spectra. See http://sep.stanford.edu/sep/prof/.
3 units, Win (Claerbout)

3-5 units, Aut (Pollard)

GEOPHYS 215B. Advanced Structural Geology and Rock Mechanics—(Enroll in GES 215B, CEE 297H.)
3-5 units, Win (Pollard)

GEOPHYS 216. Rock Fracture Mechanics—(Enroll in GES 216.)
3-5 units (Pollard) alternate years, given 2006-07

GEOPHYS 220. Tectonics—The architecture of the Earth’s crust; regional assembling of structural or deformational features and their relationship, origin and evolution. The plate-tectonic cycle: rifting, passive margins, sea-floor spreading, subduction zones, and collisions. Case studies.
3 units, Aut (Klemperer, Stern)

GEOPHYS 222. Planetary Systems: Dynamics and Origins—(Enroll in GES 222.)
3-4 units, Aut (Lissauer)

GEOPHYS 223. Planetary Systems: Atmospheres, Surfaces, and Interiors—(Enroll in GES 223.)
3 units, Win (Marley)

GEOPHYS 230. Advanced Topics in Well Logging—(Same as PETENG 230.) State of the art tools and analyses; the technology, rock physical basis, and applications of each measurement. Hands-on computer-based analyses illustrate instructional material. Guest speakers on formation evaluation topics. Prerequisites: 130 or equivalent; basic well logging; and standard practice and application of electric well logs.
3 units, Spr (Lindblom)

GEOPHYS 233. Advanced Biological Oceanography—For upper-division undergraduates and graduate students. Themes vary annually but include topics such as marine bio-optics, marine ecological modeling, and phytoplankton primary production. Hands-on laboratory and computer activities, and field trips into local waters. May be repeated for credit. Prerequisite: familiarity with concepts presented in GEOPHYS 130/231 or equivalent.
3-4 units, Aut (Arrigo)

GEOPHYS 240. Borehole Seismology—The study and application of seismic-acoustic waves in and around boreholes for application to sonic well logging, crosswell seismic profiling, and vertical seismic profiling. Topics: forward modeling, seismogram interpretation, data processing, imaging, and inversion. Applications from reservoir and site characterization studies and reservoir monitoring. Prerequisite: consent of instructor.
3 units, Spr (Harris)

GEOPHYS 241A. Practice of Geostatistics and Seismic Data Integration—(Same as PETENG 241.) Students build a synthetic 3D fluvial channel reservoir model with layer depths, channel geometry, and facies-specific petrophysical and seismic properties, stressing the physical significance of geophysical data. Reference data set is sparsely sampled, providing the sample data typically available for an actual reservoir assessment. Geostatistical reservoir modeling uses well and seismic data, with results checked against the reference database. Software provided (GSLIB and SRBtools). Prerequisite: PETENG 240. Recommended: experience with Unix, Matlab/C++/Fortran programming.
3-4 units, Spr (Caers, Mukerji)

3 units (Tarantola) not given 2005-06

GEOPHYS 255. Report on Energy Industry Training—Provides on-the-job-training for master’s and doctoral degree students under the guidance of experienced, on-site supervisors. Students must submit a concise report detailing work activities, problems, assignment, and key results. Prerequisite: written consent of advisor.
1-3 units, Aut, Win, Spr, Sum (Staff)

GEOPHYS 260. Rock Physics for Reservoir Characterization—How to integrate well log and laboratory data to determine and theoretically generalize rock physics transforms between sediment wave properties (acoustic and elastic impedance), bulk properties (porosity, lithology, texture, permeability), and pore fluid conditions (pore fluid and pore pressure). These transforms are used in seismic interpretation for reservoir properties, and seismic forward modeling in what-if scenarios.
3 units (Dvorkin) alternate years, given 2006-07

GEOPHYS 262. Rock Physics—Properties of and processes in rocks as related to geophysical exploration, crustal studies, and tectonic processes. Emphasis is on wave velocities and attenuation, hydraulic permeability, and electrical resistivity in rocks. Application to in situ problems, using lab data and theoretical results.
3 units, Spr (Mavko)

GEOPHYS 265. Radar Remote Sensing: Fundamentals and Geophysical Application of Imaging Radar Systems—Topics include radar system elements, the radar equation and signal to noise ratio, signal and image processing, range/Doppler algorithms, interferometric measurements. Applications to crustal deformation, topographic mapping, velocities of ice sheets and glaciers, polarimetry and terrain analysis. Computational labs give hands-on-experience with real data.
3 units (Zebker) alternate years, given 2006-07

GEOPHYS 270. Electromagnetic Properties of Geological Materials—Laboratory observations and theoretical modeling of the electromagnetic properties and nuclear magnetic resonance response of geological materials. Relationships between these properties and water-saturated materials properties such as composition, water content, surface area, and permeability.
2 units (Knight) not given 2005-06
GEOPHYS 280. 3-D Seismic Imaging—The principles of imaging complex structures in the Earth subsurface using 3-D reflection seismology. Emphasis is on processing methodologies and algorithms, with examples of applications to field data. Topics: acquisition geometries of land and marine 3-D seismic surveys, time vs. depth imaging, migration by Kirchhoff methods and by wave-equation methods, migration velocity analysis, velocity model building, imaging irregularly sampled and aliased data. Computational labs involve some programming. Lab for 3 units.

2-3 units, Spr (Biondi)

GEOPHYS 287. Earthquake Seismology—Basic theorems in elastodynamics, Green’s functions, attenuation, wave propagation in layered media, ray theory, seismic moment tensors, finite-source effects, kinematics and dynamics of earthquakes, engineering aspects of seismology.

3 units (Berzosa) alternate years, not given 2005-06

GEOPHYS 288A,B. Crustal Deformation—Earthquake and volcano deformation. Modern data collection methods, including GPS, InSAR, and borehole strain meters and methods to interpret these data. Topics include: elastic dislocation theory; crack models of earthquakes and volcanic dikes; dislocations in layered and elastically heterogeneous earth models; viscoelasticity and postseismic rebound; plate boundary deformation; dikes, sills, and inflating magma chambers; gravity changes induced by deformation and elastic-gravitational coupling; effects of topography on deformation; poroelasticity, subsidence due to fluid withdrawal, coupled fluid flow, and deformation; earthquake nucleation and rate-state friction.

3-5 units, A: Aut, B: Win (Segall)

GEOPHYS 289. Global Positioning System in Earth Sciences—The basics of GPS, emphasizing monitoring crustal deformation with a precision of millimeters over baselines tens to thousands of kilometers long. Applications: mapping with GIS systems, airborne gravity and magnetic surveys, marine seismic and geophysical studies, mapping atmospheric temperature and water content, measuring contemporary plate motions, and deformation associated with active faulting and volcanism.

3-5 units (Segall) alternate years, not given 2005-06

GEOPHYS 290. Tectonophysics—The physics of faulting and plate tectonics. Topics: plate driving forces, lithospheric rheology, crustal faulting, and the state of stress in the lithosphere.

3 units, Spr (Zoback)

GEOPHYS 300. Earth Sciences Seminar—(Same as EARTHSYS 300, GES 300, IPER 300, PETENG 300.) Required for incoming graduate students except coterm students. Research questions, tools, and approaches of faculty members from all departments in the School of Earth Sciences. Goals are: to inform new graduate students about the school’s range of scientific interests and expertise; and to introduce them to each other across departments and research groups. Two faculty members present work at each meeting. May be repeated for credit.

1 unit, Aut (Matson, Graham)

GEOPHYS 385. Research Seminar Series—See 185 series for offerings and descriptions. Opportunity for advanced graduate students to frame and pursue research or thesis research within the context of one of the ongoing research projects in the department, and present thesis research progress reports before a critical audience on a regular basis. Prerequisite: consent of the instructor.

GEOPHYS 399. Teaching Experience in Geophysics—On-the-job training in the teaching of geophysics. An opportunity to develop problem sets and lab exercises, grade papers, and give occasional lectures under the supervision of the regular instructor of a geophysics course. Regular conferences with instructor and with students in the class provide the student teacher with feedback about effectiveness in teaching.

2-4 units, Aut, Win, Spr, Sum (Staff)

GEOPHYS 400. Research in Geophysics

1-15 units, Aut, Win, Spr, Sum (Staff)
toxic chemicals; or resources such as forests or wetlands. More global challenges such as climate change and biodiversity loss pose fundamental threats to the health of the planet and the people who depend upon it. Solutions to these problems must be multifaceted, addressing the interactions among threats and resources, and engaging diverse actors, including academia, national governments, international institutions, business, and civil society. The research and understanding necessary to devise such solutions thus must be both multidisciplinary and interdisciplinary, integrating the analytical tools of diverse fields to yield new insights and promising responses.

The Interdisciplinary Graduate Program in Environment and Resources (IPER) responds to these challenges by leveraging Stanford’s faculty strengths in disciplines ranging from ecology and engineering to law and economics, all of which are increasingly directed toward interdisciplinary research and problem solving, and teaching that encompasses collaborative and synthetic courses that cross departmental boundaries.

Interdisciplinary work requires that individuals and groups become familiar with the concepts, methods, data, and analyses of several disciplines in order to focus research questions more sharply. It requires the integration of multidisciplinary knowledge in the formulation of research questions and hypotheses, and in the execution and analyses of results. Students in the IPER program learn through interactions with a cohort of students and a dedicated faculty who influence each other’s ways of thinking and asking questions.

FOUNDATION AND FLEXIBILITY

IPER students construct an integrative graduate curriculum through shared foundational study and flexibility in a research course. Students in the program are expected to make significant progress in each of three intellectual areas:

1. The linkages between physical and biological systems, and understanding the potential environmental consequences associated with the dynamics or evolution of these joint systems.
2. The interplay between human activities and the Earth system, and how human influence on the environment, such as through methods of production or patterns of consumption, is affected by social and economic institutions, legal rules, and cultural values, and how resources and environment in turn affect human actions and decision making.
3. Skills for gauging the potential impacts of alternative public policy options for dealing with environmental problems, for evaluating such policy alternatives according to various normative criteria, and for integrating scientific research into policy formulation.

The program is flexible enough to enable students to focus on areas of greatest interest. For example, a student with a strong interest in the relationship between commercial fishing and coral reef habitat might concentrate on biology, international relations, and economics; a student aiming to understand the environmental impacts from agricultural production decisions might focus on the interplay among economics, biogeochemistry, and hydrology; and a student interested in the design and evaluation of policies to curb emissions of greenhouse gases might learn about scientific, technological, and economic issues, as well as gain skills in policy analysis, evaluation, and implementation.

RESEARCH HIGHLIGHTS

Research is the cornerstone of IPER. Faculty and graduate students are engaged in interdisciplinary research projects such as studying the effects and constraints of agricultural intensification and urbanization in the Yaqui Valley of Sonora, Mexico, and spatial analysis of land use changes in Vietnam. Students in IPER have the opportunity to work on existing projects or develop their own research directions and topics.

Research projects by students in the program address issues such as the science and policy of global climate change, environmental quality, regional security, the valuation of ecosystem services, energy development, agricultural intensification and variability, characterization and effects of land use change, and natural resource management. Examples of research projects include:

1. Investigating ecosystem services of the Hawaiian countryside by focusing on the sustainable management of native hardwood on private lands by creating innovative financial incentives and policy mechanisms to make biodiversity conservation economically attractive to landowners.
2. Evaluating electric power sector development in China and India, and the potential for international policy mechanisms to steer these countries toward less CO₂-intensive growth paths.

For more information about integrative environmental research at Stanford, see the Stanford Institute for the Environment web site at http://environment.stanford.edu.

GRADUATE PROGRAMS

The University’s basic requirements for the M.S. and Ph.D. degrees are discussed in the “Graduate Degrees” section of this bulletin.

DUAL DEGREE MASTER OF SCIENCE

The Interdisciplinary Program in Environment and Resources offers a dual program of study leading to the Master of Science degree. It provides training in interdisciplinary environmental problem solving. Only students enrolled in a professional school (Law, Business, Medicine) at the University are eligible for the dual M.S. program. IPER gives these graduate students the benefit of a rigorous interdisciplinary course of study, which complements their main degree program. Students interested in the M.S. program apply no later than the first year of their primary graduate program. To be admitted, a student needs the approval of both the interdisciplinary graduate program and his or her principal school and/or department. Applicatnts to the M.S. program are required to submit a statement of purpose as part of the admissions process, clearly explaining the importance of interdisciplinary studies to the student’s research or career. Admission to the M.S. program depends both on the applicant’s ability to successfully complete a demanding program in interdisciplinary studies and the applicant’s justification for pursuing the M.S. program.

Students in the dual Master of Science program participate in a 45-unit program, to be completed over a period of three or more quarters. All students in the M.S. program take the three core courses: IPER 310, Environmental Forum Seminar, IPER 320, Case Studies in Environmental Problem Solving, and IPER 330, Interdisciplinary Research Approaches and Analysis; students also complete at least eight other graded courses at the 100 level or higher, of which at least two must be at the 200 level while maintaining a “B” average. M.S. students need at least 45 units for graduation. Directed research may count for a maximum of eight of these units. Students design their elective courses around one or more of the program’s concentration areas (economics and policy analysis; culture, law, institutions, and politics; natural sciences; and technology and engineering) chosen to complement but not duplicate their primary research or professional degree program at Stanford. A faculty advisory team reviews and approves the adequacy of each student’s course of study.

DOCTOR OF PHILOSOPHY

1. The student works with faculty advisers to design a course of study that allows the student to develop and exhibit 1) depth in at least two concentration areas, 2) adequate preparation in analytical methods and skills, and 3) interdisciplinary breadth in all four concentration areas (economics and policy analysis; culture, law, institutions, and politics; natural sciences; and technology and engineering). Depth requirements are determined by the student and the student’s advising team. Breadth requirements vary by concentration area and are normally satisfied through a sequences of prescribed courses, independent study, and demonstration of proficiency through prior course work and/or field experience. Additional information about breadth requirements can be found on the IPER website or obtained from the IPER office. The three core courses to be taken by all Ph.D. students are IPER 310, Environmental Forum Seminar, IPER 320, Case Studies in Environmental Problem Solving, and IPER 330, Interdisciplinary Research
Approaches and Analysis. All core courses must be taken for a letter grade. Normally, IPER Ph.D. students are expected to take all courses for a letter grade unless their advisers recommend otherwise. The IPER faculty advising team has primary responsibility for ensuring the adequacy of the course of study. The student meets with these advisers quarterly during the first year and annually thereafter.

2. To be admitted to candidacy for the Ph.D. degree, a student must have successfully completed at least 25 graded units (not including research credits) of graduate courses (200 level and above) maintaining a ‘B’ average. In addition, the student must pass an oral qualifying exam that demonstrates command of two areas of specialization as well as interdisciplinary breadth. The qualifying exam should be successfully completed by the end of the eighth quarter in the program.

3. By the end of the sixth quarter of study, students present a Ph.D. candidacy plan to their primary advisers, with a copy to the Executive Director. This plan should include the following items: (a) the names of 4-5 proposed oral qualifying exam committee members; (b) a list of courses or experiences used to fulfill the IPER breadth and depth requirements and certify completion of the IPER core curriculum; and (c) a proposed date for the oral qualifying exam. The oral qualifying exam consists of two parts: a presentation of a dissertation proposal, and a question and answer period during which the student should be prepared to address questions and issues about the proposal, and broader questions arising from IPER breadth and depth course work. The oral qualifying exam committee should include at least two members of the IPER affiliated faculty, and each of the student-designated depth areas should be represented by at least one faculty member with expertise in that particular area. A member-at-large is selected by the student. The oral qualifying exam should be successfully completed by the end of the eighth quarter. To complete the Ph.D., the student must pass a University oral examination in defense of the dissertation.

4. Teaching experience is an essential element of training in the Ph.D. Program. Each student is required to complete two quarters of teaching which can be fulfilled by serving as a teaching assistant for one of the IPER core courses and working as a TA for a course with a discussion section.

The interdisciplinary Ph.D. program is complementary to the disciplinary environmental science, engineering, and policy analysis taught in Stanford departments and schools. Students in IPER develop depth in multiple disciplinary fields and integrate the knowledge across those fields. The goal of the interdisciplinary Ph.D. program is for students to achieve an integrated understanding of environmental processes or problems, and the tools they need to address these challenges in the real world.

Additional information may be found in the Graduate Student Handbook at http://www.stanford.edu/dept/DoR/GSH/.

The following courses may be of interest to IPER students.

ECONOMICS AND POLICY ANALYSIS

ECON 106. World Food Economy
ECON 155. Environmental Economics and Policy
ECON 165. International Economics
ECON 243. Economics of the Environment
IPER 243. Energy and Environmental Policy Analysis
MS&E 248. Economics of Natural Resources
POLISCI 140. Political Economy of Development
PUBLPOL 103B. Ethics and Public Policy
PUBLPOL 104. Economic Policy Analysis

CULTURE, LAW, INSTITUTIONS, AND POLITICS

ANTHSCI 164. Ecological Anthropology
ANTHSCI 162. Indigenous Peoples and Environment
ANTHSCI 168C. Environmental Politics in Latin America
ANTHSCI 263. Human Behavioral Ecology
BIOSCI 247. Controlling Climate Change in the 21st Century

NATURAL SCIENCES

BIOHOPK 263H. Oceanic Biology
BIOHOPK 264H. Marine Botany
BIOHOPK 273H. Marine Conservation Biology
BIOSCI 101. Ecology
BIOSCI 117. Biology and Global Change
BIOSCI 121. Biogeography
BIOSCI 136. Evolutionary Paleobiology
BIOSCI 144. Conservation Biology
BIOSCI 146. Population Studies
BIOSCI 216. Terrestrial Biogeography
BIOSCI 245. Behavioral Ecology
CEE 274A.B. Environmental Microbiology I and II
CEE 164. Introduction to Physical Oceanography
EARTHSYS 189. Field Studies in Earth Systems
EARTHSYS 280. Fundamentals of Sustainable Agriculture
GES 166. Soil Chemistry
GES 170. Environmental Geochemistry
GES 205. Advanced Oceanography
GES 225. Isotopes in Geological and Environmental Research
GES 230/CEE 260A. Physical Hydrogeology
GES 231/CEE 260C. Contaminant Hydrogeology
GES 259. Marine Chemistry
GES 240. Geostatistics for Spatial Phenomena
GEOPHYS 130. Biological Oceanography
GEOPHYS 141/241. Remote Sensing of the Oceans
IPER 250. Ecological Principles for Environmental Problem Solving
PETENG 260. Groundwater Pollution and Oil Slicks: Environmental Problems in Petroleum Engineering

TECHNOLOGY AND ENGINEERING

CEE 171. Environmental Planning Methods
CEE 172. Air Quality Management
CEE 176A. Energy Efficient Buildings
CEE 176B. Electric Power: Renewables and Efficiency
CEE 262A. Hydrodynamics
CEE 263A. Air Pollution Modeling
CEE 265. Sustainable Water Resources Development
CEE 270. Movement and Fate of Organic Contaminants in Surface Waters and Groundwater
CEE 278A. Air Pollution Physics and Chemistry
EE 293A.B. Fundamentals of Energy Processes
MS&E 446. Policy and Economics Research Roundtable (PERR)

COURSES

Additional courses may be listed in the quarterly Time Schedule.

IPER 210. Communication and Leadership Skills—(Same as BIOSCI 388.) Focus is on delivering information to policy makers and the lay public. How to speak to the media, congress, and the general public; how to write op-eds and articles; how to package ideas including titles, abstracts, and CVs; how to survive peer review, the promotion process, and give a job talk; and how to be a responsible science advocate. 2 units (Root) not given 2005-06

IPER 220. Special Topics Seminar—See Time Schedule for information on courses offered each quarter. May be repeated for credit. 1-5 units, Aut, Win, Spr, Sum (Staff)
IPER 225. Intellectual Foundations of Interdisciplinary Research—Competing philosophical perspectives on the epistemological and ontological underpinnings of knowledge from positivism to postmodernism. Contrasting notions of theory from deductive explanations to inductive interpretations. Methodological options and types of data.

3-5 units, Win (Staff)

IPER 230. Environment and Resources Field Research—Contemporary environment and resource challenges at sites around the world. Courses are offered on a variable schedule depending on the interests of IPER students and faculty. See the Time Schedule for current offerings.

1-9 units, Aut, Win, Spr, Sum (Staff)

IPER 235. Global Environmental Ethics—Theories of environmental ethics and their evolution. Environmental treaties as a framework to analyze case studies of contemporary ethical issues raised by environmental problems that transcend national boundaries.

4-5 units, Spr (Hoagland)

IPER 243. Energy and Environmental Policy Analysis—(Same as MS&E 243.) Concepts, methods, and applications. Energy/environmental policy issues such as automobile fuel economy regulation, global climate change, research and development policy, and environmental benefit assessment. Group project. Prerequisite: 241 or ECON 50, 51.

3 units, Spr (Goulder, Sweeney)

IPER 244. Fundamentals of Geographic Information Science (GIS)—(Enroll in GES 144.)

4 units, Spr (Seto)

IPER 250. Ecological Principles for Environmental Problem Solving—For students in Law, Business, or Medicine, or IPER students with limited biology background. Topics include field methods, climate, biogeography, biogeochemical cycles, physiology, population genetics, and environmental ethics.

3 units (Root) alternate years, given 2006-07

IPER 260. The Social Sciences and Environmental Problem Solving—For students with little background in the social sciences interested in incorporating them into their research. Focus is on the contribution that the social sciences of international relations, political science, anthropology, and sociology make to environmental problem solving. Case studies from international regime building, inter-agency politics, organizational behavior, and cultural dynamics.

2-3 units (Staff) not given 2005-06

IPER 265. Central America: Environment, Sustainable Development, and Security—(Same as ANTHSCI 165B/265B.) Interrelationships among environmental stress, poverty, and security in Central America, with focus on Costa Rica. The legacy of the Cold War in Central America as manifested in the Contra War and U.S. policy. Current development schemes and their impact on environment and security in the region. Dilemmas between population growth in the developing world and consumption patterns in the industrial world. Some years, the course includes an optional field trip to Costa Rica over Spring Break at extra expense; limited capacity. GER:DB-SocSci

3-5 units (Hoagland) not given 2005-06

IPER 270. Graduate Practicum in Environment and Resources—Opportunity for IPER students to pursue areas of specialization in an institutional setting such as a laboratory, clinic, research institute, governmental agency, non-governmental organization, or multilateral organization. Meets US CIS requirements for off-campus employment with endorsement from designated school official.

1-9 units, Aut, Win, Spr, Sum (Hoagland)

IPER 300. Earth Sciences Seminar—(Same as GES 300, GEOPHYS 300, EARTHYS 300, PETENG 300.) Required for incoming graduate students except cotermals. Research questions, tools, and approaches of faculty members from all departments in the School of Earth Sciences. Goals are: to inform new graduate students about the school’s range of scientific interests and expertise; and introduce them to each other across departments and research groups. Two faculty members present work at each meeting. May be repeated for credit.

1 unit, Aut (Matson, Graham)

IPER 310. Environmental Forum Seminar—Required IPER core course. Participants attend the Institute’s forum series and meet to discuss issues such as the conceptual framework of the topic, analytical approaches, validity of conclusions from an interdisciplinary perspective, and alternative approaches. May be repeated for credit.

1-2 units, Aut (Staff)

IPER 320. Case Studies in Environmental Problem Solving—Required IPER core course. The case study method and related qualitative research techniques. Possible cases include the Central American Free Trade Agreement, the American Prairie Restoration Project in Montana, NGO-sponsored renewable energy, and sustainable agriculture development projects in Kenya. Students conduct a group service learning project in the rehabilitation of the degraded estuarine wetlands of the Cargill salt ponds in San Francisco Bay.

3-5 units, Win (Hoagland)

IPER 330. Interdisciplinary Research Approaches and Analysis—Required IPER core course. Analytical tools, models, and approaches central to interdisciplinary research on the world’s leading environmental issues. Topics include: observing systems and data sources; computation and modeling approaches to complex problems; translation and integration of alternative disciplinary approaches to research, analysis, and uncertainty; policy analysis; cost benefit analysis, risk benefit analysis, qualitative methods, and other decision analytic frameworks and valuation approaches; team building and leadership roles; review and proposal writing; speaking.

3 units, Spr (Matson, Daily)

IPER 398. Directed Individual Study in Environment and Resources—Under supervision of an IPER faculty member on a subject of mutual interest.

1-9 units, Aut, Win, Spr, Sum (Staff)

IPER 399. Directed Research in Environment and Resources—For advanced graduate students.

1-9 units, Aut, Win, Spr, Sum (Staff)

IPER 410. Ph.D. Qualifying Tutorial—For Ph.D. students only.

1 unit, Aut, Win, Spr, Sum (Staff)

IPER 460. Proposal Writing Seminar—Practical training in grant writing methods. Students draft research proposals relevant to individual interests with supervision from IPER faculty.

1-2 units, Aut, Win, Spr (Hoagland)

1-15 units, Aut, Win, Spr, Sum (Hoagland)
The department is housed in the Green Earth Sciences Building and it provides extensive facilities for research and teaching. Computers available for instructional purposes include three UNIX workstations (Compaq Digital Unix and SGI Irix) and ten multiprocessor NT servers within the department, as well as extensive campus-wide computer clusters. Each graduate student and SGI Irix) and ten multiprocessor NT servers within the department, as well as extensive campus-wide computer clusters. Each graduate student and research include three UNIX workstations (Compaq Digital Unix and SGI Irix) and ten multiprocessor NT servers within the department, as well as extensive campus-wide computer clusters. Each graduate student and student teams design facilities for a real petroleum reservoir to meet specific management objectives.

Undergraduate Programs

Bachelor of Science

The four-year program leading to the B.S. degree provides a foundation for careers in many facets of the energy industry. The curriculum includes basic science and engineering courses that provide sufficient depth for a wide spectrum of careers in the energy and environmental industries.

One of the goals of the program is to provide experience integrating the skills developed in individual courses to address a significant design problem. In PETENG 180, taken in the senior year, student teams design facilities for a real petroleum reservoir to meet specific management objectives.

Program

The requirements for the B.S. degree in Petroleum Engineering are similar to those described in the “School of Engineering” section of this bulletin. Students must satisfy the University general education, writing, and language requirements. The normal Petroleum Engineering undergraduate program automatically satisfies the University General Education Requirements (GERs) in the Disciplinary Breadth areas of Natural Sciences, Technology and Applied Sciences, and Mathematics. Engineering fundamentals courses and Petroleum Engineering depth and elective courses must be taken for a letter grade.

In brief, the credit and subject requirements are:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Minimum Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering fundamentals</td>
<td>25</td>
</tr>
<tr>
<td>General Education, writing, language, and electives</td>
<td>68-69</td>
</tr>
<tr>
<td>Mathematics</td>
<td>23</td>
</tr>
<tr>
<td>Petroleum Engineering depth</td>
<td>39-40</td>
</tr>
<tr>
<td>Science</td>
<td>26</td>
</tr>
<tr>
<td>Total</td>
<td>181</td>
</tr>
</tbody>
</table>

The following courses constitute the normal program leading to a B.S. in Petroleum Engineering. The program may be modified to meet a particular student’s needs and interests with the adviser’s prior approval.

Mathematics

<table>
<thead>
<tr>
<th>Course No. and Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 41. Single Variable Calculus</td>
<td>5</td>
</tr>
<tr>
<td>or MATH 42. Single Variable Calculus</td>
<td>5</td>
</tr>
<tr>
<td>and MATH 19. Calculus</td>
<td>3</td>
</tr>
<tr>
<td>and MATH 20. Calculus</td>
<td>3</td>
</tr>
<tr>
<td>and MATH 21. Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 51. Linear Algebra & Differential Calculus of Several Variables</td>
<td>5</td>
</tr>
<tr>
<td>MATH 51A. Integral Calculus of Several Variables</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
</tr>
</tbody>
</table>

Science

<table>
<thead>
<tr>
<th>Subject</th>
<th>Minimum Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 31A. Chemical Principles</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 33. Structure and Reactivity</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 171. Physical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>GES 1. Fundamentals of Geology</td>
<td>5</td>
</tr>
<tr>
<td>PHYSICS 29. Electricity and Magnetism</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS 41 (formerly 53). Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS 44 (formerly 56). Electricity and Magnetism Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
</tr>
</tbody>
</table>

Engineering Fundamentals

<table>
<thead>
<tr>
<th>Subject</th>
<th>Minimum Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 106A. Programming Methodology</td>
<td>5</td>
</tr>
<tr>
<td>or CS 106X. Programming Methodology and Abstractions</td>
<td>5</td>
</tr>
<tr>
<td>and ENGR 15. Dynamics</td>
<td>5</td>
</tr>
<tr>
<td>ENGR 30. Engineering Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>ME 70. Introductory Fluids Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 60. Engineering Economy</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
</tr>
</tbody>
</table>

Engineering Depth

The following courses constitute the core program in Petroleum Engineering:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Minimum Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEMENG 120A. Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>or CHEMENG 180. Chemical Engineering Plant Design</td>
<td>3</td>
</tr>
<tr>
<td>CHEMENG 185. Chemical Engineering Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>GES 151. Sedimentary Geology and Petrography: Depositional Systems</td>
<td>4</td>
</tr>
</tbody>
</table>
COTERMINAL B.S. AND M.S. PROGRAM

The coterminal B.S./M.S. program offers a unique opportunity for Stanford University students to pursue a graduate experience while completing the B.S. degree in any relevant major. Petroleum Engineering graduate students generally come from backgrounds such as chemical, civil, or mechanical engineering; geology or other earth sciences; or physics or chemistry. Students should have a background at least through MATH 51A and CS 106 before beginning graduate work in this program.

The two types of M.S. degrees, the course work only degree and the research degree, as well as the courses required to meet degree requirements, are described below in the M.S. section. Both degrees require 45 units and may take from one to two years to complete depending on circumstances unique to each student.

Requirements to enter the program are two letters of recommendation from faculty members or job supervisors, a statement of purpose, scores from the GRE general test, and a copy of Stanford University transcripts. While the department does not require any specific GPA or GRE score, potential applicants are expected to compete favorably with graduate student applicants.

A Petroleum Engineering master’s degree can be used as a terminal degree for obtaining a professional job in the petroleum or geothermal industry, or in any related industry where analyzing flow in porous media or computer simulation skills are required. It can also be a stepping stone to a Ph.D. degree, which usually leads to a professional research job or an academic position.

Students should apply to the program any time after they have completed 105 undergraduate units, and in time to take PETENG 120, the basic introductory course in Autumn Quarter of the year they wish to begin the program. Contact the Department of Petroleum Engineering to obtain additional information. For University coterminal degree program rules and University application forms, see http://registrars.stanford.edu/publications/#Coterm.
Students entering the graduate program are expected to have an undergraduate-level petroleum engineering background. Competence in computer programming in a high-level language (CS 106X or the equivalent) and knowledge of petroleum engineering and geological fundamentals (PETENG 120, 130, and GES 151) are prerequisites for taking most graduate courses.

The candidate must fulfill the following requirements:
1. Register as a graduate student for at least 45 units.
2. Submit a program proposal for the Master’s degree approved by the adviser during the first quarter of enrollment.
3. Complete 45 units with at least a grade point average (GPA) of 3.0. This requirement is satisfied by taking the core sequence, selecting one of the seven elective sequences, an appropriate number of additional courses from the list of technical electives, and completing 6 units of master’s level research. Students electing the “course work only” M.S. degree are strongly encouraged to select an additional elective sequence in place of the research requirement. Students interested in continuing for a Ph.D. are expected to choose the research option and enroll in 6 units of PETENG 361. All courses must be taken for a letter grade.
4. Students entering without an undergraduate degree in Petroleum Engineering must make up deficiencies in previous training. Not more than 10 units of such work may be counted as part of the minimum total of 45 units toward the M.S. degree.

Research subjects include certain groundwater hydrology and environmental problems, energy industry management, flow of non-Newtonian fluids, geothermal energy, natural gas engineering, oil and gas recovery, pipeline transportation, production optimization, reservoir characterization and modeling, carbon sequestration, reservoir engineering, reservoir simulation, and transient well test analysis.

RECOMMENDED COURSES AND SEQUENCES

The following list is recommended for most students. With the prior special consent of the student’s adviser, courses listed under technical electives may be substituted based on interest or background.

CORE SEQUENCE

<table>
<thead>
<tr>
<th>Course No. and Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CME 200. Linear Algebra with Application to Engineering Computations</td>
<td>3</td>
</tr>
<tr>
<td>CME 204. Partial Differential Equations in Engineering (formerly ME 300B)</td>
<td>3</td>
</tr>
<tr>
<td>PETENG 175. Well Test Analysis</td>
<td>3</td>
</tr>
<tr>
<td>PETENG 221. Reservoir Engineering*</td>
<td>3</td>
</tr>
<tr>
<td>PETENG 246. Reservoir Characterization and Flow Modeling with Outcrop Data</td>
<td>3</td>
</tr>
<tr>
<td>PETENG 251. Thermodynamics of Equilibria</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
</tr>
</tbody>
</table>

* Students taking the Environmental sequence may substitute PETENG 227.
† Optional for students taking the Geostatistics and Reservoir Modeling sequence.

ELECTIVE SEQUENCE

Choose one of the following:

Crustal Fluids:
- GES 230. Physical Hydrogeology | 4 |
- GES 231. Contaminant Hydrogeology | 3 |
- GEOPHYS 200. Fluids and Tectonics | 3 |
Total | 10 |

Environmental:
- GES 231. Contaminant Hydrogeology | 4 |
- PETENG 227. Enhanced Oil Recovery | 3 |
- PETENG 240. Geostatistics | 3-4 |
- PETENG 260. Environmental Problems in Petroleum Engineering | 3 |
Total | 13-14 |

Enhanced Recovery:
- PETENG 225. Theory of Gas Injection Processes | 3 |
- PETENG 226. Thermal Recovery Methods | 3 |
- PETENG 227. Enhanced Oil Recovery | 3 |
Total | 9 |

Geostatistics and Reservoir Modeling:
- GEOPHYS 182. Reflection Seismology or GEOPHYS 262. Rock Physics | 3 |
- PETENG 240. Geostatistics for Spatial Phenomena | 3-4 |
- PETENG 241. Practice of Geostatistics | 3-4 |
Total | 9-11 |

Geothermal:
- CHEMENG 120B. Energy and Mass Transport | 4 |
- ME 131A. Heat Transfer | 3 |
- PETENG 269. Geothermal Reservoir Engineering or PETENG 102 Renewable Energy Sources | 3 |
Total | 9-10 |

Reservoir Performance:
- GEOPHYS 202. Reservoir Geomechanics | 3 |
- PETENG 223. Reservoir Simulation | 3-4 |
- PETENG 280. Oil and Gas Production Engineering | 3 |
Total | 9-11 |

Simulation and Optimization:
- PETENG 223. Reservoir Simulation | 3-4 |
- PETENG 224. Advanced Reservoir Simulation | 3-4 |
- PETENG 284. Optimization | 3 |
Total | 9-12 |

Renewable Energy:
- PETENG 102. Renewable Energy Sources | 3 |
- EE 293A. Fundamentals of energy Processes | 3-4 |
- EE 293B. Fundamentals of Energy Processes | 3-4 |
Total | 9-12 |

RESEARCH SEQUENCE

PETENG 361. Master’s Degree Research in Petroleum Engineering* | 6 |
Total units required for M.S. degree | 45 |

* Students selecting the company sponsored “course work only” for the M.S. degree may substitute an additional elective sequence in place of the research.

TECHNICAL ELECTIVES

Technical electives from the following list of advanced-level courses usually complete the M.S. program. In unique cases, when justified and approved by the adviser prior to taking the course, courses listed here may be substituted for courses listed above in the elective sequences.

- GEOPHYS 182. Reflection Seismology | 3 |
- GEOPHYS 190. Near Surface Geophysics | 3 |
- GEOPHYS 202. Reservoir Geomechanics | 3 |
- CME 294. Partial Differential Equations to Engineering (formerly 300B) | 3 |
- PETENG 130. Well Log Analysis | 3 |
- PETENG 224. Advanced Reservoir Simulation | 3 |
- PETENG 230. Advanced Topics in Well Logging | 3 |
- PETENG 260. Environmental Aspects of Petroleum Engineering | 3 |
- PETENG 267. Engineering Valuation and Appraisal of Oil and Gas Wells, Facilities and Properties | 3 |
- PETENG 269. Geothermal Reservoir Engineering | 3 |
- EE 293A. Fundamentals of Energy Processes | 3-4 |
- EE 293B. Fundamentals of Energy Processes | 3-4 |
- PETENG 273. Special Production Engineering Topics in Petroleum Engineering | 1-3 |
- PETENG 280. Oil and Gas Production | 3 |
- PETENG 281. Applied Mathematics in Reservoir Engineering | 3 |
- PETENG 284. Optimization | 3 |

M.S. IN INTEGRATED RESERVOIR MODELING

Starting with academic year 2002-03, a Master of Sciences option in Integrated Reservoir Modeling is offered in the Department of Petroleum Engineering for full-time students. This M.S. degree requires a minimum of 45 units of which 39 should be course units. The following courses are suggested for this program.

MATH SEQUENCE:

<table>
<thead>
<tr>
<th>Course No. and Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CME 200 Linear Algebra with Application to Engineering Computations (formerly ME 300A)</td>
<td>3</td>
</tr>
</tbody>
</table>
- PETENG 204 Partial Differential Equations in Engineering (formerly ME 300B) | 3 |

For students taking the Geostatistics and Reservoir Modeling sequence:
- PETENG 225. Theory of Gas Injection Processes | 3 |
- PETENG 226. Thermal Recovery Methods | 3 |
- PETENG 227. Enhanced Oil Recovery | 3 |
- GEOPHYS 182. Reflection Seismology or GEOPHYS 262. Rock Physics | 3 |
- PETENG 240. Geostatistics for Spatial Phenomena | 3-4 |
- PETENG 241. Practice of Geostatistics | 3-4 |
- PETENG 223. Reservoir Simulation | 3-4 |
- PETENG 280. Oil and Gas Production Engineering | 3 |
- PETENG 284. Optimization | 3 |
- GEOPHYS 202. Reservoir Geomechanics | 3 |
- PETENG 281. Applied Mathematics in Reservoir Engineering | 3 |
- PETENG 284. Optimization | 3 |

Total | 9-11 |
PETROLEUM ENGINEERING SEQUENCE:
PETENG 246. Reservoir Characterization and Flow Modeling 3
PETENG 130. Well Logging; or 3
PETENG 175. Well Test Analysis 3
PETENG 221. Fundamentals of Multiphase Flow; or 3
PETENG 222. Advanced Reservoir Engineering 3
PETENG 223. Reservoir Simulation 3-4

GEOSTATISTICS SEQUENCE:
PETENG 240. Geostatistics for Spatial Phenomena 3-4
PETENG 241. Practice of Geostatistics and Seismic Data Integration 3-4

GEOLOGY SEQUENCE:
GES 151. Sedimentary Geology 4
GES 253. Petroleum Geology 3

GEOPHYSICS SEQUENCE:
GEOPHYS 182. Reflection Seismology, or 3
GEOPHYS 183. Reflection Seismology Interpretation 1-4
GEOPHYS 262. Rock Physics 3

ENGINEER

The objective is to broaden training through additional work in engineering and the related sciences and by additional specialization.

Basic requirements include completion of 90 units of course work including 15 units of research (PETENG 362), and including all course requirements of the department’s master’s degree (39 units, excluding research). If the candidate has received credit for research in the M.S. degree, this credit ordinarily would be transferable to the Engineer degree, in which case a total of 9 additional research units would be required. No more than 10 of the 90 required units can be applied to overcoming deficiencies in undergraduate training.

At least 30 units in Engineering and closely allied fields must be taken in advanced work, that is, work beyond the master’s degree requirements and in addition to research (PETENG 362). These may include courses from the Ph.D. degree list below or advanced-level courses from other departments with prior consent of the adviser. All courses must be taken for a letter grade. The student must have a grade point average (GPA) of at least 3.0 in courses taken for the degree of Engineer. A thesis based on 15 units of research must be submitted and approved by the adviser, another faculty member, and the University Committee on Graduate Studies.

DOCTOR OF PHILOSOPHY

The Ph.D. degree is conferred upon demonstration of high achievement in independent research and by presentation of the research results in a written dissertation and oral defense.

Basic requirements include a minimum of 135 units of satisfactorily completed graduate study. Students must take at least 90 units beyond the 45 units required for the master’s degree. The 90 units are composed of 54 units of research and 36 units of course work. The student’s record must indicate outstanding scholarship. The student must pass the department’s qualifying examination, submit an approved research proposal, fulfill the requirements of the minor department if a minor is elected, and pass the University oral examination, which is a defense of the dissertation. The student must prepare a dissertation based on independent research and that makes a significant contribution to the field.

The specification of 36 units of course work is a minimum; in some cases the research adviser may specify additional requirements to strengthen the student’s expertise in particular areas. The 36 units of course work does not include teaching experience (PETENG 359), which is a requirement for the Ph.D. degree, nor any units in research seminars, which students are required to attend. All courses must be taken for a letter grade, with an average grade point average (GPA) of at least 3.25 in the 36 units of course work. Incoming Ph.D. students who earned their master’s degree at another institution are required to take at least 36 units of course work. No more than four of the nine courses that make up the strategic requirements for the Ph.D. qualifying exams are included in these 36 units (PETENG 175, 221, 222, 223, 227, 240, 251, 281). The 36 units of course work may include graduate courses in Petroleum Engineering (numbered 200 and above) and courses selected from the following list. Other courses may be substituted with prior approval by the adviser. In general, non-technical courses are not approved.

MATH AND APPLIED MATH

<table>
<thead>
<tr>
<th>Course No. and Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA 210A. Fundamentals of Compressible Flow</td>
<td>3</td>
</tr>
<tr>
<td>AA 214A. Numerical Methods in Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>AA 214B. Numerical Computation of Compressible Flow</td>
<td>3</td>
</tr>
<tr>
<td>CHEMENG 300. Applied Mathematics in Chemical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CEE 268. Groundwater Flow</td>
<td>3-4</td>
</tr>
<tr>
<td>CME 108. Introduction to Scientific Computing</td>
<td>3-4</td>
</tr>
<tr>
<td>CS 106X. Programming Methodology and Abstractions</td>
<td>5</td>
</tr>
<tr>
<td>CS 193D. Prof Software Deve W/C++</td>
<td>3</td>
</tr>
<tr>
<td>MATH 106 Functions of a Complex Variable</td>
<td>3</td>
</tr>
<tr>
<td>MATH 113. Linear Algebra and Matrix Theory</td>
<td>3</td>
</tr>
<tr>
<td>MATH 114. Linear Algebra and Matrix Theory</td>
<td>3</td>
</tr>
<tr>
<td>MATH 115. Functions of a Real Variable</td>
<td>3</td>
</tr>
<tr>
<td>MATH 131. Partial Differential Equations I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 132. Partial Differential Equations II</td>
<td>3</td>
</tr>
<tr>
<td>CME 200. Linear Algebra with Application to Engineering Computations (formerly ME 300A)</td>
<td>3</td>
</tr>
<tr>
<td>CME 204. Partial Differential Equations in Engineering (formerly ME 300B)</td>
<td>3</td>
</tr>
<tr>
<td>CME 206. Introduction to Numerical Methods for Engineering (formerly ME 300C)</td>
<td>3</td>
</tr>
<tr>
<td>ME 331 A, B. Classical Dynamics</td>
<td>3 ea.</td>
</tr>
<tr>
<td>ME335A, B, C. Finite Element Analysis</td>
<td>3 ea.</td>
</tr>
<tr>
<td>STATS 110. Statistical Methods in Engineering and Physical Sciences</td>
<td>3</td>
</tr>
<tr>
<td>STATS 116. Theory of Probability</td>
<td>4</td>
</tr>
<tr>
<td>STATS 200. Introduction to Statistical Inference</td>
<td>3</td>
</tr>
<tr>
<td>STATS 202. Data Analysis</td>
<td>3</td>
</tr>
</tbody>
</table>

SCIENCE

<table>
<thead>
<tr>
<th>Course No. and Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>GES 231. Contaminant Hydrogeology</td>
<td>4</td>
</tr>
<tr>
<td>GES 253. Petroleum Geology and Exploration</td>
<td>3</td>
</tr>
<tr>
<td>GEOPHYS 182. Reflection Seismology</td>
<td>3</td>
</tr>
<tr>
<td>GEOPHYS 190. Near Surface Geophysics</td>
<td>3</td>
</tr>
<tr>
<td>GEOPHYS 262. Rock Physics</td>
<td>3</td>
</tr>
</tbody>
</table>

ENGINEERING

<table>
<thead>
<tr>
<th>Course No. and Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEMENG 110. Equilibrium Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>CHEMENG 120A. Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>CHEMENG 120B. Energy and Mass Transport</td>
<td>3</td>
</tr>
<tr>
<td>CHEMENG 310A. Microscale Transport in Chemical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 298. Seminar in Fluid Mechanics</td>
<td>1</td>
</tr>
</tbody>
</table>

Ph.D. students are required to take the doctoral qualifying examination at the beginning of the second year of study. Students receiving a master’s degree from the Department of Petroleum Engineering and continuing on for a Ph.D. are required to take the qualifying examination at the first opportunity after the completion of the requirements for the master’s degree.

The qualifying examination consists of both a written and an oral section. The written part consists of three or four three-hour examinations on different subjects. The oral part is a three-hour examination in which members of the department faculty question the student. Students are required to apply for candidacy for the Ph.D. degree after passing the department’s qualifying examination.

Within a year of passing the qualifying examination, the student must prepare a short written report that contains a literature review and a research proposal. This proposal must be approved after oral examination by a committee made up of the student’s adviser and two other faculty, at least one of whom must be from the department.

The dissertation must be submitted in its final form within five calendar years from the date of admission to candidacy. Candidates who fail to meet this deadline must submit an Application for Extension of Candidacy for approval by the department chair if they wish to continue in the program.

PH.D. MINOR

To be recommended for a Ph.D. degree with Petroleum Engineering as a minor subject, a student must take 20 units of selected graduate-level lecture courses in the department. These courses must include PETENG 221 and 222. The remaining courses should be selected from PETENG 175, 223, 224, 225, 227, 240, 241, 251, 280, 281, and 284.
COURSES

WIM indicates that the course satisfies the Writing in the Major requirement. (AU) indicates that the course is subject to the University Activity Unit limitations (8 units maximum).

3 units, Win (Gerrissen, Durlofsky, Kovscek)

PETENG 102. Renewable Energy Sources and Greener Energy Processes —(Same as EARTHSYS 102.) The energy sources that power society are rooted in fossil energy although energy from the core of the Earth and the sun is almost inexhaustible; but the rate at which energy can be drawn from them with today’s technology is limited. The renewable energy resource base, its conversion to useful forms, and practical methods of energy storage. Geothermal, wind, solar, biomass, and tidal energies; resource extraction and its consequences. Recommended: 101, MATH 21 or 42. GER:DB-EngrAppSci
3 units, Spr (Horne, Kovscek)

PETENG 110Q. Technology in the Greenhouse: Options for Reducing Greenhouse Emissions from Energy Use —Stanford Introductory Seminar. Preference to sophomores. Technologies that might be employed to reduce emissions of greenhouse materials, such as carbon dioxide, methane, and black soot, that come from the generation and use of energy. Review of the sources of greenhouse materials in the current energy mix. The advantages and limitations of technologies that could be applied to reduce emissions. Examples include renewable sources such as wind and solar energy, more efficient use of energy, use of hydrogen, capture and storage of carbon dioxide, and nuclear power. Students choose individual energy areas for presentation and paper. GER:DB-EngrAppSci
3 units, Spr (Horne, Kovscek)

3 units, Aut (Juanes)

3 units, Win (Tchelepi)

PETENG 130. Well Log Analysis I —For earth scientists and engineers. Interdisciplinary, providing a practical understanding of the interpretation of well logs. Lectures, problem sets using real field examples: methods for evaluating the presence of hydrocarbons in rock formations penetrated by exploratory and development drilling. The fundamentals of all types of logs, including electric and non-electric logs.
3 units, Aut (Lindblom)

PETENG 155. Undergraduate Report on Energy Industry Training —Provides on-the-job practical training under the guidance of on-site supervisors geared to undergraduate level students. A concise report detailing work activities, problems, assignments and key results is required. Prerequisite: written consent of instructor.
1-3 units, Aut, Win, Spr, Sum (Staff)

PETENG 161. Statistical Methods for the Earth and Environmental Sciences: Geostatistics —(Same as GES 161.) Statistical analysis and graphical display of data, common distribution models, sampling, and regression. The variogram as a tool for modeling spatial correlation; variogram estimation and modeling; introduction to spatial mapping and prediction with kriging; integration of remote sensing and other ancillary information using co-kriging models; spatial uncertainty; introduction to geostatistical software applied to large environmental, climatological, and reservoir engineering databases; emphasis is on practical use of geostatistical tools. GER:DB-NatSci
3-4 units, Win (Caers)

PETENG 167. Engineering Valuation and Appraisal of Oil and Gas Wells, Facilities, and Properties —(Same as 267.) Appraisal of development and remedial work on oil and gas wells; appraisal of producing properties; estimation of productive capacity, reserves; operating costs, depletion, and depreciation; value of future profits, taxation, fair market value; original or guided research problems on economic topics with report. Prerequisite: consent of instructor. GER:DB-EngrAppSci
3 units, Win (Kourt, Pande)

3 units, Spr (Horne)

PETENG 180. Oil and Gas Production Engineering —(Same as 280.) Design and analysis of production systems for oil and gas reservoirs. Topics: well completion, single-phase and multi-phase flow in wells and gathering systems, artificial lift and field processing, well stimulation, inflow performance. Prerequisite: 120. Recommended: 130. GER:DB-EngrAppSci, WIM
3 units, Spr (Tchelepi)

PETENG 192. Undergraduate Teaching Experience —Leading field trips, preparing lecture notes, quizzes under supervision of the instructor. May be repeated for credit.
1-3 units, Aut, Win, Spr, Sum (Staff)

PETENG 193. Undergraduate Research Problems —Original and guided research problems with comprehensive report. May be repeated for credit.
1-3 units, Aut, Win, Spr, Sum (Staff)

PETENG 194. Special Topics in Energy and Mineral Fluids —May be repeated for credit.
1-3 units, Aut, Win, Spr, Sum (Staff)

PETENG 202. Reservoir Geomechanics —(Enroll in GEOPHYS 202.)
3 units, Win (Zoback)

PETENG 221. Fundamentals of Multiphase Flow —(For graduate students; see 121.)
3 units, Win (Tchelepi)

3 units, Spr (Durlofsky)

between black-oil and compositional models. Techniques for developing black-oil, compositional, thermal, and dual-porosity models. Practical considerations in the use of simulators for predicting reservoir performance. Class project. Prerequisite: 221 and 246, or consent of instructor. Recommended: CME 206 (formerly ME 300C).

3-4 units, Win (Durlofsky, Aziz, Tchelepi, Gerritsen)

PETENG 224. Advanced Reservoir Simulation — Topics include modeling of complex wells, coupling of surface facilities, compositional modeling, dual porosity models, treatment of full tensor permeability and grid nonorthogonality, local grid refinement, higher order methods, streamline simulation, upsampling, algebraic multigrid solvers, unstructured grid solvers, history matching, other selected topics. Prerequisite: 223 or consent of instructor. May be repeated for credit.

3 units, Aut (Aziz, Durlofsky, Juanes, Tchelepi)

3 units, Win (Orr)

3 units (Castanier) not given 2005-06

PETENG 227. Enhanced Oil Recovery — The physics, theories, and methods of evaluating chemical, miscible, and thermal enhanced oil recovery projects. Existing methods and screening techniques, and analytical and simulation based means of evaluating project effectiveness. Dispersion-convection-adsorption equations, coupled heat, and mass balances and phase behavior provide requisite building blocks for evaluation.

3 units, Spr (Kovscek) alternate years, not given 2006-07

PETENG 230. Advanced Topics in Well Logging — (Same as GEOPHYS 230.) State of the art tools and analyses; the technology, rock physical basis, and applications of each measurement. Hands-on computer-based analyses illustrate instructional material. Guest speakers on formation evaluation topics. Prerequisites: 130 or equivalent; basic well logging; and standard practice and application of electric well logs.

3 units, Spr (Lindblom)

PETENG 240. Geostatistics for Spatial Phenomena — (Same as GEOPHYS 240.) Probabilistic modeling of spatial and/or time dependent phenomena. Kriging and cokriging for gridding and spatial interpolation. Integration of heterogeneous sources of information. Multiple-point geostatistics and training image-based stochastic imaging of reservoir/field heterogeneities. Introduction to GSLIB and SGEMS software. Case studies from the oil and mining industry and environmental sciences. Prerequisites: introductory calculus and linear algebra, STATS 116, GES 161 or equivalent.

3-4 units, Win (Journel)

PETENG 241. Practice of Geostatistics and Seismic Data Integration — (Same as GEOPHYS 241A.) Students build a synthetic 3D fluvial channel reservoir model with layer depths, channel geometry, and facies-specific petrophysics and seismic properties, stressing the physical significance of geophysical data. Reference data set is sparsely sampled, providing the sample data typically available for an actual reservoir assessment. Geostatistical reservoir modeling uses well and seismic data, with results checked against the reference database. Software provided (GSLIB and SRBtools). Prerequisite: PETENG 240. Recommended: experience with Unix, Matlab/C++/Fortran programming.

3-4 units, Spr (Caers, Mukerji)

PETENG 242. Topics in Advanced Geostatistics — (Same as GES 242.) Conditional expectation theory and projections in Hilbert spaces; parametric versus non-parametric geostatistics; Boolean, Gaussian, fractal, indicator, and annealing approaches to stochastic imaging; multiple point statistics inference and reproduction; neural net geostatistics; Bayesian methods for data integration; techniques for upsampling hydrodynamic properties. May be repeated for credit. Prerequisites: 240, advanced calculus, C++/Fortran.

3-4 units (Journel) alternate years, given 2006-07

PETENG 244. Modeling of 3D Geological Objects with Gocad — Accurate 3D modeling of subsurface structures as prerequisite for decision making. Concepts and methods for modeling the complex geometries and spatial distribution of geological objects. Building 3D models using the Gocad software. The definition and placement of discrete curves and surfaces. Integration of diverse types of data. Flexible volume modeling algorithms used to conform the volume objects to both the structural model and the data.

3 units (Journel, Cauzon) not given 2005-06

3 units (Tarantola) not given 2005-06

PETENG 246. Reservoir Characterization and Flow Modeling with Outcrop Data — (Same as GES 246.) Project addresses a reservoir management problem by studying an outcrop analog, constructing geostatistical reservoir models, and performing flow simulation. How to use outcrop observations in quantitative geological modeling and flow simulation. Relationships between disciplines. Weekend field trip.

3 units, Aut (Aziz, Graham, Journel)

PETENG 247. Stochastic Simulation — Characterization and inference of statistical properties of spatial random function models; how they average over volumes, expected fluctuations, and implementation issues. Models include point processes (Cox, Poisson), random sets (Boolean, truncated Gaussian), and mixture of Gaussian random functions. Prerequisite: 240.

3 units, Aut (Journel, Lantuejoul)

3 units, Aut (Jessen)

PETENG 255. Master's Report on Energy Industry Training — Provides on-the-job training for master's degree students under the guidance of experienced, on-site supervisors. Students must submit a concise project report detailing work activities, problems, assignments, and key results. Prerequisite: consent of adviser.

1-3 units, Sum (Staff)

PETENG 259. Basic TA Training — For teaching assistants in Petroleum Engineering. Five two-hour sessions in the first half of the quarter. Awareness of different learning styles, grading philosophies, fair and efficient grading, text design; presentation and teaching skills, PowerPoint slide design; presentation practice in small groups. Taught in collaboration with the Center for Teaching and Learning.

1 unit, Spr (Gerritsen)

3 units (Juenes) not given 2005-06

PETENG 267. Engineering Valuation and Appraisal of Oil and Gas Wells, Facilities, and Properties—For graduate students; see 167.)

3 units, Win (Koort, Pandel)

PETENG 269. Geothermal Reservoir Engineering—Conceptual models of heat and mass flows within geothermal reservoirs. The fundamentals of fluid/heat flow in porous media; convective/conductive regimes, dispersion of solutes, reactions in porous media, stability of fluid interfaces, liquid and vapor flows. Interpretation of geothermal, geological, and well data to determine reservoir properties/characteristics. Geothermal plants and the integrated geothermal system.

3 units (Horne) not given 2005-06

PETENG 273. Special Topics in Petroleum Engineering

1-3 units, Aut, Win, Spr, Sum (Staff)

PETENG 280. Oil and Gas Production Engineering—For graduate students; see 180.)

3 units, Spr (Tchelepi)

PETENG 281. Applied Mathematics in Reservoir Engineering—The philosophy of the solution of engineering problems. Methods of solution of partial differential equations: Laplace transforms, Fourier transforms, wavelet transforms, Green’s functions, and boundary element methods. Prerequisites: CME 204 (formerly ME 300B) or MATH 131, and consent of instructor.

3 units (Staff) not given 2005-06

PETENG 284. Optimization: Deterministic and Stochastic Approaches

—Deterministic and stochastic methods for optimization in earth sciences and engineering. Linear and nonlinear regression, classification and pattern recognition using neural networks, simulated annealing and genetic algorithms. Deterministic optimization using non-gradient-based methods (simplex) and gradient-based methods (conjugated gradient, steepest descent, Levenberg-Marquardt, Gauss-Newton), eigen-value and singular value decomposition. Applications in petroleum engineering, geostatistics, and geophysics. Prerequisite: CME 200 (formerly ME 200A), or consent of instructor.

3 units, Aut (Horne)

PETENG 285. Research Seminars—Focused study in current research areas within the department. Graduate students may participate in advanced work in areas of particular interest prior to making a final decision on a thesis subject. May be repeated for credit. Prerequisite: consent of instructor.

PETENG 285A. SUPRI-A Research Seminar: Enhanced Oil Recovery

1 unit, Aut, Win, Spr (Kovscek, Castanier)

PETENG 285B. SUPRI-B Research Seminar: Reservoir Simulation

1 unit, Aut, Win, Spr (Aziz, Durlofsky, Tchelepi, Juenes)

PETENG 285C. SUPRI-C Research Seminar: Gas Injection Processes

1 unit, Aut, Win, Spr (Orr, Gerritsen, Jessen, Juenes)

PETENG 285D. SUPRI-D Research Seminar: Well Test Analysis

1 unit, Aut, Win, Spr (Horne)

PETENG 285F. SCRF Research Seminar: Geostatistics and Reservoir Forecasting—Stanford Center for Reservoir Forecasting.

1 unit, Aut, Win, Spr (Journel, Caers)

PETENG 285G. Geothermal Reservoir Engineering Research Seminar

1 unit, Aut, Win, Spr (Horne)

1 unit, Aut, Win, Spr (Aziz, Durlofsky)

PETENG 290. Numerical Modeling of Fluid Flow in Heterogeneous Porous Media—How to mathematically model and solve elliptic partial differential equations with variable and discontinuous coefficients describing flow in highly heterogeneous porous media. Topics include finite difference and finite volume approaches on structured grids, efficient solvers for the resulting system of equations, Krylov space methods, preconditioning, multi-grid solvers, grid adaptivity and adaptivity criteria, multiscale approaches, and effects of anisotropy on solver efficiency and accuracy. MATLAB programming and application of commercial or public domain simulation packages. Prerequisite: CME 200, 201, and 202 (formerly ME 300A,B,C), or equivalent with consent of instructor.

3 units (Gerritsen, Tchelepi) not given 2005-06

PETENG 300. Earth Sciences Seminar—(Same as GES 300, GEOPHYS 300, EARTHSYS 300, IPER 300.) Required for incoming graduate students except coterns. Research questions, tools, and approaches of faculty members from all departments in the School of Earth Sciences. Goals are: to inform new graduate students about the school’s range of scientific interests and expertise; and introduce them to each other across departments and research groups. Two faculty members present work at each meeting. May be repeated for credit.

1 unit, Aut (Matson, Graham)

1-3 units, Sum (Staff)

PETENG 359. Teaching Experience in Petroleum Engineering—For TAs in Petroleum Engineering. Course and lecture design and preparation; lecturing practice in small groups. Classroom teaching practice in a Petroleum Engineering course for which the participant is the TA (may be in a later quarter). Taught in collaboration with the Center for Teaching and Learning.

1 unit, Aut (Gerritsen, Dunbar)

PETENG 360. Advanced Research Work in Petroleum Engineering—Graduate-level work in experimental, computational, or theoretical research. Special research not included in graduate degree program.

1-10 units, Aut, Win, Spr, Sum (Staff)

PETENG 361. Master’s Degree Research in Petroleum Engineering—Experimental, computational, or theoretical research. Advanced technical report writing. Limited to 6 units total. 1-6 units, Aut, Win, Spr, Sum (Staff)

PETENG 362. Engineer’s Degree Research in Petroleum Engineering—Graduate-level work in experimental, computational, or theoretical research for Engineer students. Advanced technical report writing. Limited to 15 units total, or 9 units total if 6 units of 361 were previously credited.

1-10 units, Aut, Win, Spr, Sum (Staff)

PETENG 363. Doctoral Degree Research in Petroleum Engineering—Graduate-level work in experimental, computational, or theoretical research for Ph.D. students. Advanced technical report writing. 1-10 units, Aut, Win, Spr, Sum (Staff)

1-15 units, Aut, Win, Spr, Sum (Staff)
SCHOOL OF EDUCATION

Dean: Deborah J. Stipek
Associate Dean for Faculty Affairs: Edward Haertel
Associate Dean for Student Affairs: David Labaree
Associate Dean for Administration: Victoria Oldberg
Associate Dean for External Relations: Rebecca Smith
Associate Professors: Anthony L. Antonio, Armetah Ball, Brigid J. Barron, Joanne T. Boaler, Teresa C. LaFromboise, Susanna Loeb, Debra Meyerson, Sean Reardon, David Rogosa, Daniel Schwartz
Assistant Professors: Jennifer Adams, Bryan Brown, Daniel McFarland, Deanne R. Perez-Granados, Aki Murata, Na'ilah Suad Nasir, Joy Williamson
Associate Professors (Teaching): Stephen Davis, Shelley Goldman, Rachel Lotan
Lecturers: Denise Pope, Ann Porteus, Laura Post
Courtesy Professors: Carol Dweck, Eric Hanushek, Shirley Heath, John Kennedy, John Rickford
Consulting Assistant Professor: Robert Reich
Visiting Professor: Michael Kamil
School Offices: Cubberley 101
Mail Code: 94305-3096
Phone: (650) 723-2109
Email: info@suse.stanford.edu
Web Site: http://ed.stanford.edu

Courses given in the School of Education have the subject code EDUC. For a complete list of subject codes, see Appendix.

The School of Education prepares scholars, teachers, teacher educators, policy analysts, evaluators, researchers, administrators, and other educational specialists. Two graduate degrees with specialization in education are granted by the University: Master of Arts and Doctor of Philosophy. While no undergraduate majors are offered, the school does offer a number of courses for undergraduates, an undergraduate honors program, and a variety of tutoring programs.

The School of Education is organized into three Program Area Committees: Curriculum Studies and Teacher Education (C&TE); Psychological Studies in Education (PSE); and Social Sciences, Policy, and Educational Practice (SPSEP).

In addition, several cross-area programs are sponsored by faculty from more than one area. These programs include the doctoral Learning Sciences and Technology Design Program (LSTD); two master’s level programs: the Stanford Teacher Education Program (STEP) and the Learning, Design, and Technology Program (LDT); and the undergraduate honors program.

These Program Area Committees function as administrative units that act on admissions, plan course offerings, assign advisers, and determine program requirements. Various subspecialties or concentrations exist within most of these areas. Faculty members are affiliated primarily with one area but may participate in several programs. While there is a great deal of overlap and interdisciplinary emphasis across areas and programs, students are affiliated with one area committee or program and must meet its degree requirements.

Detailed information about admission and degree requirements, faculty members, and specializations related to these area committees and programs can be found in the publication School of Education Guide to Graduate Studies and at http://ed.stanford.edu.

The School of Education offers an eight-week summer session for admitted students only. The school offers no correspondence or extension courses, and in accordance with University policy, no part-time enrollment is allowed. Work in an approved internship or as a research assistant is accommodated within the full-time program of study.

UNDERGRADUATE PROGRAMS

The School of Education focuses on graduate education and research training and does not offer an undergraduate major. However, undergraduate education is of concern to the School, and courses and programs are available to those interested in the field of education. The following courses are appropriate for undergraduates:

99X. The Undergraduate Community Internship Practicum
102. Culture, Class and Educational Opportunity
103A. Exploring Elementary Teaching Junior Seminar
106. Interactive Media in Education
107. The Politics of International Cooperation in Education
110. Sociology of Education: The Social Organization of Schools
111. The Young Adult Novel: A Literature for and about Adolescents
124. Collaborative Design and Research of Technology: Integrated Curriculum
130. Introduction to Counseling
131. Mediation for Dispute Resolution
134. Career and Personal Counseling
135X. Race, Ethnicity, and Linguistic Diversity in Teacher Preparation
138Q. Educational Testing in American Society
149. Theory and Issues in the Study of Bilingualism
155. Development of Measuring Instruments
156A. Understanding Racial and Ethnic Identity
165. History of Higher Education in the United States
178X. Latino Families, Languages, and Schools
179. Urban Youth and their Institutions: Research and Practice
193A. Peer Counseling: Bridge Community
196. Feminist Theories of Work and Family
197. Education and the Status of Women: Comparative Perspective
199. Undergraduate Honors Seminar
201. History of Education in the United States
201A. History of African American Education
201B. Education for Liberation
202. Introduction to Comparative and International Education
204. Introduction to Philosophy of Education
208B. Curriculum Construction
212X. Urban Education
214. Popper, Kuhn, and Lakatos
218. Topics in Cognition and Learning: Spatial Cognition
220B. Introduction to the Politics of Education
220D. History of School Reform: Origins, Policies, Outcomes, and Explanations
221A. Policy Analysis in Education
224. Information Technology in the Classroom
232C. Introduction to Learning
243. Writing Across Languages and Cultures: Research on Writing and Writing Instruction
247. Moral Education
250B. Statistical Analysis in Educational Research: Analysis of Variance
255. Human Abilities
270A. Learning to Lead in Public Service Organizations
290. Leadership: Research, Policy, and Practice
294. Theories of Human Development
298. Online Learning Communities
304. The Philosophical and Educational Thought of John Dewey
305X. Progressive Education, the Free Child, and the Critics
306D. World, Societal, and Educational Change: Comparative Perspectives
312A. Traditions of Microsociology
312B. Contemporary Microsociology
323A. Introduction to Education Policy Analysis
326. Legal Dilemmas and Administrative Decision Making in Schools
342. Child Development and New Technologies
354X. School-Based Decision Making
356X. Memory, History, and Education
359A. Research in Science and Math Education: Assessment and Evaluation
370X. Theories of Cognitive Development
371X. Cognitive Development in Childhood and Adolescence
374A. Research Workshop: Knowledge Networks
377. Organization and Style in Research Reports Comparing Institutional Forms
382. Student Development and the Study of College Impact
384. Advanced Topics in Higher Education

HONORS PROGRAM
An honors program is available to undergraduates to supplement their regular majors outside the school. This program permits interested and able undergraduates at Stanford to build on the training received in their major field of study by pursuing additional courses and a research or practicum project in a related area of education.

Students apply for entry during the junior year. Applications are available on the web at http://www.stanford.edu/dept/SUSE/honors. The current director of the program is Professor John Krumboltz. At least one course must be taken from each of the following areas:

1. Educational policy and history in the U.S.; courses include American Education and Public Policy; History of Education in the United States; Children, Civil Rights, and Public Policy in the U.S.; Introduction to the Study of International Comparative Education; History of Higher Education in the U.S.
2. Contemporary problem areas; courses include Urban Youth and their Institutions: Research and Practice; Theory and Issues in the Study of Bilingualism; Education and the Status of Women: Comparative Perspectives; Contemporary Social Issues in Child and Adolescent Development.
3. Foundational disciplines; courses include Social Sciences and Educational Analysis; Problems in Sociology of Education; Problems of Intelligence, Information, and Learning; Introduction to Philosophy of Education.

A directed reading course as well as directed research courses with a faculty member in Education are also required. Students in the program should enroll in 199A,B,C, Undergraduate Honors Seminar, during their senior year.

Near the end of Spring Quarter, successful candidates for honors orally present brief reports of their work and findings at a mini-conference. All honors students in Education are expected to attend this conference.

COTERMINAL BACHELOR’S AND MASTER’S PROGRAM
The School of Education admits a small number of students from undergraduate departments within the University into a coterminal bachelor’s and M.A. program. For information about the coterminal option through the Stanford Teacher Education Program (STEP), see the details under STEP below. Students in this program receive the bachelor’s degree in their undergraduate major and the master’s degree in Education. Approval of the student’s undergraduate department and admission to the School of Education M.A. program are required. Undergraduates may apply when they have completed at least 120 units, and must submit their application no later than the quarter prior to the expected completion of their undergraduate degree. The number of units required for the M.A. degree depends on the program requirements within the School of Education; the minimum is 45 units.

Applicants may obtain coterminal degree application materials from the School of Education’s Admissions Office in Cubberley, Room 140. For University coterminal degree program rules and University application forms, see http://registrar.stanford.edu/publications/#Coterm.

GRADUATE PROGRAMS
The School of Education offers several advanced degree programs described below. Requirements vary somewhat across programs. Both University and School of Education requirements must be met for each degree. The University requirements are detailed in the “Graduate Degrees” section of this bulletin. Students are urged to read this section carefully, noting residency, tuition, and registration requirements. A student who wishes to enroll for graduate work in the School of Education must be qualified and admitted to graduate standing by one of the school’s area committees and approval of the Associate Dean of Student Affairs.

Complete information about admissions procedures and requirements is available at http://gradadmissions.stanford.edu, or by writing Stanford University Graduate Admissions, Old Union, 520 Lasuen Mall, Stanford, CA 94305-3005, or at http://ed.stanford.edu/suse. The admissions packet includes the publication School of Education Guide to Graduate Studies, which outlines degrees, programs, admission and graduation requirements, and research interests of the faculty. All applicants must submit scores from the Graduate Record Examination General Test (verbal, quantitative, and analytical or analytical writing areas); TOEFL scores are also required from those whose first language is not English. Applicants to the Stanford Teacher Education Program are also required to submit specific test scores or acceptable equivalents as required by the California Commission on Teacher Credentialing; see the section on STEP below. Test information is available at http://ed.stanford.edu/suse.

MASTER OF ARTS
The M.A. degree is conferred by the University upon recommendation of the faculty of the School of Education and the University Committee on Graduate Studies. The minimum unit requirement is 45 quarter units earned at Stanford as a graduate student. Students must maintain a grade point average (GPA) of 3.0 or better in courses applicable to the degree, and a minimum of 27 units must be taken in the School of Education. Students typically enroll in 15 to 18 units per quarter. They must enroll in at least 11 units of work each quarter unless their program makes special provision for a lower quarterly minimum. Master’s students should obtain detailed program requirements from the Master’s Coordinator, located in Academic Services in the School of Education. Most programs require a final project, scholarly paper, or monograph. Additional detailed information regarding program content, entrance, and degree requirements is available at http://ed.stanford.edu/suse and in the School of Education Guide to Graduate Studies. Upon admission, each student is assigned a faculty adviser from the appropriate area committee to begin early planning of a coherent program.

Master of Arts degrees are offered for the following specializations:
- Curriculum and Teacher Education.
- Students may specialize in English, Literacy, Mathematics, Science, or History/Social Science Education.
- International Comparative Education
- International Educational Administration and Policy Analysis
- Joint Degree Program with Graduate School of Business (MBA/MA) Policy, Organization, and Leadership Studies
- Learning, Design and Technology
- Social Sciences in Education. Students may specialize in anthropology, economics, educational linguistics, history, philosophy or sociology of education, or interdisciplinary studies.

* This program in CTE is not a credentialing program; for the latter, see STEP below.

In addition, an M.A. degree with a teaching credential is offered in the Stanford Teacher Education Program (Cross-Area—STEP).
STANFORD TEACHER EDUCATION PROGRAM (STEP)

STEP offers two Master of Arts programs to prepare college graduates for careers as teachers in secondary schools and in elementary schools. STEP-Secondary prepares humanities and sciences students to become teachers of English, languages (French, German, Japanese, Spanish), mathematics, science (biology, chemistry, earth science, physics), and history/social science. STEP-Elementary prepares students to be teachers in California K-8 schools. To be successful in classrooms with diverse students, STEP helps participants become more aware of their values, more flexible in their teaching and learning styles, and more knowledgeable in their subject matter.

The 12-month STEP year begins in June (Secondary) or August (Elementary) with a Summer Quarter of intensive academic preparation and experience in a local summer school. During the academic year, students take courses in professional education and academic subjects; they also teach part-time in elementary, middle or high schools for the entire public school year. The master’s degree and Teaching Credential require 45 quarter units, taken during four quarters of continuous residency.

Stanford undergraduates who enroll in STEP through the coterminal program must have their B.A. conferred prior to commencing the four quarters of the STEP program. Students complete their undergraduate degree prior to beginning Education study that concludes in a master’s degree following the STEP student teaching year.

Applicants are required to pass the California Basic Educational Skills Test (CBEST) and must demonstrate subject matter competence in one of two ways: (1) by passing the CSET subject assessment test in their field, or (2) by completing a California state-approved subject matter preparation program.

Further information regarding admission requirements, course work, and credential requirements is available at http://ed.stanford.edu/suse and in the School of Education Guide to Graduate Studies.

DOCTORAL DEGREES

The School of Education offers the Doctor of Philosophy (Ph.D.) degree in all program area committees. The degree is conferred by the University upon recommendation by the faculty of the School of Education and the University Committee on Graduate Studies. The Ph.D. requires a minimum of 135 units of course work and research completed at Stanford beyond the baccalaureate degree. Students may transfer up to 45 units of graduate course work taken within the past seven years. Students must maintain a grade point average (GPA) of 3.0 (B) or better in courses applicable to the degree.

Students should note that admission to the doctoral program does not constitute admission to candidacy for the degree. Students must qualify and apply for candidacy by the end of their second year of study and should obtain information about procedures and requirements during their first year from the School’s doctoral programs office in Cubberley 135.

The Ph.D. degree is designed for students who are preparing for research work in public school systems, branches of government, or specialized institutions; teaching roles in education in colleges or universities, and research connected with such teaching; or other careers in educational scholarship and research.

Ph.D. students must complete a minor in another discipline taught outside the school, or hold an acceptable master’s degree outside the field of education, or complete an approved individually designed distributed minor that combines relevant advanced work taken in several disciplines outside the school.

Upon admission, the admitting area committee assigns an initial adviser from its faculty who works with the student to establish an appropriate and individualized course of study, a relevant minor, and project research plans. Other faculty members may also be consulted in this process. Details about administrative and academic requirements for each area committee and the School of Education, along with the expected timelines to complete program milestones, are given in the publication School of Education Doctoral Degree Policies and Guidelines, available for download at http://ed.stanford.edu/suse/programs-degrees/degree-requirements.html.

The following doctoral specializations (with their sponsoring area and concentration) are offered:

- Administration and Policy Analysis (SSPEP-APA)
- Anthropology of Education (SSPEP-SSE)
- Child and Adolescent Development (PSE)
- Economics of Education (SSPEP-SSE)
- Educational Linguistics (SSPEP-SSE)
- Educational Psychology (PSE)
- English Education/Literacy Studies (C&TE)
- General Curriculum Studies (C&TE)
- Higher Education (SSPEP-APA)
- History of Education (SSPEP-SSE)
- International Comparative Education (SSPEP-ICE)
- Learning Sciences and Technology Design (CTE, PSE, SSPEP)
- Mathematics Education (C&TE)
- Philosophy of Education (SSPEP-SSE)
- Science Education (C&TE)
- Interdisciplinary Studies (SSPEP-SSE)
- History/Social Science Education (C&TE)
- Sociology of Education (SSPEP-SSE)
- Teacher Education (C&TE)

PH.D. MINOR FOR STUDENTS OUTSIDE EDUCATION

Candidates for the Ph.D. degree in other departments or schools of the University may elect to minor in Education. Requirements include a minimum of 20 quarter units of graduate course work in Education and a clear field of concentration. Students choosing to minor in education should meet with the Associate Dean for Student Affairs to determine a suitable course of study early in their program.

COURSES

OTHER DIVISIONS OF THE UNIVERSITY

Teachers, administrators, researchers, and specialists are expected to have substantial knowledge of a variety of academic fields outside the areas encompassed by professional education. Graduate students in the School of Education are, therefore, urged to consider the courses offered in other divisions of the University in planning their programs.

The numbering of courses in the School of Education identifies the approximate course level and its intended audience:

Below 100 level — For undergraduates

100-level — Primarily for undergraduates (graduate students may enroll)

200- and 300-level — For M.A. and first- and second-year doctoral students, and qualified undergraduates

400-level — Research seminars or similar courses primarily for third-year doctoral students and beyond

Course descriptions are in numerical order and indexed by program areas.

An ‘X’ suffix denotes a new experimental course. With faculty approval, after being taught twice, it can be offered as a regular course in the School of Education.

An ‘S’ suffix denotes a special course, given only once and usually taught by visiting faculty.

An ‘E’ suffix denotes a course that is part of the STEP-Elementary curriculum.

EDUCATION COURSES

3-5 units, Aut (Davis)
EDUC 95Q. Exploring School Reforms — Stanford Introductory Seminar. Preference to sophomores considering careers in education and who want to combine this course with fieldwork or school visits. Case studies of school reform and issues of continuity and change in education. Topics: origins, outcomes, and explanations of social movements that have worked for social justice in education; the balance of social diversity and shared political values; the assessment of success in education reform; the meanings of progressive and traditional in teaching and learning, and their relationship to the No Child Left Behind law.
2 units, Win (Tyack)

EDUC 98X. Service Learning Practicum — For Alternative Spring Break trip leaders. The skills and philosophical framework to develop and lead an ASB experience.
1 unit, Aut (McConnell)

EDUC 99X. The Undergraduate Community Internship Practicum — Goal is to provide undergraduates with understanding of the environments and contexts of school-age youth and their families. Students, primarily juniors in the STEP Coterminal Teaching Program engaged in approved community-based internships, discuss the nature of community and how community dynamics affect youth and their families, students’ relationships to school, and academic achievement.
1-2 units (Stout) not given 2005-06

EDUC 101X. Undergraduate Teaching Practicum — Students engage in real world teaching by observing and assisting teachers in the classroom, and being involved in structured interactions such as tutoring. Weekly meetings concerning field experiences, readings, and developing skills and knowledge. This course provides the opportunity to consider whether a teaching career is a good match.
3-5 units, Aut (Staff)

EDUC 102. Culture, Class, and Educational Opportunity — Upward Bound and EPASSA counselors work with students from educationally disadvantaged backgrounds. Topics: language, education, culture and family, class management, school finance, and community-school relations. Mandatory school visits and classroom observations. Enrollment limited to 15. (SSPEP)
4 units (Staff) not given 2005-06

EDUC 103A. Exploring Elementary Teaching: Seeing a Child through Literacy — For undergraduates to engage in the real world of teaching; required of all STEP elementary credential candidates. Focus is on teaching struggling young readers. The role of instruction in literacy development; supervised tutoring of a child; seeing the worlds of school, print, and learning through the eyes of a child. Ravenswood Reads tutors encouraged to enroll.
3 units, Aut (Juel)

EDUC 103B. Race, Ethnicity, and Linguistic Diversity in Classrooms: Sociocultural Theory and Practices — (Graduate students register for 337X.) Undergraduates engage in the real world of teaching. Focus is on classrooms with students from diverse racial, ethnic and linguistic backgrounds. Studies, writing, and media representation of urban and diverse school settings; implications for transforming teaching and learning. Issues related to developing teachers with attitudes, dispositions, and skills necessary to teach diverse students.
3 units, Win (Ball)

EDUC 103C. Educational Policy, Diversity, and English Learners — Undergraduates engage in the real world of teaching. Historical and legal foundations, and materials, methods, and strategies for English and primary language development. Students tutor an English learner.
3 units, Spr (Padilla)

EDUC 106. Interactive Media in Education — Workshop. (CTE) 3-5 units, Aut (Walker)

EDUC 107. The Politics of International Cooperation in Education — (Ph.D. students register for 307B; see 307B.) For undergraduates and master’s students. (SSPEP/ICE, APA)
3-4 units, Win (Staff)

EDUC 108X. Case Studies from the History of Science — Case studies, primarily from the histories of chemistry, geology, and biology, inform the practice of secondary science teaching, primarily for co-terminal students.
2 units (Lythcott) not given 2005-06

EDUC 110. Sociology of Education: The Social Organization of Schools — (Graduate students register for 310; same as SOC 132/332.) Topics and case studies that elaborate on the embeddedness of classrooms and schools in social environments, spanning school processes such as stratification, authority, moral and technical specialization, curricular differentiation, classroom instruction, voluntary associations, social crowds, and peer influence. (SSPEP) GER:DB-SocSci
4 units, Spr (McFarland)

EDUC 111. The Young Adult Novel: A Literature For and About Adolescents — For undergraduates considering teaching or working with adolescents, and for those planning to apply to the coterminal program in the Stanford Teacher Education program (STEP). Students work together to define the genre of young adult novels. What they reveal about adolescence in America. How to read and teach young adult literature.
5 units (Grossman) not given 2005-06

EDUC 111B. The Teaching of Shakespeare — Relationships between teenagers and Shakespeare’s plays; challenges for adolescents and their teachers. Contributions from drama, English, and education. Students design and perform workshops for real teen audiences. Neither acting experience nor knowledge of Shakespearean literature required.
3 units (Wolf) not given 2005-06

EDUC 114N. Linguistic Foundations of Racial Strife in Schools and Society: Global Perspectives — Stanford Introductory Seminar. Preference to sophomores. Linguistic diversity in the U.S. and elsewhere, focusing on racial strife in schools and their surrounding societies. Topics include: colonization, the displacement of Native Americans, slavery, immigrant groups, the growth of public education, and other social movements. Comparable controversies in other countries including racial conflicts in England. Debates about affirmative action and controversies surrounding Ebonics and bilingual education. Web page for student work.
3 units (Baugh) not given 2005-06

EDUC 115N. Identities, Race, and Culture in Urban Schools — Stanford Introductory Seminar. Preference to sophomores. How urban youth come to a sense of themselves as students, members of cultural and racial groups, and young people in urban America. The nature and interaction of racial and academic identities: how identity takes shape; how it has been conceptualized. The relation between identities and learning. Urban schools as contexts for identity development. Theoretical perspectives include psychology, sociolinguistics, sociology, anthropology, and education. Students shadow a high-school student in a public school and write a case study.
3 units (Nasir) not given 2005-06

EDUC 116X. Service Learning as an Approach to Teaching — History, theory, and practice. Topics include: responsive community partnerships, cultural awareness, the role of reflection, and best practices in service learning.
3 units, Spr (Cotterman)

EDUC 117X. Research and Policy on Postsecondary Access — (Graduate students register for 417X.) The transition from high school to college. K-16 course focusing on high school preparation, college choice, remediation, pathways to college, and first-year adjustment. The role of educational policy in postsecondary access.
3 units (Antonio) not given 2005-06
EDUC 118X. Community-Based Research on Youth Development — Training seminar for students engaged in community-based research. Topics include: theoretical perspectives on youth development, survey and interview protocol development, quantitative and qualitative data collection methods, and data analysis. Students conduct a research project in a Bay Area community, examining youth development at school, on the sports field, and in a leadership program. Final project may include a proposal for new study, literature review, or thesis chapter.
1-4 units (Strobel, Galloway) not given 2005-06

EDUC 121X. Leadership and Civic Responsibility — How leaders from public and private occupations exemplify civic responsibility. Theories and attributes of leadership behavior that promote the public welfare, civic responsibility, and social justice. Relationships among leadership, civic responsibility, and education. Guest speakers.
2 units (Davis) not given 2005-06

EDUC 124. Collaborative Design and Research of Technology: Integrated Curriculum — For education students interested in math and science curriculum development. Studio-based, hands-on approach to the research and development of technology tools and curriculum materials. Focus is on the role that technologies can play in teaching and learning in the content areas.
3-4 units, Win (Goldman)

EDUC 130. Introduction to Counseling — The theories and techniques of counseling, emphasizing the clients’ individual and cultural differences, and construction of one’s own theory of the counseling process and outcome. Two psychotherapeutic theories, cognitive-behavioral and existential-humanistic, are supplemented with a third theory of each student’s choice. Experiential, problem-based focus on how to develop self-awareness and conceptual understandings of the counseling process in culturally diverse contexts. (PSE)
3 units, Win (Krumboltz)

EDUC 131. Mediation for Dispute Resolution — (Same as PSYCH 152.) Mediation as more effective and less expensive than other forms of settling disputes such as violence, lawsuits, or arbitration. How mediation can be structured to maximize the chances for success. Simulated mediation sessions.
3 units, Aut (Krumboltz)

EDUC 134. Career and Personal Counseling — (Graduate students register for 234; same as PSYCH 192.) Methods of integrating career and personal counseling with clients and counselors from differing backgrounds. Practice with assessment instruments. Case studies of bicultural role conflict. Informal experience in counseling. (PSE)
3 units, Spr (Krumboltz)

EDUC 136. World, Societal, and Educational Change: Comparative Perspectives — (Graduate students register for 306D; see 306D; same as SOC 231.)
4-5 units, Win (Ramirez)

EDUC 140T. Technology and Literacy — Influences of computer technology on literacy and learning to read and write. The advantages and limits of text. Emerging technologies.
3 units (Kamil) not given 2005-06

EDUC 144X. STEP Elementary Child Development — How schools form a context for children’s social and cognitive development. Focus is on early and middle childhood. Transactional processes between children and learning opportunities in classroom contexts. Topics include: alternative theoretical perspectives on the nature of child development; early experience and fit with traditional school contexts; assessment practices and implications for developing identities as learners; psychological conceptions of motivational processes and alternative perspectives; the role of peer relationships in schools; and new designs for learning environments. Readings address social science and methodological issues.
3-4 units, Aut (Barron, Perez-Granados)

EDUC 147X. Human-Computer Interaction in Education — Required for students in the Learning Design and Technology Master’s Program. Concepts underlying the design of human-computer interaction including usability and affordances, direct manipulation, systematic design methods, user conceptual models and interface metaphors, design languages and genres, human cognitive and physical ergonomics, information and interactivity structures, design tools, and environments. Studio/discussion component applies these principles to the design of interactive technology for teaching and learning.
3 units (Walker) not given 2005-06

EDUC 148X. Critical Perspectives on Tutoring English Language Learners — Theoretical foundation for volunteer tutors of English language learners in urban environments working with children in school-based programs or adults in community-based settings.
3-5 units (Valdés) not given 2005-06

EDUC 149. Theory and Issues in the Study of Bilingualism — (Graduate students register for 249; see 249; same as SPANLIT 207.) (SSPEP)
3-5 units, Aut (Valdés)

EDUC 150. Introduction to Data Analysis and Interpretation — Primarily for master’s students with little or no experience. Focus is on reading literature and interpreting descriptive and inferential statistics, especially those commonly found in education. Topics: basic research design, instrument reliability and validity, description statistics, correlation, t-tests, simple analysis of variance, simple and multiple regression, and contingency analysis.
3-4 units, Aut, Win (Porteous)

EDUC 151. Introduction to Qualitative Research Methods — Primarily for master’s students. Issues, ideas, and methods.
3-4 units, Aut (Pope)

EDUC 151B. Qualitative Research Methods: Part 2 — Primarily for master’s students. Prerequisite: 151X.
4 units (Staff) not given 2005-06

EDUC 153X. School Choice: The Role of Charter Schools — Is school choice, including vouchers, charter schools, contract schools, magnet schools, district options, and virtual schools, a threat or an opportunity for public education? Focus is on the charter school movement nationally and in California as reform strategy. Roles and responsibilities of charter schools emphasizing issues of governance, finance, curriculum, standards, and accountability.
3 units, Win (Kushner)

EDUC 155. Development of Measuring Instruments — For students planning to develop written or performance tests or questionnaires for research and evaluation, and for teachers wishing to improve classroom examinations. Planning tests, writing items, item tryout and criticism, qualities desired in tests, and interview techniques. Lectures, case studies, and practical exercises. (PSE)
3 units (Haertel) not given 2005-06

EDUC 156A. Understanding Racial and Ethnic Identity — African American, Native American, Mexican American, and Asian American racial and ethnic identity development; the influence of social, political and psychological forces in shaping the experience of people of color in the U.S. The importance of race in relationship to social identity variables including gender, class, and occupational, generational, and regional identifications. Bi- and multiracial identity status, and types of white racial consciousness.
3-5 units, Win (LafRontboise)

EDUC 160. Introduction to Statistical Methods in Education — (Master’s students register for 150.) For doctoral students with little or no prior statistics. Organization of data, descriptive statistics, elementary methods of inference, hypothesis testing, and confidence intervals. Computer package used. Students cannot also receive credit for PSYCH 60 or for STATS 60/160. (all areas)
4 units, Aut (Shavelson)
EDUC 165. History of Higher Education in the U.S.—(Graduate students register for 265; see 265.) (SSPEP-APA)
3-4 units, Spr (Labaree)

EDUC 166. The Centrality of Literacies in Teaching and Learning—Focus is on principles in understanding, assessing, and supporting the reading and writing processes, and the acquisition of content area literacies in secondary schools. Literacy demands within particular disciplines and how to use oral language, reading, and writing to teach content area materials more effectively to all students. (STEP)
3 units, Sum (Ball)

EDUC 167. Educating for Equity and Democracy—Introduction to the theories and practices of equity and democracy in education. How to think about teaching and schooling in new ways; the individual moral and political reasons for becoming a teacher. (STEP)
3 units, Sum (McDermott)

EDUC 176X. Psychological Issues in Old Age—Development and decline as contexts for the challenges of psychological issues in old age.
2 units (Staff) not given 2005-06

EDUC 177. Education of Immigrant Students: Psychological Perspectives—(Graduate students register for 277.) Historical and contemporary approaches to educating immigrant students. Case study approach focuses on urban centers to demonstrate how stressed urban educational agencies serve immigrants and native-born U.S. students when confronted with overcrowded classrooms, controversy over curriculum, current school reform movements, and government policies regarding equal educational opportunity. (SSPEP)
4 units, Win (Padilla)

EDUC 178X. Latino Families, Languages, and Schools—The challenges facing schools to establish school-family partnerships with newly arrived Latino immigrant parents. How language acts as a barrier to home-school communication and parent participation. Current models of parent-school collaboration and the ideology of parental involvement in schooling. (SSPEP)
3-5 units (Valdés) not given 2005-06

EDUC 179. Urban Youth and Their Institutions: Research and Practice—(Graduate students register for 279.) The determinants and consequences of urban life for youth, emphasizing disciplinary and methodological approaches, and the gap between the perspectives of state and local organizations and those of youth and their communities. The diversity of urban youth experiences with respect to ethnicity, gender, and immigration histories. Case studies illustrate civic-level and grassroots institutions, their structures, networks, and philosophies; historical and contemporary realities of urban youth for policy makers, educators, and researchers. Limited enrollment. Prerequisite: consent of instructor. (SSPEP/APA)
4-5 units (McLaughlin) not given 2005-06

EDUC 179B. Youth Empowerment and Civic Engagement—(Graduate students register for 279B.) Focus is on youth development policies and practices: what makes them effective, and how they operate in broader institutional contexts. Research-based information; conceptual underpinnings; best learning from experience; and the perspective of expert youth workers, policymakers, and youth about what works.
2-4 units (McLaughlin) not given 2005-06

EDUC 180. Directed Reading in Education—For undergraduates and master’s degree students. (all areas)
1-15 units, Aut, Win, Spr, Sum (Staff)

EDUC 185. Master’s Thesis—(all areas)
1-15 units, Aut, Win, Spr, Sum (Staff)

EDUC 190. Directed Research in Education—For undergraduates and master’s students. May be repeated for credit. (all areas)
1-15 units, Aut, Win, Spr, Sum (Staff)

EDUC 191X. Methodology Workshop—Two sessions on developing questionnaires or surveys; individual coaching by instructors. Focus is on obtaining quantitative information; some qualitative information. Prerequisite: students should be starting or in the process of developing a questionnaire or survey for research purposes.
1-2 units (Porteus) not given 2005-06

EDUC 193A. Peer Counseling: Bridge Community—Topics: verbal and non-verbal skills, open and closed questions, paraphrasing, working with feelings, summarization, and integration. Individual training, group exercises, role play practice with optional video feedback. Sections on relevance to crisis counseling and student life. Guest speakers from University and community agencies. Students develop and apply skills in University settings.
2 units, Aut, Win, Spr (Mendoza-Newman)

EDUC 193B. Peer Counseling: Chicano Community—Topics: verbal and non-verbal attending and communication skills, open and closed questions, working with feelings, summarization, and integration. Salient counseling issues including Spanish-English code switching in communication, the role of ethnic identity in self-understanding, the relationship of culture to personal development, and Chicana/o student experience in University settings. Individual training, group exercises, role play, and videotape practice.
2 units, Aut (Martinez)

EDUC 193C. Peer Counseling: The African American Community—Topics: the concept of culture, Black cultural attributes and their effect on reactions to counseling, verbal and non-verbal attending, open and closed questions, working with feelings, summarization, and integration. Reading assignments, guest speakers, role play, and videotaped practice. Students develop and apply skills in the Black community on campus or in other settings that the student chooses.
2 units, Aut (Edwards)

EDUC 193F. Peer Counseling: Asian American Community—Topics: the Asian family structure, and concepts of identity, ethnicity, culture, and racism in terms of their impact on individual development and the counseling process. Emphasis is on empathic understanding of Asians in America. Group exercises.
2 units, Spr (Brown)

EDUC 193N. Peer Counseling: Native American Community—Verbal and non-verbal communication, strategic use of questions, methods of dealing with strong feelings, and conflict resolution. How elements of counseling apply to Native Americans including client, counselor, and situational variables in counseling, non-verbal communication, the role of ethnic identity in self-understanding, the relationship of culture to personal development, the impact of family on personal development, gender roles, and the experience of Native American students in university settings. Individual skill development, group exercises, and role practice.
2 units, Win (Simms, LaFromboise, Martinez)

EDUC 193S. Peer Counseling on Comprehensive Sexual Health—Factual information on sexually transmitted infections and diseases, and birth control methods. Topics related to sexual health such as communication, societal attitudes and pressures, pregnancy, abortion, and the range of sexual expression. Role-play and peer-education outreach projects. Required for those wishing to counsel at the Sexual Health Peer Resource Center (SHPRC).
1 unit, Aut, Win, Spr (Martinez)

EDUC 196. Feminist Theories of Work and Families—(Same as FEMST 102L.) Economic, sociological, and legal perspectives; mainstream and feminist theories are contrasted. Emphasis is on the present day U.S. with issues in other countries and/or other historical periods. Topics: labor force participation, occupational segregation, labor market discrimination, emotional labor, unpaid work, caring labor, child care, combining work and family, single-parent families, poverty, marriage, and divorce.
4-5 units (Strober) not given 2005-06
EDUC 197. Education and the Status of Women: Comparative Perspective—Theories and perspectives from the social sciences relevant to the role of education in changing, modifying, or reproducing structures of gender differentiation and hierarchy. Cross-national research on the status of women and its uses to evaluate knowledge claims. (SSPEP) GER:EC-Gender
3-4 units (Staff) not given 2005-06

EDUC 198X. Tutoring with Adolescents: Ravenswood Writes—(Same as PWR 198X.) Strategies and approaches for teaching writing to students from diverse backgrounds and languages, and cultural and learning styles. Course prepares students to become tutors for Ravenswood Writes. Prerequisites: application and committee approval.
3 units, Spr (Ball, Lunsford)

EDUC 199A,B,C. Undergraduate Honors Seminar—Required for all juniors and seniors in the honors program in the School of Education. Supports students’ involvement and apprenticeships in educational research. Participants are expected to share ongoing work on their honors thesis. Prerequisite: consent of instructor.
1 unit, A: Aut, B: Win, C: Spr (Krambolz)

EDUC 200. The Work of Art and the Creation of Mind—Collaboration among the Art, Dance, Drama, and Music programs, and the School of Education. The relationship between the work of art and the creation of mind: the work of art as a task of making something and as a form that has been made. How a conception of art develops and refines the mind. Observation of artists at work. The relationship between forms of art and forms of thought. What does either the perception or creation of art in any of its forms do to how one thinks and knows? GER:DB-Hum
4 units (Staff) not given 2005-06

EDUC 201. History of Education in the United States—How education came to its current forms and functions, from the colonial experience to the present. Focus is on the 19th-century invention of the common school system, 20th-century emergence of progressive education reform, and the developments since WW II. The role of gender and race, the development of the high school and university, and school organization, curriculum, and teaching. (SSPEP) GER:DB-Hum
3-4 units, Win (Williamson)

EDUC 201A. History of African American Education—Pivotal points in African American educational history including literacy attempts during slavery, the establishment of historically Black colleges and universities, the debate between liberal and vocational education, Black student rebellions on campuses during the 20s, and the establishment of Black studies and cultural centers. (SSPEP) GER:DB-Hum
3-4 units, Aut (Williamson)

EDUC 201B. Education for Liberation—How ethnic, gender, and religious groups have employed education to advance group self-determination and autonomy throughout history. How reformers attempted to impose educational prescriptions on these groups.
3-4 units, Aut (Williamson)

EDUC 202. Introduction to Comparative and International Education—Contemporary theoretical debates about educational change and development, and the international dimension of issues in education. Emphasis is on the development of students’ abilities to make cross-national and historical comparisons of educational phenomena. (SSPEP/ICE)
4-5 units, Aut (Staff)

EDUC 203A. Education Policy Workshop in International and Comparative Education—For students in International and Comparative Education. Practical introduction to issues in educational policy making, educational planning, implementation, and the role of foreign expertise consultants in developing country contexts. (SSPEP/ICE)
3-4 units, Spr (Staff)

EDUC 203B. The Problem of Arrogant Knowledge—How the naming and mainaining of learners is supported by a vocabulary of ability and disability and institutional slots and budget lines. How alienation can be a first step in reorganization. Marx on estranged labor, Lave and Mcdermott on estranged learning, and Merleau-Ponty and Volosinov on the dramatics of language activities in human affairs.
2-3 units (McDermott) not given 2005-06

EDUC 204. Introduction to Philosophy of Education—How to think philosophically about educational problems. Recent influential scholarship in philosophy of education. No previous study in philosophy required. (SSPEP)
3 units, Aut (Staff)

EDUC 206A. Applied Research Methods in International and Comparative Education I: Introduction—Required for M.A. students in ICE and IEAPA; others by consent of instructor. Orientation to the M.A. program and research project; exploration of resources for study and research. (SSPEP/ICE)
1 unit, Aut (Staff)

EDUC 206B. Applied Research Methods in International and Comparative Education II: Master’s Monograph Proposal—Required for M.A. students in ICE and IEAPA; others by consent of instructor. Development of research skills through theoretical and methodological issues in comparative and international education. Preparation of a research proposal for the M.A. monograph. (SSPEP/ICE)
1-3 units, Win (Staff)

EDUC 206C. Applied Research Methods in International and Comparative Education III: Master’s Monograph Workshop—The conclusion of the four quarter M.A. program in ICE and IEAPA; required of M.A. students. Reviews of students’ research in preparation for their master’s monograph. (SSPEP/ICE)
3 units, Sum (Staff)

EDUC 207A,B,C. Master’s Seminar in Curriculum and Teacher Education—Limited to master’s students in C&TE. Designed to support students as they develop and conduct a master’s project. Students discuss ideas for their project, learn about possibilities for master’s projects, develop a plan for a project, carry it out, and write up the results with the assistance of the instructors and peers.
1-2 units, A: Aut (Post)
1-5 units, B: Win (Post), C: Spr (Post)

EDUC 208B. Curriculum Construction—The theories and methods of curriculum development and improvement. Topics: curriculum ideologies, perspectives on design, strategies for diverse learners, and the politics of curriculum construction and implementation. Students develop curriculum plans for use in real settings. (CTE)
3-4 units, Win (Pope)

EDUC 211. Master’s Seminar in Social Sciences in Education—Limited to master’s students in SSE. Hands-on forum. The process of developing and shaping a research program, integrating it with academic and field experiences, and building relationships beyond the program. Students conceptualize their projects and focus on researchable topics: effective revising and editing, job searches, working with your adviser, what next? or a celebration of achievements so far. (SSPEP)
1-3 units, Aut, Win, Spr (Suarez)

EDUC 212X. Urban Education—Open to graduate students and undergraduates. Combination of historical and anthropological perspectives trace the major developments, contexts, tensions, challenges, and policy issues of urban education. GER:DB-Hum
3-4 units, Spr (McDermott)

EDUC 213. Aesthetic Foundations of Education—What role might the arts play in education? Do the arts contribute to the development of cognitive skills? Do they help humans understand the world in which they live? Are aesthetic considerations central in the way we think about the aims of education? Do they enhance teaching and school organization? (CTE)
4 units (Eisner) not given 2005-06
EDUC 214. Popper, Kuhn, and Lakatos — (Same as PHIL 156.) These 20th-century philosophers of science raise fundamental issues dealing with the nature of scientific progress: the rationality of change of scientific belief, science versus non-science, role of induction in science, truth or verificationism as regulative ideals. Their impact in the social sciences and applied areas such as educational research. (SSPEP) GER:DB-Hum 3 units, Spr (Phillips)

EDUC 217. Philosophical and Methodological Issues in Educational Research — The role causation in educational phenomena, and how to determine causal factors. Is educational research based on a positivist paradigm? Randomized controlled experimental designs. Criteria for judging the rigor of qualitative modes of inquiry. Do Popperian or Deweyan approaches hold the key to resolving contentious issues? Does a postpositivist perspective hold promise? 3 units, Win (Phillips, Shavelson)

EDUC 218. Topics in Cognition and Learning: Quantitative Reasoning — How people recruit perceptual mechanisms (such as for navigating, learning about spatial relations such as driving a car, or inferring the behavior of novel devices) to understand symbolic and conceptual domains. Do hands-on activities with physical objects promote the development of mathematical thinking? 3 units, Aut (Schwartz)

EDUC 219. Artistic Development of the Child — How can children’s and adolescents’ development in the arts be described? What role does the symbolic transformation of experience play in the creation of those images we regard as art? What can teachers do to promote the development of artistic thinking? These and other questions are examined through the study of theory and research conducted within the social sciences. (CTE) 4 units, Win (Eisner)

EDUC 219E. Visual Arts in Elementary Education — For undergraduates in STEP Elementary Program and others interested in the arts or elementary teaching. Hands-on exploration of visual arts media and works of art. 3-4 units, Spr (Staff)

EDUC 220A,B,C,D,Y. The Social Sciences and Educational Analysis — Required of students in APA and open to all. Economics, political science, sociology, and history, and their applications to education in the U.S. EDUC 220A. Introduction to the Economics of Education — The relationship between education and economic analysis. Topics: labor markets for teachers, the economics of child care, the effects of education on earnings and employment, the effects of education on economic growth and distribution of income, and the financing of education. Students who lack training in microeconomics, register for 220Y for 1 additional unit of credit. (SSPEP/APA) 4 units, Aut (Loeb)

EDUC 220B. Introduction to the Politics of Education — (Same as GSBGEN 349.) The relationships between political analysis and policy formulation in education; focus is on alternative models of the political process, the nature of interest groups, political strategies, community power, the external environment of organizations, and the implementations of policy. Applications to policy analysis, implementation, and politics of reform. (APA) GER:DB-SocSci 4 units, Spr (Kirst)

EDUC 220C. Education and Society — (Same as SOC 130/230.) The effects of schools and schooling on individuals, the stratification system, and society. Education as socializing individuals and as legitimizing social institutions. The social and individual factors affecting the expansion of schooling, individual educational attainment, and the organizational structure of schooling. GER:DB-SocSci 4-5 units, Win (Ramirez)

EDUC 220D. History of School Reform: Origins, Policies, Outcomes, and Explanations — Required for students in the POLS M.A. program; others welcome. Focus is on 20th-century U.S. Intended and unintended patterns in school change; the paradox of reform that schools are often reforming but never seem to change much; rhetorics of reform and factors that inhibit change. Case studies emphasize the American high school. (SSPEP/APA) 4 units, Aut (Labaree)

EDUC 220Y. Introduction to the Economics of Education: Economics Section — For those taking 220A who have not had microeconomics before or who need a refresher. Corequisite: 220A. (SSPEP/APA) 1-2 units, Aut (Loeb)

EDUC 221A. Policy Analysis in Education — Major concepts associated with the development, enactment, and execution of educational policy. Issues of policy implementation, agenda setting and problem formulation, politics, and intergovernmental relations. Case studies. Goal is to identify factors that affect how analysts and policy makers learn about and influence education. Limited enrollment. Prerequisite: consent of instructor. (SSPEP/APA) 3-5 units, Win (Kappich)

EDUC 221B. Micro and Macro Issues in Policy Analysis — Doctoral students use their own research interests to explore the analytical, empirical, and methodological aspects of micro and macro perspectives on policy and action. 3 units (McLaughlin) not given 2005-06

EDUC 222. Resource Allocation in Education — Problems of optimization and design, and evaluation of decision experience. Marginal analysis, educational production functions, cost effectiveness and cost-benefit analysis, constrained maximization, program evaluation. Introduction to linear models for large-scale data analysis. Implications to model assumptions. (SSPEP) 4-5 units, Spr (Carnoy)

EDUC 223. Good Schools: Research, Policy, and Practice — Recent studies of schools that exceed expectations in producing desired results. Research methodologies, findings of studies, and efforts to implement results. Components of good schools analyzed: effective teaching, principal leadership, organizational processes, parent involvement, cultures in schools, the role of the superintendent. Required project focuses on a school. (SSPEP/APA, CTE) 3-4 units, Win (Cuban)

EDUC 224. Information Technology in the Classroom — The use of information technology (computers, interactive video, telecommunications) in classroom teaching. Basic computer operations and terminology; challenges of planning and teaching with technology; judging the merits of products for educational uses; uses made of technology in schools; and economic, social, and ethical issues emphasizing equity. (CTE) 3 units, Spr (Walker)

EDUC 227X. Interaction Design for Learning Environments — Principles and methods of interaction design prototyping emphasizing interactive learning environments. Students individually or in small groups work on an interaction design project, developing detailed prototypes of key interaction ideas. 3-4 units (Walker) not given 2005-06

EDUC 228E. Becoming Literate in School I — First in a three course sequence. Introduction to reading and language arts theory and methodology for candidates in the elementary Multiple Subjects Credentialing program. Instructional methods, formats, and materials. 2 units, Sum (Juel)

EDUC 228F. Becoming Literate in School II — Second in a three-course required sequence of reading and language arts theory and methodology for candidates in the elementary Multiple Subjects Credentialing program. Theories for guiding instruction and curricular choices. 4 units, Aut (Juel)
EDUC 228G. Becoming Literate in School III — Third in a three-course required sequence of reading and language arts theory and methodology for candidates in the elementary Multiple Subjects Credentialing program. Theories for guiding instruction and curricular choices. 3 units, Aut (Juel)

EDUC 229A,B,C,D. Learning Design and Technology Seminar — Four quarter seminar core of the LDT master’s program. Designs for learning with technology. Issues and processes relating to internships and careers. Major learning, design, and technology project. Student navigate design sequences in learning environments rooted in practical problems. Theoretical and practical perspectives, hands-on development, and collaborative efforts. (all areas)
A: 3 units, Aut (Goldman)
B: 3 units, Win (Staff)
C: 3 units, Spr (Staff)
D: 3-4 units, Sum (Walker)

EDUC 232A. The Study of Teaching — Second of three core courses in CTE. Theory and practice of teaching, past and present, K-12 and higher education. (CTE) 4 units, Win (Boaler)

EDUC 232B. Introduction to Curriculum — First of three core courses in CTE. What should American schools teach? How should school programs be organized? How can schools determine whether their goals have been achieved? What kind of school organization helps teachers improve their teaching? Historical and contemporary perspective on the curriculum of American schools. Interactions among curriculum, the organizational structure of schools, the conception of the teacher’s role, and teaching and student learning assessment. Text, video analysis of teaching, and small group discussions. (CTE) 4 units, Aut (Walker)

EDUC 232C. Introduction to Learning — Core course in CTE and PSE. Theoretical perspectives and research on learning, emphasizing principles that inform the design and study of learning environments. Historical background to current controversies. Issues: methods of assessment; learning by individuals and groups who differ in gender or in cultural and social backgrounds; the generality of learning outcomes; relations between the growth of conceptual understanding and cognitive skill; learning as becoming a more effective participant in social practices; and the development of influential conceptualizations of learning. (CTE, PSE) 4 units (Brown) not given 2005-06

EDUC 233A. Counseling Theories and Interventions from a Multicultural Perspective — The impact of culture on counseling and intervention, theory problem presentation, relationship formation, and intervention development and evaluation in individual and group counseling, and in helping encounters in school and community settings. 3 units, Win (LaFromboise)

EDUC 234. Career and Personal Counseling — (For graduate students; see 134; same as PSYCH 192.) (PSE) 3 units, Spr (Krumblitz)

EDUC 239. Emerging Issues in Child and Adolescent Development — Focus is on critical social and developmental issues that affect children and adolescents. Topics: divorce and single parenting, child care, poverty, sexuality, and mass media, emphasizing the impact of these conditions on normal development, education, and school-related social and cognitive performance. (PSE) 4 units, Spr (Padilla)

EDUC 240. Adolescent Development and Learning — How do adolescents develop their identities, manage their inner and outer worlds, and learn? Presuppositions: that fruitful instruction takes into account the developmental characteristics of learners and the task demands of specific curricula; and that teachers can promote learning and motivation by mediating among the characteristics of students, the curriculum, and the wider social context of the classroom. Prerequisite: STEP student or consent of instructor. (STEP) 3 units, Aut (Darling-Hammond, Nasir, Padilla)

EDUC 243. Writing Across Languages and Cultures: Research in Writing and Writing Instruction — Theoretical perspectives that have dominated the literature on writing research. Reports, articles, and chapters on writing research, theory, and instruction; current and historical perspectives in writing research and research findings relating to teaching and learning in this area. 3-4 units, Win (Ball)

EDUC 244. Classroom Management — Student and teacher roles in developing a classroom community. Strategies for classroom management within a theoretical framework. 1 unit, Aut (Haysman, Lawrence)

EDUC 244E. Elementary Classroom Culture and Management — How to best manage a classroom. Student and teacher roles in developing a classroom community. Strategies for classroom management within a theoretical framework. 1 unit, Sum (Staff)

EDUC 246A,B,C,D. Secondary Teaching Seminar — Preparation and practice in issues and strategies for teaching in classrooms with diverse students. Topics: instruction, curricular planning, classroom interaction processes, portfolio development, teacher professionalism, patterns of school organization, teaching contexts, and government educational policy. Classroom observation and student teaching with accompanying seminars during each quarter of STEP year. 16 units required for completion of the program. Prerequisite: STEP student.
A: 2 units, Sum (Haysman, Lotan)
B: 1-3 units, Aut (Lotan)
C: 5 units, Win (Haysman, Lotan)
D: 2-6 units, Spr (Haysman, Lotan)

EDUC 246E,F,G. Elementary Teaching Seminar and Practicum — Issues and strategies for teaching in classrooms with diverse students. Topics: instruction, curricular planning, classroom interaction processes, portfolio development, teacher professionalism, patterns of school organization, teaching contexts, and government educational policy. Classroom observation and student teaching with accompanying seminars during each quarter of STEP year. Prerequisite: STEP student.
E: 4-5 units, Aut (Staff)
F: 5 units, Win (Staff)
G: 1 unit, Spr (Staff)

EDUC 247. Moral Education — Contemporary scholarship and educational practice related to the development of moral beliefs and conduct in young people. The psychology of moral development; major philosophical, sociological, and anthropological approaches. Topics include: natural capacities for moral awareness in the infant; peer and adult influences on moral growth during childhood and adolescence; extraordinary commitment during adulthood; cultural variation in moral judgment; feminist perspectives on morality; the education movement in today’s schools; and contending theories concerning the goals of moral education. (PSE) 3 units, Win (Damon)

EDUC 249. Theory and Issues in the Study of Bilingualism — Undergraduates register for 149; same as SPANLIT 207.) Sociolinguistic perspective. Emphasis is on typologies of bilingualism, the acquisition of bilingual ability, description and measurement, and the nature of societal bilingualism. Prepares students to work with bilingual students and their families and to carry out research in bilingual settings. (SSPEP) GER:DB-Hum
3-5 units, Aut (Valdés)
EDUC 250A. Statistical Analysis in Educational Research — Primarily for doctoral students. Regression and categorical models as widely used data-analytic procedures. Topics: basic regression including multiple and curvilinear regression, regression diagnostics, analysis of residuals and model selection, logistic regression, analysis of categorical data. Proficiency with statistical computer packages. Prerequisite: 160 or equivalent. (all areas)
4 units (Reardon)

EDUC 250B. Statistical Analysis in Educational Research: Analysis of Variance — Primarily for doctoral students. Variance models as widely used data analytic procedures, especially in experimental, quasi-experimental, and criterion-group designs. Topics: single-factor ANOVA, the factorial between and within subjects and mixed design ANOVA (fixed, random, and mixed models), analysis of covariance, multiple comparison procedures. Prerequisite: 160X or equivalent. (all areas)
4 units (Shavelson) not given 2005-06

2-4 units, Win (Olkin)

EDUC 252. Introduction to Test Theory — Concepts of reliability and validity; derivation and use of test scales and norms; mathematical models and procedures for test validation, scoring, and interpretation. Prerequisite: STATS 190 or equivalent. (PSE)
3-4 units, Spr (Haertel)

EDUC 255. Human Abilities — (Same as PSYCH 133.) Psychological theory and research on human cognitive abilities; their nature, development, and measurement; and their importance in society. Persistent controversies and new areas of research, recent perspectives on the nature-nurture debate and the roles of genetics, health and education in shaping HCAs. Prerequisite: PSYCH 1 or equivalent. (PSE) GER: DB-SocSci
3 units (Shavelson) not given 2005-06

EDUC 256X. Psychological and Educational Resilience Among Children and Youth — Psychological and educational theories of resilience as they relate to children and youth. Emphasis is on family, school, and community assets as they relate to protective factors that create conditions of resilience. How protective factors can be used to create healthy communities that enhance the life qualities of at-risk children and youth.
3-4 units, Spr (LaFromboise)

EDUC 257A. Statistical Methods for Behavioral and Social Sciences — For students with experience in empirical research. Analysis of data from experimental studies through factorial designs, randomized blocks, repeated measures; regression methods through multiple regression, model building, analysis of covariance; categorical data analysis through log-linear models, logistic regression. Integrated with the use of statistical computing packages. Prerequisite: analysis of variance and regression at the level of STATS 161.
3 units (Rogosa) alternate years, given 2006-07

EDUC 257B. Statistical Methods for Behavioral and Social Sciences — For students with experience in empirical research. Analysis of data from experimental studies through factorial designs, randomized blocks, repeated measures; regression methods through multiple regression, model building, analysis of covariance; categorical data analysis through logistic and linear models, logistic regression. Integrated with the use of statistical computing packages. Prerequisite: analysis of variance and regression at the level of STATS 161.
3 units (Rogosa) alternate years, given 2006-07

EDUC 257C. Causal Inference in Quantitative Educational and Social Science Research — (Same as SOC 257.) Quantitative methods to make causal inferences in the absence of randomized experiment including the use of natural and quasi-experiments, instrumental variables, regression discontinuity, matching estimators, longitudinal methods, fixed effects estimators, and selection modeling. Assumptions implicit in these approaches, and appropriateness in research situations. Students develop research proposals relying on these methods. Prerequisites: exposure to quantitative research methods; multivariate regression.
3 units (Reardon) not given 2005-06

EDUC 258X. Literacy Development and Instruction — Literacy acquisition as a developmental and educational process. Problems that may be encountered as children learn to read. How to disseminate home, community, and school instruction from development. Models that inform both literacy development. How classroom instruction affects literacy development.
3 units, Spr (Juel)

EDUC 259X. Application of Hierarchical Linear Models in Behavioral and Social Research — (Same as OB 682.) The measurement of change and the assessment of multi-level effects or the unit of analysis problem. The inadequacy of traditional statistical techniques for the modeling of hierarchy.
4 units, Win (Bryk)

EDUC 260X. Popular Advanced Statistical Methods — Methods for accommodating the nested structure of educational data, such as students within classrooms within schools, which arise as units of analysis problems, ecological regression, or hierarchical linear models. Methods for complex measurement models in regression settings known as structural equation models, causal models, covariance structures. See http://www.stanford.edu/class/ed260.
3 units, Win (Rogosa)

EDUC 262A,B,C. Curriculum and Instruction in English — Approaches to teaching English in the secondary school, including goals for instruction, teaching techniques, and methods of evaluation. (STEP)
A: 2 units, Sum (Grossman)
B: 3 units, Aut (Staff)
C: 3 units, Win (Grossman)

EDUC 263A,B,C. Curriculum and Instruction in Mathematics — The purposes and programs of mathematics in the secondary curriculum; teaching materials, methods. Prerequisite: STEP student or consent of instructor. (STEP)
A: 2 units, Sum (Staff)
B: 3 units, Aut (Boaler), C: Win (Boaler)

EDUC 263E,F,G. Quantitative Reasoning in Mathematics I,II,III — Three-course sequence in mathematics for STEP elementary teacher candidates. Content, pedagogy, and context. Mathematics subject matter; the orchestration of teaching and learning of elementary mathematics including curriculum, classroom and lesson design, and case studies. Sociocultural and linguistic diversity, equity, differentiation of instruction, the impact of state and national standards, and home/community connections.
EDUC 263E. Quantitative Reasoning in Mathematics I
4 units, Win (Murata)
EDUC 263F. Quantitative Reasoning in Mathematics II
4 units, Win (Murata)
EDUC 263G. Quantitative Reasoning in Mathematics III
3 units, Spr (Murata)

EDUC 264A,B,C. Curriculum and Instruction in World Languages — Approaches to teaching foreign languages in the secondary school, including goals for instruction, teaching techniques, and methods of evaluation. Prerequisite: STEP student. (STEP)
A: 2 units, Sum (Valdes)
B: 3 units, Aut (Staff)
C: 3 units, Win (Staff)
3-4 units, Aut (Staff)

EDUC 265. History of Higher Education in the U.S. — (Undergraduate students register for 165.) Major periods of evolution, particularly since the mid-19th century. Premise: insights into contemporary higher education can be obtained through its antecedents, particularly regarding issues of governance, mission, access, curriculum, and the changing organization of colleges and universities. (SSPEP-APA)
3-4 units, Spr (Labaree)

EDUC 266X. Workshop in Practical Quantitative Research on Educational Policy and Inequality — Conceptual and technical skills for analyzing data concerning educational policy and inequality. How to design analytic strategies using available data sources. Interpreting and presenting results. Prerequisite: 250A.
3 units, Spr (Reardon)

EDUC 267A,B,C. Curriculum and Instruction in Science — Possible objectives of secondary science teaching and related methods: selection and organization of content and instructional materials; lab and demonstration techniques; evaluation, tests; curricular changes; ties with other subject areas. Prerequisite: STEP student or consent of instructor. (STEP)
A: 2 units, Sum (Brown, Lythcott)
B: 3 units, Aut (Lythcott)
C: 3 units, Win (Brown, Lythcott)

EDUC 267E. Development of Scientific Reasoning and Knowledge — For STEP elementary teacher candidates. Theories and methods of teaching and learning science. How to develop curricula and criteria for critiquing curricula. Students design a science curriculum plan for a real setting. State and national science frameworks and content standards. Alternative teaching approaches; how to select approaches that are compatible with learner experience and lesson objectives. Focus is on the linguistic and cultural diversity of California public school students.
3 units, Win (Staff)

EDUC 268A,B,C. Curriculum and Instruction in History and Social Science — The methodology of social studies instruction: curriculum trends, teaching materials, opportunities to develop teaching and resource units. Prerequisite: STEP student.
A: 2 units, Sum (Wineburg)
B: 3 units, Aut (Wineburg)
C: 3 units, Win (Wineburg)

EDUC 268E. Elementary History and Social Science — Teaching and learning history and social science in the elementary grades. What is included in the discipline and why it is important to teach. The development of historical thinking among children. How students learn and understand content in these disciplines.
3-4 units, Spr (Staff)

EDUC 269. Analysis of Teaching — Student learning and the epistemology of school subjects as related to the planning and implementation of teaching, analysis of curriculum, and evaluation of performance and understanding. Readings and activities are coordinated with student teaching activities of participants. Prerequisite: STEP student or consent of instructor.
3 units (Brown, Pea) not given 2005-06

EDUC 269E. Reflective Practice: Performance Assessment for California Teachers (PACT) — Student learning and the epistemology of elementary school subjects as they relate to planning and teaching, curriculum analysis, and performance evaluation. Focus is on preparing for PACT. Course coordinated with student teaching activities of participants.
1 unit, Spr (Staff)

EDUC 270A. Learning to Lead in Public Service Organizations — For Haas Center student service organization leaders.
3-5 units, Spr (Davis)

EDUC 271S. School-Based Strategies for Reform and Redesign — Seminar. Major redesign and reform strategies that schools are using to improve their performance. Preparation of a report for local school leaders analyzing school improvement resources and strategies.
3-5 units, Spr (Darling-Hammond)

EDUC 273. Gender and Higher Education — Focus is on the U.S. The effects of interactions between gender and the structures of higher education; policies seeking changes in those structures. Topics: undergraduate and graduate education, faculty field of specialization, rewards and career patterns, sexual harassment, and the development of feminist scholarship and pedagogy.
5 units, Win (Strober)

EDUC 276X. Educational Assessment — Reliability, validity, bias, fairness, and properties of test scores. Uses of tests to monitor, manage, and reform instruction. Testing and competition, meritocracy, achievement gaps, and explanations for group differences.
3 units, Win (Haertel)

EDUC 277. Education of Immigrant Students: Psychological Perspectives — (For graduate students; see 177.) (SSPEP)
4 units, Win (Padilla)

EDUC 278. Introduction to Issues in Evaluation — Open to master’s and doctoral students with priority to students from education. Focus is on the basic literature and major theoretical and practical issues in evaluation. Introduction to basic concepts and intellectual debates in the field: knowledge construction, purpose of evaluation, values in evaluation, knowledge utilization, professional standards of evaluation practice. Enrollment limited to 18. (SSPEP)
3 units, Win (Phillips)

EDUC 279. Urban Youth and Their Institutions: Research and Practice — (For graduate students; see 179.) (SSPEP/APA)
4-5 units (McLaughlin) not given 2005-06

EDUC 279B. Youth Empowerment and Civic Engagement — (For graduate students; see 179B.)
2-4 units (McLaughlin) not given 2005-06

EDUC 281X. Using Literacies to Support Struggling Students — Issues related to meeting the needs of struggling readers and writers and special needs students in their classrooms. Emphasis is on students who appear to be struggling learners in middle and high school classrooms who have not been previously or officially identified to receive special educational resources.
3 units (Ball) not given 2005-06

EDUC 284. Teaching in Heterogeneous Classrooms — Teaching in academically and linguistically heterogeneous classrooms requires a repertoire of pedagogical strategies. Focus is on how to provide access to intellectually challenging curriculum and equal-status interaction for students in diverse classrooms. Emphasis is on group work and its cognitive, social, and linguistic benefits for students. How to prepare for group work, equalize participation, and design learning tasks that support conceptual understanding, mastery of content and language growth. How to assess group products and individual contributions. (STEP)
3 units, Win (Lotan)
EDUC 285X. Supporting Students with Special Needs—For STEP teacher candidates. Needs of exceptional learners, identification of learning differences and disabilities, and adaptations in the regular inclusion classroom. Legal requirements of special education, testing procedures, development of individualized education plans, and support systems and services. Students follow a special needs learner to understand diagnosis, student needs, and types of services.
3 units, Spr (Fur)

EDUC 287. Culture and Learning—(Same as CASA 158X.) Learning in institutional settings in the U.S. and around the globe. Learning in families, in schools, on the job, and on the streets. Emphasis is on the cultural organization of success and failure in American schools. Tentative consideration of opportunities for making less inequality. (SSPEP, STEP)
3-4 units (McDermott) not given 2005-06

EDUC 288X. Organizational Behavior and Analysis—(Same as SOC 366.) Principles of organizational behavior and analysis; theories of group and individual behavior; organizational culture; and applications to school organization and design. Case studies.
4 units, Aut (McFarland)

EDUC 290. Leadership: Research, Policy, and Practice—Conceptions of leadership that include the classroom, school, district office, and state capitol. The role of complexity; organizational leaders outside of schools past and present, and how that complexity permitted leadership to arise. Case studies. (SSPEP/APA)
4 units, Win (Davis)

EDUC 291. Learning Sciences and Technology Design Research Seminar and Colloquium—Students and faculty present and critique new and original research relevant to the Learning Sciences and Technology Design doctoral program. Goal is to develop a community of scholars who become familiar with each other’s work. Practice of the arts of presentation and scholarly dialogue while introducing seminal issues and fundamental works in the field.
1-3 units, Aut (Pea), Win (Schwartz), Spr (Goldman)

EDUC 292X. Cultural Psychology—The relationship between culture and psychological processes; how culture becomes an integral part of cognitive, social, and moral development. Both historical and contemporary treatments of cultural psychology, including deficit models, crosscultural psychology, ecological niches, culturally specific versus universal development, sociocultural frameworks, and minority child development. The role of race and power in research on cultural psychology.
3 units, Win (Nasir)

EDUC 294X. Theories of Human Development—Concepts and theoretical viewpoints of developmental science. Goal is to evaluate multidisciplinary applications of empirical developmental research including its impact on educational reform, interventions, and social policy issues.
3 units, Spr (Perez-Granados)

EDUC 295. Learning and Cognition in Activity—(Same as PSYCH 261A.) Methods and results of research on learning, understanding, reasoning, problem solving, and remembering, as aspects of participation in social organized activity. Principles of coordination that support cognitive achievements and learning in activity settings in work and school environments.
3 units, Win (Barron, Pea)

EDUC 296. Substance Dependence: Assessment, Treatment, and Prevention—Open to social science graduate students. The prevalence, etiology, and treatment of alcohol and drug-related disorders. Developmental perspective; how substance abuse disorders manifest themselves in men and women at different ages from childhood through late adulthood. Beneficial treatment approaches such as AA, individual and group work, family treatment, and inpatient versus outpatient care. Required visit to treatment programs. (PSE)
3 units (Moffett) not given 2005-06

EDUC 298. Online Communities of Learning—Historical foundations, theoretical perspectives, underlying learning theories, case studies, and enabling technologies of online learning communities across and within K-12 schools, among teachers, in professional collaborations in the sciences, and across informal communities of interest in society.
3 units (Pea) not given 2005-06

EDUC 301B. Theoretical Debates in the History of Education—How should we educate students? To what purpose should students be educated? What is the purpose of education in America? What is an appropriate curriculum? Do all students deserve or need the same curriculum?
3-4 units, Spr (Williamson)

EDUC 304. The Philosophical and Educational Thought of John Dewey—(Same as PHIL 230.) Dewey’s pragmatic philosophy and educational thought; his debt to Darwin, Hegel, Peirce, and James; his educational writings including Democracy and Education; and his call for a revolution in philosophy in Reconstruction in Philosophy. (SSPEP)
4 units (Phillips) not given 2005-06

EDUC 305X. Progressive Education, the Free Child, and the Critics—Radically different models of child rearing and their implications for educational practice. Topics include: Rousseau’s Emile, Puritan education, Summerhill School and the philosophy of open education, contemporary orthodox and evangelical schools, and democratic schools. Mock debates. How these models inform educational alternatives locally; classroom observation.
4 units, Win (Corrigold)

EDUC 306A. Education and Economic Development—Case material considers development problems in the U.S. and abroad. Discussion sections on economic aspects of educational development. (SSPEP/ICE)
5 units, Aut (Carnoy)

EDUC 306B. Politics, Policy Making, and Schooling Around the World—Education policy, politics, and development. Topics include: political socialization and the formation of political identity among young people and adults; how schools, school systems, and universities operate as political systems; how policy making occurs in educational systems; and theories of development.
3 units, Spr (Adams)

EDUC 306C. Political Economy of the Mind—Theories of political economy related to theories of the learning mind, emphasizing theories of genius. Readings from Pascal, Defoe, Smith, Balzac, Emerson, Marx, Veblen, Joyce, and Morrison. (SSPEP)
3-4 units, Win (McDermott)

EDUC 306D. World, Societal, and Educational Change: Comparative Perspectives—(Undergraduates register for 136; same as SOC 231.) Theoretical perspectives and empirical studies on the structural and cultural sources of educational expansion and differentiation, and on the cultural and structural consequences of educational institutionalization. Research topics: education and nation building; education, mobility, and equality; education, international organizations, and world culture.
GER:DB-SocSci
4-5 units, Win (Ramirez)

EDUC 307B. The Politics of International Cooperation in Education—(Undergraduates and master’s students register for 107.) Analysis of policies and practices in international cooperation, assistance, and exchange. The role of international organizations (World Bank, UNESCO, OECD) and the politics of multilateral and bilateral assistance programs. (SSPEP/ICE, APA)
3-4 units, Win (Staff)
EDUC 307X. Organizing for Diversity: Opportunities and Obstacles in Groups and Organizations—Obstacles in organizations and groups that prevent people from participating, working effectively, and developing relationships in the context of diversity. How to create conditions in which diversity enhances learning and effectiveness? Experiential exercises; students experiment with conceptual and analytic skills inside and outside of the classroom.

3 units, Spr (Meyerson)

EDUC 310. Sociology of Education: The Social Organization of Schools—(For graduate students; see 110; same as SOC 132/332.) (SSPEP)

4 units, Spr (McFarland)

EDUC 311X. First-Year Doctoral Seminar: Introduction to Research—Methods in current educational research focusing on logical and epistemological design, and ethical issues. May be repeated for credit. (all areas)

1-2 units, Aut, Win, Spr (Stipek)

EDUC 312A. Traditions of Microsociology—(Same as SOC 224A.) The educational applications of sociological and social psychological theory and research to interaction processes in schools. Readings include: foundational works by Mead, Schutz, and Simmel; contemporary work by Goffman, Homans, Merton, Blau, and Harold. Readings span empirical settings such as work, classrooms, gangs, primate societies, and children’s games. Topics: processes of influence, role differentiation, identity formation, social mechanisms, and intra/inter group dynamics of peer relations. Methods for observation and analysis of small groups. (SSPEP)

4 units (McFarland) not given 2005-06

EDUC 314. Workshop in Economics of Education—Research by students and faculty engaged in problems in the economics of education. Prerequisites: advanced graduate training in economics theory and methodology; current ongoing research. May be repeated for credit. (SSPEP)

1-2 units (Carnoy) not given 2005-06

EDUC 316. Network Analysis of Formal and Informal Organizations—(Same as SOC 369.) The educational applications of social network analysis. Introduction to social network theory, methods, and research applications in sociology. Network concepts of interactionist (balance, cohesion, centrality) and structuralist (structural equivalence, roles, duality) traditions are defined and applied to topics in small groups, social movements, organizations, communities. Applications to data on schools and classrooms. (SSPEP)

4-5 units (McFarland) alternate years, given 2006-07

EDUC 317X. Workshop on Community and Youth Development—(Same as SOC 317C.) The Youth Development Seminar presents an opportunity to discuss, read, and collaborate on youth development research issues by providing participants with access to the National Longitudinal Study of Adolescent Health Data (requires permission), tutorials on statistical methods to facilitate analysis of the dataset, and articles that help researchers develop tools of inquiry. Participants present their work for feedback.

1-2 units (Staff) not given 2005-06

EDUC 319. Sociology and Education Seminar—(Same as SOC 319.) Venue to discuss a new field of specialization or research issues, or for student/faculty collaborative research. This year’s focus is on distributed systems and their dynamics, including individual adaptations to situations, use of tools in learning, emergence of stable patterns of group behavior from the interdependent actions of individual actors, the adaptation of groups to crises, emergence of collective action and social movements, and organizational adaptations to external and internal events. May be repeated for credit.

3 units (McFarland) not given 2005-06

EDUC 321A. Emerging Concepts of Qualitative and Ethnographic Research—Issues of knowing via forms through which human beings have historically represented the world and how they care about it, including narrative, visual images, and poetry. How to see and represent the educational worlds. Sources include videotaped classrooms in action, film excerpts that reveal human relations, and literary forms that describe classroom situations. Materials and procedures used by researchers, film makers, and fiction writers.

4-5 units, Spr (Eisner, McDermott)

EDUC 322X. Discourse of Liberation and Equity in Schools and Society—Issues and strategies for studying oral and written discourse as a means for understanding classrooms, students, and teachers, and teaching and learning in educational contexts. The forms and functions of oral and written language in the classroom, emphasizing teacher-student and peer interaction, and student-produced texts. Individual projects utilize discourse analytic techniques. Prerequisite: graduate status or consent of instructor. (SSPEP)

3-5 units (Ball) not given 2005-06

EDUC 323A. Introduction to Education Policy Analysis—The formulation and improvement of federal and state education and children policies. Key current policy issues and trends in politics. Topics: the federal role in education and child care. (SSPEP)

3 units, Aut (Kirst)

EDUC 324. Business Opportunities in Education—(Same as GSBGEN 545.) For students in the joint degree program in Business and Education; open to others. The combination of changing market mechanisms and emerging technologies fueling opportunities in for-profit education and training organizations. Interaction of firms with public sectors. Roles of public administrators, educators, investors, and technology providers in defining opportunities, challenges, and constraints for education and training firms. Approaches to strategy formation, product development, and operations. Visiting managers and other experts. (SSPEP/APA)

2 units, Win (Kirst, Wood)

EDUC 326. Legal Dilemmas and Administrative Decision Making in Schools—Concepts and issues in school law and their influence on administrative decision making in public schools, skills in the application of legally defensible resolutions to complex educational problems, and theories, principles, and the evolution of education law. (SSPEP)

4 units, Aut (Davis)

EDUC 327A,B. The Conduct of Qualitative Inquiry—Three quarter sequence for doctoral students to engage in research that anticipates, is a pilot study for, or feeds into their dissertations. Prior approval for dissertation study not required. Students engage in common research processes including: developing interview questions; interviewing; coding, analyzing, and interpreting data; theorizing; and writing up results. Participant observation as needed. Preference to students who intend to enroll for both quarters.

A: 3-4 units, Aut (Goldman)
B: 1-3 units (Goldman) not given 2005-06

EDUC 327C. The Conduct of Qualitative Inquiry—For doctoral students. Students bring research data for analysis and writing. Preference to those who have completed 327A or B.

1-4 units, Spr (Goldman)

EDUC 328X. Topics in Learning and Technology: Interactivity—Content changes each year. Interactivity including manipulation of an object, talking to another person, or clicking on a mouse. Proposals for the active learning ingredient of interactivity, and how different technologies capitalize on these ingredients.

3 units, Spr (Schwartz)
EDUC 329X. Seminar on Teacher Professional Development — Theory and practice. Models of professional development. Issues include: concepts of teachers, practice, and development; the content of professional development; pedagogies; structures that support teacher learning; evaluating professional development; and policy issues. Field observation.
1–4 units, Spr (Post)

EDUC 330X. Economic Approaches to Education Policy Analysis — (Same as GSBGEN 347.) Policy issues in education using the tools of microeconomics. How are schools funded and with what implications for the efficiency, equity, and adequacy of resources? What is the impact of school resources on educational and economic well-being? How do teacher labor markets operate and how do teachers impact student achievement? How do systems of school choice affect schools and students? How has accountability changed schooling? What are the effects of changes in affirmative action and financial aid in higher education? Prerequisites: intermediate microeconomics and regression analysis.
4 units (Loeb) not given 2005-06

EDUC 331A,B. Introduction to Research Design in Administration and Policy Analysis — Required for first-year APA doctoral students; SSPEP first-year doctoral students with consent of instructor. How to conduct literature reviews. How to use literature to frame and formulate problem statements, research questions, and conceptual frameworks. (APA)
A: 3-5 units, Spr (Giamport, Loeb)
B: 3 units, (Staff) not given 2005-06

EDUC 333A. Learning, Design and Technology: Analyzing Functions and Needs in Learning Environments — Advanced seminar. Theoretical approaches to learning to analyze learning environments and develop goals for designing resources and activities to support effective learning practices.
3 units, Aut (Perez-Granados)

EDUC 335X. Language Policy and Planning: National and International Perspectives — For graduate students, and undergraduates with consent of instructor. International study of the social, political, and educational tensions that shape language policy. Emphasis is on language education that affects immigrants, guest workers, and indigenous linguistic minority populations; policies that determine foreign language instruction, and U.S. language policies in a comparative approach. (SSPEP) GER:DB-SocSci
3 units (Staff) not given 2005-06

EDUC 336X. Language, Identity, and Classroom Learning — As contemporary research focuses on how people act and recognize each other, analyzing interaction while acknowledging identity allows for a dynamic examination of cultural interaction. Broad cultural categorization can be overly expansive in identifying the characteristics of large groups of individuals.
1–3 units (Brown) not given 2005-06

EDUC 337X. Race, Ethnicity, and Linguistic Diversity in Classrooms: Sociocultural Theory and Practices — (For graduate students; see 103B.)
3 units, Win (Ball)

EDUC 340X. American Indian Mental Health and Education — Western medicine as defining health as the absence of sickness, disease, or pathology. Native American cultures as understanding health as the balance or beauty of all things physical, spiritual, emotional, and social, and sickness as something out of balance. Topics in American Indian psychology and health; issues that characterize the field, and its methods, goals, and findings. Prerequisite: experience working with American Indian communities. (PSE)
3-5 units (LaFromboise) not given 2005-06

EDUC 342. Child Development and New Technologies — Focus is on the experiences computing technologies afford children and how these experiences might influence development. Sociocultural theories of development as a conceptual framework for understanding how comput-
EDUC 351A. Design and Analysis of Longitudinal Research — The analysis of longitudinal data as central to empirical research on learning and development. Topics: growth models, measurement of change, reciprocal effects, stability, analysis of durations including survival analysis, and experimental and non-experimental group comparisons. See http://www.stanford.edu/~rag/. Prerequisite: statistics at the level of 257. (PSE)

3 units, Win (Rogosa)

EDUC 351C. Workshop in Technical Quality of Educational Assessments and Accountability — Topics include: determinations of accuracy for individual scores and group summaries; design and reporting of educational assessments; achievement instruments in state-level accountability systems; and policy implications of statistical properties. See http://www.stanford.edu/~rag/. (PSE)

3 units, Spr (Rogosa)

EDUC 352X. Education Schools: Historical and Sociological Perspectives — The lowly status of the education school, defined as college, school, or department, within a university. Why does the education school get no respect? Its historical development, how it evolved into its current position in the academic hierarchy, and contemporary factors that help to reinforce that position. (SSPEP)

3-4 units (Labaree) not given 2005-06

EDUC 353A. Problems in Measurement: Item Response Theory — Alternative mathematical models used in test construction, analysis, and equating. Emphasis is on applications of item response theory (latent trait theory) to measurement problems, including estimation of item parameters and person abilities, test construction and scoring, tailored testing, mastery testing, vertical and horizontal test equating, and detection of item bias. Prerequisites: 252 and 257, or PSYCH 248 and 252, or equivalent. (PSE)

3 units, Aut (Haertel)

EDUC 353C. Problems in Measurement: Generalizability Theory — Application to analysis of educational achievement data, including performance assessments. Fundamental concepts, computer programs, and actual applications. (PSE)

3 units (Haertel, Shavelson) not given 2005-06

EDUC 354X. School-Based Decision Making — Leadership and organizational issues. Emphasis is on building capacity for individual schools to make decisions, establishment of an inquiry process at the school level, use and availability of information, implementation and evaluation of decisions, parental involvement, and support of school-based decisions by districts. (SSPEP/APA)

4 units, Win (Davis)

EDUC 355X. Higher Education and Society — For undergraduates and graduate students interested in what colleges and universities do, and what society expects of them. The relationship between higher education and society in the U.S. from a sociological perspective. The nature of reform and conflict in colleges and universities, and tensions in the design of higher education systems and organizations. (SSPEP)

3 units (Gumport) not given 2005-06

EDUC 356X. Memory, History, and Education — Interdisciplinary. Since Herodotus, history and memory have competed to shape minds: history cultivates doubt and demands interpretation; memory seeks certainty and detests that which thwarts its aims. History and memory collide in modern society, often violently. How do young people become historical amidst these forces; how do school, family, nation, and mass media contribute to the process?

3-5 units (Wineburg) not given 2005-06

EDUC 357X. Interdisciplinarity in Higher Education — The historical prominence of disciplines in higher education, departmental structures, and disciplinary reproduction and professional socialization in graduate education. Definitions of interdisciplinarity and motivations for fostering it in research and teaching. Case studies including feminist, area, environmental, American, and interdisciplinary science studies. The development of interdisciplinary fields and organizational constraints including tenure and promotion, faculty reward systems, and undergraduate curricular structures. Recent initiatives to foster interdisciplinary activity among senior faculty.

3 units (Gumport, Strober) not given 2005-06

EDUC 359A. Research in Science and Mathematics Education: Assessment and Evaluation — Historical and international perspectives. Emphasis is on trends and issues in contemporary American research and policy. Opportunity to develop and discuss dissertation plans. (CTE)

2-3 units (Shavelson) not given 2005-06

EDUC 359B, Research in Science and Mathematics Education — For doctoral students interested in science education and literacy in school subjects.

2-3 units, Win (Brown)

EDUC 359E. Research on Mathematics Education — Comparative and cultural perspectives on mathematics teaching and learning practices in the U.S. Mathematics education in the context of cultural and educational systems.

2 units (Murata) not given 2005-06

EDUC 360. Action Research in Education — Introduction to the theory and practice of action research. Basic concepts and methods. The historical and ideological influences on this form of inquiry by teachers. Participants analyze action research reports and engage in a small-scale action-research project. (CTE)

3 units, Win (Atkin)

EDUC 362X. Teacher Learning and Lesson Study — Seminar. Based on peer collaboration, lesson study helps to create professional communities among teachers and support their learning. Research literature, teacher thinking and beliefs, teacher professional development, and conceptual frameworks.

3-4 units (Murata) not given 2005-06

EDUC 363X. Research and Practice on Organizing Urban Elementary Schools for Improvement — (Same as OB 367.) For masters’ and doctoral students in Education and GSB. Empirical research on urban school reform efforts, theoretical frameworks on student and adult learning, the sociology of work in schools, and social organization theory. How community context affects instructional coherence. Dynamics between school professionals and with parents. Authentic instruction and its effects. Case studies on reform implementation.

4 units, Spr (Bryk)

EDUC 370X. Theories of Cognitive Development — The contributions of Jean Piaget and Lev Vygotsky to the study of the developing mind of the child. Their theories, concepts, perspectives, empirical work, and lives. Topics: Piaget’s genetic epistemology, constructivism, and idea of sensorimotor through formal operational stages; Vygotsky’s cultural-historical approach, egocentric speech, and the relation between learning and development.

3 units, Win (Nasir)

EDUC 371X. Cognitive Development in Childhood and Adolescence — Traditional and current research in cognitive development: changes within the individual from infancy through adolescence. Theoretical and empirical perspectives on research processes that explain developmental changes affecting how a human being thinks about and experiences the world.

3 units (Perez-Granados) not given 2005-06

EDUC 372B. Ethnography for Human Learning and Development — Issues in fieldwork, epistemology, modes of analysis, forms of data, ethical issues, and trends in reporting ethnographic work. Contemporary ethnographic inquiry in the context of other modes of inquiry in the developmental sciences. Commensurability across theoretical frameworks, units of analysis, time scales, and methods. Prerequisite: consent of instructor.

3 units (Pea, Barron) not given 2005-06
EDUC 372X. Social Processes in Learning and Development — Doctoral seminar. How children’s learning and development are influenced by social interactions with parents, peers, teachers, and the larger cultural context. Emphasis is on research that illuminates social/cognitive processes that influence the development of individual thinking; observation and imitation of models, co-construction of meaning and achievement of intersubjectivity, providing and receiving explanations, and socio-cognitive conflict. How culture influences the behavior of individuals in interaction; how school culture influences children’s individual thinking and thinking in collaboration with others. (PSE)
3 units (Barron) not given 2005-06

EDUC 374A,B. Research Workshop: Knowledge Networks — (Same as SOC 374A,B.) Research workshop. Key factors that shape processes of transferring basic knowledge into commercial development. Topics: the sociology and economics of science, intellectual property and patenting issues, university-industry relations, cross-national differences in knowledge transfer and science/technology policy, and entrepreneurial activity in universities. Students must have or develop research projects on these topics. Undergraduate prerequisite: consent of instructor.
A: 1-3 units, Win (Powell)
B: 2-3 units, Spr (Powell)

EDUC 375A. Seminar on Organizational Theory — (Same as SOC 363A.) For Ph.D. students. Social science literature on organizations. Major theoretical traditions and debates. The intellectual development of the field reflects shifts in emphasis in studies from workers to managers, organizational processes to outputs, and single organizations to populations of organizations. May be repeated for credit.
5 units, Win (Powell)

EDUC 375B. Seminar on Organizations: Institutional Analysis — (Same as SOC 363B.) The fruitfulness of research programs from institutional, network, and evolutionary perspectives in explaining large-scale change in organizational populations and institutions.
3-5 units, Spr (Powell)

EDUC 376. State Theory and Educational Policy — The relationship between political system structures and educational change by analyzing theories and interpretations of how political systems function, and the implications of these theories for understanding education. Classical and Marxist interpretations. (SSPEP/ICE)
4 units, Win (Carnoy)

EDUC 377. Comparing Institutional Forms — (Same as GSBGEN 346.) Seminar. For students interested in the nonprofit sector, and those in the joint Business and Education Program. The missions, functions, and capabilities of nonprofit, public, and private organizations. Focus is on sectors with significant competition among institutional forms, including health care, social services, the arts, and education. Sources include scholarly articles, cases, and historical materials. Advanced undergraduates may enroll with consent of instructor.
4 units (Powell) not given 2005-06

EDUC 377B. Strategic Management of Nonprofits — (Enroll in STRAMGT 368.)
4 units, Win (Staff)

EDUC 377C. Strategic Issues in Philanthropy — (Same as GSBGEN 381.)
4 units, Spr (Arrillaga)

EDUC 378X. Seminar on Organizations and Society — Organizational theories applied to social problems and social change. Topic varies annually. Focus in 2005-06 is organizing for social change. Other topics include: the reproduction of race and gender injustices in organizations, organizing across borders, and organizational change and learning.
3-4 units, Aut (Meyerson)

EDUC 379B. Public Policy Towards Disconnected Youth — (Same as LAW 356.)
4 units, Aut, Win, Spr (Staff)

EDUC 380. Internship in Educational Administration
1-15 units, Aut, Win, Spr, Sum (Staff)

EDUC 381. Multicultural Issues in Higher Education — The primary social, educational, and political issues that have surfaced in American higher education due to the rapid demographic changes occurring since the early 80s. Research efforts and the policy debates include multicultural communities, the campus racial climate, and student development; affirmative action in college admissions; multiculturalism and the curriculum; and multiculturalism and scholarship.
4-5 units (Antonio) not given 2005-06

EDUC 382. Student Development and the Study of College Impact — The philosophies, theories, and methods that undergird most research in higher education. How college affects students. Student development theories, models of college impact, and issues surrounding data collection, national databases, and secondary data analysis.
4 units (Antonio) not given 2005-06

EDUC 384. Advanced Topics in Higher Education — Topics vary each year and may include faculty development, legal issues, curricular change, knowledge production, professional socialization, management of organizational decline, leadership and innovation, authority and power, diversity and equity, and interactions with government and industry. Prerequisites: 346, consent of instructor. (APA)
3-5 units, Spr (Gumport)

EDUC 387A,B,C. Comparative Studies of Educational and Political Systems — (Same as SOC 311A,B,C.) Analysis of quantitative and longitudinal data on national educational systems and political structures. May be repeated for credit. Prerequisite: consent of instructor. (SSPEP/ICE)
1-5 units, A: Aut, B: Win, C: Spr (Ramirez, Meyer)

EDUC 388A. Language Policies and Practices — For credential candidates and STEP candidates seeking to meet requirements for the English Learner Authorization on their preliminary credential. Historical, political, and legal foundations of education programs for English learners. Theories of second language learning, and research on the effectiveness of bilingual education. Theory-based methods to facilitate and measure English learners’ growth in language and literacy acquisition, and create environments which promote English language development and content area learning through specially designed academic instruction in English. (STEP)
3-4 units, Win (Staff)

EDUC 388E. Elementary Teaching of English as a Second Language — For STEP Elementary credential candidates. Theory-based methods to assess English learners’ growth in language and literacy acquisition. How to create learning environments which promote English language development, and content area learning through Specially Designed Academic Instruction in English (SDAIE). Lesson presentation, videotape analysis, instructional and assessment methods, and materials exploration.
3 units, Aut (Staff)

EDUC 391. Web-Based Technologies in Teaching and Learning — Project-based. Overview of instructional design theories and educational technologies to evaluate and develop a web-based educational application or system. Web-based applications and technologies designed for online interactions and collaborations. Instructional systems strategies to develop online environments that support and facilitate interactive learning. Students create a small-scale, web-based learning system.
3-5 units, Aut (Kim)
EDUC 392X. Enterprising Higher Education in the Digital Age—
Trends and impacts in the for-profit higher education industry. Business, financial, and technical infrastructure; accreditation and regulatory implications; technologies; practical issues in school establishment and operation; and business measurements. Student teams complete final project which may involve: analyzing existing for-profit educational enterprise, developing a business plan with a pro-forma for a small scale institute for non-traditional students, reporting on accreditation and regulatory issues around for-profit education, or developing a prototype of an online training curriculum.
3 units (Kim) not given 2005-06

EDUC 393. Proseminar on Research in Education—Overview of the
field of education for joint degree students (M.B.A./M.A.). 2 units for readings and participation; 4 units requires four short papers in consultation with instructor. (SSPEP)
2-4 units, Spr (Strober)

EDUC 395X. Scholarly Writing in Education and the Social Sciences—Workshop. How to write for professional journals.
3-5 units (Winburg) not given 2005-06

EDUC 401A. Mini Courses in Methodology: Statistical Packages
for the Social Sciences—For doctoral students. Limited enrollment. Prerequisite: consent of instructor.
1 unit (Gelbach) not given 2005-06

EDUC 402. Research Workshop on Gender Issues—Presentations of research on gender issues by doctoral students, faculty, and visitors. May be repeated for credit. Prerequisite: consent of instructor; doctoral student.
2-4 units, Aut, Win, Spr (Strober)

EDUC 408. Research Workshop in International and Comparative Education—Limited to advanced doctoral students in ICE and SSPEP. Research workshop for the review of key issues in the methodology and epistemology of social research in education, research proposals, and findings by students and faculty. Prerequisites: 306A,B,C,D or equivalents. (SSPEP/ICE)
2-5 units, Win (Ramirez)

EDUC 417X. Research and Policy on Postsecondary Access—For graduate students; see 117X.
3 units (Antonio) not given 2005-06

EDUC 418. Foundations of Case Study Research—Rationales for case study research in academic organizations emphasizing colleges and universities; high schools and related organizational contexts. Methodological training in fieldwork through hands-on data collection and analysis from interviews and documents. For doctoral students developing qualifying papers or dissertation proposals; required for higher education doctoral students; APA, SSE, and C&TE students with consent of instructor. (APA)
3-5 units, Win (Gumport)

EDUC 420B. Philosophy of Education—Particular issues during designated quarters. Enrollment limited; sign up with instructor prior to beginning of quarter. (SSPEP)
1-3 units (Staff) not given 2005-06

EDUC 423A. Introduction to Research Design: Educational Administration and Policy Analysis—Preference to APA doctoral students working on their sixth-quarter qualifying paper. Issues in conceptualizing and designing research in the social sciences. (APA)
3-5 units, Win (Ramirez)

EDUC 424. Introduction to Research in Curriculum and Teacher Education—Limited to second-year doctoral students in CTE. How to conceptualize, design, and interpret research. How to read, interpret, and critique research; formulate meaningful research questions; evaluate and conduct a literature review; and conceptualize a study. Readings include studies from different research paradigms. Required literature review in an area students expect to explore for their qualifying paper.
3-5 units, Aut (Darling-Hammond)

EDUC 430A. Advanced Seminar in Childhood and Adolescent Development—For students interested in research and training opportunities at the Center on Adolescence, and those interested in how to interpret and conduct research in child and adolescent development. Topics include: empathy and prosocial behavior, personality development, self-concept, motivation, peer relations, family influences, and anti-social behavior. Emphasis is on major theoretical and research traditions.
3 units, Aut (Damon)

EDUC 435X. Research Seminar in Applied Linguistics—For graduate students in the schools of Education and Humanities and Sciences who are engaged in research pertaining to applied linguistic topics in original research. Topics: language policies and planning, language and gender, writing and critical thinking, foreign language education, and social applications of linguistic science. (SSPEP)
1-4 units (Baugh) not given 2005-06

EDUC 453. Doctoral Dissertation—For doctoral students only. (all areas)
1-15 units, Aut, Win, Spr, Sum (Staff)

EDUC 465. Seminar in the Pedagogy of Teacher Education—For doctoral students interested in working in teacher education. Pedagogical approaches, including the use of modeling and simulations and hypermedia materials. Theoretical considerations of how teachers learn to teach.
2-3 units, Win (Grossman)

EDUC 466. Doctoral Seminar in Curriculum—Required of all doctoral students in CTE, normally during their second year in the program. Students present their ideas regarding a dissertation or other research project, and prepare a short research proposal that often satisfies their second-year review. (CTE)
2-4 units, Win (Eisner)

EDUC 470. Practicum—For advanced graduate students. (all areas)
1-15 units, Aut, Win, Spr, Sum (Staff)

EDUC 480. Directed Reading—For advanced graduate students. (all areas)
1-15 units, Aut, Win, Spr, Sum (Staff)

EDUC 490. Directed Research—For advanced graduate students. (all areas)
1-15 units, Aut, Win, Spr, Sum (Staff)

EDUC 493B. Topics in Quantitative Methods: Meta-Analysis—(Same as STATS 211.) Meta-analysis as a quantitative method for combining the results of independent studies enabling researchers to evaluate available evidence. Examples of meta-analysis in medicine, education, and social and behavioral sciences. Statistical methods include nonparametric methods, contingency tables, regression and analysis of variance, and Bayesian methods. Project involving an existing published meta-analysis. Prerequisite: basic sequence in statistics.
1-3 units, Win (Olkin)

OVERSEAS STUDIES

Descriptions of these courses are in the “Overseas Studies” section of this bulletin or at the Overseas Studies office, 126 Sweet Hall.

FLORENCE

EDUC 90Z. Learning to Learn: Italian Theories of Early Childhood Education
3 units, Aut (Grossman)

EDUC 91Z. Doing School: A Comparative Study of American and European High Schools
3 units, Aut (Grossman)
SCHOOL OF ENGINEERING

Dean: James D. Plummer
Senior Associate Deans: Eleanor Antonakos (Finance and Administration), Laura L. Breyfogle (External Relations), Anthony J. DiPaolo (Stanford Center for Professional Development), Brad Osgood (Student Affairs), Channing Robertson (Academic and Faculty Affairs)
Associate Dean: Noé P. Lozano (Diversity Programs)
Assistant Dean: Sally Gressens (Graduate Student Affairs)

Faculty Teaching General Engineering Courses
Associate Professors: Samuel S. Chiu, Bruce B. Lusignan, Paul McIntyre, Claire J. Tomlin, Benjamin Van Roy
Assistant Professors: Eric Darve, Camilla M. Kao, Sanjay Lall, Nicolas A. Melosh, Gunter Niemeyer, Heinz G. Pitsch, Thomas A. Weber
Professors (Research): Batrus T. Khuri-Yakub, Ken Waldron
Professors (Teaching): Thomas H. Byers, Robert E. McGinn, Eric Roberts
Senior Lecturer: David Lougee
Lecturers: Mehran Sahami, Tina Seelig, Patrick Young
Acting Assistant Professor: Wendy Wright
Consulting Professor: Richard Reis
Consulting Associate Professor: Randy Komisar
Consulting Assistant Professors: William Behrman, Vadim Khayms

Mail Code: 94305-4027
Phone: (650) 725-1575
Web Site: http://soe.stanford.edu/

Courses given in Engineering have the subject code ENGR. For a complete list of subject codes, see Appendix.

The School of Engineering offers undergraduate programs leading to the degree of Bachelor of Science (B.S.), programs leading to both B.S. and Master of Science (M.S.) degrees, other programs leading to a B.S. with a Bachelor of Arts (B.A.) in a field of the humanities or social sciences, dual-degree programs with certain other colleges, and graduate curricula leading to the degrees of M.S., Engineer, and Ph.D.

The school has nine academic departments: Aeronautics and Astronautics, Bioengineering, Chemical Engineering, Civil and Environmental Engineering, Computer Science, Electrical Engineering, Management Science and Engineering, Materials Science and Engineering, and Mechanical Engineering. These departments and one interdisciplinary program, the Institute for Computational and Mathematical Engineering, are responsible for graduate curricula, research activities, and the departmental components of the undergraduate curricula. In research where faculty interest and competence embrace both engineering and the supporting sciences, there are numerous programs within the school as well as several interschool activities, including the Alliance for Innovative Manufacturing at Stanford, Center for Integrated Systems, Center for Materials Research, Center on Polymer Interfaces and Macromolecular Assemblies, Center for Space Science and Astrophysics, Joint Institute for Aeronautics, and the NIH Biotechnology Graduate Training Grant in Chemical Engineering. Petroleum Engineering is offered through the School of Earth Sciences.

The School of Engineering’s new Institute of Design (http://dschool.stanford.edu) brings together students and faculty in engineering, business, education, medicine, and the humanities to learn design thinking and work together to solve big problems in a human-centered way.

The Stanford Institute for the Environment brings together faculty, students admitted to the University may declare a major in the School of Engineering if they elect to do so; no additional courses or examinations are required for admission to the school.

RECOMMENDED PREPARATION FRESHMEN

Students who plan to enter Stanford as freshmen and intend to major in engineering should take the highest level of mathematics offered in high school. (See the “Mathematics” section of this bulletin for information on research, education, and outreach to promote an environmentally sound and sustainable world.

Instruction in engineering is offered primarily during the Autumn, Winter, and Spring quarters of the regular academic year. During the Summer Quarter, a small number of undergraduate and graduate courses are offered.

UNDERGRADUATE PROGRAMS

The principal goals of the undergraduate engineering curriculum are to provide opportunities for intellectual growth in the context of an engineering discipline, for the attainment of professional competence, and for the development of a sense of the social context of technology. The curriculum is flexible, with many decisions on individual courses left to the student and the adviser. For a student with well-defined educational goals, there is often a great deal of latitude.

In addition to the special requirements for engineering majors described below, all undergraduate engineering students are subject to the University general education, writing, and foreign language requirements outlined in the first pages of this bulletin. Depending on the program chosen, students have the equivalent of from one to three quarters of free electives to bring the total number of units to 180.

The School of Engineering’s Handbook for Undergraduate Engineering Programs is available online at http://ughp.stanford.edu and provides detailed descriptions of all undergraduate programs in the school, as well as additional information about extracurricular programs and services. A hard copy version is also available from the Office of Student Affairs in Terman Engineering Center, room 201. Because it is published in the summer, and updates are made to the web site on a continuing basis, the handbook reflects the most up-to-date information for the academic year and is the definitive reference for all undergraduate engineering programs.

Accreditation — The Accreditation Board for Engineering and Technology (ABET) accredits college engineering programs nationwide using criteria and standards developed and accepted by U.S. engineering communities. At Stanford, the following undergraduate programs are accredited: Chemical Engineering, Civil Engineering, Environmental Engineering, Electrical Engineering, and Mechanical Engineering. In ABET-accredited programs, students must meet specific requirements for engineering science, engineering design, mathematics, and science course work. Students are urged to consult the School of Engineering undergraduate handbook and their adviser.

Accreditation is important in certain areas of the engineering profession; students wishing more information about accreditation should consult their department office or the office of the Senior Associate Dean for Student Affairs in Terman 201.

Policy on Satisfactory/No Credit Grading and Minimum Grade Point Average — All courses taken to satisfy major requirements (including the requirements for mathematics, science, engineering fundamentals, Technology in Society, and engineering depth) for all engineering students (including both department and School of Engineering majors) must be taken for a letter grade if the instructor offers that option.

For departmental majors, the minimum combined GPA (grade point average) for all courses taken in fulfillment of the Engineering Fundamentals requirement and the Engineering Depth requirement is 2.0. For School of Engineering majors, the minimum GPA on all engineering courses taken in fulfillment of the major requirements is 2.0.

ADMISSION

Students admitted to the University may declare a major in the School of Engineering if they elect to do so; no additional courses or examinations are required for admission to the school.

RECOMMENDED PREPARATION FRESHMEN

Students who plan to enter Stanford as freshmen and intend to major in engineering should take the highest level of mathematics offered in high school. (See the “Mathematics” section of this bulletin for information on
advanced placement in mathematics.) High school courses in physics and chemistry are strongly recommended, but not required. Additional elective course work in the humanities and social sciences is also recommended.

TRANSFER STUDENTS

Students who do the early part of their college work elsewhere and then transfer to Stanford to complete their engineering programs should follow an engineering or pre-engineering program at the first school, selecting insofar as possible courses applicable to the requirements of the School of Engineering, that is, courses comparable to those described below under “Undergraduate Programs.” In addition, students should work toward completing the equivalent of Stanford’s foreign language requirement and as many of the University’s General Education Requirements (GERs) as possible before transferring. Some transfer students may require more than four years (in total) to obtain the B.S. degree. However, Stanford affords great flexibility in planning and scheduling individual programs, which makes it possible for transfer students, who have wide variations in preparation, to plan full programs for each quarter and to progress toward graduation without undue delay.

Transfer credit is given for courses taken elsewhere whenever the courses are equivalent or substantially similar to Stanford courses in scope and rigor. The policy of the School of Engineering is to study each transfer student’s preparation and make a reasonable evaluation of the courses taken prior to transfer. Inquiries may be addressed to the Senior Associate Dean for Student Affairs and the Assistant Director for Undergraduate Studies in the School of Engineering at Stanford. For more information, see the transfer credit section of the School of Engineering Undergraduate Handbook web site at http://ughb.stanford.edu.

DEGREE PROGRAM OPTIONS

DEGREE PROGRAM OPTIONS

For more information about the requirements for the following options, see the “Undergraduate Degrees And Programs” of this bulletin. Five years are usually required for a dual or coterminous program or for a combination of these two multiple degree programs. For further information, see the School of Engineering’s student affairs office, Terman 201, or department contacts listed in the Handbook for Undergraduate Engineering available in hard copy or at http://ughb.stanford.edu.

BACHELOR OF ARTS AND SCIENCE (B.A.S.)

This degree is available to students who complete both the requirements for a B.S. degree in engineering and the requirements for a major or program ordinarily leading to the B.A. degree. For more information, see the “Undergraduate Degrees” section of this bulletin.

DUAL AND COTERMINAL DEGREE PROGRAMS

A Stanford undergraduate may work simultaneously toward two bachelor’s degrees or toward a bachelor’s and a master’s degree, that is, B.A. and M.S., B.A. and M.A., B.S. and M.S., or B.S. and M.A. The degrees may be granted simultaneously or at the conclusion of different quarters. Usually five years are needed for a combined program.

Dual B.A. and B.S. Degree Program—To qualify for both degrees, a student must (1) complete the stated University and department requirements for each degree, (2) complete 15 full-time quarters, or three full-time quarters after completing 180 units, and (3) complete a total of 225 units (180 units for the first bachelor’s degree plus 45 units for the second bachelor’s degree).

Coterminous Bachelor’s and Master’s Degree Program—A Stanford undergraduate may be admitted to graduate study for the purpose of working simultaneously toward a bachelor’s degree and a master’s degree, in the same or different disciplines. To qualify for both degrees, a student must (1) complete, in addition to the 180 units required for the bachelor’s degree, the number of units required by the graduate department for the master’s degree which in no event is fewer than the University minimum of 45 units, (2) complete the requirements for the bachelor’s degree (department, school, and University) and apply for conferral of the degree at the appropriate time, and (3) complete the department and University requirements for the master’s degree and apply for conferral of the degree at the appropriate time. A student may complete the bachelor’s degree before completing the master’s degree, or both degrees may be completed in the same quarter.

Admission to the coterminous program requires admission to graduate status by the pertinent department. Admission criteria vary from department to department.

Procedure for Applying for Admission to Coterminous Degree Programs—A Stanford undergraduate may apply to the pertinent graduate department using the University coterminous application form after completing 120 bachelor’s degree units. Application deadlines vary by department, but in all cases the student must apply early enough to allow a departmental decision at least one quarter in advance of the anticipated date of conferral of the bachelor’s degree.

Students should refer to the University Registrar’s Office or its web site for details about when courses begin to count toward the master’s degree requirements and when graduate tuition is assessed; this may affect the decision about when to apply for admission to graduate status.

For University coterminous degree program rules and University application forms, see http://registrar.stanford.edu/publications/#Coterm.

BACHELOR OF SCIENCE

Departments within the School of Engineering offer programs leading to the B.S. degree in the following fields: Chemical Engineering, Civil Engineering, Computer Science, Electrical Engineering, Environmental Engineering, Management Science and Engineering, Materials Science and Engineering, and Mechanical Engineering. The School of Engineering itself offers interdisciplinary programs leading to the B.S. degree in Engineering with specializations in Aeronautics and Astronautics, Architectural Design, Biomechanical, Biomedical Computation, Computer Systems Engineering, and Product Design. In addition, students may elect a B.S. with an Individually Designed Major in Engineering.

The departments of Chemical Engineering, Civil and Environmental Engineering, Computer Science, Electrical Engineering, and Mechanical Engineering offer qualified majors opportunities to do independent study and research at an advanced level with a faculty mentor in order to receive a Bachelor of Science with honors.

Petroleum Engineering—Petroleum Engineering is offered by the School of Earth Sciences. Consult the “Petroleum Engineering” section of this bulletin for requirements. School of Engineering majors who anticipate summer jobs or career positions associated with the oil industry may wish to consider enrolling in ENGR 120, Fundamentals of Petroleum Engineering.

Programs in Manufacturing—Programs in manufacturing are available at the undergraduate, M.S., and Ph.D. levels. The undergraduate programs of the departments of Civil and Environmental Engineering, Management Science and Engineering, and Mechanical Engineering provide general preparation for any student interested in manufacturing. More specific interests can be accommodated through Individually Designed Majors (IDMs).
SCHOOL OF ENGINEERING MAJORS

The School of Engineering offers the degree of Bachelor of Science in Engineering. School of Engineering programs may be approved by the Undergraduate Council of the school. There are two types of programs: majors that have been approved by cognizant faculty groups and have been pre-approved by the council, and Individually Designed Majors. At present, there are six pre-approved majors: Aeronautics and Astronautics, Architectural Design, Biomechanical, Biomedical Computation, Computer Systems Engineering, and Product Design.

AERONAUTICS AND ASTRONAUTICS (AA)

Mathematics (24 units):
- MATH 53, or CME 102 (formerly ENGR 155A) 5
Science electives (See Basic Requirement 1)

Science (18 units):
- PHYSICS 41, Mechanics (formerly 53) 4
- PHYSICS 43, Electricity and Magnetism (formerly 55) 4

One additional Physics course 3

Science electives (see Basic Requirement 2) 9

Technology in Society (3-5 units):
- (See Basic Requirement 4)

Engineering Fundamentals (three courses minimum; see Basic Requirement 3):
- ENGR 14. Statics 3
- ENGR 30. Engineering Thermodynamics 3
- ENGR 70A or 70X. Programming (recommended) 3-5

Engineering Depth (39 units):
- AA 100. Introduction to Aeronautics and Astronautics 3
- AA 190. Directed Research in Aeronautics and Astronautics (WIM) 3
- ENGR 15. Dynamics 3
- CEE 101A. Mechanics of Materials or ME 80. Stress, Strain, and Strength 3-4
- ME 161. Dynamic Systems or PHYSICS 110. Intermediate Mechanics 4
- ME 70. Introductory Fluids Engineering 4
- ME 131A. Heat Transfer 4
- Depth Area I 6
- Depth Area II 6
- Engineering Electives 3

These requirements are subject to change. The final requirements are published with example programs in the School of Engineering Undergraduate Handbook during the summer.

1 Two of the following areas:
- Fluids (AA 200A, 210A, 214A, or 283; ME 131B)
- Structures (AA 240A, 240B, 256)
- Dynamics and Controls (AA 242A, 271A, 279; ENGR 105, 205)
- Systems Design (AA 241A, 241B, 236A, 236B)

2 Electives are to be approved by the adviser, and might be from the depth area lists, or courses such as AA 201A, 210B, 252; ENGR 206, 209A, 209B; or other upper-division Engineering courses.

ARCHITECTURAL DESIGN

Mathematics (20 units minimum):
- Required: one course in Statistics
- Recommended: EARTH/GEOS 1, CEE 63, 64; PHYSICS 23 or 43

Science (16 units minimum, from the recommended School of Engineering list or the courses listed below)
- Required: PHYSICS 21 or 41 (Mechanics)
- Recommended: EARTH/GEOS 101, 102; GES 1; CEE 63, 64; PHYSICS 23 or 43

Technology in Society (one course required)
- (See Basic Requirement 4)

Engineering Fundamentals and Engineering Depth Classes (60 units minimum)
- ENGR 60. Engineering Economy 3
- Fundamentals Elective 3-6

Engineering Depth:
- CEE 100. Managing Sustainable Building Projects (fulfills WIM) 4
- CEE 101A. Mechanics of Materials 4
- CEE 111. 3D/4D Modeling Plus Analyses 3
- CEE 31. (or 31Q). Accessing Architecture Through Drawing 3
- CEE 130. Introduction to Architectural Design: 3D Modeling. Methodology, and Process 4
- CEE 132. Interplay of Architecture and Engineering 4
- CEE 136. Green Architecture 4
- CEE 156/156A. Building Systems 4
- ARTHIST 3. Introduction to the History of Architecture 3
- Engineering Depth Electives (with at least 3 units from SoE courses) 13-16

These requirements are subject to change. The final requirements are published with example programs in the School of Engineering Undergraduate Handbook during the summer.

BIOMECHANICAL (BME)

Mathematics (21 units minimum):
- (See Basic Requirement 1)
- Required: one year of Chemistry or Physics (12 units) and 2 courses of HUMBIO core or Biocore (10 units), additional units from School of Engineering approved list:
- BIOSCI 44X. Biology Labs 4
- BIOSCI/HUMBIO (Biocore/HUMBIO Core) 5
- Technology in Society (3-5 units):
 - one course (See Basic Requirement 4)

Additional courses as necessary (refer to ME Department)

Engineering Topics (Engineering Science and Design):
- Engineering Fundamentals (minimum three courses; see Basic Requirement 3)
 - ENGR 25. Introduction to Biotechnology Fundamentals Elective 3-5
 - Engineering Depth:
 - ENGR 15. Dynamics 3
 - ENGR 30. Engineering Thermodynamics 3
 - ME 70. Introductory Fluids Engineering 4
 - ME 80. Stress, Strain, and Strength 3
 - ME 389. Bioengineering and Biodesign Forum 1

Options to complete the ME depth sequence
- (select 3 courses, minimum 9 units)
 - ENGR 105. Feedback Control Design 3
 - ME 101. Visual Thinking 3
 - ME 103D. Engineering Drawing and Design 3
 - ME 112. Mechanical Engineering Design 4
 - ME 113. Mechanical Engineering Design 4
 - ME 131A. Heat Transfer 4
 - ME 131B. Fluid Mechanics: Compressible Flow and Turbomachinery 4
 - ME 140. Advanced Thermal Systems 4
 - ME 161. Dynamic Systems 4
 - ME 203. Manufacturing and Design 3-4
 - ME 210. Introduction to Mechatronics 4
 - ME 220. Introduction to Sensors 3-4

Options to complete the BME depth sequence
- (select 3 courses, minimum 9 units)
 - ME 281. Biomechanics of Movement 3-4
 - ME 284A,B. Cardiovascular Bioengineering 3-4
 - ME 289. Developmental & Evolution 3-4
 - ME 294. Medical Device Design 3-4

These requirements are subject to change. The final requirements are published with example programs in the School of Engineering Undergraduate Handbook during the summer.

BIOMEDICAL COMPUTATION (BMC)

Mathematics (21 unit minimum):
- (See Basic Requirement 1)
- Required: one course in Statistics
- Recommended: CME 102 (formerly ENGR 155A)

Science (17 units minimum):
- Required: PHYSICS 41. Mechanics (formerly 53)
- CHEM 31X or A,B. Chemical Principles 4
- BIOSCI 2. Physiology 4
- STAT 116. Theory of Probability 1
- CS 103. Discrete Structures (X, or A and B) 4-6

These requirements are subject to change. The final requirements are published with example programs in the School of Engineering Undergraduate Handbook during the summer.

Programming:
- CS 107. Programming Paradigms 5
- Core:
 - BIOMEDIN 210. Intro Biomedical Informatics Research: 5
 - CS191W. Research Project (WIM) 6
 - OR ME 191. Research Project 6
 - Engineering Depth Concentration: (choose one of the following concentrations)
 - Cellular/Molecular Concentration: Mathematics: plus one of the following courses:
 - MATH 51. Advanced Calculus 5
 - STAT 141, Biostatistics 5
 - Engineering Fundamentals:
 - Elective 3
 - Biology: (four courses)
 - BIOSCI 129A. Cell Dynamics I 4
 - BIOSCI 129B. Cell Dynamics II 4
BIOSCI 188. Biochemistry 3
BIOSCI 203. Advanced Genetics 4
Simulation Breadth (two courses)13 6
Informatics Breadth (two courses)6 6
General Breadth (one course)17 6
Informatics Concentration:
Mathematics: STAS 141. Biostatistics 4
Engineering Fundamentals:
Elective3 3
Informatics Core (two courses)
CS 145. Databases 4
CS 161. Design and Analysis of Algorithms 4
CS 121/221. Artificial Intelligence 3
Informatics Electives (three courses)9 9
Cellular Breadth (two courses)5 6
Organs Breadth (two courses)10 10
Organs/Organisms Concentration:
Mathematics: one of the following courses:
MATH 51. Advanced Calculus 5
STAS 141. Biostatistics 5
Engineering Fundamentals:
Elective3 3
Biology (three courses)
BIOSCI 112. Human Physiology 4
BIOSCI 188. Biochemistry or
BIOE/RAD 220 Intro. to Imaging 3
Organs Elective10 3-5
Simulation Breadth (two courses)13 6
Informatics Breadth (two courses)6 6
General Breadth (one course)17 6
Simulation Concentration:
Mathematics:
MATH 51. Advanced Calculus I 5
MATH 52 or CME 102 (formerly ENGR 155A) 5
MATH 53 or CME 104 (formerly ENGR 155B) 5
Advanced Calculus III 5
Science:
PHYSICS 45 or 43 (formerly 51, 53). 4
Engineering Fundamentals:
See requirement in Simulation Core
Simulation Core: (two courses)12 6
Two courses from ENGR 14.15; ME 80 6
Simulation Breadth (two courses)13 6
Cellular Breadth (one course)5 6
Organs Breadth (one course)17 3
1 MS&E 120 or EE 178 is acceptable substitutes for STAS 116.
2 CS 201, 272, and MS&E 197 also fulfill the “Writing in the Major” requirement.
3 One course required, 3-5 units. See Fundamentals list in School of Engineering Handbook for Undergraduate Engineering Programs.
4 The simulation electives must be chosen from the following:
ENGR 14.15, 15.30; ME 80, 280, 281, 284A; CS 223A. 245, 273, 277; SBIO 228; CHEM 171.
5 A total of 40 engineering units must be taken. The core classes only provide 27 engineering units, so the remaining units must be taken from within the electives.
6 The informatics electives must be chosen from the following: CS 121, 145, 147, 162, 222, 228, 229, 262; BIOMEDIN 211, 214, BIOC 218; MS&E 252; STAS 206, 315A; GENE 211.
7 The additional elective must be chosen from the lists in Cellular/Molecular concentration of the following electives, informatics electives, or from the following:
BIOSCI 132, 133, 214; SBIO 262; BIOMEDIN 214; BIOC 218; GENE 211.
8 The informatics electives must be chosen from the following:
CS 147, 222, 228, 229, 262; BIOMEDIN 211, 214; BIOC 218; MS&E 252; STAS 206, 315A; GENE 211.
9 The cellular electives must be chosen from the following:
BIOSCI 129B, A, B; 188, 203, 132, 133, 214; SBIO 228; CS 262, 273; BIOMEDIN 214; BIOC 218; GENE 211.
10 The organs electives must be chosen from the following:
BIOSCI 112, 158, 188, 214, 230, 293; ME 280, 281; DBIO 210; RAD 220; SURG 101.
11 The additional elective must be chosen from the lists in Organs/Organisms concentration of simulation electives, informatics electives, or from the following:
BIOSCI 158, 214, 283; ME 280, 281, 284A; DBIO 210; SURG 101.
12 Different subsets of these courses are required for different continuation courses in the track.
13 The simulation electives must be chosen from the following:
ME 280, 281, 284A; CS 223A, 248, 273, 277; SBIO 228; CHEM 171.

COMPUTER SYSTEMS ENGINEERING (CSE)

Mathematics (23 units minimum):
MATH 41, 42, 51. Calculus 15
MATH 52 or 53. Multivariable Math 5
STAS 116. Theory of Probability or MS&E 120 or CME 106 3-5
Science (12 units):
PHYSICS 41. Mechanics (formerly 53) 4
PHYSICS 43. Electricity and Magnetism (formerly 55) 4
PHYSICS 45. Optics and Thermodynamics (formerly 51) 4
Technology in Society (3-5 units):
one course
(See Basic Requirement 4)

Engineering Fundamentals (13 units minimum; see Basic Requirement 3):
ENGR 40. Electronics 5
ENGR 70X. Programming Methodology and Abstractions or CS 106A and B 5
Fundamentals Elective 3-5

Writing in the Major (one course):
CS 191W, 194, 201, and 294W fulfill this requirement

Computer Systems Engineering Core (32 units minimum):
CS 103X. Discrete Structures or CS 103A and B 4 or 6
CS 107. Programming Paradigms 5
CS 108. Object-Oriented Systems Design 4
EE 108A. Digital Systems I 4
EE 108B. Digital Systems II 3 or 4
Senior Project (CS 191, 191W, 194, 294, or 294W)1 3
Plus two of the following:2
EE 101A. Circuits I 4
EE 101B. Circuits II 4
EE 102A. Signals and Systems I 4
EE 102B. Signals and Systems II 4

Computer Systems Engineering Depth (19-25 units; choose one of the following specializations):
Digital Systems Specialization
CS 140. Operating Systems or CS 143. Compilers 4
EE 109. Digital Systems Design Lab 4
EE 271. VLSI Systems 3

Plus three to four of the following:3
CS 140 or 143 (if not counted above) 4
CS 244A. Introduction to Networking 4
EE 273. Digital Systems Engineering 4
EE 275. Logic Design 3
EE 281. Embedded Systems Design Lab 3
EE 282. Computer Architecture 3
Robotics and Mechatronics Specialization
CS 205. Math for Robotics, Vision, Graphics 3
CS 223A. Introduction to Robotics 3
ME 210. Introduction to Mechatronics 4
ENGR 105. Feedback Control Design 3

Plus two to three of the following:4
CS 223B. Introduction to Computer Vision 3
CS 225A. Experimental Robotics 3
CS 225B. Robot Programming Lab 4
ENGR 205. Introduction to Control Design 3
ENGR 206. Control Systems Design/Simulation 4
ENGR 207A. Modern Control Design I 3
ENGR 207B. Modern Control Design II 3

Networking Specialization
CS 140. Operating Systems 4
CS 244A. Introduction to Networking 4

Plus four to five of the following:5
CS 193I. Internet Technologies 3
CS 240. Advanced Topics in Operating Systems 3
CS 241. Internet Technologies and Systems 3
CS 244B. Distributed Systems 3
CS 249. Object-Oriented Programming 3-5
EE 179. Intro to Communications 3
EE 276. Wireless Personal Communications 3

These requirements are subject to change. The final requirements are published with example programs in the School of Engineering Undergraduate Handbook during the summer.

1 Independent study projects (CS 191 or 191W) require faculty sponsorship and must be approved in advance by the adviser, faculty sponsor, and the CSE program adviser (R. Plummer or P. Young). A signed approval form, along with a brief description of the proposed project, should be filed the quarter before work on the project is begun. Further details can be found in the Handbook for Undergraduate Engineering Programs at http://ugsb.stanford.edu.
2 Students pursuing the Robotics and Mechatronics or Networking specializations must take EE 102A and B.
3 Students opting to take CS103X instead of CS103A and B must complete the higher number of courses.

PRODUCT DESIGN

Mathematics (20 units minimum):
Recommended: one course in Statistics Science (22 units minimum):
15 units must be from School of Engineering approved list4
Recommended: one year of PHYSICS
Behavioral Science (7 units minimum):
PSYCH 1. Introduction to Psychology (required) 5
PSYCH elective2 (courses numbered 20-95) 3-5
Mathematics and Science (maximum combined total of 45 units):
Technology in Society (one course):
ME 120. History of Philosophy of Design (required) 3-4
Engineering Fundamentals (three courses minimum):
ENGR 40, 70 required, plus one course chosen from ENGR 10, 15, 20, 25, 30, 50, 60; MS&E 100, 133

Engineering Depth (45 units):
Art Studio courses (two; ARTSTUDI 60, Design I: Fundamental Visual Language 3
ARTHIST 160, Design II: The Bridge 3
Art Studio courses (two; ARTSTUDI 70 recommended) 6
ENGR 14 3
ENGR 102M 1
ME 80. Stress, Strain, and Strength 4
ME 101. Visual Thinking 3
ME 103D. Engineering Drawing 1
ME 110A. Design Sketching 1
ME 112. Mechanical Systems 4
ME 115. Human Values in Design 3
ME 116. Product Design: Formgiving 4
ME 203. Manufacturing and Design† 4
ME 216A. Advanced Product Design 4
ME 216B. Advanced Product Design 4

These requirements are subject to change. The final requirements are published with example programs in the School of Engineering Undergraduate Handbook during the summer.

1 School of Engineering approved science list available at http://ughb.stanford.edu.
2 One quarter abroad may substitute for this course.
3 Must be taken concurrently to fulfill the writing in the major requirement.

INDIVIDUALLY DESIGNED MAJORS (IDMS)

IDMs are intended for undergraduates interested in pursuing engineering programs that, by virtue of their focus and intellectual content, cannot be accommodated by existing departmental majors or the pre-approved School of Engineering majors. IDM curricula are designed by students with the assistance of two faculty advisers of their choice and are submitted to the Undergraduate Council’s Subcommittee on Individually Designed Majors. The degree conferred is “Bachelor of Science with an Individually Designed Major in Engineering: (approved title).”

Students must submit written proposals to the IDM Subcommittee detailing their course of study. Programs must meet the following requirements: mathematics (21 unit minimum, see Basic Requirement 1 below), science (17 units minimum, see Basic Requirement 2 below), Technology in Society (one approved course, see Basic Requirement 4 below), engineering (40 units minimum), and sufficient relevant additional course work to bring the total number of units to at least 90 and at most 107. (Students may take additional courses pertinent to their IDM major, but the IDM proposal itself may not exceed 107 units.) The student’s curriculum must include at least three Engineering Fundamentals courses (ENGR 10, 14, 15, 20, 25, 30, 50, 60, 62, 70A, and 70X). Students are responsible for completing the prerequisites for all courses included in their majors.

Each proposal should begin with a statement describing the proposed major. In the statement, the student should make clear the motivation for and goal of the major, and indicate how it relates to her or his projected career plans. The statement should also specify how the various courses to be taken relate to and move the student toward realizing the major’s goal. A proposed title for the major should be included. The title approved by the IDM Subcommittee is listed on the student’s official University transcript.

The proposal statement should be followed by a completed Program Sheet listing all the courses comprising the student’s IDM curriculum, organized by the five categories printed on the sheet (mathematics, science, technology in society, additional courses, and engineering depth). Normally, the courses selected should comprise a well-coordinated sequence or sequences that provide mastery of important principles and techniques in a well-defined field. In some circumstances, especially if the proposal indicates that the goal of the major is to prepare the student for graduate work outside of engineering, a more general engineering program may be appropriate. A four-year study plan, showing courses to be taken each quarter, should also be included in the student’s IDM proposal.

The proposal must be signed by two faculty members whose signatures certify that they endorse the major as described in the proposal and that they agree to serve as the student’s permanent advisers. One of the faculty members, who must be from the School of Engineering, acts as the student’s primary adviser. The proposal must be accompanied by a statement from that person giving her or his appraisal of the academic value and viability of the proposed major.

Students proposing IDMs must have at least four quarters of undergraduate work remaining at Stanford after the quarter in which their proposals are first submitted. Any changes in a previously approved major must be endorsed by the advisers and re-approved by the IDM subcommittee. A request by a student to make changes in her or his approved curriculum must be made sufficiently far in advance so that, should the request be denied, adequate time remains to complete the original, approved curriculum.

Proposals are reviewed and acted upon once a quarter. Forms may be obtained from the Handbook for Undergraduate Engineering Programs’ web site at http://ughb.stanford.edu. Completed proposals should be submitted to Bertha Love in the Office of Student Affairs, Terman 201.

DEPARTMENTAL MAJORS

Curricula for majors offered by the departments of Chemical Engineering, Civil and Environmental Engineering, Electrical Engineering, Management Science and Engineering, Materials Science and Engineering, and Mechanical Engineering have the following components: 40-47 units of mathematics and science (see Basic Requirements 1 and 2 at the end of this section); engineering fundamentals (three course minimum, at least one of which must be unspecified by the department, see Basic Requirement 3); Technology in Society (TIS) (one course minimum, see Basic Requirement 4); engineering depth (courses such that the total of units for Engineering Fundamentals and Engineering Depth is between 60 and 75). Curricular requirements for departmental majors were being revised at the time of publication. Consult the 2005-06 Handbook for Undergraduate Engineering Programs online at http://ughb.stanford.edu for the most up-to-date listing of curricular requirements.

Experimentation — Departmental major programs, other than Computer Science and Management Science and Engineering, must include 8 units of experimentation. Lab courses taken in the sciences, as well as experimental work taken in courses within the School of Engineering, can be used in fulfillment of this requirement. By careful planning, the experimentation requirement should not necessitate additional course work beyond that required to meet the other components of an engineering major. A list of courses and their experimentation content (in units) can be found online at http://ughb.stanford.edu in the 2005-06 Undergraduate Engineering Programs.

CHEMICAL ENGINEERING (CHE)

Course No. and Subject Units
Mathematics:
MATH 41, 42 10
CME 100. Vector Calculus for Engineers (formerly ENGR 154) 5
and MATH 51. Calculus 5
CME 102 (formerly ENGR 155A). Ordinary Differential Equations for Engineers 5
and MATH 52. Calculus 5
and MATH 53. Ordinary Differential Equations 10
CME 104 (formerly ENGR 155B). Linear Algebra and Partial Differential Equations 5
and CME 106 (formerly ENGR 155C). Introduction to Probability and Statistics for Engineers 4
Science:
CHEM 31X. Chemical Principles 4
and CHEM 31A. Chemical Principles I 4
and CHEM 31B. Chemical Principles II 8
CHEM 33. Structure and Reactivity 4
CHEM 35. Organic Monofunctional Compounds 4
CHEM 36. Chemical Separations 3
PHYSICS 41. Mechanics (formerly 53) 4
PHYSICS 43. Electricity and Magnetism (formerly 55) 4
Technology in Society (one course required):
(See Basic Requirement 4) 3-5

Engineering Fundamentals (three courses minimum; see Basic Requirement 3):
ENGR 20. Introduction to Chemical Engineering 3
and ENGR 25. Biotechnology Fundamentals Elective 3-5
Chemical Engineering Depth:
BIOSCI 41. Genetics and Biochemistry 5
CHEMENG 10. The Chemical Engineering Profession 1
School of Engineering

Computer Science Depth (43 units minimum):
- Technology in Society (one course, 3-5 units) (See Basic Requirement 4)
- Plus two electives

Mathematics (23 units minimum):
- Engineering Fundamentals (three courses minimum; see Basic Requirement 3):
 - ENGR 60. Engineering Economy
 - Fundamentals Elective

Engineering Depth:
- CEE 70. Environmental Science and Technology
- CEE 100. Managing Civil Engineering Projects (WIM)
- CEE 101A. Mechanics of Materials
- CEE 101B. Mechanics of Fluids
- CEE 101C. Geotechnical Engineering
- Specialties courses in either:
 - Environmental and Water Studies
 - Structures and Construction

Other School of Engineering Electives: 0-7

These requirements are subject to change. The final requirements are published with example programs in the School of Engineering Undergraduate Handbook. Handbooks are available at http://sengr.stanford.edu or from the department or school.

CIVIL ENGINEERING (CEE)

Mathematics and Science:
- (45 units minimum) (See Basic Requirements 1 and 2)
- Technology in Society (one course) (See Basic Requirement 4)
- Engineering Fundamentals (three courses minimum; see Basic Requirement 3):
 - ENGR 60. Engineering Economy
 - Fundamentals Elective

Programs in the above requirements are subject to change. The final requirements are published with example programs in the School of Engineering Undergraduate Handbook. Handbooks are available at http://sengr.stanford.edu or from the department or school.

ELECTRICAL ENGINEERING (EE)

Mathematics:
- MATH 41, 42
- MATH 51 and 52, or CME 100 and 104 (formerly ENGR 154 and 155B)
- MATH 53 or CME 102 (formerly ENGR 155A)
- EE 178, STATS 116, MATH 151, or CME 106 (formerly ENGR 155CC)

Science:
- PHYSICS (41, 43, 45) or (61, 63, 65) 12
- Math or Science electives: 3-4

Technology in Society (one course) (See Basic Requirement 4)
- Technical Writing: ENGR 102E (WIM corequisite for EE 108A)

EE 100. The Electrical Engineering Profession

Engineering Fundamentals (three courses minimum; see Basic Requirement 3):
- CS 106X or CS 106B
- At least two additional courses, at least one of which is not in EE or CS

EE Engineering Depth:
- Circuits: EE 101A,B
- Signals Processing and Linear Systems: EE 102A,B
- Digital Systems: EE 108A (Laboratory, WIM), 108B
- Analog Laboratory: EE 122
- Physics in Electrical Engineering: EE 41 or EE 141

Electrical Engineering electives

These requirements are subject to change. The final requirements are published with example programs in the School of Engineering Undergraduate Handbook during the summer.

1. Three courses from one of the specialty areas shown below (consultation with an advisor in the selection of these courses is especially important):
 - Computer Hardware: EE 109, 184 (CS 107), 271 or 275, 273, 282
 - Computer Software: EE 184 (CS 107), 189A (CS 108), 189B (CS 194) (284 or CS 244A)
 - Controls: EE 105 (ENGR 105), 205 (ENGR 205), 206 (ENGR 206), 209A (ENGR 209A), 209B (ENGR 209B)
 - Circuits and Devices: EE 116, 133, 212, 214, 216
 - Fields and Waves: EE 134, 142, 144, 241, 247
 - Communications and Signal Processing: EE 133, 168, 179, 261 (264 or 265), 278, 279

2. The design course may, but need not, be part of the specialty sequence. The following courses satisfy this requirement: EE 109, 189B (CS 194), 133, 144, 168, 256; ENGR 206.
ENVIRONMENTAL ENGINEERING (in CEE)

Mathematics and Science:
- 45 unit minimum

Technology in Society (one course):

Engineering Fundamentals (three courses minimum; see Basic Requirement 3):
- ENGR 30. Engineering Thermodynamics
- ENGR 60. Engineering Economy
- Fundamentals Elective

Engineering Depth:
- CEE 64. Air Pollution: From Urban Smog to Global Change
- CEE 70. Environmental Science and Technology
- CEE 101. Managing Civil Engineering Projects (WIM)
- CEE 101B. Mechanics of Fluids
- CEE 101D. MathLab Applications in CEE
- CEE 160. Mechanics of Fluids Laboratory
- CEE 161A. Rivers, Streams, and Canals
- CEE 166B. Floods and Dams, Dams, and Aqueducts
- CEE 171. Environmental Planning Methods
- CEE 172. Air Quality Management
- CEE 177. Aquatic Chemistry and Biology
- CEE 179A. Aquatic Chemistry Laboratory
- Capstone design experience (either CEE 169 or 179B)
- CEE Breadth Electives
- Other School of Engineering Electives

These requirements are subject to change. The final requirements are published with example programs in the School of Engineering Undergraduate Handbook during the summer.

1 Math must include CME 102 (formerly ENGR 155A) and a Statistics course. Science must include both PHYSICS 53 and CHEM 11B or X, 33, and GES 1.

2 Should choose a class that specifically includes an ethics component, such as STS 101, 110, 115, 170, or 215.

MANAGEMENT SCIENCE AND ENGINEERING (MS&E)

Mathematics (32 units minimum):
- MATH 41. Calculus
- MATH 42. Calculus
- MATH 51. Calculus
- MATH 53. Ordinary Differential Equations with Linear Algebra
- MS&E 120. Probabilistic Analysis
- MS&E 121. Introduction to Stochastic Modeling
- STATS 110 or 200. Statistical Methods/Inference

Science Elective

Technology in Society (one course):
- (See Basic Requirement 4) 3-5

Engineering Fundamentals (three courses minimum; see Basic Requirement 3):
- CS 106A or X. Programming Methodology
- ENGR 25 or 40. Biotechnology or Introduction to Electronics
- Fundamentals Elective

Engineering Depth (core):
- CS 106B (unless 106X used as fundamental)
- ENGR 60. Engineering Economy
- ENGR 62. Introduction to Optimization
- MS&E 108. Senior Project
- MS&E 130, 131, or 134. Information
- MS&E 142 or 160. Investment Science or Production
- MS&E 180. Organizations: Theory and Management

Engineering Depth (Concentration): choose one of the following five concentrations:

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Financial and Decision Engineering Concentration</td>
<td>20-30</td>
</tr>
<tr>
<td>ECON 50. Economic Analysis I</td>
<td>5</td>
</tr>
<tr>
<td>ECON 51. Economic Analysis II</td>
<td>5</td>
</tr>
<tr>
<td>MS&E 140. Industrial Accounting</td>
<td>4</td>
</tr>
<tr>
<td>MS&E 152. Introduction to Decision Analysis (WIM)</td>
<td>4</td>
</tr>
<tr>
<td>MS&E 245G or 247G or 247S. Finance</td>
<td>3-4</td>
</tr>
</tbody>
</table>

Two of the following six courses:
- ENGR 145 High Tech Entrepreneurship
- MATH 238. Mathematical Finance
- MS&E 107. Interactive Management Science
- MS&E 160. Production and Operating Systems
- MS&E 223. Stimulation
- MS&E 250A. Engineering Risk Analysis

Operations Research Concentration:
- MATH 113. Linear Algebra and Matrix Theory
- MATH 115. Functions of a Real Variable
- MS&E 112. Network and Integer Optimization
- MS&E 140. Industrial Accounting
- MS&E 266. Mgmt. of New Prod Development
- MS&E 267. Innovations in Manufacturing

These requirements are subject to change. The final requirements are published with example programs in the School of Engineering Undergraduate Handbook during the summer.

1 Math and Science must total a minimum of 45 units. Electives must come from the School of Engineering approved list, or PHYSICS 21, 22, 23, 24, 25, 26; PSYCH 55, 70. AP credit for Chemistry, Mathematics, Physics, and Statistics may be used.

2 Technology in Society course must be one of the following MS&E approved courses: COMM 169, CS 201, MS&E 181, MS&E 193 (WIM), STS 101/ENG 130, STS 115/MS&E 197 (WIM), STS 115/ENG 131, STS 170, STS 279/MS&E 298.

3 AP credit for CS may be used.

4 Students may not count ENGR 60 or 62 for engineering fundamentals as those courses count toward engineering depth (core) and cannot be double counted.

5 Students may not count 142 or 160 for both core and the Organization, Technology, and Entrepreneurship concentration.

6 Students may not count 142 or 160 for both core and the Organization, Technology, and Entrepreneurship concentration.

7 Engineering fundamentals, engineering depth (core), and engineering depth (concentration) must total a minimum of 60 units.

8 Courses used to satisfy the Math, Science, Technology in Society, or Engineering Fundamental requirement may not also be used to satisfy an engineering depth requirement.
Basic Requirement 1 (Mathematics)—Engineering students need a solid foundation in the calculus of continuous functions including differential equations, an introduction to discrete mathematics, and an understanding of statistics and probability theory. The minimum preparation should normally include calculus to the level of MATH 53. Knowledge of ordinary differential equations and matrices is important in many areas of engineering, and students are encouraged to select additional courses in these topics. To meet ABET accreditation criteria, a student’s program must include the study of differential equations.

Courses that satisfy the mathematics requirement are listed online at http://ughb.stanford.edu and in the Handbook for Undergraduate Engineering Programs.

Basic Requirement 2 (Science)—A strong background in the basic concepts and principles of natural science in such fields as biology, chemistry, geology, and physics is essential for engineering. Most students include the study of physics and chemistry in their programs.

Courses that satisfy the science requirement are listed online at http://ughb.stanford.edu and in the Handbook for Undergraduate Engineering Programs.

Basic Requirement 3 (Engineering Fundamentals)—The Engineering Fundamentals requirement is satisfied by a nucleus of technically rigorous introductory courses chosen from the various engineering disciplines. It is intended to serve several purposes. First, it provides students with a breadth of knowledge concerning the major fields of endeavor within engineering. Second, it allows the incoming engineering student an opportunity to explore a number of courses before embarking on a specific academic major. Third, the individual classes each offer a reasonably deep insight into a contemporary technological subject for the interested non-engineer.

The requirement is met by taking three courses from the following list, at least one of which must be selected by the student rather than by the department:

1. ENGR 10, Introduction to Engineering Analysis
2. ENGR 14, Applied Mechanics: Statics and Deformables
3. ENGR 15, Dynamics
4. ENGR 20, Introduction to Chemical Engineering
5. ENGR 25, Biotechnology
6. ENGR 30, Engineering Thermodynamics
7. ENGR 40, Introductory Electronics
8. ENGR 50, Introductory Science of Materials
9. ENGR 60, Engineering Economics
10. ENGR 62, Introduction to Optimization
11. ENGR 70A or 70X, Introduction to Software Engineering

Basic Requirement 4 (Technology in Society)—It is important for the student to obtain a broad understanding of engineering as a social activity. To foster this aspect of intellectual and professional development, all engineering majors must take one course devoted to exploring issues arising from the interplay of engineering, technology, and society. Courses that fulfill this requirement are listed online at http://ughb.stanford.edu and in the Handbook for Undergraduate Engineering Programs.

MINORS

An undergraduate minor in Engineering may be pursued by interested students in many of the school’s departments; consult with a department’s advisor to determine which courses are applicable. Students in many of the school’s departments are encouraged to choose a minor that provides them with a breadth of knowledge concerning the major fields of endeavor within engineering. Second, it allows the incoming engineering student an opportunity to explore a number of courses before embarking on a specific academic major. Third, the individual classes each offer a reasonably deep insight into a contemporary technological subject for the interested non-engineer. A general Engineering minor is not offered.
AERONAUTICS AND ASTRONAUTICS (AA)

The Aero/Astro minor introduces undergraduates to the key elements of modern aerospace systems. Within the minor, students may focus on aircraft, spacecraft, or disciplines relevant to both. The course requirements for the minor are described in detail below. Courses cannot be double-counted within a major and a minor, or within multiple minors; if necessary, the Aero/Astro adviser can help select substitute courses to fulfill the AA minor core.

The following core courses fulfill the minor requirements:

<table>
<thead>
<tr>
<th>Course No. and Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 14. Statics1</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 15. Dynamics1</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 30. Thermodynamics1</td>
<td>3</td>
</tr>
<tr>
<td>ME 70. Introductory Fluids</td>
<td>4</td>
</tr>
<tr>
<td>ME 131A. Heat Transfer</td>
<td>4</td>
</tr>
</tbody>
</table>

1 ENGR 14, 15, or 30 are waived as minor requirements if already taken as part of the major.

The following courses are upper-division electives.

Two courses from one of the elective areas below: 6
One course from a second area: 3
Aerospace Systems Synthesis/Design:
- AA 236A.B. Spacecraft Design: 8
- AA 241A.B. Aircraft Design: 6

Dynamics and Controls:
- AA 242A. Classical Dynamics: 3
- AA 271. Dynamics and Control of Spacecraft/Aircraft: 3
- AA 279. Space Mechanics: 3

ENGR 105. Feedback Control Design: 3
ENGR 205. Introduction to Control Design Techniques: 3

Fluids:
- AA 200A. Applied Aerodynamics: 3
- AA 210A. Fundamentals of Compressible Flow: 3
- AA 214A. Numerical Methods in Fluid Mechanics: 3
- or AA 283. Aircraft Propulsion: 3

Structures:
- AA 240A. Analysis of Structures: 3
- AA 240B. Analysis of Structure II: 3
- AA 256. Mechanics of Composites: 3

CHEMICAL ENGINEERING

The following courses fulfill the minor requirements:

<table>
<thead>
<tr>
<th>Course No. and Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEMENG 100. Chemical Process Modeling, Dynamics, and Control</td>
<td>3</td>
</tr>
<tr>
<td>CHEMENG 110. Equilibrium Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>CHEMENG 120A. Fluid Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>CHEMENG 120B. Energy and Mass Transport</td>
<td>4</td>
</tr>
<tr>
<td>CHEMENG 140. Microelectronics Processing Technology or CHEMENG 150. Biochemical Engineering or CHEMENG 160. Polymer Science and Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CHEMENG 170. Kinetics and Reactor Design</td>
<td>3</td>
</tr>
<tr>
<td>CHEMENG 180. Chemical Engineering Plant Design</td>
<td>3</td>
</tr>
<tr>
<td>CHEMENG 185. Chemical Engineering Lab</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 171. Physical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 20. Introduction to Chemical Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

CIVIL ENGINEERING (CEE)

The Civil Engineering minor is intended to give students an in-depth introduction to one or more areas of civil engineering. Departmental expertise and undergraduate course offerings are available in the areas of Construction Engineering and Management, Structural Engineering, Environmental Engineering, and Architectural Design. The minimum prerequisite for a Civil Engineering minor focusing on construction engineering or management or structural engineering is MATH 42 (or 21); however, many courses of interest require PHYSICS 41 and/or MATH 51 as prerequisites. The minimum prerequisite for a Civil Engineering minor focusing on architectural design is MATH 41 (or 19) and a course in Statistics. Students should recognize that a minor in Civil Engineering is not an ABET-accredited degree program.

Since civil engineering is a very broad field and undergraduates with widely varying backgrounds may be interested in obtaining a civil engineering minor, no single set of course requirements is appropriate for all students. Instead, interested students are encouraged to propose their own set of courses within the guidelines listed below; this list must be officially approved by the Civil and Environmental Engineering (CEE) undergraduate minor adviser. Additional information on preparing a minor program, including example programs focusing on each of the areas of expertise listed above is available in the CEE office (Terman M-42). While each example program focuses on a different area of expertise within the department, other combinations of courses are also possible.

General guidelines are:
1. A Civil Engineering minor must contain at least 24 units of course work not taken for the major, and must consist of at least six classes of at least 3 units each.
2. The list of courses must represent a coherent body of knowledge in a focused area, and should include classes that build upon one another.
3. Professor Kiremidjian (kiremidjian@stanford.edu) is the CEE undergraduate minor adviser in Structural Engineering and Construction. Professor Lynn Hildemann (hildemann@stanford.edu) is the CEE minor adviser in Environmental Engineering. Patti Walters (pwalters@stanford.edu), Program Director for Architectural Design, is the CEE undergraduate minor adviser in architectural design. Students must consult one of these advisers in developing their minor program, and obtain approval of the finalized study list from them.

COMPUTER SCIENCE (CS)

The following courses fulfill the minor requirements. Prerequisites include the standard mathematics sequence through MATH 51.

Introductory Programming:
- CS 106A.B. Programming Method/Abstractions 10
 or CS 106X. Programming Method/Abstractions (Accelerated) 5
 (AP Credit may be used to fulfill this requirement)

Core:
- CS 103A/B. Discrete Math/Structures 6
 or CS 103X. Discrete Structures 4
- CS 107. Programming Paradigms 5
- CS 108. Object-Oriented Systems Design 4

Electives (select two courses from different areas):
- Artificial Intelligence:
 - CS 121. Introduction to Artificial Intelligence 3
 - CS 221. AI: Principles and Techniques 4
- Human-Computer Interaction:
 - CS 147. Introduction to Human-Computer Interaction 3-4

Systems:
- CS 140. Operating Systems 4
- CS 143. Compilers 4
- CS 145. Databases 4
- CS 148. Graphics 3

Theory:
- CS 154. Automata and Complexity Theory 4
- CS 157. Logic and Automated Reasoning 3-4
- CS 161. Design and Analysis of Algorithms 4

Note: for students with no programming background and who begin with CS 106A, the minor consists of seven or eight courses.

ELECTRICAL ENGINEERING (EE)

Courses fulfilling the minor are from any of the following three tracks:

Option I:
- ENGR 40. Introductory Electronics 5
- EE 101A. Circuits I 4
- EE 101B. Circuits II 4

Four graded EE courses of level 100 or higher

Option II:
- ENGR 40. Introductory Electronics 5
- EE 102A. Signal Processing and Linear Systems I 4
- EE 102B. Signal Processing and Linear Systems II 4

Four graded EE courses of level 100 or higher

Option III:
- ENGR 40. Introductory Electronics 5
- EE 108A. Digital Systems I 4
- EE 108B. Digital Systems II 4

Four graded EE courses of level 100 or higher

Please consult one of the EE advisers in developing your minor program, and obtain approval of the finalized study list from them.
ENVIRONMENTAL ENGINEERING

The Environmental Engineering minor is intended to give students a broad introduction to one or more areas of Environmental Engineering. Departmental expertise and undergraduate course offerings are available in the areas of environmental engineering and science, environmental fluid mechanics and hydrology, and atmosphere/energy. The minimum prerequisite for an Environmental Engineering minor is MATH 42 (or 21); however, many courses of interest require PHYSICS 41 and/or MATH 51 as prerequisites. Students should recognize that a minor in Environmental Engineering is not an ABET-accredited degree program.

Since undergraduates having widely varying backgrounds may be interested in obtaining an environmental engineering minor, no single set of course requirements is appropriate for all students. Instead, interested students are encouraged to propose their own set of courses within the guidelines listed below; this list must be officially approved by the Civil and Environmental Engineering (CEE) undergraduate minor advisor. Additional information on preparing a minor program, including example programs focusing on each of the areas of expertise listed above, is available in the CEE office (Terman M-42). While each example program focuses on a different area of expertise within the department, other combinations of courses are also possible.

General guidelines are:
1. An Environmental Engineering minor must contain at least 24 units of course work not taken for the major, and must consist of at least six classes of at least 3 units each.
2. The list of courses must represent a coherent body of knowledge in a focused area, and should include classes that build upon one another.
3. Professor Hildemann (hildemann@stanford.edu) is the CEE undergraduate minor advisor. Additional information on preparing a minor program, including example programs focusing on each of the areas of expertise listed above, is available in the CEE office (Terman M-42). While each example program focuses on a different area of expertise within the department, other combinations of courses are also possible.

MANAGEMENT SCIENCE AND ENGINEERING (MS&E)

The following courses fulfill the minor requirements:

Background requirements:
- MATH 51, Calculus

Minor requirements:
- ENGR 60, Engineering Economy (prerequisite: MATH 41)
- ENGR 62, Introduction to Optimization
- MS&E 120, Probabilistic Analysis (prerequisite: MATH 51)
- MS&E 121, Introduction to Stochastic Modeling
- MS&E 130, 131, or 134, Information
- MS&E 180, Organizations: Theory and Management
- MS&E 142 or 160, Investment Science or Production
- Elective (any 100- or 200-level MS&E course)

MATERIALS SCIENCE AND ENGINEERING (MATSCI)

A minor in Materials Science and Engineering allows interested students to explore the role of materials in modern technology and to gain an understanding of the fundamental processes that govern materials behavior.

The following courses fulfill the minor requirements:

Fundamentals:
- ENGR 50, Introductory Science of Materials
- MATSCI 151, Microstructure and Mechanical Properties
- MATSCI 152, Electronic Materials Engineering

Electives (four courses from the MSE Core, 16 units):
- MATSCI 154, Solid State Thermodynamics
- MATSCI 190, Organic Materials
- MATSCI 192, Materials Chemistry
- MATSCI 193, Atomic Arrangements in Solids
- MATSCI 194, Phase Equilibria
- MATSCI 195, Waves and Diffraction in Solids
- MATSCI 196, Imperfections in Crystalline Solids
- MATSCI 197, Rate Processes in Materials
- MATSCI 198, Mechanical Properties of Materials
- MATSCI 199, Electrical and Optical Properties of Solids

MECHANICAL ENGINEERING (ME)

The following courses fulfill the minor requirements:

General Minor — This minor aims to expose students to the breadth of ME in terms of topics and of analytic and design activities. The minor consists of seven courses totaling 26 to 28 units. Prerequisites are MATH 41, 42; PHYSICS 41.

- ENGR 15. Dynamics
- ENGR 30. Engineering Thermodynamics
- ME 70. Introductory Fluids Engineering
- ME 101. Visual Thinking
- Plus two of the following:
 - ME 80. Stress, Strain, and Strength
 - ME 131A. Heat Transfer
 - ME 161B. Fluid Mechanics
 - ME 203. Manufacturing and Design

Thermosciences — This minor consists of seven courses totaling 26 units. Prerequisites are MATH 41, 42, 43; PHYSICS 41.

- ENGR 15. Dynamics
- ENGR 30. Engineering Thermodynamics
- ME 70. Introductory Fluids Engineering
- ME 131A. Heat Transfer
- ME 161B. Fluid Mechanics
- ME 140. Advanced Thermal Systems

Mechanical Design — This minor aims to expose students to design activities supported by analysis. This proposed minor consists of seven courses totaling 24-26 units. Prerequisites are MATH 41, 42; PHYSICS 41.

- ENGR 15. Dynamics
- ENGR 101. Stress, Strain, and Strength
- ME 112. Mechanical Systems
- Plus two of the following:
 - ME 99. Mechanical Dissection
 - ME 101. Visual Thinking
 - ME 203. Manufacturing and Design
- Plus one of the following:
 - ME 113. Engineering Design
 - ME 220. Introduction to Sensors
 - ME 210. Introduction to Mechatronics

GRADUATE PROGRAMS

ADMISSION

Application for admission with graduate standing in the school should be made to the department’s graduate admissions committee. While most graduate students have undergraduate preparation in an engineering curriculum, it is feasible to enter from other programs, including chemistry, geology, mathematics, or physics.

Fellowships and Assistantships — Departments and divisions of the School of Engineering award graduate fellowships, research assistantships, and teaching assistantships each year. For further information and application instructions, see the department sections in this bulletin or http://gradadmissions.stanford.edu.

Registration — New graduate students should follow procedures for registration as listed in the University’s quarterly Time Schedule. Adviser assignments can be obtained from department offices.

THE HONORS COOPERATIVE PROGRAM

Industrial firms, government laboratories, and other organizations may participate in the Honors Cooperative Program (HCP), a program that permits qualified engineers, scientists, and technology professionals admitted to Stanford graduate degree programs to register for Stanford courses and obtain the degree on a part-time basis in 55 areas of concentration. In 23 of these areas of concentration, the master’s degree can be obtained completely at a distance online.

The courses are offered by the School of Engineering on campus and through the Stanford Center for Professional Development (SCPD). SCPD offers more than 200 courses a year delivered by microwave broadcast, Internet, videotape (by arrangement), and on campus. For industry students not part of HCP, courses and certificates are also available through a non-degree option and a non-credit professional education program.
Non-credit short courses may be customized to meet a company’s needs. For a full description of educational services provided by SCPD: see http://scpd.stanford.edu; call (650) 725-3000; fax (650) 725-2868; write Durand Building, Room 300, Stanford, CA 94305-4036; or email scpd-registration@stanford.edu.

MANUFACTURING

Programs in manufacturing are available at the undergraduate, master’s, and Ph.D. level. Master’s programs are offered by the departments of Civil and Environmental Engineering, Management Science and Engineering (MS&E), and Mechanical Engineering. The Construction Engineering and Management program, offered by the Department of Civil and Environmental Engineering, is also a manufacturing program for students interested in facility and public works manufacturing. All of these programs take advantage of modern computer technology.

Doctoral programs related to manufacturing are available in a number of departments and involve research projects ranging from machine tool design to the integration of databases into production software.

For detailed information about the master’s and Ph.D. programs, see the sections of this bulletin pertaining to management science, mechanical, and civil and environmental engineering. For more information on manufacturing research and education in Engineering, see http://www.stanford.edu/group/AIM and the web sites of departments.

CURRICULA

For further details about the following programs, see the department sections in this bulletin.

Related aspects of particular areas of graduate study are commonly covered in the offerings of several departments and divisions. Graduate students are encouraged, with the approval of their department advisers, to select courses in departments other than their own to achieve a broader appreciation of their field of study. For example, most departments in the school offer courses concerned with properties of materials, and a student interested in an aspect of materials engineering can often gain appreciable benefit from the related courses given by departments other than her or his own.

Departments and divisions of the school offer graduate curricula as follows.

AERONAUTICS AND ASTRONAUTICS

The current research and teaching activities cover a number of advanced fields, with special emphasis on:

Active Noise Control
Aerodynamic Noise
Aeroelasticity
Aircraft Design, Performance, and Control
Applied Aerodynamics
Biomedical Mechanics
Computational Aero-Acoustics
Computational Fluid Dynamics
Computational Mechanics and Dynamical Systems
Control of Robots, including Space and Deep-Underwater Robots
Conventional and Composite Structures/Materials
Direct and Large Eddy Simulation of Turbulence
Distributed Control of Networks
High-Lift Aerodynamics
Hybrid Propulsion
Hypersonic and Supersonic Flow
Inertial Instruments
Multidisciplinary Design Optimization
Navigation Systems (especially GPS)
Networked and Hybrid Control
Optimal Control, Estimation, System Identification
Physical Gas Dynamics
Spacecraft Design and Satellite Engineering
Turbulent Flow and Combustion

BIOENGINEERING

Biomedical Computation
Biomedical Devices
Biomedical Imaging
Cancer Care
Cardiovascular Medicine
Cell and Molecular Engineering
Environment
Quantitative Biology
Neurology
Neuroscience
Orthopaedics

CHEMICAL ENGINEERING

Applied Statistical Mechanics
Biocatalysis
Biochemical Engineering and Biophysics
Bioengineering
Computational Materials Science
Colloid Science
Dynamics of Complex Fluids
Functional Genomics
Hydrodynamic Stability
Kinetics and Catalysis
Microrheology
Molecular Assemblies
Newtonian and Non-Newtonian Fluid Mechanics
Polymer Physics
Protein Biotechnology
Semiconductor Processing
Surface and Interface Science
Transport Mechanics

CIVIL AND ENVIRONMENTAL ENGINEERING

Atmosphere/Energy
Construction Engineering and Management
Design/Construction Integration
Environmental and Water Studies
Environmental Engineering and Science
Environmental Fluid Mechanics and Hydrology
Structural Engineering and Geomechanics
Geomechanics
Structural Engineering

COMPUTER SCIENCE

Analysis of Algorithms
Artificial Intelligence
Automated Deduction
Autonomous Agents
Biomedical Computation
Compilers
Complexity Theory
Computational Biology
Computational Geometry
Computational Logic
Computational Physics
Computer Architecture
Computer Graphics
Computer Logic
Computer Security
Computer Vision
Cryptography
Database Systems
Design Automation
Digital Libraries
Distributed and Parallel Computation
Electronic Commerce
ORGANIZATION SCIENCE

Business Administration
International Business
Management Information Systems
Marketing
Organizational Behavior
Human Resource Management
Management of Nonprofit Organizations
Public Management
Strategic Management

PHYSICAL SCIENCE

Atmospheric Science
Biophysics
Biotechnology
Chemical Engineering
Chemistry
Environmental Science
Geosciences
Laser Science and Technology
Materials Science
Mathematics
Oceanography
Physics
Photonics
Space Science

SCHOOL OF ENGINEERING

Enterprise Management
Formal Verification
Haptic Display of Virtual Environments
Human-Computer Interaction
Image Processing
Knowledge-Based and Expert Systems
Knowledge Representation and Logic
Machine Learning
Mathematical Theory of Computation
Multi-Agent Systems
Natural Language and Speech Processing
Networks, Internet Infrastructure, and Distributed Systems
Operating Systems
Programming Systems/Languages
Reasoning Under Uncertainty
Robotics
Robust System Design
Scientific Computing and Numerical Analysis
Ubiquitous and Pervasive Computing

ELECTRICAL ENGINEERING

Computer Hardware
Computer Software Systems
Control and Systems Engineering
Communication Systems
Dynamic Systems and Optimization
Electronic Circuits
Electronic Devices, Sensors, and Technology
Fields, Waves, and Radioscience
Lasers, Optoelectronics, and Quantum Electronics
Network Systems
Image Systems
Signal Processing
Solid State Materials and Devices
VLSI Design

ENGINEERING

Interdepartmental Programs
Interdisciplinary Programs

MANAGEMENT SCIENCE AND ENGINEERING

Decision and Risk Analysis
Dynamic Systems
Economics
Entrepreneurship
Finance
Information
Marketing
Optimization
Organization Behavior
Organizational Science
Policy
Production
Stochastic Systems
Strategy

MATERIALS SCIENCE AND ENGINEERING

Biomaterials
Ceramics and Composites
Computational Materials Science
Design/Manufacturing
Electrical and Optical Behavior of Solids
Electron Microscopy
Fracture and Fatigue
Imperfections in Crystals
Kinetics
Magnetic Behavior of Solids
Magnetic Storage Materials
Organic Materials
Phase Transformations
Physical Metallurgy
Solid State Chemistry
Structural Analysis
Thermodynamics
Thin Films
X-Ray Diffraction

MECHANICAL ENGINEERING

Biomechanics
Combustion Science
Computational Mechanics
Controls
Design of Mechanical Systems
Dynamics
Environmental Science
Experimental Stress and Analysis
Fatigue and Fracture Mechanics
Finite Element Analysis
Fluid Mechanics
Heat Transfer
High Temperature Gas Dynamics
Kinematics
Manufacturing
Mechatronics
Product Design
Robotics
Sensors
Solids
Thermodynamics
Turbulence

SPACE SCIENCE

See the “Center for Space Science and Astrophysics” section of this bulletin.

MASTER OF SCIENCE

The M.S. degree is conferred on graduate students in engineering according to the University regulations stated in the “Graduate Degrees” section of this bulletin, and is described in the various department listings. A minimum of 45 units is usually required in M.S. programs in the School of Engineering. However, the presentation of a thesis is not a school requirement.

MASTER OF SCIENCE IN ENGINEERING

The M.S. in Engineering is available to students who wish to follow an interdisciplinary program of study that does not conform to a normal graduate program in a department.

There are three school requirements for the M.S. degree in Engineering: (1) the student’s program must be a coherent one with a well-defined objective and must be approved by a department within the school; (2) the student’s program must include at least 21 unit of courses within the School of Engineering with numbers 200 or above in which the student receives letter grades; and (3) the program must include a total of at least 45 units. Each student’s program is administered by the particular department in which it is lodged and must meet the standard of quality of that department. Transfer into this program is possible from any program within the school by application to the appropriate department.

ENGINEER

The degree of Engineer is awarded at the completion of a comprehensive two-year program of graduate study. It is intended for students who desire more graduate training than can be obtained in an M.S. program. The program of study must satisfy the student’s department and usually includes 90 units beyond the B.S. degree, of which at least 60 must be devoted to advanced or graduate study in the major subject or closely related subjects. The presentation of a thesis is required. The University
regulations for the Engineer degree are stated in the “Graduate Degrees” section of this bulletin, and further information is found in the individual departmental sections of this bulletin.

DOCTOR OF PHILOSOPHY

Programs leading to the Ph.D. degree are offered in each of the departments of the school. Special Ph.D. programs which may be interdepartmental in nature can be arranged. University regulations for the Ph.D. are given in the “Graduate Degrees” section of this bulletin. Further information is found in departmental listings.

COURSES

WIM indicates that the course satisfies the Writing in the Major requirements. (AU) indicates that the course is subject to the University Activity Unit limitations (8 units maximum).

The following Engineering courses deal with subject areas within engineering that are, in their essential nature, broader than the confines of any particular branch of engineering. These courses are taught by professors from several departments of the School of Engineering, under the supervision of those listed below.

Of the courses described in this section, many are of general interest to both engineering and non-engineering students. In addition, certain departmental courses are of general interest and without prerequisites.

Students interested in the interactions between technology and society should also consult the “Science, Technology, and Society” section of this bulletin.

PRIMARILY FOR UNDERGRADUATES

ENGR 10. Introduction to Engineering Analysis — Integrated approach to the fundamental scientific principles that are the cornerstones of engineering analysis: conservation of mass, atomic species, charge, momentum, angular momentum, energy, production of entropy expressed in the form of balance equations on carefully defined systems, and incorporating simple physical models. Emphasis is on setting up analysis problems arising in engineering. Topics: simple analytical solutions, numerical solutions of linear algebraic equations, and laboratory experiences. Provides the foundation and tools for subsequent engineering courses. GER:DB-EngrAppSci

4 units, Spr (Cappelli)

ENGR 14. Applied Mechanics: Statics — The mechanics of particles, rigid bodies, trusses, frames, and machines in static equilibrium emphasizing the use of free-body diagrams and the principle of virtual work. Frictional effects and internal forces in structural members. Lab in Autumn; no lab in Spring. Prerequisite: PHYSICS 41 or consent of instructor. GER:DB-EngrAppSci

3 units, Aut (Sheppard), Spr (Kiremidjian)

ENGR 15. Dynamics — The application of Newton’s Laws to solve static and dynamic problems, particle and rigid body dynamics, freebody diagrams, and writing equations of motion. 2-D and 3-D cases including gyroscopes, spacecraft, and rotating machinery. Solution of equations of motion and dynamic response of simple mechanical systems. Problem sessions. Prerequisites: MATH 23 or 43, PHYSICS 41. GER: DB-EngrAppSci

3 units, Aut (Niemeyer), Spr (Waldron)

ENGR 20. Introduction to Chemical Engineering — Overview of chemical engineering through discussion and engineering analysis of physical and chemical processes. Topics: overall staged separations, material and energy balances, concepts of rate processes, energy and mass transport, and kinetics of chemical reactions. Applications of these concepts to areas of current technological importance: biotechnology, production of chemicals, materials processing, and purification. Prerequisite: CHEM 31. GER:DB-EngrAppSci

3 units, Spr (Robertson)

ENGR 25. Biotechnology — The interplay between molecular and cellular biology and engineering principles in the design, development, manufacture, and formulation of new drugs and agrochemicals. Emphasis is on understanding the scope of engineering in modern biotechnology. Topics include biological fundamentals, genomics and bioinformatics, protein engineering, fermentation and downstream recovery of biomolecules, antibody technologies, plant biotechnology, vaccines, transgenic animals, and stem cell technologies. The role of intellectual property and venture capital in biotechnology. Recommended: prior exposure to chemistry and biology. GER:DB-EngrAppSci

3 units, Spr (Kao)

ENGR 30. Engineering Thermodynamics — Concepts of energy and entropy from elementary considerations of the microscopic nature of matter. Use of basic thermodynamic concepts in the solution of engineering problems. Methods and problems in socially responsible economic generation and utilization of energy in central power stations, solar systems, gas turbine engines, refrigeration devices, and automobile engines. Prerequisites: MATH 19, 20, 21, or 41, 42, and PHYSICS 45 (formerly 51) or equivalent high school physics. GER:DB-EngrAppSci

3 units, Aut (Mungal), Win (Pitsch)

ENGR 31. Introduction to Solid State Chemistry with Application to Materials Technology — Preparation for engineering disciplines emphasizing modern technological applications of solid state chemistry. Topics include: crystallography; chemical kinetics and equilibria; thermodynamics of phase changes and reaction; quantum mechanics of chemical bonding, molecular orbital theory, and electronic band structure of crystals; and the materials science of basic electronic and photonic devices. Prerequisite: high school or college chemistry background in stoichiometry, periodicity, Lewis and VSEPR structures, dissolution/precipitation and acid/base reactions, gas laws, and phase behavior. GER:DB-NatSci

4 units, Aut (McIntyre)

ENGR 40. Introductory Electronics — Overview of electronic engineering. Electrical quantities and their measurement, including operation of the oscilloscope. The basic function of electronic components including ideal diodes and transistors. Digital logic circuits and their functions including the elementary microprocessor. Analog circuits including the operational amplifier and tuned circuits. Lab assignments. Enrollment limited to 200. Lab. Prerequisite: PHYSICS 23. GER:DB-EngrAppSci

5 units, Aut (Wong), Spr (Mohajer)

4 units, Win (Melosh), Spr (Sinclair)

ENGR 60. Engineering Economy — Fundamentals of economic analysis. Interest rates, present value, and internal rate of return. Applications to personal and corporate financial decisions. Mortgage evaluation, insurance decision, hedging/risk reduction, project selection, capital budgeting, and investment valuation. Decisions under uncertainty and utility theory. Prerequisite: MATH 41 or equivalent. Recommended: sophomore or higher class standing; knowledge of elementary probability. GER:DB-EngrAppSci

4 units, Aut (Chiu), Win, Sum (Weber)

4 units, Aut (Van Roy), Spr (Staff)
ENGR 70A. Programming Methodology—(Enroll in CS 106A.)
3-5 units, Aut, Spr (Roberts), Win (Young), Sum (Staff)

ENGR 70X. Programming Methodology and Abstractions (Accelerated)—(Enroll in CS 106X.)
3-5 units, Aut (Sahaberi), Sum (Staff)

ENGR 100. Teaching Public Speaking—The theory and practice of teaching public speaking and presentation development. Lectures/discussions on developing an instructional plan, using audiovisual equipment for instruction, devising tutoring techniques, and teaching delivery, organization, audience analysis, visual aids, and unique speaking situations. Weekly practice speaking. Students serve as apprentice speech tutors. Those completing course may become paid speech instructors in the Technical Communications Program. Prerequisite: consent of instructor.
5 units, Aut, Win, Spr (Lougee, Staff)

ENGR 102E. Technical/Professional Writing for Electrical Engineers—Required of Electrical Engineering majors. The process of writing technical/professional documents. Lectures, writing assignments, individual conferences. Prerequisite: freshman English. Corequisite for WIM: EE 108A. WIM
1 unit, Aut, Win (Lougee)

ENGR 102M. Technical/Professional Writing for Mechanical Engineers—Required of Mechanical Engineering majors. The process of writing technical/professional documents. Lecture, writing assignments, individual conferences. Corequisite for WIM: ME 203, or consent of instructor. WIM
1 unit, Aut, Win (Lougee)

ENGR 103. Public Speaking—Priority to Engineering students. Introduction to speaking activities, from impromptu talks to carefully rehearsed formal professional presentations. How to organize and write speeches, analyze audiences, create and use visual aids, combat nervousness, and deliver informative and persuasive speeches effectively. Weekly class practice, rehearsals in one-on-one tutorials, videotaped feedback. Limited enrollment.
3 units, Aut, Win, Spr (Lougee)

ENGR 105. Feedback Control Design—Design of linear feedback control systems for command-following error, stability, and dynamic response specifications. Root-locus and frequency response design techniques. Examples from a variety of fields. Some use of computer aided design with MATLAB. Prerequisite: EE 102, ME 161, or equivalent. GER:DB-EngrAppSci
3 units, Win (Rock)

3 units, Aut (Juiates)

ENGR 130. Science, Technology, and Contemporary Society—(Same as STS 101/201.) Key social, cultural, and values issues raised by contemporary scientific and technological developments; distinctive features of science and engineering as sociotechnical activities; major influences of scientific and technological developments on 20th-century society, including transformations and problems of work, leisure, human values, the fine arts, and international relations; ethical conflicts in scientific and engineering practice; and the social shaping and management of contemporary science and technology. GER:DB-SocSci
4-5 units, Aut (McGinn)

ENGR 131. Ethical Issues in Engineering—(Same as STS 115.) Moral rights and responsibilities of engineers in relation to society, employers, colleagues, and clients; cost-benefit-risk analysis, safety, and informed consent; the ethics of whistle blowing; ethical conflicts of engineers as expert witnesses, consultants, and managers; ethical issues in engineering design, manufacturing, and operations; ethical issues arising from engineering work in foreign countries; and ethical implications of the social and environmental contexts of contemporary engineering. Case studies, guest practitioners, and field research. Limited enrollment. GER:DB-Hum
4 units (McGinn) alternate years, given 2006-07

ENGR 140A. Management of Technology Ventures—First of three-part sequence for students selected to the Mayfield Fellows Program. Management and leadership within high technology startups, focusing on entrepreneurial skills related to product and market strategy, venture financing and cash flow management, team recruiting and organizational development, and the challenges of managing growth and handling adversity in emerging ventures. Other engineering faculty, founders, and venture capitalists participate as appropriate. Recommended: accounting or finance course (MS&E 140, ECON 90, or ENGR 60).
3-4 units, Spr (Byers)

ENGR 140B. Management of Technology Ventures—Open to Mayfield Fellows only; taken during the summer internship at a technology startup. Students exchange experiences and continue the formal learning process. Activities journal. Credit given following quarter.
1 unit, Aut (Seelig, Nelson)

ENGR 140C. Management of Technology Ventures—Open to Mayfield Fellows only. Capstone to the 140 sequence. Students, faculty, employers, and venture capitalists share recent internship experiences and analytical frameworks. Students develop living case studies and integrative project reports.
3 units, Aut (Seelig, Nelson)

ENGR 145. High Technology Entrepreneurship—For juniors, seniors, and coterminal students of all majors who want to form or grow a technology company some day. The entrepreneurial process, enterprise, and individual. Case studies; projects. GER:DB-SocSci
4 units, Win (Byers, Komisar)

ENGR 150. Social Innovation and Entrepreneurship—(Graduate students register for 250.) The art of innovation and entrepreneurship for social benefit. Project team develops, tests, and iteratively improves technology-based social innovation and business plan to deploy it. Feedback and coaching from domain experts, product designers, and successful social entrepreneurs. Information on projects at http://sie.stanford.edu.
1-6 units, Aut, Win, Spr (Behrman)

ENGR 154. Vector Calculus for Engineers—(Enroll in CME 100.)
5 units, Aut (Darve, Khayms)

ENGR 155A. Ordinary Differential Equations for Engineers—(Enroll in CME 102.)
5 units, Win (Darve)

ENGR 155B. Linear Algebra and Partial Differential Equations for Engineers—(Enroll in CME 104.)
5 units, Spr (Khayms)

ENGR 155C. Introduction to Probability and Statistics for Engineers—(Enroll in CME 106.)
4 units, Win (Khayms)

3 units, Spr (Sinclair)

ENGR 199. Special Studies in Engineering—Special studies, lab work, or reading under the direction of a faculty member. Often research
experience opportunities exist in ongoing research projects. Students make arrangements with individual faculty and enroll in the section number corresponding to the particular faculty member. Prerequisite: consent of instructor.

1-15 units, Aut, Win, Spr (Staff)

PRIMARILY FOR GRADUATE STUDENTS

ENGR 200. Research Universities: Stanford, A Case Study —For prospective and current new faculty, but open to all members of the University community. How modern research universities work. Topics include: the history of Stanford and Silicon Valley; university governance; budgets, finance, and indirect costs; appointments and promotions; how to get research funding; research policies; ethical issues in the publication process; current trends in multidisciplinary scholarship; and Stanford and society.

1 unit (Kruger, Jones) not given 2005-06

ENGR 202S. Writing: Special Projects —Structured writing instruction for students working on non-course related materials including theses, dissertations, and journal articles. Weekly individual conferences.

1-5 units, Aut, Win, Spr (Loungee, Staff)

ENGR 202W. Technical and Professional Writing —The process of writing technical and professional documents. Analyzing audiences; defining purpose; generating and selecting appropriate report materials; structuring, designing, and drafting clear and convincing reports; and clear, concise, emphatic, and mechanically and grammatically clean editing. Weekly writing assignments and individual conferences.

3 units, Aut, Win (Loungee)

3 units, Aut (Rock)

ENGR 206. Control System Design —Design and construction of a control system and working plant. Topics include: linearity, actuator saturation, sensor placement, controller and model order; linearization by differential actuation and sensing; analog op-amp circuit implementation. Emphasis is on qualitative aspects of analysis and synthesis, generation of candidate design, and engineering tradeoffs in system selection. Large team-based project. Limited enrollment. Prerequisite: 105.

4 units, Spr (Niemeyer)

ENGR 207A. Modern Control Design I —Design and analysis of controllers for discrete-time systems. Frequency domain techniques using z-transforms, and time-domain techniques using state-space linear dynamical systems. Introduction to ideas of linear estimation, linear state-feedback control, and optimal control. Simple laboratory experiments on mechanical systems. Prerequisites: 205 or EE 263, and familiarity with basic linear algebra.

3 units, Win (Lall)

ENGR 207B. Modern Control Design II —Design of optimal controllers and optimal estimators for linear dynamical systems. Deterministic linear estimation via least-squares methods, and stochastic minimum variance estimators. The effects of noise on linear systems using frequency-domain and state-space methods. Recursive filtering and smoothing, and the Kalman filter. Prerequisites: 207A and basic probability.

3 units, Spr (Lall)

3 units (Tomlin) not given 2005-06

3 units (Tomlin) not given 2005-06

3 units, Aut (Lall)

ENGR 210B. Advanced Topics in Computation for Control —Recent developments in computational methods. The use of convex programming to find exact and approximate solutions to optimization problems: formulation of physical and logical problems as optimization problems involving polynomial equations and inequalities, use of duality and algebraic methods to find feasible points and certificates of infeasibility, and solution of polynomial optimization problems using semidefinite programming. Applications include feedback control methods for multi-vehicle systems and communications networks. Prerequisites: EE 364 or equivalent course on convex optimization; and 207B or EE 363 or equivalent course on control. GER:DB-Engr/AppSci

3 units (Lall) not given 2005-06

3 units, A: Aut (Liu), B: Win (Liu), C: Spr (Papanicolaou)

ENGR 235A,B. Space Systems Engineering —40-50 students, mostly from engineering and science, but also from business and political science, form a team to prepare a preliminary design study of a space system. Recently, international engineers have joined the team to define an initiative to put humans on Mars by 2010. Continued studies with Japan, Russia, and Europe define space vehicles for the missions. About 20 invited speakers from government and industry give the necessary background information. At the end of the second quarter, the class gives an oral briefing to government and industry representatives and publishes a final report on the system. Prerequisite: senior or graduate standing in Engineering or Physics, or consent of instructor.

3 units, A: Win, B: Spr (Staff)

ENGR 250. Social Innovation and Entrepreneurship —(Undergraduate register for 150; see 150.)

1-6 units, Aut, Win, Spr (Behrman)

ENGR 251. Work Seminar —Students participate in the Creating Research Examples Across the Teaching Enterprise (CREATE) writing program. Goal is for students to produce, through a peer reviewed process, 1,000 word statements describing their research in ways that are understandable and compelling to undergraduates and other novices in the field. Unit credit when the final approved statements appear on the CREATE web site.

1 unit, Aut, Win, Spr (Reis)

ENGR 290. Graduate Environment of Support —For course assistants (CAs) and tutors in the School of Engineering tutorial and learning program. Interactive training for effective academic assistance. Pedagogy, developing course material, tutoring, and advising. Sources include video, readings, projects, and role playing.

1 unit, Aut (Osgood, Lozano)

ENGR 297A,B,C. Ethics of Development in a Global Environment —Wednesday evening seminars on world affairs, mostly on issues affecting poor nations. Autumn Quarter treats war and peace: the background of current wars and peace negotiations, the UN peace keeping efforts, war and religion, arms trade. Winter Quarter treats international resources and commerce: the debt crisis, environmental protection, resource depletion, Japan in the world economy, aid and monetary institutions. Spring Quarter treats poverty and prejudice: development models, compar-
ENGR 298. Seminar in Fluid Mechanics — Interdepartmental. Problems in all branches of fluid mechanics, with talks by visitors, faculty, and students. Graduate students may register for 1 unit, without letter grade; a letter grade is given for talks. May be repeated for credit.

1 unit, Aut (Staff), Win (Shaqfeh), Spr (Pitsch)

ENGR 299. Special Studies in Engineering — Special studies, lab work, or reading under the direction of a faculty member. Often research experience opportunities exist in ongoing research projects. Students make arrangements with individual faculty and enroll in the corresponding section. Prerequisite: consent of instructor.

1-15 units, Aut, Win, Spr, Sum (Staff)

ENGR 310A. Tools for Team-Based Design — (Same as ME 310A.) For graduate students; open to limited SITN/global enrollment. Project-based, exposing students to the tools and methodologies for forming and managing an effective engineering design team in a business environment, including product development teams that may be spread around the world. Topics: personality profiles for creating teams with balanced diversity; computational tools for project coordination and management; real-time electronic documentation as a critical design process variable; and methods for refining project requirements to ensure that the team addresses the right problem with the right solution. Computer-aided tools for supporting geographically distributed teams. Final project analyzes industry-sponsored design projects for consideration in 310B.C. Investigation includes benchmarking and meetings with industrial clients. Deliverable is a detailed document with project specifications and optimal design team for subsequent quarters. Limited enrollment.

3-4 units, Aut (Cutkosky, Leifer)

ENGR 310B.C. Design Project Experience with Corporate Partners — (Same as ME 310B.C.) Two quarter project for graduate students with design experience who want involvement in an entrepreneurial design team with real-world industrial partners. Products developed are part of the student’s portfolio. Each team functions as a small startup company with a technical advisory board of the instructional staff and a coach. Computer-aided tools for project management, communication, and documentation; budget provided for direct expenses including technical assistants and conducting tests. Corporate liaisons via site visits, video conferencing, email, fax, and phone. Hardware demonstrations, peer reviews, scheduled documentation releases, and a team environment provide the mechanisms and culture for design information sharing. Enrollment by consent of instructor; depends on a pre-enrollment survey.

in December and recommendations by project definition teams in 310A. For some projects, 217 and 218 may be prerequisites or corequisites; see http://me310.stanford.edu for admission guidelines.

B: 3-5 units, Win, C: 3-4 units, Spr (Cutkosky, Leifer)

ENGR 310X. Tools for Team-Based Design Global Teaming Lab — (Same as ME 310X.) Participation in a global design team with students in Sweden or Japan. Limited enrollment. May be repeated for credit. Prerequisite: consent of instructor. Corequisite: ENGR 310A,B,C.

1-5 units, Aut, Win, Spr, Sum (Cutkosky, Leifer)

ENGR 311A. Women’s Perspective: Choose Your Own Adventure — Master’s and Ph.D. seminar series driven by student interests. Possible topics: time management, career choices, health and family, diversity, professional development, and personal values. Graduate students share experiences and examine scientific research in these areas. Guests speakers from academia and industry, student presentations with an emphasis on group discussion. May be repeated for credit.

1 unit, Win (Sheppard)

ENGR 311B. Engineering: Women’s Perspective — Continuation of 311A.

1 unit, Spr (Sheppard)

OVERSEAS STUDIES

These course are approved for the School of Engineering and offered on video overseas at the location indicated. Students should discuss with their major department adviser which courses would best meet individual needs. Descriptions are in the “Overseas Studies” section of this bulletin.

BERLIN

ENGR 40B. Introductory Electronics

5 units, Aut, Win, Spr (Khuri-Yakub)

ENGR 50B. Introductory Science of Materials

4 units, Aut, Win, Spr (Wright)

FLORENCE

ENGR 50F. Introductory Science of Materials

4 units, Aut, Win, Spr (Wright)

KYOTO

ENGR 40K. Introductory Electronics

5 units, Spr (Khuri-Yakub)

ENGR 50K. Introductory Science of Materials

4 units, Spr (Wright)

PARIS

ENGR 40P. Introductory Electronics

5 units, Aut, Spr (Khuri-Yakub)

ENGR 50P. Introductory Science of Materials

4 units, Aut, Win, Spr (Wright)
INSTRUCTION AND RESEARCH FACILITIES

The work of the department is centered in the William F. Durand Building for Space Engineering and Science. This 120,000 square foot building houses advanced research and teaching facilities and concentrates in one complex the Department of Aeronautics and Astronautics as well as some of the activities of the Mechanical Engineering Department.

The Durand Building also houses faculty and staff offices and several conference rooms. Attached to the building is a modern classroom building equipped for televising lectures; it contains a lecture auditorium.

Through the department’s close relations with nearby NASA-Ames Research Center, students and faculty have access to one of the best and most extensive collections of experimental aeronautical research facilities in the world, as well as the latest generation of supercomputers.

GENERAL INFORMATION

Further information about the facilities and programs of the department is available at http://aa.stanford.edu/, or from the department’s student services office.

The department has a student branch of the American Institute of Aeronautics and Astronautics, which sponsors films covering aerospace topics and monthly socials. It also conducts visits to nearby research, government, and industrial facilities, and sponsors a Young Astronauts Program in the local schools.

UNDERGRADUATE PROGRAMS

BACHELOR OF SCIENCE

Although primarily a graduate-level department, Aeronautics and Astronautics offers both an undergraduate minor and an interdisciplinary program in Aeronautics and Astronautics (AA) leading to the B.S. degree in Engineering. For detailed information, see the “School of Engineering” section of this bulletin and the Undergraduate Handbook, available from the Office of the Dean of Engineering or at http://ugsb.stanford.edu.

Undergraduates interested in aerospace are encouraged to combine either a minor or a coterminal M.S. in Aeronautics and Astronautics with a major in a related discipline (such as Mechanical or Electrical Engineering). Students considering these options are encouraged to contact the department’s student services office.

COTERMINAL DEGREES PROGRAM

This special program allows Stanford undergraduates an opportunity to work simultaneously toward a B.S. in another field and an M.S. in Aeronautics and Astronautics. General requirements for this program and admissions procedures are described in the “School of Engineering” section of this bulletin. Admission is granted or denied through the departmental faculty Admissions and Awards Committee. A coterminal student must meet the course and scholarship requirements detailed for the M.S. below.

For University coterminal degree program rules and University application forms, see http://registrar.stanford.edu/publications/#Coterm.

GRADUATE PROGRAMS

Admission —To be eligible to apply for admission to the department, a student must have a bachelor’s degree in engineering, physical science, mathematics, or an acceptable equivalent. Students who have not yet received a master’s degree in a closely allied discipline will be admitted to the master’s program; eligibility for the Ph.D. program is considered after the master’s year (see “Doctor of Philosophy” below). Applications for admission with financial aid (fellowships or assistantships) or without financial aid must be received and completed by December 6 for the next Autumn Quarter.

Information about admission to the Honors Cooperative Program is included in the “School of Engineering” section of this bulletin. The department may consider HCP applications for Winter, Spring, or Summer
quarters as well as for Autumn Quarter; prospective applicants should contact the department’s student services office.

Further information and application forms for all graduate degree programs may be obtained from Graduate Admissions, the Registrar’s Office, http://gradadmissions.stanford.edu/.

Waivers and Transfer Credits—Students may receive departmental waivers of required courses of the M.S. degree in Aeronautics and Astronautics by virtue of substantially equivalent and satisfactorily performed course work at other institutions. A waiver petition (signed by the course instructor and adviser) should be submitted to the student services office indicating (1) the Stanford University course number and title, and (2) the institution, number(s), and title(s) of the course(s) wherein substantially equivalent material was treated. If a waiver is granted, the student must take an additional technical elective, chosen in consultation with their adviser, from graduate courses in Aeronautics and Astronautics. The total 45-unit requirement for the master’s degree is not reduced by course waivers.

A similar procedure should be followed for transfer credits. The number of transfer credits allowed for each degree (Engineer and Ph.D.) is delineated in the “Graduate Degrees” section of this bulletin; transfer credit is not accepted for the M.S. degree. Transfer credit is allowed only for courses taken as a graduate student, after receiving a bachelor’s degree, in which equivalence to Stanford courses is established and for which a grade of ‘B’ or better has been awarded. Transfer credits, if approved, reduce the total number of Stanford units required for a degree.

Fellowships and Assistantships—Fellowships and course or research assistantships are available to qualified graduate students. Fellowships sponsored by Gift Funds, Stanford University, and Industrial Affiliates of Stanford University in Aeronautics and Astronautics provide grants to several first-year students for the nine-month academic year to cover tuition and living expenses. Stanford Graduate Fellowships, sponsored by the University, provide grants for three full years of study and research; each year, the department is invited to nominate several outstanding doctoral or predoctoral students for these prestigious awards. Students who have excelled in their master’s-level course work at Stanford are eligible for course assistantships in the department; those who have demonstrated research capability are eligible for research assistantships from individual faculty members. (Students may also hold assistantships in other departments if the work is related to their academic progress; the criteria for selecting course or research assistants are determined by each hiring department.) A standard, 20 hours/week course or research assistantship provides a semi-monthly salary and an 8-10 unit tuition grant per quarter. Research assistants may be given the opportunity of additional summer employment. They may use their work as the basis for a dissertation or Engineer’s thesis.

MASTER OF SCIENCE

The University’s basic requirements for the master’s degree are outlined in the “Graduate Degrees” section of this bulletin. Students with an aeronautical engineering background should be able to qualify for the master’s degree in three quarters of work at Stanford. Students with a bachelor’s degree in Physical Science, Mathematics, or other areas of Engineering may find it necessary to take certain prerequisite courses, which would lengthen the time required to obtain the master’s degree. The following are departmental requirements.

Grade Point Averages—A minimum grade point average (GPA) of 2.75 is required to fulfill the department’s M.S. degree requirements and a 3.4 is the minimum required for eligibility to attempt the Ph.D. qualifying examination. It is incumbent upon both M.S. and potential Ph.D. candidates to request letter grades in all courses except those that do not offer a letter grade option and those that fall into the categories of colloquia and seminars (for example, AA 297 and ENGR 298). Insufficient grade points on which to base the GPA may delay expected degree conferral or result in refusal of permission to take the qualifying examinations. Candidates with GPAs of 3.0 through 3.4 may request the permission of the candidacy committee to attempt the qualifying examinations.

AERONAUTICS AND ASTRONAUTICS

The master’s program (45 units) in Aeronautics and Astronautics (AA) is designed to provide a solid grounding in the basic disciplines. All candidates for this degree are expected to meet the basic course requirements in experimentation in aeronautics and astronautics, fluid mechanics, guidance and control, propulsion, and structural mechanics (category A below), in addition to work in applied mathematics (category B) and technical electives (category C).

A. Basic Courses—Candidates select eight courses as follows:

1. One course in each basic area of Aeronautics and Astronautics:
 a) Experimentation: 241X, 236A, 255, 284B, or 290; or ENGR 205, 206, or 207A
 b) Fluids: one of 200A, 200B, 210A
 c) Guidance and Control: ENGR 105
 d) Propulsion: 283
 e) Structures: 240A

2. Three courses, one each from the areas below:
 a) Fluids: 200A or 200B (if 210A was taken or waived in item 1); or 210A (if 200A or 200B was taken or waived in item 1)
 b) Structures: 240B or 256
 c) Guidance and Control: 242A or 271A or 279
 d) Aero/Astro elective: AA course numbered 200 and above, excluding seminars and independent research.

Candidates who believe they have satisfied a basic course requirement in previous study may request a waiver of one or more courses (see “Waivers and Transfer Credits” above).

B. Mathematics Courses—During graduate study, each candidate is expected to develop a competence in the applied mathematics pertinent to his or her major field. This requirement can be met by matriculating in a minimum of 6 units in either (1) applied mathematics (for example, complex variables, linear algebra, partial differential equations, probability), or (2) technical electives that strongly emphasize applied mathematics. A list of courses approved for the mathematics requirement is available in the departmental student services office. (Calculus, ordinary differential equations, and vector analysis are fundamental mathematics prerequisites, and do not satisfy the master’s mathematics requirement.) Students planning to continue to the Ph.D. should note that 25 percent of the major-field Ph.D. qualifying examination is devoted to pertinent mathematics.

C. Technical Electives—Candidates, in consultation with their advisers, select at least four courses (totaling at least 12 units) in their major field from among the graduate-level courses offered by the departments of the School of Engineering and related science departments. This requirement increases by one course, taken in either the major or peripheral fields, for each basic course that is waived. Normally, one course (3 units) in this category may be directed research. Courses taken in satisfaction of the other master’s requirements (categories A, B, and D) may not also be counted as technical electives.

D. Other Electives—It is recommended that all candidates enroll in at least one humanities or social science course. Language classes qualify in this category, but practicing courses in, for example, art, music, and physical education do not qualify.

When planning their programs, candidates should check course descriptions carefully to ensure that all prerequisites have been satisfied. A course that is taken to satisfy a prerequisite for courses in category A (basic courses) or B (mathematics) cannot be counted as a technical elective, but can count toward the M.S. degree in category D (other electives).

ENGINEERING

Students whose career objectives require a more interdepartmental or narrowly focused program than is possible in the M.S. program in Aeronautics and Astronautics (AA) may pursue a program for an M.S. degree in Engineering (45 units). This program is described in the School of Engineering “Graduate Programs of Study” section of this bulletin. Sponsorship by the Department of Aeronautics and Astronautics in this more general program requires that the student file a proposal before completing 18 units of the proposed graduate program. The proposal
must be accompanied by a statement explaining the objectives of the program and how the program is coherent, contains depth, and fulfills a well-defined career objective. The proposed program must include at least 12 units of graduate-level work in the department and meet rigorous standards of technical breadth and depth comparable to the regular AA Master of Science program. The grade and unit requirements are the same as for the M.S. degree in Aeronautics and Astronautics.

ENGINEER

The degree of Engineer represents an additional year (or more) of study beyond the M.S. degree and includes a research thesis. The program is designed for students who wish to do professional engineering work upon graduation and who want to engage in more specialized study than is afforded by the master’s degree alone. It is expected that fulltime students will be able to complete the degree within two years of study after the master’s degree.

The University’s basic requirements for the degree of Engineer are outlined in the “Graduate Degrees” section of this bulletin. The following are department requirements.

1. Having fulfilled department requirements for the master’s degree or a substantial equivalent.
2. 24 units of approved technical electives, of which 9 are in mathematics or applied mathematics. (A list of courses approved for the mathematics requirement is available in the departmental student services office.)
3. The remaining 15 units are chosen in consultation with the adviser, and represent a coherent field of study related to the thesis topic. Suggested fields include: (a) acoustics, (b) aerospace structures, (c) aerospace systems synthesis and design, (d) analytical and experimental methods in solid and fluid mechanics, (e) computational fluid dynamics, and (f) guidance and control.
4. 6 units of free electives.
5. The remaining 15 units may be thesis, research, technical courses, or free electives.

Candidates for the degree of Engineer are expected to have a minimum grade point average (GPA) of 3.0 for work in courses beyond those required for the master’s degree. All courses except seminars and directed research should be taken for a grade.

DOCTOR OF PHILOSOPHY

The University’s basic requirements for the Ph.D. degree are outlined in the “Graduate Degrees” section of this bulletin. Department requirements are stated below.

Qualifications for candidacy for the doctoral degree are contingent on:

1. Having fulfilled department requirements for the master’s degree or its substantial equivalent.
2. Maintaining a high scholastic record for graduate course work at Stanford.
3. Completing 3 units of a directed research problem (AA 290 or an approved alternative).
4. In the first year of doctoral study, passing an oral Ph.D. qualifying examination given by the department during Autumn and Spring Quarters.

Detailed information about the deadlines, nature, and scope of the Ph.D. qualifying examination can be obtained from the department. Research on the doctoral dissertation may not be formally started before passing this examination.

Beyond the master’s degree, a total of 90 additional units of work is required, including a minimum of 36 units of approved formal course work (excluding research, directed study, and seminars). The courses should consist primarily of graduate courses in engineering and related sciences, and should form a strong and coherent doctoral program. At least 12 units must be from graduate-level courses in mathematics or applied mathematics (a list of approved courses is available from the department student services office). University requirements for continuous registration apply to doctoral students for the duration of the degree.

Dissertation Reading Committee — Each Ph.D. candidate is required to establish a reading committee for the doctoral dissertation within six months after passing the department’s Ph.D. Qualifying exams. Thereafter, the student should consult frequently with all members of the committee about the direction and progress of the dissertation research.

A dissertation reading committee consists of the principal dissertation adviser and at least two other readers. Reading committees in Aeronautics and Astronautics often include faculty from another department. It is expected that at least two members of the AA faculty be on each reading committee. If the principal research adviser is not within the AA department, then the student’s AA academic adviser should be one of those members. The initial committee, and any subsequent changes, must be officially approved by the department Chair.

University Oral and Dissertation — The Ph.D. candidate is required to take the University oral examination after the dissertation is substantially completed (with the dissertation draft in writing), but before final approval. The examination consists of a public presentation of dissertation research, followed by substantive private questioning on the dissertation and related fields by the University oral committee (four selected faculty members, plus a chair from another department). Once the oral has been passed, the student finalizes the dissertation for reading committee review and final approval. Forms for the University oral scheduling and a one-page dissertation abstract should be submitted to the department student services office at least three weeks prior to the date of the oral for departmental review and approval.

PH.D. MINOR

A student who wishes to obtain a Ph.D. minor in Aeronautics and Astronautics should consult the department office for designation of a minor adviser. A minor in Aeronautics and Astronautics may be obtained by completing 20 units of graduate-level courses in the Department of Aeronautics and Astronautics, following a program (and performance) approved by the department’s candidacy chair.

The student’s Ph.D. reading committee and University oral committee must each include at least one faculty member from Aeronautics and Astronautics.

COURSES

WIM indicates that the course satisfies the Writing in the Major requirement. (AU) indicates that the course is subject to the University Activity Unit limitations for undergraduates (8 units maximum).

AA 100. Introduction to Aeronautics and Astronautics — The principles of fluid flow, flight, and propulsion; the creation of lift and drag, aerodynamic performance including take-off, climb, range, and landing performance, structural concepts, propulsion systems, trajectories, and orbits. The history of aeronautics and astronautics. Prerequisites: MATH 41, 42; elementary physics. GER:DB-EngrAppSci

3 units, Aut (MacCormack)

AA 105. Feedback Control Design — (Enroll in ENGR 105.)

3 units, Win (Rock)

AA 113N. Structures: Why Things Don’t (and Sometimes Do) Fall Down — Stanford Introductory Seminar. Preference to freshmen. How structures created by nature or built by human beings keep things up and keep things in. Topics: nature’s structures from microorganisms to large vertebrates; buildings from ancient dwellings to modern skyscrapers; spacecraft and airplanes; boats from ancient times to America’s Cup sailboats, and how they win or break; sports equipment from Odysseus’s bow to modern skis; and biomedical devices including bone replacements and cardiovascular stents. How composite materials are used to make a structure light and strong. GER:DB-EngrAppSci

3 units, Win (Springer)

AA 115N. The Global Positioning System: Where on Earth are We, and What Time is It? — Stanford Introductory Seminar. Preference to freshmen. Why people want to know where they are: answers include cross-Pacific trips of Polynesians, missile guidance, and distraught
Directed reading, lab,
The basic
— Review of the fundamental equations of fluid dynamics and the physical assumptions on which they are based; overview of appropriate methods for solving these equations including nonlinear CFD, conformal mapping, linear panel and vortex methods; estimation of pressure distributions and resultant loads on 2-D airfoils, fine wings, slender bodies, and lifting systems; compressibility effects; boundary layer analysis and prediction of drag, separation, and displacement effects. Application to airfoil and wing design. Prerequisite: undergraduate aeronautics course. Recommended: 210A.

AA 200B. Applied Aerodynamics II — Analytical and numerical techniques for the aerodynamic analysis of aircraft, focusing on finite wing theory, far-field and Tréfftz-plane analysis, two-dimensional laminar and turbulent boundary layers in airfoil analysis, similarity rules, aerodynamic stability derivatives. Bi-weekly assignments require MATLAB or a suitable programming language. Prerequisite: 200A or equivalent. Recommended: 210A.

AA 201A. Fundamentals of Acoustics — Acoustic equations for a stationary homogeneous fluid; wave equation; plane, spherical, and cylindrical waves; harmonic (monochromatic) waves; simple sound radiators; reflection and transmission of sound at interfaces between different media; multipole analysis of sound radiation; Kirchoff integral representation; scattering and diffraction of sound; propagation through ducts (dispersion, attenuation, group velocity); sound in enclosed regions (reverberation, absorption, and dispersion); radiation from moving sources; propagation in the atmosphere and underwater. Prerequisite: first-year graduate standing in engineering, mathematics, sciences; or consent of instructor.

AA 201B. Topics in Aeroacoustics — Acoustic equations for moving medium, simple sources, Kirchhoff formula, and multipole representation; radiation from moving sources; acoustic analogy approach to sound generation in compact flows; theories of Lighthill, Powell, and Mohring; acoustic radiation from moving surfaces; theories of Curl, Williams, and Hawkings; application of acoustic theories to the noise from propulsive jets, airframe noise and rotor noise; computational methods for acoustics. Prerequisite: 210A or consent of instructor.

AA 206. Bio-Aerodynamics — The fundamental ideas behind the aerodynamics of biological systems. Flapping flight, low Reynolds number aerodynamics, wing design, flocks, swarms, and dynamic soaring. Readings from current and historical literature dealing with theoretical and observational studies. Applications in aircraft design, and simulation-based problem sets. Prerequisite: course in aerodynamics such as 100, 200A, or 241A.

AA 210A. Fundamentals of Compressible Flow — Introduction to compressible flow. Topics: development of the three-dimensional, nonsteady, field equations for describing the motion of a viscous, compressible fluid; differential and integral forms of the equations; constitutive equations for a compressible fluid; the entropy equation; compressible boundary layers; area-averaged equations for one-dimensional steady flow; shock waves; channel flow with heat addition and friction; flow in nozzles and inlets; oblique shock waves; Prandtl-Meyer expansion; unsteady one-dimensional flow; the shock tube; small disturbance theory; acoustics in one-dimension; steady flow in two-dimensions; potential flow; linearized potential flow; lift and drag of thin airfoils. Prerequisites: undergraduate background in fluid mechanics and thermodynamics.

AA 210B. Fundamentals of Compressible Flow — Continuation of 210A with emphasis on more general flow geometry. Use of exact solutions to explore the hypersonic limit. Identification of similarity parameters. Solution methods for the linearized potential equation with applications to wings and bodies in steady flow; their relation to physical acoustics and wave motion in nonsteady flow. Nonlinear solutions for nonsteady constant area flow and introduction to Riemann invariants. Elements of the theory of characteristics; nozzle design; extension to nonefficient flow. Real gas effects in compressible flow. Flows in various gas dynamic testing facilities. Prerequisite: 210A.

AA 214A. Numerical Methods in Fluid Mechanics — The basic principles underlying the Navier-Stokes equations. Relations between time-accurate and relaxation methods. Implicit and explicit methods combined with flux splitting and space factorization. Considerations of accuracy, stability of numerical methods, and programming complexity. Prerequisites: knowledge of linear algebra and CME 200, 204 (formerly ME 300A,B), or equivalent approved by instructor.

School of Engineering
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA 214C</td>
<td>Numerical Computation of Viscous Flow</td>
<td>Numerical methods for solving parabolic sets of partial differential equations. Numerical approximation of the equations describing compressible viscous flow with adiabatic, isothermal, slip, and no-slip wall boundary conditions. Applications to the Navier-Stokes equations in two and three dimensions at high Reynolds number. Computational problems are assigned. Prerequisite: 214B.</td>
<td>3 units, Spr (MacCormack)</td>
</tr>
<tr>
<td>AA 215A,B</td>
<td>Advanced Computational Fluid Dynamics</td>
<td>High resolution schemes for capturing shock waves and contact discontinuities; upwinding and artificial diffusion; LED and TVD concepts; alternative flow splittings; numerical shock structure. Discretization of Euler and Navier-Stokes equations on unstructured meshes; the relationship between finite volume and finite element methods. Time discretization; explicit and implicit schemes; acceleration of steady state calculations; residual averaging; mesh grid preconditioning. Automatic design; inverse problems and aerodynamic shape optimization via adjoint methods. Pre or corequisite: 214B or equivalent.</td>
<td>3 units, A: Win, B: Spr (Jameson)</td>
</tr>
<tr>
<td>AA 217A</td>
<td>Linear Algebra with Application to Engineering Computations</td>
<td>(Enroll in CME 200.)</td>
<td>3 units, Aut (Gerritsen)</td>
</tr>
<tr>
<td>AA 217B</td>
<td>Partial Differential Equations in Engineering</td>
<td>(Enroll in CME 204.)</td>
<td>3 units, Win (Shaqfeh)</td>
</tr>
<tr>
<td>AA 217C</td>
<td>Introduction to Numerical Methods for Engineering</td>
<td>(Enroll in CME 206.)</td>
<td>3 units, Spr (Farhat)</td>
</tr>
<tr>
<td>AA 218</td>
<td>Introduction to Symmetry Analysis</td>
<td>Methods of symmetry analysis and their use in the reduction and simplification of physical problems. Topics: dimensional analysis, phase-space analysis of autonomous systems of ordinary differential equations, use of Lie groups to reduce the order of nonlinear ODEs and to generate integrating factors, use of Lie groups to reduce the dimension of partial differential equations and to generate similarity variables, exact solutions of nonlinear PDEs generated from groups. Mathematica-based software developed by the instructor is used for finding invariant groups of ODEs and PDEs.</td>
<td>3 units, Spr (Cantwell)</td>
</tr>
<tr>
<td>AA 219A</td>
<td>Computational Methods in Fluid Mechanics</td>
<td>(Enroll in ME 469A.)</td>
<td>3 units (Fairhat) not given 2005-06</td>
</tr>
<tr>
<td>AA 220</td>
<td>Parallel Methods in Numerical Analysis</td>
<td>(Enroll in CME 342.)</td>
<td>3 units, Spr (Alonso)</td>
</tr>
<tr>
<td>AA 222</td>
<td>Introduction to Multidisciplinary Design Optimization</td>
<td>Design of aerospace systems within a formal optimization environment. Mathematical formulation of the multidisciplinary design problem (parameterization of design space, choice of objective functions, constraint definition); survey of algorithms for unconstrained and constrained optimization and optimality conditions; description of sensitivity analysis techniques. Hierarchical techniques for decomposition of the multidisciplinary design problem; use of approximation theory. Applications to design problems in aircraft and launch vehicle design. Prerequisites: multivariable calculus; familiarity with a high-level programming language: FORTRAN, C, C++, or MATLAB.</td>
<td>3 units, Spr (Alonso, Kroo)</td>
</tr>
<tr>
<td>AA 235A,B</td>
<td>Space Systems Engineering</td>
<td>(Enroll in ENGR 235A,B.)</td>
<td>3 units, A: Win, B: Spr (Staff)</td>
</tr>
<tr>
<td>AA 236A</td>
<td>Spacecraft Design</td>
<td>Design of unmanned spacecraft and spacecraft subsystems, emphasizing identification of current design drivers and methods. Spacecraft configuration design, mechanical design, structure and thermal subsystem design, attitude control, electric power, command and telemetry, and design integration and operations.</td>
<td>5 units, Aut (Twiggis)</td>
</tr>
<tr>
<td>AA 236B,C,D</td>
<td>Spacecraft Design Laboratory</td>
<td>Continuation of the 236A. Emphasis is on practical application of systems engineering to the life cycle program of spacecraft design, testing, launching, and operations. Prerequisites: 236A and consent of instructor.</td>
<td>3 units, B: Win, C: Spr, D: Sum (Twiggis)</td>
</tr>
<tr>
<td>AA 238</td>
<td>Human-Centered Design for Aerospace Engineers</td>
<td>The what, when, who, and how of human-centered design. Is it art? or magic? Is it science? or engineering? How to integrate human-centered processes into engineering design processes. Analysis of several recent human-centered aeronautical and space systems to evaluate their successes and limitations.</td>
<td>3 units, Aut (Null)</td>
</tr>
<tr>
<td>AA 240A</td>
<td>Analysis of Structures</td>
<td>Elements of two-dimensional elasticity theory; Boundary value problems; energy methods; analyses of solid and thin walled section beams, trusses, frames, rings, monocoque and semimonocoque structures. Prerequisite: ENGR 14 or equivalent.</td>
<td>3 units, Aut (Chang)</td>
</tr>
<tr>
<td>AA 240B</td>
<td>Analysis of Structures</td>
<td>Thin plate analysis. Structural stability. Material behavior: plasticity and fracture. Introduction of finite element analysis; truss, frame, and plate structures. Prerequisite: 240A or consent of instructor.</td>
<td>3 units, Win (F. Chang)</td>
</tr>
<tr>
<td>AA 241A,B</td>
<td>Introduction to Aircraft Design, Synthesis, and Analysis</td>
<td>New aircraft systems emphasizing commercial aircraft. Economic and technological factors that create new aircraft markets. Determining market demands and system mission performance requirements; optimizing configuration to comply with requirements; the interaction of disciplines including aerodynamics, structures, propulsion, guidance, payload, ground support, and parametric studies. Applied aerodynamic and design concepts for use in configuration analysis. Application to a student-selected aeronautical system; applied structural fundamentals emphasizing fatigue and fail-safe considerations; design load determination; weight estimation; propulsion system performance; engine types; environmental problems; performance estimation. Direct/indirect operating costs prediction and interpretation. Aircraft functional systems; avionics; aircraft reliability and maintainability. Prerequisite: 100 or equivalent.</td>
<td>3 units, A: Aut (Alonso), B: Win (Kroo)</td>
</tr>
<tr>
<td>AA 241X</td>
<td>Design, Construction, and Testing of Autonomous Aircraft</td>
<td>Students grouped according to their expertise to carry out the multidisciplinary design of a solar-powered autonomous aircraft that must meet a clearly stated set of design requirements. Design and construction of the airframe, integration with existing guidance, navigation, and control systems, and development and operation of the resulting design. Design reviews and reports. Prerequisites: expertise in any of the following disciplines by having satisfied the specified courses or equivalent work elsewhere: conceptual design (241A,B); applied aerodynamics (200A,B); structures (240A); composite manufacturing experience; guidance and control (208/271, ENGR 205).</td>
<td>3 units, Spr (Alonso, Kroo)</td>
</tr>
<tr>
<td>AA 242A</td>
<td>Classical Dynamics</td>
<td>(Same as ME 331A.) Accelerating and rotating reference frames. Kinematics of rigid body motion; Euler angles, direction cosines. D’Alembert’s principle, equations of motion. Inertia properties of rigid bodies. Dynamics of coupled rigid bodies. Lagrange’s equations and their use. Dynamic behavior, stability, and small departures from equilibrium. Prerequisite: ENGR 15 or equivalent.</td>
<td>3 units, Aut (West)</td>
</tr>
<tr>
<td>AA 242B</td>
<td>Advanced Dynamics</td>
<td>(Same as ME 331B.) Formulation of equations of motion with Newton/Euler equations; angular momentum principle; D’Alembert principle; power, work, and energy; Kane’s method; and Lagrange’s equations. Numerical solutions of nonlinear algebraic and differential equations governing the behavior of multiple degree of freedom systems. Computed torque control.</td>
<td>3 units, Win (Mitiguy)</td>
</tr>
</tbody>
</table>

3 units, Win (West)

AA 244A. Free and Forced Motion of Structures—Vibrations and forced response of linear systems with a finite number of degrees of freedom. Vibrations and forced response of continuous structures, developed in a framework of analytical dynamics; rods, beams, membranes, and other elastic systems. Approximate methods for analyzing non-uniform and built-up structures. Finite-element methods in a dynamic context. Introduction to random responses and to nonlinear systems, as time permits. Prerequisites: 240A, ENGR 15 or equivalent.

3 units (Staff) not given 2005-06

AA 245. Structural Dynamics and Aeroelasticity—Finite-element methods and vibration of continuous, two-dimensional structures. Introduction to aeroelasticity from a unified viewpoint applicable to flight vehicles, rotating machinery, and other elastic systems. Aeroelastic operators and unsteady aerodynamics in two dimensions. Forced response, static and dynamic eigenvalues of a simplified system. Aeroelastic analysis of representative one- and two-dimensional systems. Computational problems covering aeroelastic analysis of simple systems. Prerequisite: familiarity with MATLAB or a programming language.

3 units (Alonso) not given 2005-06

AA 246. Computational Impact and Contact Modeling—Rigid body contact including multi-body impact, persistent contact, complementarity formulations, and solution techniques. Impact of elastic bodies using finite elements including penalty and mixed constraint formulations, solution techniques, and time-stepping methods. Shocks and vibration induced by impact. Friction and plasticity models for impact and persistent contact. Prerequisites: 242A, 242B or equivalent, familiarity with MATLAB.

3 units (West) not given 2005-06

AA 252. Techniques of Failure Analysis—Introduction to the field of failure analysis, including fire and explosion analysis, large scale catastrophe projects, traffic accident reconstruction, aircraft accident investigation, human factors, biomechanics and accidents, design defect cases, materials failures and metallurgical procedures, and structural failures. Product liability, failure modes and effects analysis, failure prevention, engineering ethics, and the engineer as expert witness.

2 units, Spr (Murray)

AA 253. Aerospace Product and Systems Development—Modern approaches to aerospace design development for life cycle value. Concepts of air and space systems development in a systems context. Stakeholder value issues and requirements through manufacturing and delivery. Processes and practices for functional analysis, concept and architecture development, trades, domain criteria, interfaces, and verification and validation. Reliability, risk, and safety. Value stream analysis, integrated product and process development, key characteristics, and hardware/software integration aimed at information systems. Tools involve quality function deployment, design structure matrices, and decision mechanisms.

3 units, Spr (Weiss)

AA 254. Information Systems in Aerospace Vehicles—Sensors, processors, activators, and operators, and the media and protocols that integrate them for performance and safety.

2 units, Win (Staff)

AA 255. Space Experiments Lab—Design of a space system using off-the-shelf components. Circuits to measure temperature, pressure, voltages, currents, light levels, and chemical sensors. Zilog microprocessor development kit, MaxStream radios, GPS receivers, and small rover hardware.

3 units, Aut, Win, Spr (Twyggs)

3 units, Win (Springer)

AA 257. Design of Composite Structures—Hands-on design, analysis, and manufacturing in composites. Composite beams, columns, and plates; application of finite element methods to composite structures; failure analysis and damage tolerance design of composite structures; and impact damage, compression after impact, and bolted and bonded composites joints. Class divided into working teams (design, analysis, manufacturing, and tests) to design and build a composite structure to be tested to failure; the structure may enter the national SAMPE composite bridge design contest. Prerequisite: 256 or consent of instructor.

3 units (F. Chang) not given 2005-06

AA 259A.B. Advanced Design and Engineering of Space Systems—(Enroll in ME 359A/B.)

4 units, A: Win (Khayms), B: Spr (Yiu)

AA 261A. Turbulence—(Enroll in ME 361.)

3 units, Spr (Pitsch)

AA 271A. Dynamics and Control of Spacecraft and Aircraft—The dynamic behavior of aircraft and spacecraft, and the design of automatic control systems for them. For aircraft: non-linear and linearized longitudinal and lateral dynamics; linearized aerodynamics; natural modes of motion; autopilot design to enhance stability, control the flight path, and perform automatic landings. For spacecraft in orbit: natural longitudinal and lateral dynamic behavior and the design of attitude control systems. Prerequisites: AA242A, ENGR 105.

3 units, Spr (Rock)

AA 272C. Global Positioning Systems—The principles of satellite navigation using GPS. Positioning techniques using code tracking, single and dual frequency, carrier aiding, and use of differential GPS for improved accuracy and integrity. Use of differential carrier techniques for attitude determination and precision position determination. Prerequisite: familiarity with matrix algebra.

3 units, Win (Enge)

3 units, Spr (Enge)

AA 273A,B. Modern Control Design—(Enroll in ENGR 207A/B.)

3 units, A: Win, B: Spr (Lall)

AA 274A. Robust Control Analysis and Synthesis—(Enroll in ENGR 210A.)

3 units, Aut (Lall)

AA 275. Introduction to Control Design Techniques—(Enroll in ENGR 205.)

3 units, Aut (Rock)

AA 276. Control System Design—(Enroll in ENGR 206.)

4 units, Spr (Niemeyer)

AA 277A. Analysis and Control of Nonlinear Systems—(Enroll in ENGR 209A.)

3 units (Tomlin) not given 2005-06

AA 277B. Advanced Nonlinear Control—(Enroll in ENGR 209B.)

3 units (Tomlin) not given 2005-06

3 units (Tomlin) not given 2005-06

AA 279. Space Mechanics—Orbits of near-earth satellites and interplanetary probes; transfer and rendezvous; decay of satellite orbits; influence of earth’s oblateness; sun and moon effects on earth satellites. Prerequisite: ENGR 15 or equivalent.

3 units, Spr (West)

AA 283. Aircraft and Rocket Propulsion—Introduction to the design and performance of airbreathing and rocket engines. Physical parameters used to characterize propulsion system performance; gas dynamics of nozzles and inlets; cycle analysis of ramjets, turbojets, turboprops, component matching and the compressor map; introduction to liquid and solid propellant rockets; multistage rockets; hybrid rockets; thermodynamics of reacting gases. Prerequisites: undergraduate background in fluid mechanics and thermodynamics.

3 units, Win (Cantwell)

AA 284A. Advanced Rocket Propulsion—The principles of rocket propulsion system design and analysis. Fundamental aspects of the physics and chemistry of rocket propulsion. Focus is on the design and analysis of chemical propulsion systems including liquids, solids, and hybrids. Nonchemical propulsion concepts such as electric and nuclear rockets. Launch vehicle design and optimization issues including trajectory calculations. Limited enrollment. Prerequisites: 283 and consent of instructor.

3 units, Spr (Karabeyoglu)

AA 284B. Propulsion System Design Laboratory—Propulsion systems engineering through the design and operation of a sounding rocket. Students work in small teams through a full project cycle including requirements definition, performance analysis, system design, fabrication, ground and flight testing, and evaluation. Prerequisite: 284A and consent of instructor.

5 units, Sum (Zilliac)

AA 284C. Propulsion System Design Laboratory—Continuation of 284A,B. Prerequisite: 284B, and consent of instructor.

3 units, Aut (Zilliac)

AA 290. Problems in Aero/Astro—(Undergraduates register for 190 or 199.) Experimental or theoretical investigation. Students may work in any field of special interest. Register for section belonging to your research supervisor.

1-5 units, Aut, Win, Spr (Staff), 1-15 units, Sum (Staff)

AA 291. Practical Training—Educational opportunities in high-technology research and development labs in aerospace and related industries. Internship integrated into a student’s academic program. Research report outlining work activity, problems investigated, key results, and any follow-on projects. Meets the requirements for Curricular Practical Training for students on F-1 visas. Student is responsible for arranging own employment and should see department student services manager before enrolling. May be repeated for credit.

1-3 units, Sum (Staff)

AA 294. Case Studies in Aircraft Design—Presentations by researchers and industry professionals. Registration for credit optional. May be repeated for credit. Optional research paper for additional credit.

1 unit, Spr (Jameson)

AA 297. Seminar in Guidance, Navigation, and Control—For graduate students with an interest in automatic control applications in flight mechanics, guidance, navigation, and mechanical design of control systems; others invited. Problems in all branches of vehicle control, guidance, and instrumentation presented by researchers on and off campus. Registration for credit optional. May be repeated for credit.

1 unit, Aut, Win, Spr (Staff)

AA 298. Seminar in Fluid Mechanics—(Enroll in ENGR 298.)

1 unit, Aut (Staff), Win (Shaqfeh), Spr (Pitsch)

1-15 units, Aut, Win, Spr, Sum (Staff)

1-15 units, Aut, Win, Spr, Sum (Staff)

AA 351B. Advanced Fluid Mechanics—(Enroll in ME 451B.)

3 units, Win (Lele)

AA 351C. Advanced Fluid Mechanics—(Enroll in ME 451A.)

3 units (Staff) not given 2005-06

AA 366. Introduction to Fourier Optics—(Enroll in EE 366.)

3 units (Hesselink) alternate years, given 2006-07

BIOENGINEERING

Chair: Scott L. Delp
Co-Chair: Paul Yock
Associate Professor: Charles Taylor
Assistant Professor: Jennifer R. Cochran, Karl Deisseroth
Affiliated Faculty: Thomas Andriacchi, Sanjiv Sam Gambhir, Christopher Jacobs, Michael T. Longaker, Dwight Nishimura
Student Services: Clark Center, Room S-166
Mail Code: 94305-5444
Student Services Phone: (650) 723-8632
Web Site: http://bioengineering.stanford.edu/

Courses given in Bioengineering have the subject code BIOE. For a complete list of subject codes, see Appendix.

The mission of the Department of Bioengineering is to create a fusion of engineering and the life sciences that promotes scientific discovery and the invention of new technologies and therapies through research and education. The department encompasses both the use of biology as a new engineering paradigm and the application of engineering principles to medical problems and biological systems. The discipline embraces biology as a new science base for engineering.

Bioengineering is jointly supported by the School of Engineering and the School of Medicine. The faculties and personnel of the Department of Bioengineering are housed in the James H. Clark Center, Allen Center for Integrated Systems, William F. Durand Building for Space Engineering and Science, William M. Keck Science Building, and the Richard M. Lucas Center for Magnetic Resonance Spectroscopy and Imaging.

The departmental headquarters is located in the James H. Clark Center for Biomedical Engineering and Sciences, along with approximately 600 faculty, staff, and students from more than 40 University departments. The Clark Center is also home to Stanford’s Bio-X program, a collaboration of the Schools of Engineering, Medicine, Humanities and Sciences, and Earth Sciences.

Courses in the teaching program lead to the degrees of Master of Science and Doctor of Philosophy. The department collaborates in research and teaching programs with faculty members in Chemical Engineering, Mechanical Engineering, Electrical Engineering, and departments in the School of Medicine. Quantitative biology is the core science base of the department. The research and educational thrusts are in biomedical computation, biomedical imaging, biomedical devices, regenerative medicine, and cell/molecular engineering. The clinical dimension of the
department includes cardiovascular medicine, neuroscience, orthopedics, cancer care, neurology, and environment.

UNDERGRADUATE PROGRAMS

Although primarily a graduate-level department, individually designed B.S. majors in Bioengineering, Biomechanical Engineering, or Biomedical Computation can be arranged. For detailed information, see the “School of Engineering” section of this bulletin and the School of Engineering Undergraduate Handbook at http://ughb.stanford.edu and available from the Office of the Dean of Engineering.

COTERMINAL B.S./M.S. PROGRAM

This option is available to outstanding Stanford undergraduates who wish to work simultaneously toward a B.S. in another field and an M.S. in Bioengineering. The degrees may be granted simultaneously or at the conclusion of different quarters, though the bachelor’s degree cannot be awarded after the master’s degree has been granted. As Bioengineering does not currently offer an undergraduate program, the B.S. degree must be from another department. The University minimum requirements for the coterminous bachelor’s/master’s program are 180 units for the bachelor’s degree plus 45 unduplicated units for the master’s degree. A student may apply for the coterminous B.S. and M.S. program after 120 units are completed and they must be accepted into our program one quarter before receiving their degree. Students should apply directly to the Bioengineering Department. We require students interested in our coterminus degree to take the Graduate Record Examination (GRE); applications may be obtained at the Undergraduate Advising Program (UAP) or at http://www.gre.org. New coterminous applications and procedures are now available on the Office of the Registrar's website. Access the new application form, instructions, and supporting documents online at https://bioengineering.stanford.edu/coterm.html; University regulations and forms concerning coterminous degree programs are available at http://registrar.stanford.edu/publications/Coterm.

The application must provide evidence of potential for strong academic performance as a graduate student. The application is evaluated and acted by the graduate admissions committee of the department. Students are expected to enter with a series of core competencies in mathematics, biology, chemistry, physics, computing, and engineering. Typically, a GPA of at least 3.5 in engineering, science, and math is expected.

GRADUATE PROGRAMS

The University’s requirements for the M.S. and Ph.D. degrees are outlined in the “Graduate Degrees” section of this bulletin.

Admission— Students are expected to enter with a series of core competencies in mathematics, biology, chemistry, physics, computing, and engineering. The backgrounds of students entering the program are assessed by the examination of their undergraduate transcripts and research experience. Specifically, we require that students have completed mathematics through multivariable calculus and differential equations, completed a series of undergraduate biology courses (equivalent to BIOSCI 41, 42, 43 series) and completed physics, chemistry, and computer sciences courses required of all undergraduate majors in engineering.

Qualified applicants are encouraged to apply for predoctoral national competitive fellowships, especially those from the National Science Foundation. Applicants to the Ph.D. program should consult with their financial aid officers for information and applications.

The deadline for receiving applications is January 3, 2006.

Further information and application forms for all graduate degree programs may be obtained from Graduate Admissions, the Registrar’s Office, http://gradadmissions.stanford.edu/.

MASTER OF SCIENCE

The Master of Science in Bioengineering requires 45 units of course work. The curriculum consists of core bioengineering courses, technical electives, seminars and unrestricted electives. Core courses focus on quantitative biology and biological systems analysis. Approved technical electives are chosen by a student in consultation with his/her graduate adviser, and can be selected from graduate course offerings in mathematics, statistics, engineering, physical sciences, life sciences, and medicine. Seminars highlight emerging research in bioengineering and provide training in research ethics. Unrestricted electives can be freely chosen by the student in association with his/her adviser.

The department’s requirements for the M.S. in Bioengineering are:

1. **Bioengineering courses** (12-13 units); the following courses are required:
 - BIOE 200A. Molecular and Cellular Engineering (Aut)
 - BIOE 200B. Systems Biology and Tissue Engineering (Win)
 - BIOE 200C. Medical Devices, Diagnostics, Pharmaceuticals (Spr)
 - BIOE 201A. Molecular and Cellular Engineering Lab (Aut)
 - BIOE 201C. Medical Devices, Diagnostics, Pharmaceuticals Lab (Spr)

 These courses, together with the approved technical electives, should form a cohesive course of study that provides depth and breadth.

2. **Approved Technical Electives** (24 units): these units must be selected from graduate courses in mathematics, statistics, engineering, physical science, life science, and medicine. They should be chosen in concert with the bioengineering courses to provide a cohesive degree program in a bioengineering focus area. Up to 9 units of directed study and research may be used as approved electives.

3. **Seminars** (3 units): the seminar units should be fulfilled by attendance at the BIOE 393, Bioengineering Forum, or BIOE 459. Frontiers in Interdisciplinary Biosciences. Other relevant seminar units could also be used with the approval of the faculty adviser. One of the seminar units must be MED 255, The Responsible Conduct of Research.

4. **Unrestricted Electives** (6 units).

Students are assigned an initial faculty adviser to assist them in designing a plan of study that creates a cohesive degree program with a concentration in a particular bioengineering focus area. These focus areas include, but are not limited to: Biomedical Computation, Regenerative Medicine/Tissue Engineering, Molecular and Cell Bioengineering, Biomedical Imaging, and Biomedical Devices.

To ensure that an appropriate program is pursued by all M.S. candidates, students who first matriculate at Stanford at the graduate level (a) submit an adviser approved “Program Proposal for a Master’s Degree” form to the Student Service Office during the first month of the first quarter of enrollment and (b) obtain approval from the M.S. adviser and the Chair of Graduate Studies for any subsequent program change or changes. It is expected that the requirements for the M.S., Bioengineering can be completed within approximately one year. There is no thesis requirement for the M.S.

DOCTOR OF PHILOSOPHY

A student studying for the Ph.D. degree must complete a master’s degree (45 units) and must fulfill the requirements for the Stanford M.S. degree in Bioengineering. A minimum of 135 units is required. Up to 45 units of master’s degree residency units may be counted towards the degree. The maximum number of transfer units is 45. Students admitted to the Ph.D. program with an M.S. degree, must complete at least 90 units of work at Stanford.

Students are assigned an initial faculty adviser on the basis of the research interests expressed in their application. Initial faculty advisers assist students in selecting courses and identifying research opportunities. The department does not require formal lab rotations, but students are encouraged to explore research activities in two or three labs during their first academic year.

Prior to being formally admitted to candidacy for the Ph.D. degree, the student must demonstrate knowledge of bioengineering fundamentals and a potential for research by passing a qualifying oral examination.

Typically, the exam is taken shortly after the student earns a master’s degree. The student is expected to have a nominal graduate Stanford GPA of 3.5 to be eligible for the exam. Students are encouraged to take the exam during the academic year and to work with their faculty sponsor to prepare. Once the student’s faculty sponsor has agreed that the exam is to take place, the student must submit an application folder containing items including a curriculum vitae, research project abstract, and preliminary
dissertation proposal to the student service office. Information about the exam may be obtained from the student service office.

In addition to the course requirements of the M.S. degree, doctoral candidates must complete a minimum of 15 additional units of approved formal course work (excluding research, directed study, and seminars).

Dissertation Reading Committee — Each Ph.D. candidate is required to establish a reading committee for the doctoral dissertation within six months after passing the department’s Ph.D. Qualifying exams. Thereafter, the student should consult frequently with all members of the committee about the direction and progress of the dissertation research.

A dissertation reading committee consists of the principal dissertation adviser and at least two other readers. Reading committees in Bioengineering may include faculty from another department. It is expected that at least two members of the Bioengineering faculty be on each reading committee. The initial committee, and any subsequent changes, must be officially approved by the department Chair.

University Oral and Dissertation — The Ph.D. candidate is required to take the University oral examination after the dissertation is substantially completed (with the dissertation draft in writing), but before final approval. The examination consists of a public presentation of dissertation research, followed by substantive private questioning on the dissertation and related fields by the University oral committee (four selected faculty members, plus a chair from another department). Once the oral has been passed, the student finalizes the dissertation for reading committee review and final approval. Forms for the University oral scheduling and a one-page dissertation abstract should be submitted to the department student services office at least three weeks prior to the date of the oral for departmental review and approval.

COURSES

STANFORD INTRODUCTORY SEMINARS

BIOE 70Q. Medical Device Innovation — Stanford Introductory Seminar. Preference to sophomores. Commonly used medical devices in different medical specialties. Guest lecturers include Stanford Medical School physicians, entrepreneurs, and venture capitalists. How to identify clinical needs and design device solutions to address these needs. Fundamentals of starting a company. Field trips to local medical device companies; workshops. No previous engineering training required.

3 units, Spr (Doshi, Mandato)

ADVANCED UNDERGRADUATE AND GRADUATE

BIOE 191. Bioengineering Problems and Experimental Investigation — Directed study and research for undergraduates on a subject of mutual interest to student and instructor. May be repeated for credit. Prerequisites: consent of instructor and adviser.

1-5 units, Aut, Win, Spr, Sum (Staff)

BIOE 200A. Molecular and Cellular Engineering — Preference to Bioengineering graduate students. The molecular and cellular bases of life from an engineering perspective. Metabolism, information flow and feedback, signal transduction, and means for engineering these processes. Clinical motivations and practical applications.

3 units, Aut (Cochran, Staff)

BIOE 200B. Systems Biology and Tissue Engineering — Preference to Bioengineering graduate students. The interaction, communication, and disorders of organ systems. Major organ systems and engineering means of probing them. Relevant developmental biology and tissue engineering from cells to complex organs.

3 units, Win (Deisseroth, Staff)

BIOE 200C. Medical Devices, Diagnostics, and Pharmaceuticals: Technologies, Regulation, and Applications — Preference to Bioengineering graduate students. Major classes of technologies including imaging techniques, chemical diagnostics, drug design and delivery. Topics include pacemakers, fMRI, PCR, stents, and biomaterials. Principles, practical limitations, and feature trade-offs in clinical settings.

3 units, Spr (Ku, Sorger)

BIOE 201A. Molecular and Cellular Engineering Lab — Preference to Bioengineering graduate students. Practical studies of metabolism, information flow and feedback, signal transduction, and means for engineering these processes. Emphasis is on experimental design and data analysis. Corequisite: 200A.

1-2 units, Aut (Quake, Staff)

BIOE 201C. Medical Device, Diagnostics, and Pharmaceuticals Lab — Preference to Bioengineering graduate students. Medical devices and instrumentation for clinical diagnosis and drug development. Topics include PCR machines, DNA sequencers, imaging systems (MRI, CT, ultrasound), and cardiovascular devices. Corequisite: 200C.

1-2 units, Spr (Pelc, Sorger, Ku)

BIOE 210. Introduction to Biomedical Informatics: Fundamental Methods — (Enroll in BIOMEDIN 210, CS 270.)

3 units, Aut (Musen)

BIOE 212. Biomedical Informatics Project Course — (Enroll in BIOMEDIN 212, CS 272.)

3 units, Aut (Altmann, Cheng, Klein)

BIOE 214. Representations and Algorithms for Computational Molecular Biology — (Enroll in BIOMEDIN 214, CS 274.)

3-4 units, Spr (Altmann)

BIOE 218. Computational Molecular Biology — (Enroll in BIOC 218.)

3 units (Brutlag) not given 2005-06

BIOE 220. Introduction to Imaging and Image-Based Human Anatomy — (Same as RAD 220.) The physics of medical imaging and human anatomy through medical images. Emphasis is on contrast mechanisms and the relative strengths of each imaging modality. Lab shows imaging and anatomy in real time. Recommended: basic biology, physics, and math.

3 units, Win (Gold, K. Pauly)

BIOE 222. Multi-modality Molecular Imaging in Living Subjects — (Same as RAD 222.) Instruments for imaging molecular and cellular events using novel assays. Instrumentation physics, chemistry of molecular imaging probes, and applications to preclinical models and clinical disease management.

4 units, Aut (Gambrill)

BIOE 261. Principles and Practice of Stem Cell Engineering — (Same as NSUR 261.) Quantitative models used to characterize incorporation of new cells into existing tissues emphasizing pluripotent cells such as embryonic and neural stem cells. Molecular methods to control stem cell decisions to self-renew, differentiate, die, or become quiescent. Practical, industrial, and ethical aspects of stem cell technology application. Final projects: team-reviewed grants and business proposals.

3 units, Aut (Deisseroth, Palmer)

BIOE 280. Skeletal Development and Evolution — (Enroll in ME 280.)

3 units, Spr (Carter)

BIOE 281. Biomechanics of Movement — (Same as ME 281; formerly 181.) Review of experimental techniques used to study human and animal movement including motion capture systems, EMG, force plates, medical imaging, and animation. The mechanical properties of muscle and tendon, and quantitative analysis of musculoskeletal geometry. Projects and demonstrations emphasize applications of mechanics in sports, orthopedics, and rehabilitation. GER:DB-EngrAppSci

3 units, Aut (Delp)

3-4 units, Aut (Taylor)
3-4 units, Win (Taylor)

GRADUATE

BIOE 320A. Medical Imaging Systems I—(Enroll in EE 369A.) 3 units (Nishimura) not given 2005-06

BIOE 320B. Medical Imaging Systems II—(Enroll in EE 369B.) 3 units, Spr (Nishimura)

BIOE 320C. Medical Image Reconstruction—(Enroll in EE 369C.) 3 units, Aut (Pauly)

BIOE 321. In Vivo Magnetic Resonance Spectroscopy and Imaging—(Enroll in RAD 226.) 3 units, Win (Spielman)

BIOE 331. Biomolecular Engineering—The design and engineering of optimized biomolecules emphasizing proteins. Protein structure and function, combinatorial methodologies, and biophysical analyses of modified biomolecules. Clinically relevant examples from the literature and industry.
2-3 units, Spr (Cochran)

BIOE 350. Principles of Cellular Systems—(Enroll in CHEMENG 350.) 3 units, Win (Kao)

BIOE 351. Introduction to Biotechnology—(Enroll in CHEMENG 450.) 3 units, Spr (Khosla)

BIOE 355. Advanced Biochemical Engineering—(Same as CHEMENG 355.) Quantitative biological concepts and the technological tools used to exploit the power of modern biology. How a cell interacts with and influences its environment, and how a production organism is produced and optimized. Concepts for large-scale bioprocess production, isolation, and purification. How proteins are manufactured without living cells, how biopharmaceuticals are formulated and delivered, and the regulatory requirements for drug approval and sale. Prerequisite: 350 or BIOSCI 41 or equivalent.
3 units, Spr (Swartz)

BIOE 360. Tissue Engineering Lab—(Enroll in ME 385.) 1-2 units, Win (Jacobs)

BIOE 370A,B. Microfluidic Device Laboratory—Fabrication of microfluidic devices for biological applications. Photolithography, soft lithography, and micromechanical valves and pumps. Emphasis is on device design, fabrication, and testing.
2 units, A: Win, B: Spr (Quake, Melin)

BIOE 374A,B. Biodesign Innovation—(Same as ME 374A,B, OIT 384,385.) Two quarter sequence.

BIOE 374A, Needs Finding and Concept Creation—Strategies for understanding and interpreting clinical needs, researching literature, and searching patents. Clinical and scientific literature review, techniques of intellectual property analysis and feasibility, basic prototyping, and market assessment. Students working in small entrepreneurial teams to create, analyze, and screen medical technology ideas, and select projects for development.
3-4 units, Win (Makower, Yock, Zenios, Milroy)

BIOE 374B, Concept Development and Implementation—Early factors for success; how to prototype inventions and refine intellectual property. Lectures, guest medical pioneers, and entrepreneurs about strategic planning, ethical considerations, new venture management, and financing and licensing strategies. Cash requirements; regulatory (FDA), reimbursement, clinical, and legal strategies, and business or research plans.
3-4 units, Spr (Makower, Yock, Zenios, Milroy)

BIOE 381. Orthopaedic Bioengineering—(Enroll in ME 381.) 3 units, Aut (Carter)

BIOE 382A,B. Biomedical Device Design and Evaluation I/II—(Enroll in ME 382A/B.)
4 units, A: Win, B: Spr (Andriacchi)

BIOE 386. Neuromuscular Biomechanics—(Same as ME 386; formerly 286.) The interplay between mechanics and neural control of movement. State of the art assessment through a review of classic and recent journal articles. Emphasis is on the application of dynamics and control to the design of assistive technology for persons with movement disorders.
3 units (Delp) not given 2005-06

BIOE 390. Introduction to Bioengineering Research—Preference to medical and bioengineering graduate students. Bioengineering is an interdisciplinary field that leverages the disciplines of biology, medicine, and engineering to understand living systems, and engineer biological systems and improve engineering designs and human and environmental health. Topics include: imaging; molecular, cell, and tissue engineering; biomechanics; biomedical computation; biochemical engineering; biosensors; and medical devices. Limited enrollment.
1-2 units, Aut (Taylor)

BIOE 391. Directed Study—May be used to prepare for research during a later quarter in 392. Faculty sponsor required. May be repeated for credit.
1-6 units, Aut, Win, Spr, Sum (Staff)

BIOE 392. Directed Investigation—For Bioengineering graduate students. Previous work in 391 may be required for background; faculty sponsor required. May be repeated for credit.
1-15 units, Aut, Win, Spr, Sum (Staff)

BIOE 393. Bioengineering and Biodesign Forum—(Same as ME 389.) Guest speakers present research topics at the interfaces of biology, medicine, physics, and engineering.
1 unit, Aut, Win, Spr (Staff)

BIOE 445. Metabolic Engineering Methods and Applications—(Enroll in CHEMENG 454.) 3 units, Spr (Swartz)

BIOE 459. Frontiers in Interdisciplinary Biosciences—(Same as CHEMENG 459, BIOSCI 459, CHEM 459, PSYCH 459, BIOC 459.) For specialists and non-specialists. Sponsored by the Stanford BioX Program. Three seminars per quarter address scientific and technical themes related to interdisciplinary approaches in bioengineering, medicine, and the chemical, physical, and biological sciences. Leading investigators from Stanford and the world present breakthroughs and endeavors that cut across core disciplines. Pre-seminars introduce basic concepts and background for non-experts. Registered students attend all pre-seminars; others welcome. See http://www.stanford.edu/group/biox/courses/459.html. Recommended: basic mathematics, biology, chemistry, and physics.
1 unit, Aut, Win, Spr (Robertson)

BIOE 484. Computational Methods in Cardiovascular Bioengineering—(Same as ME 484; formerly 184B.) Lumped parameter, one-dimensional nonlinear and linear wave propagation, and three-dimensional modeling techniques applied to simulate blood flow in the cardiovascular system and evaluate the performance of cardiovascular devices. Construction of anatomic models and extraction of physiologic quantities from medical imaging data. Problems in blood flow within the context of disease research, device design, and surgical planning.
3 units (Taylor) alternate years, given 2006-07
Andreas Acrivos, Michel Boudart, George M. Whitesides. The Department of Chemical Engineering offers a program leading to a Bachelor of Science in Chemical Engineering with honors. Qualified undergraduate majors conduct independent study and research at an advanced level with a faculty mentor, graduate students, and fellow undergraduates. This three quarter sequential program involves research study in an area proposed to and agreed to by a Department of Chemical Engineering faculty adviser, completion of a faculty-approved thesis, and participation in the Chemical Engineering Honors Symposium held annually during Spring Quarter. The last requirement may also be fulfilled through an alternative, public, oral presentation with the approval of the department chair.

Admission to the honors program is by application. Declared Chemical Engineering students with a grade point average (GPA) of 3.5 or higher in Chemical Engineering courses are eligible to submit an application. Applications must be submitted no later than the second week of Autumn Quarter of the senior year, include honors proposal, and be sponsored by both the thesis adviser and a second reader. The adviser, or alternatively the sponsor, must be a member of the Chemical Engineering faculty. Students should take advantage of university programs that support undergraduate research such as those sponsored by Undergraduate Research Programs; see http://urp.stanford.edu/StudentGrants/introstudentgrants.html. Students should start their honors research in their junior year and incorporate Summer Quarter research opportunities into their three quarter honors research proposal. Subject to faculty approval, it is recommended that students include a writing course in the second quarter of their honors project.

In order to receive departmental honors, students admitted to the honors program must:
1. Maintain an overall grade point average (GPA) of at least 3.5 as calculated on the unofficial transcript.
2. Complete at least three quarters of research with a minimum total of 9 units of CHEMENG 190H for a letter grade. All quarters must be maintained throughout if feasible.
3. Participate in the Chemical Engineering Honors Symposium held during Spring Quarter with a poster and oral presentation of thesis work or, at the faculty’s discretion, in a comparable public event.
4. Submit a completed draft of thesis simultaneously to the adviser and, if appropriate to the Chemical Engineering faculty sponsor, no later than May 1, or the first day of the second month of the quarter in which the degree is to be conferred.
5. Complete all work and thesis revisions and obtain indicated faculty approvals on the Certificate of Final Reading of Thesis form by the end of the third week of May, or the second month of the graduation quarter.
6. Submit to Chemical Engineering student services two final copies of the honors thesis as approved by the appropriate faculty and with a certificate form for each copy. The deadline is May 22, 2006, or the Monday at the beginning of the fourth week of the second month of the graduation quarter.

There are several B.S. plans for Chemical Engineering. Sample programs are available from the department’s student services and faculty advisers for undergraduates, the Office of Student Affairs in the School of Engineering, and in the Handbook for Undergraduate Engineering Programs, available at http://ughb.stanford.edu/. It is recommended that the student discuss a prospective program with a chemical engineering adviser, especially if transferring from biology, chemistry, physics, or another field in engineering. With some advanced planning, the student can usually arrange to attend one of the overseas campuses.

For information about the requirements for a Chemical Engineering minor, see the “School of Engineering” section of this bulletin.

HONORS PROGRAM

The Department of Chemical Engineering offers a program leading to a Bachelor of Science in Chemical Engineering with honors. Qualified undergraduate majors conduct independent study and research at an advanced level with a faculty mentor, graduate students, and fellow undergraduates. This three quarter sequential program involves research study in an area proposed to and agreed to by a Department of Chemical Engineering faculty adviser, completion of a faculty-approved thesis, and participation in the Chemical Engineering Honors Symposium held annually during Spring Quarter. The last requirement may also be fulfilled through an alternative, public, oral presentation with the approval of the department chair.

Admission to the honors program is by application. Declared Chemical Engineering students with a grade point average (GPA) of 3.5 or higher in Chemical Engineering courses are eligible to submit an application. Applications must be submitted no later than the second week of Autumn Quarter of the senior year, include honors proposal, and be sponsored by both the thesis adviser and a second reader. The adviser, or alternatively the sponsor, must be a member of the Chemical Engineering faculty. Students should take advantage of university programs that support undergraduate research such as those sponsored by Undergraduate Research Programs; see http://urp.stanford.edu/StudentGrants/introstudentgrants.html. Students should start their honors research in their junior year and incorporate Summer Quarter research opportunities into their three quarter honors research proposal. Subject to faculty approval, it is recommended that students include a writing course in the second quarter of their honors project.

In order to receive departmental honors, students admitted to the honors program must:
1. Maintain an overall grade point average (GPA) of at least 3.5 as calculated on the unofficial transcript.
2. Complete at least three quarters of research with a minimum total of 9 units of CHEMENG 190H for a letter grade. All quarters must be maintained throughout if feasible.
3. Participate in the Chemical Engineering Honors Symposium held during Spring Quarter with a poster and oral presentation of thesis work or, at the faculty’s discretion, in a comparable public event.
4. Submit a completed draft of thesis simultaneously to the adviser and, if appropriate to the Chemical Engineering faculty sponsor, no later than May 1, or the first day of the second month of the quarter in which the degree is to be conferred.
5. Complete all work and thesis revisions and obtain indicated faculty approvals on the Certificate of Final Reading of Thesis form by the end of the third week of May, or the second month of the graduation quarter.
6. Submit to Chemical Engineering student services two final copies of the honors thesis as approved by the appropriate faculty and with a certificate form for each copy. The deadline is May 22, 2006, or the Monday at the beginning of the fourth week of the second month of the graduation quarter.

GRADUATE PROGRAMS

The University’s requirements for the M.S., Engineer, and Ph.D. degrees are outlined in the “Graduate Degrees” section of this bulletin.
MASTER OF SCIENCE

An M.S. program comprising appropriate course work is available to accommodate students wishing to obtain further academic preparation, after receiving a B.S. degree, before pursuing a professional chemical engineering career. This degree is not a prerequisite for nor does it lead directly into the department’s Ph.D. program. For conferral of an M.S. degree, a formal thesis is not required, but the following departmental requirements must be met.

Unit and Course Requirements—For students terminating their graduate work with the M.S. degree in Chemical Engineering, a graduate-level, thematic program consisting of a minimum of 45 units of academic work is required, including (1) four Chemical Engineering lecture courses selected from the 300 series; (2) 3 units of 699 Colloquia; (3) an additional 30 units, selected from graduate-level science or engineering lecture courses in any department and, by petition to the Chair of the Department of Chemical Engineering, from upper-division undergraduate lecture courses in science and engineering. Alternatively, for terminal M.S. degree students, up to 6 units of research may be used in lieu of up to 6 units of the additional 30 lecture units to partially satisfy the 45-unit minimum requirement. Another option for fulfilling the M.S. degree unit requirement is an up-to-six-units combination of research units and no more than 3 units of 459 or other 1- or 2-unit seminar courses in other departments, used in lieu of up to 6 units of the required additional 30 lecture units. Credit toward the M.S. degree is not given for Chemical Engineering special topics courses numbered in the 500 series nor for similar courses in other departments.

To ensure that an appropriate Chemical Engineering graduate program is pursued by all M.S. candidates, students who first matriculate at Stanford at the graduate level must (a) submit during the first quarter, no later than the ninth week, an adviser-approved Program Proposal for a Master’s Degree form to departmental student services for review by the department chair, and (b) obtain approval from the M.S. adviser and the department chair for any subsequent program change or changes. Stanford undergraduates admitted to the coterminous master’s program must (a) submit an adviser-approved Program Proposal for a Master’s Degree (a graduate degree progress form) either during their first quarter of graduate standing or upon the completion of 15 units of graduate work (whichever occurs first), and (b) document with student services their M.S. adviser’s review and approval of their graduate program when they have accrued 30 units toward the degree in Chemical Engineering. All M.S. programs must be reviewed and given final approval by the Chemical Engineering M.S. adviser and the department chair no later than the quarter before the quarter of M.S. degree conferral, in order to permit amendment of the final quarter’s study list if the faculty deem this necessary. Students with questions should contact student services.

For University coterminous degree program rules and University application forms, see http://registrar.stanford.edu/publications/#Coterm.

Research Experience—Students in the M.S. program wishing to obtain research experience should work with the M.S. adviser on the choice of research adviser in advance of the quarter(s) of research, and, upon approval, then enroll in the appropriate section of CHEMENG 600. A written report describing the results of the research undertaken must be submitted to and approved by the research adviser. CHEMENG 600 may not be taken in lieu of any of the required four 300-level lecture courses.

Residency Requirement—See General Requirements in the “Graduate Degrees” section of this bulletin.

Minimum Grade Requirement—Any course used to satisfy the 45-unit minimum for the M.S. degree must be taken for a letter grade, if offered. An overall grade point average (GPA) of 3.0 must be maintained for these courses.

ENGINEER

The degree of Engineer is awarded after completion of a minimum of 90 units of graduate work beyond the B.S. degree and satisfactory completion of all University requirements plus the following departmental requirements. (This degree is not required to enter the Ph.D. program.)

Unit and Course Requirements—A minimum of 90 total units (including research) within which 45 units of lecture course work is required for the Engineer degree, including (1) 300, 310A, 345, 355 and (2) 3 units of 699. The remaining lecture courses, to total at least 45 units, may be chosen from the basic sciences and engineering according to the guidelines given in the Master of Science section and with the consent of the graduate adviser and chair. An aggregate of 6 units maximum of the required 45-unit minimum of course work may include such courses as 459 and 699. Students seeking the Engineer degree may apply for the M.S. degree once the requirements for that degree have been fulfilled (see General Requirements in the “Graduate Degrees” section of this bulletin). A written report describing the results of the research undertaken must be submitted to and approved by the committee. An aggregate of 6 units maximum of the required 45-unit minimum of course work may include such courses as 459 and 699. Students seeking the Engineer degree may apply for the M.S. degree once the requirements for that degree have been fulfilled (see General Requirements in the “Graduate Degrees” section of this bulletin). A written report describing the results of the research undertaken must be submitted to and approved by the committee. A written report describing the results of the research undertaken must be submitted to and approved by the committee.
Residency Requirement — See General Requirements in the “Graduate Degrees” section of this bulletin.

Minimum Grade Requirement — Any course intended to satisfy the degree requirements must be taken for a letter grade, if offered. An overall grade point average (GPA) of 3.0 must be maintained for these courses.

Qualifying Examination — To be advanced to candidacy for the Ph.D. degree, the student must pass both parts of the qualifying examination. The first part is held at the beginning of Spring Quarter, or the third quarter of study, and the first-year student is asked to make an oral presentation to the faculty of a critical review of a published paper. This preliminary examination, in addition to performance in courses and during research rotations, is the basis for determining whether or not a first-year student may be allowed to choose a research adviser and to begin doctoral research work immediately. Failure in this first part of the qualifying examination leads to termination of a student’s study towards the Ph.D. degree. It also precludes any financial aid beyond that already pledged; however, the student may continue to work toward an M.S. degree (see “Master of Science” section above). Students who pass the preliminary examination take the second part of the qualifying examination at the beginning of their second year, or fifth quarter. This second examination before the faculty is an oral presentation and defense of their current research work. Students who pass both examinations must promptly submit Application for Candidacy for Doctoral Degree forms approved by their research advisers and at the same time establish and meet with their doctoral dissertation reading committees.

Reading Committee Requirement — All Ph.D. candidates are required to assemble reading committees and to have an initial committee meeting by the end of their seventh quarter. Reading committee meetings are not examinations; they are intended to be discussion sessions, to help focus and guide the dissertation project. Following the initial committee meeting, additional meetings must take place no less than once per year until all the requirements for the Ph.D. degree are satisfied. The department encourages students to take advantage of the benefits of more frequent meetings with their entire reading committee as a group. It is the student’s responsibility to schedule committee meetings and to report the meeting dates to the student services manager.

Teaching Requirement — Teaching experience is considered an essential component of doctoral training. All Ph.D. candidates, regardless of the source of their financial support, are required to assist in the teaching of a minimum of two chemical engineering courses.

Dissertation and Oral Defense Requirements — A dissertation based on a successful investigation of a fundamental problem in chemical engineering is required. Within approximately five calendar years after enrolling in the department, students are expected to have fulfilled all the requirements for this degree, including the completion of dissertations approved by their research advisers. Upon adviser approval, copies must be distributed to each reading committee member. No sooner than three weeks after this distribution, students may schedule University oral examinations. The examination is a dissertation defense, based on the candidate’s dissertation research, and is in the form of a public seminar followed by a private examination by the faculty on the student’s oral examination committee. Satisfactory performance in the oral examination and acceptance of an approved dissertation by Graduate Degree Progress, Office of the University Registrar, leads to Ph.D. degree conferral.

PH.D. MINOR

A Ph.D. minor is a program outside a student’s Ph.D. department. The University’s general requirements for the Ph.D. minor are specified in the “Graduate Degrees” section of this bulletin. An application for a Ph.D. minor must be approved by both the major and minor departments.

A student desiring a Ph.D. minor in Chemical Engineering must have a minor program adviser who is a regular Chemical Engineering faculty member. At a minimum, this adviser must be a member of the student’s reading committee for the doctoral dissertation, and the entire reading committee must meet at least once and at least one year prior to the scheduling of the student’s oral examination. The department strongly prefers that regular reading committee meetings start in the second year of graduate study. In addition, the minor adviser must be a member of the student’s University oral examination committee.

The Ph.D. minor program must include at least 20 units of graduate-level course work (that is, courses numbered at the 200 level or above), but may not include in the 20-unit minimum any 1-2 unit courses in Chemical Engineering, with the exception of 250A if it is taken in conjunction with 250. The list of courses must form a coherent program and must be approved by the minor program adviser and the chair of the department. All courses for the minor must be taken for a letter grade, and a GPA of at least 3.0 earned for these courses.

RESEARCH ACTIVITIES

Research investigations are currently being carried out in the following fields: applied statistical mechanics, biocatalysis, bioengineering, colloid science, computational materials science, electronic materials, hydrodynamic stability, kinetics and catalysis, Newtonian and non-Newtonian fluid mechanics, polymer science, rheo-optics of polymeric systems, and surface and interface science. Additional information may be found at http://chemeng.stanford.edu.

FELLOWSHIPS AND ASSISTANTSHIPS

Fellowships are awarded each year, primarily to Ph.D. students. Fellowships for incoming students are awarded in the spring prior to matriculation at the beginning of the following academic year. Current students are encouraged to apply for external, competitive fellowships and may obtain information about various awarding agencies from faculty advisers and student services. Assistantships are paid positions for graduate students that, in addition to a salary, provide the benefit of a tuition allocation. Individual faculty appoint students to research assistantships; the department chair appoints doctoral students to teaching assistantships. Contact student services for further information.

FURTHER INFORMATION

More information about the department can be found on our web site at http://chemeng.stanford.edu. Any students interested in graduate admissions should click on the admissions link. Current Stanford students interested in graduate work in Chemical Engineering are encouraged to contact the department and must follow an internal application process. All other students should go to http://gradadmissions.stanford.edu/ for additional guidelines regarding application requirements and processes. Potential applicants also can obtain the essentials by first emailing inquire@chemeng.stanford.edu and then contacting the department’s student services office in Keck, room 189, or sending email to cosby@stanford.edu.

GRADUATE COURSES IN BIOLOGICAL INTERDISCIPLINARY SCIENCES AND ENGINEERING

The Chemical Engineering Department offers a number of opportunities for students to pursue course work in interdisciplinary biosciences which include the chemical, physical, mathematical, and engineering sciences. These include CHEMENG 250, 250A, 288, 289, 350, 355, 450, 452, and 454. In addition, students seeking a broad introduction to current topics in the interdisciplinary biosciences and engineering should consider CHEMENG 459, Frontiers in Interdisciplinary Biosciences, which covers emerging technologies and other subject matter at the intersection of engineering and biology ranging from molecular to complex systems. Students are encouraged to review course offerings in all departments of the School of Engineering.
COURSES

WIM indicates that the course satisfies the Writing in the Major requirements. (AU) indicates that the course is subject to the University Activity Unit limitations for undergraduates (8 units maximum).

PRIMARILY FOR UNDERGRADUATES

CHEMENG 10. The Chemical Engineering Profession — Open to all undergraduates; most useful for juniors and seniors in the major. Seminar. Faculty and alumni of the Chemical Engineering department present career paths and post-graduation opportunities available to Chemical Engineering graduates. Possible topics: preparing for graduate school (M.S. and Ph.D., and in law, business, medicine, other engineering fields); opportunities in areas related to the environment, soft and hard materials, and biotechnology; and non-traditional opportunities.
1 unit, Aut (Frank)

CHEMENG 20. Introduction to Chemical Engineering — (Enroll in ENGR 20.)
3 units, Spr (Robertson)

CHEMENG 25. Biotechnology — (Enroll in ENGR 25.)
3 units, Spr (Kao)

CHEMENG 60Q. Environmental Regulation and Policy — Stanford Introductory Seminar. Preference to sophomores. How environmental policy is formulated in the U.S. How and what type of scientific research is incorporated into decisions. How to determine acceptable risk, the public’s right to know of chemical hazards, waste disposal and cleanup, manufacturing, brownfield redevelopment, and new source review regulations. The proper use of science and engineering including media presentation and misrepresentation, public scientific and technical literacy, and emotional reactions. Alternative models to formulation of environmental policy. Political and economic forces, and stakeholder discussions. GER: DB-EngrAppSci
3 units, Aut (Robertson, Libicki)

CHEMENG 70Q. Masters of Disaster — Stanford Introductory Seminar. Preference to sophomores. For students interested in science, engineering, politics, and the law. Learn from past disasters to avoid future ones. How disasters can be tracked to failures in the design process. The roles of engineers, artisans, politicians, lawyers, and scientists in the design of products. Failure as rooted in oversight in adhering to the design process. Student teams analyze real disasters and design new products presumably free from the potential for disastrous outcomes. GER: DB-EngrAppSci
3 units, Aut (Robertson, Moalli)

CHEMENG 100. Chemical Process Modeling, Dynamics, and Control — Mathematical methods applied to engineering problems using chemical engineering examples. The development of mathematical models to describe chemical process dynamic behavior. Analytical and computer simulation techniques for the solution of ordinary differential equations. Dynamic behavior of linear first- and second-order systems. Introduction to process control. Dynamics and stability of controlled systems. Prerequisites: ENGR 20; CME 102, or MATH 53 or 130, or equivalent.
3 units, Aut (Kao)

CHEMENG 110. Equilibrium Thermodynamics — Thermodynamic properties, equations of state, properties of non-ideal systems including mixtures, and phase and chemical equilibria. Prerequisite: CHEM 171.
3 units, Win (Bao)

CHEMENG 120A. Fluid Mechanics — The flow of isothermal fluids from a momentum transport viewpoint. Continuum hypothesis, scalar and vector fields, fluid statics, non-Newtonian fluids, shell momentum balances, equations of motion and the Navier-Stokes equations, creeping and potential flow, parallel and nearly parallel flows, time-dependent parallel flows, boundary layer theory and separation, introduction to drag correlations. Prerequisites: junior in Chemical Engineering or consent of instructor; 100 and CME 102 (formerly ENGR 155A), or equivalent.
4 units, Aut (Fuller)

CHEMENG 120B. Energy and Mass Transport — General diffusive transport, heat transport by conduction, Fourier’s law, conduction in composites with analogies to electrical circuits, advection-diffusion equations, forced convection, boundary layer heat transport via forced convection in laminar flow, forced convection correlations, free convection, free convection boundary layers, free convection correlations and application to geophysical flows, melting and heat transfer at interfaces, radiation, diffusive transport of mass for dilute and non-dilute transfer, mass and heat transport analogies, mass transport with bulk chemical reaction, mass transport with interfacial chemical reaction, evaporation. Prerequisite 120A or consent of instructor.
4 units, Win (Fuller)

CHEMENG 130. Separation Processes — Analysis and design of equilibrium and non-equilibrium separation processes. Possible examples: distillation, liquid-liquid extraction, flash distillation, electrophoresis, centrifugation, membrane separations, chromatography, and reaction-assisted separation processes.
3 units, Spr (Musgrave)

CHEMENG 140. Microelectronics Processing Technology — (Same as 240.) The chemistry and transport of microelectronics device fabrication. Introduction to solid state materials and electronic devices. Chemical processes including crystal growth, chemical vapor deposition, etching, oxidation, doping, diffusion, metallization, and plasma processing with emphasis on chemical, kinetic, and transport considerations. Recommended: CHEM 33, 171, and PHYSICS 55.
3 units, Spr (Bao)

CHEMENG 150. Biochemical Engineering — (Same as 250.) Principles used in the biological production of fine biochemicals emphasizing protein pharmaceuticals as a fundamental paradigm. Basic and applied principles in applied biochemistry, enzyme kinetics, cellular physiology, recombinant DNA technology, metabolic engineering, fermentation development and scale up, product isolation and purification, protein folding and formulation, and biobusiness and regulatory issues. Prerequisite: BIOSCI 41 or equivalent.
3 units, Aut (Swartz)

CHEMENG 150A. BioProcess Design Laboratory — (Same as 250A.) Small groups use a commercial software package to design, evaluate, and optimize processes for the manufacture of products such as commodity biochemicals, industrial enzymes, and pharmaceutical proteins. Product cost and quality targets developed to satisfy market needs. Uses and reinforces concepts introduced in 150/250. Prerequisite: BIOSCI 41 or equivalent. Corequisite: 150/250 or consent of instructor.
1 unit (Swartz) not given 2005-06

CHEMENG 160. Polymer Science and Engineering — (Same as 260.) Introduction to polymer science, including morphology of amorphous and semicrystalline polymers, linear viscoelasticity, and rheology. Selected applications of polymers in biomedical devices and microelectronics. Recommended: CHEM 33, 171, or equivalent.
3 units, Win (Frank)

CHEMENG 170. Kinetics and Reactor Design — Chemical kinetics, elementary steps, mechanisms, rate-limiting steps, and quasi-steady state approximations. Ideal isothermal and non-isothermal reactors; design principles. Multiplicity, ignition, and extinction in stirred tank reactors; limitations of thermodynamic equilibrium. Catalysis and catalytic reaction mechanisms. Prerequisites: 110, 120A, 120B.
3 units, Aut (Bent)

CHEMENG 180. Chemical Engineering Plant Design — Open to seniors in chemical engineering or by consent of instructor. Application of chemical engineering principles to the design of practical plants for the manufacture of chemicals and related materials. Topics: flow-sheet development from a conceptual design, equipment design for distillation, chemical reactions, heat transfer, pumping, and compression; estimation of capital expenditures and production costs; plant construction.
3 units, Spr (Pavone)
CHEMENG 185. Chemical Engineering Laboratory — Experimental aspects of chemical engineering science emphasizing development of communication skills. Experiments illustrating lecture subjects conducted by student groups. WIM
4 units, Aut (Frank)

CHEMENG 188. Biochemistry I — (Same as 288, BIOSCI 188/288, CHEM 188.) Metabolism. Glycolysis, gluconeogenesis, citric acid cycle, oxidative phosphorylation, pentose phosphate pathway, glycolgen metabolism, fatty acid metabolism, protein degradation and amino acid catabolism, protein translation and amino acid biosynthesis, nucleotide biosynthesis, DNA replication, recombination and repair, lipid and steroid biosynthesis, Medical consequences of impaired metabolism. Therapeutic intervention of metabolism. Prerequisite: 188/288. GER:DB-NatSci
3 units, Aut (Kohler)

CHEMENG 189. Biochemistry II — (Same as 289, BIOSCI 189/289, CHEM 189.) Metabolism. Glycolysis, gluconeogenesis, citric acid cycle, oxidative phosphorylation, pentose phosphate pathway, glycolgen metabolism, fatty acid metabolism, protein degradation and amino acid catabolism, protein translation and amino acid biosynthesis, nucleotide biosynthesis, DNA replication, recombination and repair, lipid and steroid biosynthesis, Medical consequences of impaired metabolism. Therapeutic intervention of metabolism. Prerequisite: 188/288. GER:DB-NatSci
3 units, Win (Khosla)

CHEMENG 190. Undergraduate Research in Chemical Engineering — Lab or theoretical work for undergraduate students under the direct supervision of a faculty member. Research in one of the graduate research groups or other special projects in the undergraduate chemical engineering lab. Students should consult advisers for information on available projects.
1-6 units, Aut, Win, Spr, Sum (Staff)

CHEMENG 190H. Undergraduate Honors Research in Chemical Engineering — For declared Chemical Engineering B.S. with honors majors who have obtained faculty approval for a research topic. Research proposal, written thesis, and oral presentation of thesis work.
2-5 units, Aut, Win, Spr, Sum (Staff)

PRIMARILY FOR GRADUATE STUDENTS

CHEMENG 240. Microelectronics Processing Technology — (Same as 140; see 140.)
3 units, Spr (Bao)

CHEMENG 250. Biochemical Engineering — (Same as 150; see 150.)
3 units, Aut (Swartz)

CHEMENG 250A. BioProcess Design Laboratory — (Same as 150A; see 150A.)
1 unit (Swartz) not given 2005-06

CHEMENG 260. Polymer Science and Engineering — (Same as 160; see 160.)
3 units, Win (Frank)

CHEMENG 288. Biochemistry I — (Same as 188, BIOSCI 188/288, CHEM 188; see 188.)
3 units, Aut (Kohler)

CHEMENG 289. Biochemistry II — (Same as 189, BIOSCI 189/289, CHEM 189; see 189.)
3 units, Win (Khosla)

CHEMENG 300. Applied Mathematics in the Chemical and Biological Sciences — (Enroll in CME 330.)
3 units, Aut (Shaqfeh)

CHEMENG 310A. Microscale Transport in Chemical Engineering — Transport phenomena on small-length scales appropriate to applications in microfluidics, complex fluids, and biology. The basic equations of mass, momentum, and energy, derived for incompressible fluids and simplified to the slow-flow limit. Topics: solution techniques utilizing expansions of harmonic and Green’s functions; singularity solutions; flows involving rigid particles and fluid droplets; applications to suspensions; lubrication theory for flows in confined geometries; slender body theory; and capillarity and wetting. Prerequisites: 120A,B, 300, or equivalents.
3 units, Win (Wiyatno)

3 units, Aut (Musgrave)

CHEMENG 345. Applied Spectroscopy — Development of theoretical approaches to spectroscopy, including spectroscopic transitions, transition probabilities, and selection rules. Application to photon and electron spectroscopies of the gas and solid phases. Topics: rotational spectroscopy; infrared and Raman vibrational spectroscopies; fluorescence spectroscopy; Auger, x-ray and ultraviolet photoelectron spectroscopies.
Prerequisite: CHEM 271 or course in quantum mechanics.
3 units, Win (Bent)

CHEMENG 350. Principles of Cellular Systems — Biochemistry and cell biology for engineering students with no training in biology. Chemical engineering Ph.D. students with training in biology may substitute other graduate level biology courses with consent of instructor. Recommended: undergraduate physical and organic chemistry.
3 units, Win (Kao)

CHEMENG 355. Advanced Biochemical Engineering — (Same as BIOE 355.) Quantitative biological concepts and the technological tools used to exploit the power of modern biology. How a cell interacts with and influences its environment, and how a production organism is produced and optimized. Concepts for large-scale bioprocess production, isolation, and purification. How proteins are manufactured without living cells, how biopharmaceuticals are formulated and delivered, and the regulatory requirements for drug approval and sale. Prerequisite: 350 or BIOSCI 41 or equivalent.
3 units, Spr (Swartz)

CHEMENG 442. Structure and Reactivity of Solid Surfaces — The structure of solid surfaces including experimental methods for determining the structure of single crystal surfaces. The adsorption of molecules on these surfaces including the thermodynamics of adsorption processes, surface diffusion, and the molecular structure of the adsorbates. Surface-mediated reactions or heterogeneous catalysis including catalytic mechanisms and surface kinetics.
3 units (Bent) alternate years, given 2006-07

CHEMENG 444A. Quantum Simulations of Molecules and Materials — Quantum atomic simulation of predict atomic structure, properties, reaction mechanisms, and kinetics. Review of quantum mechanics. Quantum chemical theory and electronic structure methods including Hartree Fock, configuration interaction, many body perturbation theory, and density functional theory. Property calculations: energy, forces, structure, and electronic and vibrational spectra. Students designed simulation projects involve applications to semiconductor processing, surface science, biochemistry, catalysis, polymers, environmental chemistry, and combustion. Prerequisite: undergraduate quantum mechanics.
3 units, Win (Musgrave)

CHEMENG 444B. Quantum Simulations: Materials Micro Mechanics — (Enroll in ME 444B.)
3 units (Staff) not given 2005-06

CHEMENG 450. Introduction to Biotechnology — Faculty from the schools of Medicine, Humanities and Sciences, and Engineering, and industrial speakers review the interrelated elements of modern biotechnology. Topics: life-cycle of a biotechnology company, therapeutic proteins, small molecule therapeutics, non-therapeutic protein products, small molecule therapeutics, non-therapeutic protein products, small
molecule products from biotechnology, manufacturing and formulation of therapeutic products, drug delivery systems, medical devices, diagnostics, intellectual property in biotechnology. Prerequisite: graduate student or upper-division undergraduate in sciences or engineering.

3 units, Spr (Khosla)

3 units, Spr (Schaaf)

CHEMENG 459. Frontiers in Interdisciplinary Biosciences — (Same as BIOSCI 459, CHEM 459, PSYCH 459, BIOC 459, BIOE 459.) For specialists and non-specialists. Sponsored by the Stanford BioX Program. Three seminars per quarter address scientific and technical themes related to interdisciplinary approaches in bioengineering, medicine, and the chemical, physical, and biological sciences. Leading investigators from Stanford and the world present breakthroughs and endeavors that cut across core disciplines. Pre-seminars introduce basic concepts and background for non-experts. Registered students attend all pre-seminars; others welcome. See http://www.stanford.edu/group/biox/courses/459.html. Recommended: basic mathematics, biology, chemistry, and physics.

1 unit, Aut, Win, Spr (Robertson)

CHEMENG 460. Polymer Surfaces and Interfaces — Principles of interfacial thermodynamics and polymer physics applied to polymer surfaces and interfaces. Treatments of intermolecular forces; conformational statistics of macromolecular structure; models for polymer dynamics; tethering of polymers at different interfaces; techniques for chemical modification of surfaces; methods for physical characterization of polymer surfaces and interfaces. Applications in adhesion and biocompatibility. Prerequisite: exposure to principles of polymer science or consent of instructor.

3 units (Frank) alternate years, given 2006-07

CHEMENG 462. Dynamics of Complex Liquids — The connection between the microstructural dynamics of complex liquids and their rheology such as stress-strain rate relationship, developed sequentially from non-Brownian suspensions, to colloidal suspensions, to polymer solutions and melts. Concepts of rheology, origins of stress in complex liquids, how Brownian motion can create stress, and how rheometric measurements can elucidate stress producing mechanisms in complex fluids. Microstructural and molecular models including those for dilute and concentrated polymer solutions and melts, and if time permits, liquid crystals and surfactants. For 2005-06, enroll in ME 455. Prerequisites: 300, 310A.

3 units (Schaaf) not given 2005-06

CHEMENG 463. Complex Fluids and Non-Newtonian Flows — (Enroll in ME 455.)

3 units, Spr (Schaaf)

CHEMENG 464. Polymer Chemistry — Polymer synthesis, characterization, and application. Topics include organic and kinetic aspects of polymerization, polymer characterization techniques, and structure and properties of bulk polymers for commercial applications and emerging technologies.

3 units, Aut (Bao)

CHEMENG 500. Special Topics in Protein Biotechnology — Recent developments and current research. May be repeated for credit.

1 unit, Aut, Win, Spr, Sum (Swartz)

CHEMENG 501. Special Topics in Semiconductor Processing — Recent developments and current research. May be repeated for credit.

1 unit, Aut, Win, Spr, Sum (Bent)

CHEMENG 502. Special Topics in Computational Materials Science — Recent developments and current research. May be repeated for credit.

1 unit, Aut, Win, Spr, Sum (Musgrave)

CHEMENG 503. Special Topics in Biocatalysis — Recent developments and current research. May be repeated for credit.

1 unit, Aut, Win, Spr, Sum (Khosla)

CHEMENG 504. Special Topics in Bioengineering — Recent developments and current research. May be repeated for credit.

1 unit, Aut, Win, Spr, Sum (Robertson)

CHEMENG 505. Special Topics in Microrheology — Recent developments and current research. May be repeated for credit.

1 unit, Aut, Win, Spr, Sum (Fuller)

CHEMENG 507. Special Topics in Polymer Physics and Molecular Assemblies — Recent developments and current research. May be repeated for credit.

1 unit, Aut, Win, Spr, Sum (Frank)

CHEMENG 510. Special Topics in Transport Mechanics — Recent developments and current research. May be repeated for credit.

1 unit, Aut, Win, Spr, Sum (Schaaf)

CHEMENG 512. Special Topics in Functional Genomics — Recent developments and current research. May be repeated for credit.

1 unit, Aut, Win, Spr, Sum (Kao)

CHEMENG 513. Special Topics in Functional Organic Materials for Electronic and Optical Devices — Recent developments and current research. May be repeated for credit.

1 unit, Aut, Win, Spr, Sum (Bao)

CHEMENG 600. Graduate Research in Chemical Engineering — Laboratory and theoretical work leading to partial fulfillment of requirements for an advanced degree.

1-12 units, Aut, Win, Spr, Sum (Staff)

CHEMENG 699. Colloquium — Weekly lectures by experts from academia and industry in the field of chemical engineering.

1 unit, Aut, Win, Spr (Staff)
CIVIL AND ENVIRONMENTAL ENGINEERING

Chair: Richard G. Lathy
Associate Chair: Gregory G. Deierlein
Associate Professors: Sarah L. Billington, Craig S. Criddle, Martin A. Fischer, David L. Freyberg, Lynn M. Hildemann, Mark Z. Jacobson, Alfred M. Spormann
Assistant Professors: Alexandra B. Boehm, Oliver B. Fringer, John R. Haymaker, Eduardo Miranda
Professor (Research): Martin Reinhard
Lecturers: John H. Barton II, Cathrine D. Blake, Stan Christensen, Allan Daly, Derek Fong, Renate Fruchter, Susanne D. Harms, Brad A. Jacobson, Glenn Katz, Nelson A. Koen Cohen, Mark R. Kroll, John Kunz, John A. Ristevski, Alexander P. Robertson, H. Ruth Todd, Patti J. Walters
Acting Assistant Professor: Jack W. Baker
Consulting Associate Professors:
Consulting Professors:
MAP/Ming Visiting Professor: Paul Komor

* Recalled to active duty.

Department Offices: Terman Engineering Center, Room M42
Mail Code: 94305-4020
Phone: (650) 723-3074; Fax: (650) 725-8662
Web Site: http://cee.stanford.edu

Courses in Civil and Environmental Engineering have the subject code CEE. For a complete list of subject codes, see Appendix.

At least one year of graduate study is strongly recommended for professional practice. Students who contemplate advanced study at Stanford should discuss their plans with their advisers in the junior year. The coterminal B.S.-M.S. program should be considered by students who want an integrated five-year program. Potential coterminal students in Environmental Engineering and Science should be aware that applications are considered once a year, near the beginning of Winter Quarter.

For University coterminal degree program rules and University application forms, see http://registrar.stanford.edu/publications/#Coterm.

The Department of Civil and Environmental Engineering (CEE), in collaboration with other departments of the University, offers graduate degree programs in:

- Atmosphere and Energy
- Construction Engineering and Management
- Design/Construction Integration
- Environmental and Water Studies
- Environmental Engineering and Science
- Environmental Fluid Mechanics and Hydrology
- Structural Engineering and Geomechanics
- Geomechanics
- Structural Engineering

Research work and instruction under these programs are carried out in the following facilities: Building Energy Laboratory, Environmental Fluid Mechanics Laboratory (EFML), Geotechnical Engineering Laboratory, Structural Engineering Laboratory, and water quality control research and teaching laboratories. Research in earthquake engineering is conducted in the John A. Blume Earthquake Engineering Center. Research on control of hazardous substances is coordinated within the Western Region Hazardous Substance Research Center. Research and advanced global teamwork education is conducted in the Project Based Learning (PBL) Laboratory. In collaboration with the Department of Computer Science, the Center for Integrated Facility Engineering (CIFE) employs advanced CAD, artificial intelligence, communications concepts, and information management to integrate the presently fragmented participants in the facility development process and to support design and construction automation.

PROGRAMS OF STUDY

ATMOSPHERE/ENERGY

Energy and Atmosphere are linked in two primary ways. First, fossil-fuel derived energy use contributes to air pollution and climate change. Second, atmospheric winds and solar radiation are major sources of renewable energy. Because atmospheric problems can be mitigated best by increasing the efficiency with which energy is used, optimizing the use of natural energy resources, and understanding the effects of energy technologies on the atmosphere, the areas of Energy and Atmosphere are naturally coupled together.

Students in this program receive a transcript designation of Atmosphere/Energy. Courses available include those in energy resources, indoor and outdoor air pollution, energy efficient buildings, climate change, renewable energy, weather and storm systems, energy technologies in developing countries, energy systems, and air quality management, among others.

Some of the current research in the program includes projects on wind energy distribution and statistics, indoor exposure to air pollutants, the effects of a hydrogen economy on atmospheric pollution and climate, measurements of particulate matter and vehicle exhaust, hydrogen and other fuel generation by bacteria, numerical modeling of the effects of vehicles and power plants on climate, numerical weather prediction, improving the energy efficiency of buildings, improving the links between wind farms and the transmission grid, and studying the effects of aerosol particles on UV radiation and climate, among others.

Within the department, the program links to studies of water quality, environmental biotechnology, environmental fluid mechanics, sustainable construction, green buildings, and risk management. Outside the department, it links to Earth Systems, Management Science and...
requirements for some of the required graduate courses. It emphasizes engineering and management techniques useful in planning, coordinating, and controlling the activities of diverse specialists (designers, contractors, subcontractors, and client representatives) within the unique project environment of the construction industry. By appropriate choice of elective subjects, students wishing to work for a contractor, construction management consultant, a design-build firm, or the facilities department of an owner's organization, or a construction technology firm, can design a program for their needs.

Courses offered include building systems, construction administration, construction finance and accounting, design and construction of housing, real estate development, equipment and methods, estimating, international construction, labor relations, managing human resources, planning and control techniques, productivity improvement, and project and company organizations. Additional related course work is available from other programs within the department, from other engineering departments, and from other schools in the University such as Earth Sciences and the Graduate School of Business.

The program leads to the degrees of Master of Science (M.S.), Engineer, and Ph.D. Students with undergraduate degrees in chemical, electrical, mechanical, mining, and petroleum engineering, or in architecture who do not wish to satisfy the undergraduate prerequisite courses for the M.S. in Civil and Environmental Engineering, Construction Engineering and Management, have the option of meeting the same graduate course requirements as the above and obtaining the M.S. in Engineering. Many M.S.-level graduate students and most Ph.D. candidates are supported each year through research and teaching assistantships, and through fellowships.

The program faculty and students are active participants in the Center for Integrated Facility Engineering (CIFE). In collaboration with Computer Science and other departments, CIFE conducts research on the automation, integration, and management of technology in the construction industry. The Collaboratory for Research on Global Projects (CRGP) carries out research on the special challenges of international projects in partnership with CIFE.

The program maintains close ties with the construction industry through the Stanford Construction Institute. Students participate in weekly discussions with visiting lecturers from all sectors of the U.S. construction industry.

DESIGN/CONSTRUCTION INTEGRATION

To better prepare graduates for successful careers as design and construction professionals making major contributions to integrated projects, the department offers a Master of Science (M.S.), Engineer, and Ph.D. degree field in Design/Construction Integration (DCI).

This program aims to educate design and construction professionals to understand the goals and concerns of the many other project stakeholders, and to prepare for multidisciplinary, collaborative teamwork to develop sustainable buildings and infrastructure facilities in an integrated design and construction process.

The field of Design/Construction Integration is open to applicants with backgrounds in engineering and science. Applicants should also have a background in the planning, design, or construction of facilities by virtue of previous work experience and/or their undergraduate education. Knowledge in basic subjects from the traditional areas of civil engineering is necessary for students to receive the degree and to satisfy prerequisite requirements for some of the required graduate courses.

The M.S. Degree in Design/Construction Integration requires 45 quarter units, which are normally completed in one academic year. This includes core courses in design/construction integration, structural and geotechnical engineering, and construction engineering and management, along with approved electives.

The department offers three programs related to the design and construction of facilities: Structural Engineering and Geomechanics (SEG), Construction Engineering and Management (CEM), and Design/Construction Integration (DCI).

The CEM program prepares technically qualified students for responsible engineering and management roles in all phases of the development of major constructed facilities. It emphasizes management techniques useful in organizing, planning, and controlling the activities of diverse specialists working within the unique project environment of the construction industry. The program also includes the engineering aspects of heavy, industrial, and building construction.

The DCI program prepares students for multidisciplinary collaborative teamwork in an integrated design and construction process. The program extends a student’s design or construction background with core courses in each of these areas and develops the background needed to understand the concerns and expertise of the many project stakeholders. It includes a comprehensive project-based learning experience.

Prospective students should use their intended career path as the primary criterion in selecting between these three programs. SEG best fits students planning to focus on designing facilities; CEM is for students planning to emphasize building facilities or managing teams and operations. Both of these degree options provide background for many different types of careers in design and construction, with some emphasis on preparation for working on projects using traditional forms of contracting and organization. Students planning careers with design or construction firms that emphasize design-build, EPC, or turnkey projects should consider DCI. All three of the degree options include substantial flexibility for students to tailor their program of study to career interests.

ENVIRONMENTAL AND WATER STUDIES

This program covers a broad spectrum of specialties, including environmental engineering and science, environmental fluid mechanics, environmental planning, and hydrology. Course offerings are scheduled to permit either intensive study in a single area or interrelated study between areas. Seminars provide a broad coverage of environmental problems. The programs are kept flexible to foster interaction among students and to encourage the development of individual programs suitable for a broad range of engineering and science backgrounds and career goals. The Stanford laboratories for water quality control and environmental fluid mechanics are well equipped and instrumented for advanced research and instruction.

Students with backgrounds in all areas of engineering and science who are interested in applying their specialized abilities to solving environmental and water problems are welcome. Comprehensive introductory courses in each major area of study are given to provide common understanding among those with dissimilar backgrounds. Courses from many other programs and departments both complement and supplement these course offerings. Some examples include Computer Science (numerical methods), Geological and Environmental Sciences (geostatistics, hydrogeology), Mechanical Engineering (applied math, experimental methods, fluid mechanics, heat transfer), Petroleum Engineering (reservoir engineering, well-test analysis), and Statistics (probability and statistics). The major areas of specialization in the two programs, environmental engineering and science, and environmental fluid mechanics and hydrology, are described below. Admissions to these two programs are handled separately; prospective students should clearly indicate their preference on their application by specifying one or the other area of specialization.
The Environmental Engineering and Science Program (EES) emphasizes the chemical and biological processes involved in water quality engineering, pollution treatment, remediation, and environmental protection. Course offerings include the biological, chemical, and engineering aspects of water supply; the movement and fate of pollutants in surface and ground waters, soil, and the atmosphere; hazardous substance control; molecular environmental biotechnology; and water and air pollution. Companion courses in the Environmental Fluid Mechanics and Hydrology Program (EFMH) include environmental planning and impact assessment, as well as environmental fluid mechanics, hydrology, and transport modeling. Research on hazardous substances is coordinated through the Western Region Hazardous Substance Research Center. The objective of this center, sponsored by the U.S. Environmental Protection Agency, is to promote through fundamental and applied research the development of alternative and advanced physical, chemical, and biological processes for the treatment of hazardous substances in the environment, with emphasis on groundwater contamination.

The Environmental Fluid Mechanics and Hydrology Program focuses on developing an understanding of the physical processes controlling the movement of mass, energy, and momentum in the water environment and the atmosphere. The program also considers environmental and institutional issues involved in planning water resources development projects. Environmental fluid mechanics courses address experimental methods; fluid transport and mixing processes; the fluid mechanics of stratified flows; natural flows in coastal waters, estuaries, lakes, and open channels; and turbulence and its modeling. Hydrology courses consider flow and transport in porous media, stochastic methods in both surface and subsurface hydrology, and watershed hydrology and modeling. Atmosphere-related courses deal with climate, weather, storms and air pollution and their modeling. Planning courses emphasize environmental policy implementation and sustainable water resources development. The research of this group is focused primarily in the Environmental Fluid Mechanics Laboratory, which includes the P. A. McCuen Environmental Computer Center.

STRUCTURAL ENGINEERING AND GEOMECHANICS

Structural engineering at Stanford encompasses teaching and research programs in structural design and analysis, earthquake engineering and structural dynamics, risk and reliability analysis, computational science and engineering, and geomechanics. The programs provide broad knowledge in these fields to prepare students for industrial or academic careers. Academic programs can be designed to meet the needs of students wishing to launch careers as consultants on large and small projects, designers, and engineering analysts. Students have the opportunity to balance engineering fundamentals with modern computational methods.

Structural design and analysis focuses on the conceptual and detailed design of structural systems and on computational methods for predicting the static and dynamic, linear and nonlinear responses of structures. Some courses emphasize earthquake resistant design, design with high-performance materials, and concepts for computer-based design. Related course work is available from other departments such as Computer Science, Materials Science and Engineering, and Mechanical Engineering. In collaboration with CIFE, research involving design for constructability, engineering information management, and collaborative engineering is being conducted.

Earthquake engineering and structural dynamics addresses the earthquake phenomenon, resulting ground shaking, and the behavior, analysis, and design of various types of structures under seismic and other dynamic forces. Automated structural monitoring devices and control systems, and the use of advanced materials for civil infrastructure and seismic retrofits, are part of the ongoing research activities. Advanced analytical and experimental research in earthquake engineering is conducted at the John A. Blume Earthquake Engineering Center, which houses static and dynamic testing equipment including two shaking tables.

Reliability and risk analysis focuses on advanced methods for structural safety evaluation and design, including methods for loss estimation from damage and failures of structures and lifeline systems. Course work combines background in structural analysis and design with probability theory and statistics. Research includes regional loss and damage evaluation, reliability of marine systems, seismic risk and reliability of large structural systems, and wind hazards.

Computational science and engineering emphasizes the application of modern computing methods to structural engineering and geomechanics. It draws on the disciplines of computer science, mathematics, and mechanics, and encompasses numerical structural and geotechnical analysis, including finite element analysis and boundary element methods. There is collaborative research in high performance computing with the Institute for Computational and Mathematical Engineering.

Students with primary interests in the application of the principles of applied mechanics to problems involving geologic materials have the option of enrolling in a degree program in geomechanics. This program focuses on instruction and research in theoretical soil and rock mechanics, computational methods, and analysis and design of foundations and earth structures. In addition to the program’s offerings, related courses are available in construction engineering, earth sciences, structural engineering, and the water resources program.

UNDERGRADUATE PROGRAMS

BACHELOR OF SCIENCE

The B.S. in Civil Engineering and the B.S. in Environmental Engineering are ABET accredited programs. High priority is placed on integrating research with engineering education. Four major objectives structure both degree programs:

1. To provide an understanding of engineering principles and the analytical, problem solving, design, and communication skills to continue succeeding and learning in diverse careers.
2. To prepare for successful engineering practice with a longer term perspective that takes into account new tools such as advanced information technology and biotechnology, and increasingly complex professional and societal expectations.
3. To prepare for possible graduate study in engineering or other professional fields.
4. To develop the awareness, background, and skills necessary to become responsible citizens and leaders in service to society.

Students who major in Civil Engineering or in Environmental Engineering must complete the appropriate requirements for the B.S. degree listed under Undergraduate Programs in the “School of Engineering” section of this bulletin. Elective units may be used in any way the student desires, including additional studies in civil and environmental engineering. Because the undergraduate engineering curriculum is designed to ensure breadth of study, students who intend to enter professional practice in civil or environmental engineering should plan to obtain their professional education at the graduate level.

A number of undergraduate programs at Stanford may be of interest to students seeking to specialize in environmental studies. In addition to the two majors offered within our own department, interested students should examine related programs such as Earth Systems, Geological and Environmental Sciences, Urban Studies, and Human Biology.

HONORS PROGRAM

This program leads to a B.S. with Honors in Civil Engineering or in Environmental Engineering. It is designed to encourage highly qualified students in an engineering major to undertake a more intensive study of civil and environmental engineering than is required for the normal major via a substantial, independent research project.

The program involves an in-depth research study in an area proposed to and agreed to by a Department of Civil and Environmental Engineering (CEE) faculty adviser and completion of a thesis of high quality. A written proposal for the research to be undertaken must be submitted and approved in the fourth quarter prior to graduation. At the time of application, the student must have an overall grade point average (GPA) of at least 3.3 for course work at Stanford; this GPA must be maintained to graduation. The thesis is supervised by a CEE faculty adviser and must involve input from the School of Engineering Writing Program by means of ENGR 102S or its equivalent. The written thesis must be approved by the thesis adviser.
Students are encouraged to present their results in a seminar for faculty and other students. Up to 10 units of CEE 199H, Undergraduate Honors Research in Civil and Environmental Engineering, may be taken to support the research and writing (not to duplicate ENGR 102S). These units are beyond the normal Civil Engineering or Environmental Engineering program requirements.

MINOR IN CIVIL ENGINEERING OR ENVIRONMENTAL ENGINEERING

The department offers B.S. minor programs in both Civil Engineering and Environmental Engineering. Departmental expertise and undergraduate course offerings are available in the areas of Architectural Design, Construction Engineering, Construction Management, Structural/Geotechnical Engineering, Environmental Engineering and Science, Environmental Fluid Mechanics and Hydrology, and Atmosphere/Energy. The courses required for the minors typically have prerequisites; students need to check what these are for their choice of minor. Students should recognize that minors are not ABET-accredited programs. Further details on minors are provided in the “School of Engineering” section of this Bulletin.

GRADUATE PROGRAMS

The University requirements governing the M.S., Engineer, and Ph.D. are described in the “Graduate Degrees” section of this bulletin.

Admission — Applications require online submission of the application form and statement of purpose, followed by three letters of recommendation, results of the General Section of the Graduate Record Examination, and transcripts of courses taken at colleges and universities. See http://gradmissions.stanford.edu/. Policies for each of the department’s programs are available by referring to http://cee.stanford.edu.

Successful applicants are advised as to the degree and program for which they are admitted. If students wish to shift from one CEE program to another after being accepted, an application for the intradepartmental change must be filed within the department; they will then be advised whether the change is possible. If, after enrollment at Stanford, students wish to continue toward a degree beyond the one for which they were originally admitted, a written application must be made to the Department of Civil and Environmental Engineering.

Financial Assistance — The department maintains a continuing program of financial aid for graduate students. Applications for financial aid and assistantships should be filed by December 13, 2005; it is important that Graduate Record Examination scores be available at that time. Applicants not requesting financial assistance have until March 14, 2006 for the online submission.

Teaching assistantships carry a salary for as much as one-half time work to assist with course offerings during the academic year. Up to half-time research assistantships also are available. Engineer and Ph.D. candidates may be allowed to use research results as a basis for the thesis or dissertation. Assistantships and other basic support may be supplemented by fellowship and scholarship awards or loans. Continued support is generally provided for further study toward the Engineer or Ph.D. degree based on the student’s performance, the availability of research funds, and requisite staffing of current projects.

MASTER OF SCIENCE

The following programs are available leading to the M.S. degree in Civil and Environmental Engineering: Atmosphere/Energy, Construction Engineering and Management, Design/Construction Integration, Environmental Engineering and Science, Environmental Fluid Mechanics and Hydrology, Geomechanics, and Structural Engineering.

Students admitted to graduate study with a B.S. in Civil Engineering, or equivalent, from an accredited curriculum can satisfy the requirements for the M.S. degree in Civil and Environmental Engineering by completing a minimum of 45 units beyond the B.S. All 45 units must be taken at Stanford. A minimum 2.75 grade point average (GPA) is required for candidates to be recommended for the M.S. degree. No thesis is required.

The program of study must be approved by the faculty of the department and should include at least 45 units of courses in engineering, mathematics, science, and related fields unless it can be shown that other work is pertinent to the student’s objectives. Additional program area requirements are available from the department’s student services office (Terman M-42).

Candidates for the M.S. in Civil and Environmental Engineering who do not have a B.S. in Civil Engineering may, in addition to the above, be required to complete those undergraduate courses deemed important to their graduate programs. In such cases, more than three quarters is often required to obtain the degree. Students may, with the approval of their academic adviser, select a program that satisfies the requirements for the M.S. in Engineering.

Forms required for the degree may be secured from the department’s office of student services.

ENGINEER

A student with an M.S. in Civil Engineering may satisfy the requirements of the degree of Engineer in Civil and Environmental Engineering by completing 45 unduplicated course work and research units for the degree and minimum residency of 90 total units. Engineer candidates must submit an acceptable thesis (12 to 15 units) and maintain a minimum GPA of 3.0. The program of study must be approved by a faculty member in the department.

This degree is recommended for those desiring additional graduate education, especially those planning a career in professional practice. The thesis normally should be started in the first quarter of graduate study after the M.S. degree. Programs are offered in the fields of specialization mentioned for the M.S. degree. The Engineer thesis topic, for students who will continue study toward a CEE Ph.D., must be significantly different from their doctoral research.

DOCTOR OF PHILOSOPHY

The Ph.D. is offered under the general regulations of the University as set forth in the “Graduate Degrees” section of this bulletin. This degree is recommended for those who expect to engage in a professional career in research, teaching, or technical work of an advanced nature. The Ph.D. program is rigorous and should be undertaken only by students with ability for independent work. It requires a total of 135 units of graduate study, at least two years of which must be at Stanford with a minimum GPA of 3.0 in post-M.S. course work. Experience has shown that few students complete the Ph.D. within the minimum residence period. Prospective doctoral students should anticipate the possibility of at least one extra year. All candidates for the Ph.D. degree are required to complete CEE 200 in conjunction with a one-quarter teaching assistantship/course assistantship to gain training and instructional experience. Further information on Ph.D. requirements and regulations is found in the department handbook.

The first year of graduate study can be represented by the M.S. program described above. The second year is devoted partly to additional graduate courses and partly to preliminary work toward a dissertation. The third and subsequent years are applied to further course work and to the completion of an acceptable dissertation.

The program of study is arranged by the prospective candidate at the beginning of the second year with the advice of a faculty committee whose members are nearest in the field of interest to that of the student. The chair of the committee serves as the student’s pro tem adviser until such time as a member of the faculty has agreed to direct the dissertation research. Insofar as possible, the program of study is adapted to the interests and needs of the student within the framework of the requirements of the department and the University.

In the second year of graduate study, the student is expected to pass the department’s General Qualifying Examination (GQE) to be admitted to candidacy for the doctoral degree. The purpose of the GQE is to ensure that a student is adequately prepared to undertake doctoral research and has a well planned research topic. The exam may take the form of (1) a written and/or oral general examination of the candidate’s major field, (2) a presentation and defense of the candidate’s doctoral research dissertation proposal, or (3) a combination research proposal and general examination.
The GQE is administered by an advisory committee consisting of at least three Stanford faculty members, including a chair who is a faculty member in Civil and Environmental Engineering. All members are normally on the Stanford Academic Council. A petition for appointment of one advisory committee member who is not on the Academic Council may be made if the proposed person contributes an area of expertise that is not readily available from the faculty. Such petitions are subject to approval by the department chair. When the primary research adviser is not a member of the CEE Academic Council faculty the committee must consist of four examiners, with two members from the CEE department.

PH.D. MINOR

A Ph.D. minor is a program outside a major department. Requirements for a minor are established by the minor department. Acceptance of the minor as part of the total Ph.D. program is determined by the major department. Application for Ph.D. minor must be approved by both the major and the minor department, and the minor department may be represented at the University oral examination.

A student desiring a Ph.D. minor in Civil and Environmental Engineering (CEE) must have a minor program advisor who is a regular CEE faculty member in the program of the designated subfield. This advisor must be a member of the student’s University oral examination committee and the reading committee for the doctoral dissertation.

The program must include at least 20 units of graduate-level course work (that is, courses numbered 200 or above, excluding special studies and thesis) in CEE completed at Stanford University. The list of courses must form a coherent program and must be approved by the minor program advisor and the CEE chair. A minimum GPA of at least 3.0 must be achieved in these courses.

HONORS COOPERATIVE PROGRAM

Some of the department’s graduate students participate in the Honors Cooperative Program (HCP), which makes it possible for academically qualified engineers and scientists in industry to be part-time graduate students in Civil and Environmental Engineering while continuing professional employment. Prospective HCP students follow the same admissions process and must meet the same admissions requirements as full-time graduate students. For more information regarding the Honors Cooperative Program, see the “School of Engineering” section of this bulletin.

COURSES

WIM indicates that the course satisfies the Writing in the Major requirements. (AU) indicates that the course is subject to the University Activity Unit limitations for undergraduates (8 units maximum).

UNDERGRADUATE

CEE 31. Accessing Architecture Through Drawing — Drawing architecture provides a deeper understanding of the intricacies and subtleties that characterize contemporary buildings. How to dissect buildings and appreciate the formal elements of a building, including scale, shape, proportion, colors and materials, and the problem solving reflected in the design. Students construct conventional architectural drawings, such as plans, elevations, and perspectives. GER:DB-EngrAppSci

3 units, Win (Barton)

4 units, Aut (Walters)

CEE 40. 1906 Earthquake Centennial Seminar — (Same as GEOPHYS 40.) Lecture series over Autumn and Winter quarters. The 1906 San Francisco earthquake, its effects on San Francisco and the Bay Area, and ensuing advances in earthquake science, engineering, and risk mitigation. Preference to sophomores. How to turn failures into successes; cases include minor personal failures and devastating engineering disasters. How personalities and willingness to take risks influence the way students approach problems. Field trips, case studies, and guest speakers applied to students’ day-to-day interactions and future careers. Goal is to redefine what it means to fail. GER:DB-EngrAppSci

4 units, Spr (Clough)

CEE 51Q. Pangea, Germs, and Arsenic — Stanford Introductory Seminar. Preference to sophomores. The relationship between the geosphere and biosphere. How geological processes affect biological evolution and human health; how chemical, biological, and geological processes have altered the environment; and how anthropogenic activities affect the environment and human health. Students debate a current environmental health issue such as how the Environmental Protection Agency sets the maximum arsenic level in drinking water. GER:DB-NatSci

3 units, Win (Brown, Spormann, Ernst)

CEE 63. Weather and Storms — (Graduate students register for 263C.) Daily and severe weather, and global climate. Topics: structure and composition of the atmosphere, fog and cloud formation, rainfall, local winds, global circulation, jet streams, high and low pressure systems, inversions, el Niño, la Niña, atmosphere-omega interactions, fronts, cyclones, thunderstorms, lightning, tornadoes, hurricanes, pollutant transport, global climate, and atmospheric optics. GER:DB-NatSci

3 units, Aut (M. Jacobson)

CEE 64. Air Pollution: From Urban Smog to Global Change — (Graduate students register for 264D.) Survey of urban through global-scale air pollution. Topics: the evolution of the earth’s atmosphere, indoor air pollution, urban smog formation, effects of exposure to air pollution, visibility, acid rain, global climate change, stratospheric ozone reduction, Antarctic ozone destruction, air pollution transport across political boundaries, the effects of meteorology on air pollution, and the effects of air pollution and stratospheric ozone on human exposure to ultraviolet radiation. GER:DB-NatSci

3 units, Spr (M. Jacobson)

CEE 70. Environmental Science and Technology — Introduction to environmental quality and the technical background necessary for understanding environmental issues, controlling environmental degradation, and preserving air and water quality. Material balance concepts for tracking substances in the environmental and engineering systems. Three-day field project to quantify the flux of pollutants from a local watershed outlet to the ocean or bay. Students may enroll in 70A concurrently. GER:DB-EngrAppSci

3 units, Aut (Boehm)

CEE 70A. Environmental Science and Technology: Current Events — Corequisite: 70

1 unit, Aut (Boehm)

CEE 80N. The Art of Structural Engineering — Stanford Introductory Seminar. Preference to freshmen. The history of modern bridges, buildings, and other large-scale structures. Principles of structural engineering through case studies. Analysis of structural form with scientific, social, and symbolic considerations. Field trip to Bay Area landmark and hands-on exercises including building and testing a model bridge. How modern structures stand, the social context in which they are built, and the art of structural engineering. Students from all backgrounds welcome. GER:DB-EngrAppSci

3 units, Win (Billington)

CEE 99. Environmental Issues Seminar — May be repeated for credit.

1 unit, Aut (Staff), Win (Kitsanidis), Spr (Staff)

CEE 100. Managing Sustainable Building Projects — The facility life cycle and project delivery organization including cost, project schedule, organization, and sustainability. Techniques for organizing and executing civil engineering projects from conception to completion. Objectives such as scope, quality, time, safety, constructability, and sustainability. Roles, responsibilities, and risks for project participants including owners,
4 units, Aut (Fischer)

CEE 101A. Mechanics of Materials—Introduction to beam and column theory. Normal stress and strain in beams under various loading conditions; shear stress and shear flow; deflections of determinate and indeterminate beams; analysis of column buckling; structural loads in design; strength and serviceability criteria. Lab experiments. Prerequisites: ENGR 14. GER:DB-EngrAppSci
4 units, Win (Staff)

CEE 101B. Mechanics of Fluids—Physical properties of fluids and their effect on flow behavior; equations of motion for incompressible ideal flow, including the special case of hydrostatics; continuity, energy, and momentum principles; control volume analysis; laminar and turbulent flows; internal and external flows in specific engineering applications including pipes, open channels, estuaries, and wind turbines. Prerequisites: PHYSICS 41 (formerly 53), MATH 51. GER:DB-EngrAppSci
4 units, Spr (Roseff)

3-4 units, Aut (Borja)

CEE 101D. Mathematical Laboratory Applications in Civil and Environmental Engineering—(Graduate students register for 201D.) Use of commercial professional software in the design and analysis of civil and environmental engineering systems. MATLAB 5 is applied to relevant problems and issues that students encounter in subsequent courses and in engineering practice. Limited enrollment.
2 units, Aut (Kitanidis)

CEE 102. Legal Aspects of Engineering and Construction—Introduction to the U.S. legal system as it applies to civil engineering and construction. Fundamental concepts of contract and tort law, claims, risk management, business formation and licensing, agency, insurance and bonding, and real property.
3 units, Win (London)

CEE 111. 3D Modeling Plus Analyses—(Graduate students register for 211.) Modeling, visualization, analysis, and graphical communication of civil engineering projects. Use of 3D models in laser scanning, rendering, animation, daylight, energy, cost, structural, and lighting analysis, and computer controlled fabrication. Underlying computer representations; applications of 3D models and related analyses in design, construction, and building operations. Guest lectures, lab exercises, class project. Prerequisite: 135 or CAD experience. GER:DB-EngrAppSci
3-4 units, Win (Haymaker)

CEE 115. 3D Goals and Methods for the Sustainable Design of Buildings—(Graduate students register for 215.) Definitions, metrics and design, and analysis methods to enhance economic, ecological, and equity sustainability of projects. Water efficiency, energy and atmosphere, materials and resources, indoor environmental quality, and other methods and goals for sustainability. Preparation for LEED accreditation exam. Guest lecturers.
3-4 units, Spr (Haymaker)

A: 3 units, Win, B: 2 units, Spr (Fruchter)

CEE 124. Sustainable Development Studio—(Graduate students register for 224A.) Project-based. Sustainable design, development, use and evolution of buildings; connections of building systems to broader resource systems. Areas include architecture, structure, materials, energy, water, air, landscape, and food. Projects use cradle-to-cradle approach focusing on technical and biological nutrient cycles and information and knowledge generation and organization. May be repeated for credit.
1-5 units, Aut, Win, Spr (Staff)

CEE 130. Introduction to Architectural Design: 3-D Modeling, Methodology, and Process—Incrementally staged design projects investigate form, space, and conceptual strategies. Making 3-D models. Students prepare graphic and written account of their personal design process and intentions. Final project applies systems and strategies to the design of a simple building. Limited enrollment.
4 units, Aut, Win (Walters, Loomis)

CEE 131. Architectural Design Process—Issues in the architectural profession including design theory, professional practice concerns, site analysis, and design process. Building/landscape design case study project in model form and using architectural graphics exercises.
4 units, Spr (Blake, Todd)

CEE 132. Interplay of Architecture and Engineering—The range of requirements that drive a building’s design including architecture, engineering, constructability, building codes, and budget. Case studies illustrate how structural and mechanical systems are integrated into building types including residential, office, commercial, and retail. In-class studio work.
4 units, Spr (Katz)

CEE 134. The Architecture of the House—Studio course on the design of the single family home. Emphasis is on identification and review of the typical house form and its elements. Architectural form in the context of local planning regulations, space making fundamentals, structure, concept, and sustainability. Students work in drawings, model, and computer as appropriate.
4 units, Aut (Barton)

CEE 135. Building Modeling Workshop—(Graduate students register for 235.) Computer-aided drafting, modeling, and rendering techniques. Capabilities and applications of architectural design tools such as AutoCAD, Revit, Viz, and Photoshop in four intensive training sessions. Supervised work on computers. Assignments apply these tools to build CAD models of familiar building projects. Limited enrollment.
2 units, Aut (Katz)

CEE 136. Green Architecture—(Graduate students register for 236.) Goal is to develop a working definition of ecologically sustainable design and strategies for greening the built environment. Readings, discussion, and research for an architectural design studio which explores the student and faculty inspired green dorm initiative. Limited enrollment. Prerequisites: 31(Q) or 130, or environmental engineering course work.
GER:DB-EngrAppSci
4 units, Win (B. Jacobson)

CEE 138. Design Theory and Process in Practice—The thought process of a designer. The nature of a designer’s tasks; tools and methods to address these tasks; and how outcomes are represented. Philosophies of designing, difficulties in the process, and the work of specific designers. Means of recording outcomes applicable to the student’s design work.
4 units, Spr (Martin)

CEE 139. Design Communication Methods—Students present designs completed in other studio courses to communicate design intentions and other aspects of their work. Instruction in photography; preparation of a design portfolio; and short essays that characterize portfolio contents. Oral presentation workshops offered through the Center for Teaching and Learning. Limited enrollment with preference to students in CEE, Urban Studies, and Art. Prerequisites: two Art or Architecture studio courses, or consent of instructor.
3 units, Spr (Barton)

CEE 140. Field Surveying Laboratory—Friday afternoon laboratory
provides practical surveying experience. At least five additional morning classes scheduled to prepare for the afternoon sessions. Hands-on operation of common traditional field survey tools with an introduction to the newest generation of digital measuring, positioning, and mapping tools that are emerging as modern standards. Emphasis is on the concept of using the data collected in the field as the basis for subsequent engineering and economic decisions. GER:DB-EngrAppSci

3 units, Spr (Parker, Ristevski)

CEE 141. Project for ASCE: Design and Construction of Steel Bridge—Design, construction, and testing of steel bridge; selection of materials and construction methods; participation in regional competition.

1 unit, Aut, Win, Spr (Staff)

CEE 142A. Sustainable Development—(Graduate students register for 242A.) How ecological and social equity benefits and costs can be measured in economic terms, and how tradeoffs among these can be managed. Sustainability in the built environment, and frameworks to negotiate differences in multiparty processes. Case studies, negotiation simulations, group project.

3 units, Win (Levitt, Christensen)

CEE 143. Virtual Design and Construction—(Graduate students register for 243.) Computer-based models in building design and construction. Virtual design and construction (VDC) is the use of multidisciplinary performance models of design-construction projects, including the product (facilities), work processes, organization of the design-construction-operation team, and economic impact (model of both cost and value of capital investments) in order to support business objectives. Successful class participation may allow students the opportunity for a 4-day mini-internship at an A/E/C company over Spring break. Recommended: 241, 242.

3-4 units, Win (Kunc)

CEE 147. Cases in Personality, Leadership, and Negotiation—(Graduate students register for 247.) Case studies target personality issues, risk willingness, and life skills essential for real world success. Personality and thinking styles of the student. Failures, successes, and risk willingness in individual and group tasks based on the professor’s long experience as small business owner and construction engineer. Required full afternoon field trips to local sites. Application required; mandatory first class attendance. No auditors.

3 units, Spr (Clough)

CEE 148. Design and Construction of Affordable Housing—Planning, design, engineering, and construction in the development of affordable housing. Topics: the socioeconomic context of affordable housing; stages in property development; issues in design; types of structures, methods, and materials used in housing construction; and property management. Students interact with non-profit housing developers, city planning officials, and architects. Two Saturday field trips to affordable housing developments. GER:DB-EngrAppSci

3-4 units, Win (Staff)

CEE 151. Negotiation—(Graduate students register for 251; same as MS&E 285, ME 207.) Negotiation styles and processes to help conduct and review negotiations. Workshop format integrating intellectual and experiential learning. Exercises, live and field examples, individual and small group reviews. Application required before first day of class; see http://www.stanford.edu/class/msande285/. Enrollment limited to 50.

3 units, Aut, Spr (Christensen)

CEE 154. Cases in Estimating Costs—(Graduate students register for 254.) Students participate in bidding contests requiring cost determination in competitive markets. Monetary forces driving the construction industry as general principles applicable to any competitive business. Cases based on professor’s long experience as small business owner and construction engineer. Field trips to local sites. Mandatory first class attendance. GER:DB-EngrAppSci

3 units, Aut (Clough)

3-4 units, Spr (Daly)

CEE 156A. Building System Design Experience—Design of the heating, ventilating, and air conditioning system for a commercial building project that is shared with 181A/B. Types of design constraints. Corequisite: 156.

1 unit, Spr (Daly)

CEE 160. Mechanics of Fluids Laboratory—Lab experiments/demonstrations illustrate conservation principles and flows of real fluids. Corequisite: 101B.

2 units, Spr (Monismith)

CEE 161A. Rivers, Streams, and Canals—(Graduate students register for 264A.) The movement of water through natural and engineered channels, streams, and rivers. Equations and theory (mass, momentum, and energy equations) for steady and unsteady descriptions of the flow. Design of flood-control and canal systems. Flow controls such as weirs and sluice gates; gradually varied flow; Saint-Venant equations and flood waves; and method of characteristics. Open channel flow laboratory experiments: controls such as weirs and gates, gradually varied flow, and waves. Students taking lab section register for 4 units. Prerequisites: 101B, 160. GER:DB-EngrAppSci

3-4 units, Aut (Fong)

CEE 162. Modeling and Simulation for Civil and Environmental Engineers—(Graduate students register for 262C.) Introduction to mathematical and computational methods for modeling and simulation, and the use of Matlab for topics including predator-prey problems, buckling, transport and mixing, wave modeling, flow reactors, and traffic flow. Prerequisites: CME 102 and CME 104, or equivalents.

3 units, Spr (Fringer)

CEE 164. Introduction to Physical Oceanography—(Graduate students register for 262D; same as EARTHSYS 164.) The dynamic basis of oceanography. Topics: physical environment; conservation equations for salt, heat, and momentum; geostrophic flows; wind-driven flows; the Gulf Stream; equatorial dynamics and ENSO; thermohaline circulation of the deep oceans; and tides. Prerequisite: PHYSICS 41 (formerly 53). GER:DB-NatSci

4 units, Win (Fong)

CEE 166A. Watersheds and Wetlands—(Graduate students register for 266A.) Introduction to the occurrence and movement of water in the natural environment and its role in creating and maintaining terrestrial, wetland, and aquatic habitat. Hydrologic processes, including precipitation, evaporation, transpiration, snowmelt, infiltration, subsurface flow, runoff, and streamflow. Rivers and lakes, springs and swamps. Emphasis is on observation and measurement, data analysis, modeling, and prediction. Prerequisite: 101B or equivalent. GER:DB-EngrAppSci

3 units, Win (Fong)

CEE 166B. Floods and Droughts, Dams and Aqueducts—(Graduate students register for 266B.) Sociotechnical systems associated with human use of water as a resource and the hazards posed by too much or too little water. Potable and non-potable water use and conservation. Irrigation, hydroelectric power generation, rural and urban water supply systems, storm water management, flood damage mitigation, and water law and institutions. Emphasis is on engineering design. Prerequisite: 166A or equivalent. GER:DB-EngrAppSci

3 units, Win (Fong)

CEE 166D. Water Resources and Water Hazards Field Trips—(Graduate students register for 266D.) Introduction to water use and water hazards via weekly field trips to local and regional water resources facilities (dams, reservoirs, fish ladders and hatcheries, pumping plants, aqueducts, hydropower plants, and irrigation systems) and flood damage
mitigation facilities (storm water detention ponds, channel modifications, flood control dams, and reservoirs). Each trip preceded by an orientation lecture.

2 units, Win (Freyberg)

CEE 169. Environmental and Water Resources Engineering Design —Application of fluid mechanics, hydrology, water resources, environmental sciences, and engineering economy fundamentals to the design of a system addressing a complex problem of water in the natural and constructed environment. Problem changes each year, generally drawn from a challenge confronting the University or a local community. Student teams prepare proposals, progress reports, oral presentations, and a final design report. Prerequisite: senior in Civil Engineering or Environmental Engineering; 166B.

3 units, Win (Ortolano)

CEE 171. Environmental Planning Methods —For juniors and seniors. Use of microeconomics and mathematical optimization theory in the design of environmental regulatory programs; tradeoffs between equity and efficiency in designing regulations; techniques for predicting visual, noise, and traffic impacts in environmental impact assessments. Prerequisites: MATH 51. Recommended: 70. GER:DB-EngrAppSci

3 units, Win (Hildemann)

CEE 172. Air Quality Management —Quantitative introduction to the engineering methods used to study and seek solutions to current air quality problems. Topics: global atmospheric changes, urban sources of air pollution, indoor air quality problems, design and efficiencies of pollution control devices, and engineering strategies for managing air quality. Prerequisites: 70, MATH 51. GER:DB-EngrAppSci

3 units, Win (Hildemann)

CEE 172A. Indoor Air Quality —(Graduate students register for 278C.) Factors affecting the levels of air pollutants in the built indoor environment. The influence of ventilation, office equipment, floor coverings, furnishings, cleaning practices, and human activities on air quality including carbon dioxide, VOCs, resuspended dust, and airborne molds and fungi. Recommended: 172 or 278A.

2-3 units, Spr (Hildemann)

CEE 173A. Energy Resources —(Graduate students register for 207A; same as EARTHSYS 103.) Overview of oil, natural gas, coal, nuclear, hydro, solar, geothermal, biomass, wind, and ocean energy resources in terms of supply, distribution, recovery and conversion, environmental impacts, economics, policy, and technology. The opportunities for energy efficiency, electric power basics, the changing role of electric utilities, transportation basics, and energy use in developing countries. Field trips. Recommended: CEE 70. GER:DB-EngrAppSci

4-5 units, Aut (Woodward)

CEE 173B. The Coming Energy Revolution —(Graduate students register for 207B.) The forces driving an energy revolution: environmental pressures; global, social, and economic revolution; and technological change. Assessment of evolution versus revolution, developed versus developing countries, transportation, electric power, resource development and extraction, end use technologies, deregulation, privatization and globalization, barriers to change, and the mechanisms to overcome them. Enrollment limited to 15. Prerequisite: 173A. GER:DB-EngrAppSci

4 units (Woodward) alternate years, given 2006-07

CEE 173P. Renewable Energy Policies and Markets —(Graduate students register for 273P) How renewable energy technologies move from the laboratory to widespread adoption; the influence of public policy. How utilities, investors, government, and other stakeholders can promote or stymie new on-grid renewables. Case studies from the U.S. and the EU. Recommended: 173A.

3 units, Win (Komor)

CEE 175. Environmental Economics and Policy —(Enroll in ECON 155, EARTHSYS 112.)

5 units, Spr (Gouldner)
green water for a green dorm. Enrollment limited; preference to seniors in Civil and Environmental Engineering.
5 units (Robertson) not given 2005-06

4 units, Aut (Kiremidjian), Spr (Staff)

CEE 181. Design of Steel Structures — Concepts of the design of steel structures with a load and resistance factor design (LRFD) approach; types of loading; structural systems; design of tension members, compression members, beams, beam-columns, and connections; and design of trusses and frames. Prerequisite: 180. Corequisite: 181A. GER:DB-EngrAppSci
3 units, Win (Deierlein)

CEE 181A. Building Design Experience: Steel Structures — Design alternatives through conceptual design; exogenous constraints and execution of one design alternative through design development, using steel structural systems. Prerequisite: 183 or graduate standing. Corequisite: 181.
1 unit, Win (Deierlein)

CEE 182. Design of Reinforced Concrete Structures — Properties of concrete and reinforcing steel; behavior of structural elements subject to bending moments, shear forces, torsion, axial loads, and combined actions; design of beams, slabs, columns and footings; strength design and serviceability requirements; design of simple structural systems for buildings. Prerequisite: 180. Corequisite: 182A. GER:DB-EngrAppSci
3 units, Spr (Krawinkler)

CEE 182A. Building Design Experience: Reinforced Concrete Structure — Design alternatives through conceptual design and exogenous constraints. Execution of a design alternative through development using reinforced concrete structural systems. Prerequisite: 183 or graduate standing. Corequisite for undergraduates: 182
1 unit, Spr (Krawinkler)

CEE 183. Introduction to Building Design — Scope of a building design experience; owner, architectural, and MEP constraints; regulatory and social considerations; foundation considerations; structural loading and load paths; thermal loading and heat paths; constructability issues; and project processes for design and construction. Pre- or corequisites: 101A, 180.
2 units, Aut (Krawinkler)

CEE 190. Near-Surface Geophysics — (Enroll in GEOPHYS 190.)
3 units, Spr (Knight)

CEE 195. Structural Geology and Rock Mechanics — (Same as GES 111.) Combines quantitative field data with geometric, conceptual, and physical models. The evolution of the Earth’s crust, mitigation of geologic hazards, and flow of fluids in groundwater aquifers and hydrocarbon reservoirs. Data sets from surveying and mapping campaigns employing lab-based laser scanning, field-based total stations, airborne laser swath mapping, satellite global positioning system, and 3D seismic reflection surveys. Data described using differential geometry and structures modeled using continuum mechanics to address origins and interpretations of geological structures. Introduction to MATLAB. Prerequisites: GES 1, MATH 51, 52. GER:DB-NatSci
3 units, Win (Pollard)

CEE 196. Engineering Geology Practice — (Same as GES 115.) The application of geologic fundamentals to the planning and design of civil engineering projects. Field exercises and case studies emphasize the impact of site geology on the planning, design, and construction of civil works such as buildings, foundations, transportation facilities, excavations, tunnels and underground storage space, and water supply facilities. Topics: Quaternary history and tectonics, formation and physical properties of surficial deposits, site investigation techniques, geologic hazards, and professional ethics. Prerequisite: GES 1 or consent of instructor. GER:DB-NatSci
3 units (Holzer) alternate years, given 2006-07

CEE 197. Professional Development Seminar — Weekly presentations by practicing engineers on topics relevant to students planning to enter the engineering profession. Environmental, structural, and construction perspectives.
1 unit, Win (Staff)

CEE 198. Directed Reading or Special Studies in Civil Engineering — Written report or oral presentation required. Students must obtain a faculty sponsor.
2-3 units, Aut, Win, Spr, Sum (Staff)

CEE 199. Undergraduate Research in Civil and Environmental Engineering — Written report or oral presentation required. Students must obtain a faculty sponsor.
2-3 units, Aut, Win, Spr, Sum (Staff)

CEE 199A. Special Projects in Architecture — Faculty-directed study or internship. May be repeated for credit. Prerequisite: consent of instructor.
1-4 units, Aut, Win, Spr (Walters)

CEE 199B. Directed Studies in Architecture — Projects may include studio-mentoring activities, directed reading and writing on topics in the history and theory of architectural design, or investigations into design methodologies.
2-4 units, Aut, Win, Spr (Staff)

CEE 199H. Undergraduate Honors Thesis — For students who have declared the Civil Engineering B.S. honors major and have obtained approval of a topic for research under the guidance of a CEE faculty adviser. Letter grade only. Written thesis or oral presentation required.
2-3 units, Aut, Win, Spr, Sum (Staff)

PRIMARILY FOR GRADUATE STUDENTS

CEE 200A,B,C. Teaching of Civil and Environmental Engineering — Required of CEE Ph.D. students. Strategies for effective teaching and introduction to engineering pedagogy. Topics: problem solving techniques and learning styles, individual and group instruction, the role of TAs, balancing other demands, grading. Teaching exercises. Register for quarter of teaching assistantship. May be repeated for credit.
1 unit, A: Aut, B: Win, C: Spr (Staff)

1-3 units, Spr (Prasad)

3-4 units, Aut (Staff)

3-4 units (Staff) not given 2005-06
3-4 units, Spr (Billington)

CEE 207A. Energy Resources—(Undergraduates register for 173A; see 173A; same as EARTHSYS 103.)
4-5 units, Aut (Woodward)

CEE 207B. The Coming Energy Revolution—(Undergraduates register for 173B; see 173B.)
4 units (Woodward) alternate years, given 2006-07

CEE 207K. Electricity Futures—What should a future electricity system look like; how to get there? Roles for renewables, efficiency, and distributed generation. Limitations of rational planning methods such as integrated resource planning. Implications of system restructuring and competition for technology choices. Incorporating climate change into electricity generation technology decisions. Prerequisite: 173P.
3 units, Spr (Komor)

CEE 211. 3D Modeling Plus Analyses—(Undergraduates register for 111; see 111.)
3-4 units, Win (Haymaker)

CEE 215. 3D Goals and Methods for the Sustainable Design of Buildings—(Undergraduates register for 115; see 115.)
3-4 units, Spr (Haymaker)

CEE 222A. Computer Integrated Architecture/Engineering/Construction (A/E/C)—(Undergraduates serve as apprentices, register for 122A.) Crossdisciplinary, collaborative, geographically distributed, project-based, teamwork environment. Round table A/E/C panel discussions, lectures, and labs on collaborative technologies provide a global perspective of the A/E/C industry and cutting edge information technologies. Students exercise theoretical discipline knowledge in architecture, structural, engineering, construction management, and the information technologies in a multidisciplinary context focusing on the concept development phase of a comprehensive building project.
3 units, Win (Frachter)

CEE 222B. Computer Integrated A/E/C—(Undergraduates serve as apprentices, register for 122B.) Comprehensive team project, including project development and documentation, and final project presentation of product and process. Design and construction alternatives are subject to examination by rapid computational prototyping, concurrent multidisciplinary evaluation, and trade-off analysis. Prerequisite 222A.
2 units, Spr (Frachter)

CEE 223A. Design and Construction of Steel Structures—Using a 15-story steel building project, students analyze the implications of design decisions on the fabrication and erection of steel structures. Emphasis is on integration of design and construction of different types of steel structures. The implications on structural performance, cost and construction schedule, and evaluation of design alternatives. Economic considerations. Other topics include planning for lead times, floor systems and lateral load resisting systems, composite floor systems, innovative lateral load resisting systems, economics of steel structures, design and construction of steel connections, implication of design decisions related to welding and bolting. Prerequisite: 181 or equivalent.
3 units, Win (Miranda)

3 units, Aut (Miranda)

CEE 224. Preconstruction Planning for Design/Construction Integration—Marketing, planning commission, fire and building codes, team building, schedule development, and budget development using the design construction integration approach. Projects studied include entertainment, museums, educational, high-tech, semi-conductor, housing, and biotech.
3 units, Win (Staff)

CEE 224A. Sustainable Development Studio—(Undergraduates register for 124; see 124.)
1-5 units, Aut, Win, Spr (Staff)

CEE 235. Building Modeling Workshop—(Undergraduates register for 135; see 135.)
2 units, Aut (Katz)

CEE 236. Green Architecture—(Undergraduates register for 136; see 136.)
4 units, Win (B. Jacobson)

CEE 237. Introduction to Biotechnology—(Enroll in CHEMENG 450.)
3 units, Spr (Khosla)

CEE 240. Analysis and Design of Construction Operations—Planning and management of construction work at the field operations level. Data collection, analysis, modeling, simulation, and design. Emphasis is on work methods development, productivity, safety, total quality management, and waste reduction. Methods include 4D modeling, first run studies, planning, and production metrics. Field work.
3 units, Spr (Fischer)

CEE 241. Techniques of Project Planning and Control—Production management concepts including planning and control at the firm and project level, and current and future project information technologies. Cost estimating at conceptual, schematic, detailed, and bid stages; measurement and pricing of work; work breakdown structures; scheduling techniques, including CPM, PERT, and LOB; resource allocation; supply chain models; treatment of uncertainty; buffers; CONWIP; WBS; virtual design and construction, electronic integration of time and cost control, and 4D modeling. Group term project including technical report and presentation. Prerequisite: 100 or equivalent, or consent of instructor.
3-4 units, Win (Fischer)

CEE 242. Organization Design for Projects and Companies—Introduction to organizational behavior. Information-processing theory of organizational design for projects and companies and computer-based organizational analysis tools. Groups of 12 students practice running problem-focused meetings. Case studies focus on facility/product design and construction/manufacturing organizations; concepts are applicable to project-focused teams and companies in all industries.
4 units, Win (Levitt)

CEE 242A. Sustainable Development—(Undergraduates register for 142A; see 142A.)
3 units, Win (Levitt, Christensen)

CEE 243. Virtual Design and Construction—(Undergraduates register for 143; see 143.)
3-4 units, Win (Kunz)

2 units, Aut (Tucker, Meyer)
CEE 244B. Advanced Construction Accounting, Financial Issues, and Claims—Continuation of 244A. The recovery of project overruns, and construction industry financial disclosures. Construction claims, project cost overrun analysis, and cost recovery methods related to labor, equipment, indirect costs, overhead, cost of capital, and profit claims. Schedule delay analysis in the context of claims.
2 units, Win (Tucker, Meyer)

3 units, Win (Brockmann)

CEE 246. Managing Engineering and Construction Companies—Management of design and construction companies in the architecture-engineering-construction industry. Focus is on management of risks inherent in the A/E/C industry: developing business strategies and organizations to cope with cyclical demand, alternative contracting approaches, managing receivables and cash flow, administration of human resources, safety, quality, insurance, and bonding. Students play different management roles in a computer simulation of a construction company. Prerequisites: introductory accounting course such as ENGR 60, CEE 244A, or MS&E 140.
4 units, Spr (Levitt)

CEE 246A. Engineering Economy Primer—Satisfies the engineering economy prerequisite for 246 or 253. Application of engineering economy concepts and principles to the construction industry. Equivalence concept; interest formulas; value of money across time; present value, annual cash flow, internal rate of return and benefit-cost methods; retirement and replacement; depreciation; capital budgeting; and sensitivity and risk analysis. Construction finance concepts, loans, mortgages, and construction pro formas.
2 units, Aut (Koen)

CEE 247. Cases in Personality, Leadership, and Negotiation—(Undergraduates register for 147; see 147.)
3 units, Spr (Clough)

CEE 248. Real Estate Development—Overview of the real estate development process emphasizing critical activities and key participants. Topics: conceptual and feasibility studies, market perspectives, the public roles, steps for project approval, project finance, contracting and construction, property management, and sales. Group term projects focus on actual developments now in the planning stage. Enrollment limited to 18 students with priority to graduate majors in the department’s CEM or DCI programs. Prerequisites: 241, 244A or equivalent, ENGR 60.
3 units, Spr (Kroll)

CEE 249. Labor and Industrial Relations: Negotiations, Strikes, and Dispute Resolution—Labor/management negotiations, content of a labor agreement, strikes, dispute resolution, contemporary issues affecting labor and management, and union versus open shop competitiveness in the marketplace. Case studies; presentations by union leaders, legal experts, and contractor principals. Simulated negotiation session with union officials and role play in an arbitration hearing.
2 units, Win (Walton)

CEE 251. Negotiation—(Undergraduates register for 151; see 151; same as MS&E 285, ME 207.)
3 units, Aut, Spr (Christensen)

CEE 252. Construction Engineering for Concrete and Steel Structures—Technical overview of materials, methods, and field operations required for construction of steel and concrete structures. Steel work includes detailing, fabricating, erecting, connecting. Concrete work includes batching, transporting, placing, finishing, curing, and formwork. Introduction to activities required to provide technical support for field operations. Group analysis of technical operation or support activity.
4 units, Aut (Tatum)

CEE 253. Construction Equipment and Methods—Methods and machinery to build projects planned by engineers and architects. Application of engineering fundamentals to the selection and design of equipment and systems to carry out production operations in construction; analysis of production output and costs; application of engineering economy to equipment and process decision making. Prerequisites: 100, and ENGR 60, PHYSICS 21 or 41 (formerly 53).
3-4 units, Aut (Paulson)

CEE 254. Cases in Estimating Costs—(Undergraduates register for 154; see 154.)
3 units, Aut (Clough)

CEE 256. Building Systems—(Undergraduates register for 156; see 156.)
3-4 units, Spr (Daly)

CEE 257. Building Better: Technical and Sustainable Construction—Overview of design and construction for technical facilities and sustainable construction operations. Technical facilities include high purity systems, control systems, laboratories, biotech manufacturing facilities, and semiconductor labs. Sustainable construction includes sites, resources, and field operations. Field trips, reports, and papers on technical and sustainable construction.
3 units, Win (Tatum)

CEE 258A,B,C. Donald R. Watson Seminar in Construction Engineering and Management—Required of graduate students in the CEM program; other students including undergraduates welcome. Weekly discussions with speakers from industry and government. Students interact with industry representatives in small group discussions at dinner after class.
1 unit, A: Aut (Clough), B: Win (Tatum), C: Spr (Clough)

CEE 259A,B,C. Construction Problems—Group-selected problems in construction techniques, equipment, or management; preparation of oral and written reports. Guest specialists from the construction industry. See 299 for individual studies. Prerequisites: graduate standing in CEM program and consent of instructor.
1-3 units, A: Aut, B: Win, C: Spr (Staff)

CEE 260A. Physical Hydrogeology—(Same as GES 230.) Theory of underground water, analysis of field data and pumping tests, geologic groundwater environments, solution of field problems, groundwater modeling. Introduction to groundwater contaminant transport and unsaturated flow. Lab. Prerequisite: elementary calculus.
4 units, Aut (Gorelick)

CEE 260B. Surface and Near-Surface Hydrologic Response—(Same as GES 237.) Quantitative review of process-based hydrology and geomorphology. Introduction to finite-difference and finite-element methods of numerical analysis. Topics: biometeorology, unsaturated and saturated subsurface fluid flow, overland and open channel flow, erosion and mass wasting, and physically-based simulation of coupled surface and near-surface hydrologic response and landscape evolution. Links hydrogeology, soil physics, and surface water hydrology.
3 units, Aut (Loague)

CEE 260C. Contaminant Hydrogeology—(Same as GES 231.) For earth scientists and engineers. Environmental and water resource problems involving contaminated groundwater. The processes affecting contaminant migration through porous media including interactions between dissolved substances and solid media. Conceptual and quantitative treatment of advective-dispersive transport with reacting solutes. Predictive models of contaminant behavior controlled by local equilibrium and kinetics. Modern methods of contaminant transport simulation and optimal aquifer remediation. Prerequisite: GES 230 or CEE 260A or equivalent.
4 units, Spr (Staff)
CEE 262A. Hydrodynamics—The flow of incompressible viscous fluid; emphasis is on developing an understanding of fluid dynamics that can be applied to environmental flows. Topics: kinematics of fluid flow; equations of mass and momentum conservation (including density variations); some exact solutions to the Navier-Stokes equations; appropriate analysis of fluid flows including Stokes flows, potential flows, and laminar boundary layers; and an introduction to the effects of rotation and stratification through scaling analysis of fluid flows. Prerequisites: 101B or consent of instructor; and some knowledge of vector calculus and differential equations. 3-4 units, Aut (Koseff)

CEE 262B. Transport and Mixing in Surface Water Flows—Application of fluid mechanics to problems of pollutant transport and mixing in the water environment. Mathematical models of advection, diffusion, and dispersion. Application of theory to problems of transport and mixing in rivers, estuaries, and lakes and reservoirs. Recommended: 262A and CME 102 (formerly ENGR 155A), or equivalents. 3-4 units, Win (Monismith)

CEE 262C. Modeling and Simulation for Civil and Environmental Engineers—(Undergraduates register for 162; see 162.) 3 units, Spr (Fringer)

CEE 262D. Introduction to Physical Oceanography—(Undergraduates register for 164; see 164; same as EARTHSCI 164.) 4 units, Win (Fong)

CEE 263A. Air Pollution Modeling—The numerical modeling of urban, regional, and global air pollution focusing on gas chemistry and radiative transfer. Stratospheric, free-tropospheric, and urban chemistry. Methods for solving stiff systems of chemical ordinary differential, including the multistep implicit-explicit method, Gear’s method with sparse-matrix techniques, and the family method. Numerical methods of solving radiative transfer, coagulation, condensation, and chemical equilibrium problems. Project involves developing a basic chemical ordinary differential equation solver. Prerequisite: CS 106A or equivalent. 3-4 units, Win (M. Jacobson)

CEE 263C. Weather and Storms—(Undergraduates register for 63; see 63.) 3 units, Aut (M. Jacobson)

CEE 263D. Air Pollution: From Urban Smog to Global Change—(Undergraduates register for 64; see 64.) 3 units, Spr (M. Jacobson)

CEE 264A. Rivers, Streams, and Canals—(Undergraduates register for 161A; see 161A.) 3-4 units, Aut (Fong)

CEE 265A. Sustainable Water Resources Development—Alternative criteria for judging the sustainability of projects. Application of criteria to evaluate sustainability of water resources projects in several countries. Case studies illustrate the role of political, social, economic, and environmental factors in decision making. Evaluation of benefit-cost analysis and environmental impact assessment as techniques for enhancing the sustainability of future projects. Limited enrollment. Prerequisite: graduate standing in Environmental and Water Studies, or consent of instructor. 3 units, Win (Staff)

CEE 265C. Water Resources Management—Principles of surface and ground water resources management in the context of water scarcity and hydrologic uncertainty. Topics include reservoir, river basin, and aquifer management, conjunctive use of surface and ground water, wastewater reuse, and demand management. Technical, economic, social, and political elements of water management. 3 units, Sum (Findikakis)

CEE 266A. Watersheds and Wetlands—(Undergraduates register for 166A; see 166A.) 3 units, Aut (Freyberg)

CEE 266B. Floods and Droughts, Dams and Aqueducts—(Undergraduates register for 166B; see 166B.) 3 units, Win (Freyberg)

CEE 266D. Water Resources and Water Hazards Field Trips—(Undergraduates register for 166D; see 166D.) 2 units, Win (Freyberg)

CEE 267. Data Analysis and Uncertainty—Probabilistic and statistical methods with emphasis on basic concepts and tools, illustrated with applications from environmental and water studies. Topics: exploratory data analysis; probability theory; classical statistics; Bayesian statistics; geostatistics; and inverse problems. 3 units, Spr (Kitanidis)

CEE 268. Groundwater Flow—Flow and mass transport in porous media through analytical techniques. Applications of potential flow theory to practical groundwater problems: flow to and from wells, rivers, lakes, drainage ditches; flow through and under dams; streamline tracing; capture zones of wells; and mixing schemes for in-situ remediation. Prerequisites: calculus and introductory fluid mechanics. 3 units, Win (Kitanidis)

CEE 269. Environmental Fluid Mechanics and Hydrology Seminar—Problems in all branches of water resources. Talks by visitors, faculty, and students. May be repeated for credit. 1 unit, Spr (Monismith)

CEE 270. Movement and Fate of Organic Contaminants in Waters—Transport of chemical constituents in surface and groundwater including advection, dispersion, sorption, interphase mass transfer, and transformation; impacts on water quality. Emphasis is on physicochemical processes and the behavior of hazardous waste contaminants. Prerequisites: undergraduate chemistry and calculus. Recommended: 101B. 3 units, Aut (Lathy), Sum (Staff)

CEE 271A. Physical and Chemical Treatment Processes—Physical and chemical unit operations for water treatment, emphasizing process combinations for drinking water supply. Application of the principles of chemistry, rate processes, fluid dynamics, and process engineering to define and solve water treatment problems by flocculation, sedimentation, filtration, disinfection, oxidation, aeration, and adsorption. Paper on water supply and treatment. Prerequisites: 101B, 270. Recommended: 273. 3 units, Win (Lathy)

CEE 271B. Environmental Biotechnology—Stoichiometry, kinetics, and thermodynamics of microbial processes for the transformation of environmental contaminants. Design of dispersed growth and biofilm-based processes. Applications include treatment of municipal and industrial waste waters, detoxification of hazardous chemicals, and groundwater remediation. Prerequisites: 270; 177 or 274A or equivalents. 4 units, Win (Criddle)

CEE 272. Coastal Contaminants—Coastal pollution and its effects on ecosystems and human health. The sources, fate, and transport of human pathogens, nutrients, heavy metals, persistent organics, endocrine disrupters, and toxic algae. Background on coastal ecosystems and coastal transport phenomena including tides, waves, and cross shelf transport. Introduction to time series analysis with MATLAB. Undergraduates may enroll with consent of instructor. 3-4 units (Boehm) not given 2005-06
CEE 273. Aquatic Chemistry — Chemical principles and their application to the analysis and solution of problems in aqueous geochemistry (temperatures near 25°C and atmospheric pressure). Emphasis is on natural water systems and the solution of specific chemical problems in water purification technology and water pollution control. Prerequisites: CHEM 31 and 33, or equivalents.

3 units, Aut (Robertson)

CEE 273A. Water Chemistry Laboratory — (Undergraduates register for 179A; see 179A.)

2 units, Win (Leckie)

CEE 273P. Renewable Energy Policies and Markets — (Undergraduates register for 173P; see 173P.)

3 units, Win (Komor)

3 units, Aut (Spormann), Sum (Staff)

3 units, Spr (Spormann)

CEE 274C. Environmental Microbiology Laboratory — Microbiological and molecular techniques for characterizing microbes. Enrichment and isolation of microbes from their natural environment. Determination of growth parameters. Visualizing microbes in biofilms. Detection of microbes in the environment. Horizontal gene transfer and evolution of microbes with new metabolic capacity. Prerequisites: 274A,B.

3 units (Spormann) not given 2005-06

CEE 274D. Pathogens and Disinfection — Introduction to epidemiology, major pathogens and infectious diseases, the immune system, movement and survival of pathogens in the environment, transfer of virulence and antibiotic resistance genes, and pathogen control, with an emphasis on public health engineering measures (disinfection). Prerequisite: 274A.

3 units, Spr (Cridde) alternate years, not given 2006-07

CEE 274E. Pathogens in the Environment — Sources, fates, movement, and ecology of waterborne pathogens in the natural environment and disinfection systems; epidemiology and microbial risk assessment. No microbiology background required; undergraduates may enroll with consent of instructor.

3 units (Boehm) not given 2005-06

CEE 274F. Environmental Health Microbiology — Microbiology skills including culture-, microscope-, and molecular-based detection techniques. Focus is on standard and EPA-approved methods to enumerate and isolate organisms used to assess risk of enteric illnesses, such as coliforms, enterococci, and coliphage, in drinking and recreational waters including lakes, streams, and coastal waters. Student project to assess the microbial water quality of a natural water.

3 units, Spr (Boehm)

CEE 275A. California Coast: Science, Policy, and Law — (Undergraduates register for 175A; see 175A; same as EARTHSYS 175/275, LAW 514.)

3-4 units, Aut (Caldwell, Boehm, Sivas)

CEE 275B. Process Design for Environmental Biotechnology — (Undergraduates register for 179B; see 179B.)

5 units (Cridde) alternate years, given 2006-07

CEE 276. Introduction to Human Exposure Analysis — (Undergraduates register for 178; see 178.)

3 units, Spr (Leckie)

CEE 277A. Teaching Science Literacy for a Sustainable Society — Teaching science to nontechnical audiences emphasizing technologies and science for the sustainable use of water. Guest lecturers. Learning styles, and the role of engineers and scientists in K-12 and media communication. Students develop teaching modules to be used in educational settings involving nontechnical audiences.

2-4 units, Win (Reinhard, Cridde)

CEE 277S. Design for a Sustainable World — (Undergraduates register for 177S; see 177S.)

1-5 units, Aut, Win, Spr (Staff)

3 units, Aut (Hildemann)

3 units, Aut (Hildemann) alternate years, given 2006-07

CEE 278C. Indoor Air Quality — (Undergraduates register for 172A; see 172A.)

2-3 units, Spr (Hildemann)

CEE 279. Environmental Engineering Seminar — Current research, practice, and thinking in environmental engineering and science. Attendance at seminars is self-directed, and may be accrued throughout the school year.

1 unit, Spr (Hildemann)

CEE 280. Advanced Structural Analysis — Theoretical development and computer implementation of direct stiffness method of structural analysis; virtual work principles; computation of element stiffness matrices and load vectors; direct assembly procedures; equation solution techniques. Analysis of two- and three-dimensional truss and frame structures, thermal loads, and substructuring and condensation techniques for large systems. Practical modeling techniques and programming assignments. Introduction to nonlinear analysis concepts. Prerequisites: elementary structural analysis and matrix algebra.

3-4 units, Aut (Deierlein)

CEE 281. Finite Element Structural Analysis — Formulation and implementation of frame, plane stress, plane strain, axisymmetric, torsional, solid, plate, and shell elements. Topics: strong and weak forms of the problem, variational principles and the principle of minimum potential energy, the finite element method as an extension of the Rayleigh-Ritz methods, shape functions, isoparametric mapping, numerical integration, convergence requirements, and error estimation. Techniques for application to modeling structural systems. Prerequisite: 280 or equivalent.

3-4 units, Spr (Staff)
CEE 282. Nonlinear Structural Analysis—Introduction to methods of geometric and material nonlinear analysis, emphasizing modeling approaches for framed structures. Large-displacement analysis, concentrated and distributed plasticity models, and nonlinear solution methods. Applications to frame stability and performance-based seismic design. Assignments emphasize computer implementation and applications. Prerequisites: 280, 286 or equivalent. 3 units, Spr (Deierlein)

CEE 283. Structural Dynamics—Vibrations and dynamic response of simple structures under time dependent loads; dynamic analysis of single and multiple degrees of freedom systems; support motion; response spectra. 3-4 units, Aut (Law)

CEE 284. Computational Methods in Structural Dynamics—Methods of structural dynamics for discretized and continuous systems in free and forced vibration, modal analysis; numerical methods; introduction to nonlinear dynamics; advanced topics. Prerequisites: 280, 283. 3 units, Win (Law) alternate years, not given 2006-07

CEE 285. Behavior of Structural Systems for Buildings—Basic design concepts, performance criteria, loading, methods of design, types of structural systems, behavior under gravity and lateral loads, approximate methods of analysis, preliminary conceptual design, performance assessment, behavior of structural elements. Prerequisites: basic courses in design of steel and reinforced concrete structures. 3-4 units, Win (Krawinkler)

CEE 286. Advanced Structural Design—Strength, stiffness, and ductility considerations in the design of structural elements and systems made of steel, reinforced concrete, and other materials. Concepts of redistribution and strength of structures (element versus system behavior). Design of two-way slab systems. Prerequisites: basic courses in design of steel and reinforced concrete structures. 3-4 units, Aut (Krawinkler)

CEE 287. Earthquake Resistant Design and Construction—Evaluation, design, and construction of structures in seismic regions. Factors influencing earthquake ground motions, design spectra, design of linear and nonlinear single- and multiple-degree-of-freedom-system structures, design of structures to minimize damage, force-based and displacement-based design methods, capacity design, detailing and construction of steel and reinforced concrete structures, performance-based design, seismic isolation, and energy dissipation. Prerequisites: 283, 285. Recommended: 286, 288. 3 units, Spr (Miranda)

CEE 288. Earthquake Hazard and Risk Analysis—Earthquake phenomena, faulting, ground motion, study of past major earthquakes, effects of earthquakes on manmade structures, response spectra, Fourier spectra, power spectra, soil effects on ground motion and structural damage, methods for structural damage evaluation, current research in earthquake engineering. Prerequisites: 203, 283. 3 units, Win (Kiremidjian)

CEE 289. Random Vibrations—Introduction to random processes. Correlation and power spectral density functions. Stochastic dynamic analysis of multi-degree-of-freedom structures subjected to stationary and non-stationary random excitations. Crossing rates, first-excitation probability, and distributions of peaks and extremes. Applications in earthquake, wind, and ocean engineering. Prerequisite: 203 or equivalent. 3-4 units (Staff) not given 2005-06

CEE 290. Structural Performance and Failures—Basic concepts in the definition of satisfactory structural performance; key elements in structural performance; types of failures, ranging from reduced serviceability to total collapse; failure sources and their root cause allocation, emphasizing design/construction process failures; failure prevention mechanisms; illustration with real life examples. 2 units, Spr (Moncarz)

CEE 292. Computer Methods in Structural Engineering—Techniques for the development of structural engineering analysis and design software. Topics: basic data structure; computer representation of engineering systems; implementation of advanced numerical methods and engineering software; automated conformance checking of design codes and standards. Prerequisite: CS 106A or equivalent. 3 units (Law) not given 2005-06

CEE 293. Foundation Engineering—Types, characteristics, analysis, and design of shallow and deep foundations; rigid and flexible retaining walls; braced excavations; settlement of footings in sands and clays; slope stability analysis by method of slices including search algorithms for the critical slip surface. Special seminars by guest speakers; computing assignment. Prerequisite: 101C or equivalent. 3 units, Win (Borja)

CEE 294. Computational Geomechanics—Continuum and finite element formulations of steady-state and transient fluid conduction problems on geomechanics; elliptic, parabolic, and hyperbolic systems; variational inequality and free-boundary problems; three-dimensional consolidation theory; undrained condition, mesh locking, B-bar and strain projection methods; finite element formulations of multiphase dynamic problems. Prerequisite: ME 335A or equivalent. 3 units, Spr (Borja) alternate years, not given 2006-07

CEE 295. Plasticity Modeling and Computation—Theory of plasticity; micromechanical basis; classical yield models; return mapping algorithm; multi-surface and bounding surface models; material instabilities; localization and bifurcation. Prerequisite: ME 338A or equivalent. 3 units (Borja) alternate years, given 2006-07

CEE 296. Modeling of Models in Geotechnical Engineering—Physical and numerical modeling in geomechanics. Primitive geotechnical models illustrate three-dimensional seepage and strain localization in simple shear and triaxial devices. Finite element modeling and simulations conducted using ANSYS. Numerical simulations demonstrate the 3D, solid-mesh generation capabilities of the program and the limitations of deformation analysis in the softening regime. Prerequisite: 101C or equivalent. Corequisite: course in finite element method. 2 units, Win (Borja)

CEE 297. Issues in Geotechnical and Environmental Failures—Causes and consequences of the failure of buildings, earth structures, waste storage, and high hazard facilities in contact with the environment; technical, ethical, economic, legal, and business aspects; failure analysis and forensic problems; prevention, liability, and dispute management. Case histories including earthquake, flood, and hazardous waste facilities. Student observation, participation in active lawsuits where possible. 3 units, Aut (Meehan)

CEE 297G. Advanced Structural Geology and Rock Mechanics—(Same as GES 215A.) Quantitative field and laboratory data and solutions to initial and boundary-value problems of continuum mechanics introduce conceptual and mechanical models for tectonic processes in Earth’s crust that lead to the development of geological structures including folds, faults, fractures and fabrics. Topics include: techniques and tools for structural mapping; using differential geometry to characterize structures; dimensional analysis and scaling relations; kinematics of deformation and flow; traction and stress analysis. Data sets analyzed using MATLAB. Prerequisites: GES 1, MATH 53, MATLAB or equivalent. 3-5 units, Aut (Pollard)

CEE 297H. Advanced Structural Geology and Rock Mechanics—(Same as GES 215B.) Field equations for elastic solids and viscous fluids derived from conservation laws to develop mechanical models for tectonic processes and their structural products. Topics include: conservation of mass and momentum in a deformable continuum; linear elastic deformation and elastic properties of rock; brittle deformation including fracture and faulting; linear viscous flow including folding, model development, and methodology. Models constructed and solutions visualized using MATLAB. Prerequisite: GES 215A. 3-5 units, Win (Pollard)
CEE 298. Structural Engineering and Geomechanics Seminar — Recommended for all graduate students. Lectures on topics of current interest in professional practice and research.
1 unit, Win (Staff)

CEE 299. Independent Study in Civil Engineering — Directed study for graduate students on subjects of mutual interest to students and faculty. Student must obtain faculty sponsor.
1-5 units, Aut, Win, Spr, Sum (Staff)

CEE 299S. Independent Project in Civil and Environmental Engineering — Prerequisite: consent of instructor.
1-4 units, Aut, Win, Spr, Sum (Staff)

CEE 300. Thesis (Engineer Degree) — Research by Engineer candidates.
1-15 units, Aut, Win, Spr, Sum (Staff)

CEE 310. Post-Master’s Seminar — For post-master’s students to serve as orientation to the selection of a research topic.
1 unit, Aut, Win, Spr (Staff)

CEE 316. Research Methods in Facility Engineering — For CEE Ph.D. students. Facility planning, design, management, and operation. Research philosophy and methods. Experimental design: ethnography, case study, survey, classical experiment (natural, synthetic, or computational). Data analysis: ANOVA, regression, correlation. Introduction to modeling social systems. Publication strategies. Final project to develop and refine research proposal and publication plan.
3-4 units (Levitt) not given 2005-06

CEE 320. Integrated Facility Engineering — Individual and group presentations on goals, research, and state-of-practice of virtual design and construction in support of integrated facility engineering, including objectives for the application and further development of virtual design and construction technologies. May be repeated for credit.
1 unit, Aut, Win, Spr (Kunz, Fischer)

CEE 342. Computational Modeling of Organizations — For post-M.S. students interested in formal techniques for organization design. Computer simulations of organizations are used to conduct virtual experiments for developing organization theory or to analyze the performance of virtual organizations with different structures and decision support and communication technologies. Goals: introduce research on computational modeling and design of real-world organizations. Paper serves as a research proposal. Prerequisite: 242 or equivalent introductory organization design class.
4 units (Levitt) not given 2005-06

3 units (Fong) not given 2005-06

CEE 363B. Geophysical Fluid Dynamics — (Formerly 364B.) Focus is on fluid dynamics of the ocean at scales where the influence of the earth’s rotation is important. Topics include geostrophic and quasi-geostrophic flows, planetary waves, potential vorticity, the Rossby adjustment problem, effects of stratification, and flows on the sea plane. Hydrodynamic stability of rotating and stratified flows. Prerequisite: 363A.
3 units (Fringer) not given 2005-06

CEE 363C. Ocean and Estuarine Modeling — Advanced topics in modeling for ocean and estuarine environments, including methods for shallow water, primitive, and nonhydrostatic equations on Cartesian, curvilinear, and unstructured finite-volume grid systems. Topics include free-surface methods, nonhydrostatic solvers, and advanced Eulerian and Lagrangian advection techniques. Focus is on existing techniques and code packages, and their methodologies, including POM, ROMS, TRIM, ELCOM, and SUNTANS. Prerequisites: CME 200, 206, or equivalents.
3 units, Aut (Fringer)

CEE 365A,B,C,D. Advanced Topics in Environmental Fluid Mechanics and Hydrology — Students must obtain a faculty sponsor.
2-6 units, A: Aut, B: Win, C: Spr, D: Sum (Staff)

CEE 370A,B,C,D. Environmental Research — Introductory research experience for first-year Ph. D. students in the Environmental Engineering and Science program. 15-18 hours/week on research over three quarters. 370A requires written literature survey on research topic; 370B requires oral presentation on experimental techniques and research progress; 370C requires written or oral presentation of preliminary doctoral research proposal. Students must obtain a faculty sponsor.
5-6 units, A: Aut, B: Win, C: Spr, D: 3-6 units, Sum (Staff)

CEE 371. Frontiers in Environmental Research — How to evaluate environmental research.
1-2 units, Aut, Win, Spr (Spormann)

CEE 373. Modeling Aqueous Chemical Environments — Conceptualization, development, and application of computer-based models for environmental chemical systems. Computer code snippets for implementation of equilibrium and kinetic chemical reactions. Complexity and building acceptance criteria. Application of software design, engineering, and project management techniques to build next-generation models. Review of existing model software. Term project. Prerequisites: 270 and 273, or equivalent chemistry/geochemistry background; course in computer programming or equivalent.
3 units, Spr (Leckie, Ong)

CEE 374. Environmental Informatics: Information and Knowledge Management in Environmental Engineering — Information systems dealing with large amounts of environmental and sustainable development data at multiple spatial-temporal scales and from cross-disciplinary research activities. Topics include: domain information modeling and processing, and interoperability; information security; knowledge management and integration in environmental engineering domain; access to information for decision making; and systematic assessment in management and engineering. The use of IT and the Internet.
3 units, Spr (Leckie, Wang)

CEE 374C. Introduction to Physiology of Microbes in Biofilms — 1-6 units, Spr (Staff)

CEE 376. Organic Analyses in Environmental Sciences — Theory and practice of instrumental methods used in environmental engineering and sciences, emphasizing determination of organic substances by gas chromatography, mass spectrometry, and high pressure liquid chromatography. Interpretation of mass spectra adaptation of techniques to specific environmental matrices. Case studies.
2-3 units, Spr (Reinhard)

1-3 units, Aut, Win, Spr, Sum (Staff)

CEE 398. Report on Civil Engineering Training — On-the-job training under the guidance of experienced, on-site supervisors; meets the requirements for Curricular Practical Training for students on F-1 visas. Students submit a concise report detailing work activities, problems worked on, and key results. Prerequisite: qualified offer of employment and consent of adviser as per I-Center procedures.
1 unit, Aut, Win, Spr, Sum (Staff)

CEE 399. Advanced Engineering Problems — Individual graduate work under the direction of a faculty member on a subject of mutual interest. Student obtain faculty sponsor. May be repeated for credit.
1-10 units, Aut, Win, Spr, Sum (Staff)

CEE 400. Thesis (Ph.D. Degree) — For students who have completed the department general qualifying examination.
1-15 units, Aut, Win, Spr, Sum (Staff)
GRADUATE PROGRAMS

University regulations governing the M.S. and Ph.D. degrees are described in the “Graduate Degrees” section of this bulletin.

MASTER OF SCIENCE

The M.S. degree in Computational and Mathematical Engineering is intended as a terminal professional degree and does not lead to the Ph.D. program. Students interested in the doctoral program should apply directly to the Ph.D. program. Master’s students who have maintained a minimum grade point average (GPA) of 3.5 are eligible to take the Ph.D. qualifying exam; those who pass this examination may continue into the Ph.D. program.

The master’s program consists of 45 units of course work taken at Stanford. No thesis is required; however, students may become involved in research projects during the master’s program, particularly to explore an interest in continuing to the doctoral program. Although there is no specific background requirement, significant exposure to mathematics and engineering course work is necessary for successful completion of the program.

Applications for admission to the M.S. program, including all required supporting documents, must be submitted by January 24, 2006. Exceptions are made for applicants who are already students at Stanford and are applying to the coterminal program. Please contact the department for deadline information.

For University coterminal degree program rules and University application forms, see http://registrar.stanford.edu/publications/#Coterm.

REQUIREMENTS

A candidate is required to complete a program of 45 units of courses numbered 200 or above. At least, 36 of these must be graded units, passed with a grade point average (GPA) of 3.0 (B) or better. Master’s students interested in continuing to the doctoral program must maintain a 3.5 or better grade point average in the program.

Requirement 1 — The following courses may be needed as prerequisites for other courses in the program: MATH 41, 42, 51, 52, 53, 103, 113, 220A; CME 100, 102, 104, 108, 200, 204, 302; CS 106A, 106X, 108, 205, 229; ENGR 62; ME 346; MS&E 211, 310, 311, 312, 314, 315; STATS 116 or 202.

Requirement 2 — Students must demonstrate breadth of knowledge in the field by completing the following core courses:

- CME 302. Numerical Linear Algebra
- CME 304. Numerical Optimization
- CME 305. Discrete Mathematics and Algorithms
- CME 306. Numerical Solution of Partial Differential Equations
- CME 308. Stochastic Methods in Engineering
- MATH 220A. Partial Differential Equations of Applied Mathematics

Deviations from the core curriculum must be justified in writing and approved by the student’s ICME adviser and the chair of the ICME curriculum committee. Courses that are waived may not be counted towards the master’s degree.

Requirement 3 — 12 units of electives in the eight application areas listed below must be completed. Except for the three units of independent research, all courses in this area must be taken for letter grades. The elective course list represents automatically accepted electives within the program and the list is expanded on a continuing basis; the elective part of the ICME program is meant to be broad and inclusive of relevant courses of comparable rigor to ICME courses. Courses outside this list can be accepted as electives subject to approval of the student’s ICME adviser and the chair of the ICME curriculum committee.

1. Aeronautics and Astronautics:
 - AA 214A. Numerical Methods in Fluid Mechanics
 - AA 214B. Numerical Computation of Compressible Flow
 - AA 214C. Numerical Computation of Viscous Flow
 - AA 215A, B. Advanced Computational Fluid Dynamics
 - AA 218. Introduction to Symmetry Analysis

Courses in Core Application Areas

<table>
<thead>
<tr>
<th>Core Application Area</th>
<th>Course(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeronautics and Astronautics</td>
<td>AA 214A, AA 214B, AA 214C</td>
</tr>
<tr>
<td>Aerospace Engineering</td>
<td>MATH 220A, MATH 305</td>
</tr>
<tr>
<td>Biomolecular Engineering</td>
<td>CME 302, CME 304</td>
</tr>
<tr>
<td>Civil and Environmental Engineering</td>
<td>CME 305, CME 306</td>
</tr>
<tr>
<td>Computational Biology</td>
<td>STATS 116, STATS 202</td>
</tr>
<tr>
<td>Computational Engineering</td>
<td>MATH 41, MATH 42</td>
</tr>
<tr>
<td>Geophysical Engineering</td>
<td>MATH 51, MATH 52</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>CME 308, CME 306</td>
</tr>
<tr>
<td>Materials Engineering</td>
<td>CME 302, CME 304</td>
</tr>
<tr>
<td>Operations Research</td>
<td>MATH 113, MATH 220A</td>
</tr>
<tr>
<td>Quantum Engineering</td>
<td>MATH 103, MATH 113</td>
</tr>
<tr>
<td>Systems Engineering</td>
<td>MATH 108, MATH 200</td>
</tr>
</tbody>
</table>

Courses given in Computational and Mathematical Engineering have the subject code CME. For a complete list of subject codes, see Appendix.
2. Civil and Environmental Engineering:
CEE 281. Finite Element Structural Analysis
CME 208. Mathematical Programming and Combinatorial Optimization
CME 210. Multiscale Methods in Engineering
CME 212. Introduction to Large Scale Computing in Engineering
CME 324. Advanced Methods in Matrix Computation
CME 326. Numerical Methods for Initial Boundary Value Problems
CME 342. Parallel Methods in Numerical Analysis

3. Computer Science:
CS 221. Artificial Intelligence: Principles and Techniques
CS 228. Probabilistic Models in Artificial Intelligence
CS 229. Machine Learning
CS 255. Introduction to Cryptography
CS 261. Optimization and Algorithmic Paradigms
CS 315A. Parallel Computer Architecture and Programming
CS 340. Level Set Methods
CS 348A. Computer Graphics: Geometric Modeling
CS 365. Randomized Algorithms

4. Electrical Engineering:
EE 222. Applied Quantum Mechanics I
EE 223. Applied Quantum Mechanics II
EE 262. Two-Dimensional Imaging
EE 278. Introduction to Statistical Signal Processing
EE 292E. Analysis and Control of Markov Chains
EE 363. Linear Dynamic Systems
EE 364. Convex Optimization
EE 376A. Information Theory

5. Management Science and Engineering:
MS&E 220. Probabilistic Analysis
MS&E 221. Stochastic Modeling
MS&E 223. Simulation
MS&E 251. Stochastic Decision Models
MS&E 310. Linear Programming
MS&E 313. Vector Space Optimization
MS&E 316. Pricing Algorithms and the Internet
MS&E 321. Stochastic Systems
MS&E 322. Stochastic Calculus and Control
MS&E 323. Stochastic Simulation

6. Mechanical Engineering:
ME 335A,B,C. Finite Element Analysis
ME 469A,B. Computational Methods in Fluid Mechanics
ME 484. Computational Methods in Cardiovascular Bioengineering

7. Statistics:
STATS 227. Statistical Computing
STATS 237. Time Series Modeling and Forecasting
STATS 250. Mathematical Finance
STATS 324. Classical Multivariate and Random Matrix Theory
STATS 345. Computational Molecular Biology
STATS 362. Monte Carlo Sampling
STATS 366. Computational Biology

8. Other:
ENGR 209A. Analysis and Control of Nonlinear Systems
MATH 220B,C. Partial Differential Equations of Applied Mathematics

Requirement 4—9 units of focused graduate application electives, approved by ICME graduate advisor, in the areas of Engineering, Mathematics, and Physical, Biological, and other quantitative sciences.

Requirement 5—3 units of ICME graduate seminar (CME 500) or other approved seminar sequence.

DOCTOR OF PHILOSOPHY:
Applications to the Ph.D. program and all required supporting documents must be received by January 10, 2006. See http://icme.stanford.edu/admissions/ for up-to-date information.

Admission to the Ph.D. program does not imply that the student is a candidate for the Ph.D. degree. Advancement to candidacy requires superior academic achievement, and completion of the qualifying examination.

Requirements—Ph.D. students must (1) complete a minimum of 135 units of residency at Stanford, including 45 units from the master’s program, 27 units of focused electives in an area planned with the student’s Ph.D. adviser, 12 units from ICME specialized electives (CME courses numbered 320-380), 60 units of thesis research, and 3 units of free electives; (2) maintain a grade point average (GPA) of 3.5; (3) pass the two qualifying examinations administered by ICME; (4) complete an approved course of study in computational and mathematical engineering; (5) complete an approved program of original research and a written dissertation based on research; and (6) pass an oral examination that is a defense of the dissertation research.

PH.D. MINOR:
For a minor in Computational and Mathematical Engineering (CME), a doctoral candidate must complete 20 unduplicated units in the program. These should include three ICME core courses and three ICME graduate electives at the 300 level or above. A maximum of two units can be taken as ICME seminar units. All courses excepting the seminar courses must be taken for a letter grade and passed with a grade of ‘B’ or better. Minor programs must receive approval from the ICME curriculum chair prior to completing any of the ICME graduate electives. Minor programs should be developed in close discussion between the student and their primary Ph.D. adviser.

FINANCIAL ASSISTANCE
The department awards a limited number of fellowships, course assistantships, and research assistantships to incoming graduate students. Applying for such assistance is part of submitting the application for admission to the program.

Students are appointed for half-time assistantships which provides a tuition scholarship at the 8, 9, 10 unit rate during the academic year and a monthly stipend. Half-time appointments generally require 20 hours of work per week. Most course assistantships and research assistantships are awarded to students in the doctoral program in ICME. If the number of Ph.D. students are not sufficient to staff all course and research assistantship positions available, these positions may be open to master’s students. However, master’s students are not guaranteed financial assistance.

COURSES
CME 100. Vector Calculus for Engineers—(Formerly ENGR 154.) Computation and visualization using MATLAB. Differential vector calculus: analytic geometry in space, functions of several variables, partial derivatives, gradient, unconstrained maxima and minima, Lagrange multipliers. Integral vector calculus: multiple integrals in Cartesian, cylindrical, and spherical coordinates, line integrals, scalar potential, surface integrals, Green’s, divergence, and Stokes’ theorems. Examples and applications drawn from various engineering fields. Prerequisites: MATH 41 and 42, or 10 units AP credit. GER:DB-Math
5 units, Aut (Darve, Khayms)

CME 102. Ordinary Differential Equations for Engineers—(Formerly ENGR 155A.) Analytical and numerical methods for solving ordinary differential equations arising in engineering applications: Solution of initial and boundary value problems, series solutions, Laplace transforms, and non-linear equations; numerical methods for solving ordinary differential equations, accuracy of numerical methods, linear stability theory, finite differences. Introduction to MATLAB programming as a basic tool kit for computations. Problems from various engineering fields. Prerequisite: CME 100 (formerly ENGR 154) or MATH 51. GER:DB-Math
5 units, Win (Darve)

5 units, Spr (Khayms)

CME 106. Introduction to Probability and Statistics for Engineers—(Formerly ENGR 155C.) Probability: random variables, independence, and conditional probability; discrete and continuous distributions, moments, distributions of several random variables. Topics in mathematical statistics: random sampling, point estimation, confidence intervals, hypothesis testing, non-parametric tests, regression and correlation analyses; applications in engineering, industrial manufacturing, medicine, biology, and other fields. Prerequisite: CME 100 (formerly ENGR 154) or MATH 51. GER:DB-Math

4 units, Win (Khayms)

CME 108. Introduction to Scientific Computing—Numerical computation for mathematical, computational, and physical sciences and engineering: numerical solution of systems of algebraic equations, least squares, quadrature, minimization of a function, banded matrices, nonlinear equations, numerical solution of ordinary and partial differential equations; truncation error, numerical stability for time dependent problems, stiffness, boundary value problems. Prerequisites: CS106A or familiarity with MATLAB; MATH 51, 52, 53; inappropriate for students who have taken CME 102, 104 (formerly ENGR155A,B). GER:DB-EngrAppSci

3-4 units, Win (Golub)

CME 110. Matrix Computations with Applications to Data Mining and IT—Basic matrix factorizations, numerical stability, updating/downdating procedures; data mining and knowledge discovery, application to information retrieval, text mining, search engines, character recognition, medical informatics, bioinformatics. Mathematical, numerical, and statistical techniques. Prerequisites: CS 106A; MATH 103 or 113; or equivalents.

3 units (Golub) alternate years, given 2006-07

CME 200. Linear Algebra with Application to Engineering Computations—(Formerly ME 300A.) Direct and iterative methods to solve linear systems of equations arising in engineering applications. The theory of linear algebra: basis, linear independence, column space, null space, rank; round off errors, pivoting, and ill-conditioned matrices; norms and condition numbers; projections and least squares; eigenvalues, eigenvectors, and their computation; the canonical diagonal form; and functions of a matrix; solution of systems of nonlinear equations arising in engineering applications. Recommended: familiarity with computer programming; MATH 103, 130, or equivalents.

3 units, Aut (Gerritsen)

CME 204. Partial Differential Equations in Engineering—(Formerly ME 300B.) Geometric interpretation of partial differential equations (PDEs) characteristics, solution of first order PDEs and classification of second-order PDEs, self-similarity, separation of variables as applied to parabolic, hyperbolic, and elliptic PDEs, special functions, eigenfunction expansions, the method of characteristics. If time permits, Fourier integrals and transforms, Laplace transforms. Prerequisite: CME 200 (formerly ME 300A), equivalent, or consent of instructor.

3 units, Win (Shafeleh)

3 units, Spr (Farhat)

CME 208. Mathematical Programming and Combinatorial Optimization—(Same as MS&E 112/212.) Combinatorial and mathematical programming (integer and non-linear) techniques for optimization. Topics: linear program duality and LP solvers; integer programming; combinatorial optimization problems on networks including minimum spanning trees, shortest paths, and network flows; matching and assignment problems; dynamic programming; linear approximations to convex programs; NP-completeness. Hands-on exercises. Prerequisites: CS 106A or X; ENGR 62 or MATH 103. GER:DB-EngrAppSci

3 units, Spr (Goel)

CME 210. Multiscale Methods in Engineering—Multigrid methods to solve partial differential equations including anisotropic and nonlinear equations; multilevel adaptive refinement; fast multipole methods based on Taylor expansions, Chebyshev polynomials, plane wave representation, and singular value decomposition; and wavelets for signal and image compression. Haar wavelets, splines, and multiscale representation of curves and surfaces. Prerequisites: numerical methods (iterative solution of linear equations, interpolation, partial differential equations), scientific programming language.

3 units (Darve) not given 2005-06

CME 212. Introduction to Large-Scale Computing in Engineering—Advanced programming methodologies for solving fundamental engineering problems using algorithms with pervasive application across disciplines. Overview of computer systems from a programming perspective including processor architectures, memory hierarchies, machine arithmetic, performance tuning techniques. Algorithms include iterative, direct linear solvers, fit, and divide and conquer strategies for n-body problems. Software development; other practical UNIX tools including shell scripting (bash), vi/emacs, gcc, make, gdb, gprof, rcs, and latex. Prerequisites: 200 (formerly ME 300A), and CS 106X or equivalent level of programming in C/C++.

3 units, Win (Fringer)

CME 291. Master’s Research—Students require faculty sponsor.

1-5 units, Aut, Win, Spr, Sum (Staff)

CME 300. Departmental Seminar Series—Required for first-year ICME Ph.D. students; recommended for first-year ICME M.S. students. Presentations about research at Stanford by faculty and researchers from Engineering, H&S, and organizations external to Stanford.

1 unit, Aut, Win, Spr (Murray)

CME 301. Partial Differential Equations of Applied Mathematics—(Enroll in MATH 220A.)

3 units, Aut (Liu)

CME 302. Numerical Linear Algebra—First in a three quarter graduate sequence. Solution of systems of linear equations: direct methods, error analysis, structured matrices; iterative methods and least squares. Parallel techniques. Prerequisites: CME108, MATH 103 or 113.

3 units, Aut (Golub)

CME 304. Numerical Optimization—(Same as MS&E 315.) Solution of nonlinear equations; unconstrained optimization; linear programming; quadratic programming; global optimization; general linearly and nonlinearly constrained optimization. Theory and algorithms to solve these problems. Prerequisite: background in analysis and numerical linear algebra.

3 units, Win (Murray)
CME 305. Discrete Mathematics and Algorithms—Topics: enumeration (permutations, stirling numbers, Cayley’s theorem) SDR, flows and cuts (deterministic and randomized algorithms), eigenvalues and expansion arguments, asymptotics (NP-hardness and approximation algorithms). Topics illustrated with EE, CS, and bioinformatics applications. Prerequisites: MATH 51 or 103 or equivalents.

3 units, Win (Saberi)

CME 306. Numerical Solution of Partial Differential Equations—Hyperbolic partial differential equations: stability, convergence and qualitative properties; nonlinear hyperbolic equations and systems; combined solution methods from elliptic, parabolic, and hyperbolic problems. Examples include: Burgers equation, Euler equations for compressible flow, Navier-Stokes equations for incompressible flow. Prerequisites: CME 302, MATH 220A.

3 units, Spr (Fedkiw)

CME 308. Stochastic Methods in Engineering—Review of basic probability; state space models and time series; parameter estimations, prediction, and filtering; Markov chains and processes; stochastic control; and stochastic differential equations. Examples from various engineering disciplines. Prerequisites: exposure to probability; background in real variables and analysis.

3 units, Spr (Glynn)

CME 320. Partial Differential Equations of Applied Mathematics—(Enroll in MATH 220B.)

3 units, Win (Liu)

CME 322. Spectral Methods in Computational Physics—(Formerly ME 408.) Data analysis, spectra and correlations, sampling theorem, nonperiodic data, and windowing; spectral methods for numerical solution of ordinary and partial differential equations; accuracy and computational cost; fast Fourier transform, Galerkin, collocation, and Tau methods; spectral and pseudospectral methods based on Fourier series and eigenfunctions of singular Sturm-Liouville problems; Chebyshev, Legendre, and Laguerre representations; convergence of eigenfunction expansions; discontinuities and Gibbs phenomenon; aliasing errors and control; efficient implementation of spectral methods; spectral methods for complicated domains; time differencing and numerical stability.

3 units, Aut (Moin)

3 units, Spr (Golab)

CME 326. Numerical Methods for Initial Boundary Value Problems—Initial boundary value problems are solved in different areas of engineering and science modeling phenomena, such as wave propagation and vibration, and fluid flow. Numerical techniques for such simulations in the context of applications. Emphasis is on stability and convergence theory for methods for hyperbolic and parabolic initial boundary value problems, and the development of efficient methods for these problems.

3 units, Win (Gustaffson)

CME 330. Applied Mathematics in the Chemical and Biological Sciences—Mathematical solution methods via applied problems including chemical reaction sequences, mass and heat transfer in chemical reactors, quantum mechanics, fluid mechanics of reacting systems, and chromatography. Topics include generalized vector space theory, linear operator theory with eigenvalue methods, phase plane methods, perturbation theory (regular and singular), solution of parabolic and elliptic partial differential equations, and transform methods (Laplace and Fourier). Prerequisites: CME 102, CME 104 (formerly ENGR 155A, 155B), or equivalents.

3 units, Aut (Shaqfeh)

CME 332. Computational Methods for Scientific Reasoning and Discovery—Computational approaches to representing, reasoning with, and inferring scientific knowledge. Formation of taxonomies, induction of descriptive laws, and construction of explanatory models. Examples include reconstructions from the history of physics and chemistry, and generation of new results in biology and Earth science. Methods to represent, use, and infer scientific knowledge. Prerequisites: familiarity with artificial intelligence and list processing; ability to think computationally in terms of knowledge structures and mechanisms that operate on them.

3 units, Spr (Langley)

CME 334. Advanced Methods in Numerical Optimization—(Same as MS&E 312.) Topics include interior-point methods, relaxation methods for nonlinear discrete optimization, sequential quadratic programming methods, optimal control and decomposition methods. Topic chosen in first class; different topics for individuals or groups possible. Individual or team projects. May be repeated for credit.

3 units, Aut (Murray)

CME 336. Linear and Conic Optimization with Applications—(Same as MS&E 314.) Linear, semidefinite, conic, and convex nonlinear optimization problems as generalizations of classical linear programming. Algorithms include the simplex method, interior-point methods, barrier function methods, cutting plane methods. Related convex analysis, including the separating hyperplane theorem, Farkas lemma, dual cones, optimality conditions, and conic inequalities. Complexity and/or computation efficiency analysis. Applications to max-cut problems, Markov chain mixing times, support vector machines for data mining and classification, graph partitioning, robust portfolio selection, and Euclidean distance geometry. Prerequisite: 211 or equivalent.

3 units (Ye) alternate years, given 2006-07

CME 338. Large-Scale Numerical Optimization—(Same as MS&E 318.) The main algorithms and software for constrained optimization emphasizing the sparse-matrix methods needed for their implementation. Iterative methods for linear equations and least squares. Interior methods. The simplex method. Factorization and updates. The reduced-gradient, augmented Lagrangian, and SQP methods. Recommended: MS&E 310, 311, 312, 314, or 315; CME 108 or 302.

3 units, Spr (Saunders)

CME 340. Computational Methods in Data Mining—Project course. Focus is on very large scale data mining. Topics include computational methods in supervised and unsupervised learning, association mining, and collaborative filtering. Individual or group applications-oriented programming project. Prerequisites: statistics and linear algebra at the level of MATH 103 and STATS 116; programming at the level of CS 108. Recommended: machine learning at the level of CS 229 or STATS 202.

3 units, Spr (Kamvar)

CME 342. Parallel Methods in Numerical Analysis—Emphasis is on techniques for obtaining maximum parallelism in numerical algorithms, especially those occurring when solving matrix problems and partial differential equations, and the subsequent mapping onto the computer. Implementation issues on parallel computers. Topics: parallel architecture, programming models, matrix computations, FFT, fast multiple methods, domain decomposition, and graph partitioning. Prerequisite: 302 or 200 (formerly ME 300A), or consent of instructor. Recommended: differential equations and advanced programming language such as C or C++.

3 units, Spr (Alonso)

CME 344. Pricing Algorithms and the Internet—(Same as MS&E 316.) Market equilibria: existence and efficiency of computation; and prices as duals of linear and convex programs. Applications in the context of the Internet such as routing and congestion control. Market design in electronic commerce. Algorithms for finding game theoretic solution concepts. Internet structure: power-law networks, models, games, and algorithms. Prerequisite: basic algorithms, optimization, and probability theory.

3 units (Saberi) alternate years, given 2006-07
3 units, Spr (Lew)

CME 348. Computational Molecular Modeling and Parallel Computing—(Enroll in ME 436.)
3 units, Spr (Darve)

CME 349. Models and Algorithms for Nanotechnology—(Enroll in MS&E 319.)
3 units, Win (Goel)

CME 380. Constructing Scientific Simulation Codes—Practical methods for writing and combining software components to generate simulation applications. Practical methodologies for constructing simulation code applications. How to design, write, and combine software components to generate simulation applications. Steering: using a small driver language like Python to script or steer the progress of a code. Data models and formats: how data is represented and shared inside an application and its external representation on disk. Mixed language programming using C, C++, F77, F90, and Python. Rational software engineering including testing, configuration control, code generation and makefiles. Other technologies needed to create real world applications regardless of scientific discipline.
3 units, Aut (Miller)

CME 390. Curricular Practical Training—May be repeated three times for credit.
1 unit, Aut, Win, Spr, Sum (Staff)

CME 400. Ph.D. Research
1-15 units, Aut, Win, Spr, Sum (Staff)

CME 500. Numerical Analysis and Computational and Mathematical Engineering Seminar—Weekly research lectures by experts from academia, national laboratories, industry, and doctoral students. May be repeated for credit.
1 unit, Aut, Win, Spr (Golub)

COMPUTER SCIENCE

Chair: William J. Dally
Assistant Chair for Education: Margaret Johnson
Associate Professor: Dan Boneh, Dawson Engler, Michael Genesereth, Daphne Koller, Nick McKeown, Serge A. Plotkin, Balaji Prabakaran, Mendel Rosenblum, Sebastian Thrun
Assistant Professor: Serafim Batzoglou, Ronald P. Fedkiw, Armando Fox, Scott Klemmer, Vladlen Koltun, Christoforos Kozyrakis, Philip Levis, Christopher Manning, David Mazieres, Andrew Ng, Tim Roughgarden
Professors (Research): Richard Fikes, John K. Salisbury
Professor (Teaching): Eric S. Roberts
Senior Lecturer: Margaret Johnson
Lecturers: Gerald Cain, Nicholas J. Parlante, Robert Plummer, Mehran Sahami, Patrick Young, Julie Zelenski
Acting Assistant Professor: Pei Cao
Courtesy Professors: Giovanni De Micheli, Bernd Girod, Martin Kay, Michael Levitt, Teresa Meng, Grigori Mints, Mark Musen, Clifford I. Nass, Fouad A. Tobagi
Courtesy Associate Professors: Russ Altman, Martin Fischer, John Gill, Dan Jurafsky, Oyekunle Olukotun
Consulting Associate Professor: Feng Zhao
Visiting Professor: Martin Abadi
Visiting Associate Professor: Tone Bratteteig, Christopher Bregler, Pedro Domingos
Visiting Assistant Professor: Hendrik Lensch
* Recalled to active duty.
Mail Code: 94305-9025
Phone: (650) 723-2273
Web Site: http://www.cs.stanford.edu/

Courses given in Computer Science have the subject code CS. For a complete list of subject codes, see Appendix.

The Department of Computer Science (CS) operates and supports computing facilities for departmental educational research, and administration needs. All CS students have access to the departmental student machine, a two CPU Dell PowerEdge 2850 Xeon, as well as computer labs with public workstations located in the Gates Building. In addition, most students have access to systems located in their research areas. Each research group in Computer Science has systems specific to its research needs. These systems include PCs, Macs, multi-CPU computer clusters, and file servers. Servers and workstations manufactured by SUN, SGI, Dell, and Apple are commonplace.

Support for course work and instruction is provided on systems available through Information Technology Systems and Services (ITSS).

UNDERGRADUATE PROGRAMS

The mission of Stanford’s undergraduate program in Computer Science is to provide a foundation of mathematics, science and engineering knowledge. Building on Stanford’s core ideals of liberal education, the program combines fundamentals with practical experience in problem solving, programming, communication, and collaboration, allowing each student to realize his or her individual potential.
Graduates of the program are prepared to pursue graduate study at the highest academic level, or advance into leadership positions in industry. The program creates an atmosphere that promotes innovative thinking, values mutual respect and diversity, supports scholarship and research, instills ethical behavior, and cultivates lifelong learning.

The department offers both a major and a minor in Computer Science. The requirements for these programs are outlined in the “School of Engineering” section of this bulletin and described in more detail in the Handbook for Undergraduate Engineering Programs published by the School of Engineering. The department has an honors program, which is described in the following section.

In addition to Computer Science itself, Stanford offers several interdisciplinary degrees with a substantial computer science component. The Computer Systems Engineering major (also in Engineering) allows the study of areas requiring a knowledge of both computer hardware and software, bridging the gap between traditional CS and Electrical Engineering majors. The Symbolic Systems major (in the School of Humanities and Sciences) offers an opportunity to explore computer science and its relationship to linguistics, philosophy, and psychology. Finally, the Mathematical and Computational Sciences major (also Humanities and Sciences) allows students to explore computer science along with more mathematics, statistics, and operations research.

HONORS

The Department of Computer Science (CS) offers an honors program for selected undergraduates whose academic records and personal initiative indicate that they have the necessary skills to undertake high-quality research in computer science. Admission to the program is by application only. To apply for the honors program, students must be majoring in Computer Science, have a grade point average (GPA) of at least 3.6 in courses that count toward the major, and achieve senior standing (135 or more units) by the end of the academic year in which they apply. Cterminal master’s students are eligible to apply as long as they have not already received their undergraduate degree. Beyond these requirements, students who apply for the honors program must also find a Computer Science faculty member who agrees to serve as the thesis adviser for the project. Thesis advisers must be members of Stanford’s Academic Council.

Students who meet the eligibility requirements and wish to be considered for the honors program must submit a written application to the CS undergraduate program office by May 1 of the year preceding the honors work. The application must include a letter describing the research project, a letter of endorsement from the faculty sponsor, and a transcript of courses taken at Stanford. Each year, a faculty review committee selects the successful candidates for honors from the pool of qualified applicants.

In order to receive departmental honors, students admitted to the honors program must, in addition to satisfying the standard requirements for the undergraduate degree, do the following:
1. Complete at least 9 units of CS 191 or 191W under the direction of their project sponsor.
2. Attend a weekly honors seminar Spring Quarter.
3. Complete an honors thesis deemed acceptable by the thesis adviser and at least one additional faculty member.
4. Present the thesis at a public colloquium sponsored by the department.
5. Maintain the 3.6 GPA required for admission to the honors program.

GRADUATE PROGRAMS

The University’s basic requirements for the M.S. and Ph.D. degrees are discussed in the “Graduate Degrees” section of this bulletin.

MASTER OF SCIENCE

In general, the M.S. degree in Computer Science is intended as a terminal professional degree and does not lead to the Ph.D. degree. Most students planning to obtain the Ph.D. degree should apply directly for admission to the Ph.D. program. Some students, however, may wish to complete the master’s program before deciding whether to pursue the Ph.D. To give such students a greater opportunity to become familiar with research, the department has instituted a program leading to a master’s degree with distinction in research. This program is described in more detail in a subsequent section.

Applications for admission to the M.S. program, and all of the required supporting documents, must be received by December 13, 2005. Exceptions are made for applicants who are already students at Stanford and are applying to the cterminal program. Information on these deadlines is available from the department.

For University cterminal degree program rules and University application forms, see http://registrar.stanford.edu/publications/#/Coterm.

REQUIREMENTS

A candidate is required to complete a program of 45 units. At least 36 of these must be graded units, passed with a grade point average (GPA) of 3.0 (B) or better. The 45 units may include no more than 21 units of courses from those listed below in Requirements 1 and 2. Thus, students needing to take more than seven of the courses listed in Requirements 1 and 2 actually complete more than 45 units of course work in this program. Only extremely well-prepared students may expect to finish the program in one year; most complete the program in six quarters. Students hoping to complete the program with 45 units should already have a substantial background in computer science, including course work or experience equivalent to all of Requirement 1 and some of the courses in Requirement 2.

Requirement 1 — The following courses may be needed as prerequisites for other courses in the program: CS 103X, 107, 108; EE 108B; MATH 109 or 120.

Requirement 2 — Students must demonstrate breadth of knowledge in the field by completing the following courses:
1. Area A: Mathematical and Theoretical Foundations:
 a) Required:
 1) Statistics (STATS 116 or MS&E 220 or CME 106)
 2) Algorithms (CS 161)
 3) Automata (CS 154)
 b) Choose one of:
 1) Numerical Analysis (CME 108 or 302)
 2) Logic (CS 156, 157, 258, or PHIL 251)
 3) Mathematical Methods (CS 205)
2. Area B: Computer Systems:
 a) Required: Architecture (EE 108B or 282)
 b) Choose two of:
 1) Operating Systems (CS 140)
 2) Compilers (CS 143)
 3) Introduction to Computer Networks (CS 244A or EE 284)
3. Area C: AI and Applications:
 a) Choose two of the following, with at least one 200-level course:
 1) AI (CS 121 or 221)
 2) Databases (CS 145 or 245)
 3) Graphics (CS 148 or 248)

Individual specializations may narrow the set of choices in specific areas of the breadth requirement; see the individual specialization sheets in the department office for details. Breadth courses are waived only if evidence is provided that similar or more advanced courses have been taken, either at Stanford or another institution. Courses that are waived rather than taken may not be counted toward the M.S. degree. Breadth courses may be taken on a satisfactory/no credit basis provided that a minimum of 36 graded units is presented within the 45-unit program.

Requirement 3 — At least 1 but no more than 3 units of 500-level seminars must be taken.

Requirement 4 — A program of 21 units in an area of specialization must be completed. All courses in this area must be taken for letter grades. Seven approved programs are listed below. Students may propose to the M.S. program committee other coherent programs that meet their goals and satisfy the basic requirements.
1. Numerical Analysis/Scientific Computation
 a) CME 302, 306, 326
 b) at least two of: CS 205; MS&E 121; MATH 131, 132, 220A, B, 220C; STATS 200
 c) at least two of: CS 223A, 327A, 328, 339; CME 324, 342; AA 214A, B, STATS 227

2. Systems
 a) CS 240, 242
 b) at least three of: CS 243, 244A, 245, 248, 348B; EE 271, 275
 c) at least 6 more units selected from: '2b' and from the following: CS 194, 222, 240C, 240D, 241, 244B, 244C, 246, 249, 255, 259, 262, 270, 271, 272, 276, 295, 315A, 341, 343, 344A, 344B, 345, 346, 347, 348A, 349, 374, 448; EE 384A, 384B, 384C, 384S, 384Y

3. Software Theory
 a) CS 242, 243, 256, 258
 b) at least one of: CS 244A, 245, 295, 343, 345
 c) at least one course from the following: CS 255, 259, 261, 351, 355, 356, 361A, 361B, 365, 368
 d) At least one additional course selected from: '3b', '3c', CS 346

4. Theoretical Computer Science
 a) CS 256, 258, 261 (361A, 361B, or 365 may be substituted for 261)

5. Artificial Intelligence
 a) at least four of: CS 222, 223A, 223B, 224M, 224N, 224S, 224U, 226, 227, 228, 229
 b) A total of 21 units from the above and from the following: CS 205, 206, 225A, 225B, 227B, 246, 256, 262, 270, 273, 274, 276, 277, 294, 321, 323, 324, 327A, 328, 329, 374, 377, *379*, ECON 286; EE263, 376A; ENGR 205, 209A; LINGUIST 238; MS&E 251, 252, 339, 351, 352, 353; PSYCH 202, 205; STATS 202, 315A, 315B

6. Human-Computer Interaction
 a) CS 147, 247; MS&E 430
 b) at least 6 units from: CS 148 or 248, 376, 377 (may be taken repeatedly), 378, 447
 c) A total of 21 units from the above and from the following: COMM 268, 269, 272; CS 249, 270, 271, 272, 348A, B, 448; MS&E 234, 284; LINGUIST 238; ME 101, 115, 313, 314; PSYCH 205, 221, 252

7. Real-World Computing
 a) at least two of: CS 223A, 223B, 248
 b) at least three of: CS 205, 226, 249, 262, 277, 348A, 348B, 368, 374
 c) A total of 21 units from the above and from the following: CME 324; CS 225A, 225B, 228, 229, 247, 270, 271, 272, 273, 274, 294, 327A, 328, 448; PSYCH 267

* With consent of specialization chair.

Requirement 5—Additional elective units must be technical courses (numbered 100 or above) related to the degree program and approved by the adviser. Elective courses may be taken on a satisfactory/no credit basis provided that a minimum of 36 graded units is presented within the 45-unit program.

MASTER OF SCIENCE WITH DISTINCTION IN RESEARCH

A student who wishes to pursue the M.S./CS with distinction in research must first identify a faculty adviser who agrees to supervise and support the research work. The research adviser must be a member of the Academic Council and must hold an appointment in Computer Science. The student and principal adviser must also identify another faculty member, who need not be in the Department of Computer Science, to serve as a secondary adviser and reader for the research report. In addition, the student must complete the following requirements beyond those for the regular M.S./CS degree:

1. Research Experience: the program must include significant research experience at the level of a half-time commitment over the course of three academic quarters. In any given quarter, the half-time research commitment may be satisfied by a 50 percent appointment to a departmentally supported research assistantship, 6 units of independent study (CS 393, 395, or 399), or a prorated combination of the two (such as a 25 percent research assistantship supplemented by 3 units of independent study). This research must be carried out under the direction of the primary or secondary adviser.

2. Supervised Writing and Research: in addition to the research experience outlined in the previous requirement, students must enroll in at least 3 units of independent research (CS 393, 395, or 399) under the direction of their primary or secondary adviser. These units should be closely related to the research described in the first requirement, but focused more directly on the preparation of the research report described in the next section. Note that the writing and research units described in parts (1) and (2) must be taken in addition to the 21 units required for the specialization, although they do count toward the 45 units required for the degree.

3. Research Report: students must complete a significant report describing their research and its conclusions. The research report represents work that is publishable in a journal or at a high-quality conference, although it is presumably longer and more expansive in scope than a typical conference paper. Two copies of the research report must be submitted to the Student Services office in the department three weeks before the beginning of the examination period in the student’s final quarter. Both the primary and secondary adviser must approve the research report before the distinction-in-research designation can be conferred.

DOCTOR OF PHILOSOPHY

Applications to the Ph.D. program and all supporting documents must be received by December 13, 2005. See http://cs.stanford.edu/admissions/ for complete information; changes or updates to the admission process are posted by September and October, 2005. The following are general department requirements; see the Computer Science Ph.D. administrator for details.

1. A student should plan and successfully complete a coherent program of study covering the basic areas of computer science and related disciplines. The student’s adviser has primary responsibility for the adequacy of the program, which is subject to review by the Ph.D. program committee.

2. Each student, to remain in the Ph.D. program, must satisfy the breadth requirement covering introductory level graduate material in major areas of computer science. Once a student fulfills six of eight whole areas of the breadth requirement, he or she may apply for admission to candidacy for the Ph.D. prior to the second year in the program. The student must completely satisfy the breadth requirement by the end of nine quarters (excluding summers), and must pass a qualifying exam in the general area of the expected dissertation.

3. As part of the training for the Ph.D., the student is required to complete at least 4 units (a unit is 10 hours per week for one quarter) as a teaching assistant or instructor for courses in Computer Science numbered 100 or above.

4. The most important requirement is the dissertation. After passing the required qualifying examination, each student must secure the agreement of a member of the department faculty to act as the dissertation adviser. (In some cases, the dissertation adviser may be in another department.)

5. The student must pass a University oral examination in the form of a defense of the dissertation. It is usually held after all or a substantial portion of the dissertation research has been completed.

6. The student is expected to demonstrate the ability to present scholarly material orally, both in the dissertation defense and by a lecture in a department seminar.

7. The dissertation must be accepted by a reading committee composed of the principal dissertation adviser, a second member from within the department, and a third member chosen from within the University. The principal adviser and at least one of the other committee members must be Academic Council members.
PH.D. MINOR

For a minor in Computer Science, a candidate must complete 20 unduplicated units of computer science course work numbered 200 or above. At least three of the courses have to be master’s core courses to provide breadth and one course numbered 300 or above to provide depth. Each of the courses taken must include a significant programming project to demonstrate programming efficiency. All courses must be taken for a letter grade and passed with a grade “B” or better.

TEACHING AND RESEARCH ASSISTANTSHIPS

Graduate student assistantships are available. Half-time assistants receive a tuition scholarship for 8, 9, or 10 units per quarter during the academic year, and in addition receive a monthly stipend.

Duties for half-time assistants during the academic year involve approximately 20 hours of work per week. Teaching assistants (TAs) help an instructor teach a course by conducting discussion sections, consulting with students, grading examinations, and so on. Research assistants (RAs) help faculty and senior staff members with research in computer science. Most teaching and research assistantships are held by Ph.D. students in the Department of Computer Science. If there is an insufficient number of Ph.D. students to staff teaching and research assistantships, then these positions are open to a limited number of master’s students in the department. However, master’s students should not plan on being appointed to an assistantship.

Students with fellowships may have the opportunity to supplement their stipends by serving as graduate student assistants.

COURSES

WIM indicates that the course satisfies the Writing in the Major requirement. (AU) indicates that the course is subject to the University Activity Unit limitations (8 units maximum).

GUIDE TO SELECTING INTRODUCTORY COURSES

Students arriving at Stanford have widely differing backgrounds and goals, but most find that the ability to use computers effectively is beneficial to their education. The department offers many introductory courses to meet the needs of these students.

For students whose principal interest is an exposure to the fundamental ideas behind computer science and programming, CS 105 is the most appropriate course. It is intended for students in nontechnical disciplines who expect to make some use of computers, but who do not expect to go on to more advanced courses. CS 105 meets the General Education Requirement in Engineering and Applied Sciences and includes an introduction to programming and the use of modern Internet-based technologies. Students interested in learning to use the computer should consider CS 1C, Introduction to Computing at Stanford.

Students who intend to pursue a serious course of study in computer science may enter the program at a variety of levels, depending on their background. Students with little prior experience or those who wish to take more time to study the fundamentals of programming should take 106A followed by 106B. Students in 106A need not have prior programming experience. Students with significant prior exposure to programming or those who want an intensive introduction to the field should take 106X, which covers most of the material in 106A and B in a single quarter. CS106A uses Java as its programming language; CS106B and X use C++. No prior knowledge of these languages is assumed, and the prior programming experience required for 106X may be in any language. In all cases, students are encouraged to discuss their background with the instructors responsible for these courses.

After the introductory sequence, Computer Science majors and those who need a significant background in computer science for related majors in engineering should take 103, 107 and 108. CS 103 offers an introduction to the mathematical and theoretical foundations of computer science. CS 107 exposes students to a variety of programming paradigms that illustrate critical strategies used in systems development; 108 builds on this material, focusing on the development of large interactive programs based on the object-oriented programming paradigm.

In summary:
For exposure: 1C
For nontechnical use: 105
For scientific use: 106A
For a technical introduction: 106A
For significant use: 106A,B or 106X, along with 103, 107, and 108

NUMBERING SYSTEM

The first digit of a CS course number indicates its general level of sophistication:
- 1-99 service courses for nontechnical majors
- 100-199 other service courses, basic undergraduate
- 200-299 advanced undergraduate/beginning graduate
- 300-399 advanced graduate
- 400-499 experimental
- 500-599 graduate seminars

The tens digit indicates the area of Computer Science it addresses:
- 00-09 Introductory, miscellaneous
- 10-19 Hardware Systems
- 20-29 Artificial Intelligence
- 30-39 Numerical Analysis
- 40-49 Software Systems
- 50-59 Mathematical Foundations of Computing
- 60-69 Analysis of Algorithms
- 70-79 Typography and Computational Models of Language
- 90-99 Independent Study and Practicum

NONMAJOR

CS 1C. Introduction to Computing at Stanford — For those with limited experience on computers or who want to learn more about Stanford’s computing environment. The basics of computing, and a variety of programs. Topics include email, word processing, spreadsheets, the web and the Internet, and computing resources at Stanford. Macintosh and PC systems. One-hour lecture/demonstration in dormitory clusters prepared and administered weekly by the Resident Computer Coordinator (RCC). Final project. Not a programming course.
1 unit, Aut (Ly)

CS 2C. Intermediate Computing at Stanford — Continuation of 1C. Topics: sound, movie and image editing, advanced web pages. Applications include: Audacity, Dreamweaver, Photoshop, and PowerPoint. One-hour lecture/demonstration in dormitory clusters prepared and administered weekly by the Resident Computer Coordinator (RCC). Final project. Not a programming course.
1 unit, Win (Ly)

CS 26N. Motion Planning for Robots, Digital Actors, and Other Moving Objects — Stanford Introductory Seminar. Preference to freshmen. Introduction to motion planning theory and computational approaches. Intriguing algorithms, representations, and applications. Terminology and concepts to enable students to read motion planning research literature. Problems may include: how a robot arm manipulates parts without colliding with its environment; how many maneuvers are required to park a car in a tight spot; how characters in computer games avoid running into obstacles; and how molecules change shapes to perform biological functions. GER:DB-EngrAppSci
3 units, Spr (Latombe)
3 units, Aut (Boneh)

3 units, Spr (Wiederhold, Barr, Tessler)

CS 74N. Digital Dilemmas — Stanford Introductory Seminar. Preference to freshmen. The history and evolution of computing and communication technology, and how it affects the fabric of society. Topics: the military-academic-industrial research complex, the Cold War, and the public good; intellectual property and the Internet; the balance between individual privacy and freedom and the security and stability of the state, and the effect of strong cryptography on this balance. Guest speakers; field trips. GER:DB-EngrAppSci
3 units, Aut (Dill)

UNDERGRADUATE

3 units, Aut, Win (Plummer)

CS 103B. Discrete Structures — Continuation of 103A. Topics: analysis of algorithms, recurrence relations, mathematical formulations of basic data models (sets, relations, linear models, trees and graphs), regular expressions, grammars, and finite automata. Corequisite: 106B or X. GER:DB-Math
3 units, Win (Johnson), Spr (Koltun)

CS 103X. Discrete Structures (Accelerated) — Covers the material in 103A and B in a single quarter. Students who take 103X should feel comfortable with mathematical formalism and be willing to solve mathematically demanding problems. GER:DB-Math
3-4 units, Win (Cain)

CS 105. Introduction to Computers — For non-technical majors. What computers are and how they work. Practical experience in programming. Construction of computer programs and basic design techniques. A survey of Internet technology and the basics of computer hardware. Students in technical fields and students looking to acquire programming skills should take 106A or 106X. Students with prior computer science experience at the level of 106 or above require consent of instructor. Prerequisite: minimal math skills. GER:DB-EngrAppSci
3-5 units, Aut, Spr (Young)

CS 106A. Programming Methodology — Introduction to the engineering of computer applications emphasizing modern software engineering principles: object-oriented design, decomposition, encapsulation, abstraction, and testing. Uses the Java programming language. Emphasis is on good programming style and the built-in facilities of the Java language. No prior programming experience required. GER:DB-EngrAppSci
3-5 units, Aut, Spr (Roberts), Win (Young), Sum (Staff)

CS 106B. Programming Abstractions — Abstraction and its relation to programming. Software engineering principles of data abstraction and modularity, Object-oriented programming, fundamental data structures (such as stacks, queues, sets) and data-directed design. Recursion and recursive data structures (linked lists, trees). Introduction to time and space complexity analysis. Uses the programming language C++ covering its basic facilities. Prerequisite: 106A or consent of instructor. GER:DB-EngrAppSci
3-5 units, Win (Sahami), Spr (Zelenski)

CS 106X. Programming Methodology and Abstractions (Accelerated) — Intensive; 106A,B in one quarter. Students who complete 106A should enroll in 106B; 106X may be taken after 106A only with consent of instructor. Uses the C++ programming language. How programming concepts are expressed in C++. Abstraction and its relation to programming. Software engineering principles of data abstraction and modularity. Object-oriented programming, fundamental data structures (such as stacks, queues, sets) and data-directed design. Recursion and recursive data structures (linked lists, trees). Introduction to time and space complexity analysis. Prerequisite: substantial programming experience that allows ready understanding of concepts presented in 106A. GER:DB-EngrAppSci
3-5 units, Aut (Sahami), Sum (Staff)

CS 107. Programming Paradigms — Advanced memory management features of C and C++; the differences between imperative and object-oriented paradigms. The functional paradigm (using LISP) and concurrent programming (using C and C++). Brief survey of other modern languages such as Python, Objective C, and C#. GER:DB-EngrAppSci
3-5 units, Aut, Spr (Cain)

CS 107L. Programming Paradigms Laboratory — Advanced C++ topics beyond the scope of 107. Topics: advanced memory management; placement new; manual destruction; operator overloading; STL template containers; algorithms; iterators; single and multiple inheritance; class hierarchy design; and C++ pitfalls.
1 unit, Aut, Spr (Cain)

CS 108. Object-Oriented Systems Design — Software design and construction in the context of large OOP libraries. Taught in Java. Topics: review of OOP, the structure of Graphical User Interface (GUI) OOP libraries, GUI application design and construction, OOP software engineering strategies, approaches to programming in teams. Prerequisite: 107. GER:DB-EngrAppSci
3-4 units, Aut, Win (Parlante)

CS 121. Introduction to Artificial Intelligence — (Only one of 121/221 counts towards any CS degree program.) Concepts, representations, and techniques used in building practical computational systems (agents) that appear to display artificial intelligence (AI), through the use of adaptive information processing algorithms. Topics: history of AI, reactive systems, heuristic search, planning, constraint satisfaction, knowledge representation and uncertain reasoning, machine learning, classification, applications to language, and vision. Prerequisites: 103B or X, and facility with differential calculus, vector algebra, and probability theory. GER:DB-EngrAppSci
3 units, Win (Latombe), Sum (Staff)

CS 137. Introduction to Scientific Computing — (Enroll in CME 108.)
3-4 units, Win (Golub)

CS 140. Operating Systems and Systems Programming — Operating systems design and implementation. Basic structure; synchronization and communication mechanisms; implementation of processes, process management, scheduling, and protection; memory organization and management, including virtual memory; I/O device management, secondary storage, and file systems. Prerequisite: 108. GER:DB-EngrAppSci
3-4 units, Aut, Win (Rosenblum)

CS 143. Compilers — Principles and practices for design and implementation of compilers and interpreters. Topics: lexical analysis; parsing theory (LL, LR, and LALR parsing); symbol tables; type systems; scoping, semantic analysis; intermediate representations, runtime environments; and code generation. Students construct a compiler for a simple object-oriented language during course programming projects. Prerequisites: 103B or X, and 107. GER:DB-EngrAppSci
3-4 units, Aut (Atken), Win (Cain) Sum (Staff)

CS 145. Introduction to Databases — Database design and use of database management systems for applications. The relational model, relational algebra, and SQL, the standard language for creating, query-
CS 147. Introduction to Human-Computer Interaction Design — Usability and affordances, direct manipulation, systematic design methods, user conceptual models and interface metaphors, design languages and genres, human cognitive and physical ergonomics, information and interactivity structures, design tools and environments. Structured around a set of case studies in which notable interface designs and projects illustrate underlying principles. Design exercises. Prerequisite: 106A or equivalent background in programming.
3-4 units, Aut (Winograd)

3 units, Aut (Johnson), Sum (Staff)

CS 154. Introduction to Automata and Complexity Theory — Regular sets: finite automata, regular expressions, equivalences among notions, methods of proving a language not to be regular. Context-free languages; grammars, pushdown automata, normal forms for grammars, proving languages non-context-free. Turing machines: equivalent forms, undecidability, Nondeterministic Turing machines: properties, the class NP, complete problems for NP, Cook’s theorem, reductions among problems. Prerequisites: 103B or X. GER:DB-EngrAppSci
3-4 units, Aut (Dill), Spr (Motwani)

CS 154N. Introduction to NP Completeness — Turing machines: equivalent forms, undecidability. Nondeterministic Turing machines: properties, the class NP, complete problems for NP, Cook’s theorem, reductions among problems. Students participate in approximately the last half of 154. Prerequisite: a knowledge of formal languages and automata as in the first part of 154.
2 units, Aut (Dill), Spr (Motwani)

CS 155. Computer and Network Security — For seniors and first-year graduate students. Principles of computer systems security. Attack techniques and how to defend against them. Topics include: network attacks and defenses, operating system holes, application security (web, email, databases), viruses, social engineering attacks, privacy, and digital rights management. Course projects focus on building reliable code. Prerequisite: 140. Recommended: basic Unix. GER:DB-EngrAppSci
3 units, Spr (Boneh, Mitchell)

CS 156. Calculus of Computation — Methods to automate software analysis and development. Verification: methods for proving program correctness; the need for decision procedures; algorithms that decide the validity of logical formulas. Topics: decision procedures and their complexity; decision procedures for common theories in program analysis such as SAT; recursive data structures, arrays, and arithmetic; methods to combine decision procedures for different theories. Theorem proving (automated deduction), and combination of theorem proving and decision procedures. Students apply procedures to the analysis of programs and protocols. Prerequisites: 103, 106, or equivalents. GER:DB-EngrAppSci
3-4 units, Aut (Manna, Sipma)

CS 157. Logic and Automated Reasoning — An elementary exposition from a computational point of view of propositional and predicate logic, axiomatic theories, and theories with equality and induction. Interpretations, models, validity, proof, strategies, and applications. Automated deduction: polarity, skolemization, unification, resolution, equality. Prerequisite: 103B or X. GER:DB-EngrAppSci
3-4 units, Aut (Gereseth)

3-4 units, Aut (Pothkin), Win (Roughgarden), Sum (Staff)

CS 162. Introduction to Combinatorics and its Applications — Enroll in MATH 108.
3 units, Aut (Thiem)

CS 191. Senior Project — Restricted to Computer Science and Computer Systems Engineering students. Group or individual projects under faculty direction. Register using instructor’s section number. A project can be either a significant software application or publishable research. Software application projects include substantial programming and modern user-interface technologies and are comparable in scale to shareware programs or commercial applications. Research projects may result in a paper publishable in an academic journal or presentable at a conference. Required public presentation of final application or research results.
1-6 units, Aut, Win, Spr, Sum (Staff)

CS 191W. Writing Intensive Senior Project — Restricted to Computer Science and Computer Systems Engineering students. Writing-intensive version of CS191. Register using the section number of an Academic Council member. WIM
3-6 units, Aut, Win, Spr (Staff)

CS 192. Programming Service Project — Restricted to Computer Science students. Appropriate academic credit (without financial support) is given for volunteer computer programming work of public benefit and educational value.
1-4 units, Aut, Win, Spr, Sum (Staff)

CS 193C. Client-Side Internet Technologies — JavaScript, document object model, Flash, HTML, cascading style sheets, and XML. Prerequisite: programming experience at the level of CS 106A. GER: DB-EngrAppSci
3 units, Win (Kleper)

CS 193D. Professional Software Development with C++ — C++ programming techniques and methodologies. Language concepts including object-oriented design, memory management, and the standard library. Modern software development concepts such as design patterns, test-driven development, extreme programming, and XML. Prerequisites: basic C++ or significant experience in C or Java. GER:DB-EngrAppSci
3 units, Win (Kleper)

CS 193E. Object-Oriented User Interface Programming — Hands-on project using the Cocoa frameworks for the Mac OS X platform. The essentials of designing and implementing graphical applications using Cocoa tools and APIs. Topics include: object-oriented event-driven programming; Objective-C language; development tools such as Interface Builder, ProjectBuilder, and debugging and profiling tools; APIs for the foundation and application kits; and the Quartz graphic system. Requirements: C language and programming experience at the level of 106B/X. Recommended: UNIX, object-oriented programming, and graphical toolkits. GER:DB-EngrAppSci
3 units, Spr (Staff)
CS 193L. Internet Technologies—Programmer-oriented survey of the authoring, distributing, and browsing technologies. The role, use, and implementation of current Internet tools. Topics: TCP/IP, namespace, connections, and protocols. Client/server structures. Web/HTTP/HTML techniques for text, images, links, and forms. Server-side programming, CGI scripts. Security and privacy issues. Programming projects on client- and server-side may be in Perl or Java. Languages are introduced as needed. Emphasis is on understanding, exploiting, and extending Internet technologies. Prerequisites: programming fundamentals at the level of 106B or 106X, and the ability to build and debug programs in a Unix environment. GER:DB-EngrAppSci
3 units (Staff) not given 2005-06

CS 193N. C# and the .NET Platform—Programming in the object-oriented language C#. Software development for the .NET platform including: Windows forms, graphics using GD1+, building custom controls, data access with ADO.NET, developing software for the Internet. Prerequisite: object-oriented programming experience. GER: DB-EngrAppSci
3 units (Plummer) not given 2005-06

CS 194. Software Project—Design, specification, coding, and testing of a significant team programming project under faculty supervision. Documentation includes a detailed proposal and development plan. Public demonstration of the project at the end of the quarter. Prerequisite: 108.
3 units (Staff) not given 2005-06

CS 196. Microcomputer Consulting—Macintosh and PC systems. Topics: hardware, operating systems, networking, troubleshooting, computer and network security, and consulting methodology. On-campus computing environments. Final project. Prerequisite: IC or equivalent.
2 units, Win, Spr (Ly)

CS 198. Teaching Computer Science—Students lead a discussion section of 106A while learning how to teach a programming language at the introductory level. Focus is on teaching skills, techniques, and course specifics. Application and interview required; email cs198@cs for information. Prerequisite: 106B or X.
4 units, Aut, Win (Johnson, Chang, Zhao), Spr (Johnson, Zhao)

CS 198P. Special Projects on the Teaching of Computer Science—Restricted to current or former CS 198 section leaders. Project design and implementation to support infrastructure and educational goals of 198.
1-2 units, Aut, Win, Spr (Johnson)

CS 199. Independent Work—Special study under faculty direction, usually leading to a written report. Letter grade given; if this is not appropriate, enroll in 199P. Register using the section number associated with the instructor.
1-6 units, Aut, Win, Spr, Sum (Staff)

CS 199P. Independent Work
1-6 units, Aut, Win, Spr, Sum (Staff)

UNDERGRADUATE AND GRADUATE

CS 201. Computers, Ethics, and Social Responsibility—Primarily for majors entering computer-related fields. Ethical and social issues related to the development and use of computer technology. Ethical theory, and social, political, and legal considerations. Scenarios in problem areas: privacy, reliability and risks of complex systems, and responsibility of professionals for applications and consequences of their work. Prerequisite: 106B or X. WIM
3-4 units, Spr (Johnson)

CS 202. Law for Computer Science Professionals—Essential legal topics for the computer science professional including: intellectual property law as it relates to computer science including copyright registration, patents, and trade secrets; contract issues such as non-disclosure/non-compete agreements, license agreements, and works-made-for-hire; dispute resolution; and principles of business formation and ownership. Emphasis is on topics of current interest such as open source and the free software movement, peer-to-peer sharing, encryption, data mining, and spam.
1 unit, Aut (Hansen)

CS 204. Computers and Law—Laws of computer-mediated activity and the development of computational solutions enabling users to understand, utilize, exploit, and obey these laws. Publishing, licensing, and distribution of web content and software, business contracts and processes, and web services. Formalization and translation of laws and regulations, business rules, and contracts, integration of overlapping systems of authority, and monitoring of transactions. Existing tech-nology, including XML-based languages, transactional and other logic systems, partial programs, and planning techniques.
2-3 units, Spr (Genesereth)

CS 205. Mathematical Methods for Robotics, Vision, and Graphics—Overview of continuous mathematics background necessary for research in robotics, vision, and graphics. Possible topics: linear algebra; the conjugate gradient method; ordinary and partial differential equations; vector and tensor calculus; calculus of variations. Prerequisites: 106B or X; MATH 51 and 113; or equivalents.
3 units, Aut (Fedkiw)

CS 206. Technical Foundations of Electronic Commerce—Topics include: searching hyperlinked structures; data mining; online auctions and other trading mechanisms; safe exchange; copyright protection and security; online payment mechanisms; web software infrastructure; personalization and user tracking; integration of catalogs and other trading information. Prerequisites: basic concepts covered in 103 and 107, or equivalent courses; ability to follow simple combinatorial, probabilistic, and algorithmic arguments.
3 units (Staff) not given 2005-06

CS 212. Computer Architecture and Organization—(Enroll in EE 282.)
3 units, Aut (Kozyrakis)

CS 221. Artificial Intelligence: Principles and Techniques—(Only one of 121 or 221 counts towards any CS degree program.) Topics: search, planning, constraint satisfaction, knowledge representation, probabilistic models, machine learning, neural networks, vision, robotics, and natural language understanding. Prerequisites: 103B or X, or PHIL 160A, 106B, or 106X, and exposure to probability. Recommended: 107 and facility with basic differential calculus.
3-4 units, Aut (Koller, Ng)

CS 222. Knowledge Representation—Declarative knowledge representation methods in artificial intelligence. Topics: time and action, defaults, compositional modeling, object-oriented representation, inheritance, ontologies, knowledge on the web, knowledge servers, multiple views, qualitative modeling. Prerequisite: familiarity with logic. Recommended: exposure to artificial intelligence as in 121/221.
3 units (Staff) not given 2005-06

CS 223A. Introduction to Robotics—Topics: robotics foundations in kinematics, dynamics, control, motion planning, trajectory generation, programming and design. Recommended: matrix algebra.
3 units, Win (Roth)

CS 223B. Introduction to Computer Vision—Fundamental issues and techniques of computer vision. Image formation, edge detection and image segmentation, stereo, motion, shape representation, recognition. Project or final.
3 units, Win (Thrun)

CS 224M. Multi-Agent Systems—For advanced undergraduates, and M.S. and beginning Ph.D. students. Topics: logics of knowledge and belief, other logics of mental state, theories of belief change, multi-agent probabilities, essentials of game theory, social choice and mechanism design, multi-agent learning, communication. Applications discussed as appropriate, but emphasis is on conceptual matters and theoretical foundations. Prerequisites: basic probability theory and first-order logic.
3 units (Shoham) not given 2005-06
CS 224N. Natural Language Processing—(Same as LINGUIST 280.) Methods for processing linguistic information and the underlying computational properties of natural languages. Syntactic and semantic processing from a linguistic and an algorithmic perspective. Focus is on modern quantitative techniques in NLP: using large corpora, statistical models for acquisition and interpretation, and representational systems. Prerequisites: CS 121/221 or LINGUIST 180, programming experience, familiarity with logic and probability.

3-4 units, Spr (Manning)

CS 224S. Speech Recognition and Synthesis—(Same as LINGUIST 181/281.) Introduction to automatic speech recognition and speech synthesis/text-to-speech. Focus is on key algorithms including noisy channel model, hidden Markov models (HMMs), Viterbi decoding, N-gram language modeling, unit selection synthesis, and roles of linguistic knowledge. Prerequisite: programming experience. Recommended: familiarity with probability.

2-4 units, Win (Jaraisky)

CS 224U. Natural Language Understanding—(Same as LINGUIST 188/288.) Machine understanding of natural language. Computational semantics (determination of sense, event structure, thematic role, time, aspect, synonymy/meronymy, causation), and computational pragmatics and discourse (coherence relations, anaphora resolution, information packaging, generation). Theoretical issues, online resources, and relevance to question answering, summarization, and inference. Prerequisites: one of LINGUIST 180, CS 224N,S; and LINGUIST 130A or B, or knowledge of logic.

2-4 units, Win (Jaraisky, Peters)

CS 225A. Experimental Robotics—Hands-on. Topics: kinematic and dynamic control of motion, compliant motion and force control, sensor-based collision avoidance, motion planning, dynamic skills, and robot-human interfaces. Limited enrollment. Prerequisite: 223A.

3 units, Spr (Khatib)

CS 225B. Robot Programming Laboratory—Hands-on introduction to the techniques of robot programming for robotics and non-robotics students. Series of guided exercises in which students program mobile robots to exhibit increasingly complex behavior (simple dead reckoning and reactivity, goal-directed motion, localization, complex tasks). Topics: basics of motor control and sensor characteristics; sensor fusion, model construction, and robust estimation; control regimes (subsumption, potential fields); active perception; reactive planning architectures; various topics in sensor-based control, including vision-guided navigation. Student programmed robot contest. Programming is in C++ on Unix or Windows machines, done in teams. Prerequisites: basic programming skills at the level of 106B, 106X, 205, or equivalent.

3-4 units (Konolige) not given 2005-06

3 units, Win (Thrun)

CS 227. Reasoning Methods in Artificial Intelligence—Technical presentation of algorithmic techniques for problem solving in AI. Combines formal algorithmic analysis with a description of recent applications. Topics: propositional satisfiability, constraint satisfaction, planning and scheduling, diagnosis and repair. Focus is on recent results. Prerequisites: familiarity with the basic notions in data structures and design and with techniques in the design and analysis of algorithms. Recommended: previous or concurrent course in AI.

3 units, Spr (Nayak)

CS 228B. General Game Playing—A general game playing system accepts a formal description of a game to play it without human intervention or algorithms designed for specific games. Hands-on introduction to these systems and artificial intelligence techniques such as knowledge representation, reasoning, learning, and rational behavior. Students create GGP systems to compete with each other and in external competitions. Prerequisite: programming experience. Recommended: 103 or equivalent.

3 units, Spr (Genesereth)

CS 228P. Probabilistic Models in AI Extension (Programming)—Programming extension for CS 228. Hands-on experience with basic techniques. Final project allows open-ended exploration of one or more algorithms, or an application of methods to a problem. C++ programming with significant infrastructure. Corequisite: 228.

1-2 units, Win (Koller, Elidan)

1-2 units, Win (Staff)

CS 229. Machine Learning—Topics: statistical pattern recognition, linear and non-linear regression, non-parametric methods, exponential family, GLIMs, support vector machines, kernel methods, model/feature selection, learning theory, VC dimension, clustering, density estimation, EM, dimensionality reduction, ICA, PCA, reinforcement learning and adaptive control, Markov decision processes, approximate dynamic programming, and policy search. Prerequisites: linear algebra, and basic probability and statistics.

3 units, Aut (Ng)

CS 237A. Numerical Linear Algebra—(Enroll in CME 302.)

3 units, Aut (Golub)

CS 237C. Numerical Solution of Partial Differential Equations—(Enroll in CME 306.)

3 units, Spr (Fedkiw)

CS 238. Parallel Methods in Numerical Analysis—(Enroll in CME 342.)

3 units, Spr (Alonso)

CS 240. Advanced Topics in Operating Systems—OS topics and recent developments in OS research. Classic and new papers. Topics: virtual memory management, synchronization and communication, file systems, protection and security, operating system extension techniques, fault tolerance, and the history and experience of systems programming. Prerequisite: 140 or equivalent.

3 units, Aut, Spr (Engler)

CS 240C. Advanced Operating Systems Implementation—Operating system techniques for meeting the performance, security, flexibility, and robustness needs of demanding applications. Review of hardware/software interface and traditional operating system concepts. Recent operating systems research. Lab to apply concepts. Students work with a minimal operating system capable of running on standard PC hardware. Operating system written in C with some assembly. Prerequisite: 140 or consent of instructor.

3 units, Aut (Mazieres)
CS 240D. Distributed Storage Systems—File system implementation, low-level database storage techniques, and distributed programming. File system structures, journaling and logging, I/O system performance, RAID (redundant arrays of inexpensive disks), remote procedure call abstraction, and systems illustrating these concepts. File systems, distributed computing, replication and consistency, fault tolerance, and crash recovery. Programming assignments. Final project to build a functioning Unix file system. Prerequisites: C++ and familiarity with Unix; 140 or consent of instructor.
3 units, Win (Mazieres)

CS 241. Internet Technologies and Systems—Architecture, design, and implementation of Internet-scale services and applications. Scalability, high availability, fault tolerance, and robustness for Internet services. Cluster-based runtime systems for Internet workloads, implementation and deployment challenges, economics of deploying and operating a service. Extending Internet services to mobile, wireless, and post-PC computing devices. Service-centric view of the Internet, including composition of services and mass customization. Research agenda for Internet-scale services. Programming assignments building and deploying Internet service prototypes. Prerequisites: 193I or equivalent experience; 240 and 244A.
3 units (Staff) not given 2005-06

3 units, Aut (Mitchell)

CS 243. Advanced Compiling Techniques—The theoretical and practical aspects of building modern compilers. Topics: intermediate representations, basic blocks and flow-graphs, data flow analysis, register allocation, global code optimizations, and interprocedural analysis. Prerequisite: 143 or equivalent.
3-4 units, Win (Staff)

CS 244A. Introduction to Computer Networks—Packet switching; the Internet architecture; routing; router architecture; flow control algorithms; retransmission algorithms; congestion control, TCP/IP, packetizing and recovering from errors; switching; Ethernet (wireless and wired) and local area networks; physical layers; clocking and synchronization. Assignments introduce network programming, including sockets, designing a router and implementing a transport layer. EE284 is an alternate class, with less emphasis on programming. Students should not take both EE284 and CS244A. Prerequisite: 140 or equivalent.
3-4 units, Win (McKeown)

CS 244B. Distributed Systems—Distributed operating systems and applications issues, emphasizing high-level protocols and distributed state sharing as the key technologies. Topics: distributed shared memory, object-oriented distributed system design, distributed directory services, atomic transactions and time synchronization, file access, process scheduling, process migration and remote procedure call focusing on distribution, scale, robustness in the face of failure, and security. Prerequisites: 244A, 249.
3 units, Spr (Cheriton)

CS 244C. Distributed Systems Project—Companion project option for students taking 244B. Corequisite: 244B.
3-6 units, Spr (Cheriton)

3 units, Win (Garcia-Molina), Sum (Staff)

CS 246. Information Integration—Accessing the recent increase in structured data available on the Internet in an integrated way is complicated by conceptual heterogeneity among the data sources, i.e., differences in their structure and vocabulary. Approaches to solving this problem include notations and models for structured data such as XML and RDF, information integration techniques, standard schemas and vocabularies, data structuring technology, and applications such as corporate logistics, e-commerce, civil engineering, and health care. Large-scale dataweb and prospects for building a fully integrated semantic web, essentially a world wide web for databases. Prerequisites: 145, 157.
3 units (Genesereth) not given 2005-06

CS 247. Human-Computer Interaction: Interaction Design Studio—(Formerly 247A.) Project-based. Methods used in interaction design including needs analysis, user observation, idea sketching, concept generation, scenario building, storyboards, user character stereotypes, usability analysis, and market strategies. Prerequisites: 147 and 106A or equivalent background in programming.
3-4 units, Win (Klemmer, Verplank)

CS 247B. Contextual and Organizational Issues in Human-Computer Interaction—(Enroll in MS&E 430.)
3-4 units, Spr (Hinds)

CS 248. Introduction to Computer Graphics—(Only one of 148 or 248 counts towards any CS degree program.) Input and display devices, scan conversion of geometric primitives, 2D and 3D geometric transformations, clipping and windowing, scene modeling and animation, algorithms for visible surface determination, local and global shading models, color, and real-time rendering methods. Written assignments and programming projects. Prerequisites: 108, MATH 103 or equivalent.
3-5 units, Aut (Levoy)

CS 249. Object-Oriented Programming from a Modeling and Simulation Perspective—Topics: large-scale software development approaches, encapsulation, use of inheritance and dynamic dispatch, design of interfaces and interface/implementation separation, exception handling, design patterns, minimizing dependencies and value-oriented programming. The role of programming conventions/style/restrictions in surviving object-oriented programming for class libraries, frameworks, and programming-in-the-large; general techniques for object-oriented programming. Prerequisites: C, C++, and programming methodology as developed in 106B or X, and 107 (107 may be taken concurrently). Recommended: 193D.
3-5 units, Aut (Levoy)

CS 255. Introduction to Cryptography—For advanced undergraduates and graduate students. Theory and practice of cryptographic techniques used in computer security. Topics: encryption (single and double key), digital signatures, pseudo-random bit generation, authentication, electronic commerce (anonymous cash, micropayments), key management, PKI, zero-knowledge protocols. Prerequisite: basic probability theory.
3 units, Win (Boneh)

3 units, Win (Manna)
CS 256L. Formal Methods for Reactive Systems Laboratory
2 units, Win (Manna)

CS 258. Introduction to Programming Language Theory — Syntactic, operational, and semantic issues in the mathematical analysis of programming languages. Type systems and non-context-free syntax. Universal algebra and algebraic data types. Operational semantics given by rewrite rules; confluence and termination. Scott-semantics for languages with higher-type functions and recursion. Treatment of side-effects. Prerequisites: 154, 157 or PHIL 160A.
3 units (Mitchell) not given 2005-06

CS 259. Security Protocols — Hands-on experience in formal methods to verify and evaluate cryptographic protocols and secure systems. Common security protocols and their properties including secrecy, authentication, key establishment, and fairness. Topics: standard formal models and tools used in security protocol analysis; their advantages and limitations. Fully automated, finite-state, model-checking techniques. Constraint solving, process algebras, protocol logics, probabilistic model checking, and game theory. Students select a protocol or secure system to analyze, specify it in the chosen model, use a formal analysis tool to verify the properties, and present findings.
3 units, Win (Mitchell)

3 units, Win (Plotkin)

CS 262. Computational Genomics — (Same as BIOMEDIN 262.) Applications of computer science to genomics, and concepts in genomics from a computer science point of view. Topics: dynamic programming, sequence alignments, hidden Markov models, Gibbs sampling, and probabilistic context-free grammars. Applications of these tools to sequence analysis: comparative genomics, DNA sequencing and assembly, genomic annotation of repeats, genes, and regulatory sequences, microarrays and gene expression, phylogeny and molecular evolution, and RNA structure. Prerequisites: 161 or familiarity with basic algorithmic concepts. Recommended: basic knowledge of genetics.
3 units, Win (Batzoglou)

CS 270. Introduction to Biomedical Informatics: Fundamental Methods — (Same as BIOMEDIN 210.) Issues in the modeling, design, and implementation of computational systems for use in biomedicine. Topics: basic knowledge representation, controlled terminologies in medicine and biological science, fundamental algorithms, information dissemination and retrieval, knowledge acquisition, and ontologies. Emphasis is on the principles of modeling data and knowledge in biomedicine and on translation of resulting models into useful automated systems. Recommended: principles of object-oriented systems.
3 units, Aut (Mussen)

CS 271. Introduction to Clinical Systems — (Same as BIOMEDIN 211.) Design and implementation of computational and information systems in complex biomedical environments. Topics: requirements analysis, workflow and organizational factors, functional specification, knowledge models, data heterogeneity and standards, component-based architectures, human-computer interaction, and system evaluation. Case studies illustrate challenges of system design for research and clinical settings. Prerequisite: 210, or consent of instructor.
3 units, Win (Das)

CS 272. Biomedical Informatics Project Course — (Same as BIOMEDIN 212.) Hands-on software building. Students conceive, design, specify, implement, evaluate, and report on a software project in the domain of biomedicine. Pragmatics of creating written proposals, preparing status reports, and preparing final reports. Introductory software engineering. Prerequisites: 210 or 214, or consent of instructor; 106.
3 units, Aut (Allman, Cheng, Klein)

CS 273. Algorithms for Structure and Motion in Biology — (Same as BIOMEDIN 273.) Algorithms motivated by challenges in predicting molecule properties in silico. Topics: geometric and kinematic models of biomolecules (proteins, ligands), conformation spaces, estimation of structure from experimental data, finding sequence and structural similarities, molecular surfaces and shape analysis, energy calculation, detection of steric clashes and proximity computation, conformation sampling, threading, and study folding and binding motions.
3 units, Spr (Batzoglou, Latombe)

CS 274. Representations and Algorithms for Computational Molecular Biology — (Same as BIOMEDIN 214.) Algorithms for alignment of biological sequences and structures, computing with strings, phylogenetic tree construction, hidden Markov models, computing with networks of genes, basic structural computations on proteins, protein structure prediction, protein threading techniques, homology modeling, molecular dynamics and energy minimization, statistical analysis of 3D biological data, integration of data sources, knowledge representation and controlled terminologies for molecular biology, graphical display of biological data, and genetic algorithms and programming applied to biological problems. Prerequisites: programming skills and matrix algebra.
3-4 units, Spr (Altman)

CS 275A. Musical Information: An Introduction — (Enroll in MUSIC 253.)
1-4 units, Win (Selfridge-Field)

CS 275B. Applications of Musical Information: Query, Analysis, and Style Simulation — (Enroll in MUSIC 254.)
1-4 units, Spr (Selfridge-Field)

CS 276. Text Retrieval and Web Search — Text information retrieval systems; efficient text indexing; Boolean, vector space, and probabilistic retrieval models; ranking and rank aggregation; evaluating IR systems. Text clustering and classification: classification algorithms, latent semantic indexing, taxonomy induction, cluster labeling; Web search engines including crawling and indexing, link-based algorithms, and web metadata.
3 units, Aut (Manning, Raghavan)

CS 277. Experimental Haptics — Haptics as it relates to creating touch feedback in simulated or virtualized environments. Goal is to develop virtual reality haptic simulators and applications. Theoretical topics: psychophysical issues, performance and design of haptic interfaces, haptic rendering methods for 3-D virtual environments, and haptic simulation and rendering of rigid and deformable solids. Applied topics: introduction to C++Builder, Open GL and basic haptic library, implementation of haptic rendering algorithms, collision detection in 3-D environments, design of real-time models for soft tissue simulation. Guest speakers. Lab/programming exercises; a more open-ended final project. Enrollment limited to 20. Prerequisite: 148. Recommended: 223.
3 units (Salisbury) not given 2005-06

3 units, Win (Dill)
CS 294. Research Project in Artificial Intelligence—Student project teams work under faculty supervision on research and implementation on a major challenge problem in artificial intelligence. Lectures on state-of-the-art AI methods and software design practices for large projects. Prerequisites: course from 200-level AI series, and consent of instructor.

CS 294B. STAIR: Stanford AI Robot—Goal is to build a robot that can navigate home and office environments, pick up and interact with tools and objects, and intelligently converse with people in these environments. Platform integrates methods from all areas of AI, including machine learning, vision, navigation, manipulation, reinforcement learning, planning, probabilistic reasoning, and speech/NLP. Basic AI algorithms and system design. Focus is on team-based design, development, and evaluation of cutting-edge AI algorithms. Limited enrollment. Prerequisites: 200-level AI course, and consent of instructor.

3 units, Win (Ng)

CS 294W. Writing Intensive Research Project in Artificial Intelligence—Restricted to Computer Science and Computer Systems Engineering undergraduates. Students register for only one of 294B or 294W. Win

3 units, Win (Ng)

CS 295. Software Engineering—Software specification, testing, and verification. Emphasis is on current best practices and technology for developing reliable software at reasonable cost. Assignments focus on applying these techniques to realistic software systems. Prerequisites: 108. Recommended a project course such as 140, 143, or 145.

2-3 units, Spr (Atien)

CS 298. Seminar on Teaching Introductory Computer Science—For faculty, undergraduates, and graduate students interested in teaching introductory computer science. Prerequisite: consent of instructor.

1-3 units, Aut (Roberts)

PRIMARILY FOR GRADUATE STUDENTS

CS 300. Departmental Lecture Series—For first-year Computer Science Ph.D. students. Presentations by members of the department faculty, each describing informally his or her current research interests and views of computer science as a whole.

1 unit, Aut (Motwani)

CS 309. Industrial Lectureships in Computer Science—Guest computer scientist lecturers on his/her specialty. Lecturers and topics change yearly. May be repeated for credit. See Time Schedule or Axess for possible additional offerings.

CS 309A. Software on Demand—Technical and business topics for the computer science professional. The transition from the traditional software industry model of disconnected development and CD-ROM deployment to engineering and delivery on the Internet as a service. Changes in software development technology, systems, network and application management, application design and deployment, and evolving business models.

1 unit, Aut (Chou)

CS 312A. Advanced Processor Architecture—(Enroll in EE 382A.)

3 units, Win (Kozicrakis)

CS 315A. Parallel Computer Architecture and Programming—The principles and tradeoffs in the design of parallel architectures. Emphasis is on naming, latency, bandwidth, and synchronization in parallel machines. Case studies on shared memory, message passing, data flow, and data parallel machines illustrate techniques. Architectural studies and lectures on techniques for programming parallel computers. Programming assignments on one or more commercial multiprocessors. Prerequisites: EE 282, and reasonable programming experience.

3 units, Spr (Okinotan)

CS 319. Topics in Digital Systems—Advanced material is often taught for the first time as a topics course, perhaps by a faculty member visiting from another institution. See Time Schedule and Axess for current topics. May be repeated for credit.

3 units, by arrangement (Staff)

CS 321. Information Processing for Sensor Networks—Implementation of information distribution and processing tasks including routing, information aggregation, information brokerage, service establishment (localization, time synchronization), sensor tasking and control, and distributed data storage. Techniques from signal processing, networking, energy-aware computing, distributed databases and algorithms, and embedded systems and platforms. Physical, networking, and application layers and design trade-offs across the layers. Prerequisites: linear algebra and elementary probability.

3 units, Aut (Guibas)

CS 323. Common Sense Reasoning in Logic—Formalizing common sense knowledge and reasoning using situation calculus with nonmonotonic logics, especially circumscription. Variations of situation calculus. Formalizing context. Formalizing facts about knowledge. Prerequisite: logic such as 157, or PHIL 160A.

3 units (McCarthy) not given 2005-06

CS 324. Computer Science and Game Theory—Interactions among game theory, complexity, and algorithms. Topics vary, but may include: complexity of finding a Nash equilibrium and other solution concepts in game theory (non-cooperative and coalitional); algorithms for finding such solution concepts; bounded rationality or the impact on solution concepts of assuming computational limitations and players; and specialized topics such as algorithmic issues in combinatorial auctions.

3 units (Shoham) not given 2005-06

CS 327A. Advanced Robotics—Emerging areas of human-centered robotics and interactive haptic simulation of virtual environments. Topics: redundancy; task-oriented dynamics and control, whole-body control-task and posture decomposition, cooperative robots, haptics and simulation, haptically augmented teleoperation, human-friendly robot design. Prerequisites: 223A or equivalent.

3 units, Spr (Khatib)

CS 328. Topics in Computer Vision—Fundamental issues of, and mathematical models for, computer vision. Sample topics: camera calibration, texture, stereo, motion, shape representation, image retrieval, experimental techniques. See Time Schedule and Axess for current topics. May be repeated for credit. Prerequisites: 205, 223B, or equivalents.

3 units, by arrangement (Staff)

CS 329. Topics in Artificial Intelligence—Advanced material is often taught for the first time as a topics course, perhaps by a faculty member visiting from another institution. See Time Schedule and Axess for current topics. May be repeated for credit.

3 units, by arrangement (Staff)

CS 336. Advanced Methods in Matrix Computation—(Enroll in CME 324.)

3 units (Golub) alternate years, given 2006-07

CS 337. Numerical Methods for Initial Boundary Value Problems—(Enroll in CME 326.)

3 units, Win (Gustafsson)

CS 339. Topics in Numerical Analysis—Advanced material is often taught for the first time as a topics course, perhaps by a faculty member visiting from another institution. See Time Schedule and Axess for current topics. May be repeated for credit.

3 units, by arrangement (Staff)

CS 340. Level Set Methods—Introduction to modeling surfaces with implicit functions. Focus is on the mathematical and computational techniques required to treat dynamic implicit surfaces. Level set methods can be used for a variety of applications including multiphase flow (such as bubbles and drops), image processing, computer vision, and graphics.

3 units (Fedkiw) not given 2005-06

CS 341. Network Algorithms—(Same as EE 384M.) Theory and practice of designing and analyzing algorithms arising in networks. Topics include: designing algorithms for load balancing, switching, congestion control, network measurement, the web infrastructure, and wireless networks;
and analyzing the performance of algorithms via stochastic network theory. Algorithm design using randomization, probabilistic sampling, and other approximation methods. Analysis methods include the use of large deviation theory, fluid models, and stochastic comparison. Research project. Prerequisite: EE 278 or CS 365.

3 units, Spr (Prabhakar)

CS 343. Advanced Topics in Compilers — Topics change every quarter. May be repeated for credit. Prerequisite: 243.

3 units (Staff) not given 2005-06

CS 344. Projects in Computer Networks — Router implementation. A hardware and software student are paired to develop a functional Internet router. Open-ended design challenge judged by panel of expert network designers from industry. Prerequisites: 244A or network programming experience. Recommended: for those interested in hardware design, background in VHDL or Verilog; for those interested in software, C.

3 units (McKewon) not given 2005-06

CS 344A. Sensor Network Systems — Systems and networking research in wireless sensor networks; work from other areas such as databases. Topics include energy budgets, communication scheduling, application domains, protocols, technological trends, programming models, and fault tolerance. Students implement working systems on TinyOS, a sensor node OS.

3 units, Spr (Levis)

CS 344B. Advanced Distributed Systems — Issues involving LAN clusters, WAN systems, and the Internet. Classical results and ongoing research efforts. Sources include research publications from the last 20 years.

3 units, Aut (Cao)

CS 345. Advanced Topics in Database Systems — Content varies. May be repeated for credit with instructor consent. Prerequisite: 145. Recommended: 245.

CS 345A. Data Mining — Techniques for extracting information from very large databases, including finding frequent and correlated pairs and clustering data in high dimensional spaces. Techniques for mining the web and data streams.

3 units, Aut (Ullman, Rajaraman)

CS 346. Database System Implementation — A major database system implementation project realizes the principles and techniques covered in earlier courses. Students independently build a complete database management system, from file structures through query processing, with a personally designed feature or extension. Lectures on project details and advanced techniques in database system implementation, focusing on query processing and optimization. Guest speakers from industry on commercial DBMS implementation techniques. Prerequisites: 145, 245, programming experience in C++.

3-5 units, Spr (Widom)

CS 347. Transaction Processing and Distributed Databases — The principles and system organization of distributed databases. Data fragmentation and distribution, distributed database design, query processing and optimization, distributed concurrency control, reliability and committ protocols, and replicated data management. Distributed algorithms for data management; clocks, deadlock detection, and mutual exclusion. Heterogeneous and federated distributed database systems. Overview of commercial systems and research prototypes. Prerequisites: 145, 245.

3 units, Spr (Garcia-Molina)

3-4 units (Gibas) alternate years, given 2006-07

CS 348B. Computer Graphics: Image Synthesis Techniques — Intermediate level, emphasizing the sampling, shading, and display aspects of computer graphics. Topics: local and global illumination methods including radiosity and distributed ray tracing, texture generation and rendering, volume rendering, strategies for anti-aliasing and photo-realist, human vision and color science as they relate to computer displays, and high-performance architectures for graphics. Written assignments and programming projects. Prerequisite: 248 or equivalent. Recommended: exposure to Fourier analysis or digital signal processing.

3-4 units, Spr (Hanrahan)

CS 349. Topics in Programming Systems — Advanced material is often taught for the first time as a topics course, perhaps by a faculty member visiting from another institution. May be repeated for credit. See Time Schedule or Axess for current topics.

CS 349A. Large-Scale Software Development — Object-oriented programming techniques. Reliability, evolvability, and predictable performance. Topics: generic programming and templates; minimizing process overhead; self-checking software and integrated software audit; abstract data type programming and operator overloading; predictable memory management; collection class templates; large-scale description objects; concurrent object-oriented programming; inheritance versus composition; and manager/factory patterns. Prerequisite: 249 or background in OOP/C++.

3 units, Win (Cheriton)

CS 351. Topics in Complexity Theory and Lower Bounds — Focus is on one of basic machine models and complexity measures, their properties and relationships; complexity classes and their properties; reductions and complete problems; concrete representative problems from important complexity classes. Techniques for establishing limits on the possible efficiency of algorithms, and concrete lower bounds based on the following models of computation: decision trees, straight line programs, communication games, branching programs, PRAMs, boolean circuits. Approximation algorithms and the complexity of approximations. Pseudo-randomness and cryptography. Prerequisite: 154, or equivalent.

3 units (Motwani) not given 2005-06

3 units (Pratt) not given 2005-06

CS 355. Advanced Topics in Cryptography — Topics: pseudo-random generation, zero knowledge protocols, elliptic curve systems, threshold cryptography, security analysis using random oracles, lower and upper bounds on factoring and discrete log. May be repeated for credit. Prerequisite: 255.

3 units (Boneh) not given 2005-06

CS 356. Automatic Formal Verification Techniques — Automatic methods for formally verifying hardware, protocol, and software system designs. Topics: state graph and automata models of system behavior; automata on infinite strings; linear and branching-time temporal logic; model-checking; modeling real-time systems. Analysis methods based on Boolean formulas, and other ways of coping with the state explosion problem; exploiting abstractions. Applications to circuits, algorithms, and protocols. Case studies use verification tools. Prerequisite: 154 or 254. Recommended: good understanding of basic automata and complexity theory.

3 units (Dill) not given 2005-06
CS 357. Advanced Topics in Formal Methods—Topics vary annually. Possible topics include automata on infinite words, static analysis methods, verification of real-time and hybrid systems, and verification diagrams. May be repeated for credit. Prerequisite: 256.
3 units (Manna, Sipma) not given 2005-06

CS 357D. Static Analysis of Programs—Topics: propagation- versus constraint-based analysis; abstract interpretation; analysis in different abstract domains; mathematical techniques applied in program analysis including polyhedra, linear programming, and Groebner bases; tools and libraries for program analysis; applications of program analysis techniques to fields such as manufacturing and biological systems.
3 units (Spr (Manna, Sipma)

CS358. Topics in Programming Language Theory—Topics of current research interest in the mathematical analysis of programming languages, structured operational semantics, domain theory, semantics of concurrency, rich type disciplines, problems of representation independence, and full abstraction. See Time Schedule or Axess for current topics. May be repeated for credit. Prerequisites: 154, 157, 258, or equivalents.
3 units, by arrangement (Staff)

CS 359. Topics in the Theory of Computation—Advanced material is often taught for the first time as a topics course, perhaps by a faculty member visiting from another institution. See Time Schedule and Axess for current topics. May be repeated for credit.
3 units, by arrangement (Staff)

CS 361A. Advanced Algorithms—Advanced data structures: union-find, self-adjusting data structures and amortized analysis, dynamic trees, Fibonacci heaps, universal hash function and sparse hash tables, persistent data structures. Advanced combinatorial algorithms: algebraic (matrix and polynomial) algorithms, number theoretic algorithms, group theoretic algorithms and graph isomorphism, online algorithms and competitive analysis, strings and pattern matching, heuristic and probabilistic analysis (TSP, satisfiability, cliques, colorings), local search algorithms. May be repeated for credit. Prerequisite: 161 or 261, or equivalent.
3 units, Spr (Motwani)

CS 361B. Advanced Algorithms—Topics: fundamental techniques used in the development of exact and approximate algorithms for combinatorial optimization problems such as generalized flow, multicommodity flow, sparsest cuts, generalized Steiner trees, load balancing, and scheduling. Using linear programming, emphasis is on LP duality for design and analysis of approximation algorithms; interior point methods for LP. Techniques for development of strongly polynomial algorithms.
3 units, Spr (Plotkin)

CS 364A. Algorithmic Game Theory—Topics: theoretical computer science and game theory such as: combinatorial and competitive auctions; congestion and potential games; cost sharing; existence and computation of equilibria; game theory in the Internet; mechanism design; network games; price of anarchy; pricing; and selfish routing. Minimal overlap with 224M and 324. Prerequisities: 154N and 161, or equivalents.
3 units (Roughgarden) alternate years, given 2006-07

CS 364B. Topics in Algorithmic Game Theory—Further exploration of topics from 364A. Students work on a research problem related to the course. May be taken prior to 364A; may be repeated for credit. Prerequisites: 154N and 161, or equivalents.
3 units, Aut (Klemmer)

CS 365. Randomized Algorithms—Design and analysis of algorithms that use randomness to guide their computations. Basic tools, from probability theory and probabilistic analysis, that are recurrent in algorithmic applications. Randomized complexity theory and game-theoretic techniques. Algebraic techniques. Probability amplification and derandomization. Applications: sorting and searching, data structures, combinatorial optimization and graph algorithms, geometric algorithms and linear programming, approximation and counting problems, parallel and distributed algorithms, online algorithms, number-theoretic algorithms. Prerequisites: 161 or 261, STATS 116, or equivalents.
3 units (Motwani) not given 2005-06

3 units, Spr (Guibas)

CS 369. Topics in Analysis of Algorithms—Advanced material is often taught for the first time as a topics course, perhaps by a faculty member visiting from another institution. May be repeated for credit.
3 units, Win (Koloun)

CS 369C. Metric Embeddings and Algorithmic Applications—Topics: low-distortion embeddings of finite metrics into L-1, L-p, and distribution of trees; dimensionality reduction; volume-respecting embeddings; applications to graph partitioning, online algorithms, network design, and nearest neighbor search. Prerequisite: 261 or equivalent.
3 units, Win (Roughgarden)

CS 369X. Models and Algorithms for Nanotechnology—(Enroll in MS&E 319.)
3 units, Win (Goel)

CS 374. Algorithms in Biology—(Same as BIOMEDIN 374.) Algorithms and computational models applied to molecular biology and genetics. Topics vary annually. Possible topics include biological sequence comparison, annotation of genes and other functional elements, molecular evolution, genome rearrangements, microarrays and gene regulation, protein folding and classification, molecular docking, RNA secondary structure, DNA computing, and self-assembly. May be repeated for credit. Prerequisites: 161, 262 or 274, or BIOCHEM 218, or equivalents.
2-3 units, Aut (Batzoglou)

CS 376. Research Topics in Human-Computer Interaction—Interactive systems, research areas in interaction techniques, and the design, prototyping, and evaluation of user interfaces. Topics: computer-supported cooperative work; audio, speech, and multimodal interfaces; user interface toolkits; design and evaluation methods; ubiquitous and context-aware computing; tangible interfaces, haptic interaction; and mobile interfaces.
3 units, Aut (Roughgarden)

CS 377. Topics in Human-Computer Interaction—Contents change each quarter. May be repeated for credit. See http://hci.stanford.edu/courses/ for offerings.
2-3 units, Aut, Win, Spr (Staff)

3-4 units, Spr (Winograd)
CS 379. Interdisciplinary Topics — Advanced material is often taught for the first time as a topics course, perhaps by a faculty member visiting from another institution. See Time Schedule and Axess for current topics. May be repeated for credit.
1-3 units, by arrangement (Staff)

CS 390A,B,C. Curricular Practical Training — Educational opportunities in high technology research and development labs in the computing industry. Qualified computer science students engage in internship work and integrate that work into their academic program. Students register during the quarter they are employed and complete a research report outlining their work activity, problems investigated, results, and follow-on projects they expect to perform. 390 A, B, and C may each be taken once.
1 unit, Aut, Win, Spr, Sum (Motwani)

CS 395. Independent Database Project — For graduate students in Computer Science. A substantial computer program is designed and implemented; written report required. Recommended as a preparation for dissertation research. Register using the section number associated with the instructor. Prerequisite: consent of instructor.
1-9 units, Aut, Win, Spr, Sum (Staff)

CS 399. Independent Project — Letter grade only.
1-9 units, Aut, Win, Spr, Sum (Staff)

CS 399P. Independent Project — Graded satisfactory/no credit.
1-9 units, Aut, Win, Spr, Sum (Staff)

EXPERIMENTAL

CS 400. Academic Professional Skills Seminar — How to enter and succeed in academia. Topics vary from year to year and may include: the academic job search, time management for new faculty, grant writing, finding and advising students, designing courses, planning and delivering lectures, the service role of faculty, and the tenure process.
1 unit, Spr (Staff)

CS 447. Interdisciplinary Interaction Design — (Same as ME 325; formerly ME 293.) Small teams develop technology prototypes combining product and interaction design. Focus is on software and hardware interfaces, interaction, design aesthetics, and underpinnings of successful design including a reflective, interactive design process, group dynamics of interdisciplinary teamwork, and working with users. Prerequisite: CS 247.
3-4 units (Winograd) not given 2005-06

CS 448. Topics in Computer Graphics — Topic changes each quarter. Recent topics: exotic input and display technologies, graphics architectures, advanced rendering techniques, modeling shape and motion, data visualization, and computational photography. See http://graphics.stanford.edu/courses/ for offerings. May be repeated for credit. Prerequisite: 248 or consent of instructor.
3-4 units, Win (Hanrahan)

CS 468. Geometric Algorithms Seminar — Recent offerings include: shape matching, proximity and nearest-neighbor problems, visibility and motion planning, collision detection, and computational topology. May be repeated for credit. Prerequisite: 368, or consent of instructor.
2 units, Aut (Guibas), Win (Staff)

CS 499. Advanced Reading and Research — For CS graduate students. Register using the section number associated with the instructor. Prerequisite: consent of instructor.
1-15 units, Aut, Win, Spr, Sum (Staff)

GRADUATE SEMINARS

CS 510. Digital Systems Reliability Seminar — (Enroll in EE 385A.)
1-4 units, Aut, Win, Spr, Sum (McCluskey)

CS 528. Broad Area Colloquium for Artificial Intelligence, Geometry, Graphics, Robotics, and Vision — Weekly series of informal research talks on topics related to perceiving, modeling, manipulating, and displaying the physical world. The computational models and numerical methods underlying these topics. May be repeated for credit.
1 unit, Aut, Spr (Ng)

CS 531. Numerical Analysis/Scientific Computing Seminar
1 unit, Aut, Win, Spr (Golab)

CS 540. Seminar on Computer Systems — (Enroll in EE 380.)
1 unit, Aut, Win, Spr (Allison, Long)

CS 545. Database Research Seminar — Current research and industrial innovation in database and information systems.
1 unit, Win (Widom)

CS 547. Human-Computer Interaction Seminar — Weekly speakers on topics related to human-computer interaction design.
1 unit, Aut, Win, Spr (Winograd)

CS 548. Stanford Networking Research Center, Internet, and Distributed Systems Seminar — Recent research in distributed operating systems, computer communications, parallel machines, parallel programming, and distributed applications. Guest speakers. May be repeated for credit.
1 unit, Spr (Fox)
ELECTRICAL ENGINEERING

Chair: Bruce A. Wooley
Vice Chair: Dwight G. Nishimura
Associate Chair (Admissions): B. Fabian Pease
Assistant Chair: Sharon A. Gerlach

Assistant Professors: Shanfui Fan, Christoforos E. Kozyrakis, Boris Murmann, Peter Peumans, Krishna V. Shenoy, Jelena Vuckovic, Tsaichy Weissman

Course Directors: John Brayman, David Cheriton, David L. Dill, Per Enge, Gary Glover, Peter Glynn, Gene Golub, Donald E. Knuth (emeritus), Monica S. Lam, David G. Luenberger, John C. Mitchell, Sandy Napel, Richard Olschen, Norbert Pelc, Vaughan R. Pratt (emeritus), Zhi-Xun Shen, Brian Wandell, Gio Wiederhold (emeritus), Yinyin Ye, Shucheng Zhang

Associate Course Directors: Stacey Bent, Peter Fitzgerald, Mendel Rosenblum, Julius Smith, Daniel Spielman, Claire Tomlin

Course Assistant Professors: Ramesh Johari, Sanjay Lall, David H. Liang, Hari Manoharan, Michael McConnell, Ramin Shahidi

Lecturers: Dennis Allison, Ronald Ho, Yasser Hussein, Ivan Linscott, Yang Liu, Eileen Long, Hans-Juergen Richter, Dieter Scherer, Jason Stinson, Howard Swain

Consulting Associate Professors: Timothy Drabik, Ludwig Galambos, Namid Maluf, Mark Johnson, Yi-Ching Pao, Burdza Pesheski, David K. Su, Noel Thompson

Consulting Assistant Professors: Ahmad Al-Yamani, Hamid Aghajan, John Apostolopoulos, Heinz Blennemann, David Burns, Victor Eliashberg, Wonill Ha, Mar Hershenson, Patrick Hung, Seung J. Kim, My T. Le, Subhashis Mitra, Ravi Narasimhan, Ashok Popat, Mehdi Soltan, Katelin Vleugels, Eric Volkerink, Susie Wee, Jun Ye, Paul Zimmer

Visiting Professors: Won-Taek Han, Robin Devereux-Hill, Mitsuteru Inoue, Dongchun Shin

Visiting Associate Professors: Luca Benini, Xuehong Cao, Pao-Ching Chang, Steven Conolly, Jingbo Guo, Shuyan Jiang, Edwin Kan, Xiaofei Li, Jose Paris-Angel, Byung-Gook Park, Juan Romero-Jerez, Eric Wan

Visiting Assistant Professors: Stefan Funke, Chan-Kyu Kim, Shoba Krishnan, Maneesh Sahani

Teaching Fellow: David Black-Schaffer

*recalled to active duty

Mail Code: 94305-9505
Phone: (650) 723-3931; Fax: (650) 723-1882
Web Site: http://ee.stanford.edu/

Courses given in Electrical Engineering have the subject code EE. For a complete list of subject codes, see Appendix.

UNDERGRADUATE PROGRAMS

The mission of the Undergraduate Program of the Department of Electrical Engineering is to augment the liberal education expected of all Stanford undergraduates and impart a basic understanding of electrical engineering built on a foundation of physical science, mathematics, computing, and technology. Graduates of the undergraduate program are expected to possess a basic knowledge of the fundamentals of electrical engineering and of at least one specialty area. The graduates are expected to have the basic experimental, design, and communication skills to be prepared for continued study at the graduate level or for entry level positions that require a basic knowledge of electrical engineering, science, and technology. The educational objectives of the program are:

1. Technical knowledge: provide a basic knowledge of electrical engineering principles along with the required supporting knowledge of computing, engineering fundamentals, mathematics, and science. The program must include depth in at least one specialty area, currently including computer hardware, computer software, controls, circuits, fields and waves, communication and signal processing, and semiconductor and photonic devices.

2. Laboratory and design skills: develop the basic skills needed to perform and design experimental projects. Develop the ability to formulate problems and projects and to plan a process for solution, taking advantage of diverse technical knowledge and skills.

3. Communication skills: develop the ability to organize and present information and to write and speak effective English.

4. Preparation for further study: provide sufficient breadth and depth for successful subsequent graduate study, postgraduate study, or lifelong learning programs.

5. Preparation for the profession: provide an appreciation for the broad spectrum of issues arising in professional practice, including economics, ethics, leadership, professional organizations, safety, service, and teamwork.

To specialize in Electrical Engineering (EE), undergraduate students should follow the depth sequence given in the discussion of undergraduate programs in the “School of Engineering” section of this bulletin. Students are required to have a program planning sheet approved by their adviser and the department prior to the end of the quarter following the quarter in which they declare their major and at least one year prior to graduation. Program sheets for the general EE requirements and for each of the EE specialty sequences may be found at http://uughb.stanford.edu. Majors must receive at least a 2.0 grade point average (GPA) in courses taken for the EE depth requirement; all classes must be taken for a letter grade.

For information about an EE minor, see the “School of Engineering” section of this bulletin.

A Stanford undergraduate may work simultaneously toward the B.S. and M.S. degrees. See “Dual and Coterminal Degree Programs” in the “School of Engineering” section of this bulletin.
For University coterminal degree program rules and University application forms, see http://registrar.stanford.edu/publications/#Gocoterm.

HONORS

The Department of Electrical Engineering offers a program leading to a Bachelor of Science in Electrical Engineering with honors. This program offers a unique opportunity for qualified undergraduate majors to conduct independent study and research at an advanced level with a faculty mentor, graduate students, and fellow undergraduates.

Admission to the honors program is by application. Declared EE students with a grade point average (GPA) of at least 3.5 in Electrical Engineering are eligible to submit an application. Applications must be submitted by Autumn quarter of the senior year, be signed by the thesis adviser and second reader (one must be a member of the EE Faculty), and include an honors proposal. Students need to declare honors on Axess.

In order to receive departmental honors, students admitted to the honors program must:

1. maintain a grade point average (GPA) of at least 3.5 in Electrical Engineering courses
2. complete at least 10 units of EE 191 for a letter grade with their project adviser
3. submit two final copies of the honors thesis approved by the adviser and second reader
4. attend poster and oral presentation in the Electrical Engineering Honors Symposium held at the end of Spring Quarter or present in another suitable forum approved by the faculty adviser.

GRADUATE PROGRAMS

University regulations governing the M.S., Engineer, and Ph.D. degrees are described in the “Graduate Degrees” section of this bulletin.

The profession of electrical engineering demands a strong foundation in physical science and mathematics, a broad knowledge of engineering techniques, and an understanding of the relationship between technology and man. Curricula at Stanford are planned to offer the breadth of education and depth of training necessary for leadership in the profession. To engage in this profession with competence, four years of undergraduate study and at least one year of postgraduate study are recommended. For those who plan to work in highly technical development or fundamental research, additional graduate study is desirable.

A one- to two-year program of graduate study in Electrical Engineering may lead to the degree of Master of Science. The program is typically completed in four academic quarters. A two- to three-year program, offering a wider selection of engineering course work, more opportunity for study in the related fields of engineering, mathematics, and physics, and in particular, more independent work and individual guidance, may lead to the degree of Engineer.

The degree of Doctor of Philosophy is offered under the general regulations of the University. The doctoral program, requiring a minimum of 135 units of graduate study, should be considered by those with the ability and desire to make a life work of research or teaching.

Application for Admission — Applications for admission with graduate standing in Electrical Engineering (EE) should be completed electronically at http://gradadmissions.stanford.edu. If you do not have access to the web, a printed application can be obtained by writing to the Graduate Admissions, Office of the University Registrar, 520 Lasuen Mall, Old Union Building, Stanford, CA 94305-3005. The application deadline for admission for Autumn Quarter 2006-07 is December 13, 2005.

MASTER OF SCIENCE

Modern electrical engineering is a broad and diverse field, and graduate education in this department may satisfy a variety of objectives. Students with undergraduate degrees in physics, mathematics, or related sciences, as well as in various branches of engineering, are invited to apply for admission. They will ordinarily be able to complete the master’s degree in five academic quarters; students should be aware that many courses are not taught during the summer. Students with undergraduate degrees in other fields may also be admitted for graduate study (see below).

The master’s degree program may provide advanced preparation for professional practice or for teaching on the junior college level, or it may serve as the first step in graduate work leading to the degree of Engineer or Ph.D. The faculty does not prescribe specific courses to be taken. Each student, with the help of a program adviser, prepares an individual program and submits it to the faculty for approval. The master’s program proposal must be submitted to the department office during the first quarter of graduate study; modifications may be made later. Detailed requirements and instructions are in the Handbook for Graduate Students in Electrical Engineering at Stanford University (http://ee.stanford.edu/gradhandbook/).

Programs of at least 45 quarter units that meet the following guidelines are normally approved:

1. A sequence of three or more graded electrical engineering courses numbered above 200, to provide depth in one area. The student must maintain an average 3.0 grade point average (GPA) or better in both the depth area and overall.
2. At least one graded EE course numbered above 200 in each of three distinct course areas outside of the area selected under item 1 to provide breadth. Two courses are not considered to be in distinct areas if they can be found under a common depth area.
3. Enough additional units of electrical engineering courses so that items 1 through 3 total at least 21 units of graded EE courses numbered above 200, including at least 9 units of such courses numbered in the 300s or 400s. Some 600- or 700-level summer courses may also be considered for inclusion in the M.S. program. Special studies units may not be used.
4. Additional course work to bring the total to 45 or more quarter units, including:
 a) at least 36 graded units
 b) at least 36 units at or above the 100 level
 c) at least 30 units in technical areas such as engineering, mathematics, and science; thesis and special studies units cannot be included among these 30 units.
5. The EE 201A seminar in Autumn Quarter and either (a) at least one formal EE seminar course for credit, or (b) attend a minimum of eight informal or formal EE research seminars, and submit with the final M.S. program a list of the seminars with a paragraph describing the content and the signature of the M.S. adviser. This requirement is to ensure that all students sample the many available research seminars. In case of conflict with EE 201A, tapes may be viewed in the Terman Library.

Capable students without formal undergraduate preparation in electrical engineering may also be admitted for graduate study. Such students may have graduated in any field and may hold either the B.S. or B.A. degree. Each student, with the help of an adviser, prepares a program of study to meet his or her particular needs and submits it to the faculty for approval. A student with adequate preparation in mathematics through calculus and college physics including electricity can usually complete the M.S. degree requirements within two academic years. A student with some additional preparation in electrical engineering may be able to complete the M.S. requirements in only one academic year.

Graduate study in electrical engineering demands that students be adequately prepared in circuits, digital systems, fields, lab work, mathematics, and physics. Skill in using modern computing facilities is essential for electrical engineers, and an increasing number of courses routinely require it. Skill should be acquired early in the program, either by taking one of the regular computer science courses or one of the special short courses given by the Computation Center, or by self-study.

It is the student’s responsibility, in consultation with an adviser, to determine whether the prerequisites for advanced courses have been met. Prerequisite courses ordinarily taken by undergraduates may be included as part of the graduate program of study. However, if the number of these is large, the proposed program should contain more than the typical 45 units, and the time required to meet the degree requirements may be increased.

4. attend poster and oral presentation in the Electrical Engineering Honors Symposium held at the end of Spring Quarter or present in another suitable forum approved by the faculty adviser.

Application for Admission — Applications for admission with graduate standing in Electrical Engineering (EE) should be completed electronically at http://gradadmissions.stanford.edu. If you do not have access to the web, a printed application can be obtained by writing to the Graduate Admissions, Office of the University Registrar, 520 Lasuen Mall, Old Union Building, Stanford, CA 94305-3005. The application deadline for admission for Autumn Quarter 2006-07 is December 13, 2005.

MASTER OF SCIENCE

Modern electrical engineering is a broad and diverse field, and graduate education in this department may satisfy a variety of objectives. Students with undergraduate degrees in physics, mathematics, or related sciences, as well as in various branches of engineering, are invited to apply for admission. They will ordinarily be able to complete the master’s degree in five academic quarters; students should be aware that many courses are not taught during the summer. Students with undergraduate degrees in other fields may also be admitted for graduate study (see below).

The master’s degree program may provide advanced preparation for professional practice or for teaching on the junior college level, or it may serve as the first step in graduate work leading to the degree of Engineer or Ph.D. The faculty does not prescribe specific courses to be taken. Each student, with the help of a program adviser, prepares an individual program and submits it to the faculty for approval. The master’s program proposal must be submitted to the department office during the first quarter of graduate study; modifications may be made later. Detailed requirements and instructions are in the Handbook for Graduate Students in Electrical Engineering at Stanford University (http://ee.stanford.edu/gradhandbook/).

Programs of at least 45 quarter units that meet the following guidelines are normally approved:

1. A sequence of three or more graded electrical engineering courses numbered above 200, to provide depth in one area. The student must maintain an average 3.0 grade point average (GPA) or better in both the depth area and overall.
2. At least one graded EE course numbered above 200 in each of three distinct course areas outside of the area selected under item 1 to provide breadth. Two courses are not considered to be in distinct areas if they can be found under a common depth area.
3. Enough additional units of electrical engineering courses so that items 1 through 3 total at least 21 units of graded EE courses numbered above 200, including at least 9 units of such courses numbered in the 300s or 400s. Some 600- or 700-level summer courses may also be considered for inclusion in the M.S. program. Special studies units may not be used.
4. Additional course work to bring the total to 45 or more quarter units, including:
 a) at least 36 graded units
 b) at least 36 units at or above the 100 level
 c) at least 30 units in technical areas such as engineering, mathematics, and science; thesis and special studies units cannot be included among these 30 units.
5. The EE 201A seminar in Autumn Quarter and either (a) at least one formal EE seminar course for credit, or (b) attend a minimum of eight informal or formal EE research seminars, and submit with the final M.S. program a list of the seminars with a paragraph describing the content and the signature of the M.S. adviser. This requirement is to ensure that all students sample the many available research seminars. In case of conflict with EE 201A, tapes may be viewed in the Terman Library.

Capable students without formal undergraduate preparation in electrical engineering may also be admitted for graduate study. Such students may have graduated in any field and may hold either the B.S. or B.A. degree. Each student, with the help of an adviser, prepares a program of study to meet his or her particular needs and submits it to the faculty for approval. A student with adequate preparation in mathematics through calculus and college physics including electricity can usually complete the M.S. degree requirements within two academic years. A student with some additional preparation in electrical engineering may be able to complete the M.S. requirements in only one academic year.

Graduate study in electrical engineering demands that students be adequately prepared in circuits, digital systems, fields, lab work, mathematics, and physics. Skill in using modern computing facilities is essential for electrical engineers, and an increasing number of courses routinely require it. Skill should be acquired early in the program, either by taking one of the regular computer science courses or one of the special short courses given by the Computation Center, or by self-study.

It is the student’s responsibility, in consultation with an adviser, to determine whether the prerequisites for advanced courses have been met. Prerequisite courses ordinarily taken by undergraduates may be included as part of the graduate program of study. However, if the number of these is large, the proposed program should contain more than the typical 45 units, and the time required to meet the degree requirements may be increased.
Students working toward the Master of Science degree in Electrical Engineering who are considering a Ph.D. or Engineer degree program in Electrical Engineering at Stanford must request the addition of a new degree program by submitting a Graduate Program Authorization Petition for approval by the department. Once the M.S. degree in EE has been conferred, a student may not register for additional course work without this approval. Permission to study beyond the M.S. degree is normally granted to students who were originally admitted to the Ph.D. program if the student:

1. has passed the Ph.D. qualifying examination within the past year, or
2. has a written commitment from a regular member of the EE faculty to serve as an Engineer or Ph.D. dissertation adviser, and has a satisfactory academic record to date.

Students originally admitted only for the M.S. degree and not to the Ph.D. program may petition the EE graduate admissions committee during Autumn Quarter of their second year at Stanford for a change of status to the Ph.D. program with permission to take the Ph.D. qualifying exam in January. Requirements for the petition include a grade point average of 3.5 on Stanford courses and a written statement of support from an EE faculty member with whom the student has conducted preliminary research through directed reading (EE 390 or 391) or as part of a 300-level project course. Decisions are based on performance and the strength of the support letter. If admitted to the Ph.D. program, permission to study beyond the M.S. degree is normally granted under the same conditions as those described above for students originally admitted to the Ph.D. program. Students not admitted to the Ph.D. program are normally granted permission to continue past the M.S. degree only if there is a written commitment from a regular member of the EE faculty to serve as an Engineer dissertation supervisor. The student should file for candidacy for the Engineer degree within one quarter of receiving the M.S.

ENGINEER

The degree of Engineer requires a minimum of 90 units of residency. Units completed at Stanford towards a master’s degree in an Engineering discipline may be used towards the 90-unit residency requirement for the Engineer degree. A student who received an M.S. degree elsewhere can transfer in 45 units towards the 90-unit requirement for an Engineer’s degree. A student would need to fill out the Application for Graduate Residency Credit form to be filed with the Degree Progress Office in the Registrar’s Office.

Work toward the degree of Engineer in Electrical Engineering normally includes the requirements for work toward the master’s degree in Electrical Engineering, including qualifications for admission.

An additional year allows time for a broader program, or a more concentrated program, or whatever arrangement may seem suitable to the candidate, his adviser, and the department. Advanced study at other universities, or in other departments at Stanford, may be allowed within the foregoing consideration. The equivalent of approximately one quarter is devoted to independent study and thesis work with faculty guidance. The thesis is often of the nature of a professional report on the solution of a design problem. The degree of Engineer differs from the Ph.D. in that it prepares for professional engineering work rather than theoretical research. The candidate may select courses that are suitable for either the degree of Engineer or the Ph.D. degree and decide later which program to pursue.

The best procedure for the applicant to follow is (1) if now working toward the Stanford M.S. degree in Electrical Engineering, request permission to continue graduate studies beyond the master’s degree, using the Graduate Program Authorization Petition form obtained from the Department of Electrical Engineering office, or (2) if not planning to receive the Stanford M.S. degree in Electrical Engineering, apply for admission to the Department of Electrical Engineering as a candidate for the degree of Engineer.

During the first quarter of work beyond the M.S. degree, formal application for admission to candidacy for the degree of Engineer is made on a form that can be obtained from the department office. The program of study is prepared by the student with the help of the thesis adviser and submitted to the academic associate for approval. The form should contain a list of all graduate courses completed at Stanford and elsewhere and all courses yet to be completed. For the most recent information, see http://ee.stanford.edu/gradhandbook/engineer.html.

DOCTOR OF PHILOSOPHY

Admission to a graduate program does not imply that the student is a candidate for the Ph.D. degree. Advancement to candidacy requires superior academic achievement, satisfactory performance on a qualifying examination, and sponsorship by two faculty members. Enrollment in EE 391, Special Studies, is recommended as a means for getting acquainted with a faculty member who might be willing to serve as a supervisor.

Students admitted to the Ph.D. program should submit an application to take the department qualifying examination (given each Winter Quarter). Upon completion of the qualifying examination and after securing agreement by two faculty members to serve as dissertation advisers, the student should file an Application for Doctoral Candidacy. The Ph.D. in Electrical Engineering is a specialized degree, and is built on a broad base of physics, mathematics, and engineering skills. The course program is expected to reflect competency in Electrical Engineering and specialized study in other areas relevant to the student’s research focus. Normally the majority of units are drawn from EE department courses, with typically 9 units from related advanced physics, mathematics, engineering, or computer science courses, depending on the area of research. Only after receiving department approval to that application does the student become a candidate for the Ph.D. degree.

Requirements may be summarized as follows. The student must complete (1) a minimum of 135 units of residence with graduate standing at Stanford; (2) one or more qualifying examinations given by the faculty of the Department of Electrical Engineering; (3) an approved course of study in electrical engineering; (4) an approved program of research and a written dissertation, based on research, which must be a contribution to knowledge; (5) an oral examination that is a defense of dissertation research and is taken near the completion of the doctoral program.

PH.D. MINOR

For a minor in Electrical Engineering (EE), the student must fulfill the M.S. depth requirement, complete a total of at least 20 units of course work at the 200-plus level in electrical engineering (of which 15 units must be graded) and be approved by the department’s Ph.D. Degree Committee. A grade point average (GPA) of at least 3.35 on these courses is required.

FINANCIAL ASSISTANCE

The department awards a limited number of fellowships, teaching and course assistantships, and research assistantships to incoming graduate students. Applying for such assistance is part of filling out and submitting the admission application.

THE HONORS COOPERATIVE PROGRAM

Many of the department’s graduate students are supported by the Honors Cooperative Program (HCP), which makes it possible for academically qualified engineers and scientists in nearby companies to be part-time graduate students in Electrical Engineering while continuing nearly full-time professional employment. Prospective HCP students follow the same admission process and must meet the same admission requirements as full-time graduate students. For more information regarding the Honors Cooperative Program, see the “School of Engineering” section of this bulletin.

AREAS OF RESEARCH

Candidates for advanced degrees participate in the research activities of the department as paid research assistants or as students of individual faculty members. At any one time, certain areas of research have more openings than others. A new applicant should express a second choice of research interest in the event that there are no vacancies in the primary area of interest. At present, faculty members and students are actively engaged in research in the areas listed below.
COMMUNICATIONS
Adaptive Modulation and Coding
Adaptive Multiuser Coding and Reception
Applied Optics and Optoelectronics
Cellular Radio Systems/Networks
Coding and Coded Modulation
Communication Channels and Signal Propagation
Communication and Information Theory
Digital Subscriber Lines
Digital Transmission
Frequency Reuse in Large Wireless Networks
Mobility in Wireless Networks
Multicarrier Modulation and OFDM
Multipath Mitigation Techniques
Multiple Access Techniques
Multiple Antenna and MIMO Systems
Optical Communications
Optical Networks
Optoelectronic Components and Systems
Resource Allocation/Channel Assignment/Handoff in Wireless Networks
Wavelength Division Multiplexing
Wireless Ad-Hoc Networks
Wireless Communications
Wireless Local Area Networks
Wireless Personal Communication Systems

COMPUTER SYSTEMS
Asynchronous Circuits
Compilers
Computer-Aided Design
Computer Architecture
Computer Graphics
Computer Networks
Computer Organization
Computer Reliability
Concurrent Languages
Concurrent Processes and Processors
Database and Information Systems
Distributed Systems
Embedded System Design
Hardware/Software Co-Design
Hardware Verification
Human Computer Interaction
Multimedia Systems
Operating Systems
Performance Measurement and Modeling
Programming Languages
Program Verification
VLSI Design

INFORMATION SYSTEMS
Adaptive Control and Signal Processing
Adaptive Neural Networks
Biomedical Signal Analysis
Computer-Aided Design and Analysis of Systems
Data Communications
Digital Signal Processing
Estimation Theory and Applications
Fourier and Statistical Optics
Information and Coding Theory
Medical Imaging and Image Processing
Multivariable Control
Optical Communications
Optimization-Based Design
Pattern Recognition and Complexity
Quantization and Data Compression
Real-Time Computer Applications
Signal Processing
Speech and Image Coding

INTEGRATED CIRCUITS
Analog Integrated Circuits
Biomedical Sensors, Circuits, and Signal Processing
Bipolar, MOS, and other Device and Circuit Technologies
CAD of Processes, Devices, and Equipment
Custom Integrated Circuits for Computers and Telecommunications
Digital Integrated Circuits
Integrated Sensors and Actuators
Mixed Signal Integrated Circuits
Nanostructures
Neural Recording and Signal Processing
Optoelectronic Integrated Circuits
Organic Materials, Devices and Circuits
Process, Device, Circuit, and Equipment Modeling
RF Circuits for Wireless Transmission
Sensors and Control for VLSI Manufacturing
VLSI Device Structures and Physics
VLSI Fabrication Technology
VLSI Materials, Interconnections, and Contacts
VLSI Packaging and Testing

LASERS AND QUANTUM ELECTRONICS
Coherent UV and X-Ray Sources
Free-Electron Lasers
Laser Applications in Aeronautics, Biology, Chemistry, Communications, Electronics, and Physics
Laser Devices and Laser Physics
Nonlinear Optical Devices and Materials
Optoelectronic Devices
Photoacoustic Phenomena
Semiconductor Diode Lasers
Ultrafast Optics and Electronics

MICROWAVES, ACOUSTICS, AND OPTICS
Acoustic Microscopy
Acousto-Optic Devices
Fiber Optics
Holography
Microwave Integrated Circuits and Devices
Nanophotonics
Nondestructive Testing
Optical Interferometry
Scanning Optical Microscopes

RADIOSCIENCE AND REMOTE SENSING
Environmental Studies using Satellite Technology
Exploration of the Earth from Space
Interferometric and Holographic Imaging with Radio Waves
Numerical Methods for Science Data Analysis
Optical Remote Sensing
Planetary Exploration
Radar Interferometry
Radar Remote Sensing
Radio Occultation Studies
Radio Wave Scattering
Remote Sensing of Atmospheres and Surfaces
Signal and Image Processing Methods
Space Data Management
Spaceborne Radio Receiver Development
Synthetic Aperture Radar Satellites
SOLID STATE
Applied and Fundamental Superconductivity
Crystal Preparation: Epitaxy and Ion Implantation, and Molecular Beam Epitaxy
Defect Analysis in Semiconductors
Electron and Ion Beam Optics
Electron Spectroscopy
Experimental Determination of the Electronic Structure of Solids
High Resolution Lithography
Laser, Electron, and Ion Beam Processing and Analysis
Magnetic Information Storage
Magnetic Materials Fundamentals and Nanostructures
Nanostructure Fabrication and Applications
Nanophotonics
Molecular Beam Epitaxy
Novel Packaging Approaches for Electronic Systems
Optoelectronic Devices
Physics and Chemistry of Surfaces and Interfaces
Semiconductor and Solid State Physics
Solid State Devices: Physics and Fabrication
Ultrasmall Electron and Photodevices

SPACE PHYSICS AND ELECTROMAGNETICS
Computational Electromagnetics
Detection of Electromagnetic Fields from Earthquakes
Electromagnetic Waves and Plasmas
Geomagnetically Trapped Radiation
Ionospheric and Magnetospheric Physics
Ionospheric Modification
Lightning Discharges
Lightning-Ionosphere Interactions
Space Engineering (also see the “Space Science and Astrophysics” section of this bulletin)
Ultra-Low Frequency Fluctuations of the Earth’s Magnetic Field
Very Low Frequency Wave Propagation and Scattering

COURSES
WIM indicates that the course satisfies the Writing in the Major requirements. (AU) indicates that the course is subject to the University Activity Unit limitations (8 units maximum).

Electrical Engineering courses are typically numbered according to the year in which the courses are normally taken.

20-099 first or second year
100-199 second through fourth year
200-299 mezzanine course for advanced undergraduates or graduates
300-399 first graduate year
400-499 second or third graduate year
600-799 special summer courses

The Department of Electrical Engineering (EE) offers courses in the following areas:
Communication Systems
Computer Hardware
Computer Software Systems
Control and System Engineering
Dynamic Systems and Optimization
Electronic Circuits
Electronic Devices, Sensors, and Technology
Fields, Waves, and Radioscience
Image Systems
Lasers, Optoelectronics, and Quantum Electronics
Network Systems
Signal Processing
Solid State Materials and Devices

UNDERGRADUATE
EE 14N. Things about Stuff—Stanford Introductory Seminar. Preference to freshmen. Most engineering curricula present truncated, linear histories of technology, but the stories behind disruptive inventions such as the telegraph, telephone, wireless, television, transistor, and chip are as important as the inventions themselves. How these stories elucidate broadly applicable scientific principles. Focus is on studying consumer devices; optional projects to build devices including semiconductors made from pocket change. Students may propose topics of interest to them. GER:DB-EngrAppSci
3 units, Aut (Lee)

EE 15N. The Life of an Engineering Project—Stanford Introductory Seminar. Preference to freshmen. The process of taking an engineering product from idea to shipment. Focus is on the design of a large engineering system. Student teams proposes ideas; architects turn the ideas into a functional specification; engineering managers determine needed resources and schedule; the engineering team work out design details; and verification engineers ensure that the designs operate correctly. GER:DB-EngrAppSci
3 units, Win (Goldsmith, Le)

EE 16N. From Science Fiction to Science and Engineering—Stanford Introductory Seminar. Preference to freshmen. Technologies inspired by science fiction from scientific and engineering points of view with references to science fiction literature and film. Topics may include nanotechnology, teleportation, solar sails, applications of lasers, and ideas related to computers and communications. Bad science in science fiction and proposals that do not work. Prerequisites: high school math and physics. GER:DB-EngrAppSci
3 units, Aut (Vuckovic)

3 units, Spr (Maluf, Pease)

EE 17Q. From Chips to Genes: Engineering the MicroWorld—Stanford Introductory Seminar. Preference to sophomores. Each session consists of a lecture by instructor or guest speaker followed by demonstration or hands-on experimentation. Instruments available include light microscopes, scanning electron microscope, scanning tunneling microscope, microlithography tools. Applications include microelectronics, microelectro-mechanical systems (MEMS), and biotechnology. Reading assignments and final project. Prerequisite: high school physics. GER:DB-EngrAppSci
3 units, Spr (Pease) alternate years, not given 2006-07

EE 41. Physics of Electrical Engineering—How everything from electrostatics to quantum mechanics is used in common high-technology products. Electrostatics are critical in micro-mechanical systems used in many sensors and displays, and basic EM waves are essential in all high-speed communication systems. How to propagate energy in free space. Which aspects of modern physics are needed to generate light for the operation of a DVD player or TV. Introduction to semiconductors, solid-state light bulbs, and laser pointers. Hands-on labs to connect physics to everyday experience. GER:DB-EngrAppSci
5 units, Win (Solgaard)

EE 100. The Electrical Engineering Profession—Lectures/discussions on topics of importance to the electrical engineering professional. Continuing education, professional societies, intellectual property and patents, ethics, entrepreneurial engineering, and engineering management. GER:DB-EngrAppSci
1 unit, Aut (Nishimura)
EE 101A. Circuits I — First of two-course sequence. Introduction to circuit modeling and analysis. Topics include creating the models of typical components in electronic circuits and simplifying non-linear models for restricted ranges of operation (small signal model); and using network theory to solve linear and non-linear circuits under static and dynamic operations. GER:DB-EngrAppSci
4 units, Win (S. Wong)

EE 101B. Circuits II — Second of two-course sequence. MOS large-signal and small-signal models. MOS amplifier design including DC bias, small signal performance, multistage amplifiers, frequency response, and feedback. Prerequisite: 101A. GER:DB-EngrAppSci
4 units, Aut, Spr (Shenoy)

4 units, Win (Pauly)

4 units, Spr (Kahn)

EE 105. Feedback Control Design — (Enroll in ENGR 105.)
3 units, Win (Rock)

EE 106. Planetary Exploration — An introduction to the other worlds of our solar system as revealed by their electromagnetic emissions and, by recent space missions. Planetary interiors, surfaces, atmospheres, moons, and rings are discussed along with the interplanetary environment, including its gas, dust, meteors, and comets. Orbital data provide insight and Hohmann orbits for spacecraft are computed. Stanford EE Department radio experiments have been a part of every major NASA planetary mission and this experience will provide a unique point of view. Prerequisite: one year of college engineering. GER:DB-EngrAppSci
3 units, Spr (Fraser-Smith)

3-4 units, Aut (Dally), Win (Staff)

4 units, Aut (Olukotun), Spr (Staff)

4 units, Win (Olukotun)

EE 114X. Simulation-based Circuit Design — Electronic circuit design based on hand analysis and circuit simulations. Concepts of design space, robust design, and constraint-driven optimization. Hands-on, simulation lab experience. Prerequisite: EE 101B.
2 units, Aut (Dutton)

3 units, Spr (Peumans, Dutton)

EE 122. Analog Circuits Laboratory — Introduces the practical applications of analog circuits, including simple amplifiers, filters, oscillators, power supplies, and sensors. Goals: lab experience, basic design skills, experience with computer-aided design, and basic circuit fabrication/debugging knowledge. Students work in teams of two to learn the design process through proposing, designing, simulating, building, debugging, and demonstrating a suitable project. Radio frequency and largely digital projects are not suitable for EE122. Household line operated circuits are not permitted unless using approved “AC adapters.” Prerequisite: ENGR 40 or equivalent. GER:DB-EngrAppSci
3 units, Aut (Kovacs)

EE 133. Analog Communications Design Laboratory — The design and testing of analog communications circuits, including applications. Amplitude Modulation (AM) using multiplier circuits. Frequency Modulation (FM) based on discrete oscillator and integrated modulator circuits such as voltage-controlled oscillators (VCOs). Phased-Lock Loop (PLL) techniques, characterization of key parameters and their applications. Practical aspects of circuit implementations. Labs involve the systematic building and characterization of AM and FM modulation/demodulation circuits and subsystems. Enrollment limited to 30 undergraduate and coterminal EE students. Prerequisite: 101B. GER:DB-EngrAppSci
3 units, Win (Dutton)

EE 134. Introduction to Photonics — Lectures and laboratory experiments on photonics, optical sensors, and fiber optics. Conceptual and mathematical tools for design and analysis of optical communication and sensor systems. Experimental characterization of semiconductor lasers, optical fibers, photodetectors, receiver circuitry, fiber optic links, optical amplifiers, and optical sensors. Class project aimed on confocal microscopy for biomedical applications. Prerequisite: 141 or equivalent. GER:DB-EngrAppSci
4 units, Spr (Solgaard)

EE 136. Introduction to Nanophotonics and Nanostructures — Electromagnetic and quantum mechanical waves and semiconductors. Confining these waves, and devices employing such confinement. Localization of light and applications: metallic mirrors, photonic crystals, optical waveguides, microresonators, plasmonics. Localization of quantum mechanical waves: quantum wells, wires, and dots. Generation of light
in semiconductors: spontaneous and stimulated emission, lasers, and light emitting diodes. Devices incorporating localization of both electromagnetic and quantum mechanical waves such as resonant cavity quantum well lasers and microcavity-based single photon sources. System-level applications such as optical communications, biochemical sensing, and quantum cryptography. Prerequisite: familiarity with electromagnetic and quantum mechanical waves and semiconductors at the level of EE 41 or equivalent. GER:DB-EngrAppSci
3 units, Win (Vuckovic)

EE 137. Laboratory Electronics—(Enroll in APPPHYS 207.)
3 units, Win (Fox)

EE 138. Laboratory Electronics—(Enroll in APPPHYS 208.)
3 units (Fox) alternate years, given 2006-07

EE 140. Introduction to Remote Sensing—(Enroll in GEOPHYS 140.)
3 units, Aut (Zebker)

4 units, Aut (Inan)

EE 141M. Engineering Electromagnetics—Covers approximately the same material as EE 141 making considerable use of Mathematica. Mathematica allows the smooth integration of algebra, calculus, and graphics. The increased ease of graphics allows, much like a laboratory, better internalization of abstract material. Prerequisites: 102A, Math 52. GER:DB-EngrAppSci
4 units, Aut (S. Harris)

3 units, Win (Inan)

EE 144. Wireless Electromagnetic Design Laboratory—Hands-on experiments and projects with antennas, transmission lines and propagation for wireless communications and remote sensing. Using spectrum analysers, swept frequency generators, frequency counters, couplers, detectors and slotted lines, develop measurement and design capability in the 1-20 GHz range in support of chosen design projects. Two- to three-person team projects from antenna, guided wave distributed circuits, remote sensing, or related topics. Working model constructed and demonstrated; some funding available for project costs. Prizes for best projects. Lab. Enrollment limited to 30. Prerequisite: 122 or 142, or consent of instructor. GER:DB-EngrAppSci
3 units, Spr (Leeson)

3 units (Staff)

EE 168. Introduction to Digital Image Processing—Computer processing of digital 2-D and 3-D data, combining theoretical material with implementation of computer algorithms. Topics: properties of digital images, design of display systems and algorithms, time and frequency representations, filters, image formation and enhancement, imaging systems, perspective, morphing, and animation applications. Instructional computer lab exercises implement practical algorithms. Final project consists of computer animations incorporating techniques learned in class. GER:DB-EngrAppSci
3-4 units, Win (Zebker)

3 units, Win (El Gamal)

EE 179. Introduction to Communications—Communication system design and performance analysis. Topics include current communication systems (cellular, WLANs, radio and TV broadcasting, satellites, Internet), Fourier techniques, energy and power spectral density, random variables and random (noise) signals, filtering and modulation of noise, analog modulation (AM and FM) and its performance in noise, digital modulation (PSK and FSK), optimal receiver design, and probability of bit error for digital modulation. Prerequisite: 102A. GER:DB-EngrAppSci
3 units, Win (Goldsmith)

EE 184. Programming Paradigms—(Enroll in CS 107.)
3-5 units, Aut, Spr (Cain)

EE 189A. Object-Oriented Systems Design—(Enroll in CS 108.)
3-4 units, Aut, Win (Parlante)

EE 189B. Software Project—(Enroll in CS 194.)
3 units, Spr (Plummer)

EE 190. Special Studies or Projects in Electrical Engineering—Independent work under the direction of a faculty member. Individual or team activities involve lab experimentation, design of devices or systems, or directed reading.
1-15 units, Aut, Win, Spr, Sum (Staff)

EE 191. Special Studies and Reports in Electrical Engineering—Independent work under the direction of a faculty member given for a letter grade only. If a letter grade given on the basis of required written report or examination is not appropriate, enroll in 190.
1-15 units, Aut, Win, Spr, Sum (Staff)

UNDERGRADUATE AND GRADUATE

EE 201A. Introductory Graduate EE Seminar—Topics of current interest in electrical engineering. Orientation to Stanford and to the EE department. Students with a conflict may view via videotape in the library.
1 unit, Aut (Reis)

EE 201B. Seminar—Life after Stanford through presentations primarily for EE master’s students. The activities of graduates in industry, startups, government laboratories, and community colleges. (AU)
1 unit, Win (Reis)

EE 202. Medical Electronics—Open to all. Primarily biological in nature, introduction to the physiological and anatomic aspects of medical instrumentation. Areas include patient monitoring, imaging, medical transducers, the unique aspects of medical electronic systems, the socioeconomic impact of technology on medical care, and the constraints unique to medicine. Prerequisite: familiarity with circuit instrumentation techniques as in 101B.
3 units, Aut (Thompson)
EE 203. The Entrepreneurial Engineer—Seminar furthers the knowledge base of prospective entrepreneurs with an engineering background. The contributions made to the business world by engineering graduates. Speakers include Stanford (and other) engineering and M.B.A. graduates who have founded large and small companies in nearby communities. Contributions from EE faculty and other departments including Law, Business, and MS&E.

1 unit, Win (Melen)

EE 205. Introduction to Control Design Techniques—(Enroll in ENGR 205.)

3 units, Aut (Rock)

EE 206. Control System Design—(Enroll in ENGR 206.)

4 units, Spr (Niemeyer)

EE 207D. Optimal Control and Hybrid Systems—(Enroll in AA 278.)

3 units (Tomlin) not given 2005-06

EE 209A. Analysis and Control of Nonlinear Systems—(Enroll in ENGR 209A.)

3 units (Tomlin) not given 2005-06

EE 209B. Advanced Nonlinear Control—(Enroll in ENGR 209B.)

3 units (Tomlin) not given 2005-06

EE 210B. Advanced Topics in Computation for Control—(Enroll in ENGR 210B.)

3 units (Lall) not given 2005-06

EE 212. Integrated Circuit Fabrication Processes—For students interested in the physical bases and practical methods of silicon VLSI chip fabrication, or the impact of technology on device and circuit design, or intending to pursue doctoral research involving the use of Stanford's Nanofabrication laboratory. Process simulators are used to illustrate concepts and provide a virtual lab experience. Topics: the fundamental principles of integrated circuit fabrication processes, physical and chemical models for crystal growth, oxidation, ion implantation, etching, deposition, lithography, and back-end processing. Required for 410. Prerequisite: undergraduate semiconductor device physics.

3 units, Aut (Plummer)

EE 213. Heat Transfer in Microdevices—(Enroll in ME 358.)

3 units, Spr (Goodson)

3 units, Aut (Marmarr)

EE 215. Bipolar Analog Integrated Circuit Design—Bipolar analog circuits for high-frequency operation, including applications for networking and communications, such as video and broadband RF amplifiers. Device operation and compact modeling will be presented in support of circuit simulations needed for design. Basic circuit building blocks, including current and voltage references, and cascaded multi-stage amplifiers will be analyzed. Analysis and design of feedback circuits is a key component of this course. The homework will include small design projects and the use of SPICE models that are representative of state-of-the-art bipolar technology. Prerequisite: 101B. GER:DB-EngrAppSci

3 units, Win (Dutton, Woolley)

EE 216. Principles and Models of Semiconductor Devices—The fundamentals of carrier generation, transport, recombination, and storage in semiconductors. The physical principles of operation of the p-n junction, heterojunction, metal semiconductor contact, bipolar junction transistor, MOS capacitor, MOS and junction field-effect transistors, and related optoelectronic devices such as CCDs, solar cells, LEDs, and detectors. First-order device models that reflect physical principles and are useful for integrated-circuit analysis and design. Prerequisite: 116 or equivalent.

3 units, Aut (J. Harris), Win (Saraswat, Pease)

EE 218. Introduction to Nanotechnology and Nanoelectronics—Focus is on the device physics and operation principles. Device and material options for advanced silicon FETs at the nanoscale. Topics identified by the International Technology Roadmap for Semiconductors, emerging research devices section; see http://public.itsrs.net. Non-silicon-based devices such as carbon nanotubes, semiconductor nanowires, and molecular devices; and non-FET based devices such as single electron transistors (SET), resonant tunneling diodes (RTD), and quantum dots. Logic and memory devices. Prerequisite: undergraduate device physics.

3 units, Aut (H.P. Wong)

EE 222. Applied Quantum Mechanics I—Emphasis is on applications in modern devices and systems. Topics include: Schrodinger’s equation, eigenfunctions and eigenvalues, operator approach to quantum mechanics, Dirac notation, solutions of simple problems including quantum wells and tunneling. Quantum harmonic oscillator, coherent states. Calculation techniques including matrix diagonalization, perturbation theory, and variational method. Time-dependent perturbation theory, applications to optical absorption, nonlinear optical coefficients, and Fermi’s golden rule. Quantum mechanics in crystalline materials. Prerequisites: MATH 52 and 53, PHYSICS 65 (or PHYSICS 43 and 45).

3 units, Aut (Miller)

EE 223. Applied Quantum Mechanics II—Continuation of 222, including more advanced topics: angular momentum in quantum mechanics, spin, hydrogen atom, systems of identical particles (bosons and fermions), methods for one-dimensional problems, introductory quantum optics (electromagnetic field quantization, coherent states), fermion annihilation and creation operators, interaction of different kinds of particles (spontaneous emission, optical absorption, and stimulated emission). Quantum information and interpretation of quantum mechanics. Other topics in electronics, optoelectronics, optics, and quantum information science. Prerequisite: 222.

3 units, Win (Miller)

EE 226. Physics of Quantum Information—(Enroll in APPPHYS 226.)

3 units, Aut (Yamamoto) alternate years, given 2006-07

EE 227. Applications of Quantum Information—(Enroll in APPPHYS 227.)

3 units, Aut (Yamamoto) alternate years, given 2006-07

3 units, Aut (Peumans)

EE 229A. Thin Film and Interface Microanalysis—(Enroll in MATSCI 347.)

3 units, Aut (Brongersma)

EE 229B. Thin Film and Interface Microanalysis—(Enroll in MATSCI 347.)

3 units, Spr (Wang)

EE 231. Introduction to Lasers—Introduction to lasers and how they work, including quantum transitions in atoms, stimulated emission and amplification, rate equations, saturation, feedback, coherent optical oscillation, laser resonators, and optical beams. Limited primarily to steady-state behavior; uses classical models for atomic transitions with little quantum mechanics background required. Prerequisites: electromagnetic theory to a level of at least 142, preferably 241, and some knowledge of atomic or modern physics such as PHYSICS 70 or 130, 131. GER:DB-EngrAppSci

3 units, Aut (Fejer)
EE 232. Laser Dynamics — Continuation of 231, emphasizing dynamic and transient effects including spiking, Q-switching, mode locking, frequency modulation, frequency and spatial mode competition, linear and nonlinear pulse propagation, short pulse expansion, and compression. Prerequisite: 231.

3 units, Win (Fejer)

EE 234. Photonics Laboratory — Photonics and fiber optics with a focus on communication and sensing. Experimental characterization of semiconductor lasers, optical fibers, photodetectors, receiver circuitry, fiber optic links, optical amplifiers, and optical sensors. Prerequisite: 142.

3 units, Aut (Fan)

3 units, Spr (Fan)

EE 236. Solid State Physics I — (Enroll in APPPHYS 272.)

3 units, Win (Manoharan)

EE 237. Solid State Physics II — (Enroll in APPPHYS 273.)

3 units, Spr (Manoharan)

EE 238. Electronic and Optical Properties of Solids — (Enroll in MATSCI 199/209.)

3-4 units, Spr (Brongersma)

EE 241. Waves I — Waves and wave phenomena in natural, lab, and application settings. Electromagnetic, acoustic, seismic, atmospheric, plasma, and water waves and their mathematical and physical correspondence in terms of Hamilton’s principle. Propagation, attenuation, reflection, refraction, surface and laminal guiding, and intrinsic and structural dispersion; energy density, power flow, and phase and group velocities. Geometric and structural complexities are minimized to stress basic wave concepts. Analysis in terms of transmission line and impedance concepts using exponential notation and vector phasors. Treatment limited to plane harmonic waves in isotropic media. Nonhomogeneous cases limited to plane interfaces and exponentially stratified media. Prerequisite: 142 or equivalent, or other wave course.

3 units, Aut (Tyler)

EE 243. Semiconductor Optoelectronic Devices — Operating principles and practical device features. Semiconductor physics and optical processes in semiconductors. Semiconductor heterostructures and optical detectors including p-i-n, avalanche, and MSM, light emitting diodes, electroabsorptive modulators (Franz-Kedelshy, QCSE), electrorefractive (directional couplers, Mach-Zehnder), switches (SEEDs), and lasers (waveguide and vertical cavity). Prerequisites: basic quantum mechanics, solid state physics, and lasers, such as 222, 228, 231, or equivalents.

3 units, Win (J. Harris)

EE 244. Communication Engineering Transmission Systems — Design of transmission systems for TV, telephone, and data-using satellites; microwave repeaters; mobile radio; and broadcast transmitters. Performance of FM, AM, and SSB common digital schemes; TDMA, FDMA, and CDMA; voice, TV and data compression; and error coding. Emphasis is on link performance, capacity, total system design, and cost optimization. Current industry design problems and research results. Examples illustrate modern technologies providing service to rural populations. Project on social and economic factors, and detailed network design for a student-selected rural area. Prerequisite: senior or graduate standing in Electrical Engineering, or consent of instructor.

3 units, Aut (Lasignani)

EE 245. Wireless Electromagnetic Design Laboratory — Same content as 144 but with a higher level project.

3 units, Spr (Leeson)

EE 246. Microwave Engineering — Microwave applications (terrestrial and satellite communications, radar, remote sensing, wireless communications) and their system and component requirements. Review of Maxwell’s equations. Propagation modes of transmission lines (TEM, waveguide, microstrip), S-parameter matrix modeling of discontinuities, junctions and circuits (impedance transformers, directional couplers, hybrids, filters, circulators, solid state amplifiers and oscillators). Microwave computer-aided design examples. General flow of course is application to system to component; individual components modeled by fields to modes to equivalent network. Prerequisite: 142. GER:DB-EngrAppSci

3 units, Aut (Leeson) alternate years, not given 2006-07

3 units, Aut (Yamamoto)

EE 249. Introduction to the Space Environment — Introduction to the environment through which mankind’s space probes and vehicles travel and orbit and which moderates the gases and radiation from the Sun. Experimentation in this environment, the tools used, and the regions into which it is divided including the ionosphere, the magnetosphere, and interplanetary space. The role of the sun, the effects of changes in solar activity, charged particle motion which in combination with the earth’s magnetic field leads to auroras and the Van Allen belts. Prerequisites: familiarity with electrodynamics at the level of 142 and senior or graduate standing. GER:DB-EngrAppSci

3 units, Fraser-Smith, Chua

EE 251. Progress in Worldwide Telecommunications — (Enroll in MS&E 237.)

3 units, Sam (Ivanek, Chua)

3 units, Spr (Tyler)
EE 254. Principles of Radar Systems—Analysis and design, emphasizing radars as systems. Radar equation and systems parameters, components of radar systems, radar cross-section and target characteristics, signal detection in noise, ambiguity function (with applications to measurement precision, resolution, clutter rejection, and waveform design); pulse compression waveforms, synthetic aperture radar, tracking and scanning radars, HF (OTH) radar, radar environmental and remote sensing, radar astronomy. Prerequisite: senior undergraduate or graduate standing. GER:DB-EngrAppSci
3 units, Win (Tyler; Zebker) alternate years, not given 2006-07

3 units (Iuan) alternate years, given 2006-07

EE 261. The Fourier Transform and its Applications—The Fourier transform as a tool for solving physical problems. Fourier series, the Fourier transform of continuous and discrete signals and their properties. The Dirac delta, distributions, and generalized transforms. Convolutions and correlations and applications; probability distributions, sampling theory, filters, and analysis of linear systems. The discrete Fourier transform and the FFT algorithm. Multidimensional Fourier transform and use in imaging. Further applications to optics, crystallography. Emphasis is on relating the theoretical principles to solving practical engineering and science problems. Prerequisites: Fourier series at the level of 102A, and linear algebra. GER:DB-EngrAppSci
3 units, Aut (Osgood), Win (Gill)

EE 262. Two-Dimensional Imaging—Time and frequency representations, two-dimensional auto- and cross-correlation, Fourier spectra, diffraction and antennas, coordinate systems and the Hankel and Abel transforms, line integrals, impulses and sampling, restoration in the presence of noise, reconstruction and tomography, imaging radar. Tomographic reconstruction using projection-slice and layergarm methods. Students create software to form images using these techniques with actual data. Final project consists of design and simulation of an advanced imaging system. Prerequisite: 261. Recommended: 278, 279. GER:DB-EngrAppSci
3 units (Zebker) alternate years, given 2006-07

EE 263. Introduction to Linear Dynamical Systems—Introduction to applied linear algebra and linear dynamical systems with application to circuits, signal processing, communications, and control systems. Topics: least-squares approximations of over-determined equations and least-norm solutions of underdetermined equations. Symmetric matrices, matrix norm, and singular value decomposition. Eigenvalues, left and right eigenvectors, with dynamical interpretation. Matrix exponential, stability, and asymptotic behavior. Multi-input/multi-output systems, impulse and step matrices; convolution and transfer matrix descriptions. Control, reachability, and state transfer. Least-norm inputs and associated Gramians. Prerequisites: linear algebra and matrices as in MATH103; differential equations and Laplace transforms as in 102A.
3 units, Aut (Boyd)

3 units, Aut (Widrow)

3-4 units (Meng) not given 2005-06

EE 266. Introduction to Modern Optics—Geometrical optics: ray matrices, Gaussian beams, optical instruments, and radiometry. Wave nature of light: Maxwell’s equations, propagation through media with varying index of refraction (e.g., fibers). Interferometry: basic principles, practical systems, and applications. GER:DB-EngrAppSci
3 units, Aut (Beyer)

EE 271. Introduction to VLSI Systems—Large-scale MOS design. Topics: MOS transistors, static and dynamic MOS gates, MOS circuit fabrication, design rules, resistance and capacitance extraction, power and delay estimation, scaling. MOS combinational and sequential logic design, registers and clocking schemes, memory, data-path, and control-unit design. Elements of computer-aided circuit analysis, synthesis, and layout techniques. Prerequisites: 101Aand 108B; familiarity with circuits, logic design, and digital system organization. GER:DB-EngrAppSci
3 units, Aut (Horowitz)

EE 272. Digital Systems Engineering—Fundamental electrical issues in the design of high-performance digital systems, including signaling, timing, synchronization, noise, and power distribution. High-speed signaling methods; noise in digital systems, its affect on signaling, and methods for noise reduction; timing conventions; timing noise (skew and jitter), its affect on systems, and methods for mitigating timing noise; synchronization issues and synchronizer design; clock and power distribution problems and techniques; impact of electrical issues on system architecture and design. Prerequisites: 108A and 102B, or equivalents.
3 units, Win (Zerbe)

EE 273. Digital Systems Engineering—Fundamental electrical issues in the design of high-performance digital systems, including signaling, timing, synchronization, noise, and power distribution. High-speed signaling methods; noise in digital systems, its affect on signaling, and methods for noise reduction; timing conventions; timing noise (skew and jitter), its affect on systems, and methods for mitigating timing noise; synchronization issues and synchronizer design; clock and power distribution problems and techniques; impact of electrical issues on system architecture and design. Prerequisites: 108A and 102B, or equivalents.
3 units, Win (Zerbe)

EE 274. Introduction to Cryptography—(Enroll in CS 255.)
3 units, Win (Bonets)

EE 275. Logic Design—Principles and techniques of logic design. Combinational circuit analysis (hazard detection); combinational circuit design including PLA, VLSI, and MSI techniques and testing techniques; IC logic, flipflop properties, sequential circuit analysis and synthesis for fundamental and pulse mode circuits, design for testability techniques. Prerequisite: 121 or equivalent.
3 units (Al-Yamani) not given 2005-06

3 units, Spr (Cox)

EE 277. Stochastic Decision Models—(Enroll in MS&E 251.)
3 units, Win (Weinott)

EE 278. Introduction to Statistical Signal Processing—Random variables, vectors, and processes; convergence and limit theorems; IID, independent increment, Markov, and Gaussian random processes; stationary random processes; autocorrelation and power spectral density; mean square error estimation, detection, and linear estimation. Prerequisites: 178 or STATS 116, and linear systems and Fourier transforms at the level of 102A,B or 261. GER:DB-EngrAppSci
3 units, Aut, Spr (Weissman)
EE 279. Introduction to Communication Systems—Analysis and design of communication systems; analog and digital modulation and demodulation, frequency conversion, multiplexing, noise and distortion; spectral and signal-to-noise ratio analysis, probability of error in digital systems, spread spectrum. Prerequisites: 179 or 261, and 178 or 278. GER:DB-EngrAppSci
 3 units, Win (Cox)

EE 282. Computer Architecture and Organization—Advanced architecture topics for systems such as personal computers, servers, and embedded or portable devices. Cache hierarchies, memory systems, storage and I/O systems, clusters, fault-tolerance, and low power design. Programming assignments; introduction to performance analysis and optimization techniques for small- and large-scale systems. Locality, coarse-grain parallelism, overlapping communication and computation, performance/power trade-offs, and reliability. How computer systems are organized and why they are organized that way. Characteristics of modern processors that affect system architecture. Prerequisite: 108B. 3 units, Aut (Kozyrakis)

EE 283. Compilers—(Enroll in CS 143.)
 3-4 units, Aut, Win, Sum (Staff)

EE 284. Introduction to Computer Networks—Structure and components of computer networks; functions and services; packet switching; layered architectures; OSI reference model; physical layer; data link layer; error control; window flow control; media access control protocols used in local area networks (Ethernet, Token Ring, FDDI) and satellite networks; network layer (datagram service, virtual circuit service, routing, congestion control, Internet Protocol); transport layer (UDP, TCP); application layer.
 3-4 units, Aut (Tobagi)

EE 284A. Introduction to Computer Networks—(Enroll in CS 244A.)
 3-4 units, Win (McKeown)

EE 285. Programming Languages—(Enroll in CS 242.)
 3 units, Aut (Mitchell)

EE 286A. Operating Systems and Systems Programming—(Enroll in CS 140.)
 3-4 units, Aut, Win (Rosenblum)

EE 286B. Advanced Topics in Operating Systems—(Enroll in CS 240.)
 3 units, Aut, Spr (Engler)

EE 287. Introduction to Computer Graphics—(Enroll in CS 248.)
 3-5 units, Aut (Levoy)

 3 units, Aut (Fedkiw)

EE 289. Introduction to Computer Vision—(Enroll in CS 223B.)
 3 units, Win (Thrun)

EE 290A,B,C. Curricular Practical Training for Electrical Engineers—For EE majors who need relevant work experience as part of their program of study. Final report required. Prerequisite for 290B: candidate for Engineer or Ph.D. in Electrical Engineering. Prerequisite for 290C: candidate for Ph.D. degree in Electrical Engineering.
 1 unit, Aut, Win, Spr, Sum (Nishimura)

EE 292A. Global Positioning Systems—(Enroll in AA 272C.)
 3 units, Win (Enge)

EE 292B. Electronic Documents: Paper to Digital—Core technologies that underlie and enable the transformation of paper documents and document collections to digital form. Scanner technology and digital camera hardware, document image analysis including optical character recognition (OCR), textual information retrieval, document representation technologies including structured and hypertext document standards, image and text compression, electronic book (eBook) engineering, digital rights management technologies, data encryption and security, knowledge management, and user interface design. Emphasis is on basic technological principles. Guest lectures from PARC innovators. Term project. Prerequisites: basic probability and linear algebra, programming skills. Recommended: 102B or 168.
 3 units (Popat) alternate years, given 2006-07

 3 units, Spr (Van Roy)

 3-4 units, Aut (da Rosa)

 3-4 units, Win (da Rosa)

EE 294A. Artificial Intelligence: Principles and Techniques—(Enroll in CS 221.)
 3-4 units, Aut (Koller, Ng)

EE 294B. Probabilistic Models in Artificial Intelligence—(Enroll in CS 228.)
 3 units, Win (Koller, Elidan)

EE 294C. Machine Learning—(Enroll in CS 229.)
 3 units, Aut (Ng)

EE 294X. Modern Applied Statistics: Learning—(Enroll in STATS 315A.)
 2-3 units, Win (Hastie)

EE 294Y. Data Mining—(Enroll in STATS 315B.)
 2-3 units, Spr (Friedman)

GRADUATE

EE 300. Master’s Thesis and Thesis Research—For students who wish to do independent work under the direction of a department faculty member as part of their master’s degree program. Written thesis required for final letter grade. The continuing grade ‘N’ is given in quarters prior to thesis submission. See 390 if a letter grade is not appropriate.
 1-15 units, Aut, Win, Spr, Sum (Staff)

EE 309. Semiconductor Memory Devices and Technology—Memory devices such as SRAM, DRAM, and NVRAM. Operation principles, device design considerations, device scaling, device fabrication, addressing, and readout circuits. Cell structures including 1T-1C, 6T, 4T, 1T-1R, 0T-1R, floating gate FLASH, SONOS, and NROM; memory organization including open bit-line, folded bit-line, NAND, NOR, and cross-point. New memory concepts such as nanocrystal memory, single-electron memory, magnetic tunnel junction memory (MRAM), ferroelectric memory (FRAM), phase change memory (PRAM), T-RAM, polymer memory. Prerequisite: 216. GER:DB-EngrAppSci
 3 units, Spr (H.S.P. Wong) alternate years, not given 2006-07

 1 unit (Wooley) not given 2005-06

EE 311. Advanced Integrated Circuit Fabrication Processes—Practical and fundamental limits to the evolution of the technology of modern MOS and bipolar devices. Modern device and circuit fabrication and likely future changes. Advanced techniques and models of device and back-end (interconnect and contact) processing. Use of TSUPREM4 and PISCES for process and device modeling. MOS and bipolar process integration. Prerequisites: 212, 216.
 3 units, Spr (Saraswat)
EE 312. Micromachined Sensors and Actuators—Solid-state sensors and actuators, focusing on the use of integrated circuit fabrication technology for their realization. Categories of sensors and actuators include biological, chemical, mechanical, optical, and thermal. Basic mechanisms of transduction, fabrication techniques, and the relative merits of different technologies. Micromachining techniques for monolithic integration of active circuits with sensors or actuators and directions for future research. Prerequisite: 212 or equivalent.

3 units (Kovacs) not given 2005-06

EE 313. Digital MOS Integrated Circuits—Analysis and design of digital MOS integrated circuits. Development of different models for MOS transistors and how to use them to analyze circuit performance. Use of computer-aided circuit analysis. Logic styles include static, dynamic and pass logic, pulse-mode gates, and current-mode logic. Topics include sizing for min delay, noise and noise margins, power dissipation. The class uses memory design (SRAM) as a motivating example. DRAM and EEPROM design issues. Prerequisites: 101B, 108A. Recommended: 271.

3 units, Win (Staff)

EE 314. RF Integrated Circuit Design—Design of RF integrated circuits for communications systems, primarily in CMOS. Topics: the design of matching networks and low-noise amplifiers at RF, passive and active filters, mixers, modulators, and demodulators; review of classical control concepts necessary for oscillator design including PLLs and PLL-based frequency synthesizers. Design of low phase noise oscillators. Design of high-efficiency (e.g., class E, F) RF power amplifiers, coupling networks. Behavior and modeling of passive and active components at RF. Narrowband and broadband amplifiers; noise and distortion measures and mitigation methods. Overview of transceiver architectures. Prerequisite: 214.

3 units (Lee) not given 2005-06

EE 315. VLSI Data Conversion Circuits—Design of mixed-signal integrated circuits for implementing the interfaces between analog and digital signals in CMOS VLSI systems. Fundamental circuit elements such as sample-and-hold circuits, comparators, analog gain blocks and integrators. The design of the constituent circuits for Nyquist-rate and oversampling analog-to-digital and digital-to-analog converters, sampled-data and continuous-time analog filters, and digital decimation and interpolation filters. Prerequisite: 214.

3 units, Spr (Mummert)

EE 316. Advanced VLSI Devices—In modern VLSI technologies, device electrical characteristics are sensitive to structural details and therefore to fabrication techniques. How are advanced VLSI devices designed and what future changes are likely? What are the implications for device electrical performance caused by fabrication techniques? Physical models for nanometer scale structures, control of electrical characteristics (threshold voltage, short channel effects, ballistic transport) in small structures, and alternative device structures for VLSI. Prerequisites: 212 and 216, or equivalent.

3 units, Win (H.S.P. Wong)

EE 317. Micropatterning for Integrated Circuits—The fundamentals of generating submicron patterns in integrated circuit manufacturing. Technologies include the formation of submicron images of ultraviolet light, the resulting exposure of polymeric resists, the subsequent development of resist patterns and their transfer into functional circuit material patterns through plasma etching and other techniques. The use of phase-shifting masks and other wavefront-engineering approaches. Extensive hands-on use of computer simulations of each of the above steps. Prerequisites: 141 or equivalent, 212 or equivalent, basic competence in computing.

3 units, Spr (Pease) alternate years, not given 2006-07

EE 320. Automatic Formal Verification Techniques—(Enroll in CS 356.)

3 units (Dill) not given 2005-06

EE 321. MEMS Design—Theory and practice of MEMS design. Micromechanical fundamentals and CAD tools for definition, design and layout of MEMS. Case studies of successful MEMS engineering projects. Emphasis is on physical understanding and elementary modeling, not numerical simulations. Students complete a MEMS design project which includes layout, evaluation strategy, and modeling. Prerequisite: 312 or equivalent.

3 units, Aut (Solgaard) alternate years, not given 2006-07

EE 322. Molecular Electronics and Photonics—Physics of charge and energy transfer in molecular systems and connection with traditional mesoscopic transport theories. Analysis of molecular organic light-emitting diodes, photovoltaic cells and transistors. Technology and applications of molecular semiconductors. Prerequisite: 228 or equivalent.

3 units (Peumans) not given 2005-06

EE 325. Nanoscale Science, Engineering, and Technology—(Enroll in MATSCI 316.)

3 units, Spr (McGehee)

EE 326. Organic Semiconductors for Electronics and Photonics—(Enroll in MATSCI 343.)

3 units, Spr (McGehee)

EE 327. Properties of Semiconductor Materials—Modern semiconductor devices and integrated circuits are based on the unique energy band, carrier transport, and optical properties of semiconductor materials. These physical properties can be chosen and optimized for operation of semiconductor devices. Emphasis is on the quantum mechanical foundations of the properties of solids, energy bandgap engineering, semi-classical transport theory, semiconductor statistics, carrier scattering, electro-magneto transport effects, high field ballistic transport, Boltzmann transport equation, quantum mechanical transitions, optical absorption, and radiative and non-radiative recombination. Prerequisites: 216, 228.

3 units (J. Harris) alternate years, given 2006-07

EE 328. Physics of Advanced Semiconductor Devices—The principles governing the operation of modern semiconductor devices. Underlying assumptions and approximations commonly made in analyzing devices. Emphasis is on the application of semiconductor physics to the development of advanced semiconductor devices (e.g., heterojunctions, HJ-bipolar transistors, HJ-FETs, nano structures, tunneling, single electron transistor and photonic devices). Extensive training and use of ATLAS, a 2-D Poisson solver, for simulation of ultra-small devices. Examples are related to state-of-the-art devices and current device research. Pre- requisite: 216.

3 units, Spr (J. Harris) alternate years, not given 2006-07

EE 329. The Electronic Structure of Surfaces and Interfaces—Basic physical concepts and phenomena for surface science techniques probing the electronic structure of surfaces and interfaces. Microscopic and atomic models in understanding microstructures have technologically important applications such as within semiconductor device technology and catalysis. Basic physical processes of low energy electron diffraction, Auger electron spectroscopy, UV and x-ray photoemission spectroscopy, electron/photon stimulated ion desorption, inelastic tunneling spectroscopy, ion scattering, surface EXAFS, and energy loss spectroscopy; and experimental aspects of these surface science techniques. Prerequisites: PHYSICS 70 and 238 or consent of instructor.

3 units, Spr (Pianetta) alternate years, given 2006-07

EE 335. Introduction to Information Storage Systems—Data storage technologies including optical data storage (CD-ROM, DVD, magneto-optic recording, and holographic recording), solid state memory (flash memory, ferroelectric memory, and emerging magnetic random access memory), probe-based storage, and magnetic disk drives. Comparisons among data storage technologies. Related nanotechnologies. Prerequisites: electromagnetism, optics, transistors, binary algebra, probability, and Fourier transform.

3 units (Richter) not given 2005-06
3 units, Win (Fan, Bronersmera)

EE 338A. Quantum Optics and Measurements—(Enroll in APPHYS 387.)
3 units, Win (Yamamoto) alternate years, not given 2006-07

EE 338B. Mesoscopic Physics and Nanostructures—(Enroll in APPHYS 388.)
3 units, Spr (Yamamoto) alternate years, not given 2006-07

EE 340. Advanced Topics in Optics and Quantum Optics—This year's topic is optical microcavities and their device applications. Types of optical microcavities (microdisks, microspheres, and photonic crystal cavities), and their electromagnetic properties, design, and fabrication techniques. Cavity quantum electrodynamics: strong and weak-coupling regime, Purcell factor, spontaneous emission control. Applications of optical microcavities, including low-threshold lasers, resonant cavity light-emitting diodes, and single-photon sources. Prerequisites: advanced undergraduate or basic graduate level knowledge of electromagnetics, quantum mechanics, and physics of semiconductors.
3 units, Spr (Vuckovic)

EE 343. Advanced Optoelectronic Devices—Semiconductor quantum well structures; superlattices and coupled quantum wells; optical properties of quantum wells; valence band structure; effects of strain; quantum well lasers; intersubband detectors; excitons in quantum wells; absorption saturation; electroabsorption; quantum well modulators and switches. Prerequisites: 222 or equivalent quantum mechanics, 243.
3 units, Spr (Miller) alternate years, not given 2006-07

EE 344. High Frequency Laboratory—Combination lecture/lab emphasizing the lab. Techniques in the 1 MHz-1 GHz range useful in designing and measuring oscillators, amplifiers, and mixers. Basic high frequency measurement techniques including s-parameter measurements, Amplifier Noise Figure; and oscillator phase noise. Lectures by the professor and experts from Lucent and Hewlett-Packard. (Two lectures, one lab weekly.) Enrollment limited to 20. Prerequisites: good understanding of transmission lines, Smith charts.
3 units, Aut (Cox)

EE 345. Optical Fiber Communication Laboratory—Experimental investigation of key optical communications components including fibers, lasers, modulators, photodiodes, optical amplifiers, and WDM multiplexers and demultiplexers. Key optical communications systems techniques: eye diagrams and BER measurements. Prerequisite: 247.
3 units, Spr (Kazovsky) alternate years, not given 2006-07

EE 346. Introduction to Nonlinear Optics—Wave propagation in anisotropic, non-linear, and time-varying media. Microscopic and macroscopic description of electric dipole susceptibilities. Free and forced waves; phase-matching; slowly varying envelope approximation-dispersion, diffraction, space-time analogy; harmonic generation; frequency conversion; parametric amplification and oscillation; electro-optic light modulation; nonlinear processes in optical fibers. Prerequisites: 141, 142.
3 units, Spr (S. Harris)

EE 347. Methods of Engineering Science—The design and understanding of modern optical systems. Topics: geometrical optics; aberration theory; systems layout; applications such as microscopes, telescopes, optical processors. Computer ray tracing program is used for demonstrations and as a design tool. Prerequisite: 268 or 366, or equivalent.
3 units (Hesselink) alternate years, given 2006-07
diversity, multiple antenna systems (MIMO), equalization, multicarrier modulation, and spread spectrum and RAKE receivers. Multisuser system design issues such as multiple access, frequency reuse in cellular systems, and ad hoc wireless network design. Course includes an optional term project. Students should register for 4 units if they elect the optional project, otherwise for 3 units. Prerequisite: 279.

3-4 units, Aut (Goldsmith)

EE 360. Multiuser Wireless Systems and Networks — Possible topics include multiuser detection and interference cancellation, cellular system design and optimization, dynamic resource allocation and power control, random and multiple access, Shannon capacity and achievable rate regions of wireless networks, ad hoc wireless network design, sensor and energy-constrained networks, QoS support, and joint network and application design. Student input in topic selection. Prerequisite: 359.

3 units (Goldsmith) alternate years, given 2006-07

EE 361A. Modern Control Design I — (Enroll in ENGR 207A.)

3 units, Win (Lall)

EE 361B. Modern Control Design II — (Enroll in ENGR 207B.)

3 units, Spr (Lall)

EE 362. Applied Vision and Image Systems — (Enroll in PSYCH 221.)

1-3 units, Win (Wandell)

EE 363. Linear Dynamic Systems — Continuation of 263. Optimal control and dynamic programming; linear quadratic regulator. Lyapunov theory and methods. Linear estimation and the Kalman filter. Perron-Frobenius theory. Examples and applications from digital filters, circuits, signal processing, and control systems. Prerequisites: 263 or equivalent; basic probability.

3 units, Win (Boyd)

EE 364. Convex Optimization — Convex sets, functions, and optimization problems. The basics of convex analysis and theory of convex programming: optimality conditions, duality theory, theorems of alternative, and applications. Least-squares, linear and quadratic programs, semidefinite programming, and geometric programming. Numerical algorithms for smooth and equality constrained problems; interior-point methods for inequality constrained problems. Applications to signal processing, communications, control, analog and digital circuit design, computational geometry, statistics, and mechanical engineering. Prerequisites: working knowledge of linear algebra (such as 263), background in applications, and willingness to program in Matlab.

3 units, Spr (Boyd)

3 units, Hesselink alternate years, given 2006-07

EE 367A. Signal Processing Methods in Musical Acoustics — (Enroll in MUSIC 420.)

3-4 units, Win (J. Smith)

EE 367B. Audio Applications of the Fast Fourier Transform (FFT) — (Enroll in MUSIC 421.)

3-4 units, Spr (J. Smith)

EE 367C. Perceptual Audio Coding — (Enroll in MUSIC 422.)

3 units, Win (Bosi)

EE 368. Digital Image Processing — Image sampling and quantization, point operations, linear image filtering and correlation, image transforms, eigenimages, multidimensional signals and systems, multisiresolution image processing, wavelets, morphological image processing, noise reduction and restoration, simple feature extraction and recognition tasks, image registration. Emphasis is on the general principles of image processing. Students write and investigate image processing algorithms in Matlab. Competitive term project. Prerequisites: 261, 278.

3 units, Spr (Girod)

EE 369A. Medical Imaging Systems I — Imaging internal structures within the body using high-energy radiation studied from a systems viewpoint. Modalities covered: x-ray, computed tomography, and nuclear medicine. Analysis of existing and proposed systems in terms of resolution, frequency response, detection sensitivity, noise, and potential for improved diagnosis. Prerequisite: 261.

3 units (Nishimura) not given 2005-06

EE 369B. Medical Imaging Systems II — Imaging internal structures within the body using non-ionizing radiation studied from a systems viewpoint. Modalities include ultrasound and magnetic resonance. Analysis of ultrasonic systems including diffraction and noise. Analysis of magnetic resonance systems including physics, Fourier properties of image formation, and noise. Prerequisite: 261.

3 units, Spr (Nishimura)

EE 369C. Medical Image Reconstruction — Reconstruction from non-uniform frequency domain data, automatic deblurring, phase unwrapping, reconstruction from incomplete data. Examples drawn from fast magnetic resonance imaging methods including spiral, echo-planar, multi-coil/parallel and partial k-space reconstructions. Prerequisite: 369B.

3 units, Aut (Pauly)

EE 371. Advanced VLSI Circuit Design — Issues in high performance digital CMOS VLSI design from a system perspective. Topics: wire modeling, logic families, latch design and clocking issues, clock distribution, RAMs, ALUs, I/O and I/O noise issues. Final project involves the design of a subsystem for a high-speed processor. Extensive use of SPICE. Prerequisites: 271 and 313, or consent of instructor.

3 units, Spr (Horovitz)

EE 372. Quantization and Compression — Theory and design of codes for quantization and signal compression systems (source coding systems), systems which convert analog or high bit rate digital signals into low bit rate digital signals while optimizing fidelity subject to available communication or storage capacity. Applications to the design of systems for compression, statistical classification, and density estimation using statistical clustering techniques. Asymptotic theory: Zador/Gersho theory for high rate quantization theory and Shannon rate-distortion theory. Code structures: uniform and lattice codes, tree structured codes, transform codes, composite codes, universal codes. Mismatch and dithering. Prerequisites: 261, 278. Recommended: 376A, MATH 137.

3 units, Gray alternate years, given 2006-07

3 units, Win (Widrow)

3 units, Spr (Widrow)
EE 376A. Information Theory—Information theory and statistics. The extreme points of communication theory: data compression to the entropy limit, and communication at the channel capacity limit. Shannon entropy. Rate distortion theory. Huffman coding and random coding. Unified treatment based on the asymptotic equipartition theorem. Prerequisite: 178 or 278 or STATS 116, or equivalent.

3 units, Win (Weissman)

3 units, Spr (Cover)

EE 377A. Dynamic Programming and Stochastic Control—(Enroll in MS&E 351.)

3 units, Spr (Veinott)

EE 377B. Approximate Dynamic Programming—(Enroll in MS&E 339.)

3 units (Van Roy) not given 2005-06

3 units, Spr (Weissman)

EE 379A. Digital Communication I—Maximum-likelihood data detection, modulation methods and bandwidth requirements, bandpass systems and analysis, intersymbol interference and equalization methods, diversity, phase-locking, and synchronization. Prerequisites: 102B, 278.

3 units, Win (Cioffi)

EE 379B. Digital Communication II—Basic channel capacity formulae, decoding algorithms: Viterbi detection, sequence detectors, and iterative decoding methods; partial-response methods, convolutional, trellis, turbo codes, and low-density parity check codes. Prerequisites: 278, 379A. Recommended: 387.

3 units, Spr (Cioffi) alternate years, not given 2006-07

EE 379C. Advanced Digital Communication—Multi-dimensional modulation and basis functions, transmit optimization for channels with intersymbol interference, discrete multitone (DMT), orthogonal frequency division multiplexing (OFDM), vector modulation, generalized decision-feedback equalization (GDFE). Prerequisite: 379A.

3 units (Staff) alternate years, given 2006-07

EE 380. Seminar on Computer Systems—Current research in the design, implementation, analysis, and use of computer systems including integrated circuits, operating systems, and programming languages.

1 unit, Aut, Win, Spr (Allison, Long)

EE 381A. Database System Implementation—(Enroll in CS 346.)

3-5 units, Spr (Widom)

EE 381B. Transaction Processing and Distributed Databases—(Enroll in CS 347.)

3 units, Spr (Garcia-Molina)

EE 382A. Advanced Processor Architecture—Topics include advanced instruction-set design and pipelining, wide instruction fetch, branch prediction, out-of-order and speculative execution, memory disambiguation, vector processors, simultaneous multithreading, and low-level compiler optimizations for instruction-level parallelism. Trade-offs among performance, power, and complexity, and techniques for addressing them. The design of out-of-order processor core using the Verilog hardware design language. Prerequisites: 108B, 282.

3 units, Win (Kozyrakis)

EE 382B. Parallel Computer Architecture and Programming—(Enroll in CS 315A.)

3 units, Spr (Olukotun)

EE 382C. Interconnection Networks—The architecture and design of interconnection networks used to communicate from processor to memory, from processor to processor, and in switches and routers. Topics: network topology, routing methods, flow control, router microarchitecture, and performance analysis. Enrollment limited to 30. Prerequisite: 282.

3 units (Staff) alternate years, given 2006-07

EE 382D. Advanced Computer Arithmetic—Number systems, floating point representation, state of the art in arithmetic algorithms, problems in the design of high speed arithmetic units. Prerequisite: 282.

3 units, Win (Flynn) alternate years, not given 2006-07

EE 383. Advanced Compiling Techniques—(Enroll in CS 243.)

3-4 units, Win (Staff)

EE 384A. Internet Routing Protocols and Standards—Local area networks: MAC addressing; IEEE 802.1 bridging protocols (transparent bridging, virtual LANs). Internet routing protocols: Internet protocol (IPv4, IPv6, ICMP); interior gateways (RIP, OSPF) and exterior gateways (BGP, policy routing); IP multicast (IGMP, DVMRP, CBT, MOSPF, PIM); multiprotocol label switching (MPLS). Prerequisite: 284 or CS 244A.

3 units, Win (Tobagi)

EE 384B. Multimedia Communication over the Internet—Applications and requirements. Traffic generation and characterization: voice encoding (G.711, G.729, G.723); image and video compression (JPEG, H.261, MPEG-2, H.263, H.264); TCP data traffic. Quality impairments and measures. Networking technologies: LAN technologies; home broadband services (ADSL, cable modems, PONs); and wireless LANs (802.11). Network protocols for multimedia applications: resource reservation (ST2+, RSVP); differentiated services (DiffServ); and real-time transport protocol (RTP, RTCP). Audio-video-data conferencing standards: Internet architecture (SDP, SAP, SIP); ITU recommendations (H.320, H.323 and T.120); and real-time streaming protocol (RTSP). Prerequisite: 284 or CS 244A. Recommended: 384A.

3 units (Tobagi) alternate years, given 2006-07

EE 384C. Wireless Local Area Networks—Characteristics of wireless communication: multipath, noise, and interference. Communications techniques: spread-spectrum, CDMA, and OFDM. IEEE 802.11 physical layer specifications: FHSS, DSSS, IEEE 802.11b (CCK), and 802.11a/g (OFDM). IEEE 802.11 media access control protocols: carrier sense multiple access with collision avoidance (CSMA/CA), point coordination function (PCF). IEEE802.11e for differentiated services. IEEE 802.11 network architecture: ad hoc and infrastructure modes, access point functionality. Management functions: synchronization, power management and association. Current research papers in the open literature. Prerequisite: 284 or CS 244A.

3 units, Spr (Tobagi) alternate years, not given 2006-07

EE 384D. Projects in Computer Networks—(Enroll in CS 344.)

3 units (McKeown) not given 2005-06

EE 384M. Network Algorithms—Theory and practice of designing and analyzing algorithms arising in networks. Topics include: designing algorithms for load balancing, switching, congestion control, network
measurement, the web infrastructure, and wireless networks; and analyzing the performance of algorithms via stochastic network theory. Algorithm design using randomization, probabilistic sampling, and other approximation methods. Analysis methods include the use of large deviation theory, fluid models, and stochastic comparison. Research project. Prerequisite: EE 278 or CS 365.

3 units, Spr (Prabhakar)

EE 384N. Market Models for Networked Systems—(Enroll in MS&E 336.)
3 units, Spr (Johari)

EE 384S. Network Architectures and Performance Engineering—Modeling and control methodologies used in network performance engineering: Markov chains and stochastic modeling, queuing networks, stochastic simulation, dynamic programming, network optimization algorithms, large-scale distributed computation for networking operations. Applications to design issues in high-performance network architectures for wireline and wireless networking: traffic modeling, congestion control, IP network dynamics, TCP flow control, quality of service support, network admission control and operations management, power control and dynamic bandwidth allocation in wireless networks. Prerequisites: 284 and good understanding of probability and general systems modeling.

3 units, Spr (Bambos)

3 units, Win (McKeown, Prabhakar)

3 units, Spr (McKeown, Prabhakar)

EE 385A. Digital Systems Reliability Seminar—Student/faculty discussions of research problems in the design of reliable digital systems. Areas: fault-tolerant systems, design for testability, production testing, and system reliability. Emphasis is on student presentations and Ph.D. thesis research. Prerequisite: consent of instructor.

1-4 units, Aut, Win, Spr, Sum (McCluskey)

EE 387. Error-Correcting Codes—Theory and implementation of algebraic codes for detection and correction of random and burst errors. Introduction to finite fields. Linear block codes, cyclic codes, Hamming codes, Fire codes, BCH codes, Reed-Solomon codes. Decoding algorithms for BCH and Reed-Solomon codes. Prerequisites: elementary probability, linear algebra.

3 units, Spr (Gill)

EE 390. Special Studies or Projects in Electrical Engineering—Independent work under the direction of a faculty member. Individual or team activities may involve lab experimentation, design of devices or systems, or directed reading.

1-15 units, Aut, Win, Spr, Sum (Staff)

EE 391. Special Studies and Reports in Electrical Engineering—Independent work under the direction of a faculty member; written report or written examination required. Letter grade given on the basis of the report; if not appropriate, student should enroll in 390.

1-15 units, Aut, Win, Spr, Sum (Staff)

EE 392A. Database Systems Principles—(Enroll in CS 245.)
3 units, Win, Sum (Staff)

EE 392B. Introduction to Imaging Sensors—Design and analysis: silicon photodetectors; CCD and CMOS passive and active sensor operation; noise and FPN analysis; spatial resolution and MTF; SNR and dynamic range; high dynamic range architectures; A/D conversion approaches. Analysis of the signal path in a digital camera starting from the optics, through the sensor, the A/D converter, to the different color processing steps. MATLAB camera simulator is used to explore various tradeoffs in camera design. Prerequisites: undergraduate level device, circuit, and system background equivalent to 102A, 101AB; and familiarity with noise analysis.

3 units, El (Gnanal) alternate years, given 2006-07

EE 392J. Digital Video Processing—Spatial-temporal sampling, motion analysis, parametric motion models, motion-compensated filtering, and video processing operations including noise reduction, restoration, super-resolution, deinterlacing and video sampling structure conversion, and compression (frame-based and object-based methods). Video segmentation and layered video representations, video streaming, compressed-domain video processing, and digital TV. Prerequisite: 368.

3 units, Apostolopoulos alternate years, given 2006-07

EE 392Q. Robust Systems Seminar—Current research topics on causes of system failures, their impact, and techniques to build robust systems that avoid or are resilient to such failures. New research problems for high-performance robust system designs. Speakers from industry and academia.

1 unit, Aut (Mitra, McCluskey)

EE 392R. Charged Particle Optics—Electron optics of charged particle instruments including transmission electron microscope, scanning electron microscope and related tools, mass and energy spectrometers, electron beam lithography tools, focused ion beam systems, electron diffraction, proximal probe tools such as the scanning tunneling microscope. Topics include sources, first-order focusing of electrons and ions, third-order aberrations, space-charge effects and diffraction. Goal is to compute the optical parameters of axially-symmetric magnetic and electric lenses and to be familiar with the principles of operation of the above charged-particle systems and the factors limiting their performance. Prerequisites: undergraduate geometrical optics and vector calculus or 217.

3 units, Aut (Pease, Pickard) alternate years, not given 2006-07

EE 392S. Sensor Network Seminar—Silicon-based sensors, local computation, and the emerging technology of low power, ad hoc radio networks as enablers of networked sensing systems. Integration issues, information theory, and networking concerns suggest capabilities for smart sensing network nodes and system trade-offs. Human factors and practical considerations for widespread, consumer adoption of smart sensing networks. Future applications and barriers to adoption. Speakers from industry and academia.

1 unit, Staff not given 2005-06

EE 392T. Seminar in Chip Test and Debug—Seminars by industry professionals in the area of digital IC manufacturing test and silicon debug. Topics include yield and bin split modeling, defect types and detection, debug hardware, physical analysis, and design for test/debug circuits. Case studies of silicon failures. Prerequisite: basic digital IC design such as 271 or 371.

1 unit, Aut (Stinson)
EE 392U. Robust Systems Seminar — Current research topics on causes and impacts of system failures, and techniques to build robust systems that avoid or are resilient to such failures. New research problems for high-performance robust system designs. Guest speakers from industry and academia.
1 unit, Aut (McCluskey, Mitra)

EE 392W. Wireless Sensor Networks: Concepts and Implementation — Hands-on experience with existing systems and application development work. The collection of development and testing platforms at the Wireless Sensor Networks Lab available to facilitate access to algorithm implementation and analysis efforts.
1 unit, Aut (McCluskey, Mitra)

EE 392X. Advanced Topics in Information Science and Technology — Limited to candidates for the School of Engineering EE 402S. Topics in International Advanced Technology Research content providers in major Asian economies. Distinguished speakers for 2005-06 is wireless network businesses in Asia. New technologies, degree of Engineer or Ph.D. Satisfactory/no credit.
3 units (Van Roy) not given 2005-06

EE 395. Electrical Engineering Instruction: Practice Teaching — Open to limited number of advanced EE graduate students who plan to make teaching their career. Students conduct a section of an established course taught in parallel by an experienced instructor.
1-15 units (Nishimura)

3 units, Win (Girod) alternate years, not given 2006-07

3 units (Girod) alternate years, given 2006-07

3 units (Girod) alternate years, given 2006-07

EE 400. Thesis and Thesis Research — Limited to candidates for the degree of Engineer or Ph.D. Satisfactory/no credit.
1-15 units, Aut, Win, Spr, Sum (Staff)

EE 402A. Topics in International Technology Management — Theme for 2005-06 is wireless network businesses in Asia. New technologies, markets and business models from service operators, technology and content providers in major Asian economies. Distinguished speakers from industry and government. May be repeated for credit.
1 unit, Aut (Dashar)

EE 402S. Topics in International Advanced Technology Research — Theme for 2005-06 is novel materials and devices for nano-electronics, Nanotubes and nanowires, organic electronics, device structures beyond CMOS, and their applications. Distinguished speakers from industry, government, and universities. May be repeated for credit. Recommended: basic electronics.
3 units, Spr (Dashar)

EE 402T. Entrepreneurship in Asian High Tech Industries — Entrepreneurship in Asian High-Tech Industries. Distinctive patterns and challenges of entrepreneurship in Asia; update of business and technology issues in the creation and growth of start-up companies in major Asian economies. Distinguished speakers from industry, government, and academia. May be repeated for credit.
1 unit, Spr (Dashar)

EE 410. Integrated Circuit Fabrication Laboratory — Fabrication, simulation, and testing of a highly simplified 1.5 micron CMOS process developed for this course. Practical aspects of IC fabrication including silicon wafer cleaning, photolithography, etching, oxidation, diffusion, ion implantation, chemical vapor deposition, physical sputtering, and wafer testing. Students perform simulations of the CMOS process using process simulator TSUPREM4 of the structures and electrical parameters that should result from the process flow in the lab. Taught in the Stanford Nanofabrication Facility (SNF) in the Center for Integrated Systems (CIS). Preference to students pursuing doctoral research program requiring SNF facilities. Enrollment limited to 20. Prerequisites: 212, 216, consent of instructor.
3-4 units, Win (Saraswat)

EE 414. Design of Discrete RF Circuits for Communications Systems — Students design, build, and test GHz transceivers using microstrip construction techniques and discrete components. The design, construction, and experimental characterization of representative transceiver building blocks: low noise amplifiers (LNAs), diode ring mixers, PLL-based frequency synthesizers, voltage-controlled oscillators (VCOs), power amplifiers (PAs), and microstrip filters and patch antennas. The characteristics of passive microstrip components (including interconnect). Emphasis is on a quantitative reconciliation of theoretical predictions and extensive experimental measurements performed with spectrum and network analyzers, time-domain reflectometers (TDRs), noise figure meter and phase noise analyzers. Prerequisites: 314, 344.
3 units (Lee) not given 2005-06

EE 418. Topics in Neuroengineering — Selected topics in neuro science and electrical engineering, focusing on principles and theory used in modern neural prosthetic systems (brain-computer or brain-machine interfaces). Electrical properties of neurons, information encoding, neural measurement techniques and technology, processing electronics, information decoding and estimators, and statistical data analysis. Prerequisites: 214, 278.
3 units, Win (Shenoy)

EE 419. High-Frequency Modeling of Semiconductor Devices — Numerical techniques and challenges associated with implementing global models of complete high-frequency circuits which require integration of circuit, electromagnetics, device transport, and thermal simulators into a single package. As circuit operation extends into the millimeter- and submillimeter-wave regimes, suitable device modeling approaches are needed for the submicron-size devices embedded in the circuit.
3 units, Win (Hussein, Yang)

EE 453. Geomagnetically Trapped Radiation — Research on the radiation belts of the Earth and other planets. The physical processes which lead to magnetic trapping of electrons and ions. The analytic tools used in trapped radiation research. The nature of radiation belts, source and loss mechanisms, and the relation of radiation belts to other geophysical phenomena.
3 units, Win (Saraswat)

EE 469A. In Vivo Magnetic Resonance Spectroscopy and Imaging — (Enroll in RAD 226.)
3 units, Win (Spielman)
3 units (Weissman) not given 2005-06

EE 478. Topics in Multiple User Information Theory — Topics in multiple user source and channel coding; multiple access channel, correlated source coding, broadcast channel, interference channel, relay channel, and channels with feedback; asymptotic capacity of networks; source coding with side information, multiple descriptions, channels with state, MIMO channels. Prerequisite: 376A.
3 units (El Gamal) not given 2005-06

EE 479. Multiuser Digital Transmission Systems — Multiuser communications design, modulation, and reception. Capacity regions and fundamentally optimum designs for multiple access, broadcast, and interference channels. Iterative waterfilling, vectoring, and multi-user generalized decision feedback equalization (GDFE) as used for vector broadcast and multiple access. Prerequisite: 379C.
3 units, Aut (Cioffi) alternate years, not given 2006-07

EE 481A. Computer Graphics: Geometric Modeling — (Enroll in CS 348A.)
3-4 units (Guibas) alternate years, given 2006-07

3-4 units, Spr (Hanrahan)

EE 483. Advanced Topics in Compilers — (Enroll in CS 343.)
3 units (Staff) not given 2005-06

EE 485. Broad Area Colloquium for Artificial Intelligence, Geometry, Graphics, Robotics, and Vision — (Enroll in CS 528.)
1 unit, Aut, Spr (Ng)

EE 492M. Space-Time Wireless Communications — For EE graduate students and wireless systems engineers. Space-time (ST) wireless communications offer performance improvements in capacity, coverage, and quality. Aspects of ST technology are already part of 2.5G/3G systems. More advanced aspects (MIMO) are being incorporated into several standards. Prerequisites: 276, 278, 279. Recommended: 359.
3 units, Win (Paulraj) alternate years, not given 2006-07

OVERSEAS STUDIES
Courses approved for the Electrical Engineering major and taught overseas can be found in the “Overseas Studies” section of this bulletin, or in the Overseas Studies office, 126 Sweet Hall.

KYOTO
EE 101B. Circuits II
4 units, Spr (Shenoy)

EE 108B. Digital Systems II
4 units, Spr (Fox)

MANAGEMENT SCIENCE AND ENGINEERING
Chair: M. Elisabeth Paté-Cornell
Associate Professors: Samuel S. Chiu, Pamela J. Hinds, Ross D. Shachter, Edison T. S. Tse, Benjamin Van Roy
Assistant Professors: Diane E. Bailey, Ferial Erhun, Kay Giesecke, Ashish Goel, Ramesh Johari, Riitta Katila, Ozalp Ozer, James A. Primbs, Amin Saberi, Thomas A. Weber
Professors (Research): Walter Murray, Michael A. Saunders, John P. Weyant
Professors (Teaching): Thomas H. Byers, Robert E. McGinn
Consulting Professors: Hung-Po Chao, Gerd Infanger, Thomas Kosnik, James E. Matheson, Robert R. Maxfield, D. Warner North, Sam L. Savage, Behnam Tabrizi
Consulting Associate Professors: Peter Haas, Samuel Holtzman, Randy Komisar, Michael Lyons, Audrey MacLean, Burke Robinson, Adam Seiver, F. Victor Stanton
Consulting Assistant Professors: Blake E. Johnson, Hervé Kieffel, Barchi Gillai
Lecturers: Ferdo Ivanek, Mark Leslie, Robert Luenberger, Douglas MacKenzie, Mary Morrison, Jan Pietzsch, Tina Seelig
Visiting Professor: Olivier de La Grandville
Visiting Associate Professors: Charles Feinstein, Yee-Tien Fu
Visiting Assistant Professor: Lena Ramfolt
Director of the Industrial Affiliates Program: Yinyu Ye
Affiliated Faculty: Anat Admati, David Beach, Darrell Huffie, J. Michael Harrison, Charles A. Holloway, Kosuke Ishii, James G. Marsh, David B. Montgomery, Evan L. Porteus, Balaji Prabhakar, Krishna Saraswat, Sheri Sheppard
Department Offices: Terman Engineering Center
Mail Code: 94305-4026
Web Site: http://www.stanford.edu/dept/MSandE

Courses given in Management Science and Engineering have the subject code MS&E. For a complete list of subject codes, see Appendix.

In December 1999, the Board of Trustees authorized the creation of the Department of Management Science and Engineering from the Department of Industrial Engineering and Engineering Management and the Department of Engineering-Economic Systems and Operations Research. Its main objective is to be the leader among academic departments, at the interface of engineering, business, and public policy. The department’s mission is to conduct research and provide education associated with the development of the knowledge, tools, and methods required to make decisions and shape policies, configure organizational structures, design engineering systems, and solve operational problems associated with the information-intensive, technology-based economy.

Management Science and Engineering (MS&E) provides exceptionally strong programs of education and research by integrating three basic strengths: (1) substantial depth in conceptual and analytical foundations, (2) comprehensive coverage of functional areas of application, and (3) vigorous interaction with other Stanford departments, with Silicon Valley industry, and with many organizations throughout the world. The analytical and conceptual foundations include optimization, dynamic systems, stochastic systems, economics, organizational science, and decision and risk analysis. These foundations support the functional areas and provide
the basis for further advance in the discipline. The functional areas of application include finance, production, information, organizational behavior, marketing, entrepreneurship, policy, and strategy. Programs in these functional areas emphasize both fundamental concepts and practical applications. Close associations with other engineering departments and with industry enrich the programs by providing opportunities to apply MS&E methods to important problems and by motivating new theoretical developments from practical experience. MS&E’s programs also provide a basis for contributing to other important areas such as biotechnology, defense policy, environmental policy, information systems, telecommunications, and other areas where mastery of fundamentals, functional knowledge, and an engineering viewpoint are extremely valuable.

CAREERS IN MS&E
MS&E helps students prepare for a variety of professional careers in business, government, industry, non-profit institutions, and universities. Graduates have pursued successful careers in consulting, enterprise management, financial analysis, government policy analysis, industrial research, line management, product development, project management, strategic planning, and university teaching and research. Some have founded companies specializing in financial services, high technology products, management and systems consulting, or software. Other graduates have helped establish new analytical capabilities in existing firms or government agencies.

Many graduates have become leaders in technology-based businesses, which have an increasing need for well-educated, analytically oriented people who understand both business and technology. The Department of MS&E is attractive to people with engineering, mathematical science, and physical science backgrounds as it complements their technical abilities with the conceptual frameworks needed to analyze problems of investment, management, marketing, operations, production, and strategic planning in a technical environment.

UNDERGRADUATE PROGRAMS
BACHELOR OF SCIENCE

The program leading to the B.S. degree in Management Science and Engineering (MS&E) is stated earlier under the “School of Engineering” section of this bulletin, and more information is contained in the School of Engineering’s Handbook for Undergraduate Engineering Programs. Students are encouraged to plan their academic programs as early as possible, ideally in the freshman or sophomore year. Please do not wait until you are declaring a major to consult with the department’s student services staff. This is particularly important if you would like to study overseas or pursue another major or minor.

The undergraduate curriculum in Management Science and Engineering provides students training in the fundamentals of engineering systems analysis to prepare them to plan, design, and implement complex economic and technological management systems where a scientific or engineering background is necessary or desirable. Graduates will be prepared for work in a variety of career paths, including facilities and process management, investment banking, management consulting, or graduate study in industrial engineering, operations research, economics, public policy, medicine, law, or business.

The educational objectives of the undergraduate degree program are:

1. Principles and Skills: provide students with a basic understanding of management science and engineering principles, including analytical problem solving and communications skills.
2. Preparation for Practice: prepare students for practice in a field that sees rapid changes in tools, problems, and opportunities.
3. Preparation for Continued Growth: prepare students for graduate study and self development over an entire career, and
4. Preparation for Service: develop in students the awareness, background, and skills necessary to become responsible citizens, employees, and leaders.

In particular, the department wants to help students develop:

a) an ability to apply knowledge of math, science, and engineering.
b) an ability to design and conduct experiments.
c) an ability to design a system or components to meet desired needs.
d) an ability to identify, formulate, and solve engineering problems.
e) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
f) an ability to function on multidisciplinary teams.
g) an ability to communicate effectively.
h) a recognition of the need for and an ability to engage in life-long learning.
i) background necessary for admission to top professional graduate engineering or business programs.
j) an understanding of professional and ethical responsibility.
k) the broad education necessary to understand the impact of engineering solutions in a global and societal context.
l) a knowledge of contemporary issues pertinent to the field of management science and engineering.

The program builds on the foundational courses for engineering, including calculus, engineering fundamentals, and physics or chemistry. The department core, taken for all concentrations, includes courses in computer science, deterministic optimization, information, organization theory, a senior project, and finance or production. Through the core, all students in the program are exposed to the breadth of faculty interests, and are in a good position to choose a concentration during the junior year. The five concentrations are designed to allow a student to explore one area of the department in greater depth.

1. Financial and Decision Engineering: focuses on the design and analysis of financial and strategic plans. It features accounting, decision analysis, economics, finance, investment science, and stochastic models.
2. Operations Research: provides a more mathematical program, based on algorithms, theory, and applications in economics and operations.
3. Organization, Technology, and Entrepreneurship: focuses on understanding and design of organizations, particularly technology-based issues. It features courses on innovation, product development, entrepreneurship, work and manufacturing systems, information systems, and human-computer interaction.
4. Production and Operations Management: focuses on the design and analysis of manufacturing, production, and service systems.
5. Policy and Strategy: focuses on the design and analysis of public policies and corporate strategies, especially those with technology-based issues. It features a core in microeconomics and modeling approaches, and policy-focused courses in topics such as national security, energy and environment, and health care, and strategy-focused courses in topics such as entrepreneurship, innovation, and product development.

For information about an MS&E minor, see the “School of Engineering” section of this bulletin. MS&E also participates with the departments of Computer Science, Mathematics, and Statistics in a program leading to a B.S. in Mathematical and Computational Science. See the “Mathematical and Computational Science” section of this bulletin.

GRADUATE PROGRAMS

MS&E, in collaboration with other departments of the University, offers programs leading to the degrees of Master of Science and Doctor of Philosophy. The department also offers a coterminal B.S./M.S. degree, and a dual master’s degree in cooperation with each of the other departments in the School of Engineering.

For University coterminal degree program rules and University application forms, see http://registrar.stanford.edu/publications/#Coterm. Applicants for admission as graduate students in MS&E must submit the results of the verbal, quantitative, and analytical parts of the Graduate Record Examination. The deadline for application is January 3 for doctoral applicants, and January 10 for master’s applicants.
Except in unusual circumstances, admission is limited to the Autumn Quarter because courses are arranged sequentially with basic courses and prerequisites offered early in the academic year.

Assistantships and Fellowships — A limited number of fellowships and assistantships are awarded each year. Applicants admitted to the doctoral program, who have indicated on their application that they would like to be considered for financial aid, are automatically considered for these assistantships and fellowships.

Information about loan programs and need-based aid for U.S. citizens and permanent residents can be obtained from the Financial Aid Office.

MASTER OF SCIENCE

The M.S. degree programs require a minimum of 45 units beyond the equivalent of a B.S. degree at Stanford. All programs represent substantial progress in the major field beyond the bachelor’s degree.

University requirements for the master’s degree are described in the “Graduate Degrees” section of this bulletin.

MANAGEMENT SCIENCE AND ENGINEERING

The M.S. program in Management Science and Engineering (MS&E) prepares individuals for a lifelong career addressing critical technical and managerial needs in private and public decision making. Department requirements for the M.S. degree provide breadth across some of the areas of the department, and flexibility for meeting individual objectives of depth in a particular area of concentration. The master’s degree may be a terminal degree program with a professional focus, or a preparation for a more advanced graduate program. The M.S. degree can normally be earned in one academic year (three academic quarters) of full-time work, although students may choose to continue their education by taking additional MS&E courses beyond that year. Background requirements, taken in addition to degree requirements, must be met by students who have had insufficient course work in mathematical sciences, computer science, engineering and/or natural sciences.

Students must take a minimum of 45 course units as follows:

1. At least five core courses
2. At least three other courses in an area of concentration of their choice
3. A course in probability, unless a college-level course in probability has already been passed
4. A project course requirement
5. The remaining units in elective courses

Background Requirements — Students must have had or must take the following (or equivalent) courses before the M.S. degree is conferred: MATH 41, 42, 51 (Calculus, 15 units), CS 106A (programming, 5 units), and an additional 15 units of engineering, mathematical sciences, or natural sciences. These courses do not count toward the 45 units of the M.S. degree. Courses taken to meet MS&E background requirements may be at either the undergraduate or graduate level, and may be taken as credit/no credit. These additional background requirements would typically be met by students who have a bachelor’s degree in engineering, or mathematical or natural sciences. Students are notified at the time of admission of any remaining need to meet background requirements.

Core Courses — M.S. students must take at least five courses out of the following ten options:

- Decision Analysis (MS&E 252), or Risk Analysis (MS&E 250A)
- Dynamic Systems (MS&E 201) or Stochastic Decision Models (MS&E 251)
- Economic Analysis (MS&E 241)
- Global Entrepreneurial Marketing (MS&E 271)
- Industrial Accounting (MS&E 240), Investment Science (MS&E 242), or Introduction to Finance (MS&E 245G)
- Introduction to Stochastic Modeling (MS&E 221) or Simulation (MS&E 223)
- Linear and Non-Linear Optimization (MS&E 211)
- Organizational Behavior and Management (MS&E 280)
- Production Systems (MS&E 261)
- Strategy in Technology-Based Companies (MS&E 270)

Students may not waive core courses. They may, however, petition to substitute an approved, more advanced course in the same area. Courses used to satisfy the core requirement must be taken for a letter grade, must be taken for a minimum of three units each, and may not also be used to satisfy the concentration requirement.

Courses in an Area of Concentration — Students must complete a departmentally approved set of three or more letter-graded courses taken for a minimum of three units each, in an area of concentration of one of the following types:

1. An area of concentration in the MS&E department
2. An area of concentration in one of the seven other departments of the School of Engineering
3. In exceptional cases, a coherent area of concentration designed by the student. Petitions for student-designed concentrations must list the three proposed courses (taken for three units or more and at the 200-level or above) and include a brief justification. The petition must be submitted to student services no later than the fifth week of the quarter prior to graduation.

Project Course Requirement — Students must take either a designated project course or two designated integrated project courses. The project course(s) must be taken for letter grade, must be taken for a minimum of three units, and may also be used to satisfy the core or concentration requirement.

Additional requirements are:

1. At least 45 units must be in courses numbered 100 and above
2. At least 27 units must be in courses numbered 200 and above in MS&E, taken for a letter grade and a minimum of two units each, and at least 36 letter-graded units must be in MS&E or closely related fields. Closely related fields include any department in the School of Engineering, mathematics, statistics, economics, sociology, psychology, or business.
3. The degree program must be completed with a grade point average (GPA) of 3.0 or higher.
4. A maximum of three units of language courses (numbered 100 and above)
5. A maximum of three units of 1-unit courses such as seminars, colloquia, workshops, in any department, and a maximum of one unit of MS&E 208, Curricular Practical Training.
6. A maximum of 18 non-degree option (NDO) units through the Stanford Center for Professional Development (SCPD)
7. Courses in athletics may not be applied toward the degree.

Please see the student services office or department web site for complete listing of project, integrated project and approved concentrations.

DUAL MASTER’S DEGREE

Admission — For the dual degree, admission to two departments is required, but is coordinated by designated members of both Admissions Committees who make recommendations to the committees of their respective departments. Students may apply to only one Department initially. After the first quarter at Stanford, students may apply to be admitted to the second Department.

Advising — Every student in the dual degree program has one advisor in each department.

The Dual Degree Program — This dual degree program enables a small set of graduate students to obtain two master’s degrees simultaneously. Students complete the course requirements for each department. A total of 90 units is required to complete the dual master’s degree.

PROFESSIONAL EDUCATION

The Stanford Center for Professional Development (SCPD) provides opportunities for employees of some local and remote companies to take courses at Stanford.

The Honors Cooperative Program (HCP) provides opportunities for employees of SCPD Member companies to earn an M.S. degree, over a longer period, by taking one or two courses per academic quarter. Some courses are only offered on campus; HCP students may attend those courses
at Stanford to meet the degree requirements. It is possible to complete this program as a remote HCP student although the remote offerings are limited. Students must apply for a degree program through the standard application process, and must meet the standard application deadline of January 10.

The non-degree option (NDO) allows employees of some local companies to take courses for credit from their company sites before being admitted to a degree program. Students apply to take NDO courses each quarter through the Stanford Center for Professional Development. Up to 18 units taken as an NDO student may be applied toward a degree program. For additional information about the NDO application process and deadlines, see http://scpd.stanford.edu, or contact SCPD at (650) 725-3000.

The department offers a certificate program within the framework of the NDO program. A certificate can be obtained by completing three MS&E core courses, plus one MS&E elective course for a total of four courses. For further information, see http://scpd.stanford.edu/scpd/programs/certs/managementSci.htm.

DOCTOR OF PHILOSOPHY

University requirements for the Ph.D. degree are described in the “Graduate Degrees” section of this bulletin.

The Ph.D. degree in MS&E is intended for students primarily interested in a career of research and teaching, or high-level technical work in universities, industry, or government. The program requires three years of full-time graduate study, at least two years of which must be at Stanford. Typically, however, students take about four to five years after entering the program to complete all Ph.D. requirements. The Ph.D. is generally organized around the requirement that the students acquire a certain breadth across some of the eight areas of the department, and depth in one of them. These areas are:

- Decision analysis and risk analysis
- Economics and finance
- Information science and technology
- Organization, technology, and entrepreneurship
- Policy and strategy
- Probability and stochastic systems
- Production and operations management
- Systems modeling and optimization

Doctoral students are required to take a number of courses, both to pass a qualifying exam in one of these areas, or the Systems Program which is a combination of several areas, and to complete a dissertation based on research which must make an original contribution to knowledge.

Each student admitted to the Ph.D. program must satisfy a breadth requirement and pass a qualification procedure. The purpose of the qualification procedure is to assess the student’s command of the field and to evaluate his or her potential to complete a high-quality dissertation in a timely manner. The student must complete specified course work in one of the eight areas of the department, or the Systems Program which is a combination of several areas. The qualification decision is based on the student’s grade point average (GPA), on the one or two preliminary papers prepared by the student, and on the student’s performance in an area examination. Considering this evidence, the department faculty votes on advancing the student to candidacy in the department at large. The Ph.D. requires a minimum of 135 units, at least 54 of which must be in courses of 3 units or more. At least 48 course units in courses of 3 units or more must be taken for a letter grade. Finally, the student must pass a University oral examination and complete a Ph.D. dissertation. During the course of the Ph.D. program, students who do not have a master’s degree are strongly encouraged to complete one, either in MS&E or in another Stanford department.

Breadth Requirement —
1. The breadth requirement is to be satisfied by a choice of four courses spanning four out of the above mentioned eight areas of the department. The list of courses satisfying the breadth requirement is available from the MS&E student services office.
2. The Ph.D. candidacy form must contain four courses that satisfy the breadth requirement.
3. Courses chosen to satisfy the breadth requirement must be taken for letter grades.
4. At least one of the four courses chosen to satisfy the breadth requirement must be at the 300 level.

Qualification Procedure Requirements — The qualification procedure is based both on breadth across the department’s disciplines and depth in an area of the student’s choice. The qualification process must be completed by the end of the month of May of the student’s second year of graduate study in the department. The performance of all doctoral students is reviewed every year at a department faculty meeting at the end of May or beginning of June. Ph.D. qualification decisions are made at that time and individual feedback is provided.

The Ph.D. qualification requirements comprise three elements:

1. Grade Point Average: a student must maintain a GPA of at least 3.4 in the four courses chosen to satisfy the breadth requirements, and a GPA of at least 3.4 in the set of all courses taken by the student within the department. In both cases, the GPA is computed on the basis of the nominal number of units for which each course is offered.
2. Paper(s): a student may choose between two options, either to be completed before the Spring Quarter of the student’s second year. The first option involves one paper supervised by a primary faculty adviser and a faculty consultant. This paper should be written in two quarters.

The second option involves two shorter sequential tutorials, with two different faculty advisers. Each tutorial should be completed in one quarter. In both options, the student chooses the faculty advisor(s)/consultant with the faculty members’ consent.

A student may register for up to 3 units per tutorial and up to 6 units for a paper. These paper or tutorial units do not count towards the 54 course units required for the Ph.D., and letter grades are not given.
3. Area Qualification: in addition, during the second year, a student must pass an examination in one of the eight areas of the MS&E department or the Systems Program which is a combination of several areas, which will be of his or her choice. This area examination is written, oral, or both at the discretion of the area faculty administering the exam.
4. Area Course Requirement: students must complete the depth requirements of one of the eight areas of the MS&E department or the Systems Program which is a combination of several areas. All courses used to satisfy depth requirements must be taken for a letter grade. The Ph.D. requirements for the eight areas of the MS&E department are available from the MS&E student services office.

PH.D. MINOR

Students pursuing a Ph.D. in another department who wish to receive a Ph.D. minor in Management Science and Engineering should consult the MS&E student services office. A minor in MS&E may be obtained by completing 20 units of approved graduate-level MS&E courses, of which at least 6 units must be at the 300-level. Courses approved for the minor must form a coherent program, and must include one course from at least three of the ten MS&E M.S. core options. The program must include a minimum of 16 letter-graded units, and a minimum grade point average of 3.3 must be achieved in these courses.

COURSES

WIM indicates that the course satisfies the Writing in the Major requirements. (AU) indicates that the course is subject to the University Activity Unit limitations for undergraduates (8 units maximum).

UNDERGRADUATE

MS&E 40. Engineering Economy — (Enroll in ENGR 60.)
3 units, Aut (Chiu), Win, Sum (Weber)

MS&E 41. Financial Literacy — Practical knowledge about personal finance and money management including budgeting, pay checks, credit cards, banking, insurance, taxes, and saving. Class especially appropriate for those soon to be self-supporting. Limited enrollment.
1 unit, Win, Spr (Morrison)
MS&E 92Q. International Environmental Policy — Stanford Introductory Seminar. Preference to sophomores. Introduction to the science, using economics and the politics of international environmental policy. Current negotiations on global climate change are a case study. Lectures/materials are self contained and similar to material the instructor used in briefing international negotiations and the U.S. Congress, integrating the material more comprehensively in policy briefings on individuals, dimensions, or the problem and its potential solutions.

4 units, Win (Weyant)

3 units, Spr (May)

MS&E 101. Undergraduate Directed Study — Subject of mutual interest to the student and faculty member. Prerequisite: faculty sponsor.

1-15 units, Aut, Win, Spr, Sum (Staff)

MS&E 107. Interactive Management Science — (Graduate students register for 207.) Analytical techniques such as linear and integer programming, Monte Carlo simulation, forecasting, decision analysis, and Markov chains in the environment of the spreadsheet. Materials include spreadsheet add-ins for implementing these and other techniques. Emphasis is on building intuition through interactive modeling, and extending the applicability of this type of analysis through integration with existing business data structures. Project required of those enrolled in 207. GER:DB-EngrAppSci

3 units, Spr (Savage)

MS&E 108. Senior Project — Restricted to MS&E majors in their senior year. Students carry out a major project in groups of four, applying techniques and concepts learned in the major. Project work includes problem identification and definition, data collection and synthesis, modeling, development of feasible solutions, and presentation of results.

5 units, Win (Bailey, Bailey, Hausman, Tse)

MS&E 111. Introduction to Optimization — (Enroll in ENGR 62.)

4 units, Aut, Spr (Staff)

MS&E 112. Mathematical Programming and Combinatorial Optimization — (Graduate students register for 212; same as CME 208.) Combinatorial and mathematical programming (integer and nonlinear) techniques for optimization. Topics: linear program duality and LP solvers; integer programming; combinatorial optimization problems on networks including minimum spanning trees, shortest paths, and network flows; matching and assignment problems; dynamic programming; linear approximations to convex programs; NP-completeness. Hands-on exercises. Prerequisites: CS 106A or X; ENGR 62 or MATH 103. GER:DB-EngrAppSci

3 units, Spr (Goel)

MS&E 120. Probabilistic Analysis — Concepts and tools for the analysis of problems under uncertainty, focusing on model building and communication: structuring, processing, and presentation of probabilistic information. Examples from legal, social, medical, and physical problems. Spreadsheets illustrate and solve problems as a complement to analytical closed-form solutions. Topics: axioms of probability, probability trees, random variables, distributions, conditioning, expectation, change of variables, and limit theorems. Prerequisite: MATH 51. Recommended: knowledge of spreadsheets. GER:DB-EngrAppSci

5 units, Aut (Shachter)

4 units, Win (Glynn)

MS&E 130. Information Systems — (Graduate students register for 231.) Design and applications of computer-based information systems. Topics: database design; computer networks; computer security; search engines and information retrieval; technical and social issues in peer-to-peer systems; reputation systems; information systems for organizations; information commerce. Interplay between market forces and technical issues in information systems. Guest lectures; class project. Prerequisites: CS 106A,B, or programming experience.

4 units, Aut (Goel)

3 units, Win (Luenberger)

MS&E 134. Organizations and Information Systems — (Graduate students register for 234.) How information systems impact organizations and how organizations take control of information technology (IT) to gain a competitive edge. Topics include: IT components, architecture, and transformation; the effect of IT on competition; real-time enterprise; leadership; and outsourcing. Student teams perform field studies based on situations in which information technology is creating a significant management problem or business opportunity. Prerequisites: CS 106A, 180, or equivalents.

4 units, Win (Tabrizi)

MS&E 140. Industrial Accounting — (Graduate students register for 240.) Non-majors and minors who have taken or are taking elementary accounting should not enroll. Introduction to accounting concepts and the operating characteristics of accounting systems. The principles of financial and cost accounting, design of accounting systems, techniques of analysis, and cost control. Interpretation and use of accounting information for decision making. Designed for the user of accounting information and not as an introduction to a professional accounting career.

3-4 units, Aut, Sum (Stanton)

MS&E 152. Introduction to Decision Analysis — How to make good decisions in a complex, dynamic, and uncertain world. People often make decisions that on close examination they regard as wrong. Decision analysis uses a structured conversation based on actional thought to obtain clarity of action in a wide variety of domains. Topics: distinctions, possibilities and probabilities, relevance, value of information and experimentation, relevance and decision diagrams, risk attitude. Students seeking to fulfill the Writing in the Major requirement should register for MS&E 152W. GER:DB-EngrAppSci

3-4 units, Spr (Shachter)

MS&E 152W. Introduction to Decision Analysis — (Same as 152.) For students seeking to fulfill the Writing in the Major requirement. GER:DB-EngrAppSci, WIM

3-4 units, Spr (Shachter)

MS&E 152W. Introduction to Decision Analysis — (Same as 152.) For students seeking to fulfill the Writing in the Major requirement. GER:DB-EngrAppSci, WIM

3-4 units, Spr (Shachter)
MS&E 153. Introduction to Decision Making in Organizations — Experienced management consultants share lessons and war stories. Case studies, disguised examples from real engagements, and movie clips illustrate theories and concepts of decision analysis. Student teams critique decisions made in actual organizations. Topics include: what makes a good decision, how decisions can be made better, framing and structuring techniques, modeling and analysis tools, biases and probability assessment, evaluation and appraisal methods, and effective presentation styles. GER:DB-EngrAppSci
3 units, Sam (Robinson, Holtzman)
MS&E 160. Analysis of Production and Operating Systems — (Graduate students register for 260; see 260.)
4 units, Aut (Ozer)
MS&E 169. Quality Control and Management — (Graduate students register for 269; see 269.)
3-4 units, Win (Brandenau)
MS&E 175. Innovation, Creativity, and Change — Problem solving in organizations; creativity and innovation skills; thinking tools; creative organization, teams, individuals, and communities.
3-4 units, Win (Katila)
MS&E 180. Organizations: Theory and Management — For undergraduates only; preference to MS&E majors. Classical and contemporary organization theory; the behavior of individuals, groups, and organizations. Limited enrollment. Students must attend first session.
4 units, Aut (Eisenhardt), Spr (Staff)
MS&E 181. Issues in Technology and Work for a Post-Industrial Economy — How changes in technology and organization are altering work and lives. Approaches to studying and designing work. How understanding work and work practices can assist engineers in designing better technologies and organizations. Topics include job design, distributed and virtual organizations, the blurring of boundaries between work and family life, computer supported cooperative work, trends in skill requirements and occupational structures, monitoring and surveillance in the workplace, downsizing and its effects on work systems, project work and project-based lifestyles, the growth of contingent employment, telecommuting, electronic commerce, and the changing nature of labor relations.
3 units, Spr (Barley)
MS&E 184. Technology and Work — Theory and research on the social implications of technology and technological change for workers at all levels. Alternate conceptions of technology as social phenomenon, the study of workplace technology, individual and group reactions to technological change, the construction of a technology’s social meaning, and management of technological change. Emphasis is on automation, electronic data processing, and microelectronic technologies including CAD-CAM systems, telecommunication networks, medical imaging, artificial intelligence, and personal computers.
3 units, Aut (Bailey)
MS&E 190. Methods and Models for Policy and Strategy Analysis — Guest lectures by departmental practitioners. Emphasis is on links among theory, application, and observation. Environmental, national security, and health policy; marketing, new technology, and new business strategy analyses. Comparisons between domains and methods.
3 units, Spr (Weyant)
MS&E 193. Technology and National Security — (Graduate students register for 293.) The interaction of technology and national security policy from the perspective of history to implications for the new secuirty imperative, homeland defense. Key technologies in nuclear and biological weapons, military platforms, and intelligence gathering. Policy issues from the point of view of U.S. and other nations. The impact of terrorist threat. Guest lecturers include key participants in the development of technology and/or policy. Students seeking to fulfill the WIM requirement should register for 193W.
3 units, Aut (Perry, Paté-Cornell)
MS&E 193W. Technology and National Security — (Same as 193/293.) Fulfills the WIM requirement. WIM
3 units, Aut (Perry, Paté-Cornell)
5 units, Win (Sagan, Blacker, Perry)
MS&E 196. Transportation Systems and Urban Development — (Graduate students register for 296.) Introduction to transportation systems and planning, and their roles in society. Analytical tools introduced at a conceptual level examine issues and evaluate alternatives. Policy implications and system effectiveness analysis of transportation in an urban context. Topics: economic analysis of transportation, supply and demand equilibrium analysis, urban transportation networks, congestion management, short and long term transportation planning, the impact of technology on transportation systems, land use and transportation, case studies and analysis of current transportation news items. Prerequisite: MATH 41.
3 units (Chiu) not given 2005-06
MS&E 197. Ethics and Public Policy — (Same as STS 110, PUBLPOL 103B.) Ethical issues in science- and technology-related public policy conflicts. Focus is on complex, value-laden policy disputes. Topics: the nature of ethics and morality; rationales for liberty, justice, and human rights; and the use and abuse of these concepts in policy disputes. Case studies from biomedicine, environmental affairs, technical professions, communications, and international relations. GER:DB-Hum, WIM
5 units, Win (McGinn)
PRIMARILY FOR GRADUATE STUDENTS
GENERAL AND SYSTEMS ANALYSIS METHODS
MS&E 201. Dynamic Systems — Goal is to think dynamically in decision making, and recognize and analyze dynamic phenomena in diverse situations. Concepts: formulation and analysis; state-space formulation; solutions of linear dynamic systems, equilibria, dynamic diagrams; eigenvalues and eigenvectors of linear systems, the concept of feedback; nonlinear dynamics, phase plane analysis, linearized analysis, Liapunov functions, catastrophe theory. Examples: grabber-holder dynamics, technology innovation dynamics, creation of new game dynamics in business competition, ecosystem dynamics, social dynamics, and stochastic exchange dynamics. Prerequisite: MATH 103 or equivalent.
3-4 units, Spr (Tse)
MS&E 205. Aerospace Product and Systems Development — (Enroll in AA 253.)
3 units, Spr (Weiss)
MS&E 206. Art of Mathematical Modeling — Practicum. Students build mathematical models of real-life, ill-framed problems. Emphasis is on framing the issues, articulating modeling components logically (drawing from student’s mathematical background), and analyzing the resulting model. Hands-on modeling. Project work in small groups. Prerequisites: basic analysis, calculus and algebra, and probability theory. Recommended: decision analysis, optimization, and dynamic systems.
3-4 units, Spr (Kieffel)
MS&E 207. Interactive Management Science — (Undergraduates register for 107; see 107.)
3 units, Aut (Savage)
MS&E 208A,B,C. Practical Training — MS&E students obtain employment in a relevant industrial or research activity to enhance their professional experience, and consistent with the degree program they are pursuing. Students submit a one-page statement showing relevance to degree program along with offer letter before the start of the quarter, and a 2-3 page final report documenting the work done and relevance to degree program at the conclusion of the quarter. A maximum of 1 unit counts toward the M.S. degree and a maximum of 3 units toward the B.S. or Ph.D. degree.
1 unit, Aut, Win, Spr, Sum (Staff)
OPTIMIZATION
3-4 units, Aut (Ye)

MS&E 212. Mathematical Programming and Combinatorial Optimization — (Undergraduates register for 112; see 112; same as CME 208.)
3 units, Spr (Goel)

PROBABILITY AND STOCHASTIC SYSTEMS
MS&E 220. Probabilistic Analysis — Concepts and tools for the analysis of problems under uncertainty, focusing on model building and communication: the structuring, processing, and presentation of probabilistic information. Examples from legal social, medical, and physical problems. Spreadsheets illustrate and solve problems as a complement to analytical closed-form solutions. Topics: axioms of probability, probability trees, random variables, distributions, conditioning, expectation, change of variables, and limit theorems. Prerequisite: MATH 51. Recommended: knowledge of spreadsheets.
3-4 units, Aut (Chiu)

MS&E 221. Stochastic Modeling — Focus is on time-dependent random phenomena. Topics: discrete and continuous time Markov chains, renewal processes, queuing theory, and applications. Emphasis is on building a framework to formulate and analyze probabilistic systems. Prerequisite: 220 or consent of instructor.
3 units, Win (Johari)

MS&E 222. Simulation — Discrete-event systems, generation of uniform and non-uniform random numbers, Monte Carlo methods, programming techniques for simulation, statistical analysis of simulation output, efficiency-improvement techniques, decision making using simulation, applications to systems in computer science, engineering, finance, and operations research. Prerequisites: working knowledge of a programming language such as C, C++, Java, or FORTRAN; probability; and statistical methods.
3 units, Spr (Haas)

INFORMATION SCIENCE AND TECHNOLOGY
MS&E 230. Introduction to Computer Networks — (Enroll in EE 284.)
3-4 units, Aut (Tobagi)

MS&E 231. Information Systems — (Undergraduates register for 130; see 130.)
4 units, Aut (Goel)

MS&E 234. Organizations and Information Systems — (Undergraduates register for 134; see 134.)
4 units, Win (Tabrizi)

MS&E 236. Pricing Next Generation Telecommunications Products and Services — Interdisciplinary. Position, price, and distribution of traditional and innovative telecommunication services. Topics: the telecommunication industry as driven by technological advances, policy choices, and business opportunities; the pricing revolution and arbitrage opportunities in international voice created by data-voice convergence and liberalization; competitive aspects of service delivery channels; commoditization of bandwidth and basic services; clearinghouses; financial risk hedging through futures and derivatives trading; intelligent pricing and provisioning agents for product bundling; grade of service differentiation; positioning and revenue optimization by capturing consumer preferences. Group project in industrial participation.
3 units, Sum (Chiu)

MS&E 237. Progress in Worldwide Telecommunications — Interdisciplinary. Guest speakers from industry, government and academia. Topics include networks and services, market-driven competition, (de)regulation, legislation, technology, standardization, and the needs of underserved parts of the world. Focus is on wireless communications, broadband user access, the Internet, and globalization. Individual or team case study and verbal presentation. May be repeated for credit. Limited enrollment.
3 units, Sum (Ivanek, Chiu)

ECONOMICS, FINANCE, AND INVESTMENT
MS&E 240. Industrial Accounting — (Undergraduates register for 140; see 140.)
3-4 units, Aut, Sum (Stanton)

MS&E 241. Economic Analysis — Principal methods of economic analysis of the production activities of firms, including production technologies, cost and profit, and perfect and imperfect competition; individual choice, including preferences and demand; and the market-based system, including price formation, efficiency, and welfare. Practical applications of the methods presented. See 341 for continuation of 241. Recommended: 211, ECON 50.
3-4 units, Win (Sweeney)

MS&E 242. Investment Science — Theory and application of modern quantitative investment analysis from an engineering perspective. How investment concepts are used to evaluate and manage opportunities, portfolios, and investment products including stocks, bonds, mortgages, and annuities. Topics: deterministic cash flows (term structure of interest rates, bond portfolio immunization, project optimization); mean-variance theory (Markowitz model, capital asset pricing); and arbitrage pricing theory. Group project. Prerequisites: 120, ENGR 60, MATH 51, or equivalents. Recommended: 140, ENGR 62, knowledge of spreadsheets. Limited enrollment.
3 units, Aut (Giesecke, Primbs)

MS&E 242S. Investment Science — Emphasis is on a cash flow approach. Topics include deterministic cash flow analysis (time value of money, present value, internal rate of return, taxes, inflation), fixed income securities, duration and bond portfolio immunization, term structure of interest rates (spot rates, discount factors, forward rates), Fisher-Weil duration and immunization, capital budgeting, dynamic optimization problems, investments under uncertainty, mean-variance portfolio theory, capital asset pricing, and basic options theory. Goal is to create link between engineering analysis and business decision making.
3 units, Sum (Feinstein)

MS&E 243. Energy and Environmental Policy Analysis — (Same as IPER 243.) Concepts, methods, and applications. Energy/environmental policy issues such as automobile fuel economy regulation, global climate change, research and development policy, and environmental benefit assessment. Group project. Prerequisite: 241 or ECON 50, 51.
3 units, Spr (Goulder, Sweeney)

MS&E 245G. Finance I for Non-MBAs — (Same as FINANCE 221, ECON 135.) For graduate students and advanced undergraduates. The foundations of finance with applications in corporate finance and investment management. Major financial decisions made by corporate managers and investors with focus on process valuation. Topics include criteria for investment decisions, valuation of financial assets and liabilities, relationships between risk and return, market efficiency, and the valuation of derivative securities. Major corporate financial instruments including debt, equity, and convertible securities. Equivalent to core MBA finance course, FINANCE 220. Prerequisites: 51, or ENGR 60, or equivalent; ability to use spreadsheets, and basic probability and statistics concepts including random variables, expected value, variance, covariance, and simple estimation and regression.
4 units, Win (Admati)
MS&E 246. Game Theory with Engineering Applications — Strategic interactions among multiple decision makers emphasizing applications to engineering systems. Topics: efficiency and fairness; collective decision making and cooperative games; static and dynamic noncooperative games; and complete and incomplete information models. Competition: Bertrand, Cournot, and Stackelberg models. Mechanism design: auctions, contracts. Examples from production and service operations, resource allocation in networks, and online marketplaces. Prerequisite: MATH 51. Recommended: 211, concurrent enrollment in 241 or ECON 202.
3 units, Win (Erhun, Johari)

MS&E 247G. International Financial Management — (Same as FINANCE 223/323.) A framework for making corporate financial decisions in an international context. Topics in international financial management. Focus is on the markets for spot exchange, currency forwards, options, swaps, international bonds, and international equities. For each of these markets, the valuation of instruments traded in these markets and, through cases, the application of these instruments to managing exposure to exchange rates, financing in international capital markets, and international capital budgeting.
4 units, Spr (Staff)

MS&E 247S. International Investments — Introduces international financial markets, their comparative behavior, and their interrelations. Focus is on the assets traded in liquid markets: currencies, equities, bonds, swaps, and derivatives. Topics: institutional arrangements, taxation and regulation, international arbitrage and parity conditions, valuation of target firms for cross-border acquisitions, direct foreign investment, international diversification and portfolio management, derivative instruments and dynamic investment strategies, international performance analysis, international capital flows and financial crises, and topics of current relevance and importance. Prerequisite: basic finance theory (equivalent of 242 or 245G).
3 units, Sam (Fu)

MS&E 248. Economics of Natural Resources — Intertemporal economic analysis of natural resource use, particularly energy, and including air, water, and other depletable mineral and biological resources. Emphasis is on an integrating theory for depletable and renewable resources. Stock-flow relationships; optimal choices over time; short- and long-run equilibrium conditions; depletion/extinction conditions; market failure mechanisms (common-property, public goods, discount rate distortions, rule-of-capture); policy options. Prerequisite: 241 or ECON 51.
3-4 units, Aut (Sweeney)

MS&E 249. Growth and Development — What generates economic growth. Emphasis is on theory accompanied by intuition, illustrated with country cases. Topics: the equation of motion of an economy; optimal growth theory; calculus of variations and optimal control approaches; deriving the Euler and Pontriaguine equations from economic reasoning. Applications: former planned economies in Russia and E. Europe; the financial crises in E. Asia and Argentina; a comparative study of India and China. The links between economic growth and civilization: the causes of the rise and decline of civilizations; lessons for the future.
3 units, Sum (de La Grandville)

DECISION AND RISK ANALYSIS

MS&E 250A. Engineering Risk Analysis — The techniques of analysis of engineering systems for risk management decisions involving trade-offs (technical, human, environmental aspects). Elements of decision analysis; probabilistic risk analysis (fault trees, event trees); economic analysis of failure consequences (human safety and long-term economic discounting); and case studies (space, systems, nuclear power plants, liquefied natural gas terminals, and dams). Public and private sectors. Prerequisites: 120 or STATS 116, and ENGR 60, or equivalents.
2-3 units, Win (Pate-Cornell)

MS&E 250B. Project Course in Engineering Risk Analysis — Students, individually or in groups, choose, define, formulate, and resolve a real risk management problem, preferably from a local firm or institution. Oral presentation and report required. Scope of the project is adapted to the number of students involved. Three phases: risk assessment, communication, and management. Emphasis is on the use of probability for the treatment of uncertainties and sensitivity to problem boundaries. Limited enrollment. Prerequisite: 250A, consent of instructor.
3 units, Win (Pate-Cornell)

MS&E 251. Stochastic Decision Models — Efficient formulation and computational solution of sequential decision problems under uncertainty. Markov decision chains and stochastic programming. Maximum expected present value and rate of return. Optimality of simple policies: myopic, linear, index, acceptance limit, and (s,S). Optimal stationary and periodic infinite-horizon policies. Applications to investment, options, overbooking, inventory, production, purchasing, selling, quality, repair, sequencing, queues, capacity, transportation. MATLAB is used. Prerequisites: probability, linear programming.
3 units, Win (Veinott)

MS&E 254. The Ethical Analyst — The professional analyst who uses technical knowledge in support of any individual, organization, or government is ethically responsible for the consequences. Students are sensitized to ethical issues, providing the means to form ethical judgments, questioning the desirability of physical coercion and deception as a means to reach any end. Exploration of human action and relation in society in the light of previous thought, and additional research on the desired form of social interactions. Attitudes toward ethical dilemmas explored by creating an explicit personal code. Issues from the range of human affairs test the student’s framework for ethical judgment.
1-3 units, Spr (Howard)

PRODUCTION OPERATIONS, SERVICES, AND MANUFACTURING

MS&E 260. Analysis of Production and Operating Systems — (Undergraduates register for 160.) Businesses add value through production and delivery of products and services; operations managers are responsible for designing, running, and improving systems and processes to meet demand for goods and services. Discussion of techniques to analyze such operating systems. Topics include determination of optimal facility location, production lot sizing, optimal timing and sizing of capacity expansion, and inventory control. Prerequisites: probability and optimization.
4 units, Aut (Ozer)

MS&E 261. Inventory Control and Production Systems — Topics in the planning and control of manufacturing systems. The functions of inventory, determination of order quantities and safety stocks, alternative inventory replenishment systems, item forecasting, production-inventory systems, materials requirements planning (MRP), just-in-time systems, master and operations scheduling, supply chain management, and service operations. Limited enrollment. Prerequisite: 120, or STATS 116, or equivalent.
3 units, Win (Hausman)
MS&E 262. Supply Chain Management—Definition of a supply chain; coordination difficulties; pitfalls and opportunities in supply chain management; inventory/service tradeoffs; performance measurement and incentives. Global supply chain management; mass customization; supplier management. Design and redesign of products and processes for supply chain management; tools for analysis; industrial applications; current industry initiatives. Enrollment limited to 50. Prerequisites: 260 or 261.
3 units, Win (Hausman)

MS&E 263. Internet-Enabled Supply Chains—E-businesses have changed traditional supply chain interactions by creating a web-like structure and more flexible relationships, and it is no longer possible operationally or strategically to ignore the information-based virtual value chains for any business. How information technologies advanced supply chain integration; e-markets including auctions and exchanges; dynamic pricing; bundling: strategic implications of lock-in and switching costs; compatibility choices; and standardization efforts.
3 units, Win (Erhun)

MS&E 264. Manufacturing Systems Design—Multidisciplinary. The concepts and techniques of designing and improving performance and productivity in systems composed of and influenced by people, organizational factors, environmental factors, and technology. Emphasis is on design of high-performance manufacturing systems. Use of simulation as a tool for design evaluation.
3-4 units, Aut (Erhun)

MS&E 265. Supply Chain Logistics—Student teams redesign the manufacturing and distribution system of a medium-sized manufacturer. Focus is on the transportation system, inventory policies for a regional warehouse, design of a national distribution system, improvements of work flow, and layout of the manufacturing plant. The redesign is at a detailed operational level consistent with a strategy of integrating the functions of manufacturing and distribution. Analytical and game software is used. Knowledge of inventory theory, linear/integer programming, economic analysis, and applied probability is required. Emphasis is on group learning. Limited enrollment. Prerequisites: senior or graduate standing, 160, ENGR 60 and 62, or consent of instructor.
4 units (Carlson) alternate years, given 2006-07

MS&E 266. Manufacturing Systems Design—Techniques of managing or leading the process of new product development that have been found effective. Emphasis is placed on how much control is desirable and how that control can be exercised in a setting where creativity has traditionally played a larger role than discipline. Topics: design for manufacturability, assessing the market, imposing discipline on the new product development process, selecting the appropriate portfolio of new product development projects, disruptive technology, product development at internet speed, uncertainty in product development, role of experimentation in new product development, creating an effective development organization, and developing products to hit cost targets.
3-4 units, Win (Carlson)

MS&E 267. Innovations in Manufacturing—Forces that prompt change and their impact. Topics include changes in the mode of production, performance objectives, sources of inspiration, and work organization. Design and management implications for modern manufacturing.
3-4 units, Aut (Bailey)

MS&E 268. Operations Strategy—The development and implementation of the operations functional strategy. The integration of manufacturing strategy with business and corporate strategies of a manufacturing-based firm. Topics: types and characteristics of manufacturing technologies, quality management, capacity planning and facilities choice, organization and control of operations, and operations’ role in corporate strategy. Prerequisites: 260 or 261, or equivalent experience.
3 units, Spr (Carlson)

MS&E 269. Quality Control and Management—(Undergraduates register for 169.) Topics include the cost of quality, statistical process control, inspection, sampling plans, uncertainty in the supply process, Bayesian decision methods, reliability, robust quality, quality function deployment, engineering aspects of product liability, and the design of experiments. Case studies. Class project involving local industry required for fourth unit. Prerequisites: 120, and STATS 110 or 190.
3-4 units, Win (Brandeau)

STRATEGY, ENTREPRENEURSHIP, AND MARKETING

MS&E 270. Strategy in Technology-Based Companies—For graduate students only. Introduction to the basic concepts of strategy, with emphasis on high-technology firms. Topics: competitive positioning, resource-based perspectives, co-opetition and standards setting, and complexity/evolutionary perspectives. Limited enrollment.
3-4 units, Aut (Eisenhardt), Win (Karila)

MS&E 271. Global Entrepreneurial Marketing—Skills needed to market new high-tech products to customers around the world. Case method discussions. Cases include startups and global high tech firms. Course themes: markets and customers, product marketing/management, sales, negotiation, and distribution, outbound marketing, and marketing execution. Team based take-home final exam or field project. Limited enrollment.
4 units, Win (Novitsky, Kosnik), Spr (Ramfelt, Smith, Kosnik)

MS&E 272. Entrepreneurial Finance—Primarily for graduate engineering students. Introduction to the concepts in and around the financing of entrepreneurial companies. Focus is on teaching future general managers how to use financial perspective to make better decisions in entrepreneurial settings, including selecting financial partners, evaluating financing vehicles, and financing companies through all growth stages, from startup through initial public offering. Limited enrollment. Prerequisites: 140, and ENGR 60. Recommended: 245G.
3 units, Spr (MacKenzie)

MS&E 273. Technology Venture Formation—Open to graduate students interested in high-technology entrepreneurship. Explores in detail the process of starting venture scale high-tech businesses. Coursework includes assessing opportunities, sizing markets, evaluating sales channels, developing R&D and operations plans, raising venture capital, managing legal issues, and building a team. The teaching team includes experienced entrepreneurs, venture capitalists, and distinguished guests. Student teams write a business plan and make a formal presentation to group of first tier venture capitalists. Enrollment limited. Recommended: 140, 270, 271, 272 or equivalent.
3-4 units, Aut (Lyons, MacLean, Leslie)

MS&E 274. Building Dynamic Entrepreneurial Organizations—Focus is on the dynamic development of corporate skills, knowledge, and infrastructure to compete in a changing global competitive environment due to rapid technology advancement, global economic development, changes in consumer’s preference, and government regulations. Model analysis and case studies are used to develop a methodology in building dynamic entrepreneurial organizations in response to dynamic competitive requirements. Links between MS&E core and the notion of managing change as a basis for a normative theory on entrepreneurial activities in new business creation and corporate expansion.
3 units, Win (Tse)

MS&E 277. Creativity and Innovation—Factors that promote and inhibit creativity of individuals, teams, and organizations. Creativity tools, assessment metrics, and exercises; workshops, field trips, and case studies. Each student completes an individual creativity portfolio and participates in a long-term team project. Enrollment limited to 40. See http://creativity.stanford.edu.
4 units, Spr (Seelig)

MS&E 278. Startup Globalization Strategies—(Same as GSBGEN 354.) Approaches to the global marketplace adopted by startups and how they are employed in different industries and continents.
4 units, Spr (Foster)
ORGANIZATIONAL BEHAVIOR, MANAGEMENT, AND WORK

MS&E 280. Organizational Behavior and Management — Organization theory; concepts and functions of management; behavior of the individual, work group, and organization. Emphasis is on case and related discussion. Enrollment limited to 65 graduate students per section; priority to MS&E students. 3-4 units, Win (Sutton)

MS&E 281. Management and Organization of Research and Development — The organization of R&D in industry and the problems of the technical labor force. Relevant theoretical perspectives from sociology, anthropology, and management theory on the social and pragmatic issues that surround technical innovation and the employment of scientists and engineers. Possible topics: organization of scientific and technical communities, industrialization of research, the nature of scientific and technical work, strategies for fostering innovation, careers of scientists and engineers, and managerial problems characteristic of R&D settings. 3 units (Barley) not given 2005-06

MS&E 284. Technology and Work — Theory and research on the social implications of technology and technological change for workers at all levels. Alternate conceptions of technology as social phenomenon, the study of technology in the workplace, reactions of individuals and groups to technological change, the construction of a technology’s social meaning, and the management of technological change. Emphasis is on automation, electronic data processing, and sophisticated microelectronic technologies, including CAD-CAM systems, telecommunication networks, medical imaging technologies, artificial intelligence, and personal computers. 3 units (Barley) not given 2005-06

MS&E 285. Negotiation — (Same as CEE 151/251, ME 207.) Negotiation styles and processes to help students conduct and review negotiations. Workshop format integrating intellectual and experiential learning. Exercises, live and field examples, individual and small group reviews. Application required before first day of class; see http://www.stanford.edu/class/msande285/. Enrollment limited to 50. 3 units, Aut, Spr (Christensen)

PUBLIC POLICY ANALYSIS

MS&E 292. Health Policy Modeling — For master’s students. The application of mathematical, statistical, economic, and systems models to problems in health policy. Areas include: disease screening, prevention, and treatment; assessment of new technologies; bioterrorism response; and drug control policies. 3 units, Win (Brandeau)

MS&E 293. Technology and National Security — (Undergraduates register for 193; see 193.) 3 units, Aut (Perry, Paté-Cornell)

MS&E 294. Climate Policy Analysis — Design and application of formal analytical methods in climate policy development. Issues include instrument design, technology development, resource management, multiparty negotiation, and dealing with complexity and uncertainty. Links among art, theory, and practice. Emphasis is on integrated use of modeling tools from diverse methodologies and requirements for policy making application. Recommended: background in economics, optimization, and decision analysis. 3 units, Win (Weyant)

MS&E 296. Transportation Systems and Urban Development — (Undergraduates register for 196; see 196.) 3 units (Chiu) not given 2005-06

MS&E 298. Technology, Policy, and Management in Newly-Industrializing Countries — (Enroll in STS 279.) 2-4 units (Forbes) alternate years, given 2006-07

MS&E 299. Voluntary Social Systems — Exploration of ethical theory, feasibility, and desirability of a social order in which coercion by individuals and government is minimized and people pursue ends on a voluntary basis. Topics: efficacy and ethics; use rights for property; contracts and torts; spontaneous order and free markets; crime and punishment based on restitution; guardian-ward theory for dealing with incompetents; the effects of state action-hypothesis of reverse results; applications to help for the needy, armed intervention, victimless crimes, and environmental protection; transition strategies to a voluntary society. 1-3 units, Win (Howard)

PRIMARILY FOR DOCTORAL STUDENTS

GENERAL AND SYSTEMS ANALYSIS METHODS

MS&E 300. Ph.D. Qualifying Tutorial or Paper — Restricted to Ph.D. students assigned tutorials as part of the MS&E Ph.D. qualifying process. Enrollment optional. 1-3 units, Aut, Win, Spr, Sum (Staff)

MS&E 301. Dissertation Research — Prerequisite: doctoral candidacy. 1-15 units, Aut, Win, Spr, Sum (Staff)

MS&E 303. Readings in Decomposition Principles — For Ph.D. students interested in modeling and solving large optimization problems. Focus is on structure and solution principles rather than detailed algorithms. Topics include Danzig-Wolfe and Benders’ decomposition principles and their duality relationship, decomposition and solving large Markov chains, decomposition and incentive compatibility, and applications of decomposition principles to solving large problems. Master’s students require consent of instructor. Prerequisites: 211, 220. Recommended: Markov chains. 1-3 units, Spr (Chiu)

OPTIMIZATION

MS&E 310. Linear Programming — Formulation of standard linear programming models. Theory of polyhedral convex sets, linear inequalities, alternative theorems, and duality. Variants of the simplex method and the state of art interior-point algorithms. Sensitivity analyses, economic interpretations, and primal-dual methods. Relaxations of harder optimization problems and recent convex conic linear programs. Applications include game equilibrium facility location. Prerequisite: MATH 113 or consent of instructor. 3 units, Win (Saberi)

MS&E 311. Optimization — Applications, theory, and algorithms for finite-dimensional linear and nonlinear optimization problems with continuous variables. Elements of convex analysis, first- and second-order optimality conditions, sensitivity and duality. Algorithms for unconstrained optimization, linearily constrained optimization problems (including linear and quadratic programs), and nonlinearly constrained problems. Prerequisites: MATH 113, 115, or equivalent. 3 units, Win (Ye)

MS&E 312. Advanced Methods in Numerical Optimization — (Same as CME 334.) Topics include interior-point methods, relaxation methods for nonlinear discrete optimization, sequential quadratic programming methods, optimal control and decomposition methods. Topic chosen in first class; different topics for individuals or groups possible. Individual or team projects. May be repeated for credit. 3 units, Aut (Murray)

MS&E 313. Vector Space Optimization — Optimization theory from the unified framework of vector space theory: treating together problems of mathematical programming, calculus of variations, optimal control, estimation, and other optimization problems. Emphasis is on geometric interpretation. Duality theory. Topics: vector spaces including function spaces; Hilbert space and the projection theorem; dual spaces and the separating hyperplane theorem; linear operators and adjoints; optimization of functionals, including theory of necessary conditions in general spaces, and convex optimization theory; constrained optimization including Fenchel duality theory. Prerequisite: MATH 115. 3 units (Luenberger) alternate years, given 2006-07
MS&E 314. Linear and Conic Optimization with Applications—(Same as CME 336.) Linear, semidefinite, conic, and convex nonlinear optimization problems as generalizations of classical linear programming. Algorithms include the simplex method, interior-point methods, barrier function methods, cutting plane methods. Related convex analysis, including the separating hyperplane theorem, Farkas lemma, dual cones, optimality conditions, and conic inequalities. Complexity and/or computation efficiency analysis. Applications to max-cut problems, Markov chain mixing times, support vector machines for data mining and classification, graph partitioning, robust portfolio selection, and Euclidean distance geometry. Prerequisite: 211 or equivalent.
3 units (Glynn) alternate years, given 2006-07

MS&E 315. Numerical Optimization—(Same as CME 304.) Solution of nonlinear equations; unconstrained optimization; linear programming; quadratic programming; global optimization; general linearly and nonlinearly constrained optimization. Theory and algorithms to solve these problems. Prerequisite: background in analysis and numerical linear algebra.
3 units, Win (Murray)

MS&E 316. Pricing Algorithms and the Internet—(Same as CME 344.) Market equilibria: existence and efficiency of computation; and prices as duals of linear and convex programs. Applications in the context of the Internet such as routing and congestion control. Market design in electronic commerce. Algorithms for finding game theoretic solution concepts. Internet structure: power-law networks, models, games, and algorithms. Prerequisite: basic algorithms, optimization, and probability theory.
3 units (Saberi) alternate years, given 2006-07

MS&E 318. Large-Scale Numerical Optimization—(Same as CME 338.) The main algorithms and software for constrained optimization emphasizing the sparse-matrix methods needed for their implementation. Iterative methods for linear equations and least squares. Interior methods. The simplex method. Factorization and updates. The reduced-gradient, augmented Lagrangian, and SQP methods. Recommended: MS&E 310, 311, 312, 314, or 315; CME 108 or 302.
3 units, Spr (Saunders)

MS&E 319. Models and Algorithms for Nanotechnology—Molecular self-assembly as a paradigm for nanotechnology. Topics: models, algorithms, and analysis techniques for self-assembly; motivating examples; models for molecular machines; robustness/efficiency tradeoffs. Mathematical issues in other paradigms for nanotechnology. May be repeated for credit. Prerequisite: consent of instructor.
3 units, Win (Goel)

PROBABILITY AND STOCHASTIC SYSTEMS

MS&E 321. Stochastic Systems—Topics in stochastic processes, emphasizing applications. Markov chains in discrete and continuous time; Markov processes in general state space; Lyapunov functions; regenerative process theory; renewal theory; martingales, Brownian motion, and diffusion processes. Application to queuing theory, storage theory, reliability, and finance. Prerequisites: 221 or STATS 217; MATH 113, 115.
3 units, Spr (Glynn)

MS&E 322. Stochastic Calculus and Control—Itô integral, existence and uniqueness of solutions of stochastic differential equations (SDEs), diffusion approximations, numerical solutions of SDEs, controlled diffusions, and the Hamilton-Jacobi-Bellman equation, and statistical inference of SDEs. Applications to finance and queueing theory. Prerequisites: 221 or STATS 217; MATH 113, 115.
3 units, Win (Glynn) alternate years, not given 2006-07

3 units (Glynn) alternate years, given 2006-07

INFORMATION SCIENCE AND TECHNOLOGY

MS&E 334. Network Architectures and Performance Engineering—(Enroll in EE 384S.)
3 units, Spr (Bambos)

MS&E 335. Queuing Systems and Networks—Advanced stochastic modeling and analysis of systems involving queuing delays. Markovian queues. Stability analysis of the G/G/1 queue. Key results on single and multi-server queues. Approximation methods. Queuing networks. Introduction to controlled queuing systems. Applications to performance modeling, analysis, and evaluation of communication networks, computer systems, flexible manufacturing systems, service systems, etc. Prerequisite: 221 or equivalent.
3 units, Aut (Bambos)

MS&E 336. Market Models for Networked Systems—Recent research applying economic methods to engineering problems in networked systems. Possible topics: incentives in practical networked systems including communication networks, power systems, and online marketplaces; pricing and network resource allocation; mechanism design for networked systems; and game theoretic approaches to network formation. Prerequisite: 221 or equivalent. Recommended: 246 or ECON 203.
3 units, Aut (Saberi) alternate years, not given 2006-07

3 units, Spr (Johari)

MS&E 338. Advanced Topics in Information Science and Technology—Advanced material in this area is sometimes taught for the first time as a topics course. Prerequisite: consent of instructor.
3 units (Van Roy) not given 2005-06

MS&E 339. Approximate Dynamic Programming—Approximation algorithms for large-scale dynamic programming. Real-time dynamic programming and reinforcement learning algorithms. Generalizations of value iteration, policy iteration, and linear programming approaches. Recent research topics. Prerequisite: 251, 351, CS 221, CS 228, or CS 229.
3 units (Van Roy) not given 2005-06

ECOMONOMICS, FINANCE, AND INVESTMENT

MS&E 341. Advanced Economic Analysis—Builds on 241 concepts. Market structure and industrial organization (oligopoly, strategic behavior of firms, game theoretic models); economics of uncertainty; general equilibrium theory and economic efficiency (formulation, Walras’ Law, existence, uniqueness, duality between efficiency and general equilibrium; trade); intertemporal equilibrium and asset markets; public goods, externalities. Background for advanced economics. Prerequisite: 241.
3 units, Spr (Weber)

MS&E 342. Advanced Investment Science—Topics: forwards and futures contracts, continuous and discrete time models of stock price behavior, geometric Brownian motion, Itô’s lemma, basic options theory, Black-Scholes equation, advanced options techniques, models and applications of stochastic interest rate processes, and optimal portfolio growth. Computational issues and general theory. Teams work on independent projects. Prerequisite: 242.
3 units, Win (Luenberger)
MS&E 344. Applied Information Economics — The strategic acquisition, pricing, transfer, and use of information. Theoretical findings applied to real-world settings. Topics: optimal risk bearing, adverse selection, signaling, screening, nonlinear and state-contingent pricing, design of contests, incentives and organizations, strategic information transmission, long-run relationships, negative information value, research and invention, leakage and espionage, imperfect competition, information sharing, search and advertising, learning, and real-option exercise games. Prerequisites: 211, 220, 241. Recommended: 341.
3 units, Win (Weber)

MS&E 345. Advanced Topics in Financial Engineering — Derivative pricing theory from an engineering perspective. Underlying principles that apply to all derivative securities; general frameworks to model and price derivative securities on equities, interest rates, and credit. Topics in hedging and risk management. Prerequisites: derivative pricing and stochastic differential equations; and 220, 221, 242, 342, or consent of instructor. Recommended: Matlab.
3 units, Win (Prims)

MS&E 346. Economic Analysis of Market Organizations — For second-year or more advanced graduate students. Applications of theories of microeconomics and management science to strategic behavior and mechanism design in market organizations, emphasizing incentives and asymmetric information structures. Topics: economics of information, nonlinear pricing, contracting, auction, bargaining, and market design in network infrastructure industries. Prerequisites: microeconomics, optimization, and decision or game theory.
3 units, Spr (Chao)

MS&E 347. Credit Risk: Modeling and Management — Modeling of credit risk emphasizing underlying economic, probabilistic, and statistical concepts. Filtrations, martingales, point processes, Doob-Meyer decomposition, stochastic time change. Applications include valuation of equity, corporate bonds, credit derivatives, credit/equity hybrids, and measurement and management of portfolio credit risk. Implementation, calibration and testing of models. Prerequisites: stochastic processes at the level of 321 or 322, and financial engineering at the level of 342.
3 units, Spr (Chao)

MS&E 348. Optimization of Uncertainty and Applications in Finance — How to make optimal decisions in the presence of uncertainty, solution techniques for large-scale systems resulting from decision problems under uncertainty, and applications in finance. Decision trees, utility, two-stage and multi-stage decision problems, approaches to stochastic programming, model formulation; large-scale systems, Benders and Dantzig-Wolfe decomposition, Monte Carlo sampling and variance reduction techniques, risk management, portfolio optimization, asset-liability management, mortgage finance. Projects involving the practical application of optimization under uncertainty to financial planning.
3 units, Win (Infanger)

MS&E 349. Investment Science Frontiers — Advanced concepts of investment science with emphasis on theories and methods for solving practical problems: real options theory and practice; valuing and structuring projects, mergers, acquisition and contracts; designing portfolios for optimal growth; and managing risk and enhancing value within a complex business enterprise. Combination lecture, seminar, and project. No auditors. Prerequisites: 242, 342.
3 units (Luenberger) not given 2005-06

DECISION AND RISK ANALYSIS

MS&E 350. Doctoral Seminar in Risk Analysis — Limited to doctoral students. Literature in the fields of engineering risk assessment and management. New methods and topics, emphasizing probabilistic methods and decision analysis. Applications to risk management problems involving the technical, economic, and organizational aspects of engineering system safety. Possible topics: treatment of uncertainties, learning from near misses, and use of expert opinions.
3 units (Paté-Cornell) alternate years, given 2006-07

3 units, Spr (Veinott)

MS&E 352. Decision Analysis II — Necessary considerations to assist people and organizations in decision making: decision engineering. How to organize the decision conversation, the role of the decision analysis cycle and the model sequence, assessing the quality of decisions, framing decisions, the decision hierarchy, strategy tables for alternative development, creating spare and effective decision diagrams, biases in assessment, knowledge maps, uncertainty about probability. Sensitivity analysis, approximations, value of revelation, joint information, options, flexibility, bidding, assessing and using corporate risk attitude, risk sharing and scaling, and decisions involving health and safety. See 353 for continuation. Prerequisite: 252
3-4 units, Win (Howard)

MS&E 353. Decision Analysis III — Extending the boundaries of systematic analysis of decisions. The concept of decision composite; probabilistic insurance and other challenges to the normative approach; the relationship of decision analysis to classical inference and data analysis procedures; the likelihood and exchangeability principles; inference, decision, and experimentation using conjugate distributions; developing a risk attitude based on general properties; alternative decision aiding practices such as analytic hierarchy and fuzzy approaches. Student presentations on current research. Goal is to prepare doctoral students for research. Prerequisite: 352.
3 units, Spr (Howard)

MS&E 354. Credit Risk: Modeling and Management — Modeling of credit risk emphasizing underlying economic, probabilistic, and statistical concepts. Filtrations, martingales, point processes, Doob-Meyer decomposition, stochastic time change. Applications include valuation of equity, corporate bonds, credit derivatives, credit/equity hybrids, and measurement and management of portfolio credit risk. Implementation, calibration and testing of models. Prerequisites: stochastic processes at the level of 321 or 322, and financial engineering at the level of 342.
3 units, Spr (Chao)

3 units, Win (Shachter) alternate years, not given 2006-07

PRODUCTION OPERATIONS, SERVICES, AND MANUFACTURING

3 units, Aut (Veinott) alternate years, not given 2006-07

MS&E 362. Advanced Models in Production and Operations — The design and operation of production-inventory systems. Topics include production scheduling, capacity planning, sequencing, assembly-line balancing, dynamic scheduling, and multigoal optimizations. Readings primarily from journal articles. Prerequisite: 260.
3 units, Spr (Carlson) alternate years, not given 2006-07
MS&E 363. Advanced Models in Management Science—Primarily for doctoral students. Content varies. Topics based on recent literature and working papers. See http://www.stanford.edu/~ozalp/ for information. May be repeated for credit. Prerequisite: consent of instructor.
3 units, Aut (Ozer) alternate years, not given 2006-07

MS&E 364. Multi-echelon Inventory Models—Theoretical treatment of control problems arising in inventory management, production, and distribution systems. Inventory control for single and multi-location systems. Emphasis is on operating characteristics, performance measures, and optimal operating and control policies. Dynamic programming and applications in inventory control. Prerequisite: STATS 217 or equivalent, linear programming.
3 units (Ozer) alternate years, given 2006-07

MS&E 365A. Game Theoretic Models in Operations Management—The formal analysis of the strategic interactions among multiple decision makers such as suppliers, manufacturers, retailers, and consumers; the resulting dynamics in a market environment. Game theory as the main tool of analysis. Readings primarily from journal articles.
2 units (Erhun) alternate years, given 2006-07

MS&E 365B. Game Theoretic Models in Operations Management—Continuation of 365A. May be repeated for credit. Students should register for A and B once; register for B only in subsequent years.
2 units (Erhun) alternate years, given 2006-07

MS&E 369. Supply Chain Risk and Flexibility Management—Methods and analytic tools for quantifying and managing the impact of uncertainty in supply and demand on the operating and financial performance of firms and networks of firms. Design and delivery of products and services to provide competitive differentiation by enabling cost, value, risk and flexibility to be managed across supply networks. Case study applications by leading companies to procurement, manufacturing, outsourcing, and sales relationships. Tools, processes, and internal crossfunctional coordination required to operationalize approaches in core planning and execution systems and processes. Prerequisite: 262.
3-4 units, Spr (Johnson)

STRATEGY, ENTREPRENEURSHIP, AND MARKETING

MS&E 371. Innovation and Strategic Change—Doctoral research seminar, limited to Ph.D. students. Current research on innovation strategy. Topics: scientific discovery, innovation search, organizational learning, evolutionary approaches, and incremental and radical change. Topics change yearly. Recommended: course in statistics or research methods.
2-3 units, Win (Katila)

MS&E 374. Dynamic Corporate Strategy—Enrollment limited to Ph.D. students. Research on the creation and shaping of disruptive industry dynamics and how companies can formulate and implement strategies to excel in such changing environments. Dynamic system model approach; case studies. Prerequisites: 201 or equivalent, 274.
3 units (Tse) alternate years, given 2006-07

MS&E 376. Strategy and Organization Doctoral Research Seminar—Current research at the interface of strategy policy and organization theory. Topics vary annually. Limited enrollment. Prerequisites: SOC 360 or equivalent, and consent of instructor.
3 units, Aut (Eisenhardt)

ORGANIZATIONAL BEHAVIOR, MANAGEMENT, AND WORK

MS&E 380. Doctoral Research Seminar in Organizations—Limited to Ph.D. students. Topics from current published literature and working papers. Content varies. Prerequisite: consent of instructor.
3 units, Win (Sutton)

MS&E 381. Doctoral Research Seminar in Work, Technology, and Organization—Enrollment limited to Ph.D. students. Topics from current published literature and working papers. Content varies. Prerequisite: consent of instructor.
2-3 units (Barley) alternate years, given 2006-07

MS&E 383. Doctoral Seminar on Ethnographic Research—For graduate students; upper-level undergraduates with consent of instructor. Ethnographic interviewing and participant observation. Techniques for taking, managing, and analyzing field notes and other qualitative data. 15 hours per week outside class collecting and analyzing own data. Methods texts and ethnographies offer examples of how to analyze and communicate ethnographic data. Prerequisite: consent of instructor.
5-6 units, Win (Barley) alternate years, not given 2006-07

MS&E 384. Groups and Teams—Research on groups and teams in organizations from the perspective of organizational behavior and social psychology. Topics include group effectiveness, norms, group composition, diversity, conflict, group dynamics, temporal issues in groups, geographically distributed teams, and intergroup relations.
3 units (Hinds) alternate years, given 2006-07

MS&E 385. Geographically Distributed Work—Focus is on understanding how being distributed from one’s coworkers can affect productivity, interpersonal relationships, perceptions of work, information sharing, organizational structure, and other factors related to work and work effectiveness. Current research on distributed work and research in related areas that provide a theoretical foundation for understanding the impact of distance on work. Prerequisite: consent of instructor.
1-3 units (Hinds) not given 2005-06

MS&E 386. Behavioral Aspects of Computer Supported Cooperative Work—For Ph.D. students. Research on behavioral aspects of computer supported cooperative work. Topics include knowledge management, awareness and awareness systems, group decision support, cooperation and collaboration, effects of computer mediated communications on interpersonal relationships, and geographically distributed work.
3 units, Spr (Hinds)

PROJECT COURSES, SEMINARS, AND WORKSHOPS

MS&E 408. Directed Reading and Research—Directed study and research on a subject of mutual interest to student and faculty member. Prerequisite: faculty sponsor.
1-15 units, Aut, Win, Spr, Sum (Staff)

MS&E 412. Affiliate Project Course—Students work on a project with an MS&E Department Affiliate Company. Projects not necessarily available every year. Prerequisite: consent of instructor.
3-4 units, Win (Savage)

MS&E 430. Contextual and Organizational Issues in Human-Computer Interaction—Student team projects. How to observe individuals and groups in context, use models of work and other activity to extend design capabilities, identify constraints and tradeoffs on designs within the context of use, and observe and work with people in interdisciplinary design groups. Enrollment limited. Prerequisite: 247A; those whose program of study is closely related to HCI admitted, space permitting.
3-4 units, Spr (Hinds)

MS&E 444. Investment Practice—Theory of real options, soft derivatives, and related ideas. Examples from industry. Small group projects formulate and design solutions to investment decisions. Enrollment limited to 30. Prerequisites: 242, 342.
3-4 units, Spr (R. Luenberger)

MS&E 451. Decision Systems I: Professional Secrets and Tricks of the Trade—Professional tricks for designing decision systems that help decision makers facing similar decisions such as buying a car, bidding on the Internet, hiring NFL players, making charitable donations, or selecting medical treatment. Demonstrations; small project. Topics: automatic decision diagram formulation, decision-class analysis, and dynamic sensitivity analysis. No programming required.
2-3 units, Win (Holtzman, Robinson)
platoon tactics, high-tech manufacturing, and oil-and-gas exploration. No programming required. Satisfies MS&E project course requirement. Prerequisite: 252 or equivalent. Recommended: 451.

3 units, Spr (Holtzman, Robinson)

MS&E 453A. Medical Decision Making Seminar — Applications and tools. Modeling complex medical decisions under uncertainty. Guest speakers from academia, government, and industry. May be repeated for credit.

1 unit, Aut (Robinson)

MS&E 453B. Energy Decision Making Seminar — Applications and tools. Modeling complex energy decisions under uncertainty. Guest speakers from academia, government, and industry. May be repeated for credit.

1 unit, Win (Robinson)

MS&E 453C. Environmental Decision Making Seminar — Applications and tools. Modeling complex environmental decisions under uncertainty. Guest speakers from academia, government, and industry. May be repeated for credit.

1 unit, Spr (Robinson)

MS&E 454. Decision Analysis Seminar — Current research and related topics presented by doctoral students and invited speakers.

1 unit, Aut, Win, Spr (Howard)

MS&E 455. Decision Making in Organizations: Avoiding Traps, Motivating People, and Improving Process — Lectures and war stories from management consultants experienced in applying decision analysis. Student teams critique decisions from news articles, case studies, and interviews with leaders of local organizations. Topics: roles people play, normative versus descriptive processes, decision quality measures, avoiding traps and failure modes, creativity, decision psychology, leadership profiles, organizational structure and defenses, efficient value creation, rewarding decisions, HDTV R&D analysis, the C5 Corvette design decision, and movie studio portfolio evaluations.

2 units, Aut (Robinson, Holtzman)

MS&E 456. Decision Analysis Toolkit: Magic and Mystery of Choices, Consequences, and Preferences — Experienced management consultants show how to use decision analysis in real situations. Tools and techniques for framing, structuring, modeling, and evaluating strategic decisions. Decision hierarchies and strategy tables identify choices and alternatives. Decision diagrams and probability assessments capture the consequences of actions. Preference models describe what is desired. Sensitivity and information analysis focus on what is key. Student teams apply models and methods in actual decisions.

2 units, Win (Robinson, Holtzman)

MS&E 457. Decision Analysis Projects: Helping Real Leaders Make Real Decisions — A virtual consulting firm directed by experienced management consultants. Student teams help local organizations with decisions such as new business start-up, R&D portfolio investment, new product and market selection, strategic focus and direction, cost and staff reduction, and public policy optimization. Typical organizations include businesses, non-profits, healthcare providers, government entities, and educational institutions. Emphasis is on delivering insights and clarity of action to clients. Satisfies MS&E project course requirement. Prerequisite: 252 or equivalent.

3 units, Spr (Robinson, Holtzman)

MS&E 458. Professional Decision Consulting: How to Market Services, Deliver Results, and Balance Lifestyle — Experienced management consultants share top ten lessons about marketing and sales of professional services, pricing to value, leading and managing consulting projects, communicating decision insights to diverse audiences, and delivering clear results that exceed client expectations. What it looks like from inside a consulting firm, from the client viewpoint, and from the consulting industry perspective. Student teams develop answers to frequently asked questions, prepare marketing materials, and present proposals for consulting services to decision makers in local organizations.

2 units, Aut (Robinson, Holtzman)

MS&E 459. Interdisciplinary Seminar on Conflict and Dispute Resolution — (Same as LAW 611, PSYCH 283.) Problems of conflict resolution and negotiation from an interdisciplinary perspective. Presentations by faculty and scholars from other universities.

1 unit, Win (Hensler, Ross)

MS&E 464. Global Project Coordination — Students engage in projects that are global in nature, and related to the planning and design of supply chains, marketing, manufacturing, and product development. Project teams from Stanford and an overseas university work on common projects using telephones, faxes, email, Internet, video conferencing, and face-to-face meetings. As part of the project, students travel to Hong Kong or the Netherlands. Applications due in November for Winter, and February for Spring.

3-4 units, Win (Tabrizi), Spr (Peleg)

MS&E 472. Entrepreneurial Thought Leaders’ Seminar — Entrepreneurial leaders share lessons from real-world experiences across entrepreneurial settings. ETL speakers include entrepreneurs, leaders from global technology companies, venture capitalists, and best-selling authors. Half-hour talks followed by half hour of class interaction. Required web discussion. May be repeated for credit.

1 unit, Aut, Win, Spr (Byers, Kosnik, Seelig)

MS&E 474. Business and Environmental Issues — (Same as GSBGEN 547.) Overlap and synergies between the business and environmental fields. Weekly speakers include leaders from for-profit and non-profit sectors. Past speakers include business executives, alternative energy experts, environmental consultants, and professors. Group assignments.

2 units, Spr (Matson, Plambeck, Sweeney)

MS&E 475. Technology Assessment and Regulation of Medical Devices — Regulatory approval and reimbursement for new medical technologies as a key component of product commercialization. The regulatory and payer environment in the U.S. and abroad, and common methods of health technology assessment. Framework to identify factors relevant to adoption of new medical devices, and the management of those factors in the design and development phases. Case studies; guest speakers from government (FDA) and industry.

1-3 units, Spr (Pietzsch)

MS&E 478. Topics in International Technology Management —
(Enroll in EE 402A.)

1 unit, Aut (Dasher)

MS&E 479. Entrepreneurship in Asian High Tech Industries —
(Enroll in EE 402T.)

1 unit, Spr (Dasher)
MATERIALS SCIENCE AND ENGINEERING

Chair: Robert Sinclair
Associate Chair: Reinhold H. Dauskardt
Associate Professors: Paul C. McIntyre, Shan X. Wang
Assistant Professors: Mark L. Brongersma, Yi Cui, Michael D. McGehee, Nicholas Melosh, Alberto Salleo.
Acting Assistant Professor: Wendelin Wright
Courtesy Professors: Curtis W. Frank, James S. Harris, Yoshio Nishi, James D. Plummer, Krishna Saraswat, Jonathan F. Stebbins, Joachim Stohr
Courtesy Associate Professor: Stacey Bent
Courtesy Assistant Professors: Kyeongjae Cho, Ian Fisher, Harindran Manoharan
Lecturers: Ann Marshall, Art Vailionis
* Recalled to active duty.

Department Offices: 416 Escondido Mall, Building 550
Mail Code: 94305-2205
Phone: (650) 723-2534
Email: matsciengr@stanford.edu
Web Site: http://www-mse.stanford.edu

Courses in Materials Science and Engineering have the subject code MATSCI. For a complete list of subject codes, see Appendix.

The Department of Materials Science and Engineering is concerned with the relation between the structure and properties of materials, factors that control the internal structure of solids, and processes for altering the structure and properties of solids. The undergraduate program, described under the “School of Engineering” section of this bulletin, provides training for the materials engineer and also preparatory training for graduate work in materials science. Capable students are encouraged to take at least one year of graduate study to extend their course work to obtain a coterminal degree. Coterminal degree programs are encouraged both for undergraduate majors in Materials Science and Engineering and for undergraduate majors in related disciplines. Graduate programs lead to the degrees of Master of Science, Engineer, and Doctor of Philosophy.

FACILITIES

The department is based in the Thomas F. Peterson Engineering Laboratory (Building 550), with extensive facilities in the Jack A. McCullough building and the Gordon and Betty Moore Materials Research Building. These buildings house offices for the chair and most of the faculty, for the administrative and technical staff, and for most graduate students, along with lecture and seminar rooms. Facilities for teaching and research are also available, including equipment for electrical measurements; mechanical testing of bulk and thin film materials; fracture and fatigue of advanced materials; metallography; optical, scanning, transmission electron microscopy, and atomic force microscopy; UHV sputter deposition; vacuum annealing treatments; wet chemistry; and x-ray diffraction. The McCullough/Moore Complex is also the home for the Center for Research on Information Storage Materials (CRISM) with corresponding facilities for magnetic measurements. The Rapid Prototyping Laboratory (RPL), housing material deposition and removal stations, is a joint facility with Mechanical Engineering, and is housed next to the Peterson Labs in Building 530. The department maintains two microcomputer clusters for
its students, both of which are linked to the Internet.

Depending on the needs of their programs, students and faculty also conduct research in a number of other departments and independent laboratories. Chief among these are the Center for Integrated Systems (CIS), the Geballe Laboratory for Advanced Materials (GLAM), and the Stanford Synchrotron Radiation Laboratory (SSRL).

The Center for Integrated Systems (CIS) is a laboratory joining government and industrially funded research on microelectronic materials, devices, and systems. It houses a 10,000 square foot, class 100 clean room for Si and GaAs integrated circuit fabrication; a large number of electronic test, materials analysis, and computer facilities; and office space for faculty, staff, and students. In addition, CIS provides startup research funds and maintains a “Fellow-Mentor” program with industry.

For information on GLAM and SSRL, see the “Geballe Laboratory for Advanced Materials” and “Stanford Synchrotron Radiation Laboratory” sections of this bulletin.

UNDERGRADUATE PROGRAMS

BACHELOR OF SCIENCE

The undergraduate program provides training in solid state fundamentals and materials engineering. Students desiring to specialize in this field during their undergraduate period may do so by following the curriculum outlined in the “School of Engineering” section of this bulletin as well as the School of Engineering Undergraduate Handbook. The University’s basic requirements for the bachelor’s degree are discussed in the “Undergraduate Degrees” section of this bulletin. Electives are available so that students with broad interests can combine materials science and engineering with work in another science or engineering department.

For information about minor, see the “School of Engineering” section of this bulletin.

COTERMINAL B.S./M.S. PROGRAM

Stanford undergraduates who wish to continue their studies for the Master of Science degree in the coterminous program may apply for admission after they have earned 120 units toward graduation (UTG) as shown on the undergraduate unofficial transcript; applicants must submit their application no later than the quarter prior to the expected completion of their undergraduate degree. The application must give evidence that the student possesses the potential for strong academic performance at the graduate level. Scores from the Graduate Record Exam (GRE) General Test must be reported before admission action can be taken on an application. Materials science is a highly integrated and interdisciplinary subject, and so applications from students of any engineering or science undergraduate major are encouraged. Information forms pertaining to the coterminous program may be obtained from the department’s student services manager, Room 551F, or from Degree Progress in the Registrar’s Office, Old Union.

For University coterminous degree program rules and University application forms, see http://registrar.stanford.edu/publications/#Coterm.

GRADUATE PROGRAMS

Graduate students can specialize in any of the areas of materials science and engineering.

MASTER OF SCIENCE

The University’s basic requirements for the M.S. degree are discussed in the “Graduate Degrees” section of this bulletin. The following are specific departmental requirements.

The Department of Materials Science and Engineering requires a minimum of 45 units for a master’s degree to be taken in residence at Stanford. Master’s Program Proposal forms should be filled out, signed by the student’s academic adviser, and submitted to the department’s student services manager by the end of the student’s first quarter of study. Final changes to the master’s program must be submitted no later than one academic quarter prior to degree conferral.

Degree requirements are as follows:
1. A minimum of 30 units of Materials Science course work, including core and lab courses specified below, taken for a letter grade. Research units, one-unit seminars, and courses in other departments (i.e., where students cannot enroll in a section with a MATSCI subject code) cannot be counted for this requirement.
2. Three core courses including: 202 or 204; 203; 207. Materials Science undergraduates who are pursuing or who plan to pursue a coterminous M.S. degree should consult with their academic advisers regarding appropriate core course choices.
3. Lab courses: MATSCI 171, 172, 173. Note: students who have had equivalent lab courses at other universities, equivalent practical experience, or have a materials related degree or background are expected to file a petition with the department’s student services manager to have this requirement waived and to substitute other appropriate technical courses for the lab units.
4. 15 units of approved course electives that result in a technically coherent program. Of the 15 units of elective courses: a) 12 of the 15 units must be taken for a letter grade (except for those submitting an M.S. report). b) a maximum of 3 units may be seminars. c) if writing a master’s research report, a minimum of 6 and a maximum of 15 units of Materials Science research units (MATSCI 200) may be counted. M.S. research units may only be counted if writing an M.S. research report.
5. A minimum grade point average (GPA) of 2.75 for degree course work taken at Stanford.

All proposed degree programs are subject to approval by the department’s student services manager and the Academic Degree Committee, which has responsibility for assuring that each proposal is a technically coherent program.

MASTER’S RESEARCH REPORT

Students wishing to take this option must include 6-15 Materials Science research units on their program proposal and the name of the faculty member who will be supervising the research. Students using 15 units of research toward the degree must participate in a more complex and demanding research project than those using fewer units.

The report must be approved by two faculty members. One faculty member is the student’s research adviser. The other faculty member must be approved by the department’s student services manager. Three copies of the report (one copy for each approving faculty member and one for the department file), in final form and signed by two faculty members, must be submitted to the department’s student services manager one week before final examinations of the final quarter of the program. The report is not an official University thesis but rather is intended to demonstrate to department faculty an ability to conduct and report directed research. Refer to the Materials Science and Engineering Student Handbook for further clarification concerning this report.

In cases where students decide to pursue research after the initial program submission deadline, they should submit a revised M.S. Program Proposal at least two quarters before the degree is granted. The total combined units of Materials Science research units, seminars, language courses, and undergraduate courses cannot exceed 15. If a master’s research report is not to be submitted, units of MATSCI 200 cannot be applied to the department’s requirement of 45 units for the master’s degree.
HONORS COOPERATIVE PROGRAM

Some of the department’s graduate students participate in the Honors Cooperative Program (HCP), which makes it possible for academically qualified engineers and scientists in industry to be part-time graduate students in Materials Science while continuing professional employment. Prospective HCP students follow the same admissions process and must meet the same admisions requirements as full-time graduate students. For information regarding the Honors Cooperative Program, see the “School of Engineering” section of this bulletin.

PETITION PROCESS FOR TRANSFER FROM M.S. TO PH.D. DEGREE PROGRAM

When a student is admitted to the graduate program, he or she is admitted specifically into either the M.S. or the Ph.D. program. Admission to the Ph.D. program is required for the student to be eligible to work towards the Ph.D. degree. A student in the M.S. program can petition to be admitted to the Ph.D. program by filing an M.S. to Ph.D. Transfer Petition.

This petition must be accompanied by a one-page statement of purpose stating the reasons why the student wishes to transfer to the Ph.D. program, and two letters of recommendation from members of the Stanford faculty, including one from the student’s prospective adviser and at least one from an Materials Science faculty member belonging to the Academic Council.

The M.S. to Ph.D. Transfer Petition is due to the student services manager at the end of the second week of Spring Quarter during the student’s first year in the M.S. program. Only students enrolled in the 200 series core course sequence are eligible to petition, and a grade point average (GPA) of 3.25 or better in the core courses is required.

Transferring to the Ph.D. program is a competitive process and only fully qualified M.S. students are admitted. The Admissions Committee and the department chair consider the student’s original application to the graduate program as well as the material provided with the transfer petition.

ENGINEER

The University’s basic requirements for the degree of Engineer are outlined in the “Graduate Degrees” section of this bulletin.

A student wishing to enter the Engineer program must have completed the substantial equivalent requirements of the M.S. in Materials Science and Engineering, and must file a petition requesting admission to the program, stating the type of research to be done and the proposed supervising professor. Once approved, the Application for Candidacy must be submitted to the department’s student services manager by the end of the second quarter in the Engineer program. Final changes in the Application for Candidacy form must be submitted no later than one academic quarter prior to degree conferral.

The 90-unit program must include 9 units of graduate non-crosslisted courses in materials science (exclusive of research units, seminars, colloquia, MATSCI 400, Participation in Teaching, and so on) beyond the requirements for the M.S. degree, and additional research or other units to meet the 90-unit University minimum requirement. A grade point average (GPA) of 3.0 must be maintained for all degree course work taken at Stanford.

Completion of an acceptable thesis is required. The Engineer thesis must be approved by two Academic Council faculty members, one of whom must be a member of the department, and submitted in triplicate.

DOCTOR OF PHILOSOPHY

The University’s basic requirements for the Ph.D. degree are outlined in the “Graduate Degrees” section of this bulletin. Degree requirements are as follows:

1. Submit a Ph.D. program consisting of at least 135 units,† which contains a minimum of 57 technical course units. Of these 57 units:
 a) at least 54 of the 57 units must be for a letter grade
 b) 33 units must be taken as non-crosslisted Materials Science courses for a letter grade
 c) students must take six core courses for a letter grade*

2. First-year Ph.D. students are required to take the Materials Science Colloquium, MATSCI 230, each quarter of their first year.

3. Pass a departmental oral qualifying examination by the end of January of their second year. A grade point average (GPA) of 3.25 from the six core classes taken is required for admission to the Ph.D. qualifying exam. Students whose GPA is between 3.00 and 3.25 may petition for admission to the exam. Students who have passed the departmental oral examination are required to complete the Application for Candidacy for the Ph.D. Degree by the end of the quarter in which they pass the exam. Final changes in the Application for Candidacy form must be submitted no later than one academic quarter prior to degree conferral.

4. Maintain a GPA of 3.0 in all degree courses taken at Stanford.

5. Present the result of the dissertation at a department seminar immediately preceding the University oral examination.

ADVANCED SPECIALTY COURSES

1. Biomaterials: APPPHYS 292; BIOPHYS 228; CHEMENG 260, 310A, 350, 355, 444A, 452; ME, 284A,B, 381, 385, 386, 457

2. Electronic Materials Processing: EE 212, 216, 217, 311, 316, 410; MATSCI 312, 313, 330

3. Materials Characterization: APPPHYS 216, 218; CHEMENG 345; EE 329; MATSCI 320, 321, 322, 332, 324, 325

5. Physics of Solids and Computation: APPPHYS 218, 272, 273, 372, 373; CHEMENG 444A; EE 222, 223, 228, 327, 328, 329, 335; MATSCI 330, 343, 347; ME 344A,B, 444B

PH.D. MINOR

The University’s basic requirements for the Ph.D. minor are outlined in the “Graduate Degrees” section of this bulletin. A minor requires 20 units of graduate work of quality and depth to be approved by the Advanced Degree Committee of the department. Individual programs must be submitted to the Student Services Manager at least one quarter prior to degree conferral and approved as are other academic plans.
COURSES

PRIMARILY FOR UNDERGRADUATES

MATSCI 31. Introduction to Solid State Chemistry with Application to Materials Technology — (Enroll in ENGR 31.)
4 units, Aut (McIntyre)

MATSCI 50. Introductory Science of Materials — (Enroll in ENGR 50.)
4 units, Win (Melosh), Spr (Sinclair)

MATSCI 70N. Building the Future: Invention and Innovation with Engineering Materials — Stanford Introductory Seminar. Preference to freshmen. The technological importance of materials in human civilization is captured in historical names such as the Stone, Bronze, and Iron Ages. The present Information Age could rightly be called the Silicon Age. The pivotal roles of materials in the development of new technologies. Quantitative problem sets, field trips, and formal presentations of small-group projects. GER:DB-EngrAppSci, WRITE-2
5 units, Spr (Bravman)

MATSCI 100. Undergraduate Independent Study — Independent study in materials science under supervision of a faculty member.
1-3 units, Aut, Win, Spr, Sum (Staff)

MATSCI 150. Undergraduate Research
3-6 units, Aut, Win, Spr, Sum (Staff)

MATSCI 151. Microstructure and Mechanical Properties — (Same as 251.) Primarily for students without a materials background. Mechanical properties and their dependence on microstructure in a range of engineering materials. Elementary deformation and fracture concepts, strengthening and toughening strategies in metals and ceramics. Topics: dislocation theory, mechanisms of hardening and toughening, fracture, fatigue, and high-temperature creep. Prerequisite: ENGR 50 or equivalent. GER:DB-EngrAppSci
4 units, Aut (Dauskardt)

MATSCI 152. Electronic Materials Engineering — Materials science and engineering for electronic device applications. Kinetic molecular theory and thermally activated processes; band structure and electrical conductivity of metals and semiconductors; intrinsic and extrinsic semiconductors; diffusion; elementary p-n junction theory; operating principles of metal-oxide-semiconductor field effect transistors; introduction to crystal growth; oxidation kinetics; ion implantation; thermodynamics and kinetics of chemical vapor deposition; survey of physical vapor deposition methods, etching, and photolithography. GER:DB-EngrAppSci
4 units, Spr (Wright)

MATSCI 154. Solid State Thermodynamics — (Formerly 192.) The principles of thermodynamics and relationships between thermodynamic variables. Equilibrium in thermodynamic systems. Thermodynamics of multicomponent systems. Prerequisite: physical chemistry or introductory thermodynamics. GER:DB-EngrAppSci
4 units, Aut (Barnett)

3 units, Spr (Sinclair)

MATSCI 160. Nanomaterials Laboratory — Preference to sophomores and juniors. Hands-on approach to synthesis and characterization of nanoscale materials. How to make, pattern, and analyze the latest nanotech materials, including nanoparticles, nanowires, and carbon nanotubes. Techniques such as soft lithography, self-assembly, and surface functionalization. The VLS mechanism of nanowire growth, nanoparticle size control, self-assembly mechanisms, and surface energy considerations. Laboratory projects. Enrollment limited to 24. GER:DB-EngrAppSci
4 units, Spr (Melosh)

MATSCI 161. Nanocaracterization Laboratory — (Same as 171.) The development of standard lab procedures for materials scientists emphasizing microscopy, metallography, and technical writing. Techniques: optical, scanning-electron, atomic-force microscopy; and metallographic specimen preparation. The relationships among microscopic observation, material properties, and processing. Prerequisite: ENGR 50 or equivalent. GER:DB-EngrAppSci, WIM
4 units, Aut (Wright)

MATSCI 162. X-Ray Diffraction Laboratory — (Same as 172.) Introduction to x-ray diffraction for microstructural analysis of materials, emphasizing powder and single-crystal techniques. Diffraction from thin films, thin-film multilayers, amorphous materials, strain measurements, orientation measurements, and electron diffraction. Prerequisite: GER:DB-EngrAppSci
4 units, Spr (Vailionis)

MATSCI 163. Mechanical Behavior Laboratory — (Same as 173.) Experimental techniques for the study of the mechanical behavior of engineering materials in bulk and thin film form, including tension testing, nanoindentation, and wafer curvature stress analysis. Metallic and polymeric systems will be studied. Prerequisites: 198/208, 151/251, ME 80 or equivalent. GER:DB-EngrAppSci
4 units, Win (Wright)

MATSCI 170. Materials Selection in Design — (For undergraduates; see 270.) GER:DB-EngrAppSci
4 units (Prinz) not given 2005-06

MATSCI 171. Nanocharacterization Laboratory — (For graduate students; see 161.)
3 units, Aut (Wright)

MATSCI 172. X-Ray Diffraction Laboratory — (For graduate students; see 162.)
3 units, Spr (Vailionis)

MATSCI 173. Mechanical Behavior Laboratory — (For graduate students; see 163.)
3 units, Win (Wright)

CORE FOR UNDERGRADUATE MAJORS

Courses numbered 190-199 comprise the core of the undergraduate Materials Science curriculum. In addition to the regularly scheduled lectures shared with the 201-210 series, undergraduates meet in small weekly sessions with the faculty member.

MATSCI 190. Organic Materials — (For undergraduates; see 210.)
GER:DB-EngrAppSci
4 units, Aut (McGehee)

MATSCI 192. Materials Chemistry — (For undergraduates; see 202.)
GER:DB-EngrAppSci
4 units, Aut (Cui)

MATSCI 193. Atomic Arrangements in Solids — (For undergraduates; see 203.) GER:DB-EngrAppSci
4 units, Aut (Sinclair)

MATSCI 194. Phase Equilibria — (For undergraduates; see 204.) GER:DB-EngrAppSci
4 units, Win (McIntyre)

MATSCI 195. Waves and Diffraction in Solids — (For undergraduates; see 205.) GER:DB-EngrAppSci
4 units, Win (Wang)

MATSCI 196. Imperfections in Crystalline Solids — (For undergraduates; see 206.) GER:DB-EngrAppSci
4 units, Win (Nix)

MATSCI 197. Rate Processes in Materials — (For undergraduates; see 207.) GER:DB-EngrAppSci
4 units, Spr (McIntyre)
MATSCI 198. Mechanical Properties of Materials — (For undergraduates; see 208.) GER:DB-EngrAppSci
4 units, Spr (Dauskardt)

MATSCI 199. Electronic and Optical Properties of Solids — (For undergraduates; see 209.) GER:DB-EngrAppSci
4 units, Spr (Bromersma)

PRIMARILY FOR GRADUATE STUDENTS

MATSCI 200. Master’s Research — Participation in a research project.
1-9 units, Aut, Win, Spr, Sum (Staff)

MATSCI 202. Materials Chemistry — (Same as 192.) Chemical principles of materials formed by chemical bonds and intermolecular and surface forces. Crystal structure and bonding; synthesis and characterization of bulk crystals, nanostructures; and functional organic and electronic structures and properties with a comparison between bulk and nano materials; intermolecular and surface forces for self-assembly including electrostatic, van der Waals force, hydrogen bond, hydrophobicity, solvation, intrinsic force, and DLVO theory; and self-assembled materials.
3 units, Aut (Cui)

MATSCI 203. Atomic Arrangements in Solids — (Same as 193.) Atomic arrangements in perfect and imperfect crystalline solids, especially important metals, ceramics, and semiconductors. Elements of formal crystallography, including development of point groups and space groups.
3 units, Aut (Sinclair)

MATSCI 204. Phase Equilibria — (Same as 194.) The principles of heterogeneous equilibria and their application to phase diagrams. Thermodynamics of solutions; chemical reactions; non-stoichiometry in compounds; first order phase transitions and metastability; higher order transitions; statistical models of alloy thermodynamics; binary and ternary phase diagram construction; thermodynamics of surfaces. Prerequisite: 192/202; or consent of instructor.
3 units, Win (Mchntyre)

MATSCI 205. Waves and Diffraction in Solids — (Same as 195.) The elementary principals of x-ray, vibrational, and electron waves in solids. Basic wave behavior including Fourier analysis, interference, diffraction, and polarization. Examples of wave systems, including electromagnetic waves from Maxwell’s equations. Diffraction intensity in reciprocal space and experimental techniques such as electron and x-ray diffraction. Lattice vibrations in solids, including vibrational modes, dispersion relationship, density of states, and thermal properties. Free electron model. Basic quantum mechanics and statistical mechanics including Fermi-Dirac and Bose-Einstein statistics. Prerequisite: 193/203 or consent of instructor.
3 units, Win (Wang)

3 units, Win (Nix)

3 units, Spr (Mchntyre)

MATSCI 208. Mechanical Properties of Materials — (Same as 198.) Introduction to the mechanical behavior of solids, emphasizing the relationships between microstructure and mechanical properties. Elastic, anelastic, and plastic properties of materials. The relations between stress, strain, strain rate, and temperature for plastically deformable solids. Application of dislocation theory to strengthening mechanisms in crystalline solids. The phenomena of creep, fracture, and fatigue and their controlling mechanisms. Prerequisites: 193/203.
3 units, Spr (Dauskardt)

MATSCI 209. Electronic and Optical Properties of Solids — (Same as 199.) The concepts of electronic energy bands and transports applied to metals, semiconductors, and insulators. The behavior of electronic and optical devices including p-n junctions, MOS-capacitors, MOSFETS, optical waveguides, quantum-well lasers, light amplifiers, and metallo-dielectric light guides. Emphasis is on relationships between structure and physical properties. Elementary quantum and statistical mechanics concepts are used. Prerequisite: 195/205 or equivalent.
3 units, Spr (Bromersma)

MATSCI 210. Organic Materials — (Same as 190.) Bonding and intermolecular interactions in organic materials. Techniques for determining the chemical structure and molecular packing of organic materials. Relationship between the structure and physical properties of polymers, liquid crystals, and other macromolecules. Introduction to synthesizing organic macromolecules. Current technological applications for organic materials such as flexible flat panel displays.
3 units, Aut (McGehee)

MATSCI 220. Materials Science Colloquium — May be repeated for credit.
1 unit, Aut (Bromersma, McIntyre), Win (Dauskardt, Melosh), Spr (McGehee, Wang)

MATSCI 230. Microstructure and Mechanical Properties — (For graduate students; see 151.)
3 units, Aut (Dauskardt)

MATSCI 235. Materials Science Colloquium — (Enroll in APPPHYS 270.)
3 units (Fisher) not given 2005-06

MATSCI 240. Practical Training — Educational opportunities in high-technology research and development labs in industry. Qualified graduate students engage in internship work and integrate that work into their academic program. Following the internship, students complete a research report outlining their work activity, problems investigated, key results, and any follow-on projects they expect to perform. Student is responsible for arranging own employment. See department student services manager before enrolling.
3 units, Aut, Win, Spr, Sum (Staff)

MATSCI 299. Practical Training — Participation in a research project.
1-15 units, Aut, Win, Spr, Sum (Staff)

MATSCI 300. Ph.D. Research — Participation in a research project.
3 units, Aut (Plummer)
3 units, Spr (Salleo)

MATSCI 312. New Methods in Thin Film Synthesis — Materials base for engineering new classes of coatings and devices. Techniques to grow thin films at atomic scale and to fabricate multilayers/superlattices at nanoscale. Vacuum growth techniques including evaporation, molecular beam epitaxy (MBE), sputtering, ion beam assisted deposition, laser ablation, chemical vapor deposition (CVD), and electroplating. Future direction of material synthesis such as nanocluster deposition and nanoparticles self-assembly. Relationships between deposition parameters and film properties. Applications of thin film synthesis in microelectronics, nanotechnology, and biology. SITN/SCPD televised.
3 units, Aut (Wang)

MATSCI 313. Synthesis and Processing of Bulk and Thin Film Ceramics — Unit process operations used to fabricate polycrystalline ceramic components and thin films. Topics: grain growth, solid state and liquid phase sintering, drying, forming processes, particle packing effects, powder synthesis through solid state reaction and wet chemical methods, thin film deposition via sol gel and vapor phase synthesis routes. Prerequisites: 204 and 207, or equivalents.
3 units (McIntyre) not given 2005-06

MATSCI 315. Polymer Surfaces and Interfaces — (Enroll in CHEM-ENG 460.)
3 units (Frank) alternate years, given 2006-07

MATSCI 316. Nanoscale Science, Engineering, and Technology — Sample application areas: renewable energy including nanoscaled photovoltaic cells, hydrogen storage, fuel cells, and nanoelectronics. Nanofabrication techniques including: self-assembly of amphiphilic molecules, block copolymers, organic-inorganic mesostructures, colloidal crystals, organic monolayers, proteins, DNA and abalone shells; biologically inspired growth of materials; photolithography, electron beam lithography, and scanning probe lithography; and synthesis of carbon nanotubes, nanowire, and nanocrystals. Other nanotechnology topics may be explored through a group project. SITN/SCPD televised.
3 units, Win (McGehee)

MATSCI 317. Advanced Integrated Circuit Fabrication Processes — (Enroll in EE 311.)
3 units, Spr (Saraswat)

MATSCI 318. Integrated Circuit Fabrication Laboratory — (Enroll in EE 410.)
3-4 units, Win (Saraswat)

MATSCI 319. Electron and Ion Beams for Semiconductor Processing — (Enroll in EE 217.)
3 units (Pease) alternate years, given 2006-07

3 units, Win (Sinclair) alternate years, not given 2006-07

MATSCI 321. Transmission Electron Microscopy — Image formation and interpretation. The contrast phenomena associated with perfect and imperfect crystals from a physical point of view and from a formal treatment of electron diffraction theory. The importance of electron diffraction to systematic analysis and recent imaging developments. Prerequisite: 193/203, 195/205, or equivalent.
3 units (Sinclair) alternate years, given 2006-07

MATSCI 322. Transmission Electron Microscopy Laboratory — Experimental application of electron microscopy to typical materials science studies. Topics include microscope operation and alignment, diffraction modes and analysis, bright-field/dark-field analysis of defects, high resolution imaging, and analytical techniques for compositional analysis (EDAX). Prerequisites: 321, consent of instructor.
3 units, Spr (Marshall)

MATSCI 323. Thin Film and Interface Microanalysis — The science and technology of a variety of microanalytical techniques, including Auger electron spectroscopy (AES), Rutherford backscattering spectroscopy (RBS), secondary ion mass spectroscopy (SIMS), ion scattering spectroscopy (ISS), and x-ray photoelectron spectroscopy (XPS or ESCA). Generic processes such as sputtering and high-vacuum generation. Prerequisite: some prior exposure to atomic and electronic structure of solids. SITN/SCPD televised.
3 units, Aut (Brongersma)

MATSCI 324. Topics in Thin Film Microcharacterization — Case study characterizing materials, defining problems in characterizing surfaces or thin films, analyzing samples, and reporting results. Students propose problems, and operate electron, ion, and x-ray probe instruments. Methodology for approaching characterization problems; experience in interpreting and presenting experimental results. Emphasis is on application of advanced measurement methods to practical problems, and capabilities and limitations of modern techniques. Topics: choosing techniques, analytical pitfalls, quantitative analysis, effects of noise and other uncertainties on analytical precision. Enrollment limited. Prerequisite: 323 or consent of instructor.
3 units (Kelly) alternate years, given 2006-07

MATSCI 325. X-Ray Diffraction — Diffraction theory and its relationship to structural determination in solids. Focus is on applications of x-rays; concepts can be applied to neutron and electron diffraction. Topics: Fourier analysis, kinematic theory, Patterson functions, diffraction from layered and amorphous materials, single crystal diffraction, dynamic theory, defect determination, surface diffraction, techniques for data analysis, and determination of particle size and strain. Prerequisites: 193/203, 195/205.
3 units (Clemens) alternate years, given 2006-07

MATSCI 327. X-Ray and Neutron Scattering in the 21st Century — (Enroll in APPPHYS 218.)
3 units (Greven) alternate years, given 2006-07

3 units (McIntyre) not given 2005-06

MATSCI 331. Solid State Physics I — (Enroll in APPPHYS 272.)
3 units, Win (Manoharan)

MATSCI 332. Solid State Physics II — (Enroll in APPPHYS 273.)
3 units, Spr (Manoharan)

MATSCI 334. Basic Physics for Solid State Electronics — (Enroll in EE 228.)
3 units, Aut (Peumans)

MATSCI 335. Properties of Semiconductor Materials — (Enroll in EE 327.)
3 units (J. Harris) alternate years, given 2006-07
MATSCI 336. Physics of Advanced Semiconductor Devices — (Enroll in EE 328.)
3 units, Spr (J. Harris) alternate years, not given 2006-07

MATSCI 341. Principles and Models of Semiconductor Devices —
(Enroll in EE 216.)
3 units, Aut (J. Harris), Win (Saraswat, Pease)

MATSCI 342. The Electronic Structure of Surfaces and Interfaces — (Enroll in EE 329.)
3 units (Pianetta) alternate years, given 2006-07

MATSCI 343. Organic Semiconductors for Electronics and Photonics — The science of organic semiconductors and their use in electronic and photonic devices. Topics: methods for fabricating thin films and devices; relationship between chemical structure and molecular packing on properties such as band gap, charge carrier mobility and luminescence efficiency; doping; field-effect transistors; light-emitting diodes; lasers; biosensors; photodetectors and photovoltaic cells. SITN/SCPD televised.
3 units, Spr (McGehee)

MATSCI 344. Micromachined Sensors and Actuators — (Enroll in EE 312.)
3 units (Kovacs) not given 2005-06

MATSCI 345. Advanced VLSI Devices — (Enroll in EE 316.)
3 units, Win (H.S.P. Wong)

3 units, Win (Fan, Brongersma)

MATSCI 347. Introduction to Magnetism and Magnetic Nanostructures — Atomic origins of magnetic moments, magnetic exchange and ferromagnetism, types of magnetic order, magnetic anisotropy, domains, domain walls, hysteresis loops, hard and soft magnetic materials, demagnetization factors, and applications of magnetic materials, especially magnetic nanostructures and nanotechnology. Tools include finite-element and micromagnetic modeling. Design topics include electromagnet and permanent magnet, electron magnetic force, magnetic inductors, bio-magnetic sensors, and magnetic drug delivery. Design projects, team work, and computer-aided design. Prerequisite: PHYSICS 53 (formerly 41) or equivalent.
3 units, Spr (Wang)

MATSCI 349. Introduction to Information Storage Systems — (Enroll in EE 335.)
3 units (Richter) not given 2005-06

MATSCI 352. Stress Analysis in Thin Films and Layered Composite Media — Introduction to methods of stress analysis of layered dissimilar media, including thin films deposited on substrates, composite laminates, and stratified anisotropic elastic materials based on techniques pioneered by Stroh. Stress states generated by thermal and elastic mismatch and local stress concentrations at interfacial cracks or corners, with applications to integrated circuit devices, aircraft materials, and geophysical media. Prerequisites: introductory course on the strength of materials or the theory of elasticity; familiarity with matrix algebra.
3 units, Win (Barnett) alternate years, not given 2006-07

3 units (Nix) alternate years, given 2006-07

MATSCI 354A. Elasticity in Microscopic Structures — (Enroll in ME 340.)
3 units, Spr (Cai)

MATSCI 356. Fatigue Design and Analysis — (Enroll in ME 345.)
3 units, Win (Nelson)

MATSCI 357. Physical Solid Mechanics — (Enroll in ME 329.)
3 units (Cho) alternate years, given 2006-07

3 units, Win (Dauskardt)

MATSCI 360. Techniques of Failure Analysis — (Enroll in AA 252.)
2 units, Spr (Murray)

MATSCI 361. Mechanics of Composites — (Enroll in AA 256.)
3 units, Win (Springer)

MATSCI 371A. Computational Nanotechnology — (Enroll in ME 344A.)
3 units, Win (Cho)

MATSCI 371B. Nanomaterials Modeling — (Enroll in ME 344B.)
3 units, Spr (Cho)

MATSCI 372. Quantum Simulations of Molecules and Materials — (Enroll in CHEMENG 444A.)
3 units, Win (Masgrave)

MATSCI 380. Molecular Biomaterials — For students with engineering backgrounds interested in the interface between biology and materials science. The characteristics of natural and man-made biomaterials from a molecular perspective. Why molecules with particular structures and properties are used for drug delivery, cell scaffolding, and surface passivation. Goal is to exploit these characteristics to create new materials and devices. Engineering strategies to interface biological species with inorganic, man-made devices.
3 units, Aut (Melosh)

MATSCI 399. Graduate Independent Study — Under supervision of a faculty member.
1-10 units, Aut, Win, Spr, Sum (Staff)

MATSCI 400. Participation in Materials Science Teaching — May be repeated for credit.
1-3 units, Aut, Win, Spr (Staff)

MATSCI 405. Seminar in Applications of Transmission Electron Microscopy — May be repeated for credit.
1 unit, Aut, Win, Spr (Sinclair)
MECHANICAL ENGINEERING

Mechanical Engineering Executive Committee: Mark R. Cutkosky (Faculty Affairs), John K. Eaton (Vice Chairman), Reginald E. Mitchell (Student Services and Undergraduate Curriculum), Friedrich B. Prinz (Chairman, Mechanical Engineering), Kenneth E. Goodson, (Graduate Admissions and Curriculum), Thomas W. Kenny (Graduate Admissions and Curriculum)

Group Chairs: Thomas P. Andriacci (Biomechanical Engineering), Mark R. Cutkosky (Design), Parviz Moin (Flow Physics and Computation), Reginald E. Mitchell (Thermosciences), Peter M. Pinsky (Mechanics and Computation)

Laboratory Directors: David W. Beach (Product Realization Laboratory), J. Edward Carryer (Smart Product Design Laboratory), Mark R. Cutkosky (Manufacturing Sciences Lab), Christopher Jacobs (Veterans Affairs Rehabilitation R&D Center), John K. Eaton (Heat Transfer and Turbulence Mechanics), Kosuke Ishii (Manufacturing Modeling Laboratory), Larry J. Leifer (Center for Design Research), Reginald E. Mitchell (High Temperature Gas Dynamics), Parviz Moin (Center for Turbulence Research), Friedrich B. Prinz (Rapid Prototyping Laboratory)

Associate Professors: Christopher Edwards, J. Christian Gerdes, Kenneth E. Goodson, Thomas W. Kenny, Reginald E. Mitchell, Juan G. Santiago, Charles Taylor

Assistant Professors: Wei Cai, Kyeongjae Cho, Eric Darve, Adrian Lew, Gunter Niemeyer, Heinz Pitsch, Beth Pruitt

Acting Assistant Professor: George Kembel

Professors (Research): Richard M. Christensen, Paul Durbin, Kenneth Waldron

Associate Professor (Research): Christopher Jacobs

Professor (Teaching): David W. Beach

Courtesies Professors: Fu-Kuo Chang, George S. Springer, Robert T. Street, Paul Yock

Senior Lecturers: J. Craig Milroy

Lecturers: Nalu B. Kaahaina, Matthew R. Ohline

Consulting Associate Professor: J. Edward Carryer

Consulting Assistant Professors: Michael Barry, Mark Bolas, Brendan J. Boyle, William Burnett, Vadim Khayms, Sara Little Turnbull

Visiting Professor: Huijian Gao

* Recalled to active duty.

Student Services: Building 530, Room 125
Mail Code: 94305-3030
Student Services Phone: (650) 725-7695
Web Site: http://me.stanford.edu

Courses given in Mechanical Engineering have the subject code ME. For a complete list of subject codes, see Appendix.

The programs in the Department of Mechanical Engineering (ME) are designed to provide background for a wide variety of careers. The discipline is very broad, but emphasizes an appropriate mix of applied mechanics, biomechanical engineering, computer simulations, design, and energy science and technology. Graduates at all degree levels have traditionally entered into energy industries, product manufacturing industries, transportation, government laboratories and agencies, and a variety of academic positions.

Since mechanical engineering is a broad discipline, the undergraduate program can be a springboard for graduate study in business, law, medicine, political science, and other professions where a good understanding of technology is often important. Both undergraduate and graduate programs provide excellent technical background for work in biomechanical engineering, environmental pollution control, ocean engineering, transportation, and on other multidisciplinary problems that concern society. Throughout the various programs, considerable emphasis is placed on developing systematic procedures for analysis, effective communication of one’s work and ideas, practical and aesthetic aspects in design, and responsible use of technology. This can provide a student with an approach and a philosophy of great utility, irrespective of an ultimate career.

The Biomechanical Engineering (BME) Group has teaching and research activities which focus primarily on musculoskeletal biomechanics, neuromuscular biomechanics, cardiovascular biomechanics, and rehabilitation engineering. Research in other areas including hearing, ocean, plant, and vision biomechanics exist in collaboration with associated faculty in biology, engineering, and medicine. The Biomechanical Engineering Group has particularly strong research interactions with the Mechanics and Computation and the Design groups, and the departments of Functional Restoration, Neurology, Radiology, and Surgery in the School of Medicine.

The Design Group emphasizes cognitive skill development for creative design. It is concerned with automatic control, computer-aided design, creativity, design aesthetics, design for manufacturability, design research, experimental stress analysis, fatigue and fracture mechanics, finite element analysis, human factors, kinematics, manufacturing systems, microcomputers in design, micro-electromechanics systems (MEMS), robotics, and vehicle dynamics. The Design Group offers undergraduate and graduate programs in Product Design (jointly with the Department of Art and Art History) and is centrally involved in the founding of Stanford’s new Institute of Design; for further information, see http://dschool.stanford.edu.

The Flow Physics and Computation Group (FPC) is developing new theories, models, and computational tools for accurate engineering design analysis and control of complex flows (including acoustics, chemical reactions, interactions with electromagnetic waves, plasmas, and other phenomena) of interest in aerodynamics, electronics cooling, environment engineering, materials processing, planetary entry, propulsion and power systems, and other areas. A significant emphasis of FPC research is on modeling and analysis of physical phenomena in engineering systems. FPC students and research staff are developing new methods and tools for generation, access, display, interpretation and post-processing of large databases resulting from numerical simulations of physical systems. Research in FPC ranges from advanced simulation of complex turbulent flows to active flow control. The FPC faculty teaches graduate and undergraduate courses in acoustics, aerodynamics, computational fluid mechanics, computational mathematics, fluid mechanics, combustion, and thermodynamics and propulsion.

The Mechanics and Computational Group covers biomechanics, continuum mechanics, dynamics, experimental and computational mechanics, finite element analysis, fluid dynamics, fracture mechanics, micromechanics, nanotechnology, and simulation based design. Qualified students can work as research project assistants, engaging in thesis research in working association with the faculty director and fellow students. Projects include analysis, synthesis, and control of systems; biomechanics; flow dynamics of liquids and gases; fracture and micro-mechanics, vibrations, and nonlinear dynamics; and original theoretical, computational, and experimental investigations in the strength and deformability of elastic and inelastic elements of machines and structures.
The Thermosciences Group conducts experimental and analytical research on both fundamental and applied topics in the general area of thermal and fluid systems. Research strengths include high Reynolds number flows, microfluidics, combustion and reacting flows, multiphase flow and combustion, plasma sciences, gas physics and chemistry, laser diagnostics, microscale heat transfer, convective heat transfer, and energy systems. Research motivation comes from applications including air-breathing and space propulsion, bioanalytical systems, pollution control, electronics fabrication and cooling, stationary and mobile energy systems, biomedical systems, and materials processing. There is a strong emphasis on fundamental experiments leading towards advances in modeling, optimization, and control of complex systems.

Mission Statement—The goal of Stanford’s undergraduate program in Mechanical Engineering is to provide each student with a balance of intellectual and practical experiences, accumulation of knowledge, and self-discovery to prepare the graduate to address a variety of societal needs. The program prepares each student for entry-level work as a mechanical engineer, for graduate study in engineering, or for graduate study in another field where a broad and fundamental engineering background provides a desirable foundation. With solid grounding in the principles and practice of mechanical engineering, graduates are ready to engage in a lifetime of learning about and employing new concepts, technologies, and methodologies, whatever their ultimate career choice.

FACILITIES

The department groups maintain modern laboratories that support undergraduate and graduate instruction and graduate research work.

The Structures and Composites Laboratory, a joint activity with the Department of Aeronautics and Astronautics, studies structures made of fiber-reinforced composite materials. Equipment for fabricating structural elements includes autoclave, filament winder, and presses. X-ray, ultrasound, and an electron microscope are available for nondestructive testing. The lab also has environmental chambers, a high speed impactor, and mechanical testers. Lab projects include designing composite structures, developing novel manufacturing processes, and evaluating environmental effects on composites.

Experimental facilities are available through the interdepartmental Structures and Solid Mechanics Research Laboratory, which includes an electrohydraulic materials testing system, a vehicle crash simulator, and a shake table for earthquake engineering and related studies, together with highly sophisticated auxiliary instrumentation. Facilities to study the micromechanics of fracture areas are available in the Micromechanics/Fracture Laboratory, and include a computer-controlled materials testing system, a long distance microscope, an atomic force microscope, and other instrumentation. Additional facilities for evaluation of materials are available through the Center for Materials Research, Center for Integrated Circuits, and the Ginzton Laboratory. Laboratories for biological experimentation are accessible through the School of Medicine. Individual accommodation is available for the work of each research student.

Major experimental and computational laboratories engaged in bioengineering work are located in the Biomechanical Engineering Group. Other Biomechanical Engineering Group activities and resources are associated with the Rehabilitation Research and Development Center of the Veterans Administration Palo Alto Health Care System. This major national research center has computational and prototyping facilities. In addition, the Rehabilitation Research and Development Center houses the Electrophysiology Laboratory, Experimental Mechanics Laboratory, Human Motor Control Laboratory, Rehabilitation Device Design Laboratory, and Skeletal Biomechanics Laboratory. These facilities support graduate course work as well as Ph.D. student research activities.

Computational and experimental work is also conducted in various facilities throughout the School of Engineering and the School of Medicine, particularly the Advanced Biomaterials Testing Laboratory of the Department of Materials Science and Engineering, the Orthopaedic Research Laboratory in the Department of Functional Restoration, and the Vascular Research Laboratory in the Department of Surgery. In collaboration with the School of Medicine, facilities throughout the Stanford Medical Center and the Veterans Administration Palo Alto Health Care System conduct biological and clinical work.

The Design Group has facilities for lab work in experimental mechanics and experimental stress analysis. Additional facilities, including MTS electrohydraulic materials test systems, are available in the Solid Mechanics Research Laboratory. Design students also have access to Center for Integrated Systems (CIS) and Ginzton Lab microfabrication facilities.

The group also maintains the Product Realization Laboratory (PRL) a teaching facility offering students integrated experiences in market definition, product design, and prototype manufacturing. The PRL provides coaching, design manufacturing tools, and networking opportunities to students interested in product development. The ME 310 Design Project Laboratory has facilities for CAD, assembly, and testing of original designs by master’s students in the engineering design program. A Smart Product Design Laboratory supports microprocessor application projects. The Center for Design Research (CDR) has an excellent facility for concurrent engineering research, development, and engineering curriculum creation and assessment. Resources include a network of high-performance workstations. For worldwide web mediated concurrent engineering by virtual, non-collocated, design development teams, see the CDR web site at http://cdr.stanford.edu. In addition, CDR has several industrial robots for student projects and research. These and several NC machines are part of the CDR Manufacturing Sciences Lab. The Manufacturing Modeling Laboratory (MML) addresses various models and methods that lead to competitive manufacturing. MML links design for manufacturing (dFM) research at the Department of Mechanical Engineering with supply chain management activities at the Department of Management Science and Engineering. The Rapid Prototyping Laboratory consists of seven processing stations including cleaning, CNC milling, grit blasting, laser deposition, low temperature deposition, plasma deposition, and shot peening. Students gain experience by using ACIS and Pro Engineer on Hewlett Packard workstations for process software development. The Design Group also has a unique “Product Design Loft,” in which students in the joint program in Design develop graduate thesis projects.

The Flow Physics and Computation Group has a 32 processor Origin 2000, a 48-node and 85-node Linux clusters with high performance interconnection and an array of powerful workstations for graphics and data analysis. Several software packages are available, including all the major commercial CFD codes. FPC is strongly allied with the Center for Turbulence Research (CTR), a research consortium between Stanford and NASA, and the Center for Integrated Turbulence Simulations (CITS), which is supported by the Department of Energy (DOE) under its Accelerated Strategic Computing Initiative (ASCI). The Center for Turbulence Research has direct access to major national computing facilities located at the nearby NASA-Ames Research Center, including massively parallel super computers. The Center for Integrated Turbulence Simulations has access to DOE’s vast supercomputer resources. The intellectual atmosphere of the Flow Physics and Computation Group is greatly enhanced by the interactions among CTR’s and CITS’s postdoctoral researchers and distinguished visiting scientists.

The Mechanics and Computation Group has a Computational Mechanics Laboratory that provides an integrated computational environment for research and research-related education in computational mechanics and scientific computing. The laboratory houses Silicon Graphics, Sun, and HP workstations and servers, including an 8-processor SGI Origin2000 and a 16-processor networked cluster of Intel-architecture workstations for parallel and distributed computing solutions of computationally intensive problems. A wide spectrum of software is available on the laboratory machines, including major commercial packages for engineering analysis, parametric geometry and meshing, and computational mathematics. The laboratory supports basic research in computational mechanics as well as the development of related applications such as simulation-based design technology.
The Thermosciences Group has four major laboratory facilities. The Heat Transfer and Turbulence Mechanics Laboratory concentrates on fundamental research aimed at understanding and improved prediction of turbulent flows and high performance energy conversion systems. The laboratory includes two general-purpose wind tunnels, a pressurized high Reynolds number tunnel, two supersonic cascade flow facilities, three specialized boundary layer wind tunnels, and several other flow facilities. Extensive diagnostic equipment is available including multiple particle-image velocimetry and laser-Doppler anemometry systems.

The High Temperature Gas Dynamics Laboratory includes research on sensors, plasma sciences, cool and biomass combustion and gas pollutant formation, and reactive and non-reactive gas dynamics. The experimental capability of the diagnostic devices for combustion gases, a spray combustion facility, laboratory combustors including a coal combustion facility and supersonic combustion facilities, several advanced laser systems, a variety of plasma facilities, a pulsed detonation facility, and four shock tubes and tunnels. The Thermosciences Group and the Design Group share the Microscale Thermal and Mechanical Characterization laboratory (MTMC). MTMC is dedicated to the measurement of thermal and mechanical properties in thin-film systems, including microfabricated sensors and actuators and integrated circuits, and features a nanofluid scanning laser thermometry facility, a laser interferometer, a near-field optical microscope, and an atomic force microscope. The activities at MTMC are closely linked to those at the Heat Transfer Teaching Laboratory (HTTL), where undergraduate and master’s students use high-resolution probe stations to study thermal phenomena in integrated circuits and thermally-actuated microvalves. HTTL also provides macroscopic experiments in convection and radiative exchange.

The Energy Systems Laboratory is a teaching and research facility dedicated to the study of energy conversion systems. The lab includes three dynamometers for engine testing, a computer-controlled variable engine valve controller, a fuel-cell experimental station, a small rocket testing facility, and a small jet engine thrust stand.

The Guidance and Control Laboratory, a joint activity with the Department of Aeronautics and Astronautics and the Department of Mechanical Engineering, specializes in construction of electromechanical systems and instrumentation, particularly where high precision is a factor. Work ranges from robotics for manufacturing to feedback control of fuel injection systems for automotive emission control. The faculty and staff work in close cooperation with both the Design and Thermosciences Groups on device development projects of mutual interest.

Many computation facilities are available to department students. Three of the department’s labs are equipped with super-minicomputers. Numerous smaller minicomputers and microcomputers are used in the research and teaching laboratories.

Library facilities at Stanford are outstanding. In addition to the general library, there are Engineering, Mathematics, Physics, and other department libraries of which engineering students make frequent use.

UNDERGRADUATE PROGRAMS

BACHELOR OF SCIENCE

Specializing in mechanical engineering (ME) during the undergraduate period may be done by following the curriculum outlined earlier under the “School of Engineering” section of this bulletin. The University’s basic requirements for the bachelor’s degree are discussed in the “Undergraduate Degrees” section of this bulletin. Courses taken for the departmental major (math; science; science, technology, and society; engineering fundamentals; and engineering depth) must be taken for a letter grade if the instructor offers the option.

A Product Design program offered by the Design Group leads to the B.S. Engineering (Product Design). An individually designed major in Biomechanical Engineering (B.S.E.: Biomechanical Engineering), offered by the Biomechanical Engineering Group, may be appropriate for some students preparing for medical school or graduate bioengineering studies.

*Grade Requirements—To be recommended by the department for a B.S. in Mechanical Engineering, a student must achieve the minimum grade point average (GPA) set by the School of Engineering (2.0 in engineering fundamentals and engineering depth).

For information about an ME minor, see the “School of Engineering” section of this bulletin.

HONORS PROGRAM

The Department of Mechanical Engineering offers a program leading to a B.S. in Mechanical Engineering with honors. This program offers a unique opportunity for qualified undergraduate engineering majors to conduct independent study and research at an advanced level with a faculty mentor.

Mechanical Engineering majors who have a grade point average (GPA) of 3.5 or higher in the major may apply for the honors program. Students who meet the eligibility requirement and wish to be considered for the honors program must submit a written application to the Mechanical Engineering student services office no later than the second week of the Autumn Quarter in the senior year. The application to enter the program can be obtained from the ME student services office, and must contain a one-page statement describing the research topic and include a transcript of courses taken at Stanford. In addition, the application is to be approved by a Mechanical Engineering faculty member who agrees to serve as the thesis adviser for the project. Thesis advisers must be members of Stanford’s Academic Council.

In order to receive department honors, students admitted to the program must:

1. maintain the 3.5 GPA required for admission to the honors program.
2. under the direction of the thesis adviser, complete at least 9 units of ME 191H, Honors Thesis, during the senior year.
3. submit a completed thesis draft to the adviser by mid-May. Further revisions and final endorsement by the adviser are to be finished by the first week of June, when two bound copies are to be submitted to the Mechanical Engineering student services office.
4. present the thesis at the Mechanical Engineering Honors Symposium held in mid-May.

COTERMINAL B.S./M.S. PROGRAM

Stanford undergraduates who wish to continue their studies for the Master of Science degree in the coterminal program must have earned a minimum of 120 units towards graduation. This includes allowable Advanced Placement (AP) and transfer credit. Applicants must submit their application no later than the quarter prior to the expected completion of their undergraduate degree. This is normally the Winter Quarter (January 15 is the deadline) prior to the Spring Quarter graduation. The application must provide evidence of potential for strong academic performance as a graduate student. The department graduate admissions committee evaluates and acts on each application. Typically, a GPA of at least 3.5 in engineering, science, and math is expected. Applicants must have completed two of 80, 112, 113, 131A, and 131B, and must take the Graduate Record Examination (GRE) before action is taken on the application. Product designers must have completed ME 116 to be considered, and are required to work at least one year before rejoining the program. Coterminal information, applications deadlines, and forms can be obtained from the ME student services office.

For University coterminal degree program rules and University application forms, see http://registrar.stanford.edu/publications/#Coterm.

GRADUATE PROGRAMS

ADMISSION AND FINANCIAL ASSISTANCE

To be eligible for admission to the department, a student must have a B.S. degree in engineering (the Ph.D. degree requires the completion of the M.S.), physics, or a comparable science program. Applications for all degree programs are accepted throughout the year, although applications for fellowship aid must be received by December 5. The department annually awards, on a competitive basis, a limited number of fellowships, teaching assistantships, and research assistantships to incoming graduate students. Research assistantships are used primarily for post-master's
degree students and are awarded by individual faculty research supervisors, not by the department.

Mechanical engineering is a varied profession, ranging from primarily aesthetic aspects of design to highly technical scientific research. Discipline areas of interest to mechanical engineers include biomechanics, energy conversion, fluid mechanics, materials, nuclear reactor engineering, propulsion, rigid and elastic body mechanics, systems engineering, scientific computing, and thermodynamics, to name a few. No mechanical engineer is expected to have a mastery of the entire spectrum.

Master’s degree programs are offered in Mechanical Engineering (M.S.:ME), Engineering (Biomechanical Engineering, M.S.E.:BME), Engineering (Product Design, M.S.E.:PD), and Engineering (M.S.E.).

The following sections list specific requirements for the master’s degrees listed above.

MASTER OF SCIENCE

The basic University requirements for the M.S. degree are discussed in the “Graduate Degrees” section of this bulletin.

The master’s program consists of 45 units of course work taken at Stanford. No thesis is required, although many students become involved in research projects during the master’s year, particularly to explore their interests in working for the Ph.D. degree. Students whose undergraduate backgrounds are entirely devoid of some of the major subject disciplines of engineering (for example, applied mechanics, applied thermodynamics, fluid mechanics, ordinary differential equations) may need to take some undergraduate courses to fill in obvious gaps and prepare themselves to take graduate courses in these areas. Such students may require more than three quarters to fulfill the master’s degree requirements, as the makeup courses may not be used for other than the unrestricted electives (see item 4 below) in the M.S. degree program. However, it is not the policy to require fulfillment of mechanical engineering B.S. degree requirements to obtain an M.S. degree; furthermore, students who have already fulfilled certain categories of the M.S. degree requirements as a result of undergraduate work may find they have sufficient time (see item 3 below) to obtain the M.S. degree in the three quarters.

MECHANICAL ENGINEERING

The master’s degree program requires 45 units of course work taken as a graduate student at Stanford. No thesis is required. However, students who desire some research experience during the master’s year may participate in research through ME 391 and 392.

The department’s requirements for the M.S. in Mechanical Engineering are:

1. **Mathematical Competence in Two of the Following Areas:** partial differential equations, linear algebra, complex variables, or numerical analysis, as demonstrated by completion of two appropriate courses from the following list: CME 106, 200, 204, 206, 302; MATH 106, 109; CS 205; EE 263, 261; STATS 110 (requirement 6 units).

 Students who completed comparable graduate-level courses as an undergraduate, and who can demonstrate their competence to the satisfaction of the instructors of the Stanford courses, may be exempted from this requirement by their adviser and the Graduate Curriculum Committee, and place the units in the approved elective category.

2. **Specialty in Mechanical Engineering (Depth):** set of graduate-level courses in Mechanical Engineering to provide depth in one area. The faculty have approved these sets as providing depth in specific areas as well as a significant component of applications of the material in the context of engineering synthesis. These sets are outlined in the Mechanical Engineering Handbook at http://me.stanford.edu.

3. **Breadth in Mechanical Engineering:** two additional graduate level courses (outside the depth) from the breadth chart listed in the Mechanical Engineering Graduate Handbook to bring the total number of ME units to at least 18.

4. **Approved Electives** (to bring the total number of units to 39): all these units must be approved by an adviser. Graduate engineering, math, and science courses are normally approved. Of the 39 units, no more than 6 may come from ME 391 and 392, and no more than 3 may come from seminars. Students planning a Ph.D. degree should discuss with their adviser the desirability of taking 391 or 392 during the master’s year.

5. **Unrestricted Electives** (to bring the total number of units submitted for the M.S. degree to 45): students are encouraged to use these units outside of engineering, mathematics, or the sciences. Students should consult their advisers on course loads and on ways to use the unrestricted electives to make a manageable program.

6. Within the courses satisfying the requirements above, there must be at least one graduate-level course dealing with lab studies. Courses which satisfy this requirement are 218A, 306A, 307B, 318, 310A,B,C, 317B, 324, 348, 354, 367, 382A,B.

Candidates for the M.S. in Mechanical Engineering are expected to have the approval of the faculty, and a minimum grade point average (GPA) of 2.75 in the 45 units presented in fulfillment of degree requirements. All courses used to fulfill depth, breadth, approved electives, and lab studies must be taken for a letter grade (excluding seminars and courses for which a Satisfactory/No Credit grade is given to all students).

Students falling below a GPA of 2.5 at the end of 20 units may be disqualified from further registration. Students failing to meet the complete degree requirements at the end of 60 units of graduate registration are disqualified from further registration. Courses used to fulfill deficiencies arising from inadequate undergraduate preparation for mechanical engineering graduate work may not be applied to the 60 units required for graduate registration.

PRODUCT DESIGN

The Joint Program in Design focuses on the synthesis of technology with human needs and values to create innovative product experiences. This program is a joint offering of the departments of Mechanical Engineering and Art and Art History. It provides a design education that integrates technical, human, aesthetic, and business concerns. The resulting two-year degree of M.S. in Engineering (Product Design) is considered a terminal degree for the practice of design.

<table>
<thead>
<tr>
<th>Course No. and Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARTSTUDI 60. Design I: Fundamental Visual Language</td>
<td>3</td>
</tr>
<tr>
<td>ARTSTUDI 160. Design II: The Bridge</td>
<td>3</td>
</tr>
<tr>
<td>ME203. Manufacturing and Design</td>
<td>4</td>
</tr>
<tr>
<td>ME216A. Advanced Product Design: Needfinding</td>
<td>4</td>
</tr>
<tr>
<td>ME216B. Advanced Product Design: Implementation</td>
<td>4</td>
</tr>
<tr>
<td>ME312. Advanced Product Design: Forming</td>
<td>4</td>
</tr>
<tr>
<td>ME313. Human Value and Innovation in Design</td>
<td>3</td>
</tr>
<tr>
<td>ME316ABC. Product Design Master’s Project</td>
<td>12</td>
</tr>
<tr>
<td>Approved Electives†</td>
<td>6</td>
</tr>
<tr>
<td>Approved Electives‡</td>
<td>17</td>
</tr>
</tbody>
</table>

† Approved electives fulfill career objectives of the students. Students may focus their energy in engineering, business, psychology, or other areas relevant to design. Most students elect a broad approach that spans these domains and increases their cultural awareness. Approved electives must be discussed with the student’s adviser.

‡ Admission requirements are the same as for the M.S.:ME described above, with the additional requirements of a minimum of one year’s experience after the bachelor’s degree, and a portfolio showing strong evidence of design ability and aesthetic skills and sensitivity.

Students with non-engineering undergraduate degrees in design, art, architecture, and so on, may apply to the Department of Art and Art History for a similar graduate design program administered by that department and leading to an M.F.A. in Design. Students with non-engineering degrees who wish to earn the M.S. degree should consult with the program adviser.

BIOMECHANICAL ENGINEERING

Students interested in graduate studies in biomechanical engineering can choose one of the programs below.

1. **M.S. in Mechanical Engineering:** students who apply and are admitted to the M.S.:ME program can elect to take biomechanical engineering courses as part of their M.S.:ME requirements. These courses are usually applied towards the student’s engineering breadth or technical electives.
2. **M.S. in Engineering: Biomechanical Engineering (M.S.E.: BME):** this degree program allows students more flexibility in taking courses in the life sciences and generally emphasizes a more interdisciplinary curriculum. Minimum grade point average (GPA) requirements are the same as for the M.S. in Mechanical Engineering.

 A Ph.D. in Biomechanical Engineering is not given. Students from either master’s degree path (Mechanical Engineering or Biomechanical Engineering) receive their Ph.D. degrees in Mechanical Engineering.

ENGINEERING

As described in the “School of Engineering” section of this bulletin, each department in the school may sponsor students in a more general degree, the M.S. in Engineering. Sponsorship by the Department of Mechanical Engineering (ME) requires (1) filling a petition for admission to this program on the day before instruction begins, and (2) that the center of gravity of the proposed program lies in ME; no more than 18 units used for the proposed program can have been previously completed. The program must include at least 9 units of graduate-level work in the department other than ME 300A,B,C, seminars, and independent study. The petition must be accompanied by a statement explaining the program objectives and how it is coherent, contains depth, and fulfills a well-defined career objective. The grade requirements are the same as for the M.S. in Mechanical Engineering.

POST-MASTER’S DEGREE PROGRAMS

The department offers two post-master’s degrees: Engineer and Doctor of Philosophy. Post-master’s research generally requires some evidence that a student has research potential before a faculty member agrees to supervision and a research assistantship. It is most efficient to carry out this preliminary research effort during the M.S. degree year.

ENGINEER

The basic University requirements for the degree of Engineer are discussed in the “Graduate Degrees” section of this bulletin.

This degree represents an additional year of study beyond the M.S. degree and includes a research thesis. The program is designed for students who wish to do professional engineering work upon graduation and who want to engage in more specialized study than is afforded by the master’s degree alone.

Admission standards are substantially the same as indicated under the master’s degree. However, since thesis supervision is required and the availability of thesis supervisors is limited, admission is not granted until the student has personally engaged a faculty member to supervise a research project. This frequently involves a paid research assistantship awarded by individual faculty members (usually from the funds of sponsored research projects under their direction) and not by the department. Thus, personal arrangement is necessary. Students studying for the M.S. degree at Stanford and desiring to continue to the Engineer degree ordinarily make such arrangements during the M.S. degree year. Students holding master’s degrees from other universities are invited to apply and may be admitted providing they are sufficiently well qualified and have made thesis supervision and financial aid arrangements.

Department requirements for the degree include an acceptable thesis; up to 18 units of credit are allowed for thesis work. In addition to the thesis, 27 units of approved advanced course work in mathematics, science, and engineering are expected beyond the requirements for the M.S. degree; the choice of courses is subject to approval of the adviser. Students who have not fulfilled the Stanford M.S. degree requirements are required to do so (with allowance for approximate equivalence of courses taken elsewhere).

Candidates for the degree must have faculty approval and have a minimum grade point average (GPA) of 3.0 for all courses (exclusive of thesis credit) taken beyond those required for the master’s degree.

DOCTOR OF PHILOSOPHY

The basic University requirements for the Ph.D. degree are discussed in the “Graduate Degrees” section of this bulletin. The Ph.D. degree is intended primarily for students who desire a career in research, advanced development, or teaching; for this type of work, a broad background in math and the engineering sciences, together with intensive study and research experience in a specialized area, are the necessary requisites.

The department allows but does not require a minor field. However, if a minor is waived, the candidate must show breadth of training by taking courses in one or more related fields or departments as noted below.

A student studying for the Ph.D. degree ordinarily does not take an Engineer degree, although this is not precluded. However, the student must have a master’s degree, and must fulfill in essence the requirements for the Stanford M.S. degree in Mechanical Engineering.

In special situations dictated by compelling academic reasons, Academic Council members who are not members of the department’s faculty may serve as the principal dissertation adviser when approved by the department. In such cases, a member of the department faculty must serve as program adviser and as a member of the reading committee, and agree to accept responsibility that department procedures are followed and standards maintained.

Admission involves much the same consideration described under the Engineer degree. Since thesis supervision is required, admission is not granted until the student has personally engaged a member of the faculty to supervise a research project. Once a student has obtained a research supervisor, this supervisor becomes thereafter the student’s academic adviser. Research supervisors may require that the student pass the departmental oral examination before starting research and before receiving a paid research assistantship. Note that research assistantships are awarded by faculty research supervisors and not by the department.

Prior to being formally admitted to candidacy for the Ph.D. degree, the student must demonstrate knowledge of engineering fundamentals by passing a qualifying oral examination. The academic level and subject matter of the examination correspond approximately to the M.S. program described above.

Typically, the exam is taken shortly after the student earns a master’s degree. The student is expected to have a nominal graduate Stanford GPA of 3.5 to be eligible for the exam. Once the student’s faculty supervisor has agreed that the exam is to take place, the student must submit an application folder containing several items including a curriculum vitae, research project abstract, and preliminary dissertation proposal. Information and examination dates may be obtained from the department’s student services office.

Ph.D. candidates must complete a minimum of 27 units of approved formal course work (excluding research, directed study, and seminars) in advanced study beyond the M.S. degree. The courses should consist primarily of graduate courses in engineering and sciences, although the candidate’s reading committee may approve a limited number of upper-level undergraduate courses and courses outside of engineering and sciences, as long as such courses contribute to a strong and coherent program. In addition to this 27-unit requirement, all Ph.D. candidates must participate each quarter in one of the following (or equivalent) seminars: ME 389, 390, 394, 395, 396, 397; ENGR 311A,B, 298; AA 297.

The Ph.D. thesis normally represents at least one full year of research work and must be a substantial contribution to knowledge. Students may register for course credit for thesis work (ME 500) to help fulfill University academic unit requirements, but there is no minimum limit on registered dissertation units. Candidates should note that only completed course units are counted toward the requirement. Questions should be directed to the department manager of student services.

The department has a breadth requirement for the Ph.D. degree. This may be satisfied either by a formal minor in another department or by course work that is approved by the dissertation reading committee.

The final University oral examination is conducted by a committee consisting of a chair from another department and four faculty members of the department or departments with related interests. Usually, the committee includes the candidate’s adviser and two faculty members chosen to read and sign the candidate’s dissertation. The examination consists of two parts. The first is open to the public and is scheduled as a seminar talk, usually for one of the regular meetings of a seminar series. The second is conducted in private and covers subjects closely related to the dissertation topic.
PH.D. MINOR

Students who wish a Ph.D. minor in ME should consult the ME student services office. A minor in ME may be obtained by completing 20 units of approved graduate-level ME courses. Courses approved for the minor must form a coherent program and must be selected from those satisfying requirement 2 for the M.S. in Mechanical Engineering.

COURSES

WIM indicates that the course satisfies the Writing in the Major requirement. (AU) indicates that the course is subject to the University Activity Unit limitations (8 units maximum).

The department uses the following course numbering system:

- 10-99 Freshman and Sophomore
- 100-199 Junior and Senior
- 200-299 Advanced Undergraduate and Beginning Graduate
- 300-399 Graduate
- 400-499 Advanced Graduate
- 500 Ph.D. Thesis

UNDERGRADUATE (FRESHMEN AND SOPHOMORES)

Note — Lab sections in experimental engineering are assigned in groups. If the lab schedule permits, students are allowed, with due regard to priority of application, to arrange their own sections and lab periods. Enrollment with the instructor concerned, on the day before instruction begins or the first day of University instruction, is essential in order that the lab schedule may be prepared. Enrollment later than the first week is not permitted.

ME 12N. The Jet Engine — Stanford Introductory Seminar. Preference to freshmen. How a jet engine works; the technologies and analytical techniques required to understand them. Dynamics, thermodynamics, turbomachinery, combustion, advanced materials, cooling technologies, and control systems. Visits to research laboratories, examination of a partially disassembled engine, and probable operation of a small jet engine. Prerequisites: high school physics. GER:DB-EngrAppSci

3 units, Win (Eaton)

3-5 units, Spr (Leifer)

ME 15N. The Science and Engineering of Sports Equipment — (Same as AA 117N.) Stanford Introductory Seminar. Preference to freshmen. Scientific concepts of sports equipment. How design and manufacture improve performance and marketability. Why golf balls have dimples, tennis balls are fuzzy, golf shafts are made of steel or graphite, and sailboats win or break. How composite materials make structures light, strong, and tailored to the athlete’s ability. Skis, snowboards, race cars, and bicycles demonstrated through photographs, models, and products. GER:DB-EngrAppSci

3 units, Aut (Kenny, Springer)

ME 16N. The Science of Flames — Stanford Introductory Seminar. Preference to freshmen. The roles that chemistry and fluid dynamics play in governing the behaviors of flames. Emphasis is on factors that affect flame microstructure, external appearance, and on the fundamental physical and chemical processes that cause flames and fires to propagate. Topics: history, thermodynamics, and pollutant formation in flames. Trips to labs where flames are studied. Prerequisites: high school physics. GER:DB-EngrAppSci

3 units, Win (Mitchell)

ME 18Q. Creative Teams and Individual Development — Stanford Introductory Seminar. Preference to sophomores. Roles on a problem solving team that best suit individual creative characteristics. Two teams are formed for teaching experientially how to develop less conscious abilities from teammates creative in those roles. Reinforcement teams have members with similar personalities; problem solving teams are composed of people with maximally different personalities. GER:DB-EngrAppSci

3 units, Win (Wilde)

ME 19N. Robotics — Stanford Introductory Seminar. Preference to freshmen. Most people conjure up images of robots from science fiction movies or television shows. In real life, robots show up in factory automation, theme parks, at NASA, and in hospitals doing surgery. Do fiction and reality have anything in common? What really is a robot, what can they do, and what can they not do? How are they built and how are they changing lives? Field trips and hands-on projects. GER: DB-EngrAppSci

3 units, Win (Niemeyer)

3 units, Aut (Gerdes)

4 units, Win (Cappelli), Spr (Santiago)

3 units, Aut (Pruit), Spr (Staff)

1 unit, Aut (Pruit), Spr (Staff)

UNDERGRADUATE (JUNIORS AND SENIORS)

ME 101. Visual Thinking — Lecture/lab. Visual thinking and language skills are developed and exercised in the context of solving design problems. Exercises for the mind’s eye. Rapid visualization and prototyping with emphasis on fluid and flexible idea production. The relationship between visual thinking and the creative process. Enrollment limited to 60. GER:DB-EngrAppSci

3 units, Aut, Win, Spr (Staff)

ME 103D. Engineering Drawing and Design — Designed to accompany 203. The fundamentals of engineering drawing including orthographic projection, dimensioning, sectioning, exploded and auxiliary views, and assembly drawings. Homework drawings are of parts fabricated by the student in the shop. Assignments in 203 supported by material in 103D and sequenced on the assumption that the student is enrolled in both courses simultaneously.

1 unit, Aut, Win (Milroy)

ME 105. Feedback Control Design — (Enroll in ENGR 105.)

3 units, Win (Rock)
ME 110A. Design Sketching — Freehand sketching, rendering, and design development, guided by instructors. Concurrent assignments in 115 and 216B.C provide subject matter, but open to anyone wanting to improve freehand drawing skills.
 1 unit, Win, Spr (Staff)

ME 110B. Advanced Design Sketching — Freehand sketching, rendering, design development, and some computer use, guided by instructors. Concurrent assignments in 116 provide subject matter. Prerequisite: 110A or consent of instructor based on drawing skill.
 1 unit, Aut (Staff)

 4 units, Win (Staff)

ME 113. Mechanical Engineering Design — Goal is to create designs and models of new mechanical devices. Design is experienced by students as they work on a team design project obtained from industry or other organizations. Prerequisites: 80, 101, 112. GER:DB-EngrAppSci
 4 units, Spr (Nelson)

ME 115. Human Values in Design — The central philosophy of the product design program, emphasizing the relation between technical and human values, the innovation process, and design methodology. Lab exercises include development of simple product concepts visualized in rapidly executed three-dimensional mockups. Prerequisite: 101.
 GER:DB-EngrAppSci
 3 units, Win (Staff)

ME 116. Designing for People — Small- and medium-scale design projects are carried to a high degree of aesthetic refinement. Emphasis is on generating appropriate forms to the task and setting. Prerequisites: 115, ARTHIST 160. GER:DB-EngrAppSci
 4 units, Aut (Moggridge)

ME 120. History and Philosophy of Design — Major schools of 19th- and 20th-century design (Arts-and-Crafts movement, Bauhaus, Industrial Design, and postmodernism) are analyzed in terms of their continuing cultural relevance. The relation of design to art, technology, and politics; readings from principal theorists, practitioners, and critics; recent controversies in industrial and graphic design, architecture, and urbanism. Enrollment limited to 40. GER:DB-EngrAppSci
 3-4 units, Spr (Katz)

 1-3 units, Aut, Win, Spr (Milroy)

ME 131A. Heat Transfer — The principles of heat transfer by conduction, convection, and radiation with examples from the engineering of practical devices and systems. Topics include transient and steady conduction, conduction by extended surfaces, boundary layer theory for forced and natural convection, boiling, heat exchangers, and graybody radiative exchange. Prerequisites: 70, ENGR 30. Recommended: intermediate calculus, ordinary differential equations. GER:DB-EngrAppSci
 3-4 units, Aut (Goodsen)

 4 units, Win (Mungal)

ME 140. Advanced Thermal Systems — Capstone course. Thermal analysis and engineering emphasizing integrating heat transfer, fluid mechanics, and thermodynamics into a unified approach to treating complex systems. Mixtures, humidity, chemical and phase equilibrium, and availability. Labs apply principles through hands-on experience with a turbojet engine, PEM fuel cell, and hybrid solid/oxygen rocket motor. Use of MATLAB as a computational tool. Prerequisites: ENGR 30, ME 70, and 131A,B. GER:DB-EngrAppSci
 4 units, Spr (Edwards)

ME 150. Internal Combustion Engines — (Formerly 130.) Internal combustion engines including conventional and turbocharged spark ignition, and diesel engines. Lectures: basic engine cycles, engine components, methods of analysis of engine performance, pollutant emissions, and methods of engine testing. Lab involves hands-on experience with engines and test hardware. Limited enrollment. Prerequisites: ME 140. GER:DB-EngrAppSci
 3 units, Aut (Kaahaina)

ME 161. Dynamic Systems — Modeling, analysis, and measurement of mechanical and electromechanical systems. Numerical and closed form solutions of ordinary differential equations governing the behavior of single and multiple degree of freedom systems. Stability, resonance, amplification and attenuation, and control system design. Demonstrations and laboratory experiments. Prerequisite: background in dynamics and calculus such as ENGR 15 and MATH 43. Recommended: CME 102 (formerly ENGR 155A), and familiarity with differential equations, linear algebra, and basic electronics. Graduate students may enroll with adviser and instructor consent. GER:DB-EngrAppSci
 4 units, Aut (Mitiguy)

ME 191. Engineering Problems and Experimental Investigation — Directed study and research for undergraduates on a subject of mutual interest to student and staff member. Student must find faculty sponsor and have approval of the adviser.
 1-5 units, Aut, Win, Spr, Sum (Staff)

ME 191H. Honors Research — Student must find faculty honors adviser and apply for admission to the honors program.
 1-5 units, Aut, Win, Spr, Sum (Staff)

ADVANCED UNDERGRADUATE AND BEGINNING GRADUATE

ME 201. Dim Sum of Mechanical Engineering — Introduction to research in mechanical engineering for M.S. students and upper-division undergraduates. Weekly presentations by current ME Ph.D. and second-year fellowship students to show research opportunities across the department. Strategies for getting involved in a research project.
 1 unit, Aut (Sheppard)

ME 203. Manufacturing and Design — Prototype development techniques as an intrinsic part of the design process. Machining, welding, and casting. Manufacturing processes. Design aspects developed in an individual term project chosen, designed, and fabricated by students. Labs, field trips. Undergraduates majoring in Mechanical Engineering or Product Design must take course for 4 units. Limited enrollment with consent of instructor. Corequisite: 103D or CAD experience. Corequisite for WIM for Mechanical Engineering and Product Design majors: ENGR 102M. Recommended: 101. WIM
 3-4 units, Aut, Win (Beach)

ME 204. Bicycle Design and Frame-Building — The engineering and artistic execution of designing and building a bicycle frame. Fundamentals of bicycle dynamics, handling, and sizing. Manufacturing processes. Films, guest lecturers, field trips. Each student designs and
ME 206A.B. Entrepreneurial Design for Extreme Affordability—(Same as OIT 333, 334.) Project course jointly offered by School of Engineering and Graduate School of Business. Students apply engineering and business skills to design product prototypes, distribution systems, and business plans for entrepreneurial ventures in developing countries to for a specified challenge faced by the world’s poor. Topics include user empathy, appropriate technology design, rapid prototype engineering and testing, social technology entrepreneurship, business modeling, and project management. Weekly design reviews; final course presentation. Industry and adviser interaction. Limited enrollment via application process; see http://www.stanford.edu/class/me206.

At: 2-3 units, Win, B: 3-4 units, Spr (Kelley, Patell)

ME 207. Negotiation—(Same as CEE 151/251, MS&E 285.) Negotiation styles and processes to help students conduct and review negotiations. Workshop format integrating intellectual and experiential learning. Exercises, live and field examples, individual and small group reviews. Application required before first day of class; see http://www.stanford.edu/class/msande285/. Enrollment limited to 50.

3 units, Aut, Spr (Christensen)

ME 210. Introduction to Mechatronics—(Formerly 118.) Technologies involved in mechatronics (intelligent electro-mechanical systems), and techniques to apply this technology to mechatronic system design. Topics include: electronics (A/D, D/A converters, op-amps, filters, power devices); software program design, event-driven programming; hardware and DC stepper motors, solenoids, and robust sensing. Large, open-ended team project. Limited enrollment. Prerequisites: ENGR 40, CS 106, or equivalents.

4 units, Win (Kenny, Ohline)

ME 216A. Advanced Product Design: Needfinding—Human needs that lead to the conceptualization of future products, environments, systems, and services. Field work in public and private settings; appraisal of personal values; readings on social ethnographic issues; and needfinding for a corporate client. Emphasis is on developing the flexible thinking skills that enable the designer to navigate the future. Prerequisite: 115, 203, 313, or consent of instructor.

3-4 units, Win (Staff)

ME 216B. Advanced Product Design: Implementation—Summary project using knowledge, methodology, and skills obtained in 115/313 and 216A. Students implement design concepts and present them to a professional jury. Prerequisite: 216A.

4 units, Spr (Staff)

ME 218A. Smart Product Design Fundamentals—Team design project series on programmable electromechanical systems design. Topics: transistors as switches, basic digital and analog circuits, operational amplifiers, comparators, software design, programming in C. Lab fee. Limited enrollment.

4-5 units, Aut (Carryer)

ME 218B. Smart Product Design Applications—Second in team design project series on programmable electromechanical systems design. Topics: user I/O, timer systems, interrupts, signal conditioning, software design for embedded systems, sensors, actuators, noise, and power supplies. Lab fee. Limited enrollment. Prerequisite: 218A or passing the smart product design fundamentals proficiency examination.

4-5 units, Win (Carryer)

ME 218C. Smart Product Design Practice—Advanced level in series on programmable electromechanical systems design. Topics: inter-processor communication, system design with multiple microprocessors, architecture and assembly language programming for the PIC microcontroller, controlling the embedded software tool chain, A/D and D/A techniques, electronic manufacturing technology. Lab fee. Limited enrollment. Team project. Prerequisite: 218B.

4-5 units, Spr (Carryer)

ME 218D. Smart Product Design: Projects—Industrially sponsored project is the culmination of the Smart Product Design sequence. Student teams take on an industrial project requiring application and extension of knowledge gained in the prior three quarters, including prototyping of a final solution with hardware, software, and professional documentation and presentation. Lectures on electronic and software design, and electronic manufacturing techniques. Topics: chip level design of microprocessor systems, real time operating systems, alternate microprocessor architectures, and PCB layout and fabrication.

4 units, Aut (Carryer)

ME 219. The Magic of Materials and Manufacturing—Methods for market-quantity manufacturing of parts and products from a product designer’s point of view. Materials including metals, plastics, ceramics, fibers, and foams, and processes that manipulate, exploit, transform, and modify these materials. Manufacturing site visits and laboratory projects.

3 units, Spr (Beach)

ME 220. Introduction to Sensors—(Formerly 117/220.) Sensors are widely used in scientific research and as an integral part of commercial products and automated systems. The basic principles for sensing displacement, force, pressure, acceleration, temperature, optical radiation, nuclear radiation, and other physical parameters. Performance, cost, and operating requirements of available sensors. Elementary electronic circuits which are typically used with sensors. Lecture demonstration of a representative sensor from each category elucidates operating principles and typical performance. Lab experiments with off-the-shelf devices.

3-4 units, Spr (Kenny)

ME 222. Beyond Green Theory: A Workshop in Ecological Design—Goal is to translate green theory into product form through short projects that address materials, product function and co-function, and situational patterns or habits. How to blend ecological design processes with standard design methodologies.

2-3 units, Spr (Staff)

ME 227. Vehicle Dynamics and Control—The application of dynamics, kinematics, and control theory to the analysis and design of ground vehicle behavior. Simplified models of ride, handling, and braking, their role in developing intuition, and limitations in engineering design. Suspension design fundamentals. Performance and safety enhancement through automatic control systems. In-car laboratory assignments for model validation and kinesthetic understanding of dynamics. Limited enrollment. Prerequisites: ENGR 105, consent of instructor.

3 units, Spr (Gerdes)

ME 229. Multiscale Methods in Engineering—(Enroll in CME 210.)

3 units (Darve) not given 2005-06

ME 240. Introduction to Nanotechnology—Nanotechnology as multidisciplinary with contributions from physical sciences, engineering, and industry. Current topics in nanotechnology research; developments in nanomaterials, mechanics, electronics, and sensors; and applications. Nano-scale materials building blocks, fabrication and assembly processes, characterization and properties, and novel system architectures. Implications for future development.

3 units, Aut (Cho) alternate years, not given 2006-07

3 units, Spr (Prinz)

ME 280. Skeletal Development and Evolution—(Formerly 180.) The mechanobiology of skeletal growth, adaptation, regeneration, and aging is considered from developmental and evolutionary perspectives. Emphasis is on the interactions between mechanical and chemical factors in the regulation of connective tissue biology. Prerequisites: 80, or Human Biology core, or Biological Sciences core. GER:DB-EngrAppSci

3 units, Spr (Carter)
3 units, Aut (Delp)

3-4 units, Win (Taylor)

ME 281. Biomechanics of Movement — (Same as BIOE 281; formerly 181.) Review of experimental techniques used to study human and animal movement including motion capture systems, EMG, force plates, medical imaging, and animation. The mechanical properties of muscle and tendon, and quantitative analysis of musculoskeletal geometry. Projects and demonstrations emphasize applications of mechanics in sports, orthopedics, and rehabilitation. GER:DB-EngrAppSci
3 units, Aut (Delp)

ME 280. Graduate Opportunities in High tech — Educational opportunities in high-techology research and development labs in industry. Qualified graduate students engage in internship work and integrate that work into their academic program. Following internship, work students complete a research report outlining their work activity, problems investigated, key results, and any follow-on projects they expect to perform. Meets the requirements for Curricular Practical Training for Students on F-1 visas. Student is responsible for arranging own employment and faculty sponsorship. Register under faculty sponsor’s section number.
1 unit, Aut, Win, Spr, Sum (Staff)

GRADUATE

ME 300A. Linear Algebra with Application to Engineering Computations — (Enroll in CME 200.)
3 units, Aut (Gerritsen)

ME 300B. Partial Differential Equations in Engineering — (Enroll in CME 204.)
3 units, Win (Shaqfeh)

ME 300C. Introduction to Numerical Methods for Engineering — (Enroll in CME 206.)
3 units, Spr (Farhat)

ME 305. Introduction to Control Design Techniques — (Enroll in ENGR 205.)
3 units, Aut (Rock)

ME 305. Engineering Risk Analysis — (Enroll in MS&E 250A.)
2-3 units, Win (Paté-Cornell)

ME 306A. Control System Design — (Enroll in ENGR 206.)
4 units, Spr (Niemyer)

ME 306B. Analysis and Control of Nonlinear Systems — (Enroll in ENGR 209A.)
3 units (Tomlin) not given 2005-06

ME 307A. Modern Control Design I — (Enroll in ENGR 207A.)
3 units, Win (Lall)

ME 307B. Modern Control Design II — (Enroll in ENGR 207B.)
3 units, Spr (Lall)

ME 308. Spatial Motion — The geometry of motion in Euclidean space. Fundamentals of theory of screws with applications to robotic mechanisms, constraint analysis, and vehicle dynamics. Methods for representing the positions of spatial systems of rigid bodies with their inter-relationships; the formulation of Newton-Euler kinetics applied to serial chain systems such as industrial robotics.
3 units (Waldron) alternate years, given 2006-07

ME 309. Finite Element Analysis in Mechanical Design — Basic concepts of finite elements, with applications to problems confronted by mechanical designers. Linear static, modal, and thermal formulations; nonlinear and dynamic formulations. Students implement simple element formulations. Application of a commercial finite element code in analyzing design problems. Issues: solution methods, modeling techniques features of various commercial codes, basic problem definition. Individual projects focus on the interplay of analysis and testing in product development/design. Prerequisite: MATH 103, or equivalent. Recommended: 80, or equivalent in structural and/or solid mechanics; some exposure to principles of heat transfer.
3 units, Spr (Sheppard)

ME 310A. Tools for Team-Based Design — (Same as ENGR 310A.) For graduate students: open to limited SITN/global enrollment. Project-based; exposing students to the tools and methodologies for forming and managing an effective engineering design team in a business environment, including product development teams that may be spread around the world. Topics: personality profiles for creating teams with balanced diversity; computational tools for project coordination and management; real time electronic documentation as a critical design process variable; and methods for refining project requirements to ensure that the team addresses the right problem with the right solution. Computer-aided tools for supporting geographically distributed teams. Final project analyzes industry-sponsored design projects for consideration in 310B,C. Investigation includes benchmarking and meetings with industrial clients. Deliverable is a detailed document with project specifications and optimal design team for subsequent quarters. Limited enrollment.
3-4 units, Aut (Cutkosky, Leifer)

ME 310B,C. Design Project Experience with Corporate Partners — (Same as ENGR 310B,C.) Two quarter project for graduate students with design experience who want involvement in an entrepreneurial design team with real world industrial partners. Products developed are part of the student’s portfolio. Each team functions as a small startup company with a technical advisory board of the instructional staff and a coach. Computer-aided tools for project management, communication, and documentation; budget provided for direct expenses including technical assistants and conducting tests. Corporate liaisons via site visits, video conferencing, email, fax, and phone. Hardware demonstrations, peer reviews, scheduled documentation releases, and a team environment provide the mechanisms and culture for design information sharing. Enrollment by consent of instructor; depends on a pre-enrollment survey in December and recommendations by project definition teams in 310A. For some projects, 217 and 218 may be prerequisites or corequisites; see http://me310.stanford.edu for admission guidelines.
B: 3-5 units, Win, C: 3-4 units, Spr (Cutkosky, Leifer)

ME 310X. Tools for Team-Based Design Global Team Lab — (Same as ENGR 310X.) Participation in a global design team with students in Sweden or Japan. Limited enrollment. May be repeated for credit. Prerequisite: consent of instructor. Corequisite: ENGR 310A,B,C.
1-5 units, Aut, Win, Spr, Sum (Cutkosky, Leifer)
ME 312. Advanced Product Design: Formgiving — Small- and medium-scale design projects carried to a high degree of aesthetic refinement. Emphasis is on generating appropriate forms to the task and setting. Prerequisites: 203, 313, ARTHIST 160.
3-4 units, Aut (Moggridge)

ME 313. Human Values and Innovation in Design — Introduction to the philosophy, spirit, and tradition of the product design program. Hands-on design projects used as vehicles for design thinking, visualization, and methodology. The relationships among technical, human, aesthetic, and business concerns. Drawing, prototyping, and design skills. Focus is on tenets of design philosophy: point of view, user-centered design, design methodology, and iterative design. Enrollment limited to 60.
3 units, Aut (Kelley)

ME 314. Good Products, Bad Products — The characteristics of industrial products that cause them to be successes or failures: the straightforward (performance, economy, reliability), the complicated (human and cultural fit, compatibility with the environment, craftsmanship, positive emotional response of the user), the esoteric (elegance, sophistication, symbolism). Engineers and business people must better understand these factors to produce more successful products. Projects, papers, guest speakers, field trips. GER: DB-EngrAppSci
3-4 units, Win (Beach)

ME 315. The Designer in Society — (Formerly 215.) For graduate students. Career objectives and psychological orientation compared with existing social values and conditions. Emphasis is on assisting individuals in assessing their roles in society. Readings on political, social, and humanistic thought are related to technology and design. Experiential, in-class exercises, and term project. Enrollment limited to 24.
3 units, Spr (Roth)

ME 316A,B,C. Product Design Master’s Project — For graduate Product Design or Design (Art) majors only. Students create and present two master’s theses under the supervision of engineering and art faculty. Theses involve the synthesis of aesthetics and technological concerns in the service of human need and possibility. Product Design students take for 4 units; Art students for 2 units. Corequisite: ARTHIST 360.
2-4 units, Aut, Win, Spr (Kelley)

ME 317A. Design for Manufacturability: Product Definition for Market Success — (Formerly 217A.) Systematic methodologies to define, develop, and produce world-class products. Student teams work on projects to identify opportunities for improvement and develop a comprehensive product definition. Topics: value engineering, quality function deployment, design for assembly and producibility, design for variety and supply chain, design for life-cycle quality, and concurrent engineering. Students must take ME217B to complete the project and obtain a letter grade. On-campus class limited to 28. SCPD class does not have a limit, but each site must have at least 3 students to form a project team and define a project.
4 units, Win (Ishii)

ME 317B. Design for Manufacturability: Quality by Design for Customer Value — (Formerly 217B.) Building on 317A, focus is on the implementation of competitive product design. Student groups apply structured methods to optimize the design of an improved product, and plan for its manufacture, testing, and service. The project deliverable is a comprehensive product and process specification. Topics: concept generation and selection (Pugh’s Method), FMEA applied to the manufacturing process, design for robustness, Taguchi Method, SPC and six sigma process, tolerance analysis, flexible manufacturing, product testing, rapid prototyping. Enrollment limited to 40, not including SITN students. Minimum enrollment of two per SITN viewing site; single student site by prior consent of instructor. On-campus class limited to 25. For SITN students, no enrollment limit, but each site must have a minimum of three students to form a project team and define a project on their own. Prerequisite: 317A.
4 units, Spr (Ishii)

ME 317C. Manufacturing Systems Design — (Enroll in MS&E 264.)
3-4 units, Aut (Erhun)

4 units, Aut (Beach, Milroy), Win (Milroy), Spr (Milroy)

ME 320. Introduction to Robotics — (Enroll in CS 223A.)
3 units, Win (Roth)

ME 321. Materials Selection In Design — (Enroll in MATSCI 170/270.)
3-4 units (Prinz) not given 2005-06

ME 322. Kinematic Synthesis of Mechanisms — The rational design of linkages. Techniques to determine linkage proportions to fulfill design requirements using analytical, graphical, and computer based methods.
3 units, Win (Roth)

ME 323. Modeling and Identification of Mechanical Systems for Control — The art and science behind developing mathematical models for control system design. Theoretical and practical system modeling and parameter identification. Frequency domain identification, parametric modeling, and black-box identification. Analytical work and laboratory experience with identification, controller implementation, and the implications of unmodeled dynamics and non-linearities. Prerequisites: linear algebra and system simulation with MATLAB/SIMULINK; ENGR 105.
2-4 units (Gerdes) alternate years, given 2006-07

ME 324. Precision Engineering — Advances in engineering are often enabled by more accurate control of manufacturing and measuring tolerances. Concepts and technology enable precision such that the ratio of overall dimensions to uncertainty of measurement is large relative to normal engineering practice. Typical application areas: non-spherical optics, computer information storage devices, and manufacturing metrology systems. Application experience through design and manufacture of a precision engineering project, emphasizing the principles of precision engineering. Structured labs; field trips. Prerequisite: consent of instructors.
4 units, Spr (Beach, DeBra)

ME 325. Interdisciplinary Interaction Design — (Same as CS 447; formerly ME 293.) Small teams develop technology prototypes combining product and interaction design. Focus is on software and hardware interfaces, interaction, design aesthetics, and underpinnings of successful design including a reflective, interactive design process, group dynamics of interdisciplinary teamwork, and working with users. Prerequisite: CS 247A.
3-4 units (Winograd) not given 2005-06

ME 326. Telerobotics and Human-Robot Interactions — Focus is on dynamics and controls. Evaluation and implementation of required control systems. Topics include master-slave systems, kinematic and dynamic similarity; control architecture, force feedback, haptics, sensory substitutions; stability, passivity, sensor resolution, servo rates; time delays, prediction, wave variables. Hardware-based projects encouraged, which may complement ongoing research or inspire new developments. Limited enrollment. Prerequisites: ENGR 205, 320 or CS 223A, or consent of instructor.
3 units (Niemeyer) alternate years, given 2006-07

ME 327A. Advanced Robotics — (Enroll in CS 327A.)
3 units, Spr (Khatib)
School of Engineering

ME 329. Physical Solid Mechanics—(Formerly 229.) Quantum mechanics, statistical mechanics, and solid state physics for engineering students. The theory describes physical processes at nanoscale in solid materials. Atomic structures of solids and their electronic structures. Statistical mechanics provides a theoretical framework for thermodynamics to connect the nanoscale processes to macroscopic properties of solids.

3 units (Cho) alternate years, given 2006-07

ME 330. Advanced Kinematics—(Formerly 230.) Kinematics from mathematical viewpoints. Introduction to algebraic geometry of point, line, and plane elements. Emphasis is on basic theories which have potential application to mechanical linkages, computational geometry, and robotics.

3 units, Aut (Roth)

ME 331A. Classical Dynamics—(Same as AA 242A.) Accelerating and rotating reference frames. Kinematics of rigid body motion; Euler angles, direction cosines. D'Alembert's principle, equations of motion. Inertia properties of rigid bodies. Dynamics of coupled rigid bodies. Lagrange's equations and their use. Dynamic behavior, stability, and small departures from equilibrium. Prerequisite: ENGR 15 or equivalent.

3 units, Aut (West)

ME 331B. Advanced Dynamics—(Same as AA 242B.) Formulation of equations of motion with Newton/Euler equations; angular momentum principle; D'Alembert principle: power, work, and energy; Kane's method; and Lagrange's equations. Numerical solutions of nonlinear algebraic and differential equations governing the behavior of multiple degree of freedom systems. Computed torque control.

3 units, Win (Mitiguy)

ME 333. Mechanics—Goal is a common basis for advanced mechanics courses. Formulation of the governing equations from a Lagrangian perspective. Examples include systems of particles and linear elastic solids. Waves in discrete and continuous media. Linear elasticity formulation in the static and dynamic cases, and elementary measures of stress and strain. Tensor and variational calculus.

3 units, Aut (Lew)

3 units, Win (Cai)

3 units, Aut (Pinsky)

3 units, Win (Pinsky)

3 units (Pinsky) not given 2005-06

ME 337. Free and Forced Motion of Structures—(Enroll in AA 244A.)

3 units (Staff) not given 2005-06

3 units, Win (Lew)

ME 338B. Continuum Mechanics—Constitutive theory; equilibrium constitutive relations; material frame indifference and material symmetry; finite elasticity; formulation of the boundary value problem; linearization and well-posedness; symmetries and configurational forces; numerical considerations. GER:DB-EngrAppSci

3 units (Lew) not given 2005-06

3 units, Spr (Jacobs)

3 units, Spr (Cai)

ME 340B. Elasticity in Microscopic Structures—Elasticity theory and applications to structures in micro devices, material defects, and biological systems. Theoretical basis: stress, strain, and energy; equilibrium and compatibility conditions; boundary value problem formulation. Solution methods: stress function, Green’s function, and Fourier transformation; moderate numerical exercises using Matlab. Methods and solutions applied to the elastic behaviors of thin films and MEMS structures, cracks and dislocations, and cell filaments and membranes.

3 units (Cai) not given 2005-06

ME 341. Building Mathematical Models in Biomechanics—Theory and practice of mathematical models. Based on the research literature, examples from hearing and speech sciences, orthopedic bioengineering, and neuromuscular biomechanics. General, meta-theoretical issues that go beyond the particular subject matter. Examples include: What is a model? What constitutes a good model? What is the process of building a model? What are the different approaches to modeling? Dualisms in modeling include: the interplay between theory and experiment, analytic and computational models, and forward and inverse approaches.

3 units, Spr (Puria) alternate years, not given 2006-07
ME 342A. MEMS Laboratory — Practice and theory of MEMS device design and fabrication, orientation to fabrication facilities, and introduction to techniques for design and evaluation of MEMS devices in the context of designed projects. Emphasis on MEMS design (need finding, brainstorming, evaluation, and design methodology), characterization, and fabrication, including photolithography, etching, oxidation, diffusion, and ion implantation. Limited enrollment. Prerequisite: engineering or science background and consent of instructor.

3-4 units, Spr (Pruitt)

ME 342B. MEMS Laboratory II — Emphasis is on tools and methodologies for designing and fabricating MEMS-based solutions. Student interdisciplinary teams collaborate with students and faculty from other to invent, develop, and integrate MEMS/biomedical. Design alternatives fabricated and tested. Manufacturability, assembly, test, and design for redesign. At least one design alternative developed into a functional prototype. Limited enrollment. Prerequisite: 342A or equivalent.

3-4 units, Sum (Pruitt)

ME 342D. MEMS Laboratory Assignments — Prerequisite: consent of instructor.

1-2 units (Pruitt) not given 2005-06

ME 343. An Introduction to Waves in Elastic Solids — One-dimensional motion of an elastic continuum, the linearized theory of elasticity and elastodynamic theory, elastic waves in an unbounded medium, plane harmonic waves in elastic half-spaces including reflection and refraction, slowness, energy velocity and anisotropic effects. Text is first five chapters of Achenbach’s “Wave Propagation in Elastic Solids.”

3 units (Barnett) not given 2005-06

ME 344A. Computational Nanotechnology — (Formerly 244A.) Atomistic simulations as computational tools to design nanostructured materials and devices. Nanoparticles and nanowires introduced as main classes of nano building blocks. Computational modeling of carbon nanomaterials (fullerenes and nanotubes); nanoparticles and quantum dots; semiconductor and metal nanowires; and molecular wires. Atomistic modeling programs with graphical user interface used to gain hands-on experience of nanomaterials design. GER:DB-EngrAppSci

3 units, Win (Cho)

ME 344B. Nanomaterials Modeling — (Formerly 244B.) Atomistic and quantum mechanical simulation methods. Focus is quantum simulation of nanomaterials. Review of concepts and practical techniques of atomistic simulations; finite difference algorithms and practical computational issues for molecular dynamics and Monte Carlo simulations. Graphical user interface, designing nanomaterials through analysis and feedback processes, configuration optimization, dynamic mode analysis, and electronic structure analysis. Hands-on experience in computational design of nanomaterials, and fundamentals of simulations.

3 units, Spr (Cho)

ME 345. Fatigue Design and Analysis — (Formerly 245.) The mechanism and occurrences of fatigue in service. Methods for predicting fatigue life and for protecting against premature fatigue failure. Use of elastic stress and inelastic strain analyses to predict crack initiation life. Use of linear elastic fracture mechanics to predict crack propagation life. Effects of stress concentrations, manufacturing processes, load sequence, irregular loading, multi-axial loading. Subject is treated from the viewpoints of the engineer seeking up-to-date methods of life prediction and the researcher interested in improving understanding of fatigue behavior. Prerequisite: undergraduate mechanics of materials.

3 units, Win (Nelson)

3 units, Aut (Cai)

3 units, Spr (Barnett)

ME 348. Experimental Stress Analysis — Theory and applications of photoelasticity, strain gages, and holographic interferometry. Comparison of test results with theoretical predictions of stress and strain. Other methods of stress and strain determination (optical fiber strain sensors, thermoelectricity, Moire, residual stress determination).

3 units, Spr (Nelson)

ME 351A. Fluid Mechanics — (Formerly 251A.) Exact and approximate analysis of fluid flow covering kinematics, global and differential equations of mass, momentum, and energy conservation. Forces and stresses in fluids. Euler’s equations and the Bernoulli theorem applied to inviscid flows. Vorticity dynamics. Topics in irrotational flow: stream function and velocity potential for exact and approximate solutions; superposition of solutions; complex potential function; circulation and lift. Some boundary layer concepts.

3 units, Aut (Staff)

ME 351B. Fluid Mechanics — (Formerly 251B.) Laminar viscous fluid flow. Governing equations, boundary conditions, and constitutive laws. Exact solutions for parallel flows, creeping flow limit, lubrication theory, and boundary layer theory including free-shear layers and approximate methods of solution; boundary layer separation. Introduction to stability theory and transition to turbulence, and turbulent boundary layers.

3 units, Win (Staff)

ME 352A. Radiative Heat Transfer — (Formerly 252A.) The fundamentals of thermal radiation heat transfer; blackbody radiation laws; radiative properties of non-black surfaces; analysis of radiative exchange between surfaces and in enclosures; combined radiation, conduction, and convection; radiative transfer in absorbing, emitting, and scattering media. Advanced material for students with interests in heat transfer, as applied to high-temperature energy conversion systems. Take 352B,C for depth in heat transfer. Prerequisites: graduate standing and undergraduate course in heat transfer. Recommended: computer skills.

3 units (Mitchell) not given 2005-06

3 units, Win (Goodson)

3 units, Spr (Eaton)
ME 354. Experimental Methods in Fluid Mechanics — Experimental methods associated with the interfacing of laboratory instruments, experimental control, sampling strategies, data analysis, and introductory image processing. Instrumentation including point-wise anemometers and particle image tracking systems. Lab. Prerequisites: previous experience with computer programming and consent of instructor. Limited enrollment.
4 units, Win (Santiago)

ME 355. Compressible Flow — (Formerly 255.) Introduction to compressible flow. Sound waves and normal shock waves. Quasi-one-dimensional steady flows in variable area ducts with friction, heating, and cooling; unsteady one-dimensional flow, two-dimensional supersonic flow; oblique shock waves, Prandtl-Meyer expansions, detonation waves, method of characteristics.
3 units, Spr (Mungal)

ME 358. Heat Transfer in Microdevices — (Formerly 258.) Application-driven introduction to the thermal design of electronic circuits, sensors, and actuators that have dimensions comparable to or smaller than one micrometer. The impact of thin-layer boundaries on thermal conduction and radiation. Convection in microchannels and microscopic heat pipes. Thermal property measurements for microdevices. Emphasis is on Si and GaAs semiconductor devices and layers of unusual, technically-promising materials such as chemical-vapor-deposited (CVD) diamond. Final project based on student research interests. Prerequisite: consent of instructor.
3 units, Spr (Goodson)

ME 359A. Advanced Design and Engineering of Space Systems I — The application of advanced theory and concepts to the development of spacecraft and missile subsystems; taught by experts in their fields. Practical aspects of design and integration. Mission analysis, systems design and verification, radiation and space environments, orbital mechanics, space propulsion, electrical power and avionics subsystems, payload communications, and attitude control. Subsystem-oriented design problems focused around a mission to be completed in groups. Tours of Lockheed Martin facilities. Limited enrollment. Prerequisites: undergraduate degree in related engineering field or consent of instructor.
4 units, Win (Khayms)

ME 359B. Advanced Design and Engineering of Space Systems II — Continuation of 359A. Topics include aerospace materials, mechanical environments, structural analysis and design, finite element analysis, mechanisms, thermal control, probability and statistics. Tours of Lockheed Martin facilities. Limited enrollment. Prerequisites: undergraduate degree in related field or consent of instructor.
4 units, Spr (Yiu)

3 units, Spr (Pitsch)

ME 362A. Physical Gas Dynamics — (Formerly 262A.) Concepts and techniques for description of high-temperature and chemically reacting gases from a molecular point of view. Introductory kinetic theory, chemical thermodynamics, and statistical mechanics as applied to properties of gases and gas mixtures. Transport and thermodynamic properties, law of mass action, and equilibrium chemical composition. Maxwellian and Boltzmann distributions of velocity and molecular energy. Examples and applications from areas of current interest such as combustion and materials processing.
3 units, Aut (Bowman)

ME 362B. Nonequilibrium Processes in High-Temperature Gases — (Formerly 262B.) Introduction to chemical kinetics and energy transfer in high-temperature gases. Collision theory, transition state theory, and unimolecular reaction theory. Prerequisite: 362A or consent of instructor.
3 units, Win (Hanson)

ME 364. Optical Diagnostics and Spectroscopy — (Formerly 264.) Introduction to the spectroscopy of gases and laser-based diagnostic techniques for measurements of species concentrations, temperature, density, and other flow field properties. Topics: electronic, vibrational, and rotational transitions; spectral lineshapes and broadening mechanisms; absorption, fluorescence, Rayleigh and Raman scattering methods; collisional quenching. Prerequisite: 362A or equivalent.
3 units, Win (Hanson)

4 units, Spr (Hanson)

ME 370A. Energy Systems I: Thermodynamics — Thermodynamic analysis of energy systems emphasizing systematic methodology for and application of basic principles to generate quantitative understanding. Availability, mixtures, reacting systems, phase equilibrium, chemical availability, and modern computational methods for analysis. Prerequisites: undergraduate engineering thermodynamics and computer skills such as Matlab.
3 units, Aut (Mitchell)

ME 370B. Energy Systems II: Modeling and Advanced Concepts — Development of quantitative device models for complex energy systems, including fuel cells, reformers, combustion engines, and electrolyzers, using thermodynamic and transport analysis. Student groups work on energy systems to develop conceptual understanding, and high-level, quantitative and refined models. Advanced topics in thermodynamics and special topics associated with devices under study. Prerequisite: 370A.
4 units, Win (Edwards)

ME 370C. Energy Systems III: Projects — Refinement and calibration of energy system models generated in ME 370B carrying the models to maturity and completion. Integration of device models into a larger model of energy systems. Prerequisites: 370A.B, consent of instructor.
3-5 units, Spr (Simon)

ME 371. Combustion Fundamentals — (Formerly 271.) Heat of reaction, adiabatic flame temperature, and chemical composition of products of combustion; kinetics of combustion and pollutant formation reactions; conservation equations for multi-component reacting flows; propagation of laminar premixed flames and detonations. Prerequisite: 362A or 370A; or consent of instructor.
3 units, Win (Bowman)

ME 372. Combustion Applications — (Formerly 272.) The role of chemical and physical processes in combustion; ignition, flammability, and quenching of combustible gas mixtures; premixed turbulent flames; laminar and turbulent diffusion flames; combustion of fuel droplets and sprays. Prerequisite: 371.
3 units, Spr (Mitchell)

ME 374A.B. Biodesign Innovation — (Same as BIOE 374A,B, OIT 384,385.)
3-4 units, A: Win, B: Spr (Makower, Yock, Zenios, Milroy)

ME 374A. Needs Finding and Concept Creation — Two quarter sequence. Strategies for understanding and interpreting clinical needs, researching literature, and searching patents. Clinical and scientific literature review, techniques of intellectual property analysis and feasibility, basic prototyping, and market assessment. Students working in small entrepreneurial teams to create, analyze, and screen medical technology ideas, and select projects for development.
ME 374B. Concept Development and Implementation — Two-quarter sequence. Early factors for success; how to prototype inventions and refine intellectual property. Lectures, guest medical pioneers, and entrepreneurs about strategic planning, ethical considerations, new venture management, and financing and licensing strategies. Cash requirements; regulatory (FDA), reimbursement, clinical, and legal strategies, and business or research plans.

ME 375. Institute of Design Projects — Hands-on, project-based series for d-school students. Design thinking, design processes, innovation methodologies, need finding, human factors, rapid prototyping, team dynamics, negotiation, and project management. Focus is on resolving constraints among technical, business, and human concerns to create solutions that benefit society. Real-world design projects. Weekly design reviews, final course presentations. Industry and adviser interaction. Limited enrollment; application required; see http://dschool.stanford.edu/classes.

ME 375A. Institute of Design Project 1
2-6 units, Aut (Kelley, Kembel)

ME 375B. Institute of Design Project 2
2-6 units, Win (Kelley, Kembel)

ME 375C. Institute of Design Project 3
2-6 units, Spr (Kelley, Kembel)

ME 376A. Institute of Design Project 4
2-6 units, Aut (Kelley, Kembel)

ME 376B. Institute of Design Project 5
2-6 units, Win (Kelley, Kembel)

ME 376C. Institute of Design Project 6
2-6 units, Spr (Kelley, Kembel)

ME 377A. Institute of Design Project 7
2-6 units, Aut (Kelley, Kembel)

ME 377B. Institute of Design Project 8
2-6 units, Win (Kelley, Kembel)

ME 377C. Institute of Design Project 9
2-6 units, Spr (Kelley, Kembel)

ME 381. Orthopaedic Bioengineering — Engineering approaches applied to the musculoskeletal system in the context of surgical and medical care. Fundamental anatomy and physiology. Material and structural characteristics of hard and soft connective tissues and organ systems, and the role of mechanics in normal development and pathogenesis. Engineering methods used in the evaluation and planning of orthopaedic procedures, surgery, and devices.
3 units, Aut (Carter)

ME 382A. Biomedical Device Design and Evaluation I — (Formerly 282A.) Real world problems and challenges of biomedical device design and evaluation. Students engage in industry sponsored projects resulting in new designs, physical prototypes, design analyses, computational models, and experimental tests, gaining experience in: the formation of design teams; interdisciplinary communication skills; regulatory issues; biological, anatomical, and physiological considerations; testing standards for medical devices; and intellectual property.
4 units, Win (Andriacchi)

ME 382B. Biomedical Device Design and Evaluation II — (Formerly 282B.) Continuation of industry sponsored projects from 382A. With the assistance of faculty and expert consultants, students finalize product designs or complete detailed design evaluations of new medical products. Bioethics issues and strategies for funding new medical ventures.
4 units, Spr (Andriacchi)

ME 385. Tissue Engineering Lab — (Formerly 285B.) Hands-on experience in the fabrication of living engineered tissues. Techniques include sterile technique, culture of mammalian cells, creation of cell-seeded scaffolds, and the effects of mechanical loading on the metabolism of living engineered tissues. Theory, background, and practical demonstration for each technique. Lab.
1-2 units, Win (Jacobs)

ME 386. Neuromuscular Biomechanics — (Same as BIOE 386; formerly 286.) The interplay between mechanics and neural control of movement. State of the art assessment through a review of classic and recent journal articles. Emphasis is on the application of dynamics and control to the design of assistive technology for persons with movement disorders.
3 units (Delp) not given 2005-06

ME 389. Bioengineering and Biodesign Forum — (Same as BIOE 393.) Guest speakers present research topics at the interfaces of biology, medicine, physics, and engineering.
1 unit, Aut, Win, Spr (Staff)

ME 390. Thermosciences Research Project Seminar — (Formerly 290.) Review of work in a particular research program and presentations of related work.
1 unit, Aut, Win, Spr (Staff)

ME 391. Engineering Problems — (Formerly 291.) Directed study for graduate engineering students on subjects of mutual interest to student and staff member. May be used to prepare for experimental research during a later quarter under 392. Students must find a faculty sponsor.
1-5 units, Aut, Win, Spr, Sum (Staff)

ME 392. Experimental Investigation of Engineering Problems — (Formerly 292.) Graduate engineering students undertake experimental investigation under guidance of staff member. Previous work under 391 may be required to provide background for experimental program. Faculty sponsor required.
1-5 units, Aut, Win, Spr, Sum (Staff)

ME 393. Topics in Biologically Inspired or Human Interactive Robots — Application of observations from human and animal physiology to robotic systems. Force control of motion including manipulation, haptics, and locomotion. Weekly literature review forum led by student. May be repeated for credit.
1 unit, Aut, Win, Spr (Cutkosky, Waldron, Niemeyer)

ME 394. Design Forum — Introduction to the design faculty and research labs. Faculty describe their work and research interests followed by open discussion.
1 unit, Aut (Niemeyer)

1 unit, Aut, Win, Spr (Lew)

ME 396. Design and Manufacturing Forum — (Formerly 296.) Guest speakers address issues of interest to design and manufacturing engineers. Sponsored by Stanford Engineering Club for Automation and Manufacturing (SECAM). May be repeated for credit.
1 unit, Win, Spr (Reis)

ME 397. Design Theory and Methodology Forum — (Formerly 297.) Research reports, literature reviews, and designer interviews. The cognitive basis for designer behavior and design tool development. Interdisciplinary research in engineering, chemical engineering, and psychology. Faculty sponsor required.
1-3 units (Staff) not given 2005-06

ME 398. Final Year Design and Research Forum — (Formerly 298.) Research reports, literature reviews, and designer interviews. The cognitive basis for designer behavior and design tool development. Directed study and research. May be repeated for credit.
1 unit, Aut, Win, Spr (Staff)

ME 399. Fuel Cell Seminar — Interdisciplinary research in engineering, chemistry, and physics. Talks on fundamentals of fuel cells by speakers from Stanford, other academic and research institutions, and industry. The potential to provide high efficiency and zero emissions energy conversion for transportation and electrical power generation.
1 unit (Staff) not given 2005-06
ME 400. Thesis (Engineer Degree) — (Formerly 300.) Investigation of some engineering problems. Required of Engineer degree candidates.
2-15 units, Aut, Win, Spr, Sum (Staff)

ME 405. Asymptotic Methods and Applications — (Formerly 305.) Asymptotic versus convergent expansions, approximation of integrals, method of matched asymptotics, WKBJ method and turning points, method of multiple scales. Applications: viscous and potential flow, wave propagation, combustion, and electrostatics. Prerequisites: CME 204 (formerly ME 300B), graduate level fluid mechanics.
3 units (Staff) not given 2005-06

ME 408. Spectral Methods in Computational Physics — (Enroll in CME 322.)
3 units, Aut (Moin)

3 units, Spr (Lew)

ME 414. Solid State Physics Issues for Mechanical Engineering Experiments — (Formerly 314.) Introductory overview of the principles of statistical mechanics, quantum mechanics, and solid-state physics. Provides graduate mechanical engineering students with understanding needed to work on devices or technologies which rely on solid-state physics.
3 units, Sum (Kenny)

ME 417. Total Product Integration Engineering — (Formerly 317.) For students aspiring to be product development executives and leaders in dFM research and education. Advanced methods and tools beyond the material covered in 217: quality design across global supply chain, robust product architecture for market variety and technology advances, product development risk management. Small teams or individuals conduct a practical project that produces either an in-depth case study or a significant enhancement to the dFM methods and tools. Enrollment limited to 16. Prerequisites: 317AB.
4 units, Aut (Ishii)

ME 420. Applied Electrochemistry: Micro- and Nanoscale — Concepts of physical chemistry such as thermodynamic equilibrium, reaction kinetics, and mass transport mechanisms from which the fundamentals of electrochemistry are derived. Theory of electrochemical methods for material analyses and modifications with emphasis on scaling behaviors. Electrochemical devices such as sensors, actuators, and probes for scanning microscopes, and their miniaturization concepts. Examples of these devices built, characterized, and applied in labs using technologies such as scanning probe techniques. Projects focus on current problems in biology, material science, microfabrication, and energy conversion.
3 units, Aut (Fasching)

3 units, Spr (Darve)

ME 444A. Quantum Simulations of Molecules and Materials — (Enroll in CHEMENG 444A.)
3 units, Win (Musgrave)

3 units (Staff) not given 2005-06

ME 451A. Advanced Fluid Mechanics — (Formerly 351A.) Topics: kinematics (analysis of deformation, critical points and flow topology, Helmholtz decomposition); constitutive relations (viscous and viscoelastic flows, non-inertial frames); vortex dynamics; circulation theorems, vortex line stretching and rotation, vorticity generation mechanisms, vortex filament and Biot-Savart formula, local induction approximation, impulse and kinetic energy of vortex systems, vorticity in rotating frame. Prerequisite: graduate courses in compressible and viscous flow.
3 units (Staff) not given 2005-06

ME 451B. Advanced Fluid Mechanics — (Formerly 351B.) Waves in fluids: surface waves, internal waves, inertial and acoustic waves, dispersion and group velocity, wave trains, transport due to waves, propagation in slowly varying medium, wave steepening, solitons and solitary waves, shock waves. Instability of fluid motion: dynamical systems, bifurcations, Kelvin-Helmholtz instability, Rayleigh-Charney convection, energy method, global stability, linear stability of parallel flows, necessary and sufficient conditions for stability, viscosity as a destabilizing factor, convective and absolute instability. Focus is on flow instabilities. Prerequisites: graduate courses in compressible and viscous flow.
3 units, Win (Lele)

3 units (Staff) not given 2005-06

4 units, Win (Farhat)

3 units, Spr (Shaqfeh)
ME 457. Fluid Flow in Microdevices—(Formerly 257.) Introduction to physico-chemical hydrodynamics. Creeping flow, electric double layers, and electrochemical transport such as Nernst-Planck equation; hydrodynamics of solutions of charged and uncharged particles. Device applications include microsystems that perform capillary electrophoresis, drug dispersion, and hybridization assays. Emphasis is on bioanalytical applications where electrophoresis, electro-osmosis, and diffusion are important. Prerequisite: consent of instructor.

3 units, Aut (Santiago)

ME 461. Advanced Topics in Turbulence—(Formerly 261B.) Large eddy simulation, constitutive equations and filtering, dynamic subgrid scale models, scale similarity, and reconstruction models; wall models; compressibility effects on turbulence, shock/turbulence interactions, compressible turbulent boundary layers, and multi-phase flow modeling; reduced order modeling, proper orthogonal decomposition; space-time characteristics of organized structures; complexity; computational issues, and higher order conservations.

3 units, Spr (Moin) alternate years, not given 2006-07

ME 463. Advanced Topics in Plasma Science and Engineering—Research areas such as plasma diagnostics, plasma transport, waves and instabilities, and engineering applications.

3 units, Aut (Cappelli)

3 units (Farhat) not given 2005-06

3 units, Spr (Iaccarino)

ME 471. Turbulent Combustion—Basis of turbulent combustion models. Assumption of scale separation between turbulence and combustion, resulting in Reynolds number independence of combustion models. Level-set approach for premixed combustion. Different regimes of premixed turbulent combustion with either kinematic or diffusive flow/chemistry interaction leading to different scaling laws and unified expression for turbulent velocity in both regimes. Models for non-premixed turbulent combustion based on mixture fraction concept. Analytical predictions for flame length of turbulent jets and NOx formation. Partially premixed combustion. Analytical scaling for lift-off heights of lifted diffusion.

3 units, Aut (Pitsch)

ME 484. Computational Methods in Cardiovascular Bioengineering—(Formerly 184B; same as BIOE 484.) Lumped parameter, one-dimensional nonlinear and linear wave propagation, and three-dimensional modeling techniques applied to simulate blood flow in the cardiovascular system and evaluate the performance of cardiovascular devices. Construction of anatomic models and extraction of physiologic quantities from medical imaging data. Problems in blood flow within the context of disease research, device design, and surgical planning.

3 units (Taylor) alternate years, given 2006-07

ME 485. Modeling and Simulation of Human Movement—(Same as BIOE 485; formerly 382.) Direct experience with the computational tools used to create simulations of human movement. Lecture/labs on animation of movement; kinematic models of joints; forward dynamic simulation; computational models of muscles, tendons, and ligaments; creation of models from medical images; control of dynamic simulations; collision detection and contact models. Prerequisite: 281, 331A,B, or equivalent.

3 units (Delp) not given 2005-06

ME 500. Thesis (Ph.D.)—(Formerly 301.) 2-15 units, Aut, Win, Spr, Sum (Staff)

OVERSEAS STUDIES

Courses approved for the Mechanical Engineering major and taught overseas can be found in the “Overseas Studies” section of this bulletin, or in the Overseas Studies office, 126 Sweet Hall.

BERLIN

ME 112X. Mechanical Engineering Design
4 units, Win (Gerdes)

ME 114X. Why Do We Drive What We Drive?
3 units, Win (Gerdes)
The School of Humanities and Sciences includes the departments of Anthropological Sciences, Applied Physics, Art and Art History, Asian Languages, Biological Sciences (and the Hopkins Marine Station), Chemistry, Classics, Communication, Comparative Literature, Cultural and Social Anthropology, Drama, Economics, English, French and Italian, German Studies, History, Linguistics, Mathematics, Music, Philosophy, Physics, Political Science, Psychology, Religious Studies, Slavic Languages and Literatures, Sociology, Spanish and Portuguese, and Statistics.

The school also includes 19 interdepartmental degree programs: African and African American Studies; American Studies; Archaeology; Biophysics; Comparative Studies in Race and Ethnicity; East Asian Studies; Human Biology; Feminist Studies; Financial Mathematics; Interdisciplinary Studies in Humanities; International Policy Studies; International Relations; Mathematical and Computational Science; Modern Thought and Literature; Public Policy; Russian, East European and Eurasian Studies; Science, Technology, and Society; Symbolic Systems; and Urban Studies.

In addition, the school sponsors programs that do not currently grant degrees: African Studies; Astronomy; Black Performing Arts; Center for the Interdisciplinary Study of Science and Technology; Ethics in Society; History and Philosophy of Science; the Institute for Research on Women and Gender; the Institute for Social Science Research; Islamic Studies; Jewish Studies; Latin American Studies; Medieval Studies; Overseas Studies; the Social Science History Institute; and Undergraduate Research Opportunities.

Faculty and academic staff of the School of Humanities and Sciences are listed under the respective departments or programs.

DEGREES OFFERED

Candidates for the degree of Bachelor of Arts, Bachelor of Science, Bachelor of Arts and Sciences, Master of Arts, Master of Fine Arts, Master of Science, Doctor of Musical Arts, or Doctor of Philosophy should consult appropriate sections of the announcements following. They should consult also the department or program in which they intend to specialize.

COURSES

HUMSCI 190. Individually Designed Major Honor’s Thesis — May be repeated for credit.

1-10 units, Aut, Win, Spr (Staff)

HUMSCI 201. Graduate Environment of Support — Psychosocial, financial, and career issues in adapting graduate students to Stanford; how these issues relate to diversity, resources, policies, and procedures. Discussions among faculty, advanced graduate students, campus resource people, and the dean’s office.

1 unit, Aut (Thomas)
Program in African and African American Studies

Director: Lawrence D. Bobo
Associate Director: Vera I. Grant
Advisory Committee: Arnold Rampersad (Committee Chair; English), Michele Elam (English), Claudine Gay (Political Science), Clay Carson (History), Joel Samoff (African Studies), Morris Graves (Associate Dean of Students), Elaine C. Ray (Director, Stanford University News Service), John R. Rickford (Linguistics)

Affiliated Faculty: David Abernethy (Political Science, emeritus), Ametha Ball (Education), Richard Banks (Law), Lucas Barker (Political Science, emeritus), Michele Elam (English), Albert Camarillo (History), Clayborne Carson (History), Susan Cashion (Drama), Wanda Corn (Art History), Linda Darling-Hammond (Education), David Degusta (Cultural and Social Anthropology), Sally Dickson (Law), Sandra Drake (English, emeritus), Jennifer Eberhardt (Psychology), Paulia Ebron (Cultural and Social Anthropology), Harry Elam (Drama), James Ferguson (Cultural and Social Anthropology), Shelley Fisher Fiskin (English), Louis Fraga (Political Science), George Fredrickson (History, emeritus), Claudine Gay (Political Science), James Gibbs Jr. (Political Science, emeritus), William B. Gould (Law, emeritus), Sonya Grier (Business), Sean Hanretta (History), Kennell Jackson Jr. (History), Anthony Kramer (Drama), Teresa LaFromboise (Education), Brian Lowery (Graduate School of Business), Lisa Malikki (Cultural and Social Anthropology), Hazel Markus (Psychology), Barbara Martinez-Ruiz (Art and Art History), Monica McDermott (Sociology), Maryclienna Morgan (Communication), Robert Moses (Drama), Paula Moya (English), Angaluki Muaka (Stanford Language Center), Elisabeth Mudimbe-Boyi (French and Comparative Literature), Na’ilah S. Nasir (Education), Susan Olzak (Sociology), David Palumbo-Liu (Comparative Literature), Jack Rakove (History), Arnold Rampersad (English), John R. Rickford (Linguistics), Richard Roberts (History), Ramón Saldivar (English), Joel Samoff (African Studies), Claude Steele (Psychology), Ewart Thomas (Psychology), Jeremy Weinstein (Political Science), Joy Williamson (Education)

Program Offices: 450 Serra Mall, Building 240
Mail Code: 94305-2084
Phone: (650) 723-3782
Email: aas@stanford.edu
Web Site: http://www.stanford.edu/dept/AAAS/

Courses given in the Program in African and African American Studies have the subject code AFRICAAM. For a complete list of subject codes, see Appendix.

Undergraduate Programs

Bachelor of Arts

The African and African American Studies (AAAS) program covers a vast and varied field, including: (1) the history, literature, culture, and social science of African Americans as a central component of African culture; and (2) the history, literature, culture, and social science of the peoples of Africa and the African Diaspora. AAAS is an indispensable subject for those interested in the cultural, economic, historical, political, or social study of the United States.

To investigate the rich and varied human tapestry which AAAS spans, students are encouraged to use interdisciplinary methods drawn from various fields, including anthropology, art, art history, economics, education, languages, linguistics and literature, music, philosophy, political science, psychology, religion, and sociology, among others. A degree in AAAS prepares students for the many work positions requiring a broad liberal arts perspective, as well as those requiring the specialized knowledge that AAAS offers. Students in AAAS receive training that is especially valuable for graduate study and/or careers in such fields as business, comparative literature, creative writing, education, journalism, law, linguistics, medicine, performing arts, politics, social sciences, social work, teaching, and urban studies. The program emphasizes creative scholarship and research.

Majors

All majors and double majors are expected to complete a total of 60 units, of which 25 units must be selected from the AAAS core courses, including AFRICAAM 105, which is mandatory. Since AAAS is affiliated with the program in Comparative Studies in Race and Ethnicity (CSRE), AAAS students must also enroll in two CSRE core introductory courses and complete a CSRE senior seminar (CSRE 200X) before graduating. Students may count one single-group core course toward their 15-unit core introductory course requirement as long as that course takes as its focus the experience of a racial or ethnic group different from the one in which they are majoring.

Additionally, 20 units are to be selected from areas I (African American Studies) or II (Africa and the African Diaspora), or a special program, area III, devised by the student. All majors must include at least one course from area I and II. Each of these options consolidates and broadens the work of the core. Students who choose option III may devise a program with a special theme. This choice allows the student to use up to 20 units to explore issues encountered in other courses in greater depth or to strike out in new directions. Students who choose option III should work closely with an adviser and must have written approval from the director of the program. Regardless of whether students choose to focus on areas I, II, or III, no more than two courses of a general nature (for example, Sociology 145, which deals with race and ethnicity, but without a primary African or African American focus) may be counted towards the major.

All AAAS majors must take the CSRE Senior Seminar. The seminar is offered in Autumn Quarter. (For a complete description, see Comparative Studies in Race and Ethnicity.) This course satisfies the Writing in the Major requirement (WIM).

Minors

Students who minor in AAAS must complete either (1) a total of six courses of 3 or more letter-graded units, or (2) a minimum of 25 graded units from the list of AAAS courses listed below. The courses must include AFRICAAM 105 and at least one course from the social sciences and one from the humanities. Students should develop a coherent theme in their course selections, in consultation with the program director or associate director.

AAAS stresses academic advising. The director or associate director advises all AAAS students, including majors, minors, and double majors. Additionally, majors and double majors have the opportunity to participate in individual and group mentoring activities offered by CSRE. The program prides itself on its responsiveness to student concerns, and its advisory committee includes both faculty and student representation.

Honors

Majors who have maintained a grade point average (GPA) of at least 3.5 or higher in the major may apply for the honors program. Students should apply in the Spring Quarter of their junior year. The honors thesis is intended to enable students to synthesize skills they have acquired to produce a document or project demonstrating some measure of competence in their specialty. The honors thesis must be discussed with and approved by the major adviser and the program director. A student may receive 5-15 units for the honors thesis. All students completing an honors thesis must participate in at least two quarters of the CSRE Senior Seminar; take CSRE 200X in Autumn and AFRICAAM 199 in Winter and Spring for the full 15 units.

Core Courses

The core consists of 25 units, including the two required courses.

<table>
<thead>
<tr>
<th>Subject Code and Catalog Number</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFRICAAM 101, African and African American Lecture Series</td>
<td>1-3</td>
</tr>
<tr>
<td>AFRICAAM 105, Intro to African and African American Studies (required)</td>
<td>5</td>
</tr>
</tbody>
</table>
SCHOOL OF HUMANITIES AND SCIENCES

COMM 148. Hip-Hop and Don’t Stop: Introduction to Modern Speech Communities 4-5
ENGLISH 152D. W.E.B. Du Bois and American Culture (required) 5
FREN 133. Literature and Society: Introduction to Francophone Literature from Africa and the Caribbean 4
HISTORY 145B. Africa in the 20th Century 5
HISTORY 166. Introduction to African American History: The Modern African American Freedom Struggle 4-5
LINGUIST 65. African American Vernacular English 3-5
POL 225R. Black Politics in the Post-Civil Rights Era 5
SOCI 144. Race and Crime in America 5

CSRE INTRODUCTORY CORE COURSES
15 units from the following courses are required for AAAS majors
CASA 88. Theories in Race and Ethnicity 5
COMPLIT 241. Comparative Fictions of Ethnicity 5
CSRE 196C. Introduction to Comparative Studies in Race and Ethnicity 5
CSRE 200X. CSRE Senior Seminar (WIM) 5
EDUC 156A. Understanding Racial and Ethnic Identity 3-5
HISTORY 64. Introduction to Race and Ethnicity in the American Experience 5
PHIL 77. Philosophical Issues in Race and Racism 4
PSYCH 75. Cultural Psychology (not given 2005-06) 5
SOCI 143. Prejudice, Racism, and Social Change 5
SOCI 145. Race and Ethnic Relations 5

SINGLE-GROUP CORE COURSES

COMPLIT 168. Introduction to Asian American History 5
HISTORY 59. Introduction to Asian American History (not given 2005-06) 5
SOCI 138. American Indians in Comparative Historical Perspective 5
SOCI 139. American Indian in Contemporary Society 5

AREA I: AFRICAN AMERICAN HISTORY, LITERATURE, CULTURE, AND SOCIETY
Area I majors choose at least 20 units in addition to the core from the following list, plus at least one course from the Area II list below:

AFRICAN AND AFRICAN AMERICAN STUDIES (AFRICAM)
101. African and African American Lecture Series (Aut, Win, Spr)

SOCIAL SCIENCES
Area I minors must choose at least one course below.
Communication (COMM):
148. Hip-Hop and Don’t Stop: Introduction to Modern Speech Communities 4-5
246. Language and Discourse: Race, Class, and Gender
Economics (ECON):
116. American Economic History
Education (EDUC):
156A. Understanding Racial and Ethnic Identity
193C. Peer Counseling: The African American Community
201A. History of African American Education
201B. Education for Liberation
Cultural and Social Anthropology (CASA):
88. Theories in Race and Ethnicity: A Comparative Perspective
Political Science (POLISCI):
225R. Black Politics in the Post-Civil Rights Era
325S. Race and Place in American Politics
Psychology (PSYCH):
180. Social Psychological Perspectives on Stereotyping and Prejudice
215. Mind, Culture, and Society
Sociology (SOCI):
144. Race and Crime in America
149. The Urban Underclass

HUMANITIES
Area I minors must choose at least one course below.

Dance (DANCE):
44. Jazz Dance I
144. Jazz Dance II
145. Jazz Dance III

History (HISTORY):
166. Introduction to African American History: The Modern African American Freedom Struggle
299M. Martin Luther King, Jr., Papers Project

LINGUISTICS (LINGUIST):
65. African American Vernacular English

Music (MUSIC):
18A. Jazz History: Ragtime to Bebop (1900-1940)
18B. Jazz History: Bebop to Present (1940-Present)
20A. Jazz Theory
20B. Advanced Jazz Theory
161B. Jazz Orchestra

Philosophy (PHIL):
177. Philosophical Issues Concerning Race and Racism

AREA II: AFRICAN HISTORY, CULTURE, AND SOCIETY; HISTORY, CULTURE, AND SOCIETY OF THE BLACK DIASPORA
Area II majors choose at least 20 units from the following lists in addition to the core courses, plus at least one course from the Area I list:

AFRICAN AND AFRICAN AMERICAN STUDIES (AFRICAM)
101. African and African American Lecture Series (Aut, Win, Spr)

SOCIAL SCIENCES
Area II minors must choose at least one course below.

Cultural and Social Anthropology (CASA):
72. Dance and Culture in Latin America
88. Theories of Race and Ethnicity

HUMANITIES
Area II minors must choose at least one course below.

Dance (DANCE):
43. Afro-Brazilian and Afro-Peruvian Dance

French and Italian (FREN 133):

133A,B,C. The African Forum

History (HISTORY):
48Q. South Africa: Contested Transitions
61. The Constitution and Race
147G. African History in Novels and Film
145B. Africa in the 20th Century
245E. Health and Society in Africa
245G. Law and Colonialism in Africa
246. Successful Futures for Africa: An Inventory of the 1970s-2000s
246S. Popular Culture in Africa
248S. African Societies and Colonial States

Language Center (AMELANG):
100A,B,C. Beginning Amharic
102A,B,C. Advanced Amharic
106A,B,C. Beginning Swahili
107A,B,C. Intermediate Swahili
108A,B,C. Advanced Swahili
133A,B,C. The African Forum

COURSES
WIM indicates that the course satisfies the Writing in the Major requirements.

AFRICAM 101. African American Lecture Series — Weekly lectures on African or African American artistic expression, culture, history, language, literature, music, politics, religion, society, or sport. One unit for attendance at lectures and submission of brief reports. Additional units require participation in preparatory and discussion sections, readings, and the opportunity to conduct and record biographical interviews with speakers in the lecture series for the AAAS archives.
1-3 units, Aut, Win, Spr (Grant)

5 units, Aut (Carson)

200
AFRICAAM 199. Directed Reading—May be repeated for credit. Prerequisite: consent of instructor. 1-5 units, Aut, Win, Spr (Staff)

INTERDEPARTMENTAL OFFERINGS
See the respective department listings for course descriptions and General Education Requirements (GER) information.

ART HISTORY
ARTHIST 178. Ethnicity and Dissent in United States Art and Literature 4 units (Wolf) not given 2005-06
ARTHIST 192. Introduction to African Art 4 units, Spr (Martinez-Ruiz)

COMMUNICATION
COMM 148. Hip-Hop and Don’t Stop: Introduction to Modern Speech Communities 4-5 units, Win (Morgan)

COMPARATIVE LITERATURE
COMPLIT 41Q. Ethnicity and Literature 3-5 units, Aut (Palumbo-Liu)
COMPLIT 114. Literature and Society: Introduction to Francophone Literature from Africa and the Caribbean 3-5 units, Spr (Boyi)

COMPARATIVE STUDIES IN RACE AND ETHNICITY
CSRE 196C. Introduction to Comparative Studies in Race and Ethnicity 5 units, Win (Markus, Moya)
CSRE 200X. CSRE Senior Seminar 5 units, Aut (Snipp, Thompson)
CSRE 203A. The Changing Face of America: Civil Rights and Education Strategies for the 21st Century 5 units, Spr (Montoya, Steyer)

CULTURAL AND SOCIAL ANTHROPOLOGY
CASA 88. Theories in Race and Ethnicity 5 units, Aut (Yanagisako)

DANCE
DANCE 42. Dances of Latin America 2 units, Aut (Cashion)
DANCE 43. Afro-Brazilian and Afro-Peruvian Dance 2 units, Win (Cashion)
DANCE 44. Jazz Dance I 2 units, Win, Spr (Kramer)
DANCE 144. Jazz Dance II 2 units, Win, Spr (Moses)
DANCE 145. Jazz Dance III 2 units, Win, Spr (Moses)

DRAMAT
DRAMA 110. Cartographies of Race: The Institute for Diversity in the Arts at Stanford 5 units, Win (H. Elam)
DRAMA 163. Performance and America 5 units, Aut (H. Elam)

EDUCATION
EDUC 103B. Race, Ethnicity, and Linguistic Diversity in Classrooms: Sociocultural Theory and Practices 3 units, Win (Ball)
EDUC 135X. Race, Ethnicity, and Linguistic Diversity in Teacher Preparation 3-5 units (Ball) not given 2005-06
EDUC 156A. Understanding Racial and Ethnic Identity 3-5 units, Win (LaFromboise)
EDUC 193C. Peer Counseling: The African American Community 2 units, Aut (Edwards)
EDUC 198X. Tutoring with Adolescents: Ravenswood Writes 3 units, Spr (Ball, Lunsford)
EDUC 201. History of Education in the United States 3-4 units, Win (Williamson)
EDUC 201B. Education for Liberation 3-4 units, Aut (Williamson)
EDUC 201A. History of African American Education 3-4 units, Aut (Williamson)

ENGLISH
ENGLISH 138C. Huckleberry Finn and American Culture 5 units, Win (Fishkin)
ENGLISH 146C. Hemingway, Hurston, Faulkner, and Fitzgerald 5 units, Aut (Jones)
ENGLISH 152D. W.E.B. Du Bois and American Culture 5 units, Win (M. Elam)

HISTORY
HISTORY 46S. Photography and African History 5 units, Aut (Jackson)
HISTORY 48Q. South Africa: Contested Transitions 3 units, Win (Samoff)
HISTORY 49N. The Slave Trade 4 units, Win (Roberts)
HISTORY 64. Introduction to Race and Ethnicity in the American Experience 5 units, Aut (Camarillo)
HISTORY 145B. Africa in the 20th Century 5 units (Roberts) not given 2005-06
HISTORY 147G. African History in Novels and Film 5 units, Spr (Jackson)
HISTORY 149. African Intellectuals: 1940-2000 5 units (Jackson) not given 2005-06
HISTORY 158. The United States Since 1945 4-5 units, Win (Bernstein)
HISTORY 166. Introduction to African American History: The Modern African American Freedom Struggle 4-5 units, Spr (Carson)
HISTORY 245E. Health and Society in Africa 5 units, Spr (Roberts)
HISTORY 245G. Law and Colonialism in Africa 4-5 units (Roberts) not given 2005-06
HISTORY 246. Successful Futures for Africa: An Inventory of the 1970s-2000s 5 units, Aut (Jackson)
HISTORY 246S. Popular Culture in Africa 5 units (Jackson) not given 2005-06
HISTORY 248. Islam in Africa 4-5 units, Aut (Hanretta)
SCHOOL OF HUMANITIES AND SCIENCES

HISTORY 248S. African Societies and Colonial States
5 units (Roberts) not given 2005-06

HISTORY 249S. Reappraising Two African Nationalists
5 units, Win (Jackson)

HISTORY 275. Slavery in the Americas
5 units (Klein) not given 2005-06

HISTORY 299M. Undergraduate Directed Research: Martin Luther King, Jr., Papers Project
1-4 units, Aut, Win (Carson)

INTERNATIONAL RELATIONS

INTNLREL 111. Education for All? The Global and Local in Public Policy Making in Africa
5 units, Spr (Samoff)

LINGUISTICS

LINGUIST 65. African American Vernacular English
3-5 units (Rickford) not given 2005-06

LINGUIST 152. Pidgin and Creole Sociolinguistics
2-4 units (Rickford) not given 2005-06

LINGUIST 153. Ebonics and Other Vernaculars in Schools and Society
4 units (Rickford) not given 2005-06

LINGUIST 159. Language in the U.S.
3-5 units (Rickford) not given 2005-06

MUSIC

MUSIC 18A. Jazz History: Ragtime to Bebop, 1900-1940
3 units, Win (Berry)

MUSIC 18B. Jazz History: Bebop to Present, 1940-Present
3 units, Spr (Berry)

MUSIC 20A. Jazz Theory
3 units, Aut (Nadel)

MUSIC 20B. Advanced Jazz Theory
3 units (Nadel) alternate years, given 2006-07

MUSIC 20C. Jazz Arranging and Composition
3 units, Win (Nadel) alternate years, not given 2006-07

MUSIC 161B. Jazz Orchestra
1 unit, Aut, Win, Spr (Berry)

POLITICAL SCIENCE

POLISCI 136. Philosophical Issues Concerning Race and Racism
4 units (Satz) not given 2005-06

POLISCI 141. The Global Politics of Human Rights
5 units, Win (Karl)

POLISCI 143. Nongovernmental Organizations and Development in Poor Countries
5 units, Spr (Abernethy)

POLISCI 225R. Black Politics in the Post-Civil Rights Era
5 units, Aut (Gay)

POLISCI 325S. Race and Place in American Politics
5 units, Aut (Gay)

PSYCHOLOGY

PSYCH 9N. The Social Psychology of Race, Gender, and Culture
3 units, Spr (Steele)

PSYCH 75. Introduction to Cultural Psychology
5 units (Markus) alternate years, given 2006-07

PSYCH 178. Stigma and Marginality
3 units (Eberhardt) not given 2005-06

PSYCH 180. Social Psychological Perspectives on Stereotyping and Prejudice
3 units (Eberhardt) not given 2005-06

PSYCH 215. Mind, Culture, and Society
3 units, Win (Markus, Steele)

SOCIOLOGY

SOC 141A. Social Class, Race, Ethnicity, Health
5 units, Win (Barr)

SOC 143. Prejudice, Racism, and Social Change
5 units, Spr (Bobo) not given 2005-06

SOC 144. Race and Crime in America
5 units, Spr (Bobo)

SOC 145. Race and Ethnic Relations
5 units, Win (Bobo)

SOC 148. Racial Identity
5 units (McDermott) not given 2005-06

SOC 149. The Urban Underclass
5 units, Spr (Rosenfeld)
AFRICAN STUDIES

Chair: Richard Roberts

Professors: John Baugh (Education), Joel Beinin (History), Russell Berman (Comparative Literature, German Studies), Martin Carnoy (Education), James Ferguson (Cultural and Social Anthropology), George M. Fredrickson (History), William B. Gould (Law), Terry Lynn Karl (Political Science), Lynn Meskell (Cultural and Social Anthropology), Richard Randell (Art and Art History), John Rickford (Linguistics, African and African American Studies), Richard Roberts (History)

Associate Professors: Elisabeth Mudimbe-Boyin (French and Italian, Comparative Literature), Paulla A. Ebron (Cultural and Social Anthropology), Akhil Gupta (Cultural and Social Anthropology), Kennell A. Jackson, Jr. (History), Bruce Lusignan (Electrical Engineering), Liisa Malkki, (Cultural and Social Anthropology), Robert Siegel (Microbiology and Immunology)

Associate Professor (Research): David Katzenstein (School of Medicine)

Assistant Professors: David DeGusta (Anthropological Sciences), Oliver Fringer (Civil and Environmental Engineering), Sonia Grier (Business), Sean A. Hanretta (History), Barbara Martinez-Ruiz (Art History), Joanna Mountain (Anthropological Sciences), Jeremy Weinstein (Political Science)

Senior Lecturers: Khalil Barhoun (Linguistics, African and Middle Eastern Languages), Timothy Stanton (Health Research and Policy)

Lecturer: Angaluki Muaka (African and Middle Eastern Languages)

Consulting Professor: Joel Samoff (Center for African Studies)

Curators: Peter Duignan (Senior Fellow, emeritus, Hoover Institution), Karen Fung (African Collection Curator, Green Library), Thomas Seligman (Director, Cantor Arts Center, and Lecturer, Art and Art History), Manuel Jordan (Curator, Oceania and Africana Collection, Cantor Arts Center)

Senior Research Fellows: Larry Diamond (Hoover Institution), Stephen Stedman (CISAC)

Center Office: Building 240, Room 104
Mail Code: 94305-2152
Phone: (650) 723-0295
Email: ccapper@stanford.edu

Web Site: http://www.stanford.edu/dept/AFR/

Courses given in African Studies have the subject code AFRICAST. For a complete list of subject codes, see Appendix.

The Committee on African Studies coordinates an interdisciplinary program in African Studies for undergraduate and graduate students. Under special arrangement with the Stanford/Berkeley Joint Center for African Studies, it is possible to incorporate courses from both institutions into one’s program. Contact the center for information regarding courses offered at the University of California at Berkeley.

Courses in African Studies are offered by departments and programs throughout the University. Each year the committee sponsors a seminar to demonstrate to advanced undergraduate and graduate students how topics of current interest in African Studies are approached from different disciplinary perspectives. Each week’s presentation is conducted by a different professor; the first hour is a lecture, followed by a one-hour seminar discussion.

Course offerings in African languages are also coordinated by the Committee on African Studies. Along with regular courses in several levels of Swahili and Arabic, the committee arranges with the African and Middle Eastern Languages and Literatures Program in the Stanford Language Center to offer instruction in other African languages; in recent years, it has offered courses in Amharic, Bambara, Chichewa, Ewe, Fulani, Hausa, Maninka, Northern Sotho, Shona, Twi, Yoruba, and Wolof.

The Committee on African Studies does not sponsor degree programs, but undergraduates and graduate students can specialize in African Studies under a number of arrangements listed below.

UNDERGRADUATE PROGRAMS

Undergraduates may choose an African Studies focus from:

1. A major in a traditionally defined academic department (for example, Anthropological Sciences, Cultural and Social Anthropology, History, Political Science). These departments afford ample opportunity to enroll in courses outside the major, leaving the student free to pursue the interdisciplinary study of Africa.

2. Interdepartmental majors, such as African and African American Studies or International Relations, which offer coordinated and comprehensive interdisciplinary course sequences, permitting a concentration in African Studies.

3. An individually designed major. Under the supervision of a faculty adviser and two other faculty members, the student can plan a program of study focused on Africa that draws courses from any department or school in the University. If approved by the Dean’s Advisory Committee on Individually Designed Majors, the program becomes the curriculum for the B.A. degree.

MINORS

The Committee on African Studies awards a minor in African Studies. Students majoring in any field qualify for this minor by meeting the following requirements:

1. Taking a minimum of 25 units of African-related courses. Students may not overlap (double-count) courses for completing major and minor requirements.

2. Having at least one quarter’s exposure to a sub-Saharan African language. Africa is a linguistically heterogeneous region, and most Africans are multilingual. Learning an African language is an excellent way to learn about African cultures. The Center for African Studies and the Special Languages Program may arrange instruction in any of several languages spoken in West, East, Central, and Southern Africa.

3. Completing one introductory course that deals with more than one region of Africa.

4. Writing a minimum 25-page research paper, with a clear focus on Africa. This paper may be an extension of a previous paper written for an African Studies course.

5. Designate a focus of study (either disciplinary or regional) through a three-course concentration.

Upon satisfactory completion of all requirements, final certification of the minor is made by the Center for African Studies and appears on the student’s transcript.

CERTIFICATE

Students may apply for a certificate in African Studies. Requirements for the certificate are the same as for the minor; however students may double count courses applied toward their major or graduate studies. The principal difference between the minor and the certificate, however, is that the certificate does not appear on the transcript. For more information and an application, contact the center.

GRADUATE STUDY

For those who wish to specialize in Africa at the graduate level, African Studies can be designated a field of concentration within the master’s and doctoral programs of some academic departments. Students in such departments as Anthropological Sciences, Cultural and Social Anthropology, History, Political Science, and Sociology, and in the School of Education, may declare African Studies as the area of specialization for their master’s and Ph.D. thesis work. Some other departments, programs, and institutes such as International Policy Studies, International Relations, and the International Comparative Education Program also permit students to specialize in African Studies. Stanford graduate students...
who are U.S. citizens or permanent residents may request an academic year application for a Foreign Language and Area Studies (FLAS) Fellowship. The academic year FLAS application deadline is mid-January. For summer FLAS applications, the deadline is mid-April. Students need not be enrolled at Stanford to apply for the summer fellowship. For more information or an application, contact the center.

COURSES

AFRICAST 200. The HIV/AIDS Epidemic in Tanzania: A Pre-Field Seminar — Goal is to prepare students for an HIV/AIDS prevention, service-learning experience in Tanzania. Topics include: history of HIV/AIDS epidemic globally and in Tanzania; social and economic impact of AIDS; national and societal responses; ethical issues in crosscultural service learning; teaching for prevention; biology of HIV transmission, disease progression, and prevention; introduction to Tanzanian history and politics; HIV/AIDS and development; social, cultural, and economic context of HIV risk; and strategies for HIV prevention in Tanzania.

1 unit, Spr (Hoagland)

AFRICAST 200A. Bledi, Bledi: North African Youth and Contested Identities in Urban France, 1970-2004 — The intersections between popular culture and Maghribi immigrant life in France through film. How Maghribi identity has shifted over the past thirty years. Focus is on French ghetto life and the portrayal in film of issues such as immigration and citizenship, poverty and unemployment, racism, Islam and the secular Republic, and family and community.

1 unit (Gutelius) not given 2005-06

INTERDEPARTMENTAL OFFERINGS

See respective department listings for course descriptions and General Education Requirements (GER) information.

AFRICAN AND AFRICAN AMERICAN STUDIES

AFRICAAM 101. African American Lecture Series

1-3 units, Aut, Win, Spr (Grant)

AFRICAAM 105. Introduction to African and African American Studies

5 units, Aut (Carson)

AFRICAN AND MIDDLE EASTERN LANGUAGES

For courses in African and Middle Eastern language instruction with the subject code AMELANG, see the “Language Center” section of this bulletin.

ART HISTORY

ARTHIST 191A/391A. Art and Divination in Sub-Saharan Africa

5 units, Aut (Jordan)

ARTHIST 192/392. Introduction to African Art

5 units, Spr (Martinez-Ruiz)

ARTHIST 292. African Art and Museum Display

5 units, Win (Martinez-Ruiz)

COMPARATIVE LITERATURE

COMPLIT 141. Literature and Society: Introduction to Francophone Literature from Africa and the Caribbean

3-5 units, Spr (Boyì)

COMPLIT 246. Rethinking Identities in the Era of Globalization

3-5 units, Spr (Boyì)

CULTURAL AND SOCIAL ANTHROPOLOGY

CASA 90. Theory of Cultural and Social Anthropology

5 units, Win (Ebron)

CASA 108. History of Archaeological Thought — (Same as ARCHLGY 103.)

5 units, Spr (Meskell)

CASA 151/251. Cultural Studies

5 units, Aut (Ebron)

CASA 163. The Politics of Humanitarianism

5 units, Aut (Malkki)

CASA 169/269. Children and the Politics of Culture

5 units, Aut (Malkki)

CASA 310. Intersections

5 units, Win (Malkki, Meskell)

DANCE

DANCE 43. Afro-Brazilian and Afro-Peruvian Dance

2 units, Win (Cashion)

DANCE 51. West African Dance

2 units, Aut (Malonga)

ECONOMICS

ECON 106. World Food Economy

5 units, Win (Falcon, Naylor)

ECON 118. Development Economics

5 units, Aut (Staff)

EDUCATION

EDUC 107/307B. The Politics of International Cooperation in Education

3-4 units, Win (Staff)

EDUC 202. Introduction to Comparative and International Education

4-5 units, Aut (Staff)

EDUC 202I. Education Policy Workshop in International and Comparative Education

3-4 units, Spr (Staff)

EDUC 306A. Education and Economic Development

5 units, Aut (Carnoy)

ENGINEERING

ENGR 297A,B,C. Ethics of Development in a Global Environment

1-4 units, A: Aut (Lusignan), B: Win, C: Spr (Staff)

FRENCH LITERATURE

FRENLIT 133. Literature and Society: Introduction to Francophone Literature from Africa and the Caribbean

3-5 units, Spr (Boyì)

FRENLIT 278. Rethinking Identities in the Era of Globalization

3-5 units, Spr (Boyì)

HISTORY

HISTORY 46S. Photography and African History

5 units, Aut (Jackson)

HISTORY 48Q. South Africa: Contested Transitions

3 units, Win (Samoff)

HISTORY 48S. Modern Africa through Its Cities

5 units, Spr (Petrocelli)

HISTORY 49N. The Slave Trade

4 units, Win (Roberts)

HISTORY 145A. Power and Knowledge in Early African History

5 units, Win (Hanretta)

HISTORY 147G. African History in Novels and Film

5 units, Spr (Jackson)
HISTORY 150X. Introduction to African and African American Studies
5 units, Aut (Carson)

HISTORY 181. Palestine Zionism and the Arab-Israeli Conflict
5 units, Aut (Beinin)

HISTORY 245E. Health and Society in Africa
5 units, Spr (Roberts)

HISTORY 245G. Law and Colonialism in Africa
4-5 units (Roberts) not given 2005-06

HISTORY 246. Successful Futures for Africa: An Inventory of the 1970s-2000s
5 units, Aut (Jackson)

HISTORY 246S. Popular Culture in Africa
5 units (Jackson) not given 2005-06

HISTORY 247S. Intellectual and Cultural History of Modern Africa
5 units (Hanretta) not given 2005-06

HISTORY 248. Islam in Africa
4-5 units, Aut (Hanretta)

HISTORY 248S. African Societies and Colonial States
5 units (Roberts) not given 2005-06

HISTORY 249. History Without Documents in Africa.—(Same as 349.)
5 units, Spr (Hanretta)

HISTORY 249S. Reappraising Two African Nationalists
5 units, Win (Jackson)

HISTORY 287S. Research Seminar on the Modern Middle East
3-5 units (Beinin) not given 2005-06

HISTORY 345A. Core Colloquium: Precolonial Africa
4-5 units (Roberts) not given 2005-06

HISTORY 345B. Core Colloquium African History: The Colonial Period
4-5 units, Win (Roberts)

INTERNATIONAL RELATIONS
INTNLREL 111. Education for All? The Global and Local in Public Policy Making in Africa
5 units, Spr (Samoff)

INTNLREL 161A. Global Human Geography: Asia and Africa
5 units, Aut (M.W. Lewis)

MEDICINE
MED 93Q. The AIDS Epidemic: Biology, Behavior, and Global Responses
3 units, Aut (Katzenstein)

POLITICAL SCIENCE
POLISCI 114T. Major Issues in International Conflict Management
5 units, Spr (Stedman)

POLISCI 141. The Global Politics of Human Rights
5 units, Win (Karl)

POLISCI 143. Nongovernmental Organizations and Development in Poor Countries
5 units, Spr (Abernethy)

POLISCI 147. Comparative Democratic Development
5 units, Win (Diamond)

POLISCI 343R. African Civil Wars in Comparative Perspectives: A Research Seminar
5 units, Aut (Weinstein)

AMERICAN STUDIES

Director: Shelley Fisher Fishkin

Program Coordinators: Joseph Corn, Richard Gillam

Administrative Committee: Barton J. Bernstein (History), David Brady (Political Science), Henry Breitrose (Communication), Scott Bukatman (Art and Art History), Gordon H. Chang (History), Wanda Corn (Art and Art History), Arnold Eisen (Religious Studies), Michele B. Elam (English), Jay Fliegelman (English), Estelle Freedman (History), Nicholas Jenkins (English), Gavin Jones (English), Doug McAdam (Sociology), Hilton Obenzinger (English), David Palumbo-Liu (Comparative Literature), Jack Rakove (History), Rob Reich (Political Science), Ramón Saldívar (English, Comparative Literature), Fred Turner (Communication), Barry Weingast (Political Science), Richard White (History), Bryan Wolf (Art and Art History, on leave), Gavin Wright (Economics)

Program Offices: Building 250, Room 251F
Mail Code: 94305-2020
Phone: (650) 723-3413
Email: idstudies.moore@stanford.edu
Web Site: http://www.stanford.edu/group/HSP/AmStud/

Courses given in American Studies have the subject code AMSTUD. For a complete list of subject codes, see Appendix.

The American Studies program is administered through the office of Interdisciplinary Studies in Humanities.

UNDERGRADUATE PROGRAMS

BACHELOR OF ARTS

American Studies is an interdisciplinary undergraduate major that seeks to convey a broad understanding of American culture and society. Building on a foundation of courses in history and institutions, literature and the arts, and race and ethnicity, students bring a range of disciplines to bear on their efforts to analyze and interpret America’s past and present, forging fresh and creative syntheses along the way.

The core requirements illustrate how different disciplines approach the study and interpretation of American life and include three courses in each of two main areas: history and institutions; and literature, art, and culture. The required gateway seminar, AMSTUD 160, Perspectives on American Identity, explores the tensions between commonality and difference from a variety of disciplinary perspectives.

Beyond the core requirements of the major, American Studies expects students to define and pursue their own interests in interpreting important dimensions of American life. Accordingly, each student designs a thematic concentration of at least five courses drawn from fields such as history, literature, art, communication, theater, political science, and American studies, feminist studies, economics, cultural and social anthropology, religious studies, Chicana/o studies, law, sociology, education, Native American studies, music, and film. At least one of the five courses in a student’s thematic concentration should be a small group seminar or a colloquium. With program approval, students may conclude the major with a capstone honors research project during their senior year.

Whether defined broadly or narrowly, the thematic focus or concentration should examine its subject from the vantage of multiple disciplines. Examples of concentrations include: race and the law in America; gender in American culture and society; technology in American life and thought; health policy in America; art and culture in 19th-century America; education in America: nature and the environment in American culture; politics and the media; religion in American life; borders and boundaries in American culture; the artist in American society, and civil rights in America.

To illustrate how different disciplines approach the study of American life, the major requires undergraduates to take three courses in each of two main areas (history and institutions, and literature, art, and culture), at least one additional course in Comparative Race and Ethnicity, and AMSTUD 160, Perspectives on American Identity. Completion of the
major thus normally requires 13 courses (totaling at least 60 units), all of which must be taken for a letter grade.

The course requirements for the American Studies major are:

1. History and Institutions—All American Studies majors are required to complete three foundation courses in American History and Institutions. Specific requirements are: HISTORY 150A, Colonial and Revolutionary America, and HISTORY 150B, 19th-Century America. The third course may be chosen from one of the following: AMSTUD 179, Introduction to American Law; AMSTUD 151, The Transformation of American Thought and Culture, 1865 to the Present (not given 2005-06); ECON 116, American Economic History; HISTORY 158, The United States since 1945; POLSCI 12, American National Government and Politics.

2. Literature, Art, and Culture—Majors must take three gateway courses that, together, cover the broad range of the American experience. Specific requirements are:
 a. at least one course focusing on the period before the Civil War, normally AMSTUD 150, American Literature and Culture to 1855.
 b. two additional courses, including at least one from Art or Drama. Choices include but are not limited to: AMSTUD 138C, Huckleberry Finn and American Culture; AMSTUD 164, American Spaces: An Introduction to Material Culture and the Built Environment; ARTHIST 132, American Art and Culture, 1528-1860 (not given 2005-06); ARTHIST 178, Ethnicity and Dissent in United States Art and Literature (not given 2005-06); DRAMA 163, Performance and America; ENGLISH 143, Introduction to Afro-American Literature (not given 2005-06); ENGLISH 146C, Hemingway, Hurston, Faulkner, and Fitzgerald; ENGLISH 152D, W.E.B. Du Bois and American Culture.

3. Comparative Race and Ethnicity—All majors are required to take one course in Comparative Studies of Race and Ethnicity (CSRE) that focuses on comparative studies rather than a single racial or ethnic group (5 units). Courses that satisfy this requirement include: HISTORY 64, Introduction to Race and Ethnicity in the American Experience; CASA 88, Theories of Race and Ethnicity; SOC 145, Race, Ethnic Relations; COMPLIT 148, Introduction to Asian American Cultures; and COMPLIT 241, Comparative Fictions of Ethnicity. If a CSRE course is appropriate for a student’s thematic focus, the course may be used to satisfy both this requirement and, in part, the unit requirement for the focus.

4. Gateway Seminar—All majors are required to take AMSTUD 160, Perspectives on American Identity (5 units), which is the Writing in the Major (WIM) course for American Studies. For majors declaring prior to 2004-05, this course counts as AMSTUD 200.

5. Thematic Concentration and Capstone Seminar—All students must design a thematic concentration of at least 5 courses. The courses, taken together, must give the student in-depth knowledge and understanding of a coherent topic in American cultures, history, and institutions. With the help of faculty advisers, students are required to design their own thematic concentrations, preferably by the end of registration period, Autumn quarter of the junior year. Sample thematic concentrations and courses that allow a student to explore them are available in the American Studies Office in Building 250.

At least one of these courses must be a capstone seminar or other group discussion course in the thematic concentration that requires a research paper. The American Studies Program office has a list of courses that satisfy the seminar requirement, but students are encouraged to propose others that fit better with their concentration area.

An independent study course with a faculty member culminating in a research paper for which credit will be given is also acceptable for the minor. Credit for independent study requires a written approval by the Director of American Studies.

MINORS

To earn a minor in American Studies, students must complete at least 28 units of course work in the program. Because students may not count courses for both a major and a minor, the specific courses that are used for an American Studies minor depend on the courses that are used to satisfy the major requirement.

A student must take the following:

1. at least 2 courses from category 1 (History and Institutions)
2. at least 2 courses from category 2 (Literature, Art, and Culture)
3. at least 1 course from category 3 (CSRE)
4. AMSTUD 160.

All courses that are used to satisfy these requirements must be taken for a letter grade.

HONORS PROGRAM

To graduate with honors, American Studies majors must complete a senior thesis and have an overall grade point average of 3.5 in the major, or demonstrated academic competence. Students must apply to enter the honors program no later than the end of registration period in the Autumn Quarter of their senior year, and must enroll in 10-15 units of AMSTUD 250, Senior Research, during the senior year. These units are in addition to the units required for the major. The application to enter the program must contain a one-page statement of the topic of the senior thesis, and must be signed by at least one faculty member who agrees to be the student’s honors adviser. (Students may have two honors advisers.) The thesis must be submitted for evaluation and possible revision to the adviser no later than four weeks before graduation.

Students are encouraged to choose an honors topic and adviser during the junior year. To assist students in this task, American Studies offers a pre-honors seminar in which students learn research skills, develop honors topics, and complete honors proposals. Students also may enroll in the American Studies Honors College during September before the senior year. American Studies also provides students the opportunity to work as paid research assistants for faculty members during the summer between their junior and senior year, which includes participation in a research seminar. More information about American Studies honors is available from the program office.

COURSES

See departmental listings for complete descriptions and University General Education Requirements (GER) notations. Some courses may require prerequisites that do not apply toward the major. See the Time Schedule and Axess each quarter for changes in listings. An up-to-date list is also available in the program office.

AMERICAN STUDIES

AMSTUD 101. American Fiction into Film: How Hollywood Scripts and Projects Black and White Relations—Movies and the fiction that inspires them; power dynamics behind production including historical events, artistic vision, politics, and racial stereotypes. What images of black and white does Hollywood produce to forge a national identity? How do films promote equality between the races? What is lost or gained in film adaptations of books? GER: EC-AmerCul 3-5 units, Win (Mesa)

AMSTUD 114Q. Visions of the 1960s—Stanford Introductory Seminar. Preference to sophomores. Introduction to the ideas, sensibility, and, to a lesser degree, the politics of the American 60s. Topics: the early 60s vision of a beloved community; varieties of racial, generational, and feminist dissent; the meaning of the counterculture; and current interpretive perspectives on the 60s. Film, music, and articles and books. GER: DB-Hum, EC-AmerCul 5 units, Aut (Gillam)

AMSTUD 138C, Huckleberry Finn and American Culture—(Same as ENGLISH 138C.) Preference to majors. From publication to the present, Mark Twain’s Adventures of Huckleberry Finn has generated widespread disagreement over what it is, what it does, and why it should be valued. The literature, history, and popular culture that shaped the novel, and that it helped shape. Topics include vernacular traditions in American literature, the history of racism in American society, and the role of African American voices in shaping the text. GER: DB-Hum 5 units, Win (Fishkin)
AMSTUD 150. American Literature and Culture to 1855.—(Same as ENGLISH 123.) Major issues in early American cultural and literary history; developments in the fine and domestic arts; and methodological issues central to American Studies. Texts include Cotton Mather and Melville. GER:DB-Hum, EC-AmerCul
5 units, Win (Fliegelman)

AMSTUD 151. The Transformation of American Thought and Culture, 1865 to the Present.—Persistent strains and tensions in American intellectual life and culture over the past 140 years. Readings include autobiographies, novels, documentary works, and historical and theoretical analyses that bear on issues of technology and culture, consumerism, mass society, gender, sexuality, violence, political extremism, and power. GER:DB-Hum, EC-AmerCul
5 units (Gilliam) not given 2005-06

AMSTUD 152. American Spaces: An Introduction to Material Culture and the Built Environment.—(Same as HISTORY 164.) American history through the evidence of things, including spaces, buildings, and landscapes of the built environment. How to read such artifacts using methods and theories from anthropology, cultural geography, history, and other disciplines. GER:DB-Hum
5 units, Spr (Corn)

5 units, Win (Corn), Spr (Gilliam)

AMSTUD 169. Introduction to American Law.—(Same as POLISCI 122, LAW 106.) For undergraduates. The structure of the American legal system including the courts; American legal culture; the legal profession and its social role; the scope and reach of the legal system; the background and impact of legal regulation; criminal justice; civil rights and civil liberties; and the relationship between the American legal system and American society in general. GER:DB-SocSci
3-5 units, Aut (Friedman)

AMSTUD 183. Border Crossings and American Identitites.—(Same as CASA 183D/283D.) How novelists, filmmakers, and poets perceive racial, ethnic, gender, sexual preference, and class borders in the context of a national discussion about the place of Americans in the world. How Anna Deavere Smith, Sherman Alexie, or Michael Moore consider redrawing such lines so that center and margin, or self and other, do not remain fixed and divided. How linguistic borderlines within multilingual literature by Caribbean, Arab, and Asian Americans function. Can Anzaldúa’s conception of borderlands be constructed through the matrix of language, dreams, music, and cultural memories in these American narratives? Course includes examining one’s own identity. GER:DB-Hum, EC-AmerCul
5 units, Win (Duffey)

AMSTUD 185. American Studies Internship.—Restricted to declared majors. Practical experience working in a field related to American Studies for six to ten weeks. Students make internship arrangements with a company or agency, under the guidance of a sponsoring faculty member, and with the consent of the director or a program coordinator of American Studies. Required paper focused on a topic related to the internship and the student’s studies. May be repeated for credit.
1-3 units, Aut, Win, Spr, Sum (Staff)

AMSTUD 210. Research Seminar in American Studies.—(Same as ENGLISH 195A.) For juniors and seniors who wish to pursue a paper topic or research question beyond the confines of a traditional course. Students meet individually and in a tutorial setting with the professor to discuss projects, participate in small group discussions, and present a chapter of a senior thesis, thesis prospectus, or research paper. Limited enrollment. May be repeated for credit.
2 units, Aut, Win, Spr (Jones)

AMSTUD 214. The American 1960s: Thought, Protest, and Culture.—The meaning of the American 60s emphasizing ideas, culture, protest, and the new sensibility that emerged. Topics: black protest, the new left, the counterculture, feminism, the new literature and journalism of the 60s, the role of the media in shaping dissent, and the legacy of 60s protest. Interpretive materials from film, music, articles, and books. GER:DB-Hum, EC-AmerCul
5 units, Aut (Gilliam)

AMSTUD 221. Public and Professional Service: Theories and Ethical Practice of Public and Community Service.—Values, traditions, policies, and politics of community service as practiced by professionals. Through weekly seminars integrated with concurrent community service work, students consider perspectives on topics including social responsibility, altruism versus obligation, charity, and justice, public leadership, and organization of communities and their development.
3 units, Spr (Stanton)

AMSTUD 240. Pre-Honors Seminar.—Methods, interpretations, and issues pertinent to honors work in American Studies. Open to juniors interested in honors.
2-5 units, Win (Gilliam)

AMSTUD 250. Senior Research.—Research and writing of senior honors thesis under the supervision of a faculty member. The final grade for the thesis is assigned by the chair based on the evaluations of the primary thesis adviser and a second reader appointed by the program. Prerequisite: consent of chair.
1-15 units, Aut, Win, Spr, Sum (S. Fishkin)

AMSTUD 280. Recent American Cinema, 1990-2000.—Recent American cinema, in the context of the 1990s. Required for American Studies majors. 3 units, Win (Hanna) not given 2005-06

INTERDEPARTMENTAL OFFERINGS
AFRICAN AND AFRICAN AMERICAN STUDIES
AFRICAM 105. Introduction to African and African American Studies
5 units, Aut (Carson)

ART HISTORY
ARTHIST 132. American Art and Culture, 1528-1860
4 units (Wolf) not given 2005-06

ARTHIST 133. American Art in the Gilded Age
4 units (Corn) not given 2005-06

ARTHIST 151. Transatlantic Modernism: Paris and New York in the Early 20th Century
4 units (Corn) not given 2005-06

ARTHIST 152A/352A. American Art and Visual Culture from Ragtime to Swingtime
4 units (Todd)

ARTHIST 178. Ethnicity and Dissent in United States Art and Literature
4 units (Wolf) not given 2005-06

ARTHIST 233A. Gender and the American Artist, 1893-1935
5 units, Win (Todd)

ARTHIST 233B. Childhood and National Identity in 19th-Century America
5 units, Spr (Perry)

ARTHIST 251. Frank Lloyd Wright
5 units, Spr (Turner)

COMMUNICATION
COMM 1A/211. Media Technologies, People, and Society
4-5 units, Aut (Nass)

COMM 1B. Media, Culture, and Society
5 units, Win (Iyengar, Turner)
COMM 117/227. Digital Journalism
4-5 units, Win (Rheingold)

COMM 120. Digital Media in Society
4-5 units, Spr (Turner)

COMM 122A. The Documentary Tradition
4-5 units, Aut (Breitrose)

COMM 125. Perspectives on American Journalism
4-5 units, Win (Glasser)

COMM 131. Media Ethics and Responsibilities
4-5 units (Glasser) not given 2005-06

COMM 136. Democracy and the Communication of Consent
4-5 units, Aut (Fishkin)

COMM 148. Hip-Hop and Don’t Stop: Introduction to Modern Speech Communities
4-5 units, Win (Morgan)

COMM 160/260. The Press and the Political Process
4-5 units, Win (Iyengar)

COMM 162. Analysis of Political Campaigns
4-5 units, Aut (Iyengar)

COMPARATIVE LITERATURE
COMPLIT 41Q. Ethnicity and Literature
3-5 units, Aut (Palumbo-Liu)

COMPLIT 148. Introduction to Asian American Cultures
3-5 units, Win (Palumbo-Liu)

COMPLIT 241. Comparative Fictions of Ethnicity
5 units, Spr (Palumbo-Liu)

CULTURAL AND SOCIAL ANTHROPOLOGY
5 units, Win (Wilcox)

CASA 88. Theories in Race and Ethnicity
5 units, Aut (Yanagisako)

CASA 132. Science, Technology, and Gender
3-5 units (Jain) not given 2005-06

CASA 144. Sex, Blood, Kinship, and Nation
5 units (Delaney) not given 2005-06

DRAMA
DRAMA 110. Cartographies of Race: The Institute for Diversity in the Arts at Stanford
5 units, Win (H. Elam)

DRAMA 163. Performance and America
5 units, Aut (H. Elam)

DRAMA 180Q. Noam Chomsky: The Drama of Resistance
3 units, Win (Rehm)

ECONOMICS
ECON 50. Economic Analysis I
5 units, Aut (Tendall), Win (Abramitzky)

ECON 116. American Economic History
5 units, Spr (Wright)

ECON 155. Environmental Economics and Policy
5 units, Spr (Goulder)

ECON 158. Antitrust and Regulation
5 units, Spr (Rosston, Noll)

EDUCATION
EDUC 177. Education of Immigrant Students: Psychological Perspectives
4 units, Win (Padilla)

EDUC 201A. History of African American Education
3-4 units, Aut (Williamson)

EDUC 212X. Urban Education
3-4 units, Spr (McDermott)

EDUC 220B. Introduction to the Politics of Education
4 units, Spr (Kirst)

ENGLISH
ENGLISH 21. Masterpieces of American Literature
3-5 units, Win (Obenzinger)

ENGLISH 56N. Mixed Race in the New Millennium
3 units, Aut (M. Elam)

ENGLISH 68N. Mark Twain and American Culture
4 units, Aut (Fishkin)

ENGLISH 121. Masterpieces of American Literature
3-5 units, Win (Obenzinger)

ENGLISH 123A. American Women Writers, 1850-1920
5 units, Spr (Richardson)

ENGLISH 139E. Irish American Literature
5 units, Aut (Jockers)

ENGLISH 146C. Hemingway, Hurston, Faulkner, and Fitzgerald
5 units, Aut (Jones)

ENGLISH 152D. W.E.B. Du Bois and American Culture
5 units, Win (M. Elam)

ENGLISH 172D. Introduction to Comparative Studies in Race and Ethnicity
5 units, Win (Markus, Moya)

ENGLISH 180F. American Book History, 1660-1860
5 units, Spr (Fliegelman)

ENGLISH 186. Tales of Three Cities: New York, Chicago, Los Angeles
5 units, Win (Richardson)

HISTORY
HISTORY 53N. Reflections on the American Condition: American History through Literature
4 units, Aut (Kennedy)

HISTORY 59. Introduction to Asian American History
5 units, Aut (Chang)

HISTORY 64. Introduction to Race and Ethnicity in the American Experience
5 units, Aut (Camarillo)

HISTORY 150A. Colonial and Revolutionary America
5 units, Aut (Rakove)

HISTORY 150B. 19th-Century America
5 units, Win (White)

HISTORY 150C. The United States in the Twentieth Century
5 units (Staff) not given 2005-06

HISTORY 154. 19th-Century U.S. Cultural and Intellectual History
5 units, Spr (Winterer)

HISTORY 158. The United States Since 1945
4-5 units, Win (Bernstein)

HISTORY 161. U.S. Women’s History, 1890s-1900s
5 units, Spr (Freedman)
HISTORY 162. Introduction to Chicana/o Life and Culture
5 units (Camarillo, Moya) not given 2005-06

HISTORY 166. Introduction to African American History: The Modern African American Freedom Struggle
4-5 units, Spr (Carson)

HISTORY 251. Creating the American Republic
5 units, Win (Rakove)

HISTORY 252. Decision Making in International Crises: The A-Bomb, the Korean War, and the Cuban Missile Crisis
5 units, Aut (Bernstein)

HISTORY 254. Popular Culture and American Nature
5 units, Spr (White)

HISTORY 256. U.S.-China Relations: From the Opium War to Tiananmen
5 units, Win (Chang)

HISTORY 257. The Politics and Ethics of Modern Science and Technology
5 units (Bernstein) not given 2005-06

HISTORY 258. History of Sexuality in the U.S.
5 units, Aut (Freedman)

HISTORY 259A,B. Poverty and Homelessness in America
5 units (Camarillo) not given 2005-06

HISTORY 260. Race and Ethnicity in the American Metropolis: A Case Study of Los Angeles
5 units, Win (Camarillo)

HISTORY 264. California History
5 units (Camarillo) not given 2005-06

HISTORY 265. New Research in Asian American History
5 units, Spr (Chang)

HISTORY 267E. The Suburban West
5 units (O’Mara) not given 2005-06

HISTORY 267F. Cities in the North American West, 1840-1940
4-5 units (O’Mara) not given 2005-06

HUMAN BIOLOGY
HUMBIO 102B. Children, Youth, and the Law
5 units, Win (Abrams)

HUMBIO 131. Natural Resources Policy
5 units, Spr (Rosencranz)

HUMBIO 160. Health Care in America: The Organizations and Institutions that Shape the Health Care System
4 units, Aut (Barr)

HUMBIO 160A. American Health Policy
3 units, Spr (G. Heller, Lee)

HUMBIO 166. The Death Penalty: Human Biology, Law, and Policy
3 units, Aut, Spr (Abrams)

LINGUISTICS
LINGUIST 153. Ebonics and Other Vernaculars in Schools and Society
4 units (Rickford) not given 2005-06

LINGUIST 156. Language and Gender
4 units, Win (Eckert)

MUSIC
MUSIC 8A. Rock, Sex, and Rebellion
3 units (Applebaum) not given 2005-06

MUSIC 18A. Jazz History: Ragtime to Bebop, 1900-1940
3 units, Win (Berry)

MUSIC 18B. Jazz History: Bebop to Present, 1940-Present
3 units, Spr (Berry)

PHILOSOPHY
PHIL 177. Philosophical Issues Concerning Race and Racism
4 units (Satz) not given 2005-06

POLITICAL SCIENCE
POLISCI 2. Introduction to American National Government and Politics
5 units, Win (Ferejohn, Fiorina)

POLISCI 120A. American Political Sociology and Public Opinion: Who We Are and What We Believe
5 units (Fiorina, Sniderman) not given 2005-06

POLISCI 120B. Parties, Interest Groups, the Media, and Elections
5 units, Aut (Sprague)

POLISCI 120C. American Political Institutions: Congress, the Executive Branch, and the Courts
5 units, Win (Rutten)

POLISCI 121. Urban Politics
5 units, Win (Fraga)

POLISCI 123. Politics and Public Policy
5 units, Spr (Sprague)

5 units, Aut (Rutten)

POLISCI 124S. Judicial Politics and Constitutional Law: Civil Liberties
5 units, Win (Rutten)

POLISCI 124T. Legislatures, Courts, and Public Policy
5 units, Spr (Rutten)

POLISCI 148S. The U.S. and Asia During the Cold War
5 units, Win (Miller)

POLISCI 151A. Doing Political Science
5 units (Fiorina, Jackman) not given 2005-06

POLISCI 221R. Urban Policy
5 units, Aut (Fraga)

POLISCI 221S. Civic Capacity and Urban Youth
5 units, Aut (Fraga)

POLISCI 223S. The Imperial Temptation: U.S. Foreign Policy in a Unipolar World
5 units, Aut (Joffe)

POLISCI 226S. Asian Americans in Politics
5 units, Spr (Wong)

PUBLIC POLICY
PUBLPOL 194. Technology Policy
5 units, Win (Windham)

RELIGIOUS STUDIES
RELIGST 2N. Prophecy and Politics in America: The Thought of Abraham Joshua Heschel and Martin Luther King, Jr.
3 units, Spr (Eisen)

RELIGST 53. Jews and Judaism in America
4 units (Eisen) not given 2005-06

SCIENCES, TECHNOLOGY, AND SOCIETY
STS 101. Science, Technology, and Contemporary Society
4-5 units, Aut (McGinn)
SCHOOL OF HUMANITIES AND SCIENCES

ANTHROPOLOGICAL SCIENCES

Emeriti: (Professors) Clifford R. Barnett, Harumi Befu, Charles O. Frake, James L. Gibbs, Jr., George D. Spindler, Robert B. Textor
Chair: William H. Durham
Associate Professors: James A. Fox, John W. Rick
Assistant Professors: Ronald L. Barrett, Rebecca Bliege Bird, Melissa J. Brown, David DeGusta, James H. Jones, Joanna L. Mountain, Ian G. Robertson
Assistant Professor (Research): Douglas Bird
Lecturers: Katharine S. Barrett, Libra R. Hilde, Merritt Ruhlen, James Truncer
Consulting Professors: Nina G. Jablonski, William L. Rathje, Armin Rosencranz
Consulting Associate Professor: Dominique Irvine
Affiliated Faculty: William Barnett, Christopher Bobonich, Carol Boggs, Luca Cavalli-Sforza, John Dolph, Marcus W. Feldman, John A. Gosling, Ellen Porzig, Robert Sapolsky

Mail Code: 94305-2117
Phone: (650) 736-2674
Web Site: http://www.stanford.edu/dept/anthsci

Courses given in Anthropological Sciences have the subject code ANTHSCI. For a complete list of subject codes, see Appendix.

The Department of Anthropological Sciences (ANTHSCI) takes as its subject matter the nature and evolution of our species. The department offers students training in archaeology, cultural anthropology, demography, ecology, environmental anthropology, evolutionary theory, genetics, linguistic anthropology, medical anthropology, paleoanthropology, and primatology. Specialties and interests of individual faculty members include ethnomedicine, infectious diseases, human mortality, demography, ethics, ethnic identity, gender, genetic and cultural evolution, historical linguistics and linguistic anthropology, human environments and adaptations, human origins, hunters and gatherers, resource management, community-based conservation, materialism, molecular anthropology, social and psychological anthropology, and tools and technology. The department is united by a common interest in the interrelations of biology, culture, and environment, and by a commitment to a scientific approach to anthropology.

The departmental curriculum includes courses at three levels, designed to: (1) expose undergraduates to the theories, methods, and substance of the anthropological sciences; (2) provide undergraduate majors and minors with a program of work leading to the bachelor’s degree; and (3) prepare candidates for advanced degrees in the discipline. Students are also encouraged to pursue ethnographic area studies building on existing faculty research in Asia, Latin America, and North America.

The department offers an undergraduate Bachelor of Arts degree. Undergraduates may elect to specialize in any one of four concentrations: (1) Culture, Social Relations, and Language; (2) Archaeology and Evolutionary Studies; (3) Population and Environment; and (4) Medical Anthropology and Genetics. Within each of these concentrations, students work with their faculty adviser to design a course of study that includes at least one course from each of five areas of the human evolution framework, described below: human nature and variation; human history and prehistory; human evolutionary processes and their interactions; cultural systems and cultural transmission; and laboratory and field methods. The framework is designed to ensure that students of all specializations receive a grounding in evolutionary thinking and analysis.

The department offers three graduate degrees: Master of Science, Master of Arts, and the Doctor of Philosophy. The graduate curriculum encourages students to pursue both breadth across the anthropological sciences and individual interests and projects under the supervision of a faculty committee. The backbone of the graduate program is a department-wide Core Seminar devoted to ongoing discussion of issues and approaches in the anthropological sciences. An active Teaching Assistant Training Program, focused on students in the second year of the Ph.D.
ANTHSCI must fulfill the following requirements:

1. Complete course work equivalent to 65 units, with at least 45 units in Anthropological Sciences. The remaining 20 units may be taken in any of the related humanities, social science, and science departments and programs. Outside courses must form a coherent program of study and must be approved by the student’s adviser. Up to 10 of the 65 units may be in Directed Individual Study.

2. Complete ANTHSCI 2A and 2B (HUMBIO 2A and 2B), or three other introductory courses, numbered 3-19, listed below, each in a different Concentration Track. Students may substitute one introductory area course. numbered 20-39, for one of these three.

3. Complete the theory course ANTHSCI 190, Social Theory in the Anthropological Sciences, with a letter grade of ‘B’ or better. This course fulfills the University’s Writing in the Major Requirement (WIM) and should be taken no later than the junior year.

4. Declare a concentration track and complete at least 25 units in that track. One introductory area course, numbered 20-39, may be included in the concentration track, as long as it is not used as an introductory course (see 2).

5. Complete at least one course from each of the five Human Evolution Framework (HEF) areas below. Note that some courses satisfy multiple areas of the HEF.

6. Complete at least one foreign language course at the second-year level with a letter grade of ‘B’ or better. This requirement may also be met by special examination, presentation of superior foreign language placement scores, or certification in writing from an appropriate department.

7. Complete at least one course in statistics (ANTHSCI 192, BIOSCI 141, STATS 60, PSYCH 60, or equivalent).

CONCENTRATION TRACKS

Concentration tracks are designed to encourage students to acquire in-depth knowledge and training. Undergraduates in the major program may elect to specialize in one of the four tracks described below. Alternatively, students may design their own specialization(s) with the guidance of a faculty adviser. Each student is required to complete 25 units within the chosen track. With consent of their faculty adviser, students may replace one course with a relevant course offered by another department. The 25 units count towards the total of 65 units required for the major.

- Culture, Social Relations, and Language (Track 1)—Emphasizes the unity and diversity of contemporary social, cultural, and linguistic systems. Course offerings include culture and social theory, family, gender, kinship, linguistic anthropology, and political economy. Ethnographic or linguistic area studies are strongly encouraged for students who choose this track.

- Archaeology and Evolutionary Studies (Track 2)—Features primate evolution, human origins and prehistory, and the development of human societies from early hunter-gatherers through complex civilizations. Students choose from courses in anthropological genetics, archaeology, evolutionary theory, historical linguistics, paleoanthropology, and primateology.

- Population and Environment (Track 3)—Explores mutual relationships between human populations and their environments. Biocultural adaptations of human societies to diverse environments are examined, as are the causes and consequences of human impact upon local and global environments. Students choose from courses in behavioral ecology, demography, ecological and environmental anthropology, and selected area studies.

- Medical Anthropology and Genetics (Track 4)—Examines human biological and cultural variation from a variety of perspectives. Within medical anthropology, the focus is on the social, cultural, and genetic correlates of physical and mental health, as well as disease. In anthropological genetics, students explore the extent, origins, and impact of variation among human genomes. Students choose from courses in epidemiology, genetics, and medical anthropology.

HUMAN EVOLUTION FRAMEWORK (HEF)

Crosscutting these concentration tracks is an evolutionary framework designed to familiarize students with the tools of analysis in anthropological sciences. The department divides this framework into five essential components (HEFI-V) as outlined below. Regardless of the concentration...
track, students are required to take at least one course in each of these component areas. Many courses offered by the department satisfy one or more of these requirements as shown by the HEF designations under “Courses” below.

Human Nature and Variation: Past and Present (HEF I):
- Biological nature and variation
- Cultural nature and variation
- Language capability and linguistic variation
- Human universals, human differences

Human History and Prehistory: Inferring Events of the Past (HEF II):
- Population events: movements, splits, admixture, extinctions
- Environmental events: changes in climate, resources, disease
- Species events: adaptation, speciation, species extinction
- Social and cultural events: changes in technology, settlement, language, and social organization

Evolutionary Processes and their Interactions (HEF III):
- Molecular evolution, population genetics, and speciation
- Cultural and linguistic evolution, ethogenesis, social evolution
- Causes and consequences of environmental change
- Interactions of genetic, cultural, and social evolution

Cultural Systems and Cultural Transmission (HEF IV):
- Systemic properties of culture and language
- Transmission of culture in space and time
- Cultural ontology and socialization
- Relationship between individual, society, and culture

Lab and Field Methods: Tools for the Anthropological Sciences (HEF V):
- Laboratory and field methods
- Ethnographic methods
- Data analysis
- Computational models and methods

MAJORS

Declaring a Major — To declare an Anthropological Sciences major, students should first discuss their ideas and plans with one or more department faculty, and with the peer adviser. When they have a good working plan on paper (forms are available from the student services coordinator) for their course of study, they must declare on Axess, obtain the signature of their student and faculty advisers, and contact the department’s student services coordinator who reviews the degree requirements and gives general guidance. It may be helpful for students to meet with the chair of the department’s Student Affairs Committee for initial academic advising and assistance in choosing an appropriate adviser in the department. Students must complete the declaration process (including the signature of their Anthropological Sciences adviser) by the time they achieve junior status (85 units completed).

Undergraduates are actively encouraged to take advantage of funding opportunities to carry out independent research. Funding for undergraduate research is available from Undergraduate Research Programs (URP) grants, affiliated area studies programs (for example, Latin American Studies), the Beagle II Awards, and the department’s own Pritzker Summer Scholars Program and Franz Boas Summer Scholars Program described above. Information and applications for the latter are available from the student services coordinator in the department office.

Advising Program — The department puts high priority on undergraduate advising. Each student works with a peer adviser, as well as a faculty adviser, to design and carry out an Anthropological Sciences major or minor. The advising program is built on a faculty mentoring approach, in order to help students develop a good working relationship with at least one faculty member. Students are expected to meet regularly, and for at least two hours per quarter, with their faculty adviser to discuss their progress and to review course selection, research opportunities, graduate or professional schools, and career planning. The peer adviser is often the first step in seeking advice; the peer adviser keeps regular hours in the peer advising office in the department.

MINORS

Declaring a Minor — The department offers flexibility in structuring an Anthropological Sciences minor. In consultation with both peer and faculty advisers, students develop a minor that reflects their individual interests and needs. Prospective Anthropological Sciences minors should request an Anthropological Sciences Minor Planning Form and Checklist from the department’s student services coordinator. All minors in the Department of Anthropological Sciences must fulfill the following four requirements:

1. Selection of an Anthropological Sciences faculty adviser and approval of the minor courses by both peer and faculty advisers.
2. Completion of 30 units of course work in Anthropological Sciences with an average letter grade of ‘B+’ or better. With the adviser’s approval, up to 10 of the required 30 units may be taken in other social science departments at Stanford. No more than 10 of the 30 units may be taken for an instructor-elected satisfactory/no credit grade. Student-elected satisfactory/no credit units are not allowed.
3. Completion of ANTHSCI 2A and 2B (HUMBIO 2A and 2B) or three introductory courses, numbered 3-19, listed below, each in a different Concentration Track. Students may substitute one introductory area course, numbered 20-39, for one of these three.
4. Completion of at least one course at the 100 level or higher. Please note: Human Biology majors who minor in ANTHSCI may use HUMBIO 2A and 2B to fulfill requirement 3, but may not use it towards requirement 2. That is, students are not required to take an additional 3 introductory courses, but they must take 30 units of ANTHSCI course work other than 2A and 2B.

HONORS

The honors program in Anthropological Sciences provides students with an opportunity to conduct original research under the guidance of a faculty adviser. Declared Anthropological Sciences majors of sophomore or junior standing may apply for admission to the honors program by submitting an application form (available from the student services coordinator), a transcript, a copy of their planned course of study in the major, a proposal of their honors research project and paper, and a formal letter of recommendation from the professor who will supervise the student’s honors project. A minimum average letter grade of ‘B+’ in Anthropological Sciences course work is required for students to enroll in the honors program. For students planning fieldwork as part of their thesis project, all application materials must be completed and turned in no later than March 1 of the candidate’s junior year. For students planning lab- or library-based research projects, applications must be submitted by the third week of Spring Quarter in the candidate’s junior year. Applications are reviewed by the department’s Student Affairs Committee which selects the students who become candidates for honors. Honors projects typically involve field research, but applications for lab or library-based research will be considered.

Throughout honors work, students work closely with their advisers to plan the honors proposal, conduct the research, and write the honors paper. Honors students are strongly encouraged to take ANTHSCI 190 and 192 no later than their junior year and are required to take ANTHSCI 193A, B, Prefield Research, ANTHSCI 194, Post Field Seminar, and ANTHSCI 196, Honors and Master’s Writing Workshop, to prepare and write up their research projects. Additionally, an honors candidate may enroll in ANTHSCI 199, Directed Individual Study, for as many as 15 units but may not count more than five of these units toward fulfilling the 65-unit requirement for the major. In Winter Quarter, students present oral reports on the progress of their research to the Honors Workshop (ANTHSCI 196) and receive constructive feedback. The honors paper is to be completed and copies are to be handed in to the student services coordinator no later than May 12 of the student’s senior year. The paper is read and evaluated by the adviser and by one other faculty member. Candidates submitting a paper that is judged to be of honors quality (letter grade of ‘A-’ or better, from both readers) are awarded honors.
Students interested in the honors program are especially encouraged to apply for summer research funding through the department, through Undergraduate Research Programs (URP), and through various of the area studies centers on campus (e.g., Latin American Studies or African and African American Studies). In most cases, honors students apply for such funding in the Winter and Spring quarters of their junior year.

COTERMINAL BACHELOR’S AND MASTER’S DEGREES

The Department of Anthropological Sciences accepts applications from Stanford undergraduates to work toward coterminal M.A. or M.S. degrees. Undergraduates with strong academic records may apply during any quarter prior to the one in which they expect to graduate and after completing 120 units. All application materials are due by the third Friday of the quarter. Students planning field work are encouraged to apply by Winter Quarter so that they may take ANTHSCI 193 in Spring Quarter. Students apply by submitting application forms (available from the student services coordinator), a proposal of their master’s research project and paper, a plan for their master’s course of study, at least one writing sample (preferably a research paper), a University transcript, and a letter of recommendation from the faculty member who will supervise their master’s work in the department. The GRE is not required. Requirements for coterminal degrees are described under “Graduate Programs” below.

For University coterminal degree program rules and University application forms, see http://registrar.stanford.edu/publications/#Coterm.

1. Coterminal master’s studies are normally carried out in the student’s fifth year, subsequent to the undergraduate degree program.

2. As a graduation requirement, coterminal master’s students defend their project before a committee comprised of a primary and secondary reader in a forum of the primary reader’s choosing. This same committee ensures that the student has met all requirements before signing approval for the degree.

3. The default date for completion of all requirements for the coterminal master’s degree is the same as the deadline for the Firestone awards in the fifth year of study. Any exceptions to this rule must be approved by the departmental graduate affairs committee.

4. The primary reader/adviser for the coterminal master’s degree must be an Academic Council member in the Department of Anthropological Sciences.

5. Students must meet all requirements for the Master of Arts or Master of Science listed in the Graduate section (below).

GRADUATE PROGRAMS

University requirements for the degrees of Master of Arts, Master of Science, and Doctor of Philosophy are described in the “Graduate Degrees” section of this bulletin.

The department offers three graduate degrees: Master of Arts, Master of Science, and Doctor of Philosophy. The graduate curriculum encourages students to pursue individual interests and projects under the supervision of a faculty committee. Details of the graduate programs in Anthropological Sciences are outlined in the departmental Graduate Handbook, available in the department office.

MASTER OF ARTS

The Department of Anthropological Sciences offers the M.A. degree to four groups of students: Stanford undergraduate students who enroll in the coterminal program; Stanford graduate students taking advanced degrees in other departments or schools at Stanford; Ph.D. students in Anthropological Sciences who fulfill the M.S. requirements in the course of their work toward the Ph.D. degree; and students who apply from outside Stanford for entry into the terminal M.S. program.

REQUIREMENTS

1. Graduate enrollment at Stanford for at least three quarters of full tuition.

2. At least 45 units of course work for a letter grade (in addition to any pertinent undergraduate courses), with at least 30 units in Anthropological Sciences. The remaining 15 units may be taken from related humanities, social science, and science departments and programs. Outside courses must be approved by the student’s adviser and must form a coherent program of study. No more than 10 of the 45 units may be in Directed Individual Study. Students must maintain an average letter grade of ‘B’ or better.

3. The three graduate fundamentals courses (ANTHSCI 290A, 290B, and 292), each for a letter grade, plus any two 200-level courses other than special courses. Units earned in these courses count toward the 45-unit M.A. requirement.

4. Enroll in the departmental Core Seminar (ANTHSCI 291) while in residence, for at least 1 unit each quarter.

5. Submit a master’s-level field, laboratory, or library research paper to be read and approved by at least two department faculty members.

DOCTOR OF PHILOSOPHY

Prospective graduate students should request application materials from http://gradadmissions.stanford.edu. The deadline for applications is January 10. The Graduate Record Exam (GRE) is required. Successful applicants for the Ph.D. program may enter only in Autumn Quarter.

REQUIREMENTS

Requirements 1-9 must be completed within the first two years:

1. Within the first two years, complete 67 units of course work for a letter grade of ‘B+’ or better. Of these 67 units, at least 40 units must come from graduate-level courses within the department. The remaining 27 units may include advanced undergraduate courses as well as courses from related humanities, social science, and science departments and programs. Outside courses must form a coherent program of study and be approved by the student’s adviser.

2. Enroll in ANTHSCI 200 during Autumn Quarter of the first year. This course must be taken for a letter grade.

3. Enroll in the departmental Core Seminar (ANTHSCI 291) each quarter while in residence (except for students in the second year of the program who are working as TAs or RAs and thus have a 9-10 unit course limit). Units for ANTHSCI 291 count toward the unit requirements for the Ph.D.

4. Complete three fundamentals courses, each for a letter grade: ANTHSCI 290A, Advanced Social Theory in Anthropological Sciences; ANTHSCI 290B, Evolutionary Theory in Anthropological Sciences; and ANTHSCI 292, Data Analysis in the Anthropological Sciences.
PH.D. MINOR

The requirements for a Ph.D. minor in Anthropological Sciences are the following:

1. Enlist a faculty member of Department of Anthropological Sciences who consents to serve as the adviser for the minor.
2. Submit an application for admission to the Ph.D. minor to the Department of Anthropological Sciences. The completed application must include the written consent of the adviser. The application and any associated instructions should be obtained from the student services coordinator of the Department of Anthropological Sciences.
3. Complete 27 units of courses in the Department of Anthropological Sciences at Stanford for letter grades (in courses for which letter grades are offered), each with a grade of ‘B’ or better. The University Ph.D. minor requirements state that 20 of these units must be in courses numbered 200 or above, and that course work for the minor cannot also be used to meet the requirements for a master’s degree. Of the additional 7 units, 2 must come from the Department’s Core Seminar (ANTHSCI 291, see below); the additional 5 units are not restricted as to course number.
4. In conjunction with the adviser, determine a coherent course of study related to the student’s interests. Among the 27 units of required Anthropological Sciences courses, the student must take ANTHSCI 290A, Advanced Social Theory in Anthropological Sciences, or ANTHSCI 290B, Evolutionary Theory in Anthropological Sciences, and must enroll in the department’s Core Seminar (ANTHSCI 291) for at least two quarters at a minimum of 1 unit per quarter. No more than 10 of the 27 units can be individual study or independent research. No more than 15 of the 27 units can be counted from courses taken before submission of the application for admission to the Ph.D. minor, but only with the approval of the adviser.
5. It is expected that the student’s adviser participate as a representative of the Department at the student’s University Ph.D. oral examination. The student is responsible for this arrangement with the major department.
6. For graduation, complete all necessary paperwork with the student services coordinator of the department.

COURSES

WIM indicates that the course satisfies the Writing in the Major requirements.

Undergraduate Anthropological Sciences courses numbered 100 and above are organized by concentration tracks, 1 to 4 (see above). HEF designations indicate that the course satisfies requirement I, II, III, IV, or V of the Human Evolution Framework, also described above. A course may satisfy more than one HEF requirement.

NUMBERING SYSTEM

Anthropological Sciences courses are numbered according to the following scheme:

1-99 Introductory Courses
 1-19 General Introductory Courses
 20-39 Introductory Area Courses
 40-49 SIS Courses (froshmen)
 50-59 SIS Seminars and Dialogues (sophomores)
100-129 Culture, Social Relations, and Language
 100-109 Culture and Social Relations
 110-119 Language
 120-124 Area Studies: The Americas
 125-129 Area Studies: Asia
130-149 Archaeology and Evolutionary Studies
 130-139 Evolutionary Studies
 140-149 Archaeology
150-169 Population and Environment
 150-159 Population/Demography
 160-169 Environment/Ecology
170-189 Medical Anthropology and Genetics
 170-179 Medical Anthropology
 180-189 Anthropological Genetics
190-199 Special Courses
200-299 Graduate-level Courses

Financial Support — The department endeavors to provide needed financial support (through fellowships, teaching and research assistantships, and tuition grants) to all students admitted to the Ph.D. program who maintain satisfactory progress. First-year students in the Ph.D. program who have not entered with outside funding are required to apply for such funding during their first quarter. See Guide to the Ph.D. Program in Anthropological Sciences and http://www.stanford.edu/dept/anthsci for details.
INTRODUCTORY

Intended to serve as an introduction to the methods, theories, and substance of Anthropological Sciences, introductory courses are for both majors and non-majors. ANTHSCI 2A and 2B (HUMBIO 2A and 2B) provide a good introduction to the major; alternatively, a student may take three other introductory courses numbered from 3 to 39.

ANTHSCI 2A. Genetics, Evolution, and Ecology — (Enroll in HUMBIO 2A.)
5 units, Aut (Durham, Boggs)

ANTHSCI 2B. Culture, Evolution, and Society — (Enroll in HUMBIO 2B.)
5 units, Aut (Klein, Brown)

ANTHSCI 3. Introduction to Prehistoric Archaeology — (Same as ARCHLGY 1.) Aims, methods, and data in the study of human society’s development from early hunters through late prehistoric civilizations. Archaeological sites and remains characteristic of the stages of cultural development are examined for selected geographic areas, emphasizing methods of data collection and analysis appropriate to each. (HEF I, II)
3-5 units, Aut (Rick)

ANTHSCI 5. The Biology and Evolution of Language — (Graduate students register for 214.) Language as an evolutionary adaptation of humans. Comparison of communicative behavior in humans and animals, and the inference of evolutionary stages. Structure, linguistic functions, and the evolution of the vocal tract, ear, and brain, with associated disorders (stuttering, dyslexia, autism, schizophrenia) and therapies. Controversies over language centers in the brain and the innateness of language acquisition. Vision, color terminology, and biological explanation in linguistic theory. (HEF III; DA-A) GER:DB-NatSci
4-5 units, Win (Fox)

ANTHSCI 6. Human Origins — (Graduate students register for 206; same as HUMBIO 6.) The human fossil record from the first non-human primates in the late Cretaceous or early Paleocene, 80-65 million years ago, to the anatomically modern people in the late Pleistocene, between 100,000 to 50,000 B.C.E. Emphasis is on evolutionary trends and the natural selective forces behind them. (HEF I, III; DA-B) GER: DB-NatSci
5 units (Klein) not given 2005-06

ANTHSCI 7. Marriage and Kinship — Variation in human kinship systems; whether or not they can be understood as evolutionary products and the contribution to be made by a Marxist perspective. Eurasia and Africa contrasted with Europe and E. Asia. (HEF I) GER:DB-SocSci, EC-Gender
4-5 units, Spr (Wolf)

ANTHSCI 12. Querying Human Nature — Historical and contemporary anthropological perspectives on human nature. Topics include human behaviors such as aggression, incest avoidance, sexual jealousy, childhood attachments, maternal care, color symbolism, facial expression, and language. GER:DB-SocSci
5 units, Win (Wolf)

ANTHSCI 13. Bioarchaeology — The study of skeletal remains from archaeological contexts. Methods of bioarchaeology including taphonomy, paleodemographics, paleopathology, and molecular approaches. Case studies illustrate issues such as health consequences of the adoption of agriculture, cannibalism, and relationships among health, violence, class, and sex in historic and prehistoric cultures. (HEF I, IV) GER: DB-NatSci
3-5 units (DeGusta) not given 2005-06

ANTHSCI 14. Introduction to Anthropological Genetics — The extent and pattern of variation among human genomes, the origin of these patterns in human evolution, and the social and medical impact of recent discoveries. Topics include: the Human Genome Project; human origins; ancient DNA; genetic, behavioral, linguistic, cultural, and racial diversity; the role of disease in shaping genetic diversity; DNA forensics; genes and reproductive technology. (HEF I, II) GER:DB-NatSci
5 units (Mountain) not given 2005-06

ANTHSCI 15. Sex and Gender — Commonality and diversity of gender roles in crosscultural perspective. Cultural, ecological, and evolutionary explanations for such diversity. Theory of the evolution of sex and gender, changing views about men’s and women’s roles in human evolution, conditions under which gender roles vary in contemporary societies, and issues surrounding gender equality, power, and politics. (HEF 1)
GER:DB-Hum, EC-Gender
3 units, Spr (R. Bird)

5 units, Spr (K. Barrett)

4-5 units (Fox) not given 2005-06

5 units, Spr (Ocampo-Raeder)

5 units, Spr (Fox)

INTRODUCTORY AREA COURSES

Intended to serve as introductions to particular areas of the world as known through ethnography, archaeology, and history. Prior courses in anthropology recommended but not required.

ANTHSCI 22. Archaeology of North America — Why and how people of N. America developed. Issues and processes that dominate or shape developments during particular periods considering the effects of history and interactions with physical and social environment. Topics include the peopling of the New World, explaining subsequent diversity in subsistence and settlement adaptations, the development of social complexity, and the impact of European contact. (HEF II, III) GER:DB-SocSci, EC-AmerCul
3-5 units (Truncer) not given 2005-06

ANTHSCI 23. Identity and Peoples of China — Who is Chinese? Perspectives on being Chinese from Han and ethnic minorities in China, in Taiwan, and among overseas Chinese. Emphasis is on distinguishing forces contributing to identity formation from ideological rhetoric about identity. (HEF I, IV)
3-5 units (Brown) not given 2005-06

ANTHSCI 24. Cultural History of Japan — (Graduate students register for 228; same as CASA 128.) Since WWII. Transformation of religion, kinship, gender, education, work, leisure, ideology, and national identity as interconnected institutions. Tokugawa and prewar Japan as antecedents to postwar developments. (HEF I, II) GER:DB-SocSci
3-5 units (Befu) not given 2005-06
ANTHSCI 25. Human Ecology of the Amazon — (Same as HUMBIO 25.) The diversity of peoples and cultures in the Amazon Basin and the ecosystems in which they live. Themes in ecological anthropology of Amazonia including limiting factors, the protein debate, indigenous knowledge and resource management, and anthropogenic modification. Ethnographic, historical, and archeological evidence. (HEF I, IV) GER: DB-SocSci, EC-GlobalCom 5 units (Ocamo-Raeder) not given 2005-06

ANTHSCI 27. Introduction to Mesoamerican Archaeology — The prehispanic cultures of Mesoamerica through archaeology and ethnology, from the archaic period to the Spanish conquest in the 16th century. (HEF II) GER:DB-SocSci, EC-GlobalCom 3-5 units, Win (Robertson)

ANTHSCI 29A,B,C. First-Year Nahuatl — The language of the Aztecs, once used as a lingua franca throughout Mesoamerica. Focus is on vocabulary building and reading colonial literary and historical documents, including Central Mexican codices. Modern spoken dialects, the place of Nahuatl in the Uto-Aztecan language phylum, and the relationship between the language and Aztec culture. (HEF IV) 4 units, A: Aut, B: Win, C: Spr (Fox)

CULTURE, SOCIAL RELATIONS, AND LANGUAGE

In addition to the courses listed directly below, ANTHSCI 23, 24, 25, and 121, listed elsewhere, also count towards the Track 1 concentration.

CULTURE AND SOCIAL RELATIONS

ANTHSCI 102. Women, Fertility, and Work — Is gender culturally or biologically determined or both? The arguments for sociobiological and cultural determinist explanations of the differences between women and men are compared, emphasizing their intersection in work. Case studies: hunter/gatherer, horticultural (Melanesian), southern Chinese, and Anglo American societies. (HEF I, IV) GER:DB-SocSci, EC-Gender 5 units (K. Barrett) not given 2005-06

LANGUAGE

ANTHSCI 110. Introduction to Language Change — (Same as LINQUIST 160.) Variation and change as the natural state of language. Differentiation of dialects and languages over time. Determination and classification of historical relationships among languages, and reconstruction of ancestral stages. Types, rates, and explanations of change. Parallels with cultural and genetic evolutionary theory. Implications for the description and explanation of language in general. GER:DB-SocSci 4-5 units, Win (Kiparsky)

ANTHSCI 111. Language and Prehistory — (Graduate students register for 211.) Language classification and its implications for human prehistory. The role of linguistic data in analyzing prehistoric populations, cultures, contact, and migrations. Comparison of linguistic and biological classifications. Semantic reconstruction, proto-vocabularies, and culture. Archaeological decipherment, the origins and evolution of writing, and the relationships between writing, culture, and civilization. (DA-A; HEF II, III) 5 units (Fox) not given 2005-06

ANTHSCI 112. Human Diversity: A Linguistic Perspective — (Same as HUMBIO 118.) The diversity and distribution of human language and its implications for the origin and evolution of the human species. The origin of existing languages and the people who speak them. Where did current world languages come from and how can this diversity be used to study human prehistory? Evidence from related fields such as archaeology and human genetics. Topics: the origin of the Indo-European languages, the peopling of the Americas, and evidence that all human languages share a common origin. 3 units, Spr (Ruhlen)

ANTHSCI 115. Maya Hieroglyphic Writing — (Graduate students register for 215.) Deciphering the hieroglyphic writing of the classic Maya. Principles of archaeological decipherment. Maya calendrical, astronomical, political, and religious/mythological texts on stone, wood, bone, shell, ceramic vessels, and screenfold books. Ancient Maya scribal practice and literacy. The origins of Maya writing and related Mesoamerican writing systems. The impact of epigraphy on the archaeology and linguistics of the Maya. (DA-B; HEF II, IV) 5 units (Fox) not given 2005-06

ANTHSCI 121. Indigenous Languages of the Americas — The classification, history, structural variation, and sociocultural aspects of the indigenous languages of N. and S. America, with attention to linguistic evidence for the settlement of the Americas, the effects of European contact, indigenous writing systems and literacy, and the relationship between these languages and the development of anthropological and linguistic theory. (HEF I, IV) GER:DB-SocSci 5 units (Fox) not given 2005-06

AREA STUDIES: THE AMERICAS

ANTHSCI 122. The Ancient Maya — (Graduate students register for 222.) Archaeology and culture. Origins, the natural world, and languages and writing of the Maya. Archaeological and historical dating and classification of periods. Life cycle, daily life, food, agriculture, technology, and medicine. Power, social structure, gender, and the state. Mythology, time, astronomy, art, and religion. Maya sites, their relations with each other and other Mesoamerican states and peoples. Collapse, the Spanish conquest, and today’s Maya. Changes of archaeological focus and issues as exemplified in Mayan studies. Optional Spring Break field trip to Maya country (extra expense, limited capacity). (HEF II, IV; DA-A) 2-5 units (Fox) not given 2005-06

ANTHSCI 124. Perspectives on Sustainable Development in Latin America — (Graduate students register for 224A.) Crossdisciplinary. Interactions among poverty, development, environmental degradation, and approaches to growth and stability in agroecology, agroforestry, small farm development, and conservation biology. Limited enrollment. 5 units (Staff) not given 2005-06

AREA STUDIES: ASIA

ANTHSCI 125A. 20th-Century Chinese Societies — (Graduate students register for 225A.) Nationalist China, the Peoples’ Republic of China, Taiwan, and the loosely knit networks of the overseas Chinese are examined through the anthropological methods used in exploring complex societies. Emphasis is on political-economic, demographic, social organizational, gender/kinship, ideological, and transformative aspects of Chinese populations after the 1949 revolution. (HEF IV; DA-A) 3-5 units (Brown) not given 2005-06

ANTHSCI 125B. Late Imperial China — (Graduate students register for 225B.) Chinese civilization from 960-1911; its spatial, temporal, social, political, and ideational complexity. Frontiers and empire building, the making of Han Chinese and barbarians, migrations, colonization, urban and rural living, imperial state and local government, commerce and petty capitalism, kinship and family, gender and marriage, food, money, population and religion. (HEF IV; DA-A) 5 units (Wolf) not given 2005-06

ANTHSCI 128B. Globalization and Japan — (Graduate students register for 228B; same as CASA 128B.) Globalization theories in anthropology and sociology, and Japan in the context of these theories. Ethnographic cases of Japan’s global presence from the 15th century to the present. Processes of globalization in business management, popular culture, and expatriate communities. Japan’s multiculturalization through its domestic globalization. (HEF IV) 3-5 units, Spr (Befu)
ARCHAEOLOGY AND EVOLUTIONARY STUDIES

In addition to the courses listed directly below, 22, 27, 110, 111, 112, 115, 116, and 122 count towards the Track 2 concentration.

EVOLUTIONARY STUDIES

ANTHSCI 130. Paleoanthropology Seminar — (Graduate students register for 230B.) Aspects of human evolution through primary literature and fossils. Topics vary to fit the interests of participants. (HEF I) GER: DB-NatSci 3-4 units (DeGusta) not given 2005-06

ANTHSCI 131A. Primate Evolution — (Graduate students register for 231A.) The fossil, molecular, and anatomical data on primate origins, from their mammalian ancestors to the origin of the hominids. The adaptive radiations of lemurs, lorises, tarsiers, monkeys, and apes. The functional anatomy of primates in relation to habitat and social ecology. (HEF I, II; DA-B) GER:DB-NatSci 5 units (Jablonski) not given 2005-06

ANTHSCI 131B. Primate Societies — (Graduate students register for 231B.) Primatology. The living primates, primate evolution, distribution, and taxonomy. Life history patterns, dominance hierarchies, reproductive strategies, and social structures. Focus is on cultural behaviors, including tool manufacture and use, language and communication, hunting and warfare, and political behavior. Current conservation issues. (HEF II, III; DA-B) GER:DB-NatSci 5 units (Jablonski) not given 2005-06

ANTHSCI 131C. Current Issues in Primatology — (Graduate students register for 231C.) Seminar. Evolution of cognitive abilities in primates. Selective forces increasing intelligence from ecological factors impacting early hominid primates to social and cultural factors affecting hominin evolution. Hypotheses about relationships between brain morphology and intelligence in humans, nonhuman primates, and hominin ancestors. Prerequisite: ANTHSCI 131B or consent of instructor. (HEF II, III) GER:DB-NatSci 5 units (Staff) not given 2005-06

ANTHSCI 133A. Human Osteology — (Graduate students register for 233A; same as HUMBIO 180.) The human skeleton. Focus is on identification of fragmentary skeletal remains. Analytical methods such as paleopathology, taphonomy, and forensic techniques. Students work independently in laboratory with the collection. (HEF I, V; DA-B) GER: DB-NatSci 5 units, Win (DeGusta)

ANTHSCI 133B. Advanced Human Osteology — (Graduate students register for 233B.) Skeletal analytical methods such as paleopathology, osteometry, taphonomy, and functional morphology. Strategies for osteological curation and research. Students conduct independent projects in their area of interest. (HEF II, V; DA-B) GER:DB-NatSci 5 units, Spr (DeGusta)

ANTHSCI 134. Human Behavioral Biology — (Enroll in BIOSCI 150.) 3-6 units, Spr (Sapolsky) alternate years, not given 2006-07

ANTHSCI 139A. Regional Study of Human Structure — (Enroll in SURG 101.) 5 units, Win (Dolph, Gosling)

ARCHAEOLOGY

ANTHSCI 141. Hunter-Gatherers in Archaeological Perspective — (Graduate students register for 241.) Methods and data used to reconstruct the organization and subsistence of band-level hunter-gatherers. Studies of modern hunter-gatherers provide background for interpreting prehistoric groups, and the archaeological record of Africa, Europe, and the New World contribute examples of how archaeological data are used to reconstruct the life ways of extinct hunter-gatherers. (HEF I, II; DA-B) 4-5 units (Truncer) not given 2005-06

ANTHSCI 142. Incas and their Ancestors: Peruvian Archaeology — The development of high civilizations in Andean S. America from hunter-gatherer origins to the powerful, expansive Inca empire. The contrasting ecologies of coast, sierra, and jungle areas of early Peruvian societies from 12,000 to 2,000 B.C. The domestication of indigenous plants which provided the economic foundation for monumental cities, ceramics, and textiles. Cultural evolution, and why and how major transformations occurred. (HEF II, III) 3-5 units (Rick) not given 2005-06

ANTHSCI 143. Ethnoarchaeology — The study of relationships between observable human behavior and material consequences. How ethnographic observation serves the primary goal of archaeology: to describe variability in past human behavior. The role of ethnoarchaeology in the history of anthropological inquiry, ethnoarchaeological studies of the use of space and subsistence, and future directions. (HEF II, IV; DA-B) GER:DB-SocSci 3-5 units (D. Bird) not given 2005-06

ANTHSCI 144B. Archaeology of South Asia — S. Asian proto- and prehistory emphasizing the development of agriculture and social complexity. Rise and fall of the Indus or Harappan civilization; why cultural change occurred the way it did. (HEF II) 3 units, Aut (Truncer)

ANTHSCI 145A. Evolutionary Theory in Archaeology — (Graduate students register for 245.) The ability of scientific evolutionary theory to explain human behavior as represented in the archaeological record. Past attempts to apply evolutionary theory in archaeology are compared to more recent Darwinian efforts, as are current evolutionary approaches to human behavior in related fields. The ontological underpinnings and methodological requirements of a Darwinian archaeology and its potential contribution to archaeology as an explanatory system. (HEF I) GER:DB-SocSci 3-5 units (Staff) not given 2005-06

ANTHSCI 145B. Evolution of Civilizations — (Graduate students register for 245B.) How archaeology contributes to understanding prehistoric civilizations. How and why complex social institutions arose, and the conditions and processes behind their collapse. The development of monumental architecture, craft specialization, trade and exchange, and social stratification using examples from the archaeological record. (HEF II, III) GER:DB-SocSci 3-5 units, Spr (Truncer)

ANTHSCI 146. Archaeological Ceramics — (Graduate students register for 246.) Treatment of archaeological ceramics with emphasis on practical applications. What these objects can tell us about the lives of ancient peoples and the larger scale systems in which they lived. Ceramic technology. Methodological (chronology, seriation), economic (production, exchange, consumption), and social (style, signaling) aspects of ceramic analysis. (HEF V) GER:DB-SocSci 4 units (Staff) not given 2005-06

ANTHSCI 147. Archaeology of Modern Times — (Same as ARCHLGY 104.) Archaeological theory, method, and data are used to arrive at a better understanding of an issue of contemporary public concern. Issues include resource and energy management strategies such as the electricity situation in California, biodegradation and solid waste management, the relationship between human beings and dogs, ethnic wars in the Balkans and elsewhere, and Bill Gates’ strategies in the rise of Microsoft. (HEF IV) GER:DB-SocSci 5 units, Win (Rathje)

ANTHSCI 148. Archaeological Methods — (Graduate students register for 248; same as ARCHLGY 102.) Methods and issues related to the archaeological investigation of ancient sites, materials, and contexts. Topics include research design for survey and excavation, artifact analysis, and dating methods. (HEF V; DA-B) GER:DB-SocSci 5 units (Robertson) not given 2005-06
ANTHSCI 149. Archaeological Field Methods — Hands-on archaeological field research in the local area. The practical working methodology of the archaeologist through excavation and site survey, with training in registration, preservation, and analysis of archaeological data. (HEF V) GER:DB-SocSci
5 units (Rick) not given 2005-06

ANTHSCI 149B. Models and Imaging in Archaeological Computing—(Graduate students register for 208.) Hands-on seminar. Digital photography, mapping, and modeling methodology relevant to archaeology. Emphasis is on sharing skills between participants and instructor. (DA-B) GER:DB-EngrAppSci
3-5 units, Win (Rick)

POPULATION AND ENVIRONMENT
In addition to the courses listed directly below, 25, 124, and 179, listed elsewhere, count towards the Track 3 concentration.

POPULATION/DEMOGRAPHY
ANTHSCI 151. Anthropology and Demography — (Graduate students register for 251.) Topics include W. Europe and China as examples of extreme demographic regimes. GER:DB-SocSci
5 units, Win (Wolff)

ANTHSCI 152. Environment and Growth in Developing Countries—(Enroll in INTNLREL 135.)
5 units, Aut (Rosencranz)

ANTHSCI 155. Human Population Biology —(Graduate students register for 255.) Problems in demography and theoretical population biology applied to human systems. Emphasis is on establishing relationships between models in theoretical population biology and empirical demographic methodology. Topics include philosophy of models and model building, population dynamics, stable population theory, species interactions in human ecology, models of infectious diseases and their control, cultural evolution. Prerequisites: HUMBIO 137 or consent of instructor. (HEF I, III, V; DA-C) GER:DB-SocSci
5 units (Jones) not given 2005-06

ANTHSCI 156. Population Studies —(Enroll in BIOSCI 146.)
1 unit, Win (Feldman)

ENVIRONMENT/ECOLOGY
ANTHSCI 160B. Conservation Anthropology — Environmental conservation as a social and cultural process including strategies used around the world to achieve conservation goals such as market-based conservation, protected areas, and single-species conservation. Social and cultural issues and theory. (HEF III, IV; DA-A) GER:DB-SocSci
5 units, Aut (Ocampo-Raeder)

ANTHSCI 162. Indigenous Peoples and Environmental Problems—(Graduate students register for 262.) The social and cultural consequences of contemporary environmental problems. The impact of market economies, development efforts, and conservation projects on indigenous peoples, emphasizing the Amazon, E. Africa, Alaska, and Central America. The role of indigenous grass roots organizations in combating environmental destruction and degradation of homeland areas. (HEF II, IV; DA-A) GER:DB-Hum, EC-GlobalCom
3-5 units (Durham, Irvine) not given 2005-06

ANTHSCI 163. Human Behavioral Ecology — (Graduate students register for 263; same as HUMBIO 161.) Theory, method, and application in anthropology. How theory in behavioral ecology developed to understand animal behavior is applied to questions about human economic decision making in ecological and evolutionary contexts. Topics include decisions about foraging and subsistence, competition and cooperation, mating, and reproduction and parenting. (HEF I, III) GER:DB-SocSci
3-5 units, Win (R. Bird)

ANTHSCI 164. Ecological Anthropology — (Graduate students register for 264; same as HUMBIO 134.) Dynamics of culturally inherited human behavior and its relationship to social and physical environments. Topics include a history of ecological approaches in anthropology, subsistence ecology, sharing, risk management, territoriality, warfare, and resource conservation and management. Case studies from Australia, Melanesia, Africa, and S. America. (HEF I, III; DA-A) GER:DB-SocSci
3-5 units (R. Bird) not given 2005-06

ANTHSCI 164A. Ethnoecology — (Graduate students register for 264A.) Role of human beings in ecosystems as mediated by culture, markets, and environment. Theory and methods for investigating human-nature relationships at the local and global level. How people of different cultures and languages conceptualize and categorize plants, animals, landscapes, ecological relationships, and ecosystem processes. Relationship of traditional ecological knowledge to Western ecological science and its importance to policy and development. Field methods include ethnotaxonomy and ethnomapping. (HEF I, III) GER:DB-SocSci
5 units (Irvine) not given 2005-06

ANTHSCI 165B. Central America: Environment, Sustainable Development, and Security — (Graduate students register for 265B; same as IPER 265.) Interrelationships among environmental stress, poverty, and security in Central America, with focus on Costa Rica. The legacy of the Cold War in Central America as manifested in the Contra War and U.S. policy. Current development schemes and their impact on environment and security in the region. Dilemmas between population growth in the developing world and consumption patterns in the industrial world. Some years, the course includes an optional field trip to Costa Rica over Spring Break at extra expense; limited capacity. (HEF III) GER:DB-SocSci
3-5 units (Hoagland) not given 2005-06

ANTHSCI 166D. Tropical Ecology and Conservation—(Enroll in BIOSCI 175.)
5 units, Spr (Dirzo)

ANTHSCI 167. Social Policy for Sustainable Resource Use — (Graduate students register for 267; same as EARTHSYS 167/267.) The development of social policies that foster a positive human role in the ecosystem. Goal is to develop group skills in a team setting while researching case studies of forest peoples impacted by integration into the global economy. The case of voluntary forest product certification under the Forest Stewardship Council system. Local participation in policy development, the effectiveness of certification, tenure and institutional aspects of sustainability, indigenous rights and forest conservation, and the role of local communities and workers in sustaining forests over the long term. Prerequisite: consent of instructor. (HEF II, IV, V; DA-A) GER:DB-SocSci
5 units, Spr (Irvine)

ANTHSCI 167C. Managing the Commons: Evolving Theories for Sustainable Resource Use — (Graduate students register for 267C; same as EARTHSYS 167/267.) Development of common property theory since Hardin’s article on the tragedy of the commons. Interdisciplinary theorizing about sustainable management of common-pool resources such as grazing, forest, or marine resources; debates about sustainability of commons management within heterogeneous state and global systems; and new commons such as atmosphere or the information commons. Links among theory, methods, and policy. Prerequisite: 190 or consent of instructor. (HEF II, III, IV)
5 units (Irvine) not given 2005-06

ANTHSCI 168C. Environmental Politics in Latin America — (Graduate students register for 268C.) (HEF II, IV)
5 units (Staff) not given 2005-06
ANTHSCI 169. Conservation and Evolutionary Ecology — (Graduate students register for 269.) Environmental degradation resulting from human behavior, and what can be done about it. Patterns of interaction between people and environments, and why they vary over time and space. Topics include adaptation and behavior, resource acquisition and utilization, conflicts of interest, collective action problems, conspicuous consumption, waste, land management, and public policy. (HEF I, III; DA-A) GER:DB-SocSci
3-5 units, Spr (D. Bird)

MEDICAL ANTHROPOLOGY AND GENETICS

In addition to the courses listed below, 133B and 151 count towards the Track 4 concentration.

MEDICAL ANTHROPOLOGY

ANTHSCI 170. Medical Anthropology — (Same as HUMBIO 168.) The crosscultural study of the health beliefs and healing systems around the world. How social processes shape human health. (HEF I, IV), (DA-C) GER:DB-SocSci, EC-GlobalCom
3 units, Win (C. Barnett)

ANTHSCI 171. Aging: From Biology to Social Policy — What people can expect when they join the ranks of the elderly. Issues include social security, medical care, lifespan, and the cultural, social, and economic consequences of a large elderly population in the U.S. and other countries. Films, service learning component. (HEF I) GER:DB-SocSci
5 units, Win (C. Barnett)

ANTHSCI 172. Evolution of Human Disease — (Graduate students register for 272.) Seminar. Understanding human health and disease from an evolutionary perspective. Topics: Darwinian medicine, genes and disease, aging, infectious diseases, mental illness, and cancer. Prerequisites: 2A,B, upper division standing, or consent of the instructor. (HEF III) GER:DB-SocSci
5 units (R. Barrett) not given 2005-06

ANTHSCI 173A. The Evolution of Human Diet — (Graduate students register for 273A.) Human dietary choices and their consequences from ecological, epidemiological, and evolutionary perspectives. Topics include foraging theory, human community ecology, evidence for evolutionary design in physiological and motivational systems relating to feeding and nutrition, epidemiology of nutritional disorders, subsistence economies and modes of production, reduction diets, and health diets. (HEF I, II, IV; DA-C) GER:DB-SocSci
5 units (Jones) not given 2005-06

ANTHSCI 175. The Anthropology of Death and Dying — (Graduate students register for 275; same as HUMBIO 106.) Death as a biocultural process. Funerary practices and attitudes toward dying in different societies. Issues include hospice care, palliative care, and euthanasia. Instructor is an anthropologist and registered nurse with hospice experience. (HEF I, IV, V; DA-C) GER:DB-SocSci
5 units (R. Barrett) not given 2005-06

ANTHSCI 176A. Anthropological Perspective on Child Welfare — (Graduate students register for 276A.) Practices at the core of child welfare debates, including corporal punishment, neglect, male and female circumcision, gender discrimination, emotional abuse, child labor, and sexual abuse. Legal and ethical issues surrounding global definitions of maltreatment. Literature on child growth and development. (HEF I) GER:DB-SocSci, EC-Gender
5 units (K. Barrett) not given 2005-06

3-5 units (R. Barrett) not given 2005-06

ANTHSCI 179. Environmental Change and Emerging Infectious Diseases — (Graduate students register for 279; same as HUMBIO 179.) The changing epidemiological environment. How human-induced environmental changes, such as global warming, deforestation and land-use conversion, urbanization, international commerce, and human migration, are altering the ecology of infectious disease transmission, and promoting their re-emergence as a global public health threat. Case studies of malaria, cholera, hantavirus, plague, and HIV. (HEF III; DA-C) GER:DB-SocSci
3-5 units, Win (Durham, Jones)

ANTHROPOLOGICAL GENETICS

ANTHSCI 180. Introduction to Anthropological Genetics — For upper division undergraduates. The extent and pattern of variation among human genomes, the origin of these patterns in human evolution, and the social and medical impact of recent discoveries. Topics include: the Human Genome Project; human origins; ancient DNA; genetic, behavioral, linguistic, cultural, and racial diversity; the role of disease in shaping genetic diversity; DNA forensics; genes and reproductive technology. (HEF I, II) GER:DB-NatSci
5 units (Mountain) not given 2005-06

ANTHSCI 187. The Genetic Structure of Populations — (Graduate students register for 287.) Inference of evolutionary history from the current structure of genetic variation within a population genetic and phylogenetic framework. Methods include tree inference, analysis of molecular variance, gene genealogies and the coalescent, phylogeography, clustering algorithms, and Bayesian and frequentist approaches. Applications in evolutionary studies, medicine, conservation, and forensics. Principles and methods illustrated primarily with human and other primate examples; students investigate species of own choice. Prerequisites: 2A or Biology Core. (HEF II, III, V; DA-C) GER:DB-SocSci
5 units (Mountain) not given 2005-06

ANTHSCI 188. Research in Anthropological Genetics — (Graduate students register for 288.) Seminar. Current research at Stanford and beyond. Presentations by instructor, guests, and class participants. May be repeated for credit. (HEF V) 1-5 units, Aut, Win (Mountain)

SPECIAL COURSES

ANTHSCI 190. Social Theory in the Anthropological Sciences — Required of majors. Foundational course in the history of social theory in anthropology from the late 19th century to the present. Major approaches to human culture and society: symbolic, social, material, and psychological. Questions about the role of theory in anthropology and how it can be applied to human issues. (HEF IV) GER:DB-SocSci, WIM
5 units, Aut (Barrett)

ANTHSCI 191A. Communicating Science: Proposals, Talks, Articles — (Graduate students register for 291A.) The principles and practice of effective communication in science. Three formats: grant proposals, conference presentations, and scientific journal articles. Focus is on writing and speaking skills in professional contexts. (HEF V) 4-5 units (DeGusta) not given 2005-06

ANTHSCI 191B. Conduct and Misconduct in Science — (Graduate students register for 291B; same as ETHICSOC 191X.) The structure of modern science through a study of ethics and misconduct in research. Case studies of alleged scientific misconduct; what constitutes ethical research practices; the meaning of authorship; the limits of grantsmanship; the place of science in society; and roles of advisers, students, and postdocs. Theoretical and practical aspects of these issues. Emphasis is on anthropology and biology. GER:DB-SocSci
3-5 units, Win (DeGusta)

ANTHSCI 192. Data Analysis in the Anthropological Sciences — (Graduate students register for 292.) Univariate, multivariate, and graphical methods used for analyzing quantitative data in anthropological research. Archaeological and paleobiological examples. Recommended: algebra. (HEF V) GER:DB-Math
5 units, Win (Jones, Robertson)
ANTHSCI 193A. Prefield Research: Methods and Proposal Writing — For undergraduates of any major. Social science methods for field research. Formulation of research questions and testable hypotheses; data collection techniques including participant observation, interviewing, surveys, and sampling procedures; and ethical issues. Proposal writing and human subjects protocol preparation. Prerequisites: 2A,B, or equivalents; and declared concentration track. (HEF V) GER:DB-SocSci
3 units, Win(K. Barrett)

ANTHSCI 193B. Prefield Research Seminar — For Anthropological Sciences majors preparing for fieldwork in ethnography, and cultural, environmental, and medical anthropology. Student presentations of proposed field work. Required for Anthropological Sciences honors students. Prerequisite 193A. (HEF V)
3 units, Spr (Staff)

ANTHSCI 194. Post Field Seminar — Undergraduates analyze and write about material gathered during summer fieldwork. Emphasis is on writing and revising in analysis and composition. Student critiques of each other's work. Limited enrollment. (HEF V) GER:DB-SocSci
5 units, Aut (K. Barrett)

ANTHSCI 195. Research Project — Independent research conducted under faculty supervision, normally taken junior or senior year in pursuit of an honors project. May be taken for more than one quarter for credit. Prerequisite: completed application to the honors program.
1-10 units, Aut, Win, Spr, Sum (Staff)

ANTHSCI 196. Honors and Master's Writing Workshop — Techniques for interpreting data, organizing bibliographic material, writing, editing, and revising. Preparation of papers for conferences and publications in anthropology.
2-6 units, Aut, Win, Spr, Sum (Staff)

ANTHSCI 197. Internship in Anthropological Sciences — Opportunity for students to pursue their specialization in an institutional setting such as a laboratory, clinic, research institute, or government agency. May be repeated for credit.
4-5 units, Aut, Win, Spr, Sum (Staff)

ANTHSCI 199. Directed Individual Study — (Graduate students register for 299.) Prerequisite: consent of instructor.
1-10 units, Aut, Win, Spr, Sum (Staff)

GRADUATE

These courses are intended for graduate students. However, advanced undergraduates may be admitted with consent of instructor.

ANTHSCI 200. Introduction to the Anthropological Sciences — Themes and topics of lasting heuristic value in the anthropological sciences. Combines the lecture content of 2A and 2B with a discussion section for graduate students. Must be taken in the Autumn Quarter of a student's first year in the graduate program.
5 units, Aut (Staff)

ANTHSCI 201B. Social Theory in the 20th Century — Continuation of 201A. Comparative analysis of major 20th-century social theories as they relate to anthropology. (HEF IV)
5 units (Brown) not given 2005-06

ANTHSCI 203. Topics in the Anthropology of China and Taiwan — Graduate seminar. Topics vary; contact department office.
3-5 units, Win (Brown)

ANTHSCI 204. Archaeology of Central Mexico — Prehistory of highland Central Mexico from the appearance of agricultural settlements to the arrival of Europeans. The development of the ancient state of Teotihuacan. Regional focus is the basin of Mexico and adjoining regions. Relations between central Mexico and other parts of Mesoamerica including the Maya area, the Gulf lowlands, and Oaxaca. (DA-B)
5 units, Aut (Robertson)

ANTHSCI 206. Human Origins — (Graduate section; see 6.)
5 units (Klein) not given 2005-06

ANTHSCI 208. Models and Imaging in Archaeological Computing — (Graduate section; see 149B.)
3-5 units, Win (Rick)

ANTHSCI 210. Examining Ethnographies — Eight or nine important ethnographies, including their construction, their impact, and their faults and virtues. (HEF IV; DA-A)
5 units, Aut (Wolf)

ANTHSCI 211. Language and Prehistory — (Graduate section; see 111.)
5 units (Fox) not given 2005-06

ANTHSCI 212. Linguistic Anthropology — Seminar. The ethnography of communication; language repertoires including registers, dialects, styles, and their functions; language classification, phylogeny, ethnicity, and ideology; vocabulary, grammar, and codability in culture and cognition; discourse, conversation, narrative, and poetic; writing and literacy; multilingualism and extinction. Emphasis is on authorial argumentation and theoretical preoccupations, linguistic fieldwork, and the richness of language repertoires around the world. Sources include monographs and articles on relationships among language, culture, and society. Student presentations.
5 units, Aut (Fox)

ANTHSCI 213. Topics in Linguistic Anthropology — Seminar. Culture, society, and cognition as reflected in vocabulary. Semantic analysis and universals of terminological systems; vocabulary size, abstraction, and the issue of primitiveness; variation, strategy, and figures of speech in vocabulary use. Emphasis is on vocabularies of identity (kinship, personal names, and the body) and environment (plants, animals, and place).
5 units (Fox) not given 2005-06

ANTHSCI 214. The Biology and Evolution of Language — (Graduate section; see 5.)
4-5 units, Win (Fox)

ANTHSCI 215. Maya Hieroglyphic Writing — (Graduate section; see 115.)
5 units (Fox) not given 2005-06

ANTHSCI 222. The Ancient Maya — (Graduate section; see 122.)
2-5 units (Fox) not given 2005-06

ANTHSCI 224A. Perspectives on Sustainable Development in Latin America — (Graduate section; see 124.)
5 units (Staff) not given 2005-06

ANTHSCI 225A. 20th-Century Chinese Societies — (Graduate section; see 125A.)
3-5 units (Brown) not given 2005-06

ANTHSCI 225B. Late Imperial China — (Graduate section; see 125B.)
5 units (Wolf) not given 2005-06

ANTHSCI 228. Cultural History of Japan — (Graduate section; see 24; same as CASA 128.)
3-5 units (Befu) not given 2005-06

ANTHSCI 228B. Globalization and Japan — (Graduate section; see 128B; same as CASA 128B.)
3-5 units, Spr (Befu)

ANTHSCI 230B. Paleoanthropology Seminar — (Graduate section; see 130.)
3-4 units (DeGusta) not given 2005-06

ANTHSCI 231A. Primate Evolution — (Graduate section; see 131A.)
5 units (Jablonksi) not given 2005-06

ANTHSCI 231B. Primate Societies — (Graduate section; see 131B.)
5 units, Spr (Jablonksi)

ANTHSCI 231C. Current Issues in Primatology — (Graduate section; see 131C.)
5 units (Staff) not given 2005-06
ANTHSCI 233A. Human Osteology.—(Graduate section; see 133A; same as HUMBIO 180.)
5 units, Win (DeGusta)

ANTHSCI 233B. Advanced Human Osteology.—(Graduate section; see 133B.)
5 units, Spr (DeGusta)

ANTHSCI 241. Hunter-Gatherers in Archaeological Perspective.—(Graduate section; see 141.)
4-5 units (Truncer) not given 2005-06

ANTHSCI 242. Beginnings of Social Complexity.—Models and examples of the social evolution of stratification and political centralization in prehistoric human societies. Inferences from the archaeological record concerning the forces and mechanisms behind the rise and fall of complex societies, particularly in S. America. (DA-B)
5 units, Win (Rick)

ANTHSCI 244. Prehispanic New World Urbanism.—Preindustrial urbanism as exemplified by prehispanic New World societies. Case studies: the central and southern highlands of Mesoamerica, and the Maya region. Comparative material from highland S. America. (DA-B)
5 units, Robertson not given 2005-06

ANTHSCI 245. Evolutionary Theory in Archaeology.—(Graduate section; see 145A.)
3-5 units (Staff) not given 2005-06

ANTHSCI 245B. Evolution of Civilizations.—(Graduate section; see 145B.)
3-5 units, Spr (Truncer)

ANTHSCI 246. Archaeological Ceramics.—(Graduate section; see 146.)
4 units (Staff) not given 2005-06

ANTHSCI 248. Archaeological Methods.—(Graduate section; see 148, same as ARCHLGY 102.)
5 units (Robertson) not given 2005-06

ANTHSCI 250A. Advanced Ecological Anthropology.—Seminar. The role of ecological models in the analysis of culture and social systems. Early efforts linking environments and social systems, such as cultural ecology, neo-functionalism, systems ecology. Current research trends including evolutionary ecology, indigenous resource management, and historical ecology. Case studies: agricultural involution in Java, ritual regulation in New Guinea, demographic change in the Swiss Alps, peasant ecology in Central America, and indigenous resource management in Amazonia. (DA-A)
5 units (Staff) not given 2005-06

ANTHSCI 251. Anthropology and Demography.—(Graduate section; see 151.)
5 units, Win (Wolf)

ANTHSCI 255. Human Population Biology.—(Graduate section; see 155.)
5 units (Jones) not given 2005-06

ANTHSCI 262. Indigenous Peoples and Environmental Problems.—(Graduate section; see 162.)
3-5 units (Durham, Irvine) not given 2005-06

ANTHSCI 263. Human Behavioral Ecology.—(Graduate section; see 163.)
3-5 units, Win (R. Bird)

ANTHSCI 264. Ecological Anthropology.—(Graduate section; see 164.)
3-5 units (R. Bird) not given 2005-06

ANTHSCI 264A. Ethnoecology.—(Graduate section; see 164A.)
5 units (Irvine) not given 2005-06

ANTHSCI 265B. Central America: Environment, Sustainable Development, and Security.—(Graduate section; see 165B; same as IPER 265.)
3-5 units (Hoagland) not given 2005-06

ANTHSCI 267. Social Policy for Sustainable Resource Use.—(Graduate section; see 167; same as EARTHYSYS 167/267.)
5 units, Spr (Irvine)

ANTHSCI 267A. Ecotourism and Social Entrepreneurship.—(Same as STRAMGT 384.) Prospects for a transition in the tourism industry toward environmental and social objectives. Case study approach to nature-based destinations, tourism companies, and business partnerships with local communities. Competitive implications of certification and labeling.
4 units (W. Barnett, Durham) not given 2005-06

ANTHSCI 267C. Managing the Commons: Evolving Theories for Sustainable Resource Use.—(Graduate section; see 167C; same as EARTHYSYS 167/267.)
5 units (Irvine) not given 2005-06

ANTHSCI 268C. Environmental Politics in Latin America.—(Graduate section; see 168C.)
5 units (Staff) not given 2005-06

ANTHSCI 269. Conservation and Evolutionary Ecology.—(Graduate section; see 169.)
3-5 units, Spr (D. Bird)

ANTHSCI 270. Anthropology, Mortality, and Ethics.—Prerequisite: 140 and consent of instructor.
5 units (R. Barrett) not given 2005-06

ANTHSCI 272. Evolution of Human Disease.—(Graduate section; see 172.)
5 units (R. Barrett) not given 2005-06

ANTHSCI 273A. The Evolution of Human Diet.—(Graduate section; see 173A.)
5 units (Jones) not given 2005-06

ANTHSCI 275. The Anthropology of Death and Dying.—(Graduate section; see 175.)
5 units (R. Barrett) not given 2005-06

ANTHSCI 276A. Anthropological Perspective on Child Welfare.—(Graduate section; see 176A.)
5 units (K. Barrett) not given 2005-06

ANTHSCI 279. Environmental Change and Emerging Infectious Diseases.—(Graduate section; see 179; same as HUMBIO 179.)
3-5 units, Win (Durham, Jones)

ANTHSCI 286. Advanced Andean Archaeology
3-5 units (Staff) not given 2005-06

ANTHSCI 287. The Genetic Structure of Populations.—(Graduate section; see 187.)
5 units (Mountain) not given 2005-06

ANTHSCI 288. Research in Anthropological Genetics.—(Graduate section; see 188.)
1-5 units, Aut, Win (Mountain)

SPECIAL COURSES

ANTHSCI 290. Advanced Social Theory in the Anthropological Sciences.—Social theories that have influenced anthropology including evolutionism, Marxism, interpretivism, and postmodernism. Implications of debates among theorists for anthropological research. Prerequisite: graduate standing or consent of instructor. With consent of instructors of 190 and 290A, undergraduate majors may substitute 290A for 190. (HEF IV)
5 units, Aut (Brown)

ANTHSCI 290B. Evolutionary Theory in Anthropological Sciences—History of evolutionary theory from the 19th century to present, emphasizing anthropological applications. Theory and concept in evolutionary biology; evolutionary theories of culture; and interactions of genetic, social, and cultural evolution and their implications. Emphasis is on
tools of analysis and the value of evolutionary thinking for formulating research questions in anthropology today. Prerequisite: graduate standing or consent of instructor. (HEF II, III)

ANTHSCI 291. Graduate Core Seminar — Graduate seminar. The use of the scientific method in anthropological research. Published papers from subfields illustrate effective research design, the formulation and testing of hypotheses, and comparative methods. Field exercises in interviewing, observation, and taking and using field notes. The ethics of field research and procedures for maintaining physical and mental health in the field.
1-5 units, Aut, Win, Spr (Staff)

ANTHSCI 291A. Communicating Science: Proposals, Talks, Articles — (Graduate section; see 191A.)
4-5 units (DeGusta) not given 2005-06

ANTHSCI 291B. Conduct and Misconduct in Science — (Graduate section; see 191B; same as ETHICSOC 191X.)
3-5 units, Win (DeGusta)

ANTHSCI 292. Data Analysis in the Anthropological Sciences — (Graduate section; see 192.)
5 units, Win (Jones, Robertson)

ANTHSCI 292B. Master’s Thesis Writing Seminar — May be repeated for credit.
2-4 units, Win (Mountain)

ANTHSCI 294. Proposal Writing Seminar — Required of ANTHSCI Ph.D. students. Hands-on practical training in grant writing methods. Students draft a research prospectus based on their own interests and proposed projects, and work closely with their advisers and other faculty.
5 units, Aut, Win, Spr, Sum (Staff)

ANTHSCI 295. Research in Anthropological Sciences — Supervised work with an individual faculty member on the student research project. May be taken for more than one quarter.
3-5 units, Aut, Win, Spr, Sum (Staff)

ANTHSCI 296. Graduate Internship — Provides graduate students with the opportunity to pursue their area of specialization in an institutional setting such as a laboratory, clinic, research institute, or government agency.
4-5 units, Aut, Win, Spr, Sum (Staff)

ANTHSCI 297. Teaching Assistantship — Supervised experience as assistant in one undergraduate course.
3-5 units, Aut, Win, Spr, Sum (Staff)

ANTHSCI 298. Dissertation Writing Seminar — Required of ANTHSCI Ph.D. students. Students work with advisers and committee members to write a draft of their dissertation.
5 units, Aut, Win, Spr, Sum (Staff)

ANTHSCI 299. Directed Individual Study — (Graduate section; see 199.)
1-10 units, Aut, Win, Spr, Sum (Staff)

OVERSEAS STUDIES

Courses approved for the Anthropological Sciences major and taught overseas can be found in the “Overseas Studies” section of this bulletin, or in the Overseas Studies office, 126 Sweet Hall.

SANTIAGO

ANTHSCI 104X. Modernization and Culture in Latin America — (Same as SPANLIT 290Z.)
5 units, Aut (Subercaseaux)

APPLIED PHYSICS

Chair: Martin M. Fejer
Associate Professor: Kathryn A. Moler
Assistant Professors: Ian R. Fisher, Martin Greven, Mark J. Schnitzer
Courtesy Professors: Bruce M. Clemens, James S. Harris, Lamberto Hesselink, David A. B. Miller, W. E. Moerner, Douglas D. Osheroff, Robert H. Siemann, Shoucheng Zhang
Consulting Professors: Thomas M. Bauer, Richard G. Brewer, John D. Fox, Bernardo A. Huberman, Stuart S. P. Parkin, Daniel Rugar

Department Office: Applied Physics 101
Mail Code: 94305-4090
Phone: (650) 723-4027
Web Site: http://www.stanford.edu/dept/app-physics/

Courses given in Applied Physics have the subject code APPPHYS. For a complete list of subject codes, see Appendix.

The Department of Applied Physics offers qualified students with backgrounds in physics or engineering the opportunity to do graduate course work and research in the physics relevant to technical applications and natural phenomena. These areas include accelerator physics, biophysics, condensate matter physics, nanostructured materials, optoelectronics, photomechanics, quantum optics, space science and astrophysics, synchrotron radiation and applications. Student research is supervised by the faculty members listed above and also by various members of other departments such as Biological Sciences, Chemistry, Electrical Engineering, Materials Science and Engineering, Physics, SLAC, and faculty of the Medical School who are engaged in related research fields. Research activities are carried out in research laboratories including the Geballe Laboratory for Advanced Materials, the Edward L. Ginzton Laboratory, the Hansen Experimental Physics Laboratory, the Stanford Linear Accelerator Center, and the Stanford Synchrotron Radiation Laboratory.

The number of graduate students admitted to Applied Physics is limited. Applications should be received by January 3, 2006. Graduate students normally enter the department only in Autumn Quarter.

GRADUATE PROGRAMS

Admission requirements for graduate work in Applied Physics include a bachelor’s degree in physics or an equivalent engineering degree. Students entering the program from an engineering curriculum should expect to spend at least an additional quarter of study acquiring the background to meet the requirements for advanced degrees in Applied Physics.

MASTER OF SCIENCE

The University’s basic requirements for the master’s degree are discussed in the “Graduate Degrees” section of this bulletin. The minimum requirements for the degree are 45 units, of which at least 39 units must be graduate-level courses in applied physics, engineering, mathematics, and physics. The required program consists of the following:
1. Courses in physics and mathematics to overcome deficiencies, if any, in undergraduate preparation.
2. Basic graduate courses (letter grade required):
 a. Advanced Mechanics—one quarter, 3 units: PHYSICS 210
 b. Electrodynamics—two quarters, 6 units: PHYSICS 220, 221
 c. Quantum Mechanics—two quarters, 6 units: PHYSICS 230, 231
3. 30 units of additional advanced courses in science and/or engineering. 15 of the 30 units may be any combination of advanced courses, Directed Study (APPHYS 290), and 1-unit seminar courses, to complete the requirement of 45 units. At least 15 of these 30 units must be taken for a letter grade.
4. A final overall grade point average (GPA) of 3.0 (B) is required for courses used to fulfill degree requirements.

There are no department or University examinations, and a thesis is not required. If a student is admitted to the M.S. program only, but later wishes to change to the Ph.D. program, the student must apply to the department’s Admissions Committee.

DOCTOR OF PHILOSOPHY

The University’s basic requirements for the Ph.D. (residency, dissertation, examination, and so on) are discussed in the “Graduate Degrees” section of this bulletin. The program leading to a Ph.D. in Applied Physics consists of course work, research, qualifying for Ph.D. candidacy, a research progress report, a University oral examination, and a dissertation as follows:

1. **Course Work:**
 a) Courses in Physics and Mathematics to overcome deficiencies, if any, in undergraduate preparation.
 b) Basic graduate courses* (letter grades required):
 1) Advanced Mechanics — one quarter: PHYSICS 210
 2) Statistical Physics — one quarter: PHYSICS 212
 3) Electrodynamics — two quarters: PHYSICS 220, 221
 4) Quantum Mechanics — two quarters: PHYSICS 230, 231
 5) Laboratory — one quarter: APPPHYS 207, 208, 304, 305; BIOSCI 232; EE 234, 410; MATSCI 171, 172, 173; PHYSICS 301.
 c) 18 units of additional advanced courses in science and/or engineering, not including Directed Study (APPHYS 290), Dissertation Research (APPHYS 390), and 1-unit seminar courses. Only 3 units at the 300 or above level may be taken on a satisfactory/no credit basis.
 d) 96 units of additional courses to meet the minimum residency requirement of 135. Directed study and research units as well as 1-unit seminar courses can be included.
 e) A final average overall grade point average (GPA) of 3.0 (B) is required for courses used to fulfill degree requirements.
 f) Students are normally expected to complete the specified course requirements by the end of their third year of graduate study.

2. **Research:** may be conducted in a science/engineering field under the supervision of a member of the Applied Physics faculty or appropriate faculty from other departments.

3. **Ph.D. Candidacy:** satisfactory progress in academic and research work, together with passing the Ph.D. Candidacy Qualifying Examination, qualifies the student to apply for Ph.D. candidacy which must be completed before the third year of graduate registration. The examination consists of a seminar on a suitable subject delivered by the student before the faculty academic adviser (or an approved substitute) and two other members of the faculty selected by the department.

4. **Research Progress Report:** normally before the end of the Winter Quarter of the fourth year of enrollment in graduate study at Stanford, the student arranges to give an oral research progress report of approximately 30 minutes, of which a minimum of 10 minutes should be devoted to questions from the Ph.D. reading committee.

5. **University Ph.D. Oral Examination:** consists of a public seminar in defense of the dissertation, followed by private questioning of the candidate by the University examining committee.

6. **Dissertation:** must be approved and signed by the Ph.D. reading committee.

* Requirements for item 1b may be totally or partly satisfied with equivalent courses taken elsewhere, pending the approval of the Graduate Study Committee.

ASSISTANTSHIPS

Research assistantships are available for Ph.D. candidates. Contact the department for more information.

COURSES

3 units, Aut (Fox, Geballe)

APPHYS 172. Physics of Solids I — (Enroll in PHYSICS 172.)
3 units, Spr (I. R. Fisher)

APPHYS 192. Introductory Biophysics — (For undergraduates; see 292.)
3 units, Spr (Doniach) alternate years, not given 2006-07

207. 3 units, Win (Fox)
208. 3 units (Fox) alternate years, given 2006-07

APPHYS 210. Advanced Particle Mechanics — (Enroll in PHYSICS 210.)
3 units, Spr (Kallosh)

APPHYS 211. Biophysics of Sensory Transduction — (Enroll in BIOSCI 211.)
4 units (S. Block) not given 2005-06

APPHYS 212. Statistical Mechanics — (Enroll in PHYSICS 212.)
3 units, Spr (Fetter)

APPHYS 213. Neuronal Biophysics — (Enroll in BIOSCI 217.)
4 units, Aut (Schnitzer)

APPHYS 214. Randomness in the Physical World — Topics include: random numbers, and their generation and application; disordered systems, quenching, and annealing; percolation and fractal structures; universality, the renormalization group, and limit theorems; path integrals, partition functions, and Wiener measure; random matrices; and optical estimation. Prerequisite: introductory course in statistical mechanics or analysis.
3 units (Diaconis, S. Holmes, Kapitulnik, Shenker) alternate years, given 2006-07

APPHYS 215. Numerical Methods for Physicists and Engineers — Review of basic numerical techniques with additional advanced material: derivatives and integrals; linear algebra; linear least squares fitting, FFT and wavelets, singular value decomposition, linear prediction; optimization, nonlinear least squares, maximum entropy methods; deterministic and stochastic differential equations, Monte Carlo methods.
3 units, Aut (Moler)

3 units (Shen) alternate years, given 2006-07

APPPHYS 217. Waves and Diffraction in Solids — (Enroll in MAT-SCI 195/205.)
3-4 units, Win (Wang)

3 units (Greven) alternate years, given 2006-07

APPPHYS 220. Classical Electrodynamics — (Enroll in PHYSICS 220.)
3 units, Aut (Church)

APPPHYS 221. Classical Electrodynamics — (Enroll in PHYSICS 221.)
3 units, Spr (Church)

APPPHYS 222. Applied Quantum Mechanics I — (Enroll in EE 222.)
3 units, Aut (Miller)

APPPHYS 223. Applied Quantum Mechanics II — (Enroll in EE 223.)
3 units, Win (Miller)

3 units (Yamamoto) alternate years, given 2006-07

3 units (Yamamoto) alternate years, given 2006-07

APPPHYS 230A. Quantum Mechanics — (Enroll in PHYSICS 230.)
3 units, Aut (Silverstein)

APPPHYS 230B. Quantum Mechanics — (Enroll in PHYSICS 231.)
3 units, Win (Shenker)

APPPHYS 231A. Introduction to Lasers — (Enroll in EE 231.)
3 units, Aut (Fejer)

APPPHYS 231B. Laser Dynamics — (Enroll in EE 232.)
3 units, Win (Fejer)

4 units, Spr (S. Block, Schnitzer, S. Smith, Stearns)

APPPHYS 248. Fundamentals of Noise Processes — (Enroll in EE 248.)
3 units, Aut (Yamamoto)

APPPHYS 268. Introduction to Modern Optics — (Enroll in EE 268.)
3 units, Aut (Byer)

APPPHYS 270. Magnetism and Long Range Order in Solids — Cooperative effects in solids, with an emphasis on experimental results for archetypal materials. Topics include the origin of magnetism in solids, phase transitions and long range order, measurement of thermodynamic transport properties, elements of sample preparation and crystal growth, crystal electric field effects, ferromagnetism, antiferromagnetism, density waves, and superconductivity. Prerequisite: PHYSICS 172 or MATSCI 209, or equivalent introductory condensed matter physics course. GER:DB-NatSci
3 units (Fisher) not given 2005-06

1 unit (Beasley) not given 2005-06

3 units, Win (Manoharan)

3 units, Spr (Manoharan)

APPPHYS 275. Probing the Nanoscale — Theory, operation, and applications of nanoprobes of interest in physics and materials science. Lectures by experts. Topics include scanning tunneling microscopy, spectroscopy, and potential microscopy; atomic manipulation; scanning magnetic sensors and magnetic resonance; scanning field-effect gates; scanning force probes; and ultra-near-field optical scanning.
3 units, Win (Beasley)

APPPHYS 280. Phenomenology of Superconductors I — Applications based on superconductivity as a phase-coherent macroscopic quantum phenomena. Topics include the superconducting pair wave function, London and Ginzburg Landau theories, their physical content, the Josephson effect and superconducting quantum interference devices, s- and d-wave superconductivity, the response of superconductors to currents, magnetic fields, and rf electromagnetic radiation.
3 units, Aut (Kapitulnik)

APPPHYS 281. Phenomenology of Superconductors II — Continuation of 280. Topics include vortex states of matter, collective pinning, fluctuation effects, effects of dimensionality, the Kosterlitz-Thouless transition, Josephson junction arrays, quantum effects, and the superconductor/insulator transition.
3 units (Beasley) not given 2005-06

APPPHYS 290. Directed Studies in Applied Physics — Special studies under the direction of a faculty member for which academic credit may properly be allowed. May include lab work or directed reading.
1-15 units, Aut, Win, Spr, Sum (Staff)

APPPHYS 291. Practical Training — Opportunity for practical training in industrial labs. Arranged by student with research adviser’s approval. Summary of activities required.
3 units, Aut, Win, Spr, Sum (Staff)

APPPHYS 292. Introductory Biophysics — (Same as 192.) For advanced undergraduates or beginning graduate students. Quantitative models used in molecular biophysics. The relation of structure to function. Chemical

3 units, Spr (Doniach) alternate years, not given 2006-07

APPPHYS 304. Lasers Laboratory — Theory and practice. Theoretical and descriptive background for lab experiments, detectors and noise, and lasers (helium neon, beams and resonators, argon ion, cw dye, titanium sapphire, semiconductor diode, and the Nd:YAG). Measurements of laser threshold, gain, saturation, and output power levels. Laser transverse and axial modes, linewidth and tuning, Q-switching and modelocking. Limited enrollment. Prerequisites: EE 231 and 232, or consent of instructor.

3 units, Win (Bayer) alternate years, not given 2006-07

APPPHYS 305. Nonlinear Optics Laboratory — Laser interaction with matter. Laser devices provide radiation to explore the linear and nonlinear properties of matter. Experiments on modulation, harmonic generation, parametric oscillators, modelocking, stimulated Raman and Brillouin scattering, coherent anti-Stokes scattering, other four-wave mixing interactions such as wavefront conjugation and optical bistability. Optical pumping and spectroscopy of atomic and molecular species. Limited enrollment. Prerequisites: 304, EE 231 and 232, or consent of instructor.

3 units, Spr (Bayer) alternate years, not given 2006-07

APPPHYS 324. Introduction to Accelerator Physics — Dynamics of a beam of particles from first principles. Transverse dynamics description with Courant-Snyder matrix formalism. Longitudinal dynamics description with phase space Hamiltonian. Effects of synchrotron radiation on beam dynamics. Advanced topics of nonlinear dynamics and collective instability effects. Emphasis is on physical concepts and practical application examples. Prerequisites: undergraduate electromagnetism and mathematical physics.

3 units, Win (Chao, Ruth) alternate years, not given 2006-07

APPPHYS 346. Introduction to Nonlinear Optics — (Enroll in EE 346.)

3 units, Spr (S. Harris)

APPPHYS 356. Introduction to Fourier Optics — (Enroll in EE 366.)

3 units (Hesselin) alternate years, given 2006-07

3 units (Staff) not given 2005-06

3 units (Staff) not given 2005-06

APPPHYS 377. Literature of Condensed Matter Physics — Discoveries and experiments in condensed matter physics in the past 15 years. Topics: sliding charge density waves in layer compounds, the first pressure-induced Mott transition and organic superconductor, discovery of superfluid 3He, quasicrystals, the Sharvin effect, the quantum Hall effect, and reentrant superconductivity. Journal club format; student presentations.

3 units, Aut (Shen) alternate years, not given 2006-07

APPPHYS 383. Introduction to Atomic Processes — Atomic spectroscopy, matrix elements using the Coulomb approximation, summary of Racah algebra, oscillator and line strengths, Einstein A coefficients.

3 units, Aut (S. Harris) alternate years, not given 2006-07

3 units, Win (Yamamoto) alternate years, not given 2006-07

3 units, Spr (Yamamoto) alternate years, not given 2006-07

APPPHYS 470. Condensed Matter Seminar — Current research and literature; offered by faculty, students, and outside specialists. May be repeated for credit.

3 units, Spr (Galayda)

3 units, Spr (Yamamoto) alternate years, not given 2006-07

3 units, Spr (Yamamoto) alternate years, not given 2006-07

APPPHYS 473B. Topics in Molecular Biophysics — Concepts from statistical mechanics applied to contemporary molecular biology: allosteric transitions; protein folding; molecular recognition; actin polymers and gels; molecular motors; lipids and membrane proteins; ion channels. Some of the basic models used to quantitate fundamental biomolecular functions. Prerequisites: elementary statistical mechanics and chemical kinetics.

3 units, Spr (Galayda)

APPPHYS 473C. Condensed Matter Seminar — Current research and literature; offered by faculty, students, and outside specialists. May be repeated for credit.

1 unit, Aut, Win, Spr, Sum (Staff)
ARCHAEOLOGY PROGRAM

Director: Ian Morris (Classics, History)
Professors: Ian Hodder (Cultural and Social Anthropology), Richard Klein (Anthropological Sciences), Gail Mahood (Geological and Environmental Sciences), Ian Morris (Classics, History), Amos Nur (Geophysics), Michael Shanks (Classics)
Associate Professors: Jody Maxmin (Art History, Classics), John Rick (Anthropological Sciences)
Assistant Professors: Giovanna Ceserani (Classics), David DeGusta (Anthropological Sciences), Joanna Mountain (Anthropological Sciences), Jennifer Trimble (Classics), Barbara Voss (Cultural and Social Anthropology), Michael Wilcox (Cultural and Social Anthropology)
Visiting Professor: Lynn Meskell
Associated Staff: Laura Jones (Campus Archaeologist), Tom Seligman (Cantor Center)
Fellows: Tristan Carter, Kara Cooney, Brien Garnand, Patrick Hunt, Bill Rathje, Rob Schon, James Truncer
Program Offices: Building 500, Main Quad
Mail Code: 94305-2170
Web Site: http://archaeology.stanford.edu

Courses given in the Archaeology Program have the subject code ARCHLGY. For a complete list of subject codes, see Appendix.

Human beings and their ancestors have roamed the earth for at least five million years, but only invented writing five thousand years ago. And for most of the period since its invention, writing only tells us about small elite groups. Archaeology is the only discipline that gives direct access to the experiences of all members of all cultures, everywhere in the world. Stanford’s Archaeology Program is unique in providing students with an interdisciplinary approach to the material remains of past societies, drawing in equal parts on the humanities, social sciences, and natural sciences.

The program has three goals:
1. To provide a broad and rigorous introduction to the analysis of the material culture of past societies, drawing on the questions and methods of the humanities, social sciences, and natural sciences.
2. To relate this analysis to the practice of archaeology in the contemporary world.
3. To help each student achieve a high level of understanding through concentrated study of a particular research area.

The Archaeology curriculum draws on faculty from a wide range of University departments and schools. To complete the requirements for the major, students must take courses from the offerings of the program and from the listings of other University departments. The program culminates in a B.A. in Archaeology.

Archaeology majors are well prepared for advanced training in professional schools (for example, education, law, journalism) and, depending on their choice of upper-division courses, graduate programs in the humanities, social sciences, and natural sciences.

UNDERGRADUATE PROGRAMS

BACHELOR OF ARTS

The B.A. in Archaeology requires a minimum of 65 units in the major, divided between five components:

1. Core Program (20 units), consisting of:
 a) Gateway: ARCHLGY 1, Introduction to Prehistoric Archaeology (5 units)
 b) Intermediate: ARCHLGY 102, Introduction to Scientific Methods in Archaeology (5 units)
 c) Intermediate: ARCHLGY 103, History of Archaeological Thought (5 units)
 d) Capstone: ARCHLGY 104, Archaeology of Modern Times (5 units; Writing in the Major)

ARCHLGY 1 (ANTHSCI 3) is recommended as a first course, and many upper-level courses in Archaeology require this course as a prerequisite. Students should normally take the capstone course in their final year of course work in the major.

2. Analytical Methods and Computing (at least 3-5 units): quantitative skills and computing ability are indispensable to archaeologists. It is recommended that students take either ANTHSCI 192, Data Analysis in Anthropological Science, or ANTHSCI 208, Models and Imaging in Archaeological Computing. Other courses that may satisfy this requirement are PSYCH 10/STATS 60, ECON 102A, and GES 160.

3. Archaeological Skills (at least 10 units): archaeological skills include archaeological formation processes, botanical analysis, cartography, ceramic analysis, dating methods, faunal analysis, geographic information systems, geology, geophysics, genetics, osteology, remote sensing, soil chemistry, and statistics. All students are required to take at least 5 units from section A, Formation Processes, and at least 5 units from section B, Archaeological Methods. Students are strongly encouraged, whenever possible, to take GES 186, Geoarchaeology, to fulfill the formation processes requirement. With the approval of the instructor and Archaeology director, undergraduates may fulfill part of this requirement from graduate-level courses (i.e., courses with numbers of 200 or higher). Note: this list combines historical and current offerings subject to change; contact the Archaeology administrator for course planning beyond 2005-06 and check the web site.

Section A: Formation Processes

GES 1. Fundamentals of Geology 5
GES 49N. Field Trip to Death Valley and Owens Valley 5
GES 102. Earth Materials 5
GES 186/286. Geoarchaeology 5
GEOPHYS 50Q. Earthquakes and Archaeology: Lectures and Field Trip to Mexico 3
GEOPHYS 140. Introduction to Remote Sensing 3
GEOPHYS 144. Fundamentals of Geological Information Science (GIS) 4
GEOPHYS 190. Near-Surface Geophysics 3

Section B: Archaeological Methods

ANTHSCI 133A. Human Osteology 5
ANTHSCI 133B. Advanced Human Osteology 5
ANTHSCI 146. Archaeological Ceramics 5
ANTHSCI 149. Archaeological Field Methods 5
CASA 103. Laboratory Methods in Historical Archaeology 5
CLASSART 150. Archaeological Fieldwork in the Mediterranean 5

4. Theory (at least 10 units): topics include archaeological, art-historical, sociocultural, historical, and material culture theory. With the approval of the instructor, undergraduates may fulfill part of this requirement from graduate-level courses (i.e., courses with numbers of 200 or higher). Note: the following list is a combination of historical and current offerings; contact the Archaeology administrator for course planning beyond 2005-06 and check web site.

ANTHSCI 111. Language and Prehistory 5
ANTHSCI 141. Hunter-Gatherers in an Archaeological Perspective 5
ANTHSCI 145A. Evolutionary Theory in Archaeology 5
ANTHSCI 190. Social Theory in the Anthropological Sciences 5
CASA 108. History of Archaeological Thought 5
CASA 112. Archaeology of Cities 3
CASA 131. Archaeology and Anthropology of Visual Culture 5
CASA 134. Archaeology of Architecture 5
CASA 138. Feminist Practice in Archaeology 5
CASA 161. Modern Material Culture 5
CASA 162. Historical Archaeology: From Colony to Heterotopia 5

5. Area of Concentration (at least 20 units): in consultation with their faculty advisers, students choose an area of concentration in archaeological research. Concentrations can be defined in terms of time and space (e.g., Mediterranean Archaeology, New World Archaeology) or in terms of research problems (e.g., Hunter-Gatherer Archaeology, the Archaeology of Complex Societies). An area of concentration should provide both breadth and depth in a specific research area. Courses should be selected from the list given below. Courses other than those on this list can be used to fulfill this requirement with the prior approval of both the student’s faculty adviser and the program director. With the approval of the instructor, undergraduates may fulfill part of this requirement from graduate-level courses (i.e., courses numbered 300 or higher). Some courses (e.g., ANTHSCI 140, Stone Tools in Prehistory)
can be taken either to fulfill the skills requirement or as part of an area of concentration. However, each course may only count toward one component of the program. Students are encouraged to design their own area of concentration, with the prior approval of the student’s faculty adviser and the program director.

Concentrations — In addition to the following components, all majors must participate in an archaeological field project, and complete a collateral language requirement. Note: this list combines historical and current offerings subject to change. Please contact the Archaeology administrator for course planning beyond 2005-06 and visit the web site.

Hunter-Gatherer Archaeology:
ANTHSCI 141. Hunter-Gatherers in an Archaeological Perspective 5
ANTHSCI 142. Incas and their Ancestors: Peruvian Archaeology 5

Archaeology of Complex Societies:
ANTHSCI 122. The Ancient Maya 5
ANTHSCI 142. Incas and their Ancestors: Peruvian Archaeology 5
CLASSART 101. Archaic Greek Art 5
CLASSART 102. Classical and 4th-Century Greek Art 4-5
I Hu M 3 1 A. B. The Ancient Empires 5

Mediterranean Archaeology:
ARTHIST 202. Beazley and After 5
CLASSART 61. The Archaeology of the Greek World 5
CLASSART 81. Introduction to Roman Archaeology 5
CLASSART 101. Archaic Greek Art 5
CLASSART 102. Classical and 4th-Century Greek Art 4-5

New World Archaeology:
ANTHSCI 111. Language and Prehistory 5
ANTHSCI 115. Maya Hieroglyphic Writing 5
ANTHSCI 116. Research in Maya Hieroglyphic Writing 1-2
ANTHSCI 122. The Ancient Maya 5
ANTHSCI 141. Hunter-Gatherers in an Archaeological Perspective 5
ANTHSCI 142. Incas and their Ancestors: Peruvian Archaeology 5
ANTHSCI 22. Archaeology of North America 5
ANTHSCI 27. Introduction to Mesoamerican Archaeology 5
ANTHSCI 204. Archaeology of Central Mexico 5
CLASSART 117. Archaeology of the American Southwest 5
CLASSART 135. Native Peoples of the Americas: Prehistory and History of Indigenous Societies 5
GEO PHYS 50Q. Earthquakes and Archaeology: Lectures and Field Trip to Mexico 3

Archaeological Fieldwork — Students may meet this requirement in three ways:

1. by taking ANTHSCI 149, Archaeological Field Methods.
2. by taking part in a month-long field project directed by a Stanford faculty member, and taking a directed reading during the returning academic year for credit. In 2005-06, field projects are underway in Peru, Rome, Sicily, Switzerland, and Turkey.
3. by completing a field school offered by another institution. Such field schools must be approved in advance by the student’s undergraduate adviser and by the director of the Archaeology Program.

Collateral Language Requirement — All Archaeology majors must demonstrate competence in a foreign language beyond the first-year level. Students can meet this requirement by completing a course beyond the first-year level with a grade of ‘B’ or better, and are encouraged to choose a language that has relevance to their archaeological region or topic of interest. Students may petition to take an introductory-level course in a second language to fulfill this requirement by demonstrating the connection between the language(s) and their research interest(s).

To declare a major in Archaeology, students should contact the program administrator, who provides an application form, answer initial questions, and help the student select a faculty adviser and area of concentration. All majors must complete 65 units, which must form a coherent program of study and be approved by the student’s faculty adviser and the program director.

Students who plan to pursue graduate work in Archaeology should be aware of the admission requirements of the particular departments to which they intend to apply. These vary greatly. Early planning is advisable to guarantee completion of major and graduate school requirements.

MINOR

A minor in Archaeology provides an introduction to the study of the material cultures of past societies. It can complement many majors, including but not limited to Anthropological Sciences, Applied Physics, Art and Art History, Classics, Cultural and Social Anthropology, Earth Systems, Geological and Environmental Sciences, History, and Religious Studies.

To minor in Archaeology, the student must complete at least 27 units of relevant course work, including:

1. **Core Program** (10 units), consisting of:
 a) Gateway: ARCHLGY 1, Introduction to Prehistoric Archaeology (5 units)
 b) Capstone: ARCHLGY 104, The Archaeology of Contemporary Issues (5 units; Writing in the Major)

2. **Archaeological Skills** (2-5 units): archaeological skills include dating methods, faunal analysis, botanical analysis, ceramic analysis, geology, geophysics, soil chemistry, remote sensing, osteology, genetics, statistics, cartography, and geographic information systems. The course(s) must be selected from the list above.

3. **Theory** (5 units): topics include archaeological, art-historical, sociocultural, historical, and material-culture theory. The course(s) must be selected from the list given above.

4. **Area of Concentration** (10 units): in consultation with their faculty advisers, students choose an area of concentration in archaeological research. Concentrations can be defined in terms of time and space (e.g., Mediterranean Archaeology, New World Archaeology) or in terms of research problems (e.g., Hunter-Gatherer Archaeology, the Archaeology of Complex Societies). An area of concentration should provide both breadth and depth in a specific research area. Courses must be selected from the list above. Students are encouraged to design their own area of concentration, with the prior approval of both the student’s faculty adviser and the program director.

Students must complete the declaration process (both the planning form submission and Axess registration) by the last day of the quarter, two quarters prior to degree conferral (for example, by the last day of Autumn Quarter if Spring graduation is intended).

HONORS PROGRAM

The honors program in Archaeology gives qualified majors the chance to work closely with faculty on an individual research project culminating in an honors thesis. Students may begin honors research from a number of starting points including topics introduced in the core or upper-division courses, independent interests, research on artifacts in Stanford’s collections, or fieldwork experiences.

Candidates of sophomore and junior standing with an overall Stanford grade point average (GPA) of 3.0 or better should submit an application to the program administrator no later than the end of the fourth week of the Spring Quarter. It must include a brief statement of the project, a transcript, a short paper, and a letter of recommendation from the faculty member who supervises the honors thesis. Students are notified of their acceptance by the Undergraduate Committee.

Approved candidates must complete all of the requirements for their major and submit an honors thesis no later than four weeks prior to the end of the quarter in which graduation is anticipated. The thesis is read by the candidate’s adviser and a second reader appointed by the undergraduate committee. Honors candidates may enroll in one of the honors or thesis courses in Anthropological Sciences, Classics, Cultural and Social Anthropology, Geology and Environmental Sciences, or Geophysics for up to three quarters during their senior year (15 units maximum). No more than 5 of those units may count toward the 65-unit degree requirement.
COURSES

CORE COURSES

These courses are required of all Archaeology majors.

ARCHLGY 1. Introduction to Prehistoric Archaeology — (Same as ANTHSCI 148/248.) Aims, methods, and data in the study of human society’s development from early hunters through late prehistoric civilizations. Archaeological sites and remains characteristic of the stages of cultural development are examined for selected geographic areas, emphasizing methods of data collection and analysis appropriate to each.

3-5 units, Aut (Rick)

ARCHLGY 102. Archaeological Methods — (Same as ANTHSCI 148/248.) Methods and issues related to the archaeological investigation of ancient sites, materials, and contexts. Topics include research design for survey and excavation, artifact analysis, and dating methods. GER:DB-SocSci

5 units (Robertson) not given 2005-06

ARCHLGY 103. History of Archaeological Thought — (Same as CASA 110.) Introduction to the history of archaeology and the forms that the discipline takes today, emphasizing developments and debates over the past five decades. Historical overview of culture, historical, processual and post-processual archaeology, and topics that illustrate the differences and similarities in these theoretical approaches.

5 units, Spr (Meskell)

ARCHLGY 104. Archaeology of Modern Times — (Same as ANTHSCI 147.) Archaeological theory, method, and data are used to arrive at a better understanding of an issue of contemporary public concern. Issues include resource and energy management strategies such as the electricity situation in California, biodegradation and solid waste management, the relationship between human beings and dogs, ethnic wars in the Balkans and elsewhere, and Bill Gates’ strategies in the rise of Microsoft. GER:DB-SocSci, WIM

5 units, Win (Rathje)

ARCHLGY 118/218. Geoarchaeology — (Same as GES 186/286.) For juniors, seniors, and beginning graduate students with interests in archaeology or geosciences. Geology concepts, techniques, and data in the study of artifacts and the interpretation of the archaeological record. Topics include: sediments and soils; sedimentary settings of site formation; postdepositional processes that disturb sites; paleoenvironmental reconstruction of past climates and landscapes using plant and animal remains and isotopic studies; raw materials (minerals, metals, stone, shells, clay, building materials) and methods used in sourcing; estimating age based on stratigraphic and radiometric techniques. Weekly lab; weekend field trips to local archaeological/geological sites. GER:DB-NatSci

5 units, Win (Malcolm)

ARCHLGY 340. Narrative, Memory, Materiality: Women’s Sense of the Past — (Same as CASA 340, FRENGEN 340.) Theoretical issues concerning women’s sense of the past in different cultural and social milieus, as approached through written stories, monuments and material objects. Themes such as subjectivity, identity, and the human body. Readings include Cixious, Irigaray, Grosz, Kristeva, Spivak, Meskell, Lecan, Levinas, Ricoeul, and Badiou.

3-5 units, Spr (Domanska)

INTERDEPARTMENTAL OFFERINGS

See respective department listings for course descriptions and General Education Requirements (GER) information.

ANTHROPOLOGICAL SCIENCES

ANTHSCI 13. Bioarchaeology

3-5 units (DeGusta) not given 2005-06

ANTHSCI 27. Introduction to Mesoamerican Archaeology

5 units, Win (Robertson)

ANTHSCI 28. Australia and New Guinea Ethnology

4 units, Spr (R. Bird, D. Bird)

ANTHSCI 111/211. Language and Prehistory

5 units (Fox) not given 2005-06

ANTHSCI 115/215. Maya Hieroglyphic Writing

5 units (Fox) not given 2005-06

ANTHSCI 122/222. The Ancient Maya

2-5 units (Fox) not given 2005-06

ANTHSCI 133A/233A. Human Osteology

5 units, Win (DeGusta)

ANTHSCI 133B/233B. Advanced Human Osteology

5 units, Spr (DeGusta)

ANTHSCI 142. Incas and their Ancestors: Peruvian Archaeology

3-5 units (Rick) not given 2005-06

ANTHSCI 143. Ethnoarchaeology

3-5 units (D. Bird) not given 2005-06

ANTHSCI 144B. Archaeology of South Asia

3 units, Aut (Truncer)

ANTHSCI 145A/245. Evolutionary Theory in Archaeology

3-5 units (Staff) not given 2005-06

ANTHSCI 145B/245B. Evolution of Civilizations

3-5 units, Spr (Truncer)

ANTHSCI 146/246. Archaeological Ceramics

4 units (Staff) not given 2005-06

ANTHSCI 149B/208. Models and Imaging in Archaeological Computing

3-5 units, Win (Rick)

ANTHSCI 149. Archaeological Field Methods

5 units (Rick) not given 2005-06

ANTHSCI 190. Social Theory in the Anthropological Sciences

5 units, Aut (Barrett)

ANTHSCI 192/292. Data Analysis in the Anthropological Sciences

5 units, Win (Jones, Robertson)

ANTHSCI 194. Post Field Seminar

5 units, Aut (Staff)

ANTHSCI 204. Archaeology of Central Mexico

5 units, Aut (Robertson)

ANTHSCI 242. Beginnings of Social Complexity

5 units, Win (Rick)

ANTHSCI 290B. Evolutionary Theory in Anthropological Sciences

5 units, Win (Bird)

CLASSICS, ART/ARCHAEOLOGY

CLASSART 21Q. Eight Great Archaeological Sites in Europe

3-5 units, Aut (Shanks)

CLASSART 101/201. Archaic Greek Art

4 units, Aut (Maxmin)

CLASSART 102/202. Classical and 4th-Century Greek Art

4 units, Win (Maxmin)

CLASSART 104/204. Etruscan to Early Empire

4 units (Maxmin) not given 2005-06

CLASSART 126. Alpine Archaeology

3-5 units, Spr (Hunt)

CLASSART 322. Reception and Literacy in Roman Art

5 units, Aut (Trimble)
Classics, History

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
<th>Instructor(s)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASSHIS 305</td>
<td>Ancient Numismatics</td>
<td>4-5</td>
<td>Scheidel</td>
<td>not given 2005-06</td>
</tr>
</tbody>
</table>

Cultural and Social Anthropology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
<th>Instructor(s)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASA 16</td>
<td>Native Americans in the 21st Century: Encounters, Identity, and Sovereignty in Contemporary America</td>
<td>5</td>
<td>Wilcox</td>
<td></td>
</tr>
<tr>
<td>CASA 103/203</td>
<td>Laboratory Methods in Archaeology</td>
<td>5</td>
<td>Voss</td>
<td>not given 2005-06</td>
</tr>
<tr>
<td>CASA 112/212</td>
<td>The Archaeology of Cities</td>
<td>5</td>
<td>Voss</td>
<td>not given 2005-06</td>
</tr>
<tr>
<td>CASA 117/217</td>
<td>Archaeology of the American Southwest: Contemporary Peoples, Contemporary Debates</td>
<td>5</td>
<td>Wilcox</td>
<td></td>
</tr>
<tr>
<td>CASA 131</td>
<td>Archaeology and Anthropology of Visual Culture</td>
<td>5</td>
<td>Staff</td>
<td>not given 2005-06</td>
</tr>
<tr>
<td>CASA 134/234</td>
<td>Archaeology of Architecture</td>
<td>5</td>
<td>Voss</td>
<td>not given 2005-06</td>
</tr>
<tr>
<td>CASA 135/235</td>
<td>Native Peoples of the Americas: Prehistory, Contacts, and Contemporary Debates</td>
<td>5</td>
<td>Wilcox</td>
<td>not given 2005-06</td>
</tr>
<tr>
<td>CASA 137E/237E</td>
<td>Excavation at Catalhoyuk, Turkey</td>
<td>3-5</td>
<td>Carter</td>
<td></td>
</tr>
<tr>
<td>CASA 138</td>
<td>Feminist Practice in Archaeology</td>
<td>5</td>
<td>Voss</td>
<td>not given 2005-06</td>
</tr>
<tr>
<td>CASA 150</td>
<td>Archaeological Methods</td>
<td>5</td>
<td>Carter</td>
<td></td>
</tr>
<tr>
<td>CASA 152/252</td>
<td>Archaeology: World Cultural Heritage</td>
<td>5</td>
<td>Hodder</td>
<td>not given 2005-06</td>
</tr>
<tr>
<td>CASA 161/261</td>
<td>Modern Material Culture</td>
<td>5</td>
<td>Mullins</td>
<td></td>
</tr>
<tr>
<td>CASA 162/262</td>
<td>Historical Archaeology: From Colony to Heterotopia</td>
<td>5</td>
<td>Hall</td>
<td></td>
</tr>
</tbody>
</table>

Geology and Environmental Sciences

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
<th>Instructor(s)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>GES 1</td>
<td>Fundamentals of Geology</td>
<td>5</td>
<td>Egger, Wright-Dunbar</td>
<td></td>
</tr>
<tr>
<td>GES 48N</td>
<td>Volcanoes of the Eastern Sierra Nevada</td>
<td>2</td>
<td>Mahood</td>
<td></td>
</tr>
<tr>
<td>GES 102</td>
<td>Earth Materials</td>
<td>5</td>
<td>Brown, Chamberlain</td>
<td></td>
</tr>
<tr>
<td>GES 144</td>
<td>Fundamentals of Geographic Information Science (GIS)</td>
<td>4</td>
<td>Seto</td>
<td></td>
</tr>
<tr>
<td>GES 160</td>
<td>Statistical Methods for Earth and Environmental Sciences: General Introduction</td>
<td>3-4</td>
<td>Switzer</td>
<td></td>
</tr>
<tr>
<td>GES 185</td>
<td>Volcanology</td>
<td>4</td>
<td>Mahood</td>
<td>alternate years, not given 2006-07</td>
</tr>
</tbody>
</table>

Geophysics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
<th>Instructor(s)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOPHYS 50Q</td>
<td>Earthquakes and Archaeology: Lectures and Field Trip to Mexico</td>
<td>3</td>
<td>Kovach, Nur</td>
<td></td>
</tr>
</tbody>
</table>

Human Biology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
<th>Instructor(s)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUMBIO 180</td>
<td>Human Osteology</td>
<td>5</td>
<td>DeGusta</td>
<td></td>
</tr>
</tbody>
</table>

Statistics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
<th>Instructor(s)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATS 60/160</td>
<td>Introduction to Statistical Methods: Precalculus</td>
<td>5</td>
<td>Aut, Win, Spr, Sum(Staff)</td>
<td></td>
</tr>
</tbody>
</table>
ART AND ART HISTORY

Emeriti: (Professors) Keith Boyle, Lorenz Eitner, Suzanne Lewis, Frank Lobdell, Dwight C. Miller, Nathan Oliveira, Richard Randell, Michael Sullivan, Paul V. Turner
Chair: Michael Marrinan
Area Director for Art History: Pamela M. Lee
Area Director for Film and Media Studies: Kristine Samuelson
Area Director for Studio Art and Director of Undergraduate Studies for Studio Art: Paul DeMarinis
Director of Undergraduate Studies for Art History: Jody Maxmin
Director of Undergraduate Studies for Film and Media Studies: Scott Bukatman
Director of Graduate Studies in Art History: Wanda M. Corn
Director of Graduate Studies in Studio Art: David Hannah
Professors: Wanda M. Corn (American Art), Elliot Eisner (Art Education), David Hannah (Painting/Drawing), Matthew S. Kahn (Design; on leave Autumn), Michael Marrinan (18th- and 19th-century European Art), Melinda Takeuchi (Japanese Art), Richard Vinograd (Chinese Art), Bryan Wolf (American Art; on leave)
Associate Professors: Kristina Branch (Painting/Drawing), Scott Bukatman (Film Studies), Enrique Chagoya (Painting/Drawing/Printmaking; on leave Autumn), Paul DeMarinis (Electronic Media), Maria Gough (Modern Art), Pamela M. Lee (Contemporary Art), Jody Maxmin (Ancient Art)
Assistant Professors: Pavle Levi (Film Studies), Barbaro Martinez-Ruiz (African Art), Bissera Pentcheva (Medieval Art), Gail Wight (Electronic Media)
Professor (Teaching): Joel Leviick (Photography; on leave)
Affiliated Professor: John H. Merryman (Art and Art History, Law; emeritus)
Department Offices: Room 101, Cummings Art Building
Mail Code: 94305-2018
Phone: (650) 723-3404
Web Site: http://www.stanford.edu/dept/art

Courses given in Art have the subject codes ARTHIST, ARTSTUDI, and FILMSTUD. For a complete list of subject codes, see Appendix.

The department offers courses of study in: (1) the history of art, (2) the practice of art (studio), and (3) film and media studies. The undergraduate program is designed to help students think critically about the visual arts and visual culture. Courses focus on the meaning of images and media, and their historical development, roles in society, and relationships to disciplines such as literature, music, and philosophy. Work performed in the classroom, studio, and screening room is designed to develop a student’s powers of perception, capacity for visual analysis, and knowledge of technical processes.

The Iris and B. Gerald Cantor Center for Visual Arts at Stanford University is a major resource for the department. The center offers a 22,000 object collection on view in rotating installations in 18 galleries, the Rodin Sculpture Garden, and special exhibitions, educational programs, and events. Through collaborations with the teaching program, student internships, and student activities, the center provides a rich resource for Stanford students.

ART HISTORY

Over the past two decades the study of Art History has changed dramatically to include the study of art forms made far afield from the traditional core of Western Europe and to re-examine its objects in light of new critical frameworks. The Art History program promotes a plurality of approaches to the study of art by encouraging majors to construct a program of study drawn from the broad offerings of the Art History curriculum and the University at large.

UNDERGRADUATE PROGRAMS

BACHELOR OF ARTS

Art History majors are defined by a passion for the visual; for traditional fine arts, including painting, sculpture, architecture, prints, and the decorative arts; for the study of everyday objects, including advertisements, billboards, commercial signs, and visual culture; and for film, new media, and computer graphics. They share close observation and curiosity about how society represents itself. Students majoring in Art History pursue the ways in which cultures express themselves through the arts, and acquire the tools for visual analysis and historical understanding. They learn to analyze works of art in many media as they become proficient in cultural analysis and historical interpretation.

Art History majors combine courses in art, film, and visual culture with an area of concentration tailored to individual interests. The requirements are grouped into three clusters: foundation courses introduce students to visual analysis and provide an overview of the fields within Art History; distribution courses acquaint students with the art of different historical periods and geographical regions; individual areas of concentration, developed in consultation with a faculty adviser, allow students to pursue their specific interests. All majors are also required to take the junior seminar, offered each year in Autumn Quarter, in which they investigate methods and theories that have defined art historical scholarship. In their senior year, majors may elect to write an honors thesis, exploring a single topic in depth across several quarters of study in close collaboration with several professors.

All courses for the major in Art History must be taken for a letter grade.

Foundation Courses—Focus is on visual analysis, introducing students to the specialized vocabulary, forms of analysis, and principal concerns of Art History. ARTHIST 1, Introduction to the Visual Arts, provides training in art analysis and cultural interpretation; this course is required of all majors and should be taken early in a student’s career.

Other Foundation courses introduce students to the broad concerns of Asian art (ARTHIST 2), architecture (ARTHIST 3), and film (ARTHIST 4). In addition to ARTHIST 1, History of Art majors are required to take at least one other foundation course.

Majors are also required to complete at least one introductory Studio Art course using the traditional materials of painting, sculpture, drawing, photography, or printmaking.

Distribution Courses—In order for students to acquire a broad overview of different historical periods and different geographic regions, majors must take at least four art history courses distributed among the following categories: ancient and medieval; Renaissance and early modern; modern, contemporary, and the United States; Asia, Africa, and the Americas; and film studies.

Area of Concentration—The department encourages students to pursue their interests by designing an area of concentration tailored to their own intellectual concerns. This area of concentration provides the student with an in-depth understanding of a coherent topic in Art History. It must consist of two courses: two must be seminars or colloquia; four of the five courses must be in a single field or concentration constructed by the student in consultation with a faculty adviser.

There are no pre-defined areas of concentration; students create their own concentration based on individual interests by focusing on topics, questions of genre, or historical or national traditions. Students with a strong interest in topics that cross disciplines may create an interdisciplinary concentration.

Students submit an area of concentration form, signed by their faculty adviser, during the Winter Quarter of the junior year. The form includes a brief statement defining the concentration and a list of the courses to be taken to complete it. Students must consult with their adviser in the Autumn Quarter of senior year to insure that all requirements for the major are being met.

Sample Areas of Concentration—

1. Topical concentrations: art and gender; art, politics, race, and ethnicity; art, science, and technology; urban studies; or any other concentration created by the student and approved by a faculty adviser.
2. Genre concentrations: architecture; painting; sculpture; film studies; prints and media; or decorative arts and material culture.
3. Historical and national concentrations: ancient and medieval; Renaissance and early modern; modern and contemporary; American; African; Asian; or the Americas.
4. Interdisciplinary concentration: students choosing the interdisciplinary concentration must take two upper-division courses outside Art History on topics related to their concentration; these courses are counted with three other courses within Art History to complete the concentration. Sample interdisciplinary areas of concentration include: art and literature, art and history; art and religion; art and economics; or any other interdisciplinary combination designed by the student and approved by a faculty adviser. The two outside courses for the interdisciplinary concentration are counted among the 13 courses required for the major.

Junior Seminar—This course is designed to introduce all majors to methods and theories underlying the practice of Art History. The seminar is offered annually in Autumn Quarter. Students are encouraged to take the seminar at the start of their junior year. The goals of the seminar are: to create a shared intellectual experience among all majors; provide majors with in-depth knowledge of their own discipline; and enrich the understanding that majors bring to other courses in Art History.

Research—An essential component of the major requires that students become familiar with works of art and how to write about them. This entails a familiarity with library research, the mechanics of art historical scholarship, the practice of focusing research on clearly defined problems, and the experience of presenting findings in written or oral form. Research requirements are designed to ensure that all majors in Art History leave Stanford with a mastery of these skills.

All majors are required to attend an orientation session, presented by the professional staff of the Art Library, that introduces the tools of research and reference available on campus or through the Internet. This requirement should be completed no later than the quarter following the major declaration. In addition, majors are permitted to place materials on reserve in the Art Library to facilitate research for seminars or other projects such as honors theses (see below).

All majors are required to include within their program of study at least two research-oriented seminars that entail preparation of a research paper, a formal presentation, or both. In some cases, students are allowed to substitute a colloquium for one of these seminars, although in such cases it is understood that the course requirements must include a substantial research component.

HONORS THESIS

The purpose of the honors thesis is to extend and deepen work done in an art history class; the topic should have focus and clear parameters. Typically, an honors thesis is not an exploration of a new area that the student has never studied before.

The minimum requirement for admission to the honors program is an overall GPA of 3.5, and at least 3.5 in Art History courses. Students wishing to write an honors thesis must announce their intention by submitting a form signed by the thesis adviser (who need not be the student’s academic adviser) by February 1 of their junior year. It is recommended, but not mandatory, that the thesis adviser be on campus and in residence during the candidate’s senior year.

Candidates for the honors program must submit to the art history faculty a five-page thesis proposal, including bibliography and illustrations, and one completed paper that demonstrates the student’s ability to conceptualize and write about issues. This complete proposal must be submitted to the department’s student services administrator no later than the third week of Spring Quarter of the candidate’s junior year so that it can be read, discussed, and voted upon at the faculty’s regular meeting in early May. A candidate is accepted into the honors program by a simple majority.

Once admitted to the honors program, students work with their thesis advisers to define the scope of the study, establish a research and writing timetable, and enlist one other faculty member to serve on the thesis reading committee. The summer between junior and senior years is usually devoted to refining the topic and pursuing any off-campus research. Students may apply for URDP research grants to help finance trips or expenses relative to preparing the research for their honors thesis.

During the senior year, students may register for up to 10 units of ARTHIST 297, Honors Thesis Writing, 5 units of which may count towards the student’s concentration in Art History. To aid the process of research and writing, students preparing an honors thesis are paired with a graduate student mentor. Students should contact the graduate student mentor in their junior year as soon as they begin to think about writing an honors thesis. Through regular meetings, mentors guide students through the proposal process and the research and writing year.

Students and thesis advisers should plan their schedule of work so that a complete, final manuscript is in the hands of each member of the thesis reading committee by the beginning of the seventh week of the student’s final quarter at Stanford. The thesis adviser assigns a letter grade; both faculty readers must approve the thesis for honors before the student is qualified to graduate with honors.

ART HISTORY MAJOR REQUIREMENTS

<table>
<thead>
<tr>
<th>Foundation</th>
<th>Number of courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARTHIST 1 and one other introductory-level course, either ARTHIST 2, 3, or 4</td>
<td>2</td>
</tr>
<tr>
<td>One introductory course in Studio Art</td>
<td>1</td>
</tr>
</tbody>
</table>

Distribution:

Four Art History courses distributed among the following five categories: ancient and medieval; Renaissance and early modern; modern, contemporary, and the U.S.; Asia; Africa and the Americas; film studies

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Number of courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Five courses, of which two must be seminars or colloquia. At least 4 of the 5 must be in a single field or concentration constructed by the student in consultation with an adviser</td>
<td>5</td>
</tr>
</tbody>
</table>

Junior Seminar:

A methods and theory seminar to be taken by all majors, preferably in Autumn Quarter of junior year

Honors Essay (optional)

Total number of courses

MINOR IN ART HISTORY

A student declaring a minor in Art History must complete 25 units of course work in one of the following four tracks: Open, Modern, Asian, or Architecture. Upon declaring the minor, students are assigned an adviser with whom they plan their course of study and electives. A proposed course of study must be approved by the adviser and placed in the student’s departmental file. Only one class may be taken for credit outside of the Stanford campus (this includes the Stanford Overseas Studies Programs). All minors are required to attend an orientation session presented by the professional staff of the Art Library, which introduces the many tools of research and reference available on campus or through the Internet. This requirement should be completed no later than the quarter following the minor declaration.

Requirements for the Open Track: ARTHIST 1 plus five lecture courses, colloquia or seminars in any field.

Requirements for the Modern Track: ARTHIST 1 plus five lecture courses, colloquia, or seminars in any aspect of 19th- to 20th-century art.

Requirements for the Asian Track: ARTHIST 2 plus five lecture courses, colloquia, or seminars in Asian art (ARTHIST 1 may be one of the five courses).

Requirements for the Architecture Track: ARTHIST 3 plus five lecture courses, colloquia, or seminars in architectural history (ARTHIST 1 may be one of the five courses).

GRADUATE PROGRAMS

MASTER OF ARTS

The Department of Art and Art History offers M.A. and Ph.D. degrees. The M.A. is granted as a step toward fulfilling requirements for the Ph.D. The department does not admit students who wish to work only toward the master’s degree.
The University's basic requirements for the master's degree are set forth in the “Graduate Degrees” section of this bulletin. Completing the University's requirements for a B.A. degree in the History of Art, or equivalent training, is required of students entering a program of study for the M.A. The required curriculum for entering students is determined by the Director of Graduate Studies through an evaluation of transcripts and records during an individual meeting scheduled with each student prior to the opening of Autumn Quarter to discuss course deficiencies.

Requirements for the Degree — The requirements for the M.A. degree in the Art History are:

1. Units: completing a total of at least 45 units of graduate work at Stanford in the history of art in courses at the 200 level, including a seminar in art historiography/visual theory.
2. Languages: reading knowledge of two foreign languages, preferably German and French or Italian. Students in Chinese and Japanese art are ordinarily expected to demonstrate reading competence in modern and classical Chinese or Japanese depending on the student’s area of focus. Final determination is made in consultation with the student’s primary adviser.
3. Papers: submission for consideration by the faculty of two term papers from among those written during the year.
4. Area Coverage: demonstration to the faculty, by course work and/or examination, that the student has adequate knowledge of the major areas of the history of art.

DOCTOR OF PHILOSOPHY

The University’s basic requirements for the Ph.D. degree are set forth in the “Graduate Degrees” section of this bulletin. An expanded explanation of department requirements is given in the Art History Graduate Student Handbook available at http://www.stanford.edu/group/adgsa/.

Residence — To be eligible for the doctoral degree, the student must complete three years of full-time graduate work in Art History, at least two years of which must be in residence at Stanford.

Unit Requirements — To be eligible for the doctoral degree, the student must complete 135 units. Of these 135, the student must complete at least 100 units of graduate course work at the 200 level or above, including all required courses, with a minimum of 62 units in Art History lecture courses and seminars.

Collateral Studies — The student is required to take at least three courses in supporting fields of study (such as anthropology, classics, history, literature, or philosophy), determined in consultation with the department advisers. These courses are intended to strengthen the student’s interdisciplinary study of art history.

Graduate Student Teaching — As a required part of their training, all graduate students in Art History, regardless of their source of funding, must participate in the department’s teaching program. At least two one-quarter assignments in ARTHIST 1, 2, 3, or 4 are required, with concurrent registration in the Seminar in Teaching Praxis (ARTHIST 610). Students receiving financial aid are required to serve as a teaching assistant for four quarters. Further opportunities for teaching may be available.

Admission to Candidacy — A graduate student’s progress is formally reviewed at the end of Spring Quarter of the second year. The applicant for candidacy must put together a candidacy file showing that he/she has completed the requirements governing the M.A. program in the History of Art (see above), and at least an additional 18-24 units by the end of Winter Quarter of the second year. The graduate student does not become a formal candidate for the Ph.D. degree until he/she has fully satisfied these requirements and has been accepted as a candidate by the department.

Area Core Examination — All graduate students conceptualize an Area Core and bibliography in consultation with their primary adviser and two other Stanford faculty members, one of whom is drawn from a field other than Art History, or, if in Art History, has expertise outside of the student’s main area of interdisciplinary concentration. Students are required to pass an Area Core Examination, in either written or oral form, sometime in the third year of study. To prepare for the exam, students may enroll for up to three five-unit reading courses (ARTHIST 620), no more than one per quarter.

Reading Committee — After passing the Area Core Examination, each student is responsible for the formation of a Dissertation Reading Committee consisting of a principal adviser and three readers. Normally, at least two of the three readers are drawn from the department and one may come from outside the department.

Dissertation Proposal — By the beginning of the fourth year, students should have defined a dissertation subject and written a proposal in consultation with their principal adviser. To prepare the proposal, students may take one five-unit independent study course (ARTHIST 640) and apply for a funded Summer Quarter to research and write the proposal. The proposal is submitted to the Art History faculty at the beginning of the fourth year for comments. The student then meets with the adviser to discuss the proposal and faculty comments no later than 30 days after the submission of the proposal, at which time necessary revisions are determined.

Dissertation — A member of the Art History faculty acts as the student’s dissertation adviser and as chair of the Reading Committee. The final draft of the dissertation must be in all the readers’ hands at least four weeks before the date of the Oral Defense. The dissertation must be completed within five years from the date of the student’s admission to the candidacy for the Ph.D. degree. A candidate taking more than five years must apply for an extension of candidacy.

Oral Defense Examination — Each student arranges an oral examination with the four members of the Reading Committee and a chair chosen from outside the department. The oral examination consists mainly of a defense of the dissertation but may range, at the committee’s discretion, over a wider field. The student is required to discuss research methods and findings at some length and to answer all questions and criticisms put by members of the examining committee. At the end of the defense, the committee votes to pass or fail the student on the defense. The committee also makes recommendations for changes in the dissertation manuscript before it is submitted to the University as the final requirement for the granting of the Ph.D. degree in the History of Art. After incorporating the changes, the manuscript is given a final review and approval by the student’s principal adviser.

PH.D. MINOR

For a minor in History of Art, a candidate is required to complete 24 units of graduate-level history courses (200 level or above), in consultation with a department adviser.

JOINT PH.D. IN ART HISTORY AND HUMANITIES

The department participates in the Graduate Program in Humanities leading to the joint Ph.D. in Art History and Humanities. For a description of this program, see the “Interdisciplinary Studies in Humanities” section of this bulletin.

FILM AND MEDIA STUDIES

The undergraduate major in Film and Media Studies is designed for Stanford students to develop the critical vocabulary and intellectual framework for understanding the role of cinema and related media within broad cultural and historical contexts.

UNDERGRADUATE PROGRAMS

BACHELOR OF ARTS

The Bachelor of Arts in Film and Media Studies provides an introduction to film aesthetics, national cinematic traditions, modes of production in narrative, documentary, and experimental films, the incorporation of moving image media by contemporary artists, and the proliferation of new forms of digital media. After completing a nine-course core that combines the history of cinema with an overview of the theory, techniques, and institutions central to moving images, students pursue a concentration tailored to their interests.
All undergraduate majors complete a minimum of 65 units and 16 courses of 3-5 units each, or 15 courses plus an honors thesis. All courses for the major must be taken for a letter grade.

CORE COURSES

Students considering a major in film and media studies should take ARTHIST 1, Introduction to the Visual Arts, or FILMSTUD 4, Introduction to Film Study, during their freshman or sophomore year. These courses anchor the major through exposure to film language, genre, and visual and narrative structures. Majors are also required to take at least one course in the fundamentals of film and video production and should take a studio course in new media.

AREA OF CONCENTRATION

Advanced undergraduate courses are offered in five fields of concentration: film history; film and culture; film, media, and technology; writing, criticism, and practice; and avant garde aesthetics and performance. Working with a faculty adviser, students select at least six courses in their concentration from course offerings in Art and Art History and other departments across the university.

SENIOR SEMINAR

FILMSTUD 290, Movies and Methods, offered once a year typically in Spring Quarter, represents the culminating intellectual experience for Film Studies majors choosing not to write an honors thesis. (Honors thesis writers may also take the senior seminar. Seniors who may not be in residence in the quarter that the senior seminar is offered may enroll in the junior year. Movies and Methods provides majors with an opportunity to synthesize their previous work in Film Studies and work in an advanced setting with a faculty member. The senior seminar must be taken for a letter grade.

HONORS THESIS

Students who want to write an honors thesis should consult with a potential adviser by the end of junior year. The adviser must be a faculty member in residence during the student’s senior year who can oversee the student’s progress throughout the project.

Candidates for the honors thesis must have a minimum grade point average (GPA) of 3.5. They must submit a 3-5 page proposal outlining the themes of the thesis, a bibliography, and a tentative schedule for research and writing, by the end of registration period in the Autumn Quarter of their senior year. The proposal requires the approval of the candidate’s adviser and the Director of Undergraduate Studies.

Once admitted to the honors program, students work with their thesis advisers to research, organize, and write the thesis, and to enlist one other faculty member to serve on the thesis reading committee.

To aid the process of research and writing, students preparing an honors thesis are paired with a graduate student mentor. Students should contact the graduate student mentor in their junior year as soon as they begin to think about writing an honors thesis. Honors thesis writers may register for up to 8 units of FILMSTUD 290, Independent Study, while working on the thesis. Students may apply for URP research grants to help finance trips or expenses relative to preparing the research for their honors thesis.

Students and thesis advisers should plan their schedule of work so that a complete, final manuscript is in the hands of each member of the thesis reading committee by the beginning of the seventh week of the student’s final quarter at Stanford. The thesis adviser assigns a letter grade; both faculty readers must approve the thesis for honors before the student is qualified to graduate with honors.

FILM AND MEDIA STUDIES MAJOR REQUIREMENTS

<table>
<thead>
<tr>
<th>Core:</th>
<th>Number of courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARTHIST 1</td>
<td>1</td>
</tr>
<tr>
<td>FILMSTUD 4</td>
<td>4</td>
</tr>
<tr>
<td>FILMSTUD 5 or FILMSTUD 101</td>
<td>1</td>
</tr>
<tr>
<td>FILMSTUD 100A,B,C</td>
<td>2</td>
</tr>
<tr>
<td>FILMSTUD 201</td>
<td>1</td>
</tr>
<tr>
<td>COMM 114</td>
<td>1</td>
</tr>
<tr>
<td>One course in new media, from a list supplied by the department</td>
<td>1</td>
</tr>
</tbody>
</table>

CONCENTRATION:

Six courses, four of which must be in a single film and media studies concentration developed by the student in consultation with an adviser. Concentration areas are: film history; film and culture; avant garde aesthetics and performance; film, media, and technology; and writing, criticism, and practice. The remaining two courses must be related, situating the student’s concentration in a broader context.

FILMSTUD 290 (Senior Seminar) 1
Total number of courses 16

FILM MINOR

A minor in Film Studies requires four core courses and three elective courses for a total of seven courses. The required core courses are: FILMSTUD 4, Introduction to Film Study; FILMSTUD 102, Film Theory; one course from the film history sequence FILMSTUD 100 A,B,C; and either a course in a national cinema or an additional course in film history. Electives can be selected from courses in other departments approved for the Film Studies minor by the coordinator and core faculty for their stress on methods of film analysis. These may include courses in national cinemas, film genres, experimental and documentary film, or film theory.

Upon declaring the minor, students are assigned an adviser with whom they plan their course of study and electives. A proposed course of study must be approved by the adviser and placed in the student’s departmental file. Only one class may be taken for credit outside the Stanford campus, including Stanford Overseas Studies programs. Minors are required to attend an orientation session presented by the professional staff of the Art Library, which introduces the many tools of research and reference available on campus or through the Internet. This requirement should be completed no later than the quarter following the minor declaration.

PRACTICE OF ART (STUDIO)

UNDERGRADUATE PROGRAMS

BACHELOR OF ARTS

The studio program is designed to develop in-depth skills in more than one area. It emphasizes the expressive potential of an integration of media, often via a crossdisciplinary, interactive path. Through collaboration and connections with scientists, engineers, and humanities scholars, the program addresses a breadth of topical and artistic concerns central to a vital undergraduate education.

Medium-based courses in digital art, drawing, painting, photography, and sculpture, along with a basic design course, introduce students to visual fundamentals. The student is required to take Level 1 before moving to the intermediate Level 2 where investigations of content are emphasized. At this level, the student focuses on a range of subject matter from historical motifs (figure, still life, landscape) to contemporary ideas in design. After fulfilling Level 2 requirements, the student selects courses at Level 3, which feature combined practices. Level 3 courses are designed to stretch the student’s understanding of materials and techniques. Experimental and challenging in nature, these courses cross area boundaries. Level 4 courses comprise a senior capstone experience. ARTSTUDI 249, Advanced Undergraduate Seminar, emphasizes the investigation of visual concepts interpreted by a single medium, by cross-practices, or by collaboration among students working in a variety of materials. This seminar gives the student an opportunity to be exposed to the work of other majors in a critique-based forum directed by a visiting artist or critic. Advanced courses with a particular focus such as design, photography, or painting are offered on a rotational basis. Independent study supervised by a member of the permanent faculty is also available to the advanced student.

Students are encouraged to move through the requirements for the major in the sequence outlined. Levels 1, 2, 3, and 4 describe a sequence of course choices, not to be confused with the years freshman, sophomore, junior, and senior. Students are exposed to a range of practices early in their development in order to have a good basis of comparison if they choose to concentrate on a particular medium. This sequence of courses also broadens the students’ skills and enables them to combine materials and methods.
The major program in the Practice of Art (Studio) must total 65 units and include the following:
1. Four Level 1 courses (12-13 units) from ARTSTUDI 60, 70, 80, 130, 140, 145. Two courses must be completed before moving to Level 2.
2. Two Level 2 courses from ARTSTUDI 131, 141, 146, 160, 161, 166, 170, 175 (6 units) must be completed before taking Level 3 courses.
3. Two to three Level 3 courses (6-9 units) from ARTSTUDI 132, 148, 149, 169, 172, 174, 176, 271 are to be completed before taking Level 4 courses.
4. Two to three Level 4 courses (6-9 units) from ARTSTUDI 133, 142, 147, 248, 268, 269, 270.
5. Five art history courses (21 units). ARTHIST 1 is taken as the basic course, followed by four additional courses. At least one of the courses must be in the modern art series, ARTHIST 140-159.
6. Electives, any level (7-11 units). As many as 6 elective units may be earned from workshops, internships, and independent study projects, supervised by a member of the permanent faculty. All units must be approved by the adviser prior to taking the workshop, internship, or independent study.
7. Total units: 65. All required course work must be taken for a letter grade; courses may not be taken satisfactory/no credit. University units earned by placement tests or advanced placement work in secondary school are not counted within the 65 units.
8. Majors are required to spend one quarter or summer pursuing studio interests at a site off campus. This requirement may be fulfilled in a number of ways including, but not limited to, Overseas Studies Programs, independent study sponsored by URP grants, and the Haas Center. Students must meet with the Director of the Studio Art Program to discuss how the requirement can be met.
9. Each undergraduate major is required to attend an Art Library orientation session no later than the quarter following the minor declaration. Majors are to consult with the Art Library staff for scheduling information.
10. Studio majors are required to meet with both their adviser and the department’s undergraduate curriculum adviser during the first two weeks of each quarter to have course work approved and to make certain they are meeting degree requirements. The adviser’s role is important both in regard to guiding the student’s decisions within the program as well as in discussing plans for summer study and graduate work. An adviser is chosen by the student or assigned by the department.

Transfer Credit Evaluation—Upon declaring a Studio Art major, a student transferring from another school must have his or her work evaluated by a Department of Art and Art History adviser. A maximum of 13 transfer units are applied toward the 65 total units required for the Studio Art major. A student wishing to have more than 13 units applied toward the major must submit a petition to the adviser and then have his or her work reviewed by a studio committee.

MINORS
The minor program in the Practice of Art (Studio) must include the following:
1. Two Level 1 courses (6-7 units) from ARTSTUDI 60, 70, 140, 145 before taking Level 2 courses.
2. Two Level 2 courses (6 units) from ARTSTUDI 141, 146, 160, 170, 175 before taking Level 3 courses.
3. Two Level 3 and/or Level 4 courses (6 units) from ARTSTUDI 142, 147, 149, 169, 172, 174, 176, 248, 268, 269, 270, 271.
4. Three art history courses (13 units), including ARTHIST 1 and one course from the modern art series ARTHIST 140-159.
5. Total units: 31. All required course work must be taken for a letter grade; courses may not be taken satisfactory/no credit. University units earned by placement tests or advanced placement work in secondary school are not counted within the 31 units.
6. Each undergraduate minor is required to attend an Art Library orientation session no later than the quarter following the minor declaration. Minors are to consult with the Art Library staff for scheduling information.
7. Minors are required to meet with both their adviser and the department’s undergraduate curriculum adviser during the first two weeks of each quarter to have course work approved and to make certain they are meeting degree requirements.

OVERSEAS CAMPUS CREDIT
A minimum of 52 of the 65 units required for the Studio Art major and a minimum of 21 of the 31 units required for the Studio Art minor must be taken at the Stanford campus. In all cases, a student should meet with his or her adviser before planning an overseas campus program.

GRADUATE PROGRAMS
MASTER OF FINE ARTS
Programs for the M.F.A. degree are offered in painting, sculpture, new genres, photography, and product or visual design.

PROGRAM IN PAINTING, SCULPTURE, NEW GENRES, AND PHOTOGRAPHY
The program provides a rigorous and demanding course of study designed to challenge and encourage advanced students. Participants are chosen for the program on the basis of work that indicates artistic individuality, achievement, and promise. Candidates should embody the intellectual curiosity and broad interests appropriate to, and best served by, work and study within a university context.

Admission Requirements—
1. Applicants must have a B.A. or B.S. from an accredited school. It is expected that the applicant have a strong background in studio art, either an undergraduate degree or at least three years of independent studio practice.
2. Applications and portfolios for the studio program must be submitted by January 18. Students accepted to the program are admitted for the beginning of the following Autumn Quarter. No applicants for mid-year entrance are considered.
3. Portfolio Specifications: 20 slides of creative work. Some of these can be drawings if relevant to the overall project. Send in a Kodak Universal carousel; no actual work is accepted. In addition, three courses of academic electives are required in the first year. These courses can be chosen from a large variety of disciplines in consultation with the faculty adviser.
4. The student is expected to pass three faculty reviews: (1) at the end of the first quarter (anyone judged to be making inadequate progress is placed on probation and requires an additional review at the end of the second quarter), (2) at the end of the third quarter, and (3) at the time of the M.F.A. exhibition. The purpose of these reviews is to evaluate development and to assess the progress of the student.
5. During the final quarter in the program, students must write a thesis paper addressing the development of their work over the two-year period at Stanford. Participation in the M.F.A. exhibition at the end of the year is required.
6. All students, regardless of their source of funding, are required to assist with the department’s teaching program for a minimum of eight hours per week over the period of six quarters; the particulars of this assignment are at the department’s convenience.
The studio faculty reserve the right to make use of graduate paintings, sculpture, and photographs in exhibitions serving the interests of the graduate program.

Graduate students must remain in residence at Stanford for the duration of the program.

THE GRADUATE PROGRAM IN DESIGN

Working jointly, the departments of Art and Art History and Mechanical Engineering offer graduate degrees in product and visual design. A large physical environment, the Design Yard, provides professional caliber studio space and well-equipped shops. Flexible programs may include graduate courses in fields such as engineering design, biotechnology, marketing, microcomputers, or the studio and art history curriculum. The program centers on a master’s project and may also include work in advanced art and design. The program is structured to balance independent concentration with rich utilization of the University and the community, and personal interaction with the students and faculty of the graduate Design program. Crossdisciplinary interaction is encouraged by a four-person graduate Design faculty.

Admission Requirements for the M.F.A.—

1. Applicants must have a B.A. or B.S. from an accredited school. It is expected that the applicant have a strong background in studio art, either an undergraduate degree or at least three years of independent studio practice.

2. Portfolio Specifications: 12 slides or photographs of creative work. All slides must be labeled with the applicant’s name. If a carousel is sent, an accompanying slide list must be included indicating the size, date, and medium of each work; otherwise, slides should be labeled with the same information and sent in the standard cardboard box received from processing. If applicants want portfolios returned, a stamped, self-addressed container must be included.

Requirements for the Degree—The M.F.A. degree with a specialization in design requires:

1. Completing a minimum of two years (six quarters) of graduate work in residence or its equivalent at Stanford.

2. Completing 54 units of course work chosen in consultation with an adviser. At least 18 of the 54 units must be in ARTSTUDI 360A,B,C and ME 316 A,B,C.

3. Participating in a weekly seminar in which the student’s work is critiqued and discussed in detail.

4. Graduate students must remain in residence at Stanford for the duration of the program.

ART EDUCATION

Information concerning the M.A. in Teaching, Doctor of Education, Ph.D. in Education, and Teaching Credential (Single Subject-Secondary) degrees and programs may be secured from the Office of the Dean of the School of Education.

COURSES

WIM indicates that the course satisfies the Writing in the Major requirements.

HISTORY OF ART

ARThist 1. Introduction to the Visual Arts—Understanding, analyzing, and writing about the visual arts. Multicultural and topical approach rather than historical. GER:DB-Hum, WIM

5 units, Aut (Marrinan)

ARThist 2. Ideas and Forms in Asian Art—The religious and philosophical ideas and social attitudes of India, China, and Japan and how they are expressed in architecture, painting, woodblock prints, sculpture, and in such forms as garden design and urban planning. GER:DB-Hum, EC-GlobalCom

5 units, Win (Takeuchi)

ARThist 3. Introduction to the History of Architecture—From antiquity to the 20th century, mostly Western with some non-Western topics. Buildings and general principles relevant to the study of architecture. GER:DB-Hum

5 units, Spr (Beischer)

ARThist 99A. Student Guides at the Cantor Center for the Visual Arts—Open to all Stanford students. Introduction to museum administration; art registration, preparation, and installation; rights and reproductions of images; exhibition planning; and art storage, conservation, and security. Skill building in public speaking, inquiry methods, group dynamics, theme development, and art-related vocabulary. Students research, prepare, and present discussions on art works of their choice.

1 unit, Aut (Young)

OVERVIEW COURSES

THE CLASSICAL WORLD

ARThist 101/301. Archaic Greek Art—(Same as CLASSART 101/201.) The development of Greek art and culture from protogeometric beginnings to the Persian Wars, 1000-480 B.C.E. The genesis of a native Greek style; the orientalizing phase during which contact with the Near East and Egypt transformed Greek art; and the synthesis of East and West in the 6th century B.C.E. GER:DB-Hum

4 units, Aut (Maxmin)

ARThist 102/302. Classical and 4th-Century Greek Art—(Same as CLASSART 102/202.) The formation of the classical ideal in 5th-century Athenian art, and its transformation and diffusion in the 5th and 4th centuries against changing Greek history, politics, and religion. GER:DB-Hum

4 units, Win (Maxmin)

ARThist 103/303. Greek Painting—(Same as CLASSART 103/203.) Greek vases and their painters, emphasizing the masters of Athenian black figure and red figure who flourished in the era of the tyrant Peisistratos and his sons. GER:DB-Hum

4 units, Spr (Maxmin)

ARThist 104/304. Etruscan to Early Empire—(Same as CLASSART 104/204.) The art, architecture, and culture of Etruria, the Roman Republic, and the early Roman Empire. GER:DB-Hum

4 units (Maxmin) not given 2005-06

THE MEDIEVAL WORLD

ARThist 105/305. Introduction to Medieval Art—Chronological survey of Byzantine and Western Medieval art and architecture from the early Christian period to the Gothic age. Broad art-historical developments and more detailed examinations of individual monuments and works of art. Topics include devotional art, court and monastic culture, relics and the cult of saints, pilgrimage and crusades, and the rise of cities and cathedrals. GER:DB-Hum

4 units (Pentcheva) not given 2005-06

ARThist 106/306. Byzantine Art and Architecture, 300-1453 C.E. —Art-historical developments; monuments and works of art. Topics include: the transition from naturalism to abstraction; imperial art and court culture; pilgrimage and cult of saints; and secular art and luxury objects.

4 units (Pentcheva) not given 2005-06

4 units (Pentcheva) not given 2005-06
ARTHIST 108/308. Virginity and Power: Mary in the Middle Ages — The most influential female figure in Christianity whose state cult was connected with the idea of empire. The production and control of images and relics of the Virgin and the development of urban processions and court ceremonies though which political power was legitimized in papal Rome, Byzantium, Carolingian and Ottonian Germany, Tuscany, Gothic France, and Russia. 4 units, Spr (Pentcheva)

EUROPE 1400-1900

ARTHIST 112/312. The Venetian Renaissance — Venetian painting of the Renaissance in light of the exchange between the center and periphery that characterizes Venice’s visual culture. After the acquisition of land dominions, the terraferma, in the first half of the 15th century, Venice promoted forms of social, political, and cultural interaction among the regions of its periphery. By renewing, absorbing, and valorizing the characteristics of the local schools of painting, Venice realized its own Renaissance. The pictorial genre of the pastoral is a typical reception between the urban center and the agrarian periphery. Focus is on the works of Carpaccio, Bellini, Giorgione, Savoldo, Lotto, Titian, Veronese, Bassano, and Tintoretto. GER:DB-Hum 4 units, Win (Evers)

ARTHIST 120/320. Art and Culture of Northern Europe in the 17th Century — GER:DB-Hum 4 units (Marrinan) not given 2005-06

ARTHIST 121/321. 18th-Century Art in Europe, ca 1660-1780 — Major developments in painting across Europe including the High Baroque illusionism of Bernini, the founding of the French Academy, and the revival of antiquity during the 1760s, with parallel developments in Venice, Naples, Madrid, Bavaria, and London. Shifts in themes and styles amidst the emergence of new viewing publics. Artists: the Tiepolos, Giordano, Batoni, and Mengs; Ricci, Pellegrini, and Thornhill; Watteau and Boucher; Chardin and Longhi; Reynolds and West; Hogarth and Greuze; Vien, Fragonard, and the first works by David. Additional discussion for graduate students. GER:DB-Hum 4 units (Marrinan) not given 2005-06

ARTHIST 122/322. The Age of Revolution — Painting in Europe during the French Revolution and the Napoleonic conquest. As political events altered social formations, practices in the visual arts were similarly affected by shifts in patronage, public, and the social function of image making. An attempt to align ruptures in the tradition of representation with the unfolding historical situation. The first manifestations of a romantic alternative to the canons of classical beauty and stylistic restraint. GER:DB-Hum 4 units (Marrinan) not given 2005-06

ARTHIST 124/324. The Age of Naturalism, ca 1830-1874 — The origins, development, and triumph of naturalist painting in Europe. The creative tensions that emerged between traditional forms of history painting and the challenge of modern subjects drawn from contemporary life. Emphasis is on the development of open-air painting as an alternative to traditional studio practice, and to the rise of new imaging technologies, such as lithography and photography, as popular alternatives to the hand-wrought character and elitist appeal of high art. GER:DB-Hum 4 units (Marrinan) not given 2005-06

ARTHIST 126/326. Post-Naturalist Painting — How conceptual models from language, literature, new technologies, and scientific theory affected picture making following the collapse of the radical naturalism of the 1860s and 1870s. Bracketed in France by the first Impressionist exhibition (1874) and the first public acclamation of major canvases by Matisse and Picasso (1905), the related developments in England, Germany, Belgium, and Austria. Additional weekly discussion for graduate students. Recommended: some prior experience with 19th-century art. GER:DB-Hum 4 units (Marrinan) not given 2005-06

BRITAIN AND AMERICA 1600-1900

ARTHIST 132/332. American Art and Culture, 1528-1860 — The visual arts and literature of the U.S. from the beginnings of European exploration to the Civil War. Focus is on questions of power and its relation to culture from early Spanish exploration to the rise of the middle classes. Cabeza de Vaca, Benjamin Franklin, John Singleton Copley, Phillis Wheatley, Charles Willson Peale, Emerson, Hudson River School, American Genre painters, Melville, Hawthorne and others. GER:DB-Hum 4 units (Wolf) not given 2005-06

ARTHIST 133/333. American Art in the Gilded Age — Interdisciplinary. Art, literature, patronage, and cultural institutions of the late 19th century. Aestheticism, conspicuous consumption, the grand tour, and the expatriate experience. The period’s great collectors, taste makers, and artists: Thomas Eakins, Winslow Homer, Mary Cassatt, James Whistler, John Singer Sargent, Albert Pinkham Ryder, William Harnett, and John Peto. GER:DB-Hum 4 units (Corn) not given 2005-06

MODERN EUROPE

ARTHIST 141/341. The Invention of Modern Architecture — The creation and development of new architectural forms and theories, from the late 18th to the early 20th centuries, mainly in Europe but also in America. Emphasis is on the responses to new materials, technologies, and social conditions, and how they shaped the architecture of the present. Recommended as preparation for 142. GER:DB-Hum 4 units, Aut (Turner)

ARTHIST 142/342. Varieties of Modern Architecture — The development of competing versions of modern and postmodern architecture and design in Europe and America, from the early 20th century to the present. Recommended: 141, GER:DB-Hum 4 units (Turner) not given 2005-06

ARTHIST 145/345. European Modernism and the International Avant Gardens, 1895-1945 — How modern and avant garde artists have interrogated the nature of signification or how form produces meaning; their relationship to revolutionary politics. Fauvism and cubism in Paris, German expressionism, Italian futurism, pittura metafisica, Berlin Dada, Mondrian and de Stijl in the Netherlands, suprematism, Russian constructivism, and surrealism. Vocabulary and analytical and visual tools to come to grips with the works and debates in European modernism and the international avant gardes. Readings include manifestos, artists’ writings, and art criticism. GER:DB-Hum 4 units, Aut (Gough)

ARTHIST 147/347. Modern Sculptural Practices — The shift from a modernist conception of sculpture as object to one of sculpture as place or situation. Temporality in a medium traditionally assumed to be static. The advent of construction as a mode of sculptural production. Resistance to integral form and the declaration of process as a form of sculptural practice. GER:DB-Hum 4 units (Gough) not given 2005-06

MODERN AMERICA

ARTHIST 151/351. Transatlantic Modernism: Paris and New York in the Early 20th Century — Modernism in the American arts at home and abroad, emphasizing transatlantic expatriation, cultural politics, and creative alliances. Painters and sculptors are the focus. Literary figures who interacted with artists such as Gertrude Stein, William Carlos Williams, and Langston Hughes. Topics and artists: the Armory Show, Marcel Duchamp, Francis Picabia, Futurism, Fernand Léger, Alfred Stieglitz, Charles Demuth, Georgia O’Keefe, Gerald Murphy, the Harlem Renaissance, John Storrs, and Florine Stettheimer. GER:DB-Hum 4 units (Corn) not given 2005-06
ARTHIST 152A/352A. American Art and Visual Culture from Ragtime to Swingtime — From the Progressive era into the early years of the Depression: changes in social and material circumstances. How labor and social class entered American art. How artists negotiate high art, mass culture, and new kinds of leisure. How new roles for women and men inflect the institutions and practices of art. What remains traditional and what is modern within mainstream American art practices. GER:DB-Hum
4 units, Spr (Todd)

ARTHIST 157A/357A. Photography and the North American West — How photography has paralleled the settlement of the American West. Sources include: art, history, landscape perception, literature and poetry, environmental studies, ethnic studies, geography, agriculture, the military, water, urban development, and documentary projects.
4 units, Win (Dawson)

CONTEMPORARY EUROPE AND AMERICA

ARTHIST 178/378. Ethnicity and Dissent in United States Art and Literature — The role of the visual arts of the U.S. in the construction and contesting of racial, class, and gender hierarchies. Focus is on artists and writers from the 18th century to 1990s. How power, domination, and resistance work historically. Topics include: minstrelsy and the invention of race; mass culture and postmodernism; hegemony and language; memory and desire; and the borderlands. GER:DB-Hum, EC-AmerCul
4 units (Wolf) not given 2005-06

ARTHIST 179/379. Spectacle and Surveillance in Contemporary Visual Culture — Artistic practices and theoretical voices invested in spectacle and surveillance; political and ethical parameters of contemporary visual culture. A shared vocabulary: exhibitionism, voyeurism, fetishism, the gaze, power, spectacle, and capital. How spectacle and surveillance are elaborated in film, photography, video, architecture, performance, museum exhibitions, and digital media. Practices and discourses that expose the abuse of power and limitation of individual liberties by systems of surveillance. Complications posed by psychanalytic and phenomenological accounts. Must the gaze be a force to resist and suspect, or might it ever be desirable, salutary, ethical?
4 units, Win (Meltzer)

ARTHIST 193/393. The Language of Hybridity in the Americas — (Same as ARTSTUDI 193.) Cultural collision, creolization, and birth of hybrid systems of visual language and cultural production in history, theory, and practice. Production of images such as maps, prints, travel books, codices, oral literature, and public art in the Americas. Visual images from the time of cultural encounter between Western and non-Western cultures. The impact of hybridism on modern and contemporary art production.
3-4 units, Win (Chagoya, Martinez-Ruiz)

ASIA

ARTHIST 180/380. Chinese Art and Culture — Recent discoveries and new interpretations in the art and archaeology of China from the late Neolithic period to contemporary art. Major archaeological sites and representative monuments of architecture, painting, calligraphy, sculpture, ceramics, and craft objects. Emphasis is on art production within contexts and structures of ritual, ideology, technology, politics, society, patronage, and art theory. GER:DB-Hum, EC-GlobalCom
4 units (Vinograd) not given 2005-06

ARTHIST 181B/381B. Seeing the Divine: Art and Architecture of South Asia — From prehistory to the present, emphasizing the contexts of Hinduism, Buddhism, Jainism, Islam, and Sikhism. Themes include patronage, urban center versus rural periphery, the relationship between colonialism and archaeology and art history, traditional artisans, and the nature of museums. Artistic traditions of the Himalayas as they relate to Indian sources and the arts of esoteric Buddhism. Interdisciplinary readings from religious studies, literature, history, anthropology, and art history. GER:DB-Hum
4 units, Aut (Yousse)

ARTHIST 181C/381C. Arts of Southeast Asia — Indonesia, Cambodia, Burma, Thailand, and Vietnam. Focus is on major monuments and sculpture. Textiles, wayang, and mural painting. Relationships to Hindu and Buddhist traditions, and connections to indigenous beliefs and cultures. GER:DB-Hum
4 units, Spr (Reichle)

ARTHIST 184/384. Aristocrats, Warriors, Sex Workers, and Barbarians: Lived Life in Early Modern Japanese Painting — The changes marking the transition from medieval to early modern Japanese society generated a revolution in visual culture. This paradigm shift as exemplified in subjects deemed fit for representation; how commoners joined elites in pictorializing their world, catalyzed by interactions with the Dutch. GER:DB-Hum
4 units, Aut (Takeuchi)

ARTHIST 185/385. Art in China’s Modern Era — From the late Ming period to contemporary arts. Topics: urban arts and print culture; commodification of art; painting theories; self-portraits; court art, collection, and ideological programs; media and modernity in Shanghai; politics and art in the People’s Republic; and contemporary avant garde and transnational movements. GER:DB-Hum
4 units, Win (Vinograd)

ARTHIST 187/387. Arts of War and Peace: Late Medieval and Early Modern Japan, 1500-1868 — Narratives of conflict, pacification, orthodoxy, nostalgia, and novelty viewed through visual culture during the change of episteme from medieval to premodern, the 16th through early 19th centuries. The rhetorical messages of castles, teahouses, gardens, ceramics, paintings, and prints; the influence of Dutch and Chinese visuality; transformation in the roles of artist and artist; tensions between the old and the new leading to the modernization of Japan. GER:DB-Hum, EC-GlobalCom
4 units (Takeuchi) not given 2005-06

AFRICA

ARTHIST 190/390. African Art and Writing Traditions — Classic African graphic writings south of the Sahara in historical and social context. What makes an African graphic writing system, and how they are used as visual art, and as markers of identity, religion, and moral philosophy. Civilizations include Mali, Asante, Yoruba, Ejagham, and Kongo.
4 units (Martinez-Ruiz) not given 2005-06

ARTHIST 191/391. Afro-Atlantic Religion, Art, and Philosophy — Afro-American graphic writing and other forms of visual communication including ancient rup estrian art and rock painting in Africa, and present-day forms in the Americas. The diversity of daily life, religion, social organization, politics, and culture with African origin in the diaspora. Focus is on major contemporary Afro-Atlantic religions including: Palo Monte and Abakua in Cuba; Gana in the Dominican Republic; Revival, Obeah, and Kumina in Jamaica; Vodun in Haiti; and Candomble and Macumba in Brazil.
4 units (Martinez-Ruiz) not given 2005-06

ARTHIST 191A/391A. Art and Divination in Sub-Saharan Africa — Divination as a process in which people attempt to find solutions through divine or spiritual intervention to the problems of others by creating order out of disorder, mending their clients’ torn situational realities. Diviners explain that which may seem inexplicable in times of personal or social transition. Focus is on African divination systems and techniques, the socio-religious role of diviners, and art forms and materials employed as revelatory implements. GER:DB-Hum
4 units, Aut (Jordan)

ARTHIST 192/392. Introduction to African Art — Form, space, media, medium, and visual expression in African art. Rock art to contemporary art production. Major works and art expression in terms of function and historical context. GER:DB-Hum
4 units, Spr (Martinez-Ruiz)
ARTHIST 202. Beazley and After — How Beazley’s work provided the foundations for studying Greek painted pottery.
5 units (Maxmin) not given 2005-06

ARTHIST 203. Greek Art in Context — The cultural contexts in which art served religious, political, commercial, athletic, sympotic, and erotic needs of Greek life.
5 units, Aut (Maxmin)

ARTHIST 204. Greek Art from Athens to Nashville
5 units (Maxmin) not given 2005-06

5 units (Pentcheva) not given 2005-06

ARTHIST 222. Chardin and Watteau: An Aesthetics of Touch — These 18th-century painters preferred everyday life subjects, still-lifes, and landscape; Watteau invented the fête galante as a new picture type. Common to their work is attention to the materials of art: surfaces, textures, and glazes of paint; graphic range of chalk, ink, and pencil; an objectness that signals the artist’s creative presence. Readings in contemporary theory and historical criticism frame an aesthetics of touch at odds with the eye-centered bias of Academic theory. Student presentations. Recommended: 121. GER:DB-Hum
5 units (Marrinan) not given 2005-06

ARTHIST 226. Georges Seurat
5 units, Spr (Marrinan)

ARTHIST 231. Landscape and Power
5 units (Wolf) not given 2005-06

ARTHIST 233. The Art Museum: History and Practice — Workshop. Contemporary museum culture emphasizing the collecting and exhibiting practices of art museums. Readings, field trips, and discussions with museum professionals. Each student creates a detailed proposal for a museum exhibition and presents it to a panel of faculty and curators.
5 units, Win (Corn)

ARTHIST 233A. Gender and the American Artist, 1893-1935 — Women artists and their quest for professionalism, interactions with modernism, representational strategies, and negotiations in personal lives as they confront social, cultural, and institutional changes. Case studies.
5 units, Win (Todd)

ARTHIST 233B. Childhood and National Identity in 19th-Century America — Portrayals of childhood from the Cantor Art Center’s American ABC exhibition in February 2006. Sources include: paintings by Winslow Homer, Eastman Johnson, and Thomas Eakins; prints by Currier and Ives; photographs by Jacob Riis; and illustrated primers and textbooks. How 19th-century Americans created a sense of national identity. The emergence of childhood types, including country boys, dutiful young ladies, pickaninnies, and urban ragamuffins, in fine art and popular culture.
5 units, Spr (Perry)

ARTHIST 243A. Photography: Theory and Practice — How photography has been imagined over the past century and a half from the daguerreotype to the digital image. Focus is on photographic practices and critical discourses to understand what André Bazin calls the ontology of the photographic image, and how photographs function within the broader cultural imagination.
5 units, Spr (Meltzer)

ARTHIST 243B. What was Conceptualism, and Why Has It Not Gone Away? — The conceptual art movement, the legacy of its means and modes, and the hopes that shaped its political and aesthetic stratagems. Topics include: dematerialization, invisibility, and the suppression of the beholder; its relation to dada, minimalism, performance, and photography; language as a mode of visual representation; the debt to structuralist linguistics; information and the technological imaginary; intersections with contemporaneous theories of systems and games; notions of the document, idea, and concept; and the persistence of its claims and ways.
5 units (Meltzer) not given 2005-06

ARTHIST 246. The Russian and Soviet Avant Garde
5 units (Gough) not given 2005-06

ARTHIST 247. Italian Art in the Years of Lead: Arte Povera — Italian art of the 60s and 70s during the period of student radicalism and terrorism. How the Arte Povera artists sought to destroy the traditional dichotomy of art and life by staging events, constructing disjunctive assemblages of found and elemental materials, inventing conceptually oriented procedures and strategies, and foregrounding the physical interaction between object and viewer. How Arte Povera manifested the sociohistorical moment of its production. Artists: Pistoletto, Anselmo, Kounellis, Merz, Paolino, Alighiero e Boetti, and Fabro.
5 units, Win (Gough)

ARTHIST 249. Picasso and Cubism
5 units, Win (Gough)

ARTHIST 251. Frank Lloyd Wright — The influential American architect whose work transformed domestic architecture in particular. Students choose research subjects dealing with designs or aspects of Wright’s career. Field trips to Wright’s buildings in the Bay Area. Pre-requisites: 141, 142, or 150.
5 units, Spr (Turner)

ARTHIST 254. Utopia and Reality In Modern Urban Planning — (Enroll in URBANST 164.)
5 units, Win (Stout)

ARTHIST 282A. Imagining the Imperial: Images of the Court in Late Ming Dynasty Public Culture — Themes of palace and court life popular in vernacular painting, print illustrated books, and fiction. Dimensions of the imperial palace and court in late Ming public imaginary, including strategies of historical displacement, disguised political critique, commerce in imperial objects, the taste for scandal, and mythologies of court life.
5 units, Win (Vinograd)

ARTHIST 283. Court Art in Ming and Qing Dynasty China — Seminar. Painting and other art production at the Ming and Qing dynasty courts: art institutions, collecting, court ideology and political agendas, thematic programs, and cultural regulation. GER:DB-Hum, EC-GlobalCom
5 units (Vinograd) not given 2005-06

ARTHIST 283A. Paris and Shanghai: Sites of Modernity — Offered in conjunction with the Stanford Humanities Laboratory. Visual perspective. A parallel reading of the two cities in the period 1860-1940 to define parameters of modernity and urbanness. Views of the respective cities including panoptic perspectives of the whole urban fabric to intimate interiors; media including lithography, photography, painting, film, and the printed word, emphasizing media combining word and image such as illustrated books and periodicals, newspaper advertisements, and silent cinema.
5 units, Spr (Vinograd)

ARTHIST 284A. Art Discourses and Art Production in Late Ming China — The interplay of art theory, taste, and collecting with art production, especially painting from 1550-1664, in the context of regional and urban cultures.
5 units (Vinograd) not given 2005-06
ARTHIST 285A. Asian Ceramics—Asian ceramics, jades, and snuff bottles using objects from the Cantor collection. Period, style, materials, and processes. Comparison of ceramics from different cultures but similar technologies. What distinguishes Chinese Longquan celadon from Korean Coreyo dynasty celadon and Thai sawankhalok ware? What are the differences among Vietnamese, Chinese, and Korean blue and white wares? How did these traditions and processes develop, and are they related?
5 units (Listopad) not given 2005-06

ARTHIST 286. Shin-i-e: The Performance of Death in Japanese Actor Prints—Memorial prints, shini-e, issued upon the death of celebrated kabuki actors to celebrate the actor’s life and ask for patron support for his descendants. They often included the actor’s own death poem. Intellectual issues include the performative self in traditional Japan, the afterlife, commercialism of the theatrical milieu, lineage, fandom, and death protocols. Sources include a loan collection of more than 400 shini-e; students give intellectual shape to this material and present it as an exhibit at the Cantor.
5 units (Guth, Takeuchi) not given 2005-06

ARTHIST 286A. Word Play: Text and Image in Japanese Art—Text-dependent materials including narrative handscrolls such as the Tale of Genji, rebus paintings such as the Taira family sutaras and pictorial maps, Zen inkplays, and the intertextual nature of literati painting.
5 units (Guth, Takeuchi) not given 2005-06

ARTHIST 287. Pictures of the Floating World: Images from Japanese Popular Culture—Printed objects produced during the Edo period (1600-1868), including the Ukiyo-e (pictures of the floating world) and lesser-studied genres such as printed books (ehon) and popular broadsheets (kawaraban). How a society constructs itself through images. The borders of the acceptable and censorship; theatricality, spectacle, and slippage; the construction of play, set in conflict against the dominant neo-Confucian ideology of fixed social roles. Prerequisites: 2, 186, 187, 188.
5 units, Spr (Takeuchi)

5 units (Martinez-Ruiz) not given 2005-06

5 units (Martinez-Ruiz) not given 2005-06

5 units, Win (Martinez-Ruiz)

ARTHIST 293. Latino American Avant Garde—African contribution to modern art practices in Latino America. Mexico, Brazil, and Cuba as models. Cultural and historical context.
5 units, Spr (Martinez-Ruiz)

5 units, Aut (Lee)

ARTHIST 297. Honors Thesis Writing—May be repeated for credit.
1-5 units, Aut, Win, Spr (Staff)
ARTHIST 448. Theories and Practices of Abstraction — Focus is on Europe and the Americas; movements such as Orphism, Suprematism, Neoplasticism, Constructivism, concrete art, Concretism, Neoconcretismo, Kineticism, Minimalism, op art, and neo-geo. What is the relative significance of form and historical context in the determination of meaning in the abstract work of art? How have abstract artists theorized their struggle against representation in relation to notions of self-reflexivity, universalism, mysticism, socialism, utopia, scientific rationality, furniture and interior design? Readings from artists under study, and Brett, Fer, Bois, Krauss, Wagner, Clark, Fried, Greenberg, Schapiro, Cooper, Lee, Mehring, Leja, Buchloh, and Foster.
5 units (Gough) not given 2005-06

ARTHIST 457. New Histories of Photography — Method and cultural history. Image makers such as itinerant, amateur, spirit, postcard, fashion, celebrity, and journalist photographers. Research projects.
5 units (Corn) not given 2005-06

ARTHIST 470. Globalization and Contemporary Art
5 units (Lee) not given 2005-06

ARTHIST 473. Minimalism: Seriality, Systems, Repetition — Minimalist or minimal art, primary structures, or ABC art in the 60s. New scholarship on the theories, criticism, and genealogies of minimalism in sculpture, painting, performance, music, and film. Considerations of the afterlife of minimalism in contemporary art.
5 units (Lee) not given 2005-06

ARTHIST 474. Media and Intermedia
5 units (Lee) not given 2005-06

ARTHIST 485. The Situation of the Artist in Traditional Japan — Topics may include: workshop production such as that of the Kano and Tosa families; the meaning of the signature upon objects including ceramics and tea wares; the folk arts movement; craft guilds the ghost painters in China; individualism versus product standardization; and the role of lineage. How works of art were commissioned; institutions supporting artist; did makers purveyed their goods; how artists were recognized by society; the relationship between patrons’ desires and artists’ modes of production.
5 units (Takeuchi) not given 2005-06

CRITICAL STUDIES

ARTHIST 507. Medieval Image Theory — The Middle Ages saw the development of a theoretical framework on visual representation in response to charges of idolatry. The defenders of religious images drew on the dogma of Incarnation; as the Virgin gave human flesh to the Logos/Christ, the image offered a material manifestation of the divine. Focus is on the change in perception and staging of the image. Early in the period, the icon or relic expressed the presence of the sacred; later in the period, visual representation was designed to trigger an emotional response that led the viewer to a union with the divine.
5 units (Pentcheva) not given 2005-06

ARTHIST 513. Methods and Historiography of Art History
5 units, Aut (Lee)

RESEARCH

ARTHIST 600. Art History Bibliography and Library Methods
3 units, Aut (Ross)

ARTHIST 601. Graduate Studies in Art History — For first-year art history graduate students only. Fields, issues, and practices in art history.
2 units, Aut (Staff)

ARTHIST 610. Teaching Praxis
1-5 units, Win, Spr (Staff)

ARTHIST 620. Area Core Examination Preparation — For Art History Ph.D. candidates. Prerequisite: consent of instructor.
5 units, Aut, Win, Spr, Sum (Staff)

ARTHIST 640. Dissertation Proposal Preparation
5 units, Aut, Win, Spr, Sum (Staff)

ARTHIST 650. Dissertation Research
5 units, Aut, Win, Spr, Sum (Staff)

ARTHIST 660. Independent Study — For graduate students only. Reserved for approved independent research project with individual faculty members.
1-15 units, Aut, Win, Spr, Sum (Staff)

ARTHIST 670. Dissertation Seminar — For graduate students writing and researching dissertations and dissertation proposals. How to define research projects, write grant proposals, and organize book-length projects.
5 units, Spr (Staff)

FILM STUDIES

INTRODUCTORY

FILMSTUD 4. Introduction to Film Study — Aesthetic, conceptual, and analytic skills and formal, historical, and cultural issues relevant to cinema. Models of narrative cinema, alternative structures, documentary, and experimental forms. Cinematic language, visual perception, and representations of gender, ethnicity, and sexuality. GER:DB-Hum
5 units, Aut (Bukatman)

FILMSTUD 5. Introduction to Media Study — GER:DB-Hum
5 units (Staff) not given 2005-06

FILMSTUD 10. Science Fiction Cinema — Stanford Introductory Seminar. Preference to sophomores. The history and aesthetics of comics; their relationship to mass media including cinema, and to modernist and postmodernist aesthetic and narrative practices. Innovators; superheroes; undergrounds and independents; political satire and pedagogy; autobiography; European comics and Japanese manga. Time, rhythm, and tempo, and panel, sequence, page, and story.
5 units, Win, Spr (Staff)

FILMSTUD 10Q. Comics: A Lively Art
5 units (Staff) not given 2005-06

FILMSTUD 100A/300A. History of World Cinema I, 1895-1929 — From cinema’s precursors to the advent of synchronized sound. GER:DB-Hum
4 units, Aut (Bukatman)

FILMSTUD 100B/300B. History of World Cinema II, 1930-1959 — The impact of sound to the dissolution of Hollywood’s studio system. GER:DB-Hum
4 units, Win (Levi)

FILMSTUD 100C/300C. History of World Cinema III, 1960-Present — From the rise of the French New Wave to the present. GER:DB-Hum
4 units, Spr (Staff)

FILMSTUD 102/302. Film Theory
5 units (Bukatman) not given 2005-06

GENRE

FILMSTUD 110. Science Fiction Cinema — Science fiction film’s sense of wonder depends upon the development and revelation of new ways of seeing. The American science fiction film’s emphasis on the fundamental activity of human perception and its exploration of other worlds, new cities, and other modes of being. Science fiction as the Hollywood genre most directly concerned with the essence of cinema itself, and such new technological spaces as the cyberspaces of the information age. GER:DB-Hum
4 units (Staff)

FILMSTUD 111/311. The Body in American Genre Film: From Chaplin to The Matrix — GER:DB-Hum
4 units (Bukatman) not given 2005-06
FILMSTUD 112/312. Hollywood Musicals, 1927-1944—The history of the American stage musical. The liberation that arises in the film musical that is reality and illusion, physical, emotional, aesthetic, and social. Interplay among song, stage, and screen, and among identities such as regional, racial, gender, and sexual. The impact of African American and Jewish culture; issues of gay reception and interpretation. GER:DB-Hum
4 units (Bukatman) not given 2005-06

FILMSTUD 112A/312A. Hollywood Musicals, 1945-1971—Musicals as the epitome of filmic illusionism; the implications of their seduction of audiences; the meaning of spectacle. The era of Cole Porter, the Arthur Freed unit at MGM, the Gene Kelly/Stanley Donan collaborations, self-examination in Vicente Minnelli’s work, choreographers such as Bob Fosse and Eugene Loring, and 60s road-show Broadway adaptations. GER:DB-Hum
4 units (Bukatman) not given 2005-06

AUTHOR STUDIES
FILMSTUD 120/320. Studies in Authorship—GER:DB-Hum
4 units (Staff) not given 2005-06

FILMSTUD 121/321. The Films of Howard Hawks—GER:DB-Hum
4 units (Bukatman) not given 2005-06

FILMSTUD 122/322. The Films of Vincente Minnelli—GER:DB-Hum
4 units, Spr (Bukatman)

NATIONAL CINEMAS
FILMSTUD 130/330. Italian Cinema—The post-WW II era. Aesthetic and sociopolitical dimensions of neorealism; 60s cinema of economic miracle; and Italian variations on popular film genres such as the spaghetti western. Filmmakers include Rossellini, De Sica, Visconti, Pasolini, and Antonioni. GER:DB-Hum
4 units, Aut (Levi)

FILMSTUD 131/331. Aesthetics and Politics in East European Cinema—From 1945 to the mid-80s, emphasizing Polish, Hungarian, Czech, Slovak, and Yugoslav contexts. The relationship between art and politics; postwar establishment of film industries; and emergence of national film movements such as the Polish school, Czech new wave, and new Yugoslav film. Thematic and aesthetic preoccupations of filmmakers such as Wajda, Jancso, Forman, and Kusturica. GER:DB-Hum
4 units (Levi) not given 2005-06

AESTHETICS
FILMSTUD 140/340. Film Aesthetics: Editing—Practical and theoretical approaches to editing and montage. The role of editing in film meaning, and cognitive and emotional impact on the viewer. Developments in the history and theory of cinema including continuity system, Soviet montage, French new wave, postwar and American avant garde. Aesthetic functions, spectatorial effects, and ideological implications of montage. Film makers include Eisenstein, Godard, and Conner. GER:DB-Hum
4 units (Staff) not given 2005-06

FILMSTUD 141/341. Cinematic Spectacle—How cinematic spectacle has been theorized; the adoption of new technologies such as sound, color, or special effects; theories of the sublime and the grotesque. Spectacle as a vehicle for propaganda or pedagogy, and its relation to narrative and gender. The role of spectacle in experimental cinema and the deconstructions by Godard and others since Debord’s *The Society of the Spectacle*. Recommended: 4 or equivalent. GER:DB-Hum
4 units (Staff) not given 2005-06

FILMSTUD 142/342. Film and Perceptual Experience—How cinema has emphasized the subjective or perceptual. Techniques such as voice-over narration, first-person camera work, impressionistic montage, special effects, and the unreliable. Clarity of vision and the coherence of perception in the context of modernity, attention, hallucination, dream, memory, synesthesia, and states of knowledge. Sources include experimental, narrative and documentary traditions, film noir, and flicker, horror, and diary films. Films by Visconti, Brakhage, Akerman, Hitchcock, Deren, Epstein, Kubrick, and Powell. Recommended: 4. GER:DB-Hum
4 units (Bukatman) not given 2005-06

OTHER
FILMSTUD 150/350. Cinema and the City—Utopian built environments of perceptual and experiential richness. Changing understandings of urban space including cyberspace in films from European and American narrative traditions, industrial films, experimental cinema, documentaries, and musical sequences. Emphasis is on the crime film, science fiction, and the city symphonies of the 20s. Weekly screenings. Recommended: 4 or equivalent. GER:DB-Hum
4 units (Bukatman) not given 2005-06

FILMSTUD 151/351. Cyborgs and Synthetic Humans—The synthetic human being in fairy tales, children’s stories, and horror and science fiction. How stories of artificially created life, living statues, clockwork automata, alien body snatchers, robots, cyborgs, and electronic simulations direct attention to definitions of the human and self. The meaning of labor, gender, sexuality, death, emotion, rationality, bodies, consumerism, cosmetic surgery, and reproductive technologies. GER:DB-Hum
4 units (Bukatman) not given 2005-06

SEMINARS
FILMSTUD 290. Senior Seminar: Movies and Methods
5 units (Staff) not given 2005-06

GRADUATE SEMINARS
FILMSTUD 400. Cinema and Surrealist Imagination—Theoretical and practical approaches to cinema in the framework of ideas and aesthetic principles pursued by 20s and 30s European writers and artists associated with Dada and Surrealism. Forms of avant garde filmmaking and cine-writing engaged in a rebellion against reason and logic, and invested in explorations of the unconscious through automatism, onirism, chance, and visualization of desire. Writers include Breton, Bataille, and Artaud; filmmakers include Buñuel, Dali, Man Ray, and Duchamp.
5 units, Aut (Levi)

FILMSTUD 401. Experimental Cinema—The avant garde as locatng cinematic art in spatio-temporal experiments against the background of film’s novelty in the early 20th century and movements towards an art derivative of literature and theater. How the avant gardes of Europe, the U.S.S.R., and the U.S. produced films that opposed narrative cinematic conventions through a reflexive engagement with the medium’s metaphorical fluidity, film produced abstraction, political argument, an entry into the rhetoric of the unconscious and the realm of cognition, refusals of meaning, and explorations of perception.
5 units (Bukatman) not given 2005-06

PRACTICE OF FILM
FILMPROD 101. Screenwriting—Priority to Film and Media Studies majors. Craft, form, and approaches to writing for the screen. Prerequisite: consent of instructor.
5 units, Spr (Staff)

FILMPROD 114. Introduction to the Moving Image—(Same as COMM 114.) Hands-on. Techniques of film and video making including conceptualization, visualization, story structure, cinematography, sound recording, and editing.
5 units, Aut (Krawitz), Win (Samuels), Spr (Krawitz)
ARTSTUDI 110. Cartographies of Race: The Institute for Diversity in the Arts at Stanford — (Enroll in DRAMA 110.)
3 units, Win (Elam)

ARTSTUDI 117. History and Philosophy of Design — (Enroll in ME 120.)
3-4 units, Spr (Katz)

ARTSTUDI 120. Interactive Art I: Objects — The basics of sensors, processors, and actuators needed to create artworks that interact, record, and communicate. Emphasis is on the sculpture and interactive dimensions. (Level I)
3 units, Win (Demarinis)

ARTSTUDI 131. Sound Art I — Acoustic, digital and analog approaches to sound art. Familiarization with techniques of recording, listening, digital processing and production. Required listening and readings in the history and contemporary practice of sound art. (Level II)
3 units, Aut (Demarinis)

ARTSTUDI 133. Phenomena Art — Focus is on the creation of works of art that have natural or unnatural phenomena at their root: the movements of light and water, the chaos of living and computing systems, and the response characteristics of the human sensory apparatus. (Level IV)
3 units (Demarinis) not given 2005-06

ARTSTUDI 134. Voice, Word, Glyph — Introduction to mixed media and mixed metaphors with emphasis on the application of linguistic, numerical, and digitally mediated processes in art making. A process of translation that occurs as the artist makes transitions from flow-of-experience to coded meanings and thence into objects or signs of ambiguous significance. Students create works in media including performance, text, video, and object. Lab fees for use of SUDAC facilities. (Level III)
3 units (Demarinis) not given 2005-06

ARTSTUDI 135. Interactive Art II: Environments — (Level III)
3 units (Demarinis) not given 2005-06

ARTSTUDI 140. Drawing I — Introduction to functional anatomy and perspective as these apply to problems of drawing the form in space. Individual and group instruction as students work from still life set-ups, nature, and the model. Emphasis is on the development of critical skills and perceptual drawing techniques for those with little or no previous experience with pastels, inks, charcoal, conte, and pencil. Lectures alternate with studio work in the investigation of drawing fundamentals. (Level I)
3 units, Aut, Win, Spr (Staff)

ARTSTUDI 141. Drawing II — Intermediate/advanced. Observation, invention, and construction. Development of conceptual and material strategies, with attention to process and purpose. May be repeated for credit. Prerequisite: 40 or 140, or consent of instructor. (Level II)
3 units, Aut (Staff)

ARTSTUDI 142. Drawing III — Advanced. Emphasis is on student initiative with respect to composition, color, and use of a variety of drawing materials. Work from imagination, still life, and model. May be repeated for credit. Prerequisite: 40 or 140, or consent of instructor. (Level IV)
3 units (Staff) not given 2005-06

ARTSTUDI 145. Painting I — Introduction to techniques, materials, and vocabulary in oil painting. Still life, landscape, and figure are used as subject matter. Painting and drawing directly from life is emphasized. (Level I)
3 units, Aut, Win, Spr (Staff)

ARTSTUDI 146. Painting II — Symbolic, narrative, and representational self-portraits. Introduction to the pictorial strategies, painting methods, and psychological imperatives of Dürer, Rembrandt, Cézanne, Kahlo, Beckmann, Schiele, and Munch. Students paint from life, memory, reproductions, and objects of personal significance to create a world in which they describe themselves. Prerequisites: 140, 145, or consent of instructor. (Level II)
3 units, Win, Spr (Staff)

ARTSTUDI 147. Painting III — Advanced painting with emphasis on the individual point of view. May be repeated for credit. Prerequisites: three quarters of 145, 146, or equivalent, or consent of instructor. (Level IV)
3 units, Spr (Staff)

ARTSTUDI 148. Printmaking — Introduction to printmaking using monotype, a graphic art medium used by such artists as Blake, Degas, Gauguin, and Pendergast. May be repeated for credit. Prerequisite: 40 or 140. (Level III)
3 units, Aut, Win (Chagoya)

ARTSTUDI 149. Collage — The generative principles of thischaracteristic 20th-century art form. Along with assemblage (its three dimensional equivalent) and montage (its counterpart in photography, film, and video), collage introduced crucial aesthetic issues of the modern and postmodern eras. Typically, collage creates an expressive visual language through juxtaposition and displacement, and through materiality, difference, and event. Issues of location (where it happens), object (what it is), process (how it is realized), and purpose (why it is). Prerequisites: 140, 145, or consent of instructor. (Level III)
3 units (Hannah) not given 2005-06

ARTSTUDI 150. Printmaking for Non-Majors — Introduction to techniques, materials, and practical aspects of creative photography through camera and lab techniques. Field work. Cantor Art Center and Art Gallery exhibitions. 35mm camera required. (Level I)
4 units, Aut, Win, Spr (Dawson, Felzmann)

ARTSTUDI 156. Design I: Fundamental Visual Language — Formal elements of visual expression (color, composition, space, and process) through hands-on projects. Two- and three-dimensional media. Emphasis is on originality and inventiveness. Content is realized abstractly. Centered in design; relevant to visual art study and any student seeking to develop visual perception. (Level I)
3-5 units, Aut, Win, Spr (Demarinis)

ARTSTUDI 165. Design II: The Bridge — The historical spectrum of design including practical and ritual. The values and conceptual orientation of visual fundamentals. Two- and three-dimensional projects sequentially grouped to relate design theory to application, balancing imaginative and responsible thinking. Prerequisite: 60. (Level II)
3-6 units, Win, Spr (Edmark, Kahn)

ARTSTUDI 166. Future Media — (Level II)
3 units, Spr (Demarinis)
ARTSTUDI 161. Catalysts for Design—Nature, science and technology as sources of design inspiration. Emphasis is on importance of creative synthesis to the design process. Projects take the form of physical constructions as opposed to renderings or computer models. Field trips. (Level II)
3-5 units (Edmark) not given 2005-06

ARTSTUDI 166. Design in Motion—Design areas for which movement and transformation are essential. Experimentation with mechanical means such as linking, hinging, inflating, and rotating. Projects in lighting, tools and utensils, toys and games, festival props, and quasi-architecture emphasizing the creation of works in which motion is a significant agent for aesthetic gratification. No background in mechanic required. (Level II)
3-5 units, Win (Edmark)

ARTSTUDI 168A. Introduction to Urban Design—(Enroll in URBANST 113.)
5 units, Win (Gast)

ARTSTUDI 169. Professional Design Exploration—Six to eight mature projects are stimulated by weekly field trips into significant areas of design activity or need. (Level III)
3 units (Kahn) not given 2005-06

ARTSTUDI 170. Projects in Photography—Students pursue a topic of their own definition. Further exploration of darkroom and other printing techniques; contemporary theory and criticism. (Level II)
3 units, Aut, Spr (Dawson, Felzmann)

ARTSTUDI 171. Color Photography—Intermediate. Topics include techniques, history, color theory, and perception of color. Contemporary color photography issues and concepts. Students work with color slides and negatives, digital color, and non-traditional techniques. Field trip to a color lab. Prerequisite: 70. (Level III)
3 units, Win (Dawson)

ARTSTUDI 172. Alternative Processes—Priority to advanced students. Technical procedures and the uses of primitive and hand-made photographic emulsions. Enrollment limited to 10. Prerequisites: 70, 170, 270, or consent of instructor. (Level III)
3 units (Leivick) not given 2005-06

ARTSTUDI 174. Digital Art in Public Spaces—Interventions in public space with focus on social networks, both on- and off-line. How individuals become participants in shared city-wide or personal-scale experiences. Digital and non-digital interventions to create dialogue with the public. Visiting artists and field research. Projects to engage and challenge uses of technology in public spaces. Final project is a collaborative installation or projection for public viewing. See http://www.stanford.edu/dept/art/SUDAC/. Prerequisites: 60 or 145, 70; Photoshop and Illustrator. (Level II)
3 units, Spr (Staff)

ARTSTUDI 175. Topics in Computer Graphics—(Enroll in CS 448.)
3-4 units, Aut, Win, Spr (Staff)

ARTSTUDI 176. Web Projects—Creating art works using the Internet as a medium. How the web has been conceptualized as a mutable archive, multitude of communities, canvas and performance space, and medium through which one may perceive, act, and understand at a distance. Interactive works created using software such as Dreamweaver, Flash, HTML, and PHP. (Level II)
3 units, Win (Staff)

ARTSTUDI 177. Experimental Video I—Students create experimental video works. Conceptual, formal, and performance-based approaches to the medium. The history of video art since the 70s and its influences including experimental film, television, minimalism, conceptual art, and performance and electronic art. Topics: camera technique, lighting, sound design, found footage, cinematic conventions, and nonlinear digital editing.
3 units, Aut (Staff)

ARTSTUDI 177A. Experimental Video II—Advanced. Video, criticism, and contemporary media theory investigating the time image. Students create experimental video works, addressing the integration of video with traditional art media such as sculpture and painting. Non-linearity made possible by Internet and DVD-based video. Prerequisite: 177 or consent of instructor. (Level III)
3 units, Spr (Staff)

3 units, Aut (Wight)

ARTSTUDI 179. Digital Art I—Contemporary electronic art focusing on digital media. Students create works exploring two- and three-dimensional, and time-based uses of the computer in fine art. History and theoretical underpinnings. Common discourse and informative resources for material and inspiration. Topics: imaging and sound software, web art, and rethinking the computer as interface and object. (Level I)
3 units, Aut (Wight)

ARTSTUDI 179A. Digital Art II—Advanced. Interactive art works using multimedia scripting software. Experimental interfaces, computer installation work, and mobile technologies. Contemporary media art theory and practice. (Level II)
3 units, Win (Wight)

ARTSTUDI 181. The Art of the Archive—From the Greek arkeion meaning treasure house, archives transcend their individual elements to become works of art in themselves. Examples include the clay tablets of Mesopotamia and Wunderkammern, Eschelon, and the Internet. The cultural relevance of archives provides a backdrop for creating archival art works using hypertext, scripting languages, and CD-ROM authoring (Flash, Director, HTML), and traditional media.
3 units (Wight) not given 2005-06

ARTSTUDI 182. Art and the Politics of Media—How do the politics of media inform its use as a medium and tool for artists? Issues of surveillance, data collection and databases; advertising and personalized profiling; global networks and their attendant economies; search engines and filters; intellectual property and copyright law; and identity politics provide conceptual groundwork for creating art.
3 units (Wight) not given 2005-06

ARTSTUDI 184. Art and Biology—The relationship between biology and art. Rather than how art has assisted the biological sciences as in medical illustration, focus is on how biology has influenced art making practice. New technologies and experimental directions, historical shifts in artists’ relationship to the living world, the effects of research methods on the development of theory, and changing conceptions of biology and life. Projects address these themes and others that emerge from class discussions and presentations.
3 units, Spr (Wight)

ARTSTUDI 193. The Language of Hybridity in the Americas—(Same as ARTHIST 193/393.) Cultural collision, creolization, and birth of hybrid systems of visual language and cultural production in history, theory, and practice. Production of images such as maps, prints, travel books, codices, oral literature, and public art in the Americas. Visual images from the time of cultural encounter between Western and non-Western cultures. The impact of hybridism on modern and contemporary art production.
3-4 units, Win (Chagoya, Martinez-Ruiz)

ARTSTUDI 200. The Work of Art and the Creation of Mind—(Enroll in EDUC 200.)
4 units (Staff) not given 2005-06
ARTSTUDI 246. Individual Work: Drawing and Painting — Prerequisites: two quarters of painting or drawing and consent of instructor. 1-15 units, Aut, Win, Spr (Staff)

ARTSTUDI 248. Advanced Printmaking — Continuation of monotype, dealing with advanced technical and aesthetic problems in the medium. Prerequisite: 148. (Level IV) 1-15 units, Aut, Win (Chagoya)

ARTSTUDI 260. Individual Work: Design 1-15 units, Aut, Win, Spr (Kahn)

ARTSTUDI 268. Design Synthesis — Mature semi-elective problems in composite and multimedia design areas. Prerequisites: any two design courses above 160. (Level IV) 4-6 units, Spr (Kahn)

ARTSTUDI 269. Advanced Creative Studies — Seminar based on elective design projects in areas of individual specialization. Prerequisite: consent of instructor. (Level IV) 1-15 units, Win (Kahn)

ARTSTUDI 270. Advanced Photography Seminar — Student continues with own work, showing it in weekly seminar critiques. May be repeated for credit. (Level IV) 1-5 units, Aut, Win (Staff)

ARTSTUDI 271. The View Camera: Its Uses and Techniques — For serious students of photography who wish to gain greater control and refine skills in image making. 4x5 view cameras provided. Enrollment limited to 8. (Level III) 3 units, Win (Staff)

ARTSTUDI 272. Individual Work: Photography — Student continues with own work, showing it in weekly seminar critiques. 1-5 units, Aut, Win, Spr (Staff)

ARTSTUDI 273. Individual Work: Digital Media 1-15 units, Aut, Win, Spr (DeMarinis)

ARTSTUDI 274. Individual Work: Digital Art 1-15 units, Aut, Win, Spr (DeMarinis)

ARTSTUDI 275. Photography IV 3 units (Staff) not given 2005-06

ARTSTUDI 276. The Photographic Book — Grouping and sequenc- ing photographic images to produce a coherent body of work with a thematic structure. 3 units, Spr (Feldmann)

ARTSTUDI 310A, B, C. Directed Reading: Studio 1-15 units, A: Aut, B: Win, C: Spr (Staff)

ARTSTUDI 342. MFA Project: Studio — Two weekly seminars and studio practice (individual tutorial). The Object Seminar is a forum in which student work is critiqued on issues of identity, presentation, and the development of coherent critical language. The Concept Seminar explores modes of conceptualization to broaden the base of cognitive and generative processes. Readings, discussions, writing. 1-15 units, Aut, Win, Spr (Hannah)

ARTSTUDI 360A, B, C. Master’s Project: Design 1-15 units, Aut, Win, Spr (Kahn)

OCEANS STUDIES

BERLIN

ARTHIST 110Y. Architecture and the City, 1871-1990: Berlin as a Nucleus of Modernity — (Same as HISTORY 229V, STS 119V, URBANST 143U.) 4 units, Spr (Neckenig)

ARTHIST 141Y. The Industrial Revolution and its Impact on Art, Architecture, and Theory — (Same as STS 117V.) 5 units, Aut (Neckenig)

ARTHIST 162Y. Film and Writing 3-4 units, Spr (Maerker)

ARTHIST 163Y. Split Images: A Century of Cinema 4-5 units, Win (Kramer)

FLORENCE

ARTHIST 70Y. Photography in Florence 4 units, Win (Loverme)

ARTHIST 111Y. From Giotto to Michelangelo: Introduction to the Renaissance in Florence 4 units, Win (Verdon)

ARTHIST 112Y. High Renaissance and Maniera — (Same as ITAL- GEN 150F.) 5 units, Spr (Verdon)

ARTHIST 113Y. Sharing Beauty: Florence and the Western Museum Tradition 4 units, Win (Rossi, Verdon)

ARTHIST 115Y. The Duomo and Palazzo della Signoria: Symbols of a Civilization — (Same as URBANST 156V.) 4 units, Aut (Verdon)

ARTHIST 141Y. Becoming an Artist in Florence: Contemporary Art in Tuscany and New Tendencies in the Visual Future 3-5 units, Spr (Rossi)

ARTHIST 147Y. The Contemporary Art Scene in Tuscany: Theory and Practice 3-5 units, Aut (Rossi)

ARTHIST 160Y. The Cinema Goes to War: Fascism and World War II as Represented in Italian and European Cinema — (Same as ITAL- GEN 191F, HISTORY 235V, COMM 53.) 5 units, Win (Campani)

ARTHIST 161Y. Modernist Italian Cinema — (Same as ITAL- GEN 134F, STS 125V.) 5 units, Aut (Campani)

ARTHIST 198F. Academy of Fine Arts: Studio Art 1-5 units, Aut, Win, Spr (Staff)

OXFORD

ARTHIST 221Y. Art and Society in Britain — (Same as HISTORY 244V.) 5 units, Aut (Tyack)

PARIS

ARTHIST 60Y. EAP: Graphic Art 2 units, Aut, Win, Spr (Staff)

ARTHIST 61Y. EAP: Perspective, Interior Decorating, Volume, and Design 2 units, Aut, Win, Spr (Staff)

ARTHIST 107Y. The Age of Cathedrals: Religious Art and Architecture in Medieval France 4 units, Aut (Deremble)

ARTHIST 123Y. French Painting 4 units, Win (Halevi)

ARTHIST 140Y. EAP: Drawing with Live Models 2 units, Aut, Win, Spr (Staff)

ARTHIST 144Y. EAP: Painting and Use of Color 2 units, Aut, Win, Spr (Staff)

ARTHIST 153Y. Building Paris: Its History, Architecture, and Urban Design 4 units, Spr (Halevi)
ASIAN LANGUAGES

Emeriti: (Professors) Albert E. Dien, * David S. Nivison, Makoto Ueda; (Associate Professors) William A. Lyell, Susan Matisoff; (Senior Lecturer) Yin Chuang*

Chair: Steven D. Carter

Directors of Graduate Studies: Steven D. Carter (Japanese), Chao Fen Sun (Chinese)

Directors of Undergraduate Studies: Mark E. Lewis (Chinese), James Reichert (Japanese)

Professors: Steven D. Carter, Mark E. Lewis (Asian Languages, History), Peter Sells (Asian Languages, Linguistics), Melinda Takeuchi (Asian Languages, Art and Art History), John C. Y. Wang

Associate Professors: Yoshiko Matsumoto (on leave), Chao Fen Sun

Assistant Professors: Indra Levy, Wan Liu (on leave), James Reichert

Lecturer: Michelle DiBello (Winter)

Consulting Professor: Richard Dashner

Visiting Professor: Andrew Jones (Spring), Kazuyuki Satoh (Winter)

Postdoctoral Fellow: Bruce Rusk (Stanford Humanities Fellow)

Chinese-Japanese Area Studies Faculty:

Professors: Masahiko Aoki (Economics), Carl W. Bielefeldt (Religious Studies), Richard Dashner (Integrated Systems), Peter Duus (History), Bernard Faure (Religious Studies), Harold L. Kahn (History, emeritus), Lawrence Lau (Economics), John W. Lewis (Political Science, emeritus), Jean Oi (Political Science), Daniel I. Okimoto (Political Science), David Palumbo-Liu (Comparative Literature), Richard Vinograd (Art and Art History), Andrew Walder (Sociology), Arthur P. Wolf (Anthropological Sciences), Lee H. Yearley (Religious Studies)

Associate Professors: Matthew Sommer (History), Kären Wigen (History)

Assistant Professors: Melissa Brown (Anthropological Sciences), Miyako Inoue (Cultural and Social Anthropology), Matthew Kohrman (Cultural and Social Anthropology)

* Recalled to active duty.

Department Office: Building 50, Room 51D
Mail Code: 94305-2034
Phone: (650) 725-2742
Email: asianlanguages@stanford.edu
Web Site: http://asianlanguages.stanford.edu

Courses given in Asian Languages have subject codes CHINGEN, CHINLIT, JAPANGEN, and JAPANLIT. For a complete list of subject codes, see Appendix.

The Department of Asian Languages offers courses in the languages, linguistics, cultures, and literatures of China and Japan. The department accepts candidates for the degrees of Bachelor of Arts, Master of Arts, and Doctor of Philosophy in Chinese or Japanese. It also offers an undergraduate and a Ph.D. minor in Chinese or Japanese language and literature.

For information concerning other opportunities for study in the Asian field, see listings under the following departments and programs: Anthropological Sciences, Art and Art History, Business, Comparative Literature, East Asian Studies, Economics, History, Interdisciplinary Studies in Humanities, Law, Linguistics, Philosophy, Political Science, Religious Studies, and Sociology. Courses in Chinese, Japanese, and Korean language instruction are listed in the “Language Center” section of this bulletin. Students interested in Asian languages not listed should contact the Special Language Program at the Language Center.

UNDERGRADUATE PROGRAMS

BACHELOR OF ARTS

The B.A. degree is granted both in Chinese and in Japanese. The following courses and their prerequisites must be completed with a grade point average (GPA) of 2.0 or better:

1. Concentrations in Chinese:
 a) CHINGEN 91 and JAPANGEN 92
 b) Chinese language requirement:
 1) first-year modern Chinese (one of the following series: CHINLANG 1, 2, 3, or CHINLANG 1B, 2B, 3B, or CHINLANG 5)
 2) second-year modern Chinese (one of the following series: CHINLANG 21, 22, 23, or CHINLANG 21B, 22B, 23B, or CHINLANG 25)
 3) third-year modern Chinese (one of the following series: CHINLANG 101, 102, 103, or CHINLANG 101B, 102B, 103B, or CHINLANG 105) or beginning classical Chinese (CHINLIT 125, 126, 127)
 c) three courses offered by Asian Languages at the 100 level with one in each of the following areas, pre-modern China, modern China, and Chinese language/linguistics
 d) four other content courses dealing with China primarily at the 100 level, as approved by the undergraduate adviser
 e) CHINGEN 133 is the required Writing in the Major (WIM) course.

2. Concentrations in Japanese:
 a) CHINGEN 91 and JAPANGEN 92
 b) Japanese language requirement:
 1) first-year modern Japanese (one of the following series: JAPANLNG 1, 2, 3, or JAPANLNG 7B, 8B, 9B, or JAPANLNG 5)
 2) second-year modern Japanese (one of the following series: JAPANLNG 21, 22, 23, or JAPANLNG 21B, 22B, 23B, or JAPANLNG 25)
 3) third-year modern Japanese (one of the following series: JAPANLNG 101, 102, 103, or JAPANLNG 127B, 128B, 129B, or JAPANLNG 130)
 c) three courses offered by Asian Languages at the 100 level with one in each of the following areas, pre-modern Japan, modern Japan, and Japanese language/linguistics
 d) four other content courses dealing with Japan primarily at the 100 level, as approved by the undergraduate adviser
 e) JAPANGEN 138 is the required WIM course.

JAPANGEN 71N can be used to satisfy the Japanese language/linguistics area requirement. JAPANGEN 51/151 and JAPANLNG 30/130 are not counted toward the major. Students who complete third-year Japanese at KCJS satisfy the language requirement but are required to take a placement test if they wish to enroll in JAPANLNG 211, 212, 213.

Students who want to concentrate in Chinese or Japanese language/linguistics can substitute the four other content courses primarily at the 100 level with LINGUIST 1 and three other linguistic courses at the 100 level, as approved by the undergraduate adviser in consultation with the student’s academic adviser.

These requirements are in addition to the University’s basic requirement for the bachelor’s degree. Letter grades are mandatory for all required courses.

MINORS

The undergraduate minor in Asian Languages has been designed to give students majoring in other departments an opportunity to gain a substantial introduction to Chinese (Mandarin) or Japanese language, as well as an introduction to the culture and civilization of East Asia. The minor consists of:

1. Completion of one year of language study at the second-year level (that is, CHINLANG 21, 22, 23 or JAPANLNG 21, 22, 23 or 17B, 18B, 19B) for students with no previous training in Chinese or Japanese. Students who already have first-year competence in Chinese or Japanese must complete the third-year course (CHINLANG 101, 102, 103 or JAPANLNG 101, 102, 103 or 127B, 128B, 129B) before undertaking any training in the Department of Asian Languages. Students who already have a competence at the second-year level may fulfill the language component of the minor by taking three courses in the department using materials in either Chinese or Japanese. These
courses may be language courses such as the third-year sequence mentioned above, or they may be advanced literature and linguistics courses, depending on the capabilities and interests of the student in question.

2. The core courses, CHINGEN 91, Traditional East Asian Civilization: China, and JAPANGEN 92, Traditional East Asian Civilization: Japan.

3. Two courses selected from among the department’s other offerings in the literature, linguistics, and civilization of a given minor area. All courses for the minor must be completed with a GPA of 2.0 or better.

HONORS PROGRAM

 Majors with an overall grade point average (GPA) of 3.5 may apply for the honors program by submitting a senior thesis proposal to the honors committee during Winter or Spring Quarter of the junior year. The proposal must include a thesis outline, a list of all relevant courses the student has taken or plans to take, a preliminary reading list including a work or works in Chinese or Japanese, and the name of a faculty member who has agreed to act as honors supervisor.

 If the proposal is approved, research begins in Spring Quarter of the junior year, when the student may enroll in CHINLIT 199 or JAPANLIT 199 for 2 units of credit for independent study. In Autumn Quarter of the senior year, honors students must enroll in DLCL 189, a 5-unit seminar that focuses on researching and writing the honors thesis. In Winter Quarter, students enroll for 5 units in a directed reading (CHINLIT 199 or JAPANLIT 199) with the thesis supervisor while writing the thesis, and the finished essay (normally about 15,000 words) is submitted to the committee no later than the end of the Winter Quarter in the senior year. 10-12 units of credit are granted for honors course work and the finished thesis.

COTERMINAL PROGRAMS

 With department approval, students may be able to combine programs for the B.A. and M.A. degrees in Chinese or Japanese. Prospective applicants must consult with the graduate adviser. A Graduate Record Examination (GRE) score is not required. For details, see the “Graduate Degrees” section of this bulletin or http://Registrar.stanford.edu/publications/#Coterm.

EAST ASIAN STUDIES THEME HOUSE

 EAST House, located at Governor’s Corner on campus, is an undergraduate residence that houses 60 students and offers them a wide variety of opportunities to expand their knowledge, understanding, and appreciation of East Asia. Assignment is made through the regular undergraduate housing draw.

SUMMER PROGRAM

 A nine-week summer program of intensive instruction is offered, on three different levels, in both Chinese and Japanese. The intensive courses provide the equivalent in instruction to regular academic-year courses. (See courses CHINLANG 5, 25, 105, and JAPANLNG 10, 20, 130, as described in the “Language Center” section of this bulletin.) For detailed information about these and other aspects of the summer program, inquire at the Language Center.

GRADUATE PROGRAMS

 Admission — All students contemplating application for admission to graduate study must have a creditable undergraduate record. The applicant need not have majored in Chinese or Japanese as an undergraduate, but must have had the equivalent of at least three years of training in the language in which he or she intends to specialize, and must also demonstrate a command of English adequate for the pursuit of graduate study. Applicants should not wish merely to acquire or improve language skills, but to pursue study in one of the following fields: Chinese history (premodern), Chinese linguistics, Chinese literature, Chinese philosophy, Japanese cultural history, Japanese literature, and Japanese linguistics.

MASTER OF ARTS

 The M.A. is granted in Chinese and in Japanese. The normal length of study for the degree is two years.

 Applicants who wish to obtain only the M.A. and who do not intend to proceed to the Ph.D. are considered only if no financial aid is requested. Students who wish to spend the first year of graduate study at the Beijing or Yokohama centers must obtain department approval first.

 Candidates for the degree must be in residence at Stanford in California during the final quarter of registration.

 A thesis or an annotated translation of a text of suitable literary or historical worth is required for the M.A. degree. Under special circumstances, a paper approved by the graduate adviser may be substituted.

 The University’s basic requirements for the master’s degree, including a 45-unit minimum requirement, are given in the “Graduate Degrees” section of this bulletin. Department requirements are set forth below.

CHINESE

 The candidate must:

 1. Meet the department’s requirements for the B.A. in Chinese or their equivalent.

 2. Complete the following course work: CHINLANG 103, CHINLIT 201, 221, 222, 223, 299; four courses in Chinese numbered between CHINLANG 230 and 292; and two upper-division or graduate-level courses in fields such as Chinese anthropology, art, history, philosophy, and politics as approved by the graduate adviser in consultation with the student’s individual adviser. Students may be exempted from CHINLANG 101, 102, 103, and CHINLIT 221, 222, 223 by passing examinations to demonstrate that they have attained equivalent language competence. Letter grades are mandatory for all required courses and their prerequisites.

JAPANESE

 The candidate must:

 1. Meet the department’s requirements for the B.A. in Japanese or their equivalent.

 2. Complete the following course work: JAPANLNG 201, JAPANLNG 211-213, JAPANLNG 246, 247, 296, 299; four courses in Japanese numbered between JAPANLNG 260 and 298; one course in literary theory or methodology at the 100 level or higher; and two courses in fields such as Japanese anthropology, art, history, politics, linguistics, and religion, as approved by the graduate adviser in consultation with the student’s individual adviser. Students may be exempted from JAPANLNG 211, 212, 213, and JAPANLNG 246 by passing examinations to demonstrate that they have attained equivalent language competence. Letter grades are mandatory for all required courses and their prerequisites.

DOCTOR OF PHILOSOPHY

 The Ph.D. degree is granted in Chinese and Japanese. Candidates for the degree are expected to acquire a thorough familiarity with Chinese or Japanese literature, an adequate command of both languages, and a comprehensive knowledge of East Asian history, social institutions, and thought. The University’s basic requirements for the Ph.D. are given in the “Graduate Degrees” section of this bulletin. Department requirements are set forth below.

ADMISSION TO CANDIDACY

 Students admitted with a B.A. only are evaluated by the graduate faculty during the Autumn Quarter of their second year at Stanford. The evaluation is based on written work and at least a portion of the M.A. thesis or translation. If the faculty have serious doubts about a student’s ability to work for the Ph.D., they convey this to the student. During the subsequent Spring Quarter, the faculty formally decides whether a student should be admitted to candidacy for the Ph.D. or be terminated. In the case of a student who already has an M.A. in Chinese or Japanese when admitted to the department, the evaluation takes place in the Spring Quarter of the student’s first
year. If a student goes to the Taipei or Yokohama center during his or her first two years, the department will consider an extension for admission to candidacy. The timing of the evaluation of a student admitted with an M.A. in East Asian Studies is decided on an individual basis.

Admission to candidacy does not mean that the student has fulfilled all requirements for the degree except the dissertation, but that the department faculty consider the student qualified to pursue a program of study leading to the Ph.D. and that, subject to continued satisfactory progress, the student’s status in this department is secure.

REQUIREMENTS

A candidate must fulfill the following requirements:

1. Demonstrate a reading knowledge of French, German, or another appropriate language approved by the graduate adviser.
2. Complete two seminars at the 300 level. These seminars must be in different subjects.
3. Pass an examination in the supporting Asian language. A candidate whose field is Chinese is examined on his or her ability to read modern Japanese works relevant to his or her field of study. This requirement may be met by taking JAPANLNG 101, 102, 103, or JAPANLNG 127B, 128B, 129B, or 130, for letter grades. A candidate whose field is Japanese is examined on the ability to read classical Chinese works relevant to his or her field of study. This requirement may be met by taking CHINLIT 205, 206, and 207 for letter grades.
4. Pass a set of four comprehensive written examinations, one of which tests the candidate’s methodological competence in a discipline. The remaining three fields are chosen, with the approval of the graduate adviser in consultation with the student’s individual adviser, from the following: anthropology, art, Chinese literature, history, Japanese literature, linguistics, philosophy, and religion.
5. Demonstrate pedagogical proficiency by serving as a teaching assistant for a minimum of one quarter, and taking APPLLING 201, The Learning and Teaching of Second Languages.

University Oral Examination—General regulations governing the oral examination are found in the “Graduate Degrees” section of this bulletin. The candidate is examined on questions related to the dissertation after acceptable parts of it have been completed in draft form.

Dissertation—The candidate must write a dissertation demonstrating ability to undertake original research based on primary materials in Chinese or Japanese.

PH.D. MINOR

A student taking a minor in Asian Languages must complete at least 30 units of work within the department at the 200 and 300 level, chosen in consultation with a department adviser. The student must elect either CHINLIT or JAPANLNG 201 unless the department is satisfied that work done elsewhere has provided similar training. The student must also pass a written examination in the Chinese or Japanese language.

STUDY ABROAD

Students interested in a serious study of Japanese language, history, culture, and social organization are encouraged to apply to the Kyoto Center for Japanese Studies (KCJS), a September-to-April program including students from other American universities. Students with two years of Japanese may attend the full academic year or Autumn semester; attending only Spring semester requires two and a half years of Japanese. In Spring Quarter, the Stanford Center for Technology and Innovation (SCTI), also in Kyoto, focuses on Japanese organizations and the political economy of research, development, and production of high technology and advanced industries, followed by an optional two-to-three month internship in an agency, firm, or laboratory in Japan. The minimum language requirement for participation in SCTI is two quarters of Japanese Language, Culture, and Communication B, or five quarters of Japanese Language, Culture, and Communication A. For students choosing to participate in a non-technical internship, five quarters of Japanese Language, Culture, and Communication B is required. For information about either program in Kyoto, students should contact the Overseas Studies office in Sweet Hall.

Students interested in studying Chinese language, history, culture, and society are encouraged to apply to the Stanford Program in Beijing also offered through the Overseas Studies Program in Sweet Hall. This program is located at Peking University and is open Autumn and Spring quarters. The minimum language requirement is one year of Mandarin Chinese for Autumn enrollment and two quarters for Spring.

Students should take note of the Inter-University Program for Chinese Language Studies (administered by the Institute of East Asian Studies, 2223 Fulton Street, Room 608, #2318, Berkeley, CA 94720-2318; 510-642-3873; http://iucas.berkeley.edu/iup; iub@socrates.berkeley.edu) and the Inter-University Center for Japanese Language Studies located in Yokohama (http://www.stanford.edu/dept/IUC/; 650-725-1490). Stanford is a member of these consortia programs.

Students interested in the exchange program with the Department of Chinese at Peking University in Beijing should consult the chair of the department early in the academic year.

COURSES

WIM indicates that the course satisfies the Writing in the Major requirements.

Students interested in literature and literary studies should also consult course listings in the departments of Classics, Comparative Literature, English, French and Italian, German Studies, Slavic Languages and Literatures, and Spanish and Portuguese, in the Program in Modern Thought and Literature, and in the Division of Literatures, Cultures, and Languages.

Since unavoidable changes occasionally have to be made in course offerings after the Stanford Bulletin has gone to print, students are advised to consult the department early each quarter.

GENERAL

These courses are open to all undergraduates and graduate students, are taught in English, and do not require a knowledge of an Asian language.

CHINESE

CHINGEN 51. Chinese Calligraphy—Practice in writing Chinese characters with a brush, composition of the characters, and improving handwriting. Limited enrollment. May be repeated for credit. Prerequisite: CHINLANG 3 or equivalent.

1-2 units, Spr (Chuang)

CHINGEN 73. Chinese Language, Culture, and Society—Topics include the origin of Chinese, development of dialects, emergence of the standard, preferred formulaic expressions, the evolution of writing, and language policies in greater China. Recommended: CHINLANG 1 or 1B, or equivalent.

4 units (Sun) not given 2005-06

CHINGEN 91. Traditional East Asian Civilization: China—Required for Chinese and Japanese majors. Introduction to Chinese culture in a historical context. GER:DB-Hum, EC-GlobalCom

5 units, Aut (Rusk)

CHINGEN 131/231. Chinese Poetry in Translation—(Graduate students register for 231.) The Chinese poetic tradition from the first millennium B.C.E. to the 14th century. Traditional verse forms representative of the classical tradition; highlights of the most distinguished poets. History, language, and culture relevant to the literary works under study. GER:DB-Hum, EC-GlobalCom

4 units, Win (DiBello)

CHINGEN 132/232. Chinese Fiction and Drama in Translation—(Graduate students register for 232.) Fiction and drama from early times to the 18th century. GER:DB-Hum, EC-GlobalCom

4 units (J. Wang) not given 2005-06
CHINLANG 101, 102, 103. Third-Year Modern Chinese
5 units, 101: Aut, 102: Win, 103: Spr (Wang)

CHINESE COURSES: ADVANCED UNDERGRADUATE AND GRADUATE

CHINLIT 125/205, 126/206, 127/207. Beginning Classical Chinese
5 units, 1: Aut; 2: Win; 3: Spr (Zeng, Staff)

CHINLIT 21, 22, 23. Second-Year Modern Chinese
5 units, 21: Aut, 22: Win, 23: Spr (Chuang)

CHINLIT 101, 102, 103. Third-Year Modern Chinese
5 units, 101: Aut, 102: Win, 103: Spr (Wang)

CHINESE COURSES: ADVANCED UNDERGRADUATE AND GRADUATE

CHINLIT 125/205, 126/206, 127/207. Beginning Classical Chinese
5 units, 1: Aut; 2: Win; 3: Spr (Zeng, Staff)

CHINLIT 21, 22, 23. Second-Year Modern Chinese
5 units, 21: Aut, 22: Win, 23: Spr (Chuang)

CHINLIT 101, 102, 103. Third-Year Modern Chinese
5 units, 101: Aut, 102: Win, 103: Spr (Wang)

CHINESE COURSES: ADVANCED UNDERGRADUATE AND GRADUATE

CHINLIT 125/205, 126/206, 127/207. Beginning Classical Chinese
5 units, 1: Aut; 2: Win; 3: Spr (Zeng, Staff)

CHINLIT 21, 22, 23. Second-Year Modern Chinese
5 units, 21: Aut, 22: Win, 23: Spr (Chuang)

CHINLIT 101, 102, 103. Third-Year Modern Chinese
5 units, 101: Aut, 102: Win, 103: Spr (Wang)

CHINESE COURSES: ADVANCED UNDERGRADUATE AND GRADUATE

CHINLIT 125/205, 126/206, 127/207. Beginning Classical Chinese
5 units, 1: Aut; 2: Win; 3: Spr (Zeng, Staff)

CHINLIT 21, 22, 23. Second-Year Modern Chinese
5 units, 21: Aut, 22: Win, 23: Spr (Chuang)

CHINLIT 101, 102, 103. Third-Year Modern Chinese
5 units, 101: Aut, 102: Win, 103: Spr (Wang)

CHINESE COURSES: ADVANCED UNDERGRADUATE AND GRADUATE

CHINLIT 125/205, 126/206, 127/207. Beginning Classical Chinese
5 units, 1: Aut; 2: Win; 3: Spr (Zeng, Staff)

CHINLIT 21, 22, 23. Second-Year Modern Chinese
5 units, 21: Aut, 22: Win, 23: Spr (Chuang)

CHINLIT 101, 102, 103. Third-Year Modern Chinese
5 units, 101: Aut, 102: Win, 103: Spr (Wang)

CHINESE COURSES: ADVANCED UNDERGRADUATE AND GRADUATE

CHINLIT 125/205, 126/206, 127/207. Beginning Classical Chinese
5 units, 1: Aut; 2: Win; 3: Spr (Zeng, Staff)

CHINLIT 21, 22, 23. Second-Year Modern Chinese
5 units, 21: Aut, 22: Win, 23: Spr (Chuang)

CHINLIT 101, 102, 103. Third-Year Modern Chinese
5 units, 101: Aut, 102: Win, 103: Spr (Wang)

CHINESE COURSES: ADVANCED UNDERGRADUATE AND GRADUATE

CHINLIT 125/205, 126/206, 127/207. Beginning Classical Chinese
5 units, 1: Aut; 2: Win; 3: Spr (Zeng, Staff)

CHINLIT 21, 22, 23. Second-Year Modern Chinese
5 units, 21: Aut, 22: Win, 23: Spr (Chuang)

CHINLIT 101, 102, 103. Third-Year Modern Chinese
5 units, 101: Aut, 102: Win, 103: Spr (Wang)

CHINESE COURSES: ADVANCED UNDERGRADUATE AND GRADUATE

CHINLIT 125/205, 126/206, 127/207. Beginning Classical Chinese
5 units, 1: Aut; 2: Win; 3: Spr (Zeng, Staff)

CHINLIT 21, 22, 23. Second-Year Modern Chinese
5 units, 21: Aut, 22: Win, 23: Spr (Chuang)

CHINLIT 101, 102, 103. Third-Year Modern Chinese
5 units, 101: Aut, 102: Win, 103: Spr (Wang)

CHINESE COURSES: ADVANCED UNDERGRADUATE AND GRADUATE

CHINLIT 125/205, 126/206, 127/207. Beginning Classical Chinese
5 units, 1: Aut; 2: Win; 3: Spr (Zeng, Staff)

CHINLIT 21, 22, 23. Second-Year Modern Chinese
5 units, 21: Aut, 22: Win, 23: Spr (Chuang)

CHINLIT 101, 102, 103. Third-Year Modern Chinese
5 units, 101: Aut, 102: Win, 103: Spr (Wang)
CHINLIT 191/291. The Structure of Modern Chinese—(Graduate students register for 291.) Focus is on syntax and semantics. Prerequisite: CHINLANG 3 or equivalent, or consent of instructor. GER: DB-SocSci
4 units, Aut (Sun)

CHINLIT 192/292. The History of Chinese—(Graduate students register for 292.) Emphasis is on syntactic and semantic changes in the last 2,000 years and grammaticalization. Students use a computer corpus to do research on the history of Chinese. Prerequisite: 206 or consent of instructor. GER:DB-SocSci
4 units (Sun) not given 2005-06

CHINLIT 199. Individual Reading in Chinese—Asian Language majors only. Prerequisite: CHINLANG 103 or consent of instructor. Units by arrangement.
1-4 units, Aut, Win, Spr, Sum (Staff)

GRADUATE

CHINLIT 200. Directed Reading in Chinese
1-12 units, Aut, Win, Spr, Sum (Staff)

5 units, Aut (Dien)

CHINLIT 221. Advanced Classical Chinese: Philosophical Texts—Prerequisite: 207 or equivalent.
3-5 units, Win (Lewis)

CHINLIT 222. Advanced Classical Chinese: Historical Narration—Prerequisite: 127/207 or equivalent.
2-5 units, Win (J. Wang)

CHINLIT 223. Advanced Classical Chinese: Literary Essays—Prerequisite: 207 or equivalent.
2-4 units (Staff) not given 2005-06

CHINLIT 263. Lyric (Shih) I—Han through Sui dynasties.
2-4 units, Win (Wang)

CHINLIT 264. Lyric (Shih) II—Tang poetry, focusing on major figures and forms.
2-4 units (Staff) not given 2005-06

CHINLIT 266. Chinese Tz’u Poetry (Song Lyrics)—Highlights from the Northern and Southern Sung periods. Patterns of generic development correlated to social changes in historical context. Prerequisite: classical Chinese.
4 units (Staff) not given 2005-06

CHINLIT 271. Traditional Chinese Fiction: Short Stories—Early times to Qing. Prerequisite: 127/207 or consent of instructor.
2-4 units (J. Wang) not given 2005-06

CHINLIT 272. Traditional Chinese Fiction: Novels—Early times to Qing. Prerequisite: 127/207 or consent of instructor.
2-4 units (J. Wang) not given 2005-06

CHINLIT 273. Chinese Drama—Yuan, Ming, and Qing periods emphasizing literary not theatrical qualities. Prerequisite: 127/207 or consent of instructor.
2-4 units (J. Wang) not given 2005-06

4 units (W. Liu) not given 2005-06

CHINLIT 299. Master’s Thesis or Translation—A total of 5 units taken in one or more quarters.
1-5 units, Aut, Win, Spr (Staff)

CHINLIT 369. Introduction to Graduate Studies: Criticism as Profession—(Enroll in COMPLIT 369, GERLIT 369.)
5 units, Aut (Berman)

CHINLIT 371. Seminar in Chinese Literary Criticism—Chinese critical texts in relation to Western literary theories. May be repeated for credit. Prerequisite: 127/207 or consent of instructor.
5 units (J. Wang) not given 2005-06

CHINLIT 373. Seminar on the Shiji—as history and literature. Prerequisite: 127/207 or consent of instructor.
2-5 units (J. Wang) not given 2005-06

5 units (Lewis) not given 2005-06

CHINLIT 391. Seminar in Chinese Syntax—May be repeated for credit.
4 units (Staff) not given 2005-06

CHINLIT 399. Dissertation Research
1-12 units, Aut, Win, Spr, Sum (Staff)

CHINLIT 400. Advanced Language Training—For students in the Inter-University Program for Chinese Language Studies in Beijing or Taipei. For more information, contact the consortium office at UC Berkeley: (510) 642-3873.
1-15 units, Aut, Win, Spr (Staff)

JAPANESE

JAPANESE LANGUAGE COURSES

The following courses in Japanese language instruction represent a typical sequence for three years of Japanese language study. Majors and prospective majors should consult the requirements for a B.A. in Japanese above. For descriptions, other information, and additional courses including advanced, special emphasis, and summer intensive courses, see the “Language Center” section of this bulletin.

JAPANLNG 7B,8B,9B. First-Year Japanese Language, Culture, and Communication B
5 units, 7B: Aut; 8B: Win; 9B: Spr (Lipton, Staff)

JAPANLNG 17B,18B,19B. Second-Year Japanese Language, Culture, and Communication B
5 units, 17B: Aut; 18B: Win; 19B: Spr (Lowdermilk, Staff)

5 units, 127B: Aut; 128B: Win; 129B: Spr (Tomiyama)

JAPANESE COURSES: ADVANCED UNDERGRADUATE AND GRADUATE

JAPANLNG 157. Points in Japanese Grammar—Approaches to the topic including 12th-century allegorical and modern feminist readings. Influence upon other works including poetry, Noh plays, story cycles, modern novels, and comic book (manga) retellings. Prerequisite for graduate students: JAPANLNG 129B or 103, or equivalent. GER:DB-SocSci
4 units (Matsumoto) not given 2005-06

JAPANLNG 170/270. The Tale of Genji and Its Historical Reception—(Graduate students register for 270.) Approaches to the tale including 12th-century allegorical and modern feminist readings. Influence upon other works including poetry, Noh plays, story cycles, modern novels, and comic book (manga) retellings. Prerequisite for graduate students: JAPANLNG 129B or 103, or equivalent. GER:DB-Hum
4 units, Spr (Carter)

JAPANLNG 177/277. The Structure of Japanese—(Graduate students register for 277; same as LINGUIST 177/277.) Linguistic analysis of the major grammatical structures of Japanese. Prerequisites: two years of Japanese. Recommended: course in linguistics.
2-4 units, Spr (Sells)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
<th>Schedule</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAPANLIT 188/288</td>
<td>Diversity in Japanese Language: Regional Dialects and their Images — (Graduate students register for 288.) Sociolinguistic implications and perceptions of existing and imagined regional dialects. Prerequisite: JAPANLNG 17B or equivalent.</td>
<td>2-4</td>
<td>Aut, Win</td>
<td>2-4 units, Win (Satoh)</td>
</tr>
<tr>
<td>JAPANLIT 199</td>
<td>Individual Reading in Japanese — Asian Languages majors only. May be repeated for credit. Prerequisites: JAPANLNG 129B or 103, and consent of instructor.</td>
<td>1-4</td>
<td>Aut, Win, Spr, Sum (Staff)</td>
<td>1-4 units, Aut, Win, Spr, Sum (Staff)</td>
</tr>
<tr>
<td>JAPANLIT 200</td>
<td>Directed Reading in Japanese</td>
<td>1-12</td>
<td>Aut, Win, Spr, Sum (Staff)</td>
<td>1-12 units, Aut, Win, Spr, Sum (Staff)</td>
</tr>
<tr>
<td>JAPANLIT 201</td>
<td>Proseminar: Introduction to Graduate Study in Japanese — Bibliographical and research methods; major trends in literary and cultural theory and critical practice. Prerequisite: JAPANLNG 103 or 129B, or consent of instructor.</td>
<td>3-5</td>
<td>Aut (Carter)</td>
<td>3-5 units (Carter) not given 2005-06</td>
</tr>
<tr>
<td>JAPANLIT 246</td>
<td>Introduction to Premodern Japanese — Readings from Heian, Kamakura, Muromachi, and early Edo periods with focus on grammar and reading comprehension. Prerequisite: JAPANLNG 129B or 103, or equivalent.</td>
<td>5</td>
<td>Win (Reichert)</td>
<td>5 units, Win (Reichert)</td>
</tr>
<tr>
<td>JAPANLIT 247</td>
<td>Readings in Premodern Japanese — Edo and Meiji periods with focus on grammar and reading comprehension. Prerequisite: 246 or equivalent.</td>
<td>4</td>
<td>Win (Carter)</td>
<td>4 units (Carter) not given 2005-06</td>
</tr>
<tr>
<td>JAPANLIT 258</td>
<td>Japanese Buddhist Texts — (Enroll in RELIGST 258.) — Bibliographical and research methods. Prerequisite: JAPANLNG 129B or 103, or equivalent.</td>
<td>3-5</td>
<td>Win (Bielefeldt)</td>
<td>3-5 units, Win (Bielefeldt)</td>
</tr>
<tr>
<td>JAPANLIT 260</td>
<td>Japanese Poetry and Poetics — Heian through Meiji periods with emphasis on relationships between the social and aesthetic. Works vary each year. Prerequisites: 246, 247, or equivalent.</td>
<td>2-4</td>
<td>Win (Carter)</td>
<td>2-4 units, Win (Carter)</td>
</tr>
<tr>
<td>JAPANLIT 281</td>
<td>Japanese Pragmatics — Sociocultural and discourse factors reflected in the choice of linguistic forms, and their theoretical implications. Prerequisites: one year of Japanese and a course in linguistics, or two years of Japanese, or consent of instructor.</td>
<td>4</td>
<td>Staff (Carter)</td>
<td>4 units (Staff) not given 2005-06</td>
</tr>
<tr>
<td>JAPANLIT 282</td>
<td>Japanese Sociolinguistics — Changes in standard Japanese and in local and regional dialects. The role of locally born and new residents in changes in dialects. Methods of researching changing language consciousness and behavior, and the relationship between language and society.</td>
<td>4</td>
<td>Win (Satoh)</td>
<td>4 units, Win (Satoh)</td>
</tr>
<tr>
<td>JAPANLIT 289</td>
<td>Topics in Japanese Linguistics: Implications of Diversity in Language — Japanese from the viewpoint of inter- and intra-language diversity, and the theoretical and pedagogical implications. Topics include Japanese linguistic phenomena against the background of claimed universal principles, forms and styles, factors influencing variations, and how such diversity is an exploitation and reflection of the contexts in which the language is used. Prerequisite: JAPANLNG 102 or 128B, and Linguistics courses.</td>
<td>2-4</td>
<td>Matsumoto (Staff)</td>
<td>2-4 units (Matsumoto) not given 2005-06</td>
</tr>
<tr>
<td>JAPANLIT 291</td>
<td>Readings in Japanese Linguistics — Scholarly articles in Japanese. Prerequisite: JAPANLNG 129B/213 or equivalent, and a Linguistics course.</td>
<td>2-4</td>
<td>Matsumoto (Staff)</td>
<td>2-4 units (Matsumoto) not given 2005-06</td>
</tr>
<tr>
<td>JAPANLIT 296</td>
<td>Readings in Modern Japanese Literature — Works and topics vary each year. May be repeated for credit. Prerequisite: fourth-year Japanese or consent of instructor.</td>
<td>2-5</td>
<td>Aut (Levy)</td>
<td>2-5 units, Aut (Levy)</td>
</tr>
<tr>
<td>JAPANLIT 298</td>
<td>The Theory and Practice of Japanese Literary Translation — Theory and cultural status of translation in modern Japanese and English. Comparative analysis of practical translation strategies. Final project is a literary translation of publishable quality. Prerequisite: fourth-year Japanese or consent of instructor.</td>
<td>2-5</td>
<td>Spr (Levy)</td>
<td>2-5 units, Spr (Levy)</td>
</tr>
<tr>
<td>JAPANLIT 299</td>
<td>Master’s Thesis or Translation — A total of 5 units, taken in one or more quarters. Prerequisites: JAPANLNG 246 or equivalent.</td>
<td>1-5</td>
<td>Aut, Win, Spr, Sum (Staff)</td>
<td>1-5 units, Aut, Win, Spr, Sum (Staff)</td>
</tr>
<tr>
<td>JAPANLIT 350</td>
<td>Japanese Historical Fiction — Authors include Mori Ogai, Akutagawa Ryunosuke, Tanizaki Jun’ichiro, Enchi Fumiko, Shiba Ryotaro, Fujisawa Shuhei, and Hiraiwa Yumie. Genre theory, and historical and cultural context. Works vary each year. May be repeated for credit.</td>
<td>3-5</td>
<td>Matsumoto (Staff)</td>
<td>3-5 units (Matsumoto) not given 2005-06</td>
</tr>
<tr>
<td>JAPANLIT 381</td>
<td>Topics in Pragmatics and Discourse Analysis — Naturally occurring discourse (conversational, narrative, or written) and theoretical implications. Discourse of different age groups, expressions of identity and persona, and individual styles. May be repeated for credit.</td>
<td>3-5</td>
<td>Matsumoto (Staff)</td>
<td>3-5 units (Matsumoto) not given 2005-06</td>
</tr>
<tr>
<td>JAPANLIT 395</td>
<td>Early Modern Japanese Literature — May be repeated for credit. Prerequisite: 247.</td>
<td>3-5</td>
<td>Staff (Reichert)</td>
<td>3-5 units, Staff (Reichert)</td>
</tr>
<tr>
<td>JAPANLIT 396</td>
<td>Modern Japanese Literature — May be repeated for credit. Prerequisite: JAPANLNG 213.</td>
<td>3-5</td>
<td>Staff (Reichert)</td>
<td>3-5 units (Staff) not given 2005-06</td>
</tr>
<tr>
<td>JAPANLIT 399</td>
<td>Dissertation Research — For doctoral students in Japanese working on dissertations.</td>
<td>1-12</td>
<td>Aut, Win, Spr, Sum (Staff)</td>
<td>1-12 units, Aut, Win, Spr, Sum (Staff)</td>
</tr>
<tr>
<td>JAPANLIT 400</td>
<td>Advanced Language Training — For students at the Yokohama Center. For more information, see the program description under the “Inter-University Center for Japanese Studies in Yokohama” section in this bulletin.</td>
<td>1-15</td>
<td>Staff (Staff)</td>
<td>1-15 units, Aut, Win, Spr, Sum (Staff)</td>
</tr>
</tbody>
</table>

OVERSEAS STUDIES

Courses approved for the Asian Languages major and taught overseas can be found in the “Overseas Studies” section of this bulletin, or in the Overseas Studies office, 126 Sweet Hall.

BEIJING

CHINGEN 132B. Chinese Fiction and Drama in Translation
4 units, Aut (Wang)
ASTRONOMY COURSE PROGRAM

Emeriti: (Professors) Ronald N. Bracewell, Von R. Eshleman, Peter A. Sturrock, Robert V. Wagoner
Committee in Charge: (Director) Vahe Petrosian; Roger W. Romani, Robert V. Wagoner
Professors: Roger Blandford (Physics, SLAC), Blas Cabrera (Physics), Steven Kahn (Physics, SLAC), Peter Michelson (Physics, SLAC), Vahe Petrosian (Physics, Applied Physics), G. Leonard Tyler (Electrical Engineering)
Associate Professors: Tom Abel (Physics, SLAC), Roger W. Romani (Physics)
Assistant Professors: Sarah Church (Physics, SLAC), Roger W. Romani (Physics)
Professor (Research): Philip H. Scherrer (Physics)
Program Offices: Varian, Room 316
Mail Code: 94305-4060
Phone: (650) 723-1439
Web Site: http://www.stanford.edu/dept/astro/

Courses given in Astronomy have the subject code ASTRNMY. For a complete list of subject codes, see Appendix.

Although Stanford University does not have a degree program in astronomy or astrophysics, teaching and research in various branches of these disciplines are ongoing activities in the departments of Applied Physics, Electrical Engineering, and Physics. For the convenience of students interested in astronomy, astrophysics, and cosmology, a course program for undergraduate and graduate study is listed below.

The program is especially committed to providing introductory courses for the student who wishes to be informed about the fields of astronomy without the need for prerequisites beyond high school algebra and physics. Astronomy courses numbered below 100 are designed to serve this group of students.

Astronomy courses numbered 100-199 serve the student interested in an initial scientific study of astronomy. The courses numbered 200 and above are for graduate students and advanced undergraduates, subject to prior approval by the course instructor.

UNDERGRADUATE PROGRAMS

The University does not offer a separate undergraduate major in Astronomy. Students who intend to pursue graduate study in astronomy or space science are encouraged to major in physics, following the advanced sequence if possible, or in electrical engineering if the student has a strongly developed interest in radioscience. The course descriptions for these basic studies are listed under the appropriate department sections of this bulletin. Students desiring guidance in developing an astronomy-oriented course of study should contact the chair of the Astronomy Program Committee. The following courses are suitable for undergraduates and are recommended to students considering advanced study in astronomy or astrophysics: PHYSICS 100, Introduction to Observational and Laboratory Astronomy; PHYSICS 160, Introduction to Stellar and Galactic Astrophysics; PHYSICS 161, Introduction to Extragalactic Astrophysics and Cosmology; GES 222, Planetary Systems: Dynamics and Origins. Students planning study in astronomy beyond the B.S. are urged to take PHYSICS 260 and 262, Introduction to Astrophysics and to Gravitation, and to consider an undergraduate thesis (PHYSICS 169) or honors thesis in an astrophysics related area. The above-mentioned courses are required for physics majors who choose the curriculum with a concentration in astrophysics (see the “Physics” section of this bulletin). The student observatory, located in the hills to the west of the campus and equipped with a 24-inch and other small reflecting telescopes, is used for instruction of the observation-oriented courses.

MINORS

The minor program in Astronomy is described in the “Physics” section of this bulletin. The non-technical minor, intended for students whose major does not require the PHYSICS 40 series, requires 10 units of Physics courses (PHYSICS 21, 23, 25/26) and 9-10 units of Astronomy courses (PHYSICS 50 or 100, 3-4 units; PHYSICS 15, 16, 17, 6 units). The technical minor for other students consists of PHYSICS 70, 100, 160, 161, 164, 14 units in addition to the 40 series.

To be accepted to the minor program, students need to obtain an advisor selected from the faculty in the Astronomy Course Program. The minor declaration deadline is three quarters before graduation (that is, beginning Autumn Quarter if the student is graduating at the end of Spring Quarter). All courses for the minor must be taken at Stanford University, and a letter grade of ‘C’ or better must be received for all units applied toward the minor.

GRADUATE PROGRAMS

Graduate programs in astronomy and astrophysics and related topics are carried out primarily in the Department of Physics but also the departments of Applied Physics and Electrical Engineering. Students should consult the course listings, degree requirements, and research programs of these departments for more detailed information. For graduate research opportunities, see the “Center for Space Science and Astrophysics” section of this bulletin and the Kavli Institute of Particle Astrophysics and Cosmology at http://kipac.stanford.edu.

Stanford is a member of a consortium using the Hobby Eberly telescope, a 10-meter-class telescope located at McDonald Observatory in Texas. Opportunities to do research projects using this telescope are available for graduate students.

Students planning to conduct research in astronomy and astrophysics are required to take PHYSICS 360, Physics of Astrophysics, and at least one of the following: PHYSICS 361, Stellar and Galactic Astrophysics, 362, Extragalactic Astrophysics and Cosmology, or 363, Solar and Solar-Terrestrial Physics. Students lacking a background in astrophysics, gravitation, and plasma physics should take PHYSICS 260 and 262, Introduction to Astrophysics and to Gravitation, and PHYSICS 312, Basic Plasma Physics. Students with special interests in gravitation should take PHYSICS 364, Advanced Gravitation.

Students interested in research programs in space physics involving spacecraft studies of the planets, their satellites, and their near-space environments should see the “Center for Space Science and Astrophysics” section of this bulletin.

COURSES

ELEMENTARY LECTURES

The following courses provide a descriptive knowledge of astronomical objects and astrophysics of the universe. PHYSICS 15, 16, and 17 are for students not majoring in the sciences and are taught in different quarters by different instructors, but are related in topic.

PHYSICS

PHYSICS 15. The Nature of the Universe
3 units, Win, Sum (Sako)

PHYSICS 16. Cosmic Horizons
3 units, Aut (Abel)

PHYSICS 17. Black Holes
3 units, Spr (Blandford)

OBSERVATORY

The following courses are intended to familiarize students with observational methods and analysis of astronomical data. PHYSICS 100 involves more advanced observations and is intended for students with some background in physics.
ATHLETICS, PHYSICAL EDUCATION, AND RECREATION

Emeriti: (Professor) Wesley K. Ruff; (Associate Professor) William P. Fehring; (Athletic Director) Joseph H. Ruettz; (Associate Director) Robert C. Young; (Assistant Director) Shirley Schoof

Athletic Director: Ted Leland
Senior Associate Athletic Director, Finance and Business Affairs: Debra Gore-Mann
Senior Associate Athletic Director, External Relations: Darrin Nelson
Associate Athletic Director, Development: Mike Iazzi
Associate Athletic Director, Intercollegiate Sports and Championships: Earl Koberlein
Associate Athletic Director, Facilities, Operations, and Events: Ray Purpur
Associate Athletic Director, Athletic Services: Scott Schuhmann
Senior Assistant Athletic Director, Media Relations: Gary Migdol
Senior Assistant Athletic Director, Strategic and Financial Management: Chuck Spielman
Assistant Athletic Director, Capital Planning: David Schinski
Assistant Athletic Director, Events and Operations: Carl Reed
Assistant Athletic Director, Facilities: Skip Braatz
Assistant Athletic Director, Marketing, Tickets: Bob Carruesco
Assistant Athletic Director, NCAA and Recruiting Services: Karen Peters
Assistant Athletic Director, Physical Education, Club Sports, Intramurals, and Recreation: Sherry Posthumus
Assistant Athletic Director, Student Services: Susan Burk
Director, Human Resources: Ron Coverson
Senior Lecturer: Anne Gould

Sport Directors: Al Acosta (Lightweight Crew, women), Craig Amerkhanian (Crew, men), Aimee Baker (Crew, women), John Dunning (Volleyball, women), Edrick Floreal (Track and Field, women), Lele Forood (Tennis, women), Thom Gliemi (Gymnastics, men), Walt Harris (Football), Lesley Irvine (Field Hockey), Trent Johnson (Basketball, men), Jay Kehoe (Sailing), Skip Kenney (Swimming, men), Mark Marquess (Baseball), Lea Maurer (Swimming, women), Kerry McCoy (Wrestling), Lisa Milgram (Fencing), Caroline O’Connor (Golf, women), Heather Olson (Synchronized Swimming), George Pogosov (Fencing), Paul Ratcliffe (Soccer, women), Conrad Ray (Golf, men), John Rittman (Softball), Richard Schwartz (Diving), Don Shaw (Volleyball, men), Brett Simon (Soccer, men), Kristen Smyth (Gymnastics, women), John Tanner (Water Polo, women), Michele Uhlfelder (Lacrosse), Tara VanDerveer (Basketball, women), John Vargas (Water Polo, men), Robert Weir (Track and Field, men), John Whittington (Tennis, men)

Sport Assistant Coaches: Jon Allbin (Crew, men), Sam Bailey (Water Polo, men), Frankie Brennan (Tennis, women), Kiraich Smith (Softball), Jay Cooney (Soccer, women), Denise Corlett (Volleyball, women), Carrie Davis (Crew, women), Trisha Dean (Softball), Tom Freeman (Football), Tony Fuller (Basketball, men), Shannon Montague Gordon (Synchronized Swimming), Amy Gross-Kehoe (Sailing), Nathaniel Hackett (Football), Tom Hayes (Football), L. J. Hepp (Basketball, men), David Hodge (Tennis, men), Sarah Hughes (Lacrosse), Ted Knapp (Swimming, men), John Kosty (Volleyball, men), Jason Mansfield (Water Polo, men), George McDonald (Football), John McDonnell (Football), Karen Middleton (Basketball, women), Wayne Moses (Football), Dave Nakama (Baseball), Valerie Naulo (Fencing), Sarah Kate Noftsginer (Soccer, women), Susan Ortewein (Water Polo, women), Darrell Patterson (Football), John Pearce (Sailing), Tom Quinn (Football), Kylee Read (Lacrosse), J.D. Reive (Gymnastics, men), Eric Reveno (Basketball, men), Charmin Smith (Basketball, women), Jordan Steele (Field Hockey), Matt Stimson (Soccer, men), Dean Stotz (Baseball), Chris Swircek (Gymnastics, women), Dave Tipton (Football), Amy Tucker (Basketball, women), Tucker Waugh (Football), Shane Whildin (Swimming, women), Nicole Younts (Lightweight Crew, women)
Courses in Athletics, Physical Education, and Recreation have the subject code ATHLETIC. For a complete list of subject codes, see Appendix.

From the founding of the University, Stanford’s leaders have believed physical activity is valuable for its own sake and complementary to the educational purpose of the University. The mission of the Department of Athletics, Physical Education, and Recreation is to offer the widest possible range of quality programs for athletic participation and physical fitness at all levels of skill and interest. Within the limitations of its resources, the department provides a broad range of instructional, recreational, and intramural competitive programs for all who wish to participate. The intrinsic value to the participant is the primary criterion by which the worth of the programs should be judged.

The goals of the department’s programs are to promote understanding of the value and role of physical activity as an important dimension of the human condition, to develop performance skills in sport, to develop the habit of participation, and to provide leadership opportunities in aquatics, sports, and other physical activities. To this end, the program encompasses a diversity of learning and participating opportunities from informal recreation through organized intramural competition, basic instructional classes, and theoretical study to, and including, intercollegiate athletic competition.

PROGRAMS

No degrees are offered in Physical Education.

INTERCOLLEGIATE ATHLETICS

In keeping with American university tradition, Stanford offers a broad intercollegiate athletic program. The objectives are to provide the opportunity to compete at the highest possible level without jeopardizing the integrity of the individual or the institution; to adhere strictly to all University, association, and conference rules governing athletic participation; and to encourage effectively the achievement of academic goals by student athletes at the same rate as other University students. As a member of the National Collegiate Athletic Association (NCAA), Stanford fields both men’s and women’s varsity teams. Those for men are baseball, basketball, crew, cross country, fencing, football, golf, gymnastics, sailing, soccer, swimming and diving, tennis, track and field, volleyball, water polo, and wrestling. Those for women are basketball, crew, cross country, fencing, field hockey, golf, gymnastics, lacrosse, sailing, soccer, softball, swimming and diving, synchronized swimming, tennis, track and field, volleyball, and water polo.

Both men’s and women’s teams are affiliated with the Pacific Ten Conference, one of the premier athletic conferences in the nation. Additional or alternative intercollegiate athletic competition is available for all teams.

CLUB SPORTS

The Stanford Club Sports program provides competition in sports not included in the intercollegiate varsity program and instruction in classes or activities not included in the Physical Education program. It also develops student leadership in organizing, administering, and funding activities. The club program is actively supervised by the Director of Club Sports, but the emphasis is on student interest and leadership to initiate, organize, and conduct the respective clubs. Those students in clubs that meet the criteria for inclusion in the formal curriculum may apply for units of credit.

INTRAMURAL SPORTS (IM)

Students interested in intramural competition may receive information through the intramural web site: http://www.stanford.edu/group/Intramurals/. They may also receive information from the IM Office in Burnham Pavilion or through their campus residences. The program includes formal competition in league and tournament play for many different sports. Competing organizations, teams, and individuals are urged to check the web site at the beginning of each quarter to obtain registration and league information. Registration occurs on the second Thursday of each quarter, with mandatory captain meetings held on the same evening. Intramurals run Autumn, Winter, and Spring quarters.

RECREATION

The department provides facility use for faculty, staff, and students (and, for some activities, their immediate families) to participate in aquatics, conditioning, and sports for general recreation. Specific recreation hours for all the facilities are posted throughout the year at the respective facilities and at http://www.stanford.edu/dept/pe.

The golf course and driving range are available for faculty, staff, and student use on a fee basis; information is available from the Golf Pro Shop.

FACILITIES

Athletic facilities are located throughout the campus. On the west side of campus are the Golf Course, the Golf Driving Range, the Red Barn Stables, Roble Field, the Sand Hill Intramural Fields, and the West Campus Tennis Courts. Centrally located is the Tresidder Fitness Center. On the east side of campus are the Arrillaga Family Recreation Center, the Arrillaga Family Sports Center, the Baker Recreation Pool and Avery Aquatic Center, Burnham Pavilion, Cobb Track and Angell Field, the Ford Center for Sports and Recreation, the Manzanita Basketball Court, Maples Pavilion, the Stanford Stadium, Taube South Tennis Courts, and Taube Tennis Stadium.

Off-campus facilities include the Morrison Boathouse, a sailing and rowing facility.

CURRICULUM AND SERVICES

The diverse instructional program strives to accommodate the sports interests of all undergraduate and graduate students. Only intercollegiate varsity men’s and women’s teams are limited to undergraduates. Homogeneous skill groupings and limited class sizes enable the beginning student or the advanced performer to achieve success within the limits of individual motivation and potential. Skill level in, and knowledge about, a specific activity as well as available space are the only limitations to enrollment. Physically disabled students are encouraged to contact Sherry Posthumus for enrollment advice.

Academic Credit — Activity classes carry 1 unit of credit for satisfactory completion of work. Although there is no limitation on the number of activity classes in which a student may enroll, no more than 8 units of these activity classes (and/or other University activity classes) may be applied toward undergraduate graduation requirements (see the “Undergraduate Degrees” section of this bulletin).

Auditing — No auditing is allowed in activity classes. Faculty and staff may take an activity class as space is available with instructor consent after student enrollment is completed.

Class Fees — Fees are charged for enrollment in all physical education classes and club sports.

Class fees are payable only by check or money order payable to Stanford University. Cash is not acceptable. Fees are payable at the first, and are required by the second, class meeting for a student to remain in class. Late enrollees must submit fees no later than the second time they attend the class.

Full refund is given to students who drop a class during the first two weeks of classes and request a refund at that time. No refund is given if a student either neglects to request a refund under the conditions listed previously or drops the class after the second week.

Class Sign-ups versus Axess — Information on sign-up procedures can be found on the department’s web site at http://www.stanford.edu/dept/pe, or under Athletics in the Time Schedule. Students must attend the first class meeting. If accepted into the class, they can register for that class through Axess.
Deadline for Adding a Class — Students who have never appeared in a class may not enroll in that class after the fourth class meeting has passed. Students may add the class after the fourth meeting if they have been in attendance and, for whatever reason, did not get registered until the fourth week (the University deadline for adding courses).

Equipment — Specific information on equipment and recommended class attire is available from the department or instructor.

Lockers — Lockers are available for rent to faculty/staff and students at the Arrillaga Family Sports Center and Roble Gym. The fee for faculty/staff is $20 per quarter or $50 per year. The fee for students is $15 per quarter or $35 per year.

COURSES

(AU) indicates that the course is subject to the University Activity Unit limitations (8 units maximum). See http://www.stanford.edu/dept/pe for further information on course descriptions and sign-up procedures.

PHYSICAL EDUCATION AND SPORTS THEORY

ATHLETIC 7. Band, Sports Activity — (AU) Emphasis is on cardiovascular health. Steps and risers are provided. Fee. (AU)
1 unit, Aut, Win, Spr (Gross-Kehoe)

ATHLETIC 83. Lifeguard Training — Priority to those with summer jobs requiring certification and for those wishing to guard at Stanford during the year. Lifeguard characteristics and responsibilities, recognition of hazards and emergencies, patron and facility surveillance, interaction with the public, rescue skills. Community first aid and CPR for the professional rescuer. Fee. Prerequisite: pass swim test (swimmer/advanced swimmer level).
2 units, Spr (Wilson)

ATHLETIC 102. Sailing: Assistant Instructor (Beginning Level) — (AU)
2 units, Aut, Spr (Gross-Kehoe)

ATHLETIC 104. Sailing: Assistant Instructor (Beginning Level) — (AU)
2 units, Aut, Spr (Gross-Kehoe)

ATHLETIC 108. Sailing: Assistant Instructor (Intermediate Level) — (AU)
2 units, Aut, Spr (Gross-Kehoe)

ATHLETIC 110. Sailing: Assistant Instructor (Advanced Level) — (AU)
2 units, Aut, Spr (Gross-Kehoe)

ATHLETIC 101. Sailing, Intermediate; Dinghy — Basic skills, theory, and techniques to enable beginners to sail with confidence in small centerboard boats. Fee. (AU)
1 unit, Aut, Spr (Gross-Kehoe)

ATHLETIC 106. Sailing, Beginning: Keelboat — (AU) Basic skills, theory, and techniques enable beginners to sail a 24’-30’ fixed keel boat with confidence. Emphasis is on safety and seamanship skills. Fee. (AU)
1 unit, Aut, Spr (Gross-Kehoe)

ATHLETIC 109. Sailing, Beginning: Dinghy — Basic skills, theory, and techniques to enable beginners to sail with confidence in small centerboard boats. Fee. (AU)
1 unit, Aut, Spr (Gross-Kehoe)

ATHLETIC 131. Swimming: Beginning — For non-swimmers or those who can swim about 10 yards but are not comfortable in deep water. Safety skills, front crawl, and back stroke. Additional strokes introduced as ability warrants. (AU)
1 unit (Neuhold-Huber, Whilden)

ATHLETIC 132. Swimming: Advanced Beginning — For those with limited swimming and safety skills. Safety skills, crawl, and elementary backstroke or back crawl. Introduction to sidestroke and breaststroke. Increase time and distance of swim. Prerequisite: ability to swim 25-50 yards on front and back. (AU)
1 unit, Aut, Win, Spr, Sum (Neuhold-Huber, Whilden)

ATHLETIC 133. Swimming: Intermediate — Review and refine all basic strokes and safety skills. Introduction to or review of butterfly and flip turn. Stroke drills and information on conditioning and designing individual workouts. Prerequisite: average to good strokes; ability to swim approximately 400-500 yards continuously. Fee. (AU)
1 unit, Aut, Win, Spr (Tanner, Vargas)

ATHLETIC 134. Swimming: Advanced — Further work on conditioning and designing individual workouts. Prerequisite: average to good strokes; ability to swim approximately 400-500 yards continuously. Fee. (AU)
1 unit, Aut, Win, Spr (Tanner, Vargas)

ATHLETIC 135. Swim Conditioning — Improve cardio-respiratory endurance through directed swimming workouts. Technique corrections as needed. Prerequisite: advanced swimmer. Fee. (AU)
1 unit, Aut, Win, Spr (Kenney, Knapp, Vargas)

ATHLETIC 136. Water Polo: Beginning — Introduction to basic skills and game play. For those who have never played or have had limited experience. Fee. (AU)
1 unit, Spr (Vargas)

ATHLETIC 137. Water Polo: Intermediate/Advanced — Further work on skills. Game strategies. Fee. (AU)
1 unit, Aut, Spr (Tanner, Vargas)

FITNESS, INDIVIDUAL, AND TEAM SPORT ACTIVITIES

ATHLETIC 1. Aerobics, Step — Amix of creativity and aerobic training that is challenging, fun, and effective. Appropriate for all fitness levels. Emphasis is on cardiovascular health. Steps and risers are provided. Fee. (AU)
1 unit, Aut, Win, Spr (Gittens)

ATHLETIC 3. Agility and Plyometrics — Introduction to plyometrics. Build explosiveness, power, speed, and agility through conditioning drills. Fee. (AU)
1 unit, Aut (Uhlfelder)

ATHLETIC 7. Band, Sports Activity — (AU)
1 unit, Aut, Win, Spr (Aquilanti)

1 unit, Aut (Floreal, Staff)
ATHLETIC 27. Cycling for Fitness—Bike on hills and flat roads, distance biking, aerobic and anaerobic fitness. Different route and fitness goal each session. Road bike and helmet required. Fee. (AU)

1 unit, Win, Spr (Stimson)

ATHLETIC 37. Fencing: Beginning—The sport of swordmanship develops quick hands, strong legs, and a strategic mind. Footwork, handwork, and boutting. Emphasis is on foil technique. All equipment provided. (AU)

1 unit, Aut, Win, Spr, Sum (Naulo)

ATHLETIC 38. Fencing, Intermediate—Continuation of 37; learn advanced footwork and handwork. Strategy and boutting. Introduction to epee and saber. All equipment provided. Prerequisite: 37 or consent of instructor. Fee. (AU)

1 unit, Aut, Win, Spr (Naulo)

ATHLETIC 44. Field Hockey, Advanced for Women—Techniques and skills under competitive pressure. Must know team strategies and positioning. Prerequisite: consent of instructor, tryouts. Fee. (AU)

1 unit, Win (Irvine)

1 unit, Aut, Win, Spr, Sum (Marrone, Miller, Shaw, Uchiyama)

1 unit, Aut, Win, Spr, Sum (Marrone, Miller, Stotz)

ATHLETIC 54. Golf: Intermediate—Drills and practice on all facets of golf. How to lower scores and manage the game on the course. Prerequisite: 53 or equivalent. Fee. (AU)

1 unit, Aut, Win, Spr, Sum (Marrone, Miller, Stotz)

ATHLETIC 55. Golf: Advanced—Understand and refine the golf swing and increase power, distance, and accuracy. Course management, mental preparation, visualization techniques. Prerequisites: 54 or experience playing and practicing, and the ability to hit shots with relative accuracy and distance. Fee. (AU)

1 unit, Aut, Win, Spr (Marrone, Miller, Uchiyama)

ATHLETIC 59. Gymnastics: Beginning—Fundamental gymnastics movement for men and women, including flexibility and strength exercises taught on the Olympic apparatus including floor, balance beam, bars, and rings. Fee. (AU)

1 unit, Aut, Win, Spr (Reive, Swirecek)

ATHLETIC 60. Gymnastics: Intermediate—For students who have completed 59 or have a background in gymnastics. Emphasis is on tumbling and somersaulting. Group work and individualized instruction for men and women. Limited apparatus work. Fee. (AU)

1 unit, Aut, Win, Spr (Reive, Swirecek)

ATHLETIC 63. Team Handball—For those with little or no previous experience. Basic skills, rules of the game. Fee. (AU)

1 unit, Win, Spr (Cooney)

ATHLETIC 64. Hip Hop—Syncopated dance to the latest Hip-Hop music for cardiovascular fitness. (AU)

1 unit, Aut, Win, Spr, Sum (Boho)

ATHLETIC 65. Horsemanship: Beginning Riding—No experience needed. Basic horsemanship and riding at the walk, trot and canter. Fee. (AU)

1 unit, Aut, Win, Spr (Bartsch)

ATHLETIC 66. Horsemanship: Advanced Beginning Riding—Horsemanship and horse care; the canter and basic jumping. Fee. Prerequisite: 65 or equivalent. (AU)

1 unit, Aut, Win, Spr (Bartsch)

ATHLETIC 67. Horsemanship: Intermediate Riding and Jumping—Basic veterinary skills and barn management. Riding at all gaits and jumping basic course up to two feet. Fee. Prerequisite: 66 or equivalent. (AU)

1 unit, Aut, Win, Spr (Bartsch)

ATHLETIC 68. Horsemanship: Student Assistant

1 unit, Aut, Win, Spr (Bartsch)

ATHLETIC 73. Interval Training—For students who want to improve their overall fitness level. Workouts include brief periods of high intensity exercise interspersed with lower intensity exercise or rest. Short duration agility runs, weight lifting, and cardiovascular improvement. Emphasis is on proper stretching techniques, warm-ups, cool-downs, and monitoring heart rate. Fee. (AU)

1 unit, Win, Spr (Irvine)

ATHLETIC 78. Kickboxing—High energy workout incorporating kicks, punches, elbow/knee, and other combinations used in martial arts, boxing, and athletic drills. (AU)

1 unit, Aut, Win, Spr, Sum (Mandell)

1 unit, Aut, Win, Spr (Ghormley)

ATHLETIC 88. Pilates Mat—Movement with economy, grace, and balance. How to use the body to advantage making the most of its strengths and correcting its imbalances. Pilates focuses on well designed movements performed in a balanced sequence. (AU)

1 unit, Aut, Win, Spr, Sum (Conniff)

ATHLETIC 89. Pilates II—For those who have mastered Pilates fundamentals. How to stretch, strengthen, streamline, and isolate the deep muscles of the body using small apparatus and techniques. Fee (AU)

1 unit, Aut, Win, Spr (Conniff)

1 unit, Aut, Win (Conniff)

1 unit, Aut (Ratcliffe)

ATHLETIC 114. Soccer: Intermediate/Advanced—For the player with club or high school experience. Small group offensive and defensive tactics. Drills and small-sided games. Fee. (AU)

1 unit, Aut (Ratcliffe, Simon)

ATHLETIC 115. Soccer: Advanced for Men—Techniques under pressure; small group and team tactics. Fitness for the soccer player. Prerequisites: consent of instructor, tryouts. Fee. (AU)

1 unit, Win (Simmon)

ATHLETIC 116. Soccer: Advanced for Women—Techniques under pressure; small group and team tactics. Fitness for the soccer player. Prerequisites: consent of instructor, tryouts. Fee. (AU)

1 unit, Win (Ratcliffe)

ATHLETIC 117. Soccer, Indoor: Intermediate/Advanced—Smaller ball and playing area. Emphasis is on individual ball skills through small sided games. Fee. (AU)

1 unit, Win (Simmon)

ATHLETIC 141. Tennis: Beginning—Forehand, backhand, serve, and net play; rules and scoring. (AU)

1 unit, Aut, Win, Spr, Sum (Gould, Hodge)
ATHLETIC 142. Tennis: Low Intermediate—Fundamental strokes and their use in a game situation. Prerequisites: 141, or knowledge of rules and scoring and average ability in fundamental strokes but limited playing experience. (AU)
1 unit, Aut, Win, Spr, Sum (Brennan, Gould, Hodge)

ATHLETIC 143. Tennis: Intermediate—Fundamental stroke review. Singles and doubles tactics. Prerequisites: 142 or average ability in fundamental strokes, and regular playing experience; NTRP rating of 3.0 or equivalent. (AU)
1 unit, Aut, Win, Spr, Sum (Brennan, Forood, Gould, Hodge)

ATHLETIC 144. Tennis: Advanced—Drills emphasize footwork, serve and return, approach shots, volleys, lobs, and overheads. Strategy for competition in singles and doubles. Prerequisites: above average stroking and game playing ability; NTRP rating above 4.0 or equivalent. (AU)
1 unit, Aut, Win, Spr, Sum (Brennan, Forood, Gould, Hodge)

ATHLETIC 145. Tennis: Tournament—Advanced drills and practice sessions for tournament-experienced players of near-varsity-level ability. Tryouts at West Campus Courts. Prerequisite: consent of instructor. Fee. (AU)
1 unit, Aut, Spr (Gould)

ATHLETIC 146. Tennis: Analysis—Use of computer for analyzing tennis matches. Assist players and coaches by collecting data on performance. Prerequisite: consent of instructor. Recommended: excellent knowledge of tennis, background in computers and statistics. (AU)
2 units, Aut, Win, Spr (Forood)

1 unit, Aut (Kosty)

1 unit, Aut, Spr (Kosty)

ATHLETIC 161. Volleyball: Advanced Sand—Refine and improve skills and game playing strategy in two- and four-person sand volleyball. Must have strong skills and general knowledge of team concepts. Prerequisite: 160 or consent of the instructor. Fee. (AU)
1 unit, Spr (Kosty)

ATHLETIC 163. Volleyball: Intermediate—Drills to improve skills and game playing strategy. As ability indicates, more emphasis on team play and strategy. Fee. (AU)
1 unit, Aut, Win (Corlett, Shaw)

ATHLETIC 164. Volleyball: Advanced—Refine all skills, emphasizing offensive and defensive team play. Fee. Prerequisites: strong skills and general knowledge of team concepts. Fee. (AU)
1 unit, Aut, Win (Corlett, Shaw)

1 unit, Aut, Win, Spr (Staff)

ATHLETIC 175. Weight Training: Intermediate—Review of basic exercises and techniques. Emphasis is on individualized programs and learning the use of all available machines and free weights. Further discussion on exercise physiology. Prerequisite: 174 or thorough knowledge of basic weight training principles. Fee. (AU)
1 unit, Aut, Win, Spr (Staff)

ATHLETIC 176. Weight Training for Women—All levels welcome, but designed for the beginner. Introduction to the techniques and equipment for weight training. Emphasis is on stretching, proper form and progressions, and injury prevention. The basics of the physiology of strength training and planning individual programs. Fee. (AU)
1 unit, Aut, Win, Spr (Staff)

ATHLETIC 179. Wrestling: Beginning/Intermediate—Intercollegiate wrestling. Conditioning, cultivating the spirit of one-on-one competition. Basic skills and high-level sequences of upper- and lower-body technique. Fee. (AU)
1 unit, Spr (McCoy)

ATHLETIC 180. Wrestling, Assistant Instructor—(AU)
1 unit, Spr (McCoy)

ATHLETIC 186. Yoga—Beginning/intermediate. Focus is on an integrated and balanced body. Promotes increased flexibility; strengthens skeletal and muscular systems; improves circulation; releases tension and stress. (AU)
1 unit, Aut, Win, Spr (Conniff, McCracken, Merlo)

ATHLETIC 187. Yoga: Intermediate—Builds and expands on basic asanas. Student should be comfortable with the beginning class and ready for more challenging poses. More inverted poses such as the shoulder stand. Range of motion and length of time in poses increased. Deeper understanding of pranayama. Fee. Prerequisite: beginning yoga or yoga experience. Fee. (AU)
1 unit, Aut, Win, Spr (Merlo)

ATHLETIC 189. Yoga for Advanced Golf—Fitness yoga to increase flexibility, core body strength, balance, and focus. Fee. 1 unit, Spr (Conniff)

INTERCOLLEGIATE ATHLETIC TEAMS

ATHLETIC 9V. Baseball, Varsity Men—(AU)
1-2 units, Aut, Win, Spr (Marquess, Stotz)

ATHLETIC 11V. Basketball, Varsity Men—(AU)
1-2 units, Aut, Win (Johnson, Staff)

ATHLETIC 12V. Basketball, Varsity Women—(AU)
1-2 units, Aut, Win (Van Derveer, Staff)

ATHLETIC 19V. Crew, Varsity Men—(AU)
1-2 units, Aut, Win, Spr (Amerkhanian)

ATHLETIC 20V. Crew, Varsity Women—(AU)
1-2 units, Aut, Win, Spr (Baker)

ATHLETIC 22V. Cross Country, Varsity Men—(AU)
1-2 units, Aut (Staff)

ATHLETIC 23V. Cross Country, Varsity Women—(AU)
1-2 units, Aut (Staff)

ATHLETIC 31V. Diving, Varsity Men—(AU)
1-2 units, Aut, Win, Spr (Schavone)

ATHLETIC 32V. Diving, Varsity Women—(AU)
1-2 units, Aut, Win, Spr (Schavone)

ATHLETIC 41V. Fencing, Varsity Men—(AU)
1-2 units, Aut, Win (Milgram)

ATHLETIC 42V. Fencing, Varsity Women—(AU)
1-2 units, Aut, Win (Milgram)

ATHLETIC 45V. Field Hockey, Varsity Women—(AU)
1-2 units, Aut, Spr (Irvine)

ATHLETIC 48V. Football, Varsity—(AU)
1-2 units, Aut, Spr (Harris, Staff)

ATHLETIC 57V. Golf, Varsity Men—(AU)
1-2 units, Aut, Win, Spr (Ray)
<table>
<thead>
<tr>
<th>ATHLETIC 58V. Golf, Varsity Women — AU</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2 units, Aut, Win, Spr (O'Connor)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATHLETIC 61V. Gymnastics, Varsity Men — (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2 units, Aut, Win, Spr (Glielmi)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATHLETIC 62V. Gymnastics, Varsity Women — (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2 units, Aut, Win, Spr (Smyth)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATHLETIC 81V. Lacrosse, Varsity Women — (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2 units, Aut, Win, Spr (Uhlfelder)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATHLETIC 107V. Sailing, Varsity Men — (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2 units, Aut, Win, Spr (Kehoe)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATHLETIC 108V. Sailing, Varsity Women — (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2 units, Aut, Win, Spr (Kehoe)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATHLETIC 119V. Soccer, Varsity Men — (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2 units, Aut, Spr (Simon)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATHLETIC 120V. Soccer, Varsity Women — (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2 units, Aut, Spr (Ratcliffe)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATHLETIC 122V. Softball, Varsity Women — (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2 units, Aut, Win, Spr (Ritman)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATHLETIC 137V. Swimming, Synchronized: Varsity — (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2 units, Aut, Win (Olson)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATHLETIC 138V. Swimming, Varsity Men — (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2 units, Aut, Win, Spr (Kenney)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATHLETIC 139V. Swimming, Varsity Women — (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2 units, Aut, Win, Spr (Maurer)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATHLETIC 148V. Tennis, Varsity Men — (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2 units, Aut, Win, Spr (Whitlinger)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATHLETIC 149V. Tennis, Varsity Women — (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2 units, Aut, Win, Spr (Forood)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATHLETIC 153V. Track and Field, Varsity Men — (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2 units, Aut, Win, Spr (Weir)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATHLETIC 154V. Track and Field, Varsity Women — (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2 units, Aut, Win, Spr (Floreal)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATHLETIC 165V. Volleyball, Varsity Men — (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2 units, Aut, Win, Spr (Shaw)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATHLETIC 166V. Volleyball, Varsity Women — (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2 units, Aut, Win, Spr (Dunning)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATHLETIC 171V. Water Polo, Varsity Men — (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2 units, Aut, Win, Spr (Vargas)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATHLETIC 172V. Water Polo, Varsity Women — (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2 units, Aut, Win, Spr (Tanner)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATHLETIC 182V. Wrestling, Varsity — (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2 units, Aut, Win, Spr (McCoy)</td>
</tr>
</tbody>
</table>

CLUB SPORTS

The Stanford Club Sports Program is affiliated with the department but is initiated, organized, and conducted by students. All clubs are coeducational except as specified. Clubs, whose instructional classes meet the criteria for academic credit, are scheduled for meeting times as published each quarter in the Time Schedule. For additional information, contact the Club Sports Director.

<table>
<thead>
<tr>
<th>ATHLETIC 4C. Archery Club Team — (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 unit, Aut, Win, Spr (Staff)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATHLETIC 5C. Badminton Club Team — (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 unit, Aut, Win, Spr (Staff)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATHLETIC 28C. Cycling Club Team — (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 unit, Aut, Win, Spr (Staff)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATHLETIC 34C. Equestrian Club Team — (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 unit, Aut, Win, Spr (Staff)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATHLETIC 69C. Horse Polo Club Team — (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 unit, Aut, Win, Spr (Staff)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATHLETIC 71C. Ice Hockey Club Team — Men (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 unit, Aut, Win (Staff)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATHLETIC 76C. Judo Club Team — (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 unit, Aut, Win, Spr (Staff)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATHLETIC 79C. Lacrosse Club Team (Men) — (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 unit, Aut, Win, Spr (Staff)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATHLETIC 93C. Rugby Club Team (Men) — (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 unit, Aut, Win, Spr (Holder)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATHLETIC 94C. Rugby Club Team (Women) — (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 unit, Aut, Win, Spr (Griffin)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATHLETIC 98C. Running Club — (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 unit, Aut, Win, Spr (Staff)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATHLETIC 110C. Ski Club Team — (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 unit, Win (Staff)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATHLETIC 126C. Squash Club Team (Men) — (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 unit, Aut, Win, Spr (Staff)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATHLETIC 127C. Squash Club Team (Women) — (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 unit, Aut, Win, Spr (Staff)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATHLETIC 140C. Tae Kwon Do Club — (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 unit, Aut, Win, Spr (Ghormley)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATHLETIC 151C. Triathlon Club Team — (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 unit, Aut, Win, Spr (Staff)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATHLETIC 156C. Ultimate Frisbee Club Team (Men) — (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 unit, Aut, Win, Spr (Staff)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATHLETIC 157C. Ultimate Frisbee Club Team (Women) — (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 unit, Aut, Win, Spr (Staff)</td>
</tr>
</tbody>
</table>
BIOLOGICAL SCIENCES

Emeriti: (Professors) Winslow R. Briggs, Donald Kennedy, David D. Perkins,* Peter Ray, Robert Schimke, Norman K. Wassells, Dow O. Woodard, Charles Yanofsky*; (Professor, Research) R. Paul Levine*

Chair: Robert D. Simoni

Associate Professors: Brendan Bohannan, Martha S. Cyert, Judith Frydman, Elizabeth A. Hadly, Michael A. Simon, Tim Stearns

Assistant Professors: Dominique Bergmann, William F. BurkhOLDER, GuoWEI Fang, OR Gozani, Fiorenza Micheli, Mary Beth Mudgett, Dmitri Petrov, Mark J. Schnitzer, Kang Shen

Lecturers: Anna Ballew, Shyamala D. Malladi, Timothy J. Meier, David Muir, Katherine Preston, James Watanabe, Melanie Yelton

Coursework Assistant Professors: Kathryn Barton, Alfred M. Spormann

Coursework Assistant Professor: Zhiyong Wang

Consulting Professors: Terrence Gosliner, Nina Jablonski, J. Patrick Kocilek

Librarian: Michael Newman

* Recalled to active duty.

Mail Code: 94305-5020

Phone: (650) 723-1826

Web Site: http://www.stanford.edu/dept/biology

Courses given in Biological Sciences have the subject code BIOSCI. For a complete list of subject codes, see Appendix.

The facilities and personnel of the Department of Biological Sciences are housed in the Gilbert Building, Herrin Laboratories, Herrin Hall, the Jasper Ridge Biological Preserve, the Clark Center and the Lokey Chemistry/Biology Building on the main campus, and at the Hopkins Marine Station in Pacific Grove on Monterey Bay.

The department provides: (1) courses designed for the non-major; (2) a major program leading to the B.S. degree; (3) a minor program; (4) a co-terminal program leading to the M.S. degree; (5) a terminal program leading to the M.S. degree; and (6) a program leading to the Ph.D. degree.

Course and laboratory instruction in the Department of Biological Sciences conforms to the “Policy on the Use of Vertebrate Animals in Teaching Activities,” the text of which is available at http://www.stanford.edu/dept/DoR/rph/8-2.html.

The Jasper Ridge Biological Preserve is a 1,200 acre natural area containing an unusual diversity of plant communities. It is managed solely for teaching and research purposes and is available to investigators from various institutions. Stanford-based research at Jasper Ridge currently concentrates on physiological, ecological, and population studies. More information is available at http://jasper1.stanford.edu.

Special laboratory facilities for marine research are described in the pamphlet Hopkins Marine Station, available at the department's student services office (Gilbert 108) or on the Hopkins Marine Station web site at http://www-marine.stanford.edu. Courses taught at Hopkins Marine Station with the subject code BIOHOPK are listed directly after BIOSCI courses in this section.

The department's large collections of plants (Dudley Herbarium), fishes, reptiles, and amphibians, as well as smaller collections of birds, mammals, and invertebrates, are housed at the California Academy of Sciences in San Francisco, where they, and extensive collections of the academy, are available to those interested in the systematics of these groups. Entomological collections, restricted to those being used in particular research projects, are housed in the Herrin Laboratories. No general collections are maintained except for teaching purposes.

The Falconer Biology Library in Herrin Hall, http://library.stanford.edu/depts/falconer/, contains over 1,200 current subscriptions and an extensive collection of monographs and reference works. A specialized library is maintained at the Hopkins Marine Station.

UNDERGRADUATE PROGRAMS

BACHELOR OF SCIENCE

ADVISING

Most members of the Biological Sciences faculty are available for advising on such academic matters as choice of courses and career plans. The student services office maintains a current list of faculty advisers, advising schedules, and research interests.

The student services office is prepared to answer questions on administrative matters, such as requirements for the major, approved out-of-department electives, transfer course evaluations, and petition procedures. This office also distributes the department’s Bachelor of Science Handbook, which delineates policies and requirements, as well as other department forms and information handouts.

Each undergraduate interested in the Biological Sciences major is required to select a departmental adviser as part of the major declaration process. Students who plan to attend medical or graduate school, enroll in the honors or co-terminal programs, take courses at Hopkins Marine Station, or attend one of the overseas campuses will find their faculty adviser particularly helpful.

REQUIREMENTS

Candidates for the B.S. degree must complete:

Core Courses and Electives—

<table>
<thead>
<tr>
<th>Courses</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOSCI 41*</td>
<td>5</td>
</tr>
<tr>
<td>BIOSCI 42*</td>
<td>5</td>
</tr>
<tr>
<td>BIOSCI or BIOHOPK 43*</td>
<td>5</td>
</tr>
<tr>
<td>BIOSCI 44X</td>
<td>4</td>
</tr>
<tr>
<td>BIOSCI or BIOHOPK 44Y</td>
<td>4</td>
</tr>
<tr>
<td>BIOSCI 54 (in combination with 55, substitutes for BIOSCI 44X, Y)</td>
<td>3</td>
</tr>
<tr>
<td>BIOSCI 55</td>
<td>6</td>
</tr>
</tbody>
</table>

Total Electives 25-28

Electives 24

* Letter grade only.

Required Cognate Courses—Students may take up to two cognate courses credit/no credit (CR/NC).

1. Introductory, organic, and physical chemistry with lab: CHEM 31X (or 31A,B), 33, 35, 36, 130, 131, 135 (or 171). For those interested in ecology and evolutionary biology, an advanced Mathematics course of 100-level or above may be substituted for 130.

2. General Physics: PHYSICS 21, 22, 23, 24; or 41, 43, 45; or 28, 29.

3. Math through calculus: MATH 19, 20, 21; or 41, 42.

4. One additional cognate course in Mathematics, Statistics, or Computer Science: MATH 51 or beyond; BIOSCI 141*; BIOHOPK 174H*; PSYCH 10; STATS 60 or beyond; or CS 106A or X.

* If taken to fulfill the additional cognate requirement, these courses do not count toward the 24 elective unit requirement.

Electives—Electives must be 100-level or above and selected from the offerings in the Department of Biological Sciences or from the list of approved out-of-department electives. This list may be obtained from the student services office. Stanford Introductory Seminars may not be used to fulfill this requirement.

The program for the junior and senior year should include a total of 24 elective units beyond the core. The courses making up these units should include at least one course from at least three of the following four central menu areas. The rest of the 24 units can include more courses from this...
central menu, courses available in diverse areas directly after the core, or advanced courses for which menu courses are prerequisites. A complete central menu course listing including inactive and alternate year courses is available in the student services office. Active central menu courses are:

1. **Molecular**
 - BIOSCI 104. Advanced Molecular Biology
 - BIOSCI 113. Fundamentals of Molecular Evolution**
 - BIOSCI 118. Genetic Analysis of Biological Processes*
 - BIOSCI 133. Genetics of Prokaryotes*
 - BIOSCI 134. Replication of DNA*
 - BIOSCI 162. Advanced Microbial Genetics and Genomics*
 - BIOSCI 188. Biochemistry I
 - BIOSCI 189. Biochemistry II
 - BIOSCI 230. Molecular and Cellular Immunology*
 - BIOSCI 274A. Environmental Microbiology I
 - CBIO 101. Cancer Biology*

2. **Cell/Developmental**
 - BIOSCI 118. Genetic Analysis of Biological Processes*
 - BIOSCI 129A. Cellular Dynamics I: Cell Motility and Adhesion
 - BIOSCI 129B. Cellular Dynamics II: Building a Cell
 - BIOSCI 133. Genetics of Prokaryotes*
 - BIOSCI 134. Replication of DNA*
 - BIOSCI 154. Molecular and Cellular Neurobiology†
 - BIOSCI 158. Developmental Neurobiology†
 - BIOSCI 160. Developmental Biology
 - BIOSCI 162. Advanced Microbial Genetics and Genomics*
 - BIOHOPK 183H. Environmental Cell & Developmental Biology
 - BIOSCI 230. Molecular and Cellular Immunology*
 - BIOSCI 274A. Environmental Microbiology I
 - CBIO 101. Cancer Biology*

3. **Organismal**
 - BIOSCI 110. Vertebrate Biology
 - BIOSCI 112. Human Physiology
 - BIOSCI 120. General Botany
 - BIOSCI 124. Plant Physiological Ecology††
 - BIOSCI 138. Ecology and Evolution of Plants††
 - BIOSCI 153/PSYCH 120. Cellular Neuroscience
 - BIOSCI 154. Molecular and Cellular Neurobiology†
 - BIOSCI 158. Developmental Neurobiology†
 - BIOSCI 163. Neural Systems and Behavior
 - BIOHOPK 161H. Invertebrate Zoology
 - BIOHOPK 162H. Comparative Animal Physiology
 - BIOHOPK 167H. Nerve, Muscle, and Synapse
 - BIOHOPK 169H. Neurobiology and Behavior
 - BIOHOPK 171H. Ecological and Evolutionary Physiology
 - BIOSCI 213. Virus of Biology
 - MI 185. Topics in Microbiology

4. **Ecology and Evolution**
 - BIOSCI 101. Ecology
 - BIOSCI 113. Fundamentals of Molecular Evolution**
 - BIOSCI 121. Biogeography
 - BIOSCI 124. Plant Physiological Ecology††
 - BIOSCI 127/220. Ecology of Microorganisms
 - BIOSCI 136. Evolutionary Paleobiology
 - BIOSCI 138. Ecology and Evolution of Plants††
 - BIOSCI 142. Topics in Theoretical Ecology
 - BIOSCI 143/243. Evolution
 - BIOSCI 144. Conservation Biology
 - BIOSCI 145. Behavioral Ecology
 - BIOHOPK 163H. Oceanic Biology
 - BIOHOPK 172H/272H. Marine Ecology
 - BIOSCI 184. Principles and Practice of Biosystematics
 - BIOSCI 274A. Environmental Microbiology I

* May be used to satisfy either area I or area II requirement.
†† May be used to satisfy either area II or area III requirement.
** May be used to satisfy either area I or area IV requirement.
† May be used to satisfy either area III or area IV requirement.

No more than 6 units from any combination of individual instruction courses (BIOHOPK 175H, 176H; BIOSCI 198, 198X, 200, 199, 199X, 290, 291, 300, or 300X) may be applied toward the total number of elective units. No more than 6 units applied toward the elective unit requirement may be taken CR/NC; this policy does not apply to transfer credit.

Students intending to pursue research careers in biology, especially in ecology, population genetics, or theoretical biology, should be aware that MATH 19, 20, 21, or MATH 41, 42 are minimum mathematics requirements for the B.S. degree in Biological Sciences. Substantial additional training in mathematics, including differential equations, linear algebra, and probability theory, is often highly advisable. Students should consult the Biological Sciences faculty to discuss individual needs.

Additionally, even though only two or three quarters of physics are required, students should be aware that many graduate and professional schools (for example, Medicine and Education) require a year of general physics with a lab. Biological Sciences majors are therefore advised to take the year-long physics sequence PHYSICS 21, 22, 23, 24, 25, 26 if they plan to attend graduate or medical school.

For students considering residence at Hopkins Marine Station during the junior or senior year, or an overseas program, the department recommends fulfilling as many University General Education Requirements as possible in the first two years at Stanford.

TYPICAL SCHEDULE FOR A FOUR-YEAR MINIMUM PROGRAM

FIRST YEAR

<table>
<thead>
<tr>
<th>Course No. and Subject</th>
<th>Qtr. and Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 31X*, 33, 35, 36</td>
<td>4 4 7</td>
</tr>
<tr>
<td>MATH 19, 20, 21.</td>
<td>3 3 4</td>
</tr>
<tr>
<td>Freshman requirements</td>
<td>8 8 6</td>
</tr>
<tr>
<td>Totals</td>
<td>15 15 15</td>
</tr>
</tbody>
</table>

* This schedule varies slightly if student takes CHEM 31A,B.

SECOND YEAR

BIOSCI 41. Principles of Biology*	5
BIOSCI 42. Principles of Biology*	5
BIOSCI or BIOHOPK 43. Principles of Biology*	5
BIOSCI 44X. Core Experimental Laboratory	4
BIOSCI or BIOHOPK 44Y. Core Experimental Laboratory	4
CHEM 130, 131, 135 (or 171). Organic and Physical Chemistry	3 3 5 8
General Education Requirements or electives	16 17 17

* Letter grade only.

THIRD YEAR

PHYSICS 21, 22, 23, 24. Introductory Physics	4 4
General Education Requirements or electives	11 11 11
Totals	15 15 15

FOURTH YEAR

| Electives | 15 15 15 |

SPECIALIZATION TRACKS

In addition to the undergraduate major program described above, the Department of Biological Sciences offers these five specialized tracks for students wishing to concentrate their studies in particular areas of biology:

1. Biochemistry and Biophysics
2. Marine Biology
3. Molecular and Cellular Biology
4. Neurobiology
5. Ecology and Evolution

Candidates for the B.S. degree in Biological Sciences with an area of specialization are expected to complete:

1. A specific set of cognate courses.
2. A specific set of courses in the chosen area of specialization.
3. The equivalent of the requirements for graduation with honors in Biological Sciences.
TRANSFER STUDENTS

Because of differences between Stanford undergraduate courses and prerequisites and those of many other institutions, transfer students may face problems not encountered by entering freshmen. Transfer students are strongly urged to visit the student services office in Gilbert 108 during transfer orientation to obtain information on course credit evaluations. Course catalogs, syllabi, and/or lecture notes from the former institution are necessary in the evaluation and accreditation process. Transfer students are encouraged to find a faculty adviser soon after arrival.

All transfer courses intended to fulfill department requirements must be evaluated on Evaluation of Course Content forms (available in the student services office), which are kept in the student’s file. This department procedure is in addition to the process of having units earned at other institutions transferred for Stanford credit that appear on the Stanford transcript. The department authorizes transfer credit only for courses whose content parallels the Stanford courses and that have comparable prerequisites (not merely a comparable course title). To substitute a course taken elsewhere for an upper-division Stanford course, course content must be approved by a department faculty member teaching in the area of the course. Submit as complete a course description as practical (including prerequisites and their descriptions) using the Evaluation of Course Content form available in the student services office before taking an off-campus course. Students must provide exams, reading lists, term papers, and other materials for the evaluation. Credit is not allowed for projects for which the student was paid, nor is credit allowed for work of a purely technical or clinical nature. Credit for natural history, culture biology, and similar courses is rarely appropriate and can be obtained only by meeting the same criteria outlined above. Academic performance is verified upon receipt of the official transcript. Please note that semester units are not converted to quarter units; units awarded for transfer credit are determined by faculty evaluation.

MINORS

Students interested in the minor in Biological Sciences must declare the minor and submit their course plan online via Axess no later than two quarters prior to the student’s intended quarter of degree conferral. The Biological Sciences minor requires a minimum of six courses meeting the following criteria:

1. All courses must be taken for a letter grade.
2. All courses must be worth 3 or more units.
3. All courses, other than the Biological Sciences Core (41, 42, or 43), must be at or above the 100-level. Stanford Introductory Seminars may not be used to fulfill this requirement.
4. Courses used to fulfill the minor may not be used to fulfill any other department degree requirements (minor or major).
5. At least one course from the Biological Sciences Core must be taken.
6. The Biological Sciences Core Laboratory (44X and 44Y) does not count towards the minor degree.
7. All courses must be Department of Biological Sciences’ elective courses or recognized out-of-department elective courses. See the out-of-department electives list available in the student services office.
8. Elective credit for research (BIOSCI 199/199X) is limited to a maximum of 3 units.

HONORS PROGRAM

To graduate with departmental honors, a student must:

1. Submit an honors petition proposal to the department’s undergraduate research coordinator by the fifth Friday of the quarter, two quarters prior to graduation. For instance, students graduating Spring Quarter must submit petitions no later than mid-Autumn Quarter.
2. Complete at least 10 units of an approved (BIOSCI 199 or BIOSCI 199X) research project.
3. Obtain at least a 3.0 (B) grade point average (GPA) in all Biological Sciences major requirements taken at Stanford (cognate, core, and elective courses). Grades earned from teaching (290 and 291) and research (BIOHOPK 175H, 176H, and BIOSCI 199) are not computed into this GPA.
4. If graduating in June, participate in the Biological Sciences Honors Symposium by presenting a poster or giving an oral presentation. The symposium is at the end of May. If graduating Autumn, Winter, or Summer Quarter, produce a poster.
5. Complete and submit, by the end of the quarter of graduation, two signed and bound copies of an honors thesis approved by at least two readers (one of whom must be from the faculty of the Department of Biological Sciences and both must be Academic Council members). In addition, students must submit two copies of the honors thesis abstract (one paper copy and one electronic copy), which include student name, thesis title, research sponsor, and sponsor’s department.

Further information on the honors program is available in the office of the Undergraduate Research Coordinator in Gilbert 118, as well as on the web at http://biohonors.stanford.edu. Questions should be directed to the Undergraduate Research Coordinator, Dr. Timothy Meier (gastrula@stanford.edu, 650-723-3767, Gilbert 118).

REQUIREMENTS FOR PREHEALTH PROFESSIONS

Students who are not biology majors should take at least the following courses in Biological Sciences: 44X, 44Y; or 41, 42, 43, and such upper-division electives as may be recommended by Stanford’s Undergraduate Advising Program, Sweet Hall.

COTERMINAL B.S. AND M.S. DEGREES

The Department of Biological Sciences admits a limited number of undergraduates to the coterminal B.S. and M.S. degree program in Biological Sciences. Students may apply to the program after they have earned a minimum of 120 units toward graduation (UTG) and at least one quarter prior to conferring the undergraduate degree. The application includes a statement of purpose, a Stanford transcript, official GRE or MCAT scores, two letters of recommendation from faculty members in this department (if two such letters are not available, a letter from someone outside the department can be used in lieu of one of those, but that typically reduces the likelihood of admission), a list of courses in which they intend to enroll to fulfill degree requirements, and an application fee of $50. Students must meet all requirements for both the B.S. and M.S. degrees in Biological Sciences. Unit requirements for a coterminal program are 180 units for the bachelor’s degree and 45 units for the master’s degree.

Coterminal students are permitted to use course work taken up to two quarters immediately prior to their first graduate quarter toward their graduate degree. Students may defer admission to the coterminal program up to one quarter after admission, as long as they still meet all University and departmental requirements for coterminal admission.

For University coterminal degree program rules and University application forms, see http://registrar.stanford.edu/publications/#Coterm.

GRADUATE PROGRAMS

MASTER OF SCIENCE

For information on the University’s basic requirements for the M.S. degree, see the “Graduate Degrees” section of this bulletin.

The M.S. degree program offers general or specialized study to individuals seeking biologically oriented course work, and to undergraduate science majors wishing to increase or update their science background or obtain advanced research experience. Students who have majored in related fields are eligible to apply, but must complete, or have completed by the time of graduation, the equivalent of a Stanford B.S. in Biological Sciences. The M.S. program does not have an M.S. with thesis option. Students are welcome to write a master’s thesis, but it would not be formally recognized by the University.
The M.S. program consists of Department of Biological Sciences (or otherwise pre-approved) course work totaling at least 45 units at or above the 100-level, distributed as follows:

1. A minimum of 36 units must be Department of Biological Sciences courses or approved out-of-department electives; a list is available in the student services office and on the department’s web site.
 a) at least 18 of these 36 units must be courses designated primarily for graduate students at the 200-level or above, excluding research and teaching units.
 b) a maximum of 18 of the 36 units may be a combination of Biological Sciences research and teaching (BIOSCI 175H, 176H, 198, 198X, 199, 199X, 290, 291, 300, or 300X).
2. The remaining 9 units may be advanced cognate courses in Chemistry, Computer Science, Mathematics, Physics, or Statistics beyond the level required for the undergraduate degree, or other Stanford course work at the 100-level or above that pertains to the student’s program of study.

Each candidate designs a coherent program of study in consultation with her or his department adviser. Although there are no specific courses required, program proposals must adhere to department parameters.

A program proposal, signed by the student’s adviser and approved by the chair of the M.S. committee, must be filed during the first month of the first quarter of enrollment. Students may take only 6 units CR/NC and must receive a grade of ‘B-’ or better in all courses taken for the degree.

To apply, students submit an application for admission to the M.S. program, two letters of recommendation, official transcripts, and official Graduate Record Examination (GRE) scores. The application is available online at http://gradadmissions.stanford.edu. Applicants should plan on taking the GRE at least six weeks prior to the application deadline to insure that the official scores are available when applications are evaluated. Applications are accepted for matriculation to Autumn Quarter only; the deadline is March 14. Financial support for students in this program is not available from either the department or the University.

TEACHING CREDENTIALS

For information concerning the requirements for teaching credentials, consult the “School of Education” section of this bulletin or address an inquiry to the Credential Administrator, School of Education.

DOCTOR OF PHILOSOPHY

For information on the University’s basic requirements for the Ph.D. degree, see the “Graduate Degrees” section of this bulletin.

ADMISSIONS

Preparation for Graduate Study — Students seeking entrance to graduate study in Biological Sciences ordinarily should have the equivalent of an undergraduate major in Biological Sciences at Stanford. However, students from other disciplines, particularly the physical sciences, are also encouraged to apply. Such students are advised at the time of initial registration on how they should complete background training during the first year of graduate study. In addition to the usual basic undergraduate courses in biology, it is recommended that preparation for graduate work include courses in chemistry through organic chemistry, general physics, and mathematics through calculus.

Application, Admission, and Financial Aid — Prospective graduate students should apply online at http://gradadmissions.stanford.edu. The department’s program is divided into three separate tracks: ecology/evolution; integrative/organismal; and molecular/cellular/developmental/genetic.

Applicants are required to take the Graduate Record Examination (GRE) general test as well as a subject test in biology, biochemistry, cellular and molecular biology, or chemistry. Applicants should plan on taking the GRE at least one month prior to the application deadline to insure that the official scores are available when applications are evaluated.

Admission to the Ph.D. program is competitive and in recent years it has been possible to offer admission to only 10 percent of the applicants.

Admitted students are normally offered financial support in the form of Stanford Graduate Fellowships, research assistantships, NIH traineeships, or Biological Sciences fellowships.

Qualified applicants should apply for nationally competitive predoctoral fellowships, especially those from the National Science Foundation.

GENERAL REQUIREMENTS

General Departmental Requirements — An admitted applicant is required to fulfill the requirements of the University as outlined in the “Graduate Degrees” section of this bulletin and the departmental requirements stated below.

Course work is planned in consultation with an advising committee assigned for a student’s track. In addition, students must take a course on the ethical conduct of research: BIOSCI 312 for the ecology/evolution track; MED 255 for the integrative/organismal and molecular/cellular/developmental/genetic tracks).

1. Teaching experience and training are part of the graduate curriculum. Each student assists in teaching one course in the department’s core lecture (41, 42, or 43) or lab (44X, 44Y) series, and a second course that can be either a core course or central menu course. Three quarters are required for ecology/evolution students.

2. Graduate seminars devoted to the discussion of current literature and research in particular fields of biology are an important means of attaining professional perspective and competence. Seminars are presented under individual course listings or are announced by the various research groups. A department seminar meets on most Mondays at 4 p.m. Topics of current biological interest are presented by speakers from Stanford and other institutions and are announced in the weekly Stanford Report. Graduate students are expected to attend.

3. Third Year and Beyond: each student must meet with the advising committee beginning the third year, and each year thereafter prior to the end of the Spring Quarter. The committee signs a form to ensure compliance. During Autumn Quarter of the fourth year, candidates must meet with their committee to evaluate the project and to discuss financial support, if required, beyond the fourth year. Advanced students are required to meet with their committee at least twice a year.

TRACK SPECIFIC REQUIREMENTS

Cell and Molecular Students —

1. First Year:
 a) Advising Committee: shortly after arrival, each entering student meets with the first-year advising committee. The committee reviews the student’s previous academic work and current goals and advises the student on a program of Stanford courses, some of which may be required and others recommended. Satisfactory completion of the core curriculum (below) is required of all students.
 b) Core Curriculum:* all students are required to take the following courses for a letter grade, unless previous course work has fulfilled these requirements:
 BIOSCI 203. Advanced Genetics
 BIOSCI 214. Cell Biology of Physiological Process
 BIOSCI 301. Frontiers in Biology: satisfies first-year talk requirement; must be taken Autumn and Winter quarters.
 MED 255. Responsible Conduct of Research
 One of the following:
 BIOC/SBIO 241. Biological Macromolecules
 MCP 256. Molecular Physiology of Cells
 MPHAs 210. Signal Transduction
 Three additional courses in the student’s area of interest, or as advised by committee.
 c) Lab Rotations:* first-year students are required to complete rotations in three different laboratories.
 d) Dissertation Lab: by June 1, each first-year student is expected to have selected a lab in which to perform dissertation research and to have been accepted by the faculty member in charge. Students and faculty must wait until April 15 to discuss the choice of a
dissertation lab. In consultation with that faculty member (who at this point becomes the student’s adviser), the student chooses a projected field of expertise that is broader than the research of the adviser’s lab, such as developmental biology or plant biology.

e) **Seminar:** each student must present a public seminar in BIOSCI 301 that is evaluated by two faculty members. Evaluation consists of meeting with each faculty member within one week following the seminar to obtain feedback and signatures. Faculty may require an additional seminar presentation.*

2. **Second Year:** each student must pass a two-part qualifying exam.

 a) **Area Proposal:** the area proposal is a research proposal that lies within the student’s field of expertise, but is in an area other than that of the proposed dissertation research. The written proposal should be prepared in the same detail as a grant application, including references, plans for specific experiments, and discussion of the interpretation of possible experimental results. The written proposal must be turned in to the student services office by the end of Autumn Quarter. Before the end of Winter Quarter, the student is examined orally on the contents of the written proposal and on general knowledge in the student’s projected field of expertise, including important cognate areas. The oral examination is administered by the dissertation advising committee (consisting of the adviser and three other faculty members who have agreed to serve on the committee).

 b) **Dissertation Proposal:** before the end of Spring Quarter of the second year, the student must prepare a dissertation proposal that outlines the student’s projected dissertation research. An expert assessment of the current literature is expected. After submission of the proposal to the dissertation advising committee, an oral examination is held. The student’s adviser is not present at the examination, which is administered by the other members of the dissertation advising committee.

 Advancement to candidacy is contingent upon satisfactory completion of both proposals and oral exams. The deadline for completion is May 15, before the annual faculty meeting devoted to evaluation of student progress. Failure to complete these requirements on schedule results in the withholding of the graduate stipend.

3. **Third Year and Beyond—Dissertation and Dissertation Defense:** the finished dissertation must be turned in to the student’s reading committee at least one month before the oral exam is planned. The reading committee is comprised of at least three faculty members, two of whom must be Stanford Academic Council members. At least three weeks before the oral exam, the student checks in with the committee and must incorporate any changes required by the committee. The exam cannot be formally scheduled or publicly announced until the student receives comments; however, the student should make informal arrangements with the committee earlier to ensure that everyone is available on the projected date.

 Integrative/Organismal Students—

 1. **First Year:** each entering student is assigned a first-year advising committee whose function is to develop a schedule of required and recommended courses and to meet once each quarter with the student during the first year.

 a) students are required to take BIOSCI 306, Current Topics in Integrative and Organismal Biology; and BIOSCI 312, Ethical Issues in Ecology and Evolutionary Biology, or MED 255, Responsible Conduct of Research. Students specializing in integrative biology may also be asked to take appropriate graduate-level courses such as DBIO 210; MCP 215; NBIO 206, 216; or PSYCH 228.

 b) **First-Year Paper:** each student must prepare and submit a paper that is evaluated by the advising committee, before the end of Spring Quarter of their first year. This paper should be a step toward the development of a dissertation proposal and may consist of an analysis of new data or a literature review and synthesis. Evaluation is in written form by two faculty members.

 c) **Seminar:** each student must present a public seminar that is evaluated by two faculty members. Evaluation consists of meeting with each faculty member within one week following the seminar to obtain feedback and signatures. Faculty may require an additional seminar presentation.

 2. **Second Year:** the student is expected to write a major dissertation proposal. The proposal is evaluated by a committee of three faculty (the dissertation advising committee) in an oral presentation. This is to be completed by the end of Spring Quarter of the second year. Advancement to candidacy depends on satisfactory completion of the dissertation proposal.

 3. **Third Year and Beyond—Dissertation and Dissertation Defense:** at least one month before the oral exam takes place, the student must submit his or her dissertation to the dissertation advising committee. At least two weeks before the oral exam, the student must incorporate into the dissertation any changes required by the committee. The exam cannot be formally scheduled or publicly announced until that time.

 Ecology, Evolution, and Population Biology Students—

 1. **First Year:** each entering student is assigned a first-year advising committee whose function is to develop a schedule of required and recommended courses and to meet once each quarter with the student during the first year.

 a) students are required to take BIOSCI 302, 303, 304, Current Topics and Concepts in Population Biology, Ecology and Evolution, and BIOSCI 312, Ethical Issues in Ecology and Evolutionary Biology.

 b) **First-Year Paper:** each student must prepare and submit a paper that is evaluated by the advising committee before the end of Spring Quarter of their first year. This paper should be a step toward the development of a dissertation proposal and may consist of an analysis of new data or a literature review and synthesis. Evaluation is in written form by two faculty members.

 c) **Seminar:** each student must present a public seminar that is evaluated by two faculty members. Evaluation consists of meeting with each faculty member within one week following the seminar to obtain feedback and signatures. Faculty may require an additional seminar presentation.

 2. **Second Year:** the student is expected to write a major dissertation proposal. The proposal is evaluated by a committee of three faculty (the dissertation advising committee) in an oral presentation. This is to be completed by the end of Spring Quarter of the second year. Advancement to candidacy depends on satisfactory completion of the dissertation proposal.

 3. **Third Year and Beyond—Dissertation and Dissertation Defense:** at least one month before the oral exam takes place, the student must submit his or her dissertation to the dissertation advising committee. At least two weeks before the oral exam, the student must incorporate into the dissertation any changes required by the committee. The exam cannot be formally scheduled or publicly announced until that time.

 Residency Requirement— A minimum of 135 units of graduate registration is required of each candidate. The department normally accepts only full-time students for study leading to the Ph.D. degree.
COURSES

WIM indicates that the course satisfies the Writing in the Major requirement.

Additional courses not listed here are frequently offered by postdoctoral or advanced Ph.D. personnel in the areas of their research competence. They are listed in the quarterly Time Schedule, with course descriptions available in the student services office.

INTRODUCTORY

BIOSCI 1. Human Evolution and Environment — Human genetic and cultural evolution and how people interact with their environments, from the ancestors of Australopithecus to current events. Issues include race, gender, and intelligence; pesticide and antibiotic resistance; abortion and contraception; ecosystem services; environmental economics and ethics; the evolution of religion; climate change; population growth and overconsumption; origins and spread of ideas and technologies; and the distribution of political and economic power.

3 units, Spr (Ehrlich)

BIOSCI 2. Current Research Topics in Biological Sciences — Primarily for sophomores interested in majoring in Biological Sciences. Weekly seminars by faculty: molecular biology and genetics; theory and mathematics in biology; ecology, physiology, and the environment; molecular and cellular aspects of neurobiology; immunology; and development biology; biological chemistry; behavioral biology; and evolution. May be repeated for credit.

1 unit, Aut, Win (Meier)

BIOSCI 3. Frontiers in Marine Biology — An introduction to contemporary research in marine biology, including ecology, conservation biology, environmental toxicology, behavior, biomechanics, evolution, neurobiology, and molecular biology. Emphasis is on new discoveries and the technologies used to make them. Weekly lectures by faculty from the Hopkins Marine Station.

1 unit, Aut (Somerio)

BIOSCI 4. Introduction to Biotechnology — The scientific basis for key biotechnologies (cell transformation, DNA cloning, organismal cloning) and societal reactions to them. Focus is on defining current issues with specific technologies (use of DNA screening in forensics, animal cloning, genetically modified foods). GER:DB-EngrAppSci

4 units (Wallot) not given 2005-06

BIOSCI 17N. Light, Pigments, and Organisms — Preference to freshmen. Multi-disciplinary lab course. The molecular basis of pigments, light absorption, color, and fluorescence using chemical techniques and biological materials. Topics include: the diversity of photosynthetic pigments, how cyanobacteria modify their pigment composition in diverse light environments, and the importance of photoreceptors in assessing an organism’s light environment. GER:DB-NatSci

3 units, Win (Elrad, Zare)

3 units, Win (Roughgarden)

BIOSCI 22N. Infection, Immunity, and Global Health — Stanford Introductory Seminar. Preference to sophomores. The causes and prevention of infectious diseases, focusing on the interplay between pathogens and the immune system that determines the outcome of the disease. The basic principles of microbiology, immunology, and epidemiology. Diseases of the past and present including SARS, AIDS, TB, and malaria, and how we deal with them. The roles of biological, environmental, and societal factors in disease emergence, spread, and prevention. Primary scientific literature, student-led discussions, and research projects. Prerequisite: biology background, preferably introductory college biology at the level of 41 or 42, or HUMBIO 2A, 3A. GER:DB-NatSci

3 units, Spr (Jones)

3 units, Spr (Vitousek)

STANFORD INTRODUCTORY SEMINARS

BIOSCI 6N. Climate Change: Drivers, Impacts, and Solutions — Stanford Introductory Seminar. The scientific understanding of climate change, and the evidence, driving forces, and options for managing its impacts. GER:DB-NatSci

3 units, Win (Field)

BIOSCI 10N. Light and Life — Stanford Introductory Seminar. Preference to freshmen. The importance of light for life. Focus is on active areas of research including pigments and coloration, bioluminescence (life creating light), phototaxis (light-directed movement), circadian rhythms, and vision.

3 units, Aut (Elrad)
BIOSCI 31Q. Ants: Behavior, Ecology, and Evolution — Stanford Introductory Seminar. Preference to sophomores. Behavior: the organization of colonies, how they operate without central control, how they resemble other complex systems like brains. Ecology: how populations of colonies change, comparing the ecology of a species in SW American desert and invasive Argentine ants. Evolution: why are there so many species of ants; how are they alike, how do they differ, and why? Ants as the theme for exploring how to do research in animal behavior, ecology, and evolution. Research project will be on the invasive Argentine ant: its distribution on campus, foraging trails, and nest structure.
3 units, Spr (Gordon)

BIOSCI 35N. Nobel Prize Winning Research in Biology and Medicine — Stanford Introductory Seminar. Preference to freshmen. Nobel prize winning scientific research in biomedicine that has had the most profound impact on understanding of the biological world. Students present original papers.
3 units, Win (Myers, Simoni)

CORE

BIOSCI 41, 42, 43. Principles of Biology — Comprehensive study of the principles of modern biological sciences, taken in sequence, preferably in the sophomore year. Biological Sciences majors must take for a letter grade. Prerequisites: CHEM 31X (or 31A and B), 33, 35; MATH 19, 20, 21, or 41, 42.

BIOSCI 41. Genetics, Biochemistry, and Molecular Biology — Emphasis is on the methods and scientific logic that lead to advances in knowledge. The human heart and circulatory system is the unifying theme for topics such as the constituents and activities of cells, tissues, and organs; the chemicals and proteins that carry on life processes; the biotechnology revolution; the role of genes in human disease and normal functions; and the Human Genome Project. How scientific knowledge is built up through research; how biology initiates advances in medicine; and how science, engineering, and economics interact in biotechnology. Student presentations, demonstrations, and field trips. GER:DB-NatSci
3 units, Win (Myers, Simoni)

BIOSCI 42. Cell Biology and Animal Physiology — Cell structure and function; principles of animal physiology (immunology, renal, cardiovascular, sensory, motor physiology, and endocrinology); neurobiology from cellular and developmental to neural regulation of physiology. GER:DB-NatSci
5 units, Aut (Simon, Simoni)

BIOSCI 43. Plant Biology, Evolution, and Ecology — Principles of evolution: macro- and microevolution and population genetics. Ecology: the principles underlying the exchanges of mass and energy between organisms and their environments; population, community, and ecosystem ecology; populations, evolution, and global change. Equivalent to BIOHOPK 43. GER:DB-NatSci
5 units, Spr (Mudgett, Petrow, Gordon)

BIOSCI 44X,Y. Core Experimental Laboratory — Two quarters of lab projects provide a working familiarity with the concepts, organisms, and techniques of modern biological research. Emphasis is on experimental design, analysis of data, and written oral presentation of the experiments. Lab fee. Prerequisites: CHEM 31X, or 31A,B, and 33. Recommended: Biological Sciences or Human Biology core, and statistics; 44X,Y should be taken sequentially in same year. 44Y equivalent to BIOHOPK 44Y. WIM
4 units, 44X: Win, 44Y: Spr (Malladi, Yelton)

BIOSCI 54. Genes, Genomes, and Proteins: Introduction to Advanced Independent Research Laboratory — Preference to sophomores. First of two-part sequence. For students interested in pursuing research-oriented careers in biological sciences. The impact of genomic information on experimental biology. Recently developed techniques at a conceptual level and examples of their application to biology. Emphasis is on primary scientific literature and hands-on analyses of genome information using online databases and computational tools. Topics include microarray analysis, the use of comprehensive genome-wide mutant collections, and investigation of the proteome. Limited enrollment. Prerequisite: consent of instructors. 54, 55 substitutes for 44X,Y to fulfill Biological Sciences major lab requirement. GER:DB-NatSci, WIM
3 units, Win (Cyert, Stearns, Ballew)

BIOSCI 55. Advanced Independent Research Laboratory — Preference to sophomores. Second of two-part sequence. For students interested in pursuing research-oriented careers in biological sciences. Project lab course using a modern research laboratory with cutting-edge technologies introduced in 54 to investigate gene and protein function on a genomic level to understand how cells work. Students design and execute original research projects using the yeast Saccharomyces cerevisiae to explore fundamental questions in eukaryotic cell biology. Limited enrollment. Prerequisite: 54, consent of instructors. 54, 55 substitutes for 44X, Y to fulfill Biological Sciences major lab requirement. GER: DB-NatSci, WIM
6 units, Spr (Cyert, Stearns, Ballew)

BIOSCI 103. Seminar in Biological Sciences — Primarily for undergraduates interested in careers in research. Held in conjunction with the Biological Sciences seminar series in which visiting scientists present their work. Students meet prior to the seminar to discuss the upcoming speaker’s work. GER:DB-NatSci
3 units, Aut (Stearns, Ballew)

HOPKINS MARINE STATION

For courses offered at the Hopkins Marine Station, see the “Hopkins Marine Station” section of this bulletin which follows immediately after this section. Several of the Hopkins Marine Station courses may be used to fulfill department major requirements.

INTERMEDIATE UNDERGRADUATE AND GRADUATE

3 units, Aut (Bohannan, Vitousek)

3 units, Spr (Tuljapurkar)

BIOSCI 103. Seminar in Biological Sciences — Primarily for undergraduates interested in careers in research. Held in conjunction with the Biological Sciences seminar series in which visiting scientists present their work. Students meet prior to the seminar to discuss the upcoming speaker’s work. GER:DB-NatSci
3 units, Aut (Stearns, Ballew)
BIOSCI 104/200. Advanced Molecular Biology—(Graduate students register for 200.) Molecular mechanisms that govern the replication, recombination, and expression of eukaryotic genomes. Topics: DNA replication, DNA recombination, gene transcription, RNA splicing, regulation of gene expression, protein synthesis, and protein folding. Prerequisite: Biological Sciences core. GER:DB-NatSci
5 units, Win (Fang, Frydman)

BIOSCI 109/209. The Human Genome and Disease—(Graduate students register for 209; same as HUMBIO 114.) The variability of the human genome and the role of genomic information in research, drug discovery, and human health. Concepts and interpretations of genomic markers in medical research and real life applications. Human genomes in diverse populations. Original contributions from thought leaders in academia and industry and interaction between students and guest lecturers. GER:DB-NatSci
3 units, Spr (R. Heller, Kumm)

BIOSCI 110. Vertebrate Biology —(Enroll in HUMBIO 110.)
3-4 units (Porzig) not given 2005-06

BIOSCI 112/212. Human Physiology—(Graduate students register for 212.) The functioning of organ systems emphasizing mechanisms of control and regulation. Topics: structure and function of endocrine and central nervous systems, cardiovascular physiology, respiration, salt and water balance, exercise, and gastrointestinal physiology. Prerequisite: Biological Sciences core or Human Biology core. GER:DB-NatSci
4 units, Win (Garza)

BIOSCI 113/244. Fundamentals of Molecular Evolution—(Graduate students register for 244.) The inference of key molecular evolutionary processes from DNA and protein sequences. Topics include random genetic drift, coalescent models, effects and tests of natural selection, combined effects of linkage and natural selection, codon bias and genome evolution. Prerequisites: Biological Sciences core or graduate standing in any department, and consent of instructor. GER:DB-NatSci
4 units, Win (Petrov)

BIOSCI 117. Biology and Global Change—(Same as EARTHSYS 111.)
The biological causes and consequences of anthropogenic and natural changes in the atmosphere, oceans, and terrestrial and freshwater ecosystems. Topics: glacial cycles and marine circulation, greenhouse gases and climate change, tropical deforestation and species extinctions, and human population growth and resource use. Prerequisite: Biological Sciences or Human Biology core or graduate standing. GER:DB-NatSci
3 units, Win (Vitousek)

BIOSCI 118/218. Genetic Analysis of Biological Processes—(Graduate students register for 218.) Genetic principles and their experimental applications. Emphasis is on the identification and use of mutations to study cellular function. Prerequisite: Biological Sciences core. GER:DB-NatSci
5 units, Win (Hatzidakis)

BIOSCI 120. General Botany —Introduction to plant development, structure, and function in an ecological and evolutionary context. Themes include comparative morphology, systematics and diversity, and broad-scale evolutionary trends. Prerequisites: Biological Sciences or Human Biology core, or consent of instructor. GER:DB-NatSci
3-5 units, Aut (Preston)

BIOSCI 121. Biogeography—Global distributions of organisms through the Phanerozoic, with emphasis on historical causes. Topics: plate tectonics, island biogeography, climatic change, dispersal, vicariance, ecology of invasions, extinction, gradients, diversity. GER:DB-NatSci
3 units, Spr (Hadly) alternate years, not given 2006-07

BIOSCI 124/224. Plant Physiological Ecology: From Leaf to Globe—(Graduate students register for 224.) A functional approach to understanding terrestrial vegetation. Prerequisites: 42 and 43, or consent of instructor. GER:DB-NatSci
4 units (Berry, Field, Mooney) not given 2005-06

3 units (Mooney) not given 2005-06

BIOSCI 127/220. Ecology of Microorganisms—(Graduate students register for 220.) Interactions between microorganisms and their environments from an ecological and evolutionary perspective. Topics: nutrient acquisition and environmental sensing, behavioral ecology, growth of cells and populations, population interactions, communities, and microbial biodiversity. Prerequisite: Biological Sciences core or equivalent, or consent of instructor. Recommended: 133, 142. GER:DB-NatSci
3 units (Bohannan) not given 2005-06

BIOSCI 128/228. The Economic Individual in the Behavioral Sciences—(Graduate students register for 228; same as HUMBIO 113.)

Empirical evidence for the idea of the economic individual and its associated models in economics. How the economic individual maximizes utility and cooperates with others only when it is rational to do so. Applications of this idea to animal behavior. Readings include political philosophy, psychology, and evolutionary biology; recent research articles on empirical work in animal behavior. Student presentations.
3 units, Aut (Gordon, Satz)

BIOSCI 129A. Cellular Dynamics I: Cell Motility and Adhesion—Cell motility emphasizing role of actin assembly and dynamics coupling actin organization to cell movement. Interaction of cells with extracellular matrix, and remodelling of extracellular matrix in development and disease. Directed cell migration by chemotaxis (neuronal path-finding, immune cells). Cell-cell adhesion, formation of intercellular junctions and mechanisms regulating cell-cell interactions in development and diseases. Emphasis is on experimental logic, methods, problem solving, and interpretation of results. Students present research papers. Prerequisite: Biological Sciences core. GER:DB-NatSci
4 units, Win (Nelson)

4 units, Spr (Nelson)

BIOSCI 132/232. Advanced Imaging Lab in Biophysics—(Graduate students register for 232; same as BIOPHYS 232, MCP 232.) Laboratory and lectures. Microscopy, emphasizing hands-on experience with a range of apparatus and techniques. Topics include microscope optics, Kohler illumination, contrast-generating mechanisms (bright/dark field, fluorescence, phase contrast, differential interference contrast), and resolution limits. Advanced topics vary by year, but include single-molecule fluorescence, fluorescence resonance energy transfer, confocal microscopy, two-photon microscopy, optical trapping, and fiberoptic methods. Limited enrollment. Recommended: basic physics, Biological Sciences core or equivalent, and consent of instructor. GER:DB-NatSci
4 units, Spr (S. Block, Schnitzer, S. Smith, Stearns)

BIOSCI 133. Genetics of Prokaryotes—Genetic approaches for understanding cellular processes in bacteria, including metabolism, adaptive and stress responses, signal transduction, gene expression, genetic exchange and recombination, chromosome dynamics and evolution, cell division, motility, surface attachment, and developmental responses. Emphasis is on the power of effectively combining genetics with biochemistry, microscopy, and genomics. Prerequisite: Biological Sciences core GER:DB-NatSci
4 units, Aut (Burkholder, Campbell)
3 units, Win (Burkholder, Hanawalt)

BIOSCI 135. Biological Clocks — (Same as HUMBIO 182.) The biological basis for endogenous timekeeping in organisms from flies to human beings. How biological clocks are constructed at the molecular, tissue, and behavioral levels; how these clocks interact with other physiological systems and allow animals to anticipate changes in their environment. Applications of circadian rhythm principles to treating human disorders and diseases such as cancer. Prerequisite: Biological Sciences or Human Biology core, or consent of instructor. GER: DB-NatSci
3 units, Win (C. Heller, Ruby)

BIOSCI 136. Evolutionary Paleobiology — A paleontological approach to evolutionary theory. Topics: history of life, speciation, heterochrony, evolutionary constraint, coevolution, macroevolution, the Cambrian Explosion, mass extinctions, taphonomy, life on land, life in the sea, life in the air. GER: DB-NatSci
4 units, Win (Hadly) alternate years, not given 2006-07

BIOSCI 137/237. Plant Genetics — (Graduate students register for 237.) Gene analysis, mutagenesis, and transposable elements; developmental genetics of flowering and embryo development; biochemical genetics of plant metabolism; scientific and societal lessons from transgenic plants. Prerequisite: Biological Sciences core or consent of instructor. GER: DB-NatSci
3 units, Spr (Walbot, Barton) alternate years, not given 2006-07

3 units, Spr (Preston)

BIOSCI 138A/238A. Plant Ecology Lab — (Graduate students register for 238A.) Weekly lab sessions to design and conduct field research projects and read primary literature. Corequisite: 138.
2 units, Spr (Preston)

BIOSCI 139. Biology of Birds — The ways birds interact with their environments and each other, emphasizing studies that had impact in the fields of population biology, community ecology, and evolution. Students become familiar with local bird communities; emphasis is on field research. Enrollment limited to 20. Prerequisites: 43 or equivalent, and consent of instructor. Recommended: birding experience. GER: DB-NatSci
3 units (Root) not given 2005-06

BIOSCI 140. Population Biology of Butterflies — Field work on Euphydryas populations under study on campus and elsewhere in California. Course offered as participation in research when conditions permit; decisions not made until Winter Quarter. Prerequisites: 43 and consent of instructor.
2-5 units, Spr (Ehrlich)

BIOSCI 141. Biostatistics — (Same as STATS 141.) Statistical analysis of biological data. Topics: discrete and continuous distributions, testing hypotheses and confidence procedures, fixed and random effects analysis of variance, regression, and correlation. Wilcoxon and other nonparametric procedures, inference on contingency tables and other data arising from counts. Tests of goodness of fit. Emphasis is on finding numerical solutions to biostatistical problems, and practical interpretations and their implications. GER: DB-Math
4-5 units, Aut (Rogosa)

BIOSCI 142. Topics in Theoretical Ecology — Introductory. Issues include foraging theory, demography and life history theory, population dynamics and species interactions including ecosystem stability, ecological economics and marine reserve design, evolutionary theory, evolutionary ecology, and evolution of gender sexuality and family structure. Prerequisites: 43 or 101, calculus, and computer programming. Recommended: linear algebra and differential equations. GER: DB-NatSci
3 units (Roughgarden) not given 2005-06

BIOSCI 143/243. Evolution — (Graduate students register for 243.) The basic facts and principles of the evolution of all life. The logic of and evidence for the correctness of Darwin’s argument for evolution by natural selection. How Mendelian genetics was integrated into evolutionary thinking. The integration of physiological and ecological perspectives into the study of evolutionary adaptation within species. Species formation and evolutionary divergence among species. Patterns of evolution over long time scales. GER: DB-NatSci
3 units, Win (Watt)

BIOSCI 144. Conservation Biology — (Same as HUMBIO 119.) Principles and application of the science of preserving biological diversity. Topics: sources of endangerment of diversity; the Endangered Species Act; conservation concepts and techniques at the population, community, and landscape levels; reserve design and management; conflict mediation. Case studies and local field trips. 3 units if taken without field trips. Prerequisites: BIOSCI 101, or HUMBIO 2A with consent of instructor. GER: DB-NatSci
3-4 units, Win (Boggs, Launer)

BIOSCI 145/245. Behavioral Ecology — (Graduate students register for 245.) Animal behavior from an evolutionary and ecological perspective. Topics: foraging, territoriality, reproductive behavior, social groups. Lecture/seminar format; seminars include discussion of journal articles. Independent research projects. Prerequisites: Biological Sciences or Human Biology core, or consent of instructor. Recommended: statistics. GER: DB-NatSci, WIM
4 units, Spr (Gordon)

BIOSCI 146. Population Studies — Series of talks by distinguished speakers introducing approaches to population and resource studies.
1 unit, Win (Feldman)

BIOSCI 147/247. Controlling Climate Change in the 21st Century — (Graduate students register for 247; same as EARTH/SYS 147/247.) The science, economics, and environmental diplomacy of global climate change. Topics: the science of climate change, climate change and global environmental law; global economic approaches to carbon abatement, taxes, and tradable permits; joint implementation, consensus, and division in the EU; gaining the support of China, other developing countries, and U.S. corporations; alternative energy and energy efficiencies for less carbon-intensive electric power and transport. GER: DB-NatSci
3 units (Schneider, Rosenzweig) alternate years, given 2006-07

BIOSCI 148/248. Biosystematics and Evolution — (Graduate students register for 248.) Panel discussion and outside speakers. Topics of current interest in the systematics and evolution of living diversity. Sponsored jointly with the California Academy of Sciences.
1 unit, Spr (Watt)

BIOSCI 149/249. Principles of Sleep Research — (Graduate students register for 249.) Preference to seniors and graduate students. The neurochemistry and neurophysiology of changes in brain activity and conscious awareness associated with changes in the sleep/wake state. Behavioral and neurobiological phenomena including sleep regulation, sleep homeostasis, circadian rhythms, sleep disorders, sleep function, and the molecular biology of sleep. Enrollment limited to 16. GER: DB-NatSci
4 units (Franken, C. Heller) not given 2005-06
BIOSCI 150/250. Human Behavioral Biology—(Graduate students register for 250.) Multidisciplinary. How to approach complex normal and abnormal behaviors through biology. How to integrate disciplines including sociobiology, ethnology, neuroscience, and endocrinology to examine behaviors such as aggression, sexual behavior, language use, and mental illness. GER:DB-NatSci
3-6 units, Spr (Sapolsky) alternate years, not given 2006-07

BIOSCI 151. Mechanisms of Neuron Death—For Biology majors with background in neuroscience. Cell and molecular biology of neuron death during neurological disease. Topics: the amyloid diseases (Alzheimer’s), prion diseases (kuru and Creutzfeldt-Jakob), oxygen radical diseases (Parkinson’s and ALS), triplet repeat diseases (Huntington’s), and AIDS-related dementia. Student presentations. Enrollment limited to 15; application required.
3 units, Aut (Sapolsky)

BIOSCI 152. Imaging: Biological Light Microscopy—(Same as MCP 222.) Survey of instruments which use light and other radiation for analysis of cells in biological and medical research. Topics: basic light microscopy through confocal fluorescence and video/digital image processing. Lectures on physical principles; involves partial assembly and extensive use of lab instruments. Lab. Prerequisites: some college physics, Biological Sciences core. GER:DB-NatSci
3 units, Spr (S. Smith)

BIOSCI 153. Cellular Neuroscience: Cell Signaling and Behavior—(Enroll in PSYCH 120.)
4 units, Aut (Wine)

BIOSCI 154/254. Molecular and Cellular Neurobiology—(Graduate students register for 254; same as NBIO 254.) For advanced undergraduates and graduate students. Cellular and molecular mechanisms in the organization and functions of the nervous system. Topics: wiring of the neuronal network, synapse structure and synaptic transmission, signal transduction in the nervous system, sensory systems, molecular basis of behavior including learning and memory, molecular pathogenesis of neurological diseases. Prerequisite for undergraduates: Biological Sciences core or equivalent, or consent of instructors. GER:DB-NatSci
4 units (Luo, Shen, Clandinin) alternate years, given 2006-07

BIOSCI 158. Developmental Neurobiology—For advanced undergraduates and coterminal students. The principles of nervous system development from the molecular control of patterning, cell-cell interactions, and tropic factors to the level of neural systems and the role of experience in influencing brain structure and function. Topics: neural induction and patterning, cell lineage, neurogenesis, neuronal migration, axonal pathfinding, synapse elimination, the role of activity, critical periods, and the development of behavior. Prerequisite: 42 or equivalent. GER:DB-NatSci
4 units (McConnell) alternate years, given 2006-07

BIOSCI 160. Developmental Biology—The principles of developmental biology. Focus is on the molecular mechanisms underlying the generation of diverse cell types and tissues during embryonic and post-embryonic development in animals. Prerequisite: Biological Sciences core.
4 units (Simon, McConnell) alternate years, given 2006-07

BIOSCI 162/262. Advanced Microbial Genetics and Genomics—(Graduate students register for 262; same as GENE 262.) Genetic tools for studying the cell biology and behavior of bacteria. Case studies on genetic approaches in combination with biochemistry, microscopy, and genomics to study mechanisms of gene expression, signal transduction, cell cycle regulation, development, and pathogenesis. GER:DB-NatSci
4 units, Spr (Tan, Burkholder)

BIOSCI 163/263. Neural Systems and Behavior—(Graduate students register for 263.) The field of neuroethology and its vertebrate and invertebrate model systems. Research-oriented. Readings include reviews and original papers. How animal brains compare; how neural circuits are adapted to species-typical behavior; and how the sensory worlds of different species represent the world. Prerequisites: 42, HUMBIO 4A or equivalent. GER:DB-NatSci
4 units, Aut (Fernald)

BIOSCI 175. Tropical Ecology and Conservation—Field trip to a field station at Los Tuxtlas, Mexico; lectures at Stanford. How to address scientific questions concerning ecology and conservation. Field trip includes natural history observations and group research projects. Symposium based on project results. Recommended: 43, 101, and 141 or STATS 60.
5 units, Spr (Dirzo)

BIOSCI 180/280. Fundamentals of Sustainable Agriculture—(Graduate students register for 280; same as EARTHSYS 180/280.) Ecological, economic, and social dimensions of sustainable agriculture in the context of a growing world population. Focus is on management and technological approaches, and historical content of agricultural growth and change, organic agriculture, soil and water resource management, nutrient and pest management, biotechnology, ecosystem services, and climate change. GER:DB-NatSci
3 units (Naylor, Daily) alternate years, given 2006-07

4 units, Win (Feldman)

BIOSCI 183B/283B. Population Genetic Theory and Evolution II—(Graduate students register for 283B.) Role of population size and random effects in evolution. Genomic data and how they are used to infer the processes of evolution. Introduction to population structure and expansion. Prerequisite: 183A/283A.
4 units, Spr (Feldman)

BIOSCI 184/284. Principles and Practice of Biosystematics—(Graduate students register for 284.) The principles and major operating procedures of systematic biology; the classification of organisms and of the relationships among them. Concepts and issues common to the study of all organisms; examples from particular groups of creatures. GER:DB-NatSci
4 units (Watt, Gosliner, Jablonski) not given 2005-06

3 units, Aut (Kohler)

BIOSCI 189/289. Biochemistry II—(Graduate students register for 289; same as CHEM 189, CHEMENG 189/289.) Metabolism. Glycolysis, gluconeogenesis, citric acid cycle, oxidative phosphorylation, pentose phosphate pathway, glycogen metabolism, fatty acid metabolism, protein degradation and amino acid catabolism, protein translation and amino acid biosynthesis, nucleotide biosynthesis, DNA replication, recombination and repair, lipid and steroid biosynthesis. Medical consequences of impaired metabolism. Therapeutic intervention of metabolism. Prerequisite: 188/288. GER:DB-NatSci
3 units, Win (Khosla)
UNDERGRADUATE, INVOLVING INDIVIDUAL WORK

Students majoring in Biological Sciences are encouraged to pursue directed reading and research opportunities. An introduction to research is provided by BIOSCI 2.

BIOSCI 191. Research in Bird Biology — Semi-independent field research in ornithology emphasizing ecological relationships. Projects involve research, planned and carried out by the student in consultation with the instructor. Results are written in publication format. Enrollment limited. Prerequisites: 43, concurrent or subsequent enrollment in 139, and consent of instructor. GER:DB-NatSci

3 units, Win, Spr (Ehrlich)

BIOSCI 193. Undergraduate Journal Club — Weekly discussion, led by students and facilitated by faculty, for reading scientific literature and presenting papers. Contact Tim Meier (gastrula@stanford.edu) by the fifth week of the previous quarter if requesting a particular research topic. Minimum enrollment required. Prerequisites: Biological Sciences core and consent of instructor. Recommended: 199 or 199X.

1 unit, Aut, Win, Spr (Meier)

BIOSCI 198. Directed Reading in Biological Sciences — Individually arranged under the supervision of members of the faculty.

1-15 units, Aut, Win, Spr, Sum (Staff)

BIOSCI 198X. Out-of-Department Directed Reading — Individually arranged under the supervision of members of the faculty. Credit for work arranged with out-of-department faculty is restricted to Biological Sciences majors and requires department approval. See http://biohonors.stanford.edu for information and petitions, or email gastrula@stanford.edu for more information.

1-15 units, Aut, Win, Spr, Sum (Staff)

BIOSCI 199. Advanced Research Laboratory in Experimental Biology — Individual research taken by arrangement with in-department instructors. See http://biohonors.stanford.edu for information on research sponsors, units, and credit for summer research, or email gastrula@stanford.edu.

1-15 units, Aut, Win, Spr, Sum (Staff)

BIOSCI 199X. Out-of-Department Advanced Research Laboratory in Experimental Biology — Individual research by arrangement with out-of-department instructors. Credit for 199X is restricted to declared Biological Sciences majors and requires department approval. See http://biohonors.stanford.edu for information on research sponsors, units, petitions, deadlines, credit for summer research, and out-of-Stanford research, or email gastrula@stanford.edu.

1-15 units, Aut, Win, Spr, Sum (Staff)

ADVANCED UNDERGRADUATE AND GRADUATE

BIOSCI 203. Advanced Genetics — (Same as GENE 203, DBIO 203.) For graduate students in Bioscience programs; may be appropriate for graduate students in other programs. The genetic toolbox. Examples of analytic methods, genetic manipulation, genome analysis, and human genetics. Emphasis is on use of genetic tools in dissecting complex biological pathways, developmental processes, and regulatory systems. Faculty-led discussions sections with evaluation of papers. Students with minimal experience in genetics should prepare by working out problems in college level textbooks.

4 units, Aut (Barsh, Kim, Sidow, Stearns)

BIOSCI 205. DNA Repair and Genomic Stability — Interactions of endogenous and environmental mutagens with cellular DNA. Cellular responses to damaged DNA including molecular mechanisms for DNA repair, translesion DNA synthesis, and genetic recombination. Inducible repair responses and error-prone mechanisms. Human hereditary diseases that predispose to cancer. Relationships of DNA repair to mutagenesis, carcinogenesis, aging, and human genetic disease. Current research literature. Prerequisites: 41 and 118, or consent of instructor.

3 units, Spr (Hanawalt, Ford)

BIOSCI 206. Field Studies in Earth Systems — (Same as EARTHSYS 189.) Field-based, focusing on the components and processes by which terrestrial ecosystems function. Topics from biology, chemistry, ecology, geology, and soil science. Lecture, field, and lab studies emphasize standard field techniques, experimental design, analysis of data, and written and oral presentation. Small team projects test the original questions in the functioning of natural ecosystems. Admission by application; see Time Schedule. Prerequisites: BIOSCI 141 or GES 160, or equivalent.

GER:DB-NatSci

5 units (Chiarillo, Fendorf, Matson, Miller) alternate years, given 2006-07

BIOSCI 207. Life and Death of Proteins — How proteins are made and degraded in the cell. Discussion of primary literature. Case studies follow the evolution of scientific ideas, and evaluate how different experimental approaches contribute to our understanding of a biological problem. Topics: protein folding and assembly, mechanisms of chaperone action, sorting into organelles and the ubiquitin-proteasome pathway. Enrollment limited to 20.

3 units (Frydman) not given 2005-06

BIOSCI 208. Developmental Biology — (Enroll in DBIO 210.)

5 units, Spr (Talbot, Nasse, Crabtree, Fuller, King, Kingsley, Scott)

BIOSCI 211. Biophysics of Sensory Transduction — Neural and neuronal mechanisms that organisms have evolved to detect physical cues from the environment. Sensory topics: vision, hearing, taste, olfaction, chemoreception, mechanoreception, electromagnetic sensing, and other modalities. Emphasis is on common and/or emergent biophysical themes, such as sensitivity, amplification, encoding, adaptation, and the molecular basis of cellular signaling. Interdisciplinary aspects of biology and physics. Student presentations. Prerequisites: undergraduate physics, calculus, and basic biology. GER:DB-NatSci

4 units (S. Block) not given 2005-06

BIOSCI 213. Biology of Viruses — Principles of virus growth, genetics, architecture, and assembly. The relation of temperate viruses and other epiphanies to the host cell. Prerequisite: Biological Sciences core. Recommended: 118.

3 units, Win (Campbell)

BIOSCI 214. Cell Biology of Physiological Processes — (Same as MCP 221.) The basic mechanisms of membrane and cellular biogenesis in relation to physiological processes. Emphasis is on regulation and signaling mechanisms involved in coordinating complex cellular phenomena such as cellular organization, function, and differentiation. Topics: cellular compartmentalization, transport and trafficking of macromolecules, organelle biogenesis, cell division, motility and adhesion, and multicellularity. Prerequisites: Biological Sciences core or substantial equivalent.

3 units, Aut (Wait)

BIOSCI 215. Biochemical Evolution — Biochemical viewpoints on the evolutionary process. Topics: prebiotic biochemistry and the origins of life; adaptive organization of metabolism; enzyme polymorphisms and other biochemical aspects of population genetics; macromolecular phylogeny and protein clocks. Prerequisites: Biological Sciences core or substantial equivalent.

3 units, Aut (Wait)

BIOSCI 216. Terrestrial Biogeochmistry — Nutrient cycling and the regulation of primary and secondary production in terrestrial, freshwater, and marine ecosystems; land-water and biosphere-atmosphere interactions; global element cycles and their regulation; human effects on biogeochemical cycles. Prerequisite: graduate standing in science or engineering; consent of instructor for undergraduates or coterminal students.

3 units (Vitousek) alternate years, given 2006-07

BIOSCI 217. Neuronal Biophysics — Biophysical descriptions and mechanisms of passive and excitable membranes, ion channels and pumps, action potential propagation, and synaptic transmission. Introduction to
dynamics of single neurons and neuronal networks. Emphasis is on the experimental basis for modern research applications. Interdisciplinary aspects of biology and physics. Literature, problem sets, and student presentations. Prerequisites: undergraduate physics, calculus, and biology. GER:DB-NatSci
4 units, Aut (Schnitzer)

BIOSCI 219. Ubiquitin and the Biology of the Cell—For graduate students and advanced undergraduates. The biochemistry, genetics, and molecular biology of the ubiquitin system and its central role in the biology of the eukaryotic cell. Topics: biochemistry and enzymology of the ubiquitin-dependent proteolysis, function of proteolysis in cell cycle control, transcriptional regulation, cellular signaling, vesicular trafficking, and quality control of misfolded proteins. The role of the ubiquitin system in the pathogenesis of neurodegenerative diseases and cancer. Student presentations. Prerequisites: 41, 42, 118 or equivalent.
5 units, Win (Fang, Kopito) alternate years, not given 2006-07

BIOSCI 220. Ecology of Microorganisms—(Same as BIOSCI 127.) Interactions between microorganisms and their environments from an ecological and evolutionary perspective. Topics: nutrient acquisition and environmental sensing, behavioral ecology, growth of cells and populations, population interactions, communities, and microbial biodiversity. Prerequisite: Biological Sciences core or equivalent, or consent of instructor. Recommended: 133, 142. GER:DB-NatSci
3 units (Bohannan) not given 2005-06

BIOSCI 221. Methods of Theoretical Population Biology—Formulation and analysis of problems in population biology using theoretical and computational numerical methods. Topics include deterministic and stochastic models, structured populations, stability and bifurcations, and data-driven models with applications in ecology and genetics. No auditors. Prerequisites: recent courses in advanced calculus and linear algebra.
4 units, Spr (Tuljapurkar)

BIOSCI 222. Exploring Neural Circuits—Seminar. The logic of how neural circuits control behavior; how neural circuits are assembled during development and modified by experience. Emphasis is on primary literature. Topics include: neurons as information processing units; simple and complex circuits underlying sensory information processing and motor control; and development and plasticity of neural circuits. Advanced undergraduates with background in physical science, engineering, and biological science may apply to enroll. Recommended: background in neuroscience.
3 units, Win (Luo)

BIOSCI 230. Molecular and Cellular Immunology—For graduate students and advanced undergraduates. Components of the immune system: structure and functions of antibody molecules; cellular basis of immunity and its regulation; molecular biology and biochemistry of antigen receptors and signaling pathways; genetic control of immunity and disease susceptibility. Emphasis is on key experimental approaches. Extra unit for discussion section on immunology literature. Prerequisite for undergraduates: Biological Sciences or Human Biology core, or consent of instructor.
4-5 units, Aut (Jones)

BIOSCI 241. Biological Macromolecules—(Enroll in SBIO 241.)
3-5 units, Aut (Puglisi, Weis, Block, Herschlag, Ferrell, McKay, Pandey, Garcia)

BIOSCI 257. Plant Biochemistry—The biochemistry of plants relevant to their physiology and cell biology. Topics include: the biosynthesis, assembly, function, and regulation of cell walls; lipids; pigments; photoreceptors; transporters; and the response of plants to pathogens and stresses. Prerequisite: Biological Sciences core or equivalent, or consent of instructors. GER:DB-NatSci
3 units, Spr (Mudgett, Briggs, Frommer, Grossman, C. Somerville, S. Somerville)

BIOSCI 258. Neural Development—For Ph.D. students. Seminar; students also attend BIOSCI 158 lectures. Topics: neural induction and patterning, cell lineage, neurogenesis, neuronal migration, axonal pathfinding, synapse elimination, the role of activity, critical periods, and the development of behavior.
4 units (McConnell) alternate years, given 2006-07

BIOSCI 261A,B. Advanced Topics in Behavioral Biology—Seminar. The biological roots of aggression, competition, cooperation, and altruism. May be repeated for credit. Prerequisite: 150/250, and consent of instructor.
3 units, 261A: Aut, 261B: Win (Sapolsky)

BIOSCI 267. Molecular Mechanisms of Neurodegenerative Disease—(Same as NEUR 267.) The epidemic of neurodegenerative disorders such as Alzheimer and Parkinson disease spawned by an aging human population. Genetic, molecular, and cellular mechanisms. Clinical aspects through case presentations.
3 units, Win (Kopito, Reimer, Wyss-Coray, So, Bronte-Stewart, Grecius) alternate years, not given 2006-07

BIOSCI 274A,B,C. Environmental Microbiology I, II, III—(Enroll in CEE 274A,B,C)
3 units, A: Aut, Sum (Staff), B: Spr (Spornmann), C: not given 2005-06

BIOSCI 290. Teaching of Biological Sciences—Open to upper-division undergraduates and graduate students. Practical experience in teaching lab biology or serving as an assistant in a lecture course. May be repeated for credit. Prerequisite: consent of instructor.
1-5 units, Aut, Win, Spr (Staff)

BIOSCI 290X. Out-of-Department Teaching of Biological Science—May be repeated for credit. Prerequisite: consent of instructor.
1-5 units, Aut, Win, Spr (Staff)

BIOSCI 291. Development and Teaching of Core Experimental Laboratories—Preparation for teaching the core experimental courses (44X and Y). Emphasis is on lab, speaking, and writing skills. Focus is on updating the lab to meet the changing technical needs of the students. Must be taken prior to teaching either of the above courses. May be repeated for credit. Prerequisite: selection by instructor.
1-2 units, Aut, Win (Malladi, Yelton)

PRIMARILY FOR GRADUATE STUDENTS

BIOSCI 300. Graduate Research—For graduate students only. Individual research by arrangement with in-department instructors.
1-15 units, Aut, Win, Spr, Sum (Staff)

BIOSCI 300X. Out-of-Department Graduate Research—Individual research by arrangement with out-of-department instructors. Master’s students: credit for work arranged with out-of-department instructors is restricted to Biological Sciences students and requires approved department petition. See http://biohonors.stanford.edu for information on research sponsors, units, petitions, deadlines, credit for summer research, and out-of-Stanford research, or email gastrula@stanford.edu. May be repeated for credit.
1-15 units, Aut, Win, Spr, Sum (Staff)

BIOSCI 301. Frontiers in Biology—Limited to and required for all first-year Ph.D. students interested in molecular, cellular, and developmental biology in the Department of Biological Sciences. Current research in molecular, cellular, and developmental biology emphasizing primary research literature. Held in conjunction with the department’s Monday seminar series. Students and faculty meet weekly before the seminar for a student presentation and discussion of papers related to the upcoming seminar.
1-3 units, Aut, Win (Gozani, Bergmann)

302: 1-3 units, Aut, 303: 1-3 units, Win, 304: 1 unit, Spr (Staff)
BIOSCI 305. DNA Repair and Genetic Toxicology — Seminar. Literature review and discussion of current research, emphasizing experimental approaches for studying DNA damage processing in bacteria, yeast, and mammalian cells. Enrollment limited to graduate students and advanced undergraduate students doing research in this field. Prerequisite: consent of instructor.

1-3 units, Win, Spr (Hanawalt)

BIOSCI 306. Current Topics in Integrative Organismal Biology — Limited to and required of graduate students doing research in this field. At Hopkins Marine Station.

1 unit, Aut (Epel)

BIOSCI 307. Seminar in Microbial Ecology and Evolution — Recent and classical research papers in microbial ecology and evolution. Presentation of research in progress by participants. May be repeated for credit. Prerequisite: consent of instructor.

1 unit, Aut, Win, Win (Bokhmann)

BIOSCI 312. Ethical Issues in Ecology and Evolutionary Biology — Focus is on ethical issues addressed in the Academic Duty and others of importance to academics and scientists in the fields of ecology, behavior, and evolutionary biology. Discussions led by faculty and outside guests. Satisfies ethics course requirement for ecology and evolutionary biology. Prerequisite: graduate standing in the ecology and evolutionary biology or marine program, or consent of instructor.

1 unit, Aut (Ehrlich)

BIOSCI 315. Seminar in Biochemical Evolution — Literature review and discussion of current topics in biochemical evolution and molecular evolutionary genetics. Prerequisite: consent of instructor.

1-3 units, Spr (Watt)

BIOSCI 342. Plant Biology Seminar — Topics announced at the beginning of each quarter. Current literature. May be repeated for credit.

BIOSCI 344. Advanced Seminar in Cellular Biology — Enrollment limited to graduate students directly associated with departmental research groups working in cell biology.

1-3 units, Aut, Win, Spr (Berkholler, Cyert, Fang, Frydman, Kopito, Rexach, Stearns)

BIOSCI 346. Advanced Seminar on Prokaryotic Molecular Biology — Enrollment limited to graduate students associated with departmental research groups in genetics or molecular biology.

1 unit, Aut, Win, Spr (Long, Campbell, Spormann, Grossman, Burkholder, Yanofsky)

BIOSCI 358. Advanced Topics in Biological Sciences — May be repeated for credit.

1-3 units, Aut, Win, Spr (B. Baker, Fernald, Luo, McConnell, Shen)

BIOSCI 383. Seminar in Population Genetics — Literature review, research, and current problems in the theory and practice of population genetics and molecular evolution. Prerequisite: consent of instructor.

1-3 units, Aut, Win, Spr (M. Feldman)

BIOSCI 384. Theoretical Ecology — (Same as GEOPHYS 185Y/385Y.) Recent and classical research papers in ecology, and presentation of work in progress by participants. Prerequisite: consent of instructor.

1-2 units, Aut, Win, Spr (Roughgarden)

BIOSCI 385. Speaking About Science — Communication about science occurs in settings such as presenting scientific work to an audience of peers, communicating difficult concepts in a classroom, or describing a new finding to a reporter. Focus is on practice in speaking about science, emphasizing strategies for making difficult ideas easy to understand and integrating visual aids into oral presentations. Limited to Ph.D. students.

2 units, Spr (McConnell) alternate years, not given 2006-07

BIOSCI 388. Communication and Leadership Skills — (Same as IPER 210.) Focus is on delivering information to policy makers and the lay public. How to speak to the media, congress, and the general public; how to write op-eds and articles; how to package ideas including titles, abstracts, and CVs; how to survive peer review, the promotion process, and give a job talk; and how to be a responsible science advocate.

2 units (Root) not given 2005-06

BIOSCI 450. Introduction to Biotechnology — (Enroll in CHEMENG 450.)

3 units, Spr (Khosla)

BIOSCI 459. Frontiers in Interdisciplinary Biosciences — (Same as CHEMENG 459, CHEM 459, PSYCH 459, BIOC 459, BIEO 459.) For specialists and non-specialists. Sponsored by the Stanford BioX Program. Three seminars per quarter address scientific and technical themes related to interdisciplinary approaches in bioengineering, medicine, and the chemical, physical, and biological sciences. Leading investigators from Stanford and the world present breakthroughs and endeavors that cut across core disciplines. Pre-seminars introduce basic concepts and background for non-experts. Registered students attend all pre-seminars; others welcome. See http://www.stanford.edu/group/biox/courses/459.html. Recommended: basic mathematics, biology, chemistry, and physics.

1 unit, Aut, Win, Spr (Robertson)

OVERSEAS STUDIES

These courses are approved for the Biological Sciences major and taught overseas at the campus indicated. Students should discuss with their major advisers which courses would best meet individual needs. Descriptions are in the “Overseas Studies” section of this bulletin, or at the Overseas Studies Office, 126 Sweet Hall.

AUSTRALIA

BIOSCI 109Z. Coral Reef Ecosystems — (Same as EARTHSYS 120X, HUMBIO 61X.) Two units only counted for Biological Sciences major.

3 units, Win (Arrigo, Dove, Hoegh-Guldberg)

BIOSCI 110Z. Coastal Resource Management — (Same as EARTHSYS 121X, HUMBIO 62X.) Two units only counted for Biological Sciences major.

3 units, Win (Johnstone)

BIOSCI 111Z. Coastal Forest Ecosystems — (Same as EARTHSYS 122X, HUMBIO 63X.) Two units only counted for Biological Sciences major.

3 units, Win (Duke, Pole)
DIVISION OF MARINE BIOLOGY HOPKINS MARINE STATION

Emeritus: (Professor) John H. Phillips, Jr.
Director: George N. Somero
Professors: Barbara A. Block, Mark W. Denny, David Epel, William F. Gilly, Stephen R. Palumbi, George N. Somero, Stuart H. Thompson
Assistant Professor: Fiorenza Micheli
Lecturer: James Watanabe
Station Offices: Oceanview Blvd., Pacific Grove, CA 93950
Phone: (831) 655-6200
Email: information@marine.stanford.edu
Web Site: http://hopkins.stanford.edu

Courses in Marine Biology at the Hopkins Marine Station have the subject code BIOHOPK. For a complete list of subject codes, see Appendix.

The Hopkins Marine Station is at Pacific Grove, on the south side of Monterey Bay, 90 miles from the main University campus. The 11-acre grounds, on the main portion of Cabrillo Point, include a sheltered landing place and storage for small boats. Buildings include the Lawrence Blinks Laboratory, Alexander Agassiz Laboratory, Jacques Loeb Laboratory, Harold A. Miller Library, Monterey Boat Works, Walter K. Fisher Laboratory, Tuna Research and Conservation Center, and De Nault Family Research Building. The 15,000 volume library subscribes to approximately 450 journals, and its collections are particularly strong in embryology, marine biology, microbiology, and oceanography.

The station is open during the entire year and maintains a permanent staff of resident investigators and technical assistants. There are facilities for visiting investigators and for elementary and advanced instruction in biology. For further information, write Hopkins Marine Station, Pacific Grove, CA 93950.

COURSES

BIOHOPK 44Y. Core Experimental Laboratory—Laboratory and field projects provide working familiarity with the concepts, organisms, and techniques of plant and evolutionary biology, and ecology. Emphasis is on hands-on experimentation in the marine environment, analysis of data, and written and oral presentation of the experiments. Lab fee. Equivalent to BIOSCI 44Y. Corequisite: BIOHOPK 43. GER: DB-NatSci, WIM 5 units, Spr (Denny, Palumbi, Watanabe)

BIOHOPK 56H. History and Philosophy of Science—The nature of scientific inquiry, its logic, historical patterns, and sociology. Emphasis is on the unique aspects of the biological sciences. 2 units (Somero) not given 2005-06

BIOHOPK 161H/261H. Invertebrate Zoology—(Graduate students register for 261H.) Survey of invertebrate diversity emphasizing form and function in a phylogenetic framework. Morphological diversity, life histories, physiology, and ecology of the major invertebrate groups, concentrating on local marine forms as examples. Current views on the phylogenetic relationships and evolution of the invertebrates. Lectures, lab, plus field trips. Prerequisite: Biological Sciences core or consent of instructor. GER:DB-NatSci 5 units, Win (Watanabe)

BIOHOPK 162H/262H. Comparative Animal Physiology—(Graduate students register for 262H.) How animals work. Topics: physiology of respiration, circulation, energy metabolism, thermal regulation, osmotic regulation, muscle physiology, and locomotion. Evolutionary and ecological physiology. Lectures, lab, and field research. An option to combine the course work with a more intensive research focus, with more units, is available. Prerequisite: Biological Sciences core or consent of instructor. GER:DB-NatSci 5-8 units, Spr (Block) alternate years, not given 2006-07

BIOHOPK 163H/263H. Oceanic Biology—(Graduate students register for 263H.) How the physics and chemistry of the oceanic environment affect marine plants and animals. Topics: seawater and ocean circulation, separation of light and nutrients in the two-layered ocean, oceanic food webs and trophic interactions, oceanic environments, biogeography, and global change. Lectures, discussion, and field trips. Recommended: PHYSICS 21 or 51, CHEM 31, Biological Sciences core, or consent of instructor. GER:DB-NatSci 4 units (Denny, Somero) not given 2005-06

BIOHOPK 164H/264H. Marine Botany—(Graduate students register for 264H.) Introduction to plants in the sea. Phytoplankton and oceanic productivity; macrophytes and nearshore ecology; marine angiosperms from taxonomic, physiological, and ecological perspectives. Lectures, lab. Prerequisite: Biological Sciences core or consent of instructor. GER: DB-NatSci 5 units (Staff) alternate years, given 2006-07

BIOHOPK 165H/265H. Air and Water—(Graduate students register for 265H.) Introduction to environmental physics. The physical properties of life’s fluids compared and contrasted. How and why life has evolved differently on land than in water. Topics: density, viscosity, diffusion, thermal properties, sound, light, evaporation, and surface tension. Recommended: PHYSICS 21, 23, or 51, 53; calculus; Biological Sciences core; or consent of instructor. GER:DB-NatSci 3 units (Denny) not given 2005-06

BIOHOPK 166H/266H. Molecular Ecology—(Graduate students register for 266H.) How modern technologies in gene sequencing, detection of nuclear nucleotide polymorphisms, and other approaches are used to gather data on genetic variation that allow measurement of population structure, infer demographic histories, inform conservation efforts, and advance understanding of the ecology of diverse types of organisms. GER:DB-NatSci 5 units, Win (Palumbi)

BIOHOPK 167H/267H. Nerve, Muscle, and Synapse—(Graduate students register for 267H.) Fundamental aspects of membrane excitability, nerve conduction, synaptic transmission, and excitation-contraction coupling. Emphasis is on biophysical, molecular, and cellular level analyses of these processes in vertebrate and invertebrate systems. Labs on intracellular and extracellular recordings and patch clamp techniques. Lectures, discussions, and labs. Prerequisites: PHYSICS 23, 28, 43, or equivalent; CHEM 31, 135; calculus; or consent of instructor. GER:DB-NatSci 5 units, Win (Gilly)

BIOHOPK 168H/268H. Marine Pollution—(Graduate students register for 268H.) Major pollutants in marine organisms; how they are affected and how they cope. 2 units (Epel) not given 2005-06

BIOHOPK 169H/269H. Neurobiology and Behavior—(Graduate students register for 269H.) The neural mechanism responsible for generating animal behavior. Topics: sensory ecology, neuronal excitability, synaptic plasticity, and neural circuits. Lectures, discussions, demonstrations, and lab. Prerequisite: Biological Sciences core or consent of instructor. GER:DB-NatSci 5 units (Thompson) not given 2005-06
BIOHOPK 170H/270H. Topics in Marine Biology — (Graduate students register for 270H.) A specific topic of current interest to marine science is explored through discussion of the primary literature. Prerequisite: Biological Sciences core or consent of instructor.

1 unit, Win (Staff)

BIOHOPK 171H/271H. Ecological and Evolutionary Physiology — (Graduate students register for 271H.) The interplay between environmental factors, such as temperature, light, nutrient supply, salinity, and oxygen availability, and adaptive change at the physiological level. Emphasis is on marine species and the roles played by physiological adaptations in establishing their distribution and performance. Prerequisite: Biological Sciences core or consent of instructor. GER:DB-NatSci

4 units (Somero) not given 2005-06

BIOHOPK 172H/272H. Marine Ecology — (Graduate students register for 272H.) Introduction to the principles of ecology as applied to life in the sea. Population dynamics, community ecology, and the effects of man on the oceans. Lectures, lab. Prerequisite: Biological Sciences core or consent of instructor. GER:DB-NatSci

5 units, Win (Micheli)

BIOHOPK 173H/273H. Marine Conservation Biology — (Graduate students register for 273H.) The science of preserving marine diversity. Goal is to introduce students to major conservation issues associated with marine ecosystems. Topics include decline of open ocean fisheries, salmon conservation, bycatch issues in fisheries, use of marine reserves, marine invasions, marine pollution, and global warming. Includes five lecturers from other universities who specialize in marine conservation.

1-3 units, Spr (Block) alternate years, not given 2006-07

BIOHOPK 174H/274H. Experimental Design and Probability — (Graduate students register for 274H.) Variability is an integral part of biology. Introduction to probability and its use in designing experiments to address biological problems. Focus is on analysis of variance, when and how to use it, why it works, and how to interpret the results. Design of complex, but practical, asymmetrical experiments and environmental impact studies, and regression and analysis of covariance. Computer-based data analysis. Prerequisite: Biological Sciences core or consent of instructor. GER:DB-NatSci

3 units, Spr (Watanabe)

BIOHOPK 175H. Problems in Marine Ecology and Ecophysiology — Field-based, emphasizing individual and small group research for advanced undergraduates. Students learn field and laboratory techniques to address ecological, ecophysiological, and biomechanical problems faced by marine organisms. Original research projects may be integrated with on-going research programs in the Hopkins Marine Life refuge. Prerequisites: Biological Sciences core, consent of instructor. GER: DB-NatSci, WIM

10 units, Spr (Epel, Micheli, Somero)

BIOHOPK 176H. Experimental Neurobiology — Lab, emphasizing methods in the neuroscience, including electrophysiological, biochemical, molecular, behavioral, and histological techniques. Students work on individual original research projects under guidance of the faculty. Prerequisites: strong interest in neurobiology and previous relevant coursework, consent of instructors. GER:DB-NatSci, WIM

12 units, Spr (Thompson)

BIOHOPK 178H/278H. Deep-Sea Biology — (Graduate students register for 278H.) Seminar. The deep sea is the largest, least understood fraction of the biosphere. Organisms living here possess diverse adaptations to allow life under high pressure. Recent discoveries in deep-sea biology including the biology of the hydrothermal vents, and the technology that makes these advances possible. Prerequisites: Biological Sciences core, consent of instructor.

2 units (Somero) alternate years, given 2006-07

BIOHOPK 182H/323H. Stanford at Sea — (Graduate students register for 323H; same as GES 323, EARTHSYS 323.) Five weeks of marine science including oceanography, marine physiology, policy, maritime studies, conservation, and nautical science at Hopkins Marine Station, followed by five weeks at sea aboard a sailing research vessel in the Pacific Ocean. Shore component comprised of three multidisciplinary courses meeting daily and continuing aboard ship. Students develop an independent research project plan while ashore, and carry out the research at sea. In collaboration with the Sea Education Association of Woods Hole, MA. GER:DB-NatSci

16 units (Block, Dunbar, Micheli) alternate years, given 2006-07

4 units (Epel) not given 2005-06

BIOHOPK 184H/284H. Holistic Biology: Monterey Bay and the Sea of Cortez — (Graduate students register for 284H.) For majors and non-majors. Complexity in natural systems from complementary points of view, including scientific, historical, philosophical, and literary. The work and writings of Ed Ricketts and John Steinbeck and historical and contemporary works concerning marine ecology and fisheries. Field work, laboratory studies with living invertebrates, and an individual research project. Course includes a component in Baja California, Mexico. GER: DB-NatSci

16 units, Spr (Gilly)

BIOHOPK 186H/286H. Ocean Pollution: Land, Air, and Sea Interactions — (Graduate students register for 286H.) The scientific basis of environmental pollution; how organisms protect themselves against toxicants; how protection can be overcome; policy issues in government regulation of pollution.

3 units, Win (Epel)

BIOHOPK 198H. Directed Instruction or Reading — May be taken as a prelude to research and may also involve participation in a lab or research group seminar and/or library research. Credit for work arranged with out-of-department instructors restricted to Biological Sciences majors and requires department approval.

1-15 units, Aut, Win, Spr, Sum (Staff)

BIOHOPK 199H. Undergraduate Research — Qualified undergraduates undertake individual work in the fields listed under 300H. Arrangements must be made by consultation or correspondence.

1-15 units, Aut, Win, Spr, Sum (Staff)

BIOHOPK 290H. Teaching of Biological Science — Open to upper-division undergraduates and graduate students. Practical experience in teaching lab biology or serving as an assistant in a lecture course. Prerequisite: consent of instructor.

1-15 units (Staff)

BIOHOPK 300H. Research — Graduate study involving original work undertaken with staff in the fields indicated:

A. Block: Comparative Vertebrate Physiology — biomechanics, metabolic physiology and phylogeny of pelagic fishes, evolution of endothermy.

B. Denny: Biomechanics — the mechanical properties of biological materials and their consequences for animal size, shape, and performance.

W. Gilly: Neurobiology — analysis of giant axon systems in marine invertebrates from molecular to behavioral levels.

F. Micheli: Marine Ecology — species interactions and community ecology, scale-dependent aspects of community organization, marine conservation and design of multi-species marine protected areas, behavioral ecology.

S. Palumbi: Molecular Evolution — mechanisms of speciation, genetic differentiations of populations, use of molecular tools in conservation biology, design of marine protected areas.

G. Somero: Ecological and Evolutionary Physiology — adaptations of marine organisms to the environment: temperature, pressure, desiccation, and oxygen availability.
S. Thompson: Neurobiology — neuronal control of behavior and mechanisms of ion permeation, signal transduction, calcium homeostasis, and neurotransmission.

J. Watanabe: Marine Ecology — kelp forest ecology and invertebrate zoology.
1-15 units, Aut, Win, Spr, Sum (Staff)

SUMMER PROGRAM

The summer program is open to all advanced undergraduate, graduate, and postdoctoral students, and to teachers whose biological backgrounds, teaching, or research activities can benefit from a summer’s study of marine life. Application blanks and further information may be obtained by writing to Hopkins Marine Station, Pacific Grove, CA 93950. Completed applications should be submitted by April 15. Applications received later are considered if space is still available.

The Summer Quarter is divided into two terms. It is possible to register for either term, or for the full quarter. Registration is possible for only one course during each term.

FIRST TERM

BIOHOPK 179H. Subtidal Communities — Lectures, lab, and field trips treating shallow water marine communities. Emphasis is on local habitats and the introduction of physical environmental parameters, community composition, aspects of the biology of constituent species, and methods for subtidal studies. Prerequisites: scuba certification, scuba equipment, ocean diving experience, and some background in biology. GER:DB-NatSci 6 units, Sum (Watanabe)

BIOHOPK 277H. Biomechanics, Ecological Physiology, and Genetics of Intertidal Communities — Introduction to the mechanical and physiological design of wave-swept organisms. How different abiotic stresses (wave exposure, wind speed, temperature, light) influence marine animals and plants, and adaptive responses to these stresses. Lab introduces methods for measuring environmental stress and organismal responses. Recommended: background in algology, intertidal ecology, or invertebrate zoology; basic physics and calculus.
4 units (Denny, Palambi, Somero) alternate years, given 2006-07

SECOND TERM

BIOHOPK 180H/280H. Problems in Subtidal Ecology — (Graduate students register for 280H.) Group and individual research projects focus on shallow water marine communities. Daily lectures, SCUBA dives, labs. Prerequisites: SCUBA certification; advanced or comparable experience, or 179H. GER:DB-NatSci 6 units, Sum (Watanabe) alternate years, not given 2006-07

BIOHOPK 181H/281H. Problems in Conservation Biology and Ecology of Rocky Shores — (Graduate students register for 281H.) Field and lab course in which students learn fundamentals of field research in the intertidal zone and assist in on-going assessment of human impacts on rocky shores. Opportunities for individual and small group research available. GER:DB-NatSci 6 units (Micheli, Watanabe) alternate years, given 2006-07

BIOPHYSICS PROGRAM

Emeritus: Harden M. McConnell (Chemistry)

Director: William I. Weis

Professors: Richard W. Aldrich (Molecular and Cellular Physiology), Russ Altman (Genetics, Medical Informatics), Steve Block (Applied Physics, Biological Sciences), Steven Boxer (Chemistry), Axel Brunger (Molecular and Cellular Physiology), Douglas Brutlag (Biochemistry), Gilbert Chu (Oncology), Mark Davis (Microbiology and Immunology), Sebastian Doniach (Physics, Applied Physics), James Ferrell (Molecular Pharmacology), Philip C. Hanawalt (Biological Sciences), Daniel Herschlag (Biochemistry), Keith O. Hodgson (Chemistry), Wray H. Huestis (Chemistry), Chaitan Khosla (Chemical Engineering, Chemistry), Eric Kool (Chemistry), Ron Kopito (Biological Sciences), Roger D. Kornberg (Structural Biology), Michael Levitt (Structural Biology), David B. McKay (Structural Biology), Uel J. McMahen (Neurobiology), Tobias Meyer (Molecular Pharmacology), W. E. Moerner (Chemistry), Norbert Pelc (Bio-engineering, Radiology), Joseph D. Puglisi (Structural Biology), Stephen Quake (Bioengineering), Stephen J. Smith (Molecular and Cellular Physiology), Edward I. Solomon (Chemistry), James A. Spudich (Biochemistry, Developmental Biology), James Swartz (Bioengineering, Chemical Engineering), William I. Weis (Structural Biology), Richard N. Zare (Chemistry)

Associate Professors: Judith Frydman (Biological Sciences), K. Christopher Garcia (Microbiology and Immunology, Structural Biology), Pehr Harbury (Biochemistry), Peter Jackson (Pathology), Julie Theriot (Biochemistry)

Assistant Professors: Miriam Goodman (Molecular and Cellular Physiology), Merritt Maduke (Molecular and Cellular Physiology), Vijay Pande (Chemistry, Structural Biology), Jianghong Rao (Radiology), Mark Schnitzer (Biological Sciences, Applied Physics)

Program Offices: Fairchild Building D118
Mail Code: 94305-5126
Phone: (650) 723-7576
Email: biophysics@med.stanford.edu
Web Site: http://med.stanford.edu/biophysics/

Courses given in Biophysics have the subject code BIOPHYS. For a complete list of subject codes, see Appendix.

The Biophysics Program offers instruction and research opportunities leading to the Ph.D. in Biophysics. Students admitted to the program may perform their graduate research in any appropriate department.

GRADUATE PROGRAM

For information on the University’s basic requirements for the Ph.D. degree, see the “Graduate Degrees” section of this bulletin. A small number of highly qualified applicants are admitted to the program each year. Applicants should present strong undergraduate backgrounds in the physical sciences and mathematics. The graduate course program, beyond the stated requirements, is worked out for each student individually with the help of appropriate advisers from the Committee on Biophysics. The requirements and recommendations for the Ph.D. degree include:

1. Training in physics or chemistry equivalent to that of an undergraduate physics or chemistry major at Stanford.
2. Completion of the following background courses or their equivalents at other institutions:
 a) CHEM 131, 171, 173, and 175
 b) BIOC 200, 201
3. Completion of the following courses or their equivalents:
 a) SBIO 241 and 242
 b) at least four additional graduate level courses in physical or biological science
 c) BIOPHYS 250
 d) MED 255
4. Opportunities for teaching are available during the first nine quarters, at the discretion of the advising committee.
5. The student must prepare a dissertation proposal defining the research to be undertaken, including methods of procedure. This proposal should be submitted by Winter Quarter of the third year, and it must be approved by a committee of at least three members including the principal research adviser and at least one member from the Biophysics Program. The candidate must defend the dissertation proposal in an oral examination. The dissertation reading committee normally evolves from the dissertation proposal review committee.
6. The student must present a Ph.D. dissertation as the result of independent investigation and expressing a contribution to knowledge in the field of biophysics.
7. The student must pass the University oral examination, taken only after the student has substantially completed the research. The examination is preceded by a public seminar in which the research is presented by the candidate.

COURSES

BIOPHYS 205. DNA Repair and Genomic Stability — (Enroll in BIOSCI 205.)
3 units, Spr (Hanawalt, Ford)

BIOPHYS 210. Advanced Topics in Membrane Trafficking — (Enroll in BIOC 210.)
3 units (Pfeffer) not given 2005-06

BIOPHYS 210A. Molecular Physiology of Cells—Recommended for all MCP graduate students; open to graduate and medical students; advanced undergraduates with consent of instructor. Dynamic aspects of cell function, including cellular energetics, gas exchange, solute transport, absorption and secretion in epithelia, ionic and electrical signaling in nerve and muscle, and sensory physiology. Emphasis is on the cellular function of ion channels and transporters, joining experimental and analytical approaches. Lectures, in-class readings, discussions, student presentations, and the use of mathematical models of cell function. Recommended: MCP 255; basic cell and molecular biology.
4 units, Spr (Lewis, Goodman)

BIOPHYS 211. Biophysics of Sensory Transduction — (Enroll in BIOSCI 211.)
4 units (S. Block) not given 2005-06

3 units, Aut (Glover)

BIOPHYS 228. Computational Structural Biology—(Same as SBIO 228.) Online class. Interatomic forces and interactions such as electrostatics and hydrophobicity, and protein structure in terms of amino acid properties, local chain conformation, secondary structure, domains, and families of folds. How protein motion can be simulated. Bioinformatics introduced in terms of methods that compare protein via their amino acid sequences and their three-dimensional structures. Structure prediction via simple comparative modeling. How to detect and model remote homologues. Predicting the structure of a protein from knowledge of its amino acid sequence.
3 units, Aut, Spr (Levitt)

BIOPHYS 232. Advanced Imaging Lab in Biophysics—(Same as BIOSCI 132/232, MCP 232.) Laboratory and lectures. Microscopy, emphasizing hands-on experience with a range of apparatus and techniques. Topics include microscope optics, Koehler illumination, contrast-generating mechanisms (bright/dark field, fluorescence, phase contrast, differential interference contrast), and resolution limits. Advanced topics vary by year, but include single-molecule fluorescence, fluorescence resonance energy transfer, confocal microscopy, two-photon microscopy, optical trapping, and fiber optic methods. Limited enrollment. Recommended: basic physics, Biological Sciences core or equivalent, and consent of instructor. GER:DB-NatSci
4 units, Spr (S. Block, Schnitzer, S. Smith, Stearns)

BIOPHYS 241. Biological Macromolecules — (Enroll in SBIO 241.)
3-5 units, Aut (Puglisi, Weis, Block, Herschlag, Ferrell, McKay, Pande, Garcia)

BIOPHYS 242. Methods in Molecular Biophysics — (Enroll in SBIO 242.)
3 units (Weis, Puglisi) not given 2005-06

BIOPHYS 250. Seminar in Biophysics — Required of Biophysics graduate students. Presentation of current research projects and results by faculty in the Biophysics program. May be repeated for credit.
1 unit, Aut, Win (Staff)

BIOPHYS 255. The Responsible Conduct of Research — A forum for scientists to familiarize themselves with institutional policies/practices and professional standards that define scientific integrity. Overview of ethics in research, authorship, patents, and human interest at the academic-commercial interface, and small group sessions for more extended discourse between students and faculty. Completion fulfills NIH/ADAMHA requirement for instruction in the ethical conduct of research. Required course for incoming students.
1 unit, Win (Staff)

BIOPHYS 297. Bio-Inorganic Chemistry—(Same as CHEM 297.) Overview of metal sites in biology. Metalloproteins as elaborated inorganic complexes, their basic coordination chemistry and bonding, unique features of the protein ligand, and the physical methods used to study active sites. Active site structures are correlated with function. Prerequisites: 153 and 173, or equivalents.
3 units (Solomon) not given 2005-06

BIOPHYS 300. Research
1-18 units, Aut, Win, Spr, Sum (Staff)

BIOPHYS 399. Directed Reading
1-18 units (Staff)

BIOPHYS 450. Introduction to Biotechnology — (Enroll in CHEM-ENG 450.)
3 units, Spr (Khosla)
CHEMISTRY*

Emeriti: (Professors) William A. Bonner, James P. Collman, Carl Djerassi, Eric Hutchinsen, Harden M. McConnell, John Ross, Douglas A. Skoog, Eugene E. van Tamelen, Henry Taube

Chair: Richard N. Zare

Associate Professors: Christopher E. D. Chipsey, Hongjie Dai, Justin Du Bois, T. Daniel P. Stack

Assistant Professors: Jennifer J. Kohler, Vijay S. Pande, Dmitry V. Yandulov

Courtesy Professors: Stacey F. Bent, Curtis W. Frank, Daniel Herschlag

Courtesy Assistant Professors: James K. Chen, Karlene A. Cimprich, Thomas J. Wandless

Lecturers: John A. Flygare, Christopher R. Moylan

Director of Undergraduate Laboratories: Christopher R. Moylan

*The curriculum leading to the B.S. degree in Chemical Engineering is described in the “School of Engineering” section of this bulletin.

Department Offices: 121 S. G. Mudd

Mail Code: 94305-5080

Phone: (650) 723-2501

Web Site: http://www.stanford.edu/dept/chemistry/

Courses given in Chemistry have the subject code CHEM. For a complete list of subject codes, see Appendix.

UNDERGRADUATE PROGRAMS

BACHELOR OF SCIENCE

Entrance Preparation—Entrance credit in the preparatory subjects of chemistry, physics, and especially mathematics provides flexibility in creating a four-year schedule for students intending to major in Chemistry.

Minimum Requirements—University Writing and General Education Requirements; MATH 41, 42; MATH 51, 53, or CME 100, 102, 104; PHYSICS 41, 43, 44, 45, 46; CHEM 31A and B or 31X, 33, 35, 36, 130, 131, 134, 136, 151, 153, 171, 173, 174, 175, 176. In addition, CS 106A and B are strongly recommended for students planning graduate study. Students interested in attending an overseas campus should consult their advisers as early as possible to avoid scheduling problems. Note that it is particularly convenient to attend an overseas campus during Spring Quarter of the second or third year, since the courses listed in this quarter may be delayed to subsequent years without disadvantage. All degree courses must be taken for a letter grade. Information on the undergraduate program is found at http://www.stanford.edu/dept/chemistry/undergrad/.

TYPICAL SCHEDULE FOR A FOUR-YEAR PROGRAM

FIRST YEAR

<table>
<thead>
<tr>
<th>Course No. and Subject</th>
<th>Qtr. and Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 31X, Chemical Principles</td>
<td>4 A W S</td>
</tr>
<tr>
<td>CHEM 33, Structure and Reactivity</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 35, Monofunctional Compounds</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 36, Chemical Separations</td>
<td>3</td>
</tr>
<tr>
<td>MATH 41, 42, 51. Calculus, Linear Equations</td>
<td>5 5 5</td>
</tr>
</tbody>
</table>

SECOND YEAR

<table>
<thead>
<tr>
<th>Course No. and Subject</th>
<th>Qtr. and Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 131, Polynolecular Compounds</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 130, Qualitative Organic Analysis</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 134, Theory and Practice of Quantitative Chemistry</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 136, Synthesis Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>MATH 53, Differential Equations</td>
<td>5</td>
</tr>
<tr>
<td>PHYSICS 45-46, 41, 43-44. Light and Heat, Mechanics, Electricity and Magnetism</td>
<td>5 4 5</td>
</tr>
</tbody>
</table>

THIRD AND FOURTH YEARS

<table>
<thead>
<tr>
<th>Course No. and Subject</th>
<th>Qtr. and Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 151, Inorganic Chemistry</td>
<td>3 3 3</td>
</tr>
<tr>
<td>CHEM 171, 173, 175. Physical Chemistry</td>
<td>3 3 3</td>
</tr>
<tr>
<td>CHEM 174, 176, Physical Chemistry Laboratory</td>
<td>4 3</td>
</tr>
</tbody>
</table>

* Elective courses must be used to complete the University Writing, General Education, and Language Requirements. They may also be used to broaden one’s background in science and nonscience areas and to provide an opportunity for advanced study in Chemistry. Courses offered by other departments that may be of interest to chemistry majors include BIOSCI 41, 42, 45; CHEMENG 20, 120A, B, 130; CS 106A, B; ECON 1; ENGR 59; MATH 52, 106, 109, 113, 131; MATSCI 50; PHYSICS 110; STATS 60, 110, 116.

MINORS

Courses required for a minor are CHEM 33, 35, 36, 130, 131, 134, 151, 171; MATH 51; and PHYSICS 21, 23, 25, or 28, 29, or 41, 43, 45 (no substitutions). All courses must be taken for a letter grade.

AMERICAN CHEMICAL SOCIETY CERTIFICATION

Students who wish to be certified as having met the minimum requirements of the American Chemical Society for professional training must complete, in addition to the above requirements, CHEM 188 and 189, and 6 units of CHEM 190.

HONORS PROGRAM

A limited number of undergraduates may be admitted to the Chemistry honors program at the beginning of Spring of the junior year. Those completing the program satisfactorily receive the B.S. degree in Chemistry with honors.

Admission to the program requires a grade point average (GPA) of at least 3.0 in all course work in the University. An overall grade point average (GPA) of 3.3 in all Chemistry, Mathematics, and Physics course work including 9 (most recent) units in CHEM 190 is required for a degree with honors. In addition to the minimum requirements for the B.S. degree, the student must complete 9 units of CHEM 190 during the junior/senior years; 9 additional units (including 3 units above 200 in Chemistry) from BIOL 237, 241; CHEM 189, 221, 223, 225, 235, 251, 253, 255, 271, 273, 275, 297; MATH 131; MPHA 201; Physics lecture courses numbered greater than 100; or other advanced courses approved by the department's undergraduate study committee. A written report (two-page minimum) for each quarter of CHEM 190 is required detailing the progress in the quarter, and reflecting the units undertaken. This report must be signed and approved by the research adviser and filed in the department student services office in Mudd Chemistry, Room 121, before the last day of finals in the quarter during which the research is done. Students may not overlap (double count) courses for completing honors, major, minor, and coterminal requirements.

Students who wish to be admitted to the honors program should register in the department student services office in Mudd Chemistry, Room 121, at the beginning of Spring Quarter of the junior year. Those who do not meet all of the above formal requirements may petition the department for admission.

TEACHING CREDENTIALS

The requirements for certification to teach chemistry in the secondary schools of California may be ascertained by consulting the section on credentials under the “School of Education” section of this bulletin and the Credential Administrator of the School of Education.

GRADUATE PROGRAMS

The University’s basic requirements for the M.S., M.A.T., and Ph.D. degrees are discussed in the “Graduate Degrees” section of this bulletin.

GENERAL REQUIREMENTS

Placement Examinations—Each new graduate student must take placement examinations on entrance. These consist of three written examinations of two hours each in the fields of inorganic, organic, and physical chemistry, and cover such material as ordinarily is given in a rigorous one-year undergraduate course in each of these subjects. Students
majoring in biophysical chemistry must take examinations in biophysical and physical chemistry, and either organic or inorganic chemistry. All placement examinations are given the week before instruction begins in Autumn Quarter, and must be taken at that time. Each new graduate student meets with a member of the Graduate Study Committee to define a program of courses based on results of the placement examinations.

Candidates for advanced degrees must have a minimum grade point average (GPA) of 3.0 for all Chemistry lecture courses as well as for all courses taken during graduate study. Required courses must be taken for a letter grade. Most course work ends in the second year of studies and students will then focus on full-time dissertation research. All prospective Ph.D. candidates, regardless of the source of financial support, are required to gain teaching experience as an integral part of graduate training. During the period in which a dissertation is being read by members of the faculty, candidates must be available for personal consultation until the dissertation has had final department approval.

MASTER OF SCIENCE

The Master of Science is available only to current Ph.D. students or as part of a coterm program. Applicants for the M.S. degree in Chemistry are required to complete, in addition to the requirements for the bachelor’s degree, a minimum of 45 units of work and a M.S. thesis. Of the 45 units, approximately two-thirds must be in the department and must include at least 12 units of graduate-level lecture courses exclusive of the thesis. Of the 12 units, at least 6 units must be from CHEM 221, 223, 225, 235, 251, 253, 255, 271, 273, 275, 276, or 297.

DOCTOR OF PHILOSOPHY

Graduate students are eligible to become formal candidates for the Ph.D. degree after taking the department placement examinations, satisfactorily completing most of the formal lecture course requirements, and beginning satisfactory progress on a dissertation research project. They then file for admission to candidacy for the Ph.D. degree. This filing must be done before June of the second year of graduate registration.

After taking the departmental placement examinations, students select research advisers by first interviewing members of the Chemistry faculty about their research. Students then file an Application to Start Research form with the Department of Chemistry Graduate Study Committee and begin research on their Ph.D. dissertation under the supervision of the adviser. All students in good standing are required to start research by the end of the Winter Quarter of the first year of graduate registration.

There is no foreign language requirement for the Ph.D. degree.

Candidates for the Ph.D. degree are required to participate continually in the department colloquium (CHEM 300), and in the division seminar of the major subject. In addition, continuous enrollment in CHEM 301 is expected after the student has chosen a research supervisor. As part of graduate training, Ph.D. candidates are required to gain experience as teaching assistants.

Before candidates may request scheduling of the University oral examination, clearance must be obtained from the major professor and the chair of the department’s Graduate Study Committee. Conditions that must be fulfilled before clearance is granted vary with the different divisions of the department and may be ascertained by consulting the chair of the committee.

It is the policy of the department to encourage and support in every possible way the pursuit of research and other advanced work by qualified students. Information about faculty members with lists of their recent research publications is found in Chemistry at Stanford, the Directory of Graduate Research published by the American Chemical Society, and at http://www.stanford.edu/dept/chemistry/faculty.html.

COURSE REQUIREMENTS

All graduate students are required to take six graduate-level lecture courses (course numbers greater than 199) of at least 3 units each in chemistry or related disciplines (for example, biochemistry, electrical engineering, mathematics, pharmacology, physics, and so on), to be selected in consultation with their research adviser and the Graduate Study Committee. At least four of these courses should be taken by the end of the first year. Required courses must be taken for a letter grade.

In addition, students majoring in organic chemistry must take 3 units of CHEM 231 in the second year and 3 units of 233 in the second and third year. Students in physical or biophysical chemistry or chemical physics must take CHEM 271, 273, and 275 in the first year, and 2 units of CHEM 278 in the second and third year. Students majoring in inorganic chemistry must take 3 units of CHEM 258 in the second, third, and fourth year.

CHEMICAL PHYSICS

Students with an exceptionally strong background in physics and mathematics may, upon special arrangement, pursue a program of studies in chemical physics.

PH.D. MINOR

Candidates for the Ph.D. degree in other departments who wish to obtain a minor in chemistry must complete, with a GPA of 3.0 or higher, 20 graduate-level units in chemistry including four lecture courses of at least 3 units each.

FELLOWSHIPS AND SCHOLARSHIPS

In addition to school fellowships and scholarships open to properly qualified students, there are several department fellowships in chemistry. Undergraduate scholarships are administered through the Financial Aid Office. Teaching assistantships and research assistantships are open to graduate students. Graduate fellowships, scholarships, and teaching assistantships are administered through the Department of Chemistry.

COURSES

WIM indicates that the course satisfies the Writing in the Major requirements.

Note—Lab fees are a minimum of $50 per quarter and are not refundable.

UNDERGRADUATE

CHEM 17N. Light, Pigments, and Organisms—(Same as BIOSCI 17N.) Stanford Introductory Seminar. Preference to freshmen. Multidisciplinary lab course. The molecular basis of pigments, light absorption, color, and fluorescence using chemical techniques and biological materials. Topics include: the diversity of photosynthetic pigments, how cyanobacteria modify their pigment composition in diverse light environments, and the importance of photoreceptors in assessing an organism’s light environment. GER:DB-NatSci

3 units, Win (Elrad, Zare)

2 units, Aut, Spr (Collman)

CHEM 23N. Chemistry and Biology in Biotechnology—Stanford Introductory Seminar. Preference to freshmen. An enrichment of introductory organic chemistry with biological applications. A clinically important molecule is selected to illustrate important contributions that biology has made to chemistry and vice versa. Topics: structure elucidation of complex molecules, chemical and biological synthesis of complex molecules, mechanism of action, and drug or agrochemical development. Pre- or corequisite: 33. GER:DB-NatSci

3 units, Aut (Khosla)

CHEM 24N. Nutrition and History—Stanford Introductory Seminar. Preference to freshmen. Intended to broaden the introductory chemistry experience. The biochemical basis of historically important nutritional deficiencies (vitamins, minerals, starvation, metabolic variants that predispose to disease) and environmental toxins is related to physiological action and the sociological, political, and economic consequences of its effect on human populations. Prerequisite: high school chemistry. Recommended: 31A,B, or 31X, or 33.

2 units, Spr (Huestis)
CHEM 27N. Lasers: The Light Fantastic—Stanford Introductory Seminar. Preference to freshmen. Introduction to lasers and their impact on everyday life. The operation of lasers using concepts of atomic and molecular energy levels, optics, and resonance. The use of lasers to produce guide stars for astronomy, sculpt the cornea, measure molecules in the ozone layer, transmit optical information over the web, measure the distance to the moon, and observe a single protein molecule in action. Prerequisites: CHEM 31A or X, or PHYSICS 23 and 25, or equivalents. GER:DB-NatSci
3 units, Win (Du Bois)

CHEM 31A. Chemical Principles I—For students with moderate or no background in chemistry. Stoichiometry; periodicity; simple models of ionic and covalent bonding; dissolution/precipitation, acid/base, and oxidation/reduction reactions; gas laws; phase behavior; rates of reactions. Emphasis is on skills to address structural and quantitative chemical questions. Recitation. Prerequisite: 31A. GER:DB-NatSci
4 units, Aut (Chidsey, Staff)

CHEM 31B. Chemical Principles II—Chemical equilibria; rates and mechanisms to reach equilibrium; thermochemistry, free energy, and relation to equilibrium; quantum concepts, and atomic and molecular orbital theory. Recitation. Prerequisite: 31A. GER:DB-NatSci
4 units, Win (Chidsey, Staff)

CHEM 31X. Chemical Principles—Accelerated; for students with substantial chemistry background. Chemical equilibria concepts, equilibrium constants, acids and bases, chemical thermodynamics, quantum concepts, models of ionic and covalent bonding, atomic and molecular orbital theory, periodicity, and bonding properties of matter. Recitation. Prerequisites: high school chemistry and algebra. Recommended: high school physics. GER:DB-NatSci
4 units, Aut (Boxer, Waymouth), Sum (Staff)

CHEM 33. Structure and Reactivity—Organic chemistry, functional groups, hydrocarbons, stereochemistry, thermochemistry, kinetics, chemical equilibria. Recitation. Prerequisite: 31A,B, or 31X, or an AP Chemistry score of 4 or 5. GER:DB-NatSci
4 units, Win (Stack, Kool), Spr (Wender), Sum (Staff)

4 units, Aut (Huestis), Spr (Du Bois), Sum (Staff)

3 units, Spr, Sum (Moylan)

CHEM 110. Directed Instruction/Reading—Undergraduates pursue a reading program under supervision of a faculty member in Chemistry; may also involve participation in lab. Prerequisites: superior work in 31A, B, 31X, or 33; and consent of instructor and the Chemistry undergraduate study committee.
1-2 units, Aut, Win, Spr, Sum (Staff)

CHEM 111. Exploring Chemical Research at Stanford—Preference to freshmen and sophomores. Department faculty describe their cutting-edge research and its applications.
1 unit, Win (Du Bois)

4 units, Aut (Moylan), Win (Flygare)

3 units, Aut (Huestis), Win (Trost)

CHEM 134. Theory and Practice of Quantitative Chemistry—Methods include gravimetric, volumetric, spectrophotometric, and electromagnetic. Lab. Prerequisite: 130. GER:DB-NatSci, WIM
5 units, Win (Elfrad)

CHEM 135. Physical Chemical Principles—Terminal physical chemistry for non-chemistry majors. Emphasis is on portions of physical chemistry most useful for students of the life sciences. Introduction to chemical thermodynamics: rate laws, integration of rate laws, reaction mechanisms, enzyme kinetics, first, second, and third laws, thermochemistry, entropy, free energy, chemical equilibrium, osmotic pressure, other colligative properties. Prerequisites: 31A,B, or 31X, calculus. GER:DB-NatSci
3 units, Win (Pecora)

3 units, Spr (Vandulov)

CHEM 151. Inorganic Chemistry I—Introduction to the theories of electronic structure, stereochemistry, and symmetry properties of inorganic and organometallic molecules. Topics: ionic and covalent interactions, electron-deficient bonding, and elementary ligand field and molecular orbital theories. Emphasis is on the chemistry of the metallic elements. Prerequisites: 35. Recommended: 171. GER:DB-NatSci
3 units, Win (Stack)

CHEM 153. Inorganic Chemistry II—The theoretical aspects of inorganic chemistry. Group theory; many-electron atomic theory; molecular orbital theory emphasizing general concepts and group theory; ligand field theory; application of physical methods to predict the geometry, magnetism, and electronic spectra of transition metal complexes. Prerequisites: 151, 173. GER:DB-NatSci
3 units, Spr (Solomon)

CHEM 171. Physical Chemistry—Chemical thermodynamics; fundamental principles, Gibbsonian equations, systematic deduction of equations, equilibrium conditions, phase rule, gases, solutions. Prerequisites: 31A,B, or 31X, 35; MATH 51. GER:DB-NatSci
3 units, Aut (Pande)

CHEM 173. Physical Chemistry—Introduction to quantum chemistry: the basic principles of wave mechanics, the harmonic oscillator, the rigid rotator, infrared and microwave spectroscopy, the hydrogen atom, atomic structure, molecular structure, valence theory. Prerequisites: MATH 51, 53; PHYSICS 51, 53, 55. GER:DB-NatSci
3 units, Win (Boxer)

CHEM 174. Physical Chemistry Laboratory I—Experimental investigations in spectroscopy, thermodynamics, and electronics. Students take measurements on molecular systems, design and build scientific instruments, and computer-automate them with software that they write themselves. Prerequisites: 134, PHYSICS 56. Corequisites: 173, MATH 53. GER:DB-NatSci
4 units, Win (Moylan)

3 units, Spr (Moerner)

CHEM 176. Physical Chemistry Laboratory II—Use of chemical instrumentation to study physical chemical time-dependent processes. Experiments include reaction kinetics, fluorometry, and nuclear magnetic and electron spin resonance spectroscopy. Lab. Prerequisites: 173, 174, previous or concurrent enrollment in 175. GER:DB-NatSci
3 units, Spr (Dai)
3 units, Win (Flygare)

CHEM 188. Biochemistry I — (Same as CHEMENG 188/288, BIOSCI 188/288.) Chemistry of major families of biomolecules including proteins, nucleic acids, carbohydrates, lipids, and cofactors. Structural and mechanistic analysis of properties of proteins including molecular recognition, catalysis, signal transduction, membrane transport, and harvesting of energy from light. Molecular evolution. Pre- or corequisites: BIOSCI 41, CHEM 131, and CHEM 135 or 171. GER:DB-NatSci
3 units, Aut (Kohler)

CHEM 189. Biochemistry II — (Same as CHEMENG 189/289, BIOSCI 189/289.) Metabolism. Glycolysis, gluconeogenesis, citric acid cycle, oxidative phosphorylation, pentose phosphate pathway, glycolgen metabolism, fatty acid metabolism, protein degradation and amino acid catabolism, protein translation and amino acid biosynthesis, nucleotide biosynthesis, DNA replication, recombination and repair, lipid and steroid biosynthesis. Medical consequences of impaired metabolism. Therapeutic intervention of metabolism. Prerequisite: 188. GER:DB-NatSci
3 units, Win (Khosla)

GRADUATE

3 units, Aut (Breit)

CHEM 222. Advanced Organic Chemistry — Continuation of 221 with emphasis on physical methods. Prerequisite: 221 or consent of instructor.
3 units, Win (Trost)

CHEM 225. Advanced Organic Chemistry — Continuation of 223. Organic reactions, new synthetic methods, conformational analysis, and exercises in the syntheses of complex molecules. Prerequisite: 223 or consent of instructor.
3 units, Spr (Wender)

CHEM 227. Topics in Organic Chemistry — Possible topics: synthetic organic chemistry, photochemistry, inorganic-organic chemistry, bio-organic chemistry, reaction mechanisms, stereochemistry, structural chemistry of organic and biological molecules. May be repeated for credit.
3 units, Aut (Breit)

CHEM 229. Organic Chemistry Seminar — Attendance required of all graduate students majoring in organic chemistry. Students giving seminars register for 231.
1 unit, Aut, Win, Spr (Staff)

CHEM 231. Organic Chemistry Seminar Presentation — Required of all graduate students majoring in organic chemistry for the year in which they present their organic seminar. Second-year students must enroll all quarters.
1 unit, Aut, Win, Spr (Staff)

CHEM 233A,B,C. Creativity in Organic Chemistry — Required of second- and third-year Ph.D. candidates in organic chemistry. The art of formulating, writing, and orally defending a research progress report (A) and two research proposals (B, C). Second-year students register for A and B; third-year students register for C.
1 unit, A: Aut, B: Spr, C: Spr (Staff)

CHEM 235. Applications of NMR Spectroscopy — The uses of NMR spectroscopy in chemical and biochemical sciences, emphasizing data acquisition for liquid samples and including selection, setup, and processing of standard and advanced experiments.
3 units, Win (Lynch)

CHEM 251. Advanced Inorganic Chemistry — Chemical reactions of inorganic compounds with focus on mechanisms of reactions mediated by inorganic and organometallic complexes. The structural and electronic basis of reactivity including oxidation and reduction; kinetics and thermodynamics of inorganic reactions. Prerequisite: one year of physical chemistry.
3 units, Aut (Vandalov)

CHEM 253. Advanced Inorganic Chemistry — Electronic structure and physical properties of transition metal complexes. Ligand field and molecular orbital theories, magnetism and magnetic susceptibility, electron paramagnetic resonance (including hyperfine interactions and zero field splitting) and electronic absorption spectroscopy (including vibrational interactions). Prerequisite: 153 or the equivalent.
3 units (Solomon) not given 2005-06

3 units, Spr (Waymouth)

CHEM 258A,B,C. Research Progress in Inorganic Chemistry — Required of second-, third-, and fourth-year Ph.D. candidates in inorganic chemistry. Students present their research progress in written and oral forms (A); present a seminar in the literature of the field of research (B); and formulate, write, and orally defend a research proposal (C). Second-year students register for A; third-year students register for B; fourth-year students register for C.
1 unit, A: Win, B: Spr, C: Aut, Win (Staff)

CHEM 259. Inorganic Chemistry Seminar — Required of graduate students majoring in inorganic chemistry.
1 unit, Aut, Win, Spr (Staff)

CHEM 271. Advanced Physical Chemistry — The principles of quantum mechanics. General formulation, mathematical methods, and elementary applications of quantum theory to the structure of atoms and molecules, including variational procedures, perturbation theory, operator and matrix methods, theory of angular momentum, and elements of the electronic structure of atoms. Prerequisite: 175.
3 units, Aut (Fayer)

CHEM 273. Advanced Physical Chemistry — Topics in advanced quantum mechanics: vibrations and rotations of polyatomic molecules (normal modes, anharmonicity, wavefunctions and energy levels of rigid rotations, vibration-rotation interaction), ab initio electronic structure theory (Hartree-Fock, configuration interaction, multiconfiguration self-consistent-field, and many-body perturbation theory techniques), angular momentum theory (operators and wavefunctions, Clebsh-Gordan coefficients, rotation matrices), time-dependent quantum mechanics (time evolution operator, Feynman path integrals, scattering theory, Born approximation, Lipmann-Schwinger equation, correlation functions), interaction of radiation and matter (semiclassical and quantum theories of radiation, transition probabilities, selection rules). Prerequisite: 271 or Physics 230.
3 units, Win (Dai)

CHEM 275. Advanced Physical Chemistry — The principles and methods of statistical mechanics from the ensemble point of view, statistical thermodynamics, heat capacities of solids and polyatomic gases, chemical equilibria, equations of state of fluids, and phase transitions. Prerequisite: 271.
3 units, Spr (Pande)

CHEM 276. Advanced Physical Chemistry — Time-dependent statistical mechanics: ensemble theory for equilibrium and nonequilibrium systems; static and dynamic correlation functions for fluctuating equilibrium systems; the relationship of correlation functions, spectroscopy, and transport; dynamical models used in chemistry, including classical
mechanics, quantum mechanics, Brownian dynamics, Smoluchowski
dynamics, and Markov processes. Applications to topics in physical
chemistry. Prerequisite: 275.
3 units, Spr (Andersen)

CHEM 277. Topics in Physical Chemistry —Possible topics: structure
elucidation using diffraction techniques, advanced statistical mechanics,
crystal field theory, advanced quantum mechanics, magnetic relaxation,
advanced thermodynamics, chemical applications of group theory. May
be repeated for credit. Prerequisite: 275 or consent of instructor.
3 units (Staff) not given 2005-06

CHEM 278A,B. Research Progress in Physical Chemistry —Required of
all second- and third-year Ph.D. candidates in physical and biophysical
chemistry and chemical physics. Second-year students present their
research progress and plans in brief written and oral summaries (A);
third-year students prepare a written progress report (B).
1 unit, A: Win, B: Win (Staff)

CHEM 279. Physical Chemistry Seminar —Required of graduate
students majoring in physical chemistry. May be repeated for credit.
1 unit, Aut, Win, Spr (Staff)

CHEM 280. Single-Molecule Spectroscopy and Imaging —Theoretical
and experimental techniques necessary to achieve single-molecule sen-
sitivity in laser spectroscopy: interaction of radiation with spectroscopic
transitions; systematics of signals, noise, and signal-to-noise; modulation
and imaging methods; and analysis of fluctuations; applications to
modern problems in biophysics, cellular imaging, physical chemistry,
single-photon sources, and materials science. Prerequisites: 271, previ-
ous or concurrent enrollment in 273.
3 units, Aut (Moerner)

CHEM 297. Bio-Inorganic Chemistry —(Same as BIOPHYS 297.)
Overview of metal sites in biology. Metalloproteins as elaborated
inorganic complexes, their basic coordination chemistry and bonding,
unique features of the protein ligand, and the physical methods used to
study active sites. Active site structures are correlated with function.
Prerequisites: 153 and 173, or equivalents.
3 units (Solomon) not given 2005-06

CHEM 299. Teaching of Chemistry —Required of all teaching as-
sistants in Chemistry. Techniques of teaching chemistry by means of
lectures and labs.
1-3 units, Aut, Win, Spr (Moylan)

CHEM 300. Department Colloquium —Required of graduate students.
May be repeated for credit.
1 unit, Aut, Win, Spr (Staff)

CHEM 301. Research in Chemistry —Required of all graduate students
who have passed the qualifying examination. Open to qualified gradu-
ate students with the consent of the major professor. Research seminars
and directed reading deal with newly developing areas in chemistry and
experimental techniques. May be repeated for credit. Search for adviser
name on Axess.
2 units, Aut, Win, Spr, Sum (Staff)

CHEM 309. Navigating Career Options for Ph.D. Chemists —Planning
a post-graduate career. Topics include career options, job search
strategies, job application process, long-term career planning, and
minority issues in science careers. Workshops focused on developing
professional skills working with CDC and CTL, and panel discussions
with chemistry Ph.D.s working in a range of fields.
1 unit, Sum (Zare)

CHEM 459. Frontiers in Interdisciplinary Biosciences —(Same as CHEMENG 459, BIOSCI 459, PSYCH 459, BIOC 459, BIOE 459.)
For specialists and non-specialists. Sponsored by the Stanford BioX
Program. Three seminars per quarter address scientific and technical
themes related to interdisciplinary approaches in bioengineering,
medicine, and the chemical, physical, and biological sciences. Leading
investigators from Stanford and the world present breakthroughs and
endeavors that cut across core disciplines. Pre-seminars introduce basic
concepts and background for non-experts. Registered students attend
all pre-seminars; others welcome. See http://www.stanford.edu/group/
biox/courses/459.html. Recommended: basic mathematics, biology,
chemistry, and physics.
1 unit, Aut, Win, Spr (Robertson)

RESEARCH AND SPECIAL ADVANCED WORK

CHEM 190. Introduction to Methods of Investigation —Limited to
undergraduates admitted under the honors program or by special arrange-
ment with a member of the teaching staff. For general character and scope,
see 200. Prerequisite: 130. Corequisite: 300.
1-5 units, Aut, Win, Spr, Sum (Staff)

CHEM 200. Research and Special Advanced Work —Qualified gradu-
ate students undertake research or advanced lab work not covered by
listed courses under the direction of a member of the teaching staff. For
research and special work, students register for 200.
1-15 units, Aut, Win, Spr, Sum (Staff)

CLASSICS

Emeriti: (Professors) Mark W. Edwards, Susan Treggiari, Michael Wi-
godsky; (Professor, Teaching): Edward Spofford
Chair: Richard P. Martin
Graduate Director: Walter Scheidel
Undergraduate Director: Joseph Manning
Professors: Alessandro Barchiesi, Susanna Braund, Andrew M. Devine,
Richard P. Martin, Marsh H. McCall, Jr., Ian Morris (Classics, History),
Reviel Netz, Andrea Nightingale (Classics, Comparative Literature),
M. Rush Rehm (Classics, Drama), Walter Scheidel, Michael Shanks,
Susan A. Stephens
Associate Professors: Jody Maxmin (Art and Art History, Classics), Joseph
Manning, Anastasia-Erasmia Peponi, Jennifer Trimble
Assistant Professor: Giovanna Ceserani
Courtesy Professors: Ian Hodder, Chris Bobonich
Lecturers: Maud Gleason, Patrick Hunt, Norbert Lain
Department Offices: Building 20, Main Quad
Mail Code: 94305-2080
Phone: (650) 723-0479
Email: mgsm@stanford.edu
Web Site: http://www.stanford.edu/dept/classics

Courses given in Classics have the subject codes CLASSART, CLASS-
GEN, CLASSGRK, CLASSHIS, and CLASSLAT. For a complete list of
subject codes, see Appendix.

UNDERGRADUATE PROGRAMS

The Department of Classics offers courses on all aspects of Greek and
Roman culture: art and archaeology, cultural studies, history, language,
literature, and philosophy. The department offers five majors in Classics
(Ancient History, Classical Studies, Greek, Greek and Latin, and Latin)
which vary in the number of language courses they require; each of these
majors can be completed in conjunction with a second major in the sci-
ences or in other humanities departments.

The major in Classics affords an opportunity to develop a competence
in the classical languages; an appreciation, comprehension, and enjoyment
of classical literature; and an understanding of the history and culture of
the ancient world and its connections with the present. The department encour-
ages students who wish to do their major work in Classics and also students
who wish to relate work in Classics to work in other departments.
BACHELOR OF ARTS

Prospective majors in Classical Studies, Greek, and Latin (options 1, 2, and 3) are encouraged to declare at the beginning of the junior year, but are urged to discuss their plans with the undergraduate director as early as possible. Students who choose to major in Greek and Latin (option 4) should begin the curriculum as soon as possible, since it is difficult to complete the language requirements without an early start; those with no previous knowledge of Latin or Greek should begin study in the freshman year or as early as possible in the sophomore year.

To declare the major, a student must fill out the Declaration of Major on Axess and meet with the undergraduate director in the Department of Classics. At that time, the undergraduate director assigns each student a department adviser who helps to prepare a program of study; students should meet with their advisers at least once a quarter. Each student’s progress towards fulfillment of the major requirements is recorded in a file kept in the main office. It is the student’s responsibility to work with his or her adviser in keeping this file up to date.

The B.A. degree may be earned by fulfilling the requirements for one of the five following majors:

1. Classical Studies: at least 60 units, including at least two courses in Latin or Greek at the 100 level or higher, or one course in one of the languages at the 100 level or higher plus the series 1, 2, 3, or 51 and 52 in the other language (or an equivalent approved by the department). All courses counted for the degree must be taken for a letter grade. In addition, students are required to take the Majors Seminar (CLASSGEN 176) and at least one course in each of the following five groups: ancient history, art and archaeology, literature in translation, philosophy, and religion and mythology. Students are strongly urged to meet with the undergraduate director to discuss options for pursuing a period of study in the Mediterranean region.

 This major is recommended for students who wish to study the classical civilizations in depth but do not wish to study the languages to the extent required by options 2, 3, and 4. It is not suitable for students who wish to do graduate work in Classics or to teach Latin or Greek in high school, as the language work is insufficient for these purposes.

2. Greek: at least 60 units, including a minimum of 31 units in Greek courses at the 100 level or higher (it is recommended that one of these courses be CLASSGRK 175A, although this course should not be taken until students have completed three years of Greek). All courses counted for the degree must be taken for a letter grade. In addition to courses in Greek, students are required to take the Majors Seminar (CLASSGEN 176) and at least one course in each of the following three groups: history and/or archaeology, literature in translation, and religion and/or philosophy. The introductory sequence (CLASSLAT 1, 2, 3; or 51 and 52) or one 100-level course in Latin is recommended.

 Beginning courses in Greek, if required, may be counted towards the total of 60 units. Relevant courses in other departments of the humanities may count towards the major with the consent of the undergraduate director. Students are strongly urged to meet with the undergraduate director to discuss options for pursuing a period of study in the Mediterranean region.

3. Latin: at least 60 units, including a minimum of 31 units in Latin courses at the 100 level or higher (it is recommended that one of these courses be CLASSLAT 175A, although this course should not be taken until students have completed three years of Latin). All courses counted for the degree must be taken for a letter grade. In addition to courses in Latin, students are required to take the Majors Seminar (CLASSGEN 176) and at least one course in each of the following three groups: history/archaeology, literature in translation, and philosophy/religion. The introductory sequence (CLASSGRK 1, 2, 3, or 51 and 52) or one 100-level course in Greek is recommended.

 Beginning courses in Latin, if required, may be counted towards the total of 60 units. Relevant courses in other departments of the humanities may count towards the major with the consent of the undergraduate director. Students are strongly urged to meet with the undergraduate director to discuss options for pursuing a period of study in the Mediterranean region.

4. Greek and Latin: at least 60 units, including 30 units in Greek courses and the same number in Latin. All courses counted for the degree must be taken for a letter grade. It is recommended that students take CLASSGRK 175A or CLASSLAT 175A (or both), although these courses should not be taken until students have completed three years of the respective language. All students are required to take the Majors Seminar (CLASSGEN 176); it is strongly recommended that students take a course in ancient history. Relevant courses in other departments of the humanities may count towards the major with the consent of the undergraduate director. Students are strongly urged to meet with the undergraduate director to discuss options for pursuing a period of study in the Mediterranean region.

5. Ancient History Major: at least 60 units of approved courses. All courses counted for the degree must be taken for a letter grade. Students must satisfy four requirements:

 a) Writing in the Major (WIM) Requirement: this is fulfilled by taking the Majors Seminar (CLASSGEN 176).

 b) Core Requirements: every major must take at least three survey courses in ancient history (such as Ancient Empires I/II, History and Culture of Ancient Egypt, The Greeks, Hellenistic History, Roman History I/II).

 c) Depth Requirement: a major must take at least 40 units of ancient history and civilization courses, drawn from courses with CLASSHIS and CLASSGEN prefixes. IHUM 31A,B. The Ancient Empires I and II may be counted toward this or the core requirement. The courses chosen must be approved in advance by the undergraduate director. With the approval of the instructor and the undergraduate director, students may substitute graduate seminars in ancient history for some of these courses.

 d) Breadth Requirement: each student must take at least 4 units in each of the following areas: archaeology and art, comparative ancient civilizations, and historical and social theory. The courses chosen must be approved in advance by the undergraduate director, and are normally chosen from the list of areas below:

 1. Archaeology and Art: for example, any course with the CLASSART prefix: CASA 1/201, 90, 301; ARTHIST 120A, 200, 200C.

 2. Comparative Ancient Civilizations: majors must take a course on the ancient world outside the Mediterranean and western Asia, for example, ANTHSCC 3, 7, 103, 141; HISTORY 192.

 3. Historical and Social Theory: for example, CASA 1/201, 90; HISTORY 107, 206; SOC 1, 110, 113, 140, 142, 170.

 Students are strongly urged to meet with the undergraduate director to discuss options for pursuing a period of study in the Mediterranean region.

Note 1: University credit earned by placement tests or advanced placement work in secondary school is not counted towards any major program in the department; work done in other universities or colleges is subject to department evaluation.

Note 2: A letter grade is required in all courses taken for the major. No course receiving a grade lower than ‘C’ is counted toward fulfilling major requirements.

MINORS

The undergraduate director meets with each student who opts for a minor to discuss curriculum choices and assigns the student an adviser in the relevant field. Students are required to work closely with their advisers to create a cohesive curriculum within each area. Students may organize their curriculum according to different principles: for example, they may wish to focus on a specific historical period (Classical Athens, Imperial Rome), or on a specific theme or topic (women in antiquity). After consulting with the adviser, each student must submit (in writing) a “Proposed Curriculum” to the undergraduate director. Students may proceed with the minor when the undergraduate director has approved the proposal. Courses offered in Greek and Latin above the 100 level may count toward the minor, provided the subject matter is suitable.

All students who minor in Classics are required to take the Majors Seminar (CLASSGEN 176), which is writing intensive. Students may choose among three minors in Classics:

1. Classical Languages: students are required to take a minimum of five courses in Greek or in Latin plus the Majors Seminar (CLASSGEN
176). Students wishing to combine Greek and Latin may only do so if courses for one of the two languages are all above the 100 level; for example, CLASSGRK 1, 10, plus CLASSLAT 103, 111, 175.

2. **History**: students are required to take a minimum of five courses in History, Art History, and Archaeology plus the Majors Seminar (CLASSGEN 176). Courses offered in Latin and Greek that focus on historical topics or authors may count toward the minor.

3. **Literature and Philosophy**: students are required to take a minimum of five courses in classical literature or philosophy plus the Majors Seminar (CLASSGEN 176). Courses offered in Latin and Greek that focus on philosophical or literary topics or authors may count toward the minor.

HONORS PROGRAMS

A minimum grade point average (GPA) of 3.3 in Classics courses is required for students to enroll in the honors program. To be considered for honors in Classics, the student must select a professor who can supervise his or her honors thesis. Together with the supervisor, the student writes a two- to three-page proposal at the beginning of the senior year. The proposal should outline the project in detail, list relevant courses that have been taken, and name the supervisor. The department gives approval only if it is satisfied that the student has a sufficient basis of knowledge derived from department course work in the general areas the thesis covers (i.e., course work in Art, Greek and/or Latin language, History, Literature, Philosophy, etc.). If the proposal is approved, the student may sign up for undergraduate thesis (CLASSGEN 199) during one or two quarters of the senior year for a maximum of 6 units a term, up to an overall total of 10 units. Honors are awarded only if the essay receives a grade of ‘B+’ or higher from the supervisor and a second reader.

HUMANITIES

For majors in Classics with appropriate interests, the honors program in Humanities is available, a description of which is found under the “Interdisciplinary Studies in Humanities” section of this bulletin.

OVERSEAS STUDIES

Funding – Students whose record in Classics indicates that they are fully qualified for a given program may apply for funding from the Department of Classics. Students must submit a proposal to the undergraduate director, which should include an itemized list of expenses based on the fees charged by the program (that is, room, board, tuition, and other expenses). Limited funding is available each year; preference is shown to students with strong records.

Programs—

1. **Rome**: Classics majors are encouraged to apply for the Intercollegiate Center for Classical Studies (ICCS) in Rome which is managed by Duke University for about 50 constituent colleges and universities. It is open to Stanford majors in Classics, History, and Art History. All courses receive full credit at Stanford and may be applied to the respective major. Students interested in this program should consult the undergraduate director and the ICCS representative in the Department of Classics as early as possible in their career at Stanford to plan their course preparation and application. Competition is strong and applicants are expected to have taken one or more courses in Roman history and at least two years of Latin before they arrive in Rome. Brochures are available at the department office.

 Other programs offer a quarter, semester, or summer session in Rome. Interested students are urged to visit Bechtel International Center.

2. **Greece**: students are encouraged to apply for the summer session at the American School of Classical Studies in Athens. The school is recommended principally for Classics majors with at least two years of ancient Greek. A student wishing to apply should prepare by taking courses in Greek history, archaeology, and art; beginning modern Greek is strongly recommended. Applicants should see the undergraduate director early in the academic year. Other programs offer a quarter, semester, or summer session in Greece. Interested students are urged to visit Bechtel International Center.

GRADUATE PROGRAMS

MASTER OF ARTS

University requirements for the master’s degree are described in the “Graduate Degrees” section of this bulletin. Students who have completed an undergraduate major in Classics (in Greek, Latin, or Greek and Latin) or its equivalent may be accepted as candidates for the M.A. degree in Classics and may expect to complete the program in twelve months (usually three quarters of course work plus three months study for the thesis or examination). Students with an undergraduate major in Classics (Ancient History or Classical Studies) or without an undergraduate major in Classics may also be accepted as candidates, though they may require a longer period of study before completing the requirements for the degree. These requirements are:

1. Attaining a standard of scholarship such as would be reached by three quarters of study in the department after fulfilling the requirements for an undergraduate major in the department. Normally, this means completing at least 25 units of graduate courses and 20 units of work at the 140 level or above.

2. Satisfactory completion of one Greek course at the 100 level (if the undergraduate major has been Latin) or one Latin course at the 100 level (if the undergraduate major has been Greek). This requirement is waived for students with an undergraduate major in Classics (Greek and Latin).

3. Passing an examination testing the candidate’s ability to translate into English from a selected list of Greek and/or Latin authors.

4. Satisfactory completion of the 275A,B sequence in at least one language (Latin or Greek).

5. Writing a thesis, or passing of an examination on a particular author or topic, or having written work accepted by the graduate committee as an equivalent. Three completed and satisfactory seminar papers are normally an acceptable equivalent.

6. A reading examination in French or German; these examinations are administered every quarter.

7. Completion of a Program Proposal for a Master’s Degree form in the first quarter of enrollment.

Candidates for the Ph.D. degree may also (on the recommendation of the department) become candidates for the M.A. degree. In their case, requirement 5 above is waived provided that they have completed some work beyond the course requirements listed under requirements ‘1’ and ‘2’ above.

DOCTOR OF PHILOSOPHY

University requirements for the Ph.D. are described in the “Graduate Degrees” section of this bulletin. There are four specializations within the Classics Ph.D. program: language and literature; classical archaeology; ancient history; and ancient philosophy.

1. **Language and Literature**—Candidates for the Ph.D. degree in Classics with specialization in language and literature must fulfill the following requirements:

 1. Complete 135 units of academic credit or equivalent in study beyond the bachelor’s degree at the end of the fourth year.

 2. This includes:

 a) Greek and Latin Survey sequence (CLASSGEN 207-208)

 b) Greek and Latin Syntax sequence (CLASSGRK 275A,B and CLASSLAT 275A,B)

 c) Semantics of Grammar sequence (CLASSGEN 205A, B)

 d) Twelve graduate seminars, nine of which must be Classics seminars, and one of the remaining three of which must be outside the department. The other two seminars may be in Classics, from other departments (with Director of Graduate Studies approval), and/or directed readings. However, no more than two directed readings can be taken. Classics seminars are generally offered for 4-5 units. In some cases, instructors allow a student to complete a seminar for 4 units without requiring a written paper but with completion of all other requirements.
3. Examinations:
 a) Students must take Greek and Latin translation exams at the end of each survey sequence (the end of the first and second years). These exams are based on the Greek and Latin reading lists available on the Classics Department website at: http://www.stanford.edu/dept/classics. Greek and Latin survey courses cover less than half of the material on which the translation exams test, and students need to prepare much of the work on their own. It is possible to take both exams in the same year if the student chooses. However, students are obligated to take the exam in the language which the survey has covered that year. The exam consists of a choice of six of eight passages, and students are allowed three hours. A grade of 'B-' or higher, on every passage, is required to pass. If a student does not attain a 'B-', the exam must be retaken later in the summer before registering for the Autumn Quarter, in order to continue in the program. The exam can only be retaken once.
 b) Students must pass modern language translation exams in both German and French; Italian or modern Greek may be substituted in place of French, with consent of the graduate director. Students arrange with the student services officer to take the exam. One modern language exam must be passed by the end of the second year, the other by the end of the third year. These examinations are administered once each quarter.
 c) At the beginning of Autumn Quarter of the third year, students take general examinations in four of the following fields: Greek literature, Latin literature, ancient philosophy, Greek history, and Roman history. Students select the fields in consultation with the graduate director no later than June of the second year of graduate study. Candidates must have taken at least one course at Stanford in each of the chosen fields (in the case of ancient philosophy, a seminar or its equivalent); students need to confer with the professor overseeing the exam. General examinations must be taken by October of the third year.
 d) the University oral examination, which is a defense of the candidate’s dissertation.

4. The graduate director assigns a dissertation proposal director to each candidate who has passed the general examination. During the third year, the candidate, in consultation with the dissertation proposal director, prepares a dissertation proposal which is examined by the dissertation proposal defense committee (set up by the dissertation proposal director and consisting of the dissertation proposal director and two other faculty members, one of whom may be from outside the department), no later than the end of the first quarter of the fourth year. If the proposal is deemed unsatisfactory, this proposal examination is repeated in the following quarter and must be passed. Subsequently, each candidate, in consultation with the graduate director and the dissertation proposal director, selects a dissertation director who must be a member of the Academic Council. The candidate, the dissertation director, and the graduate committee collaborate to select an appropriate dissertation reading committee. Two of the three members of the reading committee, including the chair, must be members of the Academic Council.

5. All students are required to undertake the equivalent of four one-semester courses of teaching under department supervision. This teaching requirement is normally completed during the second and third years of study.

6. Atypical program for a graduate student in Classics is as follows. First year: CLASSLAT 275A,B (6 units), CLASSGRK 275A,B (6 units), CLASSGEN 205A,B, Semantics (3 units), either CLASSGEN 207A-C or 208A-C, Literature Survey (offered alternate years; 15 units), and three elective seminars (12-15 units). Second year: either CLASSGEN 207A,B,C or 208A,B,C, Literature Survey (offered alternate years) (15 units), five to nine elective seminars (20-45 units), and one to three Teaching Assistantships (9-27 units). Third year: three to eight elective seminars (12-40 units), one to three Teaching Assistantships (9-27 units). Fourth year: three quarters of predoctoral dissertation research assistantship (30 units).

II. Classical Archaeology

Candidates for the Ph.D. degree in Classics with a specialization in classical archaeology must fulfill the following requirements:

1. Complete 135 units of academic credit or equivalent in study beyond the bachelor’s degree at the end of the candidate’s fourth year.

2. These must include:
 a) at least three graduate (200) level courses in Latin and/or Greek literature
 b) History of Classical Archaeology (CLASSART 201), to be taken as early as possible in the candidate’s Stanford career
 c) the interdepartmental graduate core sequence in archaeology. The Archaeology Center announces the courses which fulfill this requirement. The core sequence currently comprises a seminar in archaeology theory and a course on archaeological methods.
 d) at least one further course outside the Classics department
 e) at least five graduate seminars in classical archaeology
 f) at least three graduate seminars in ancient history
 g) Students may petition to count independent study courses in place of up to two required courses, but no more.
 h) Students who enter the program with only one ancient language at the level needed for graduate study are strongly encouraged to take additional course work to reach graduate (200 and above) level in another language.
 i) Students are urged to enroll in or audit other undergraduate courses that may fill gaps in their undergraduate training
 j) All students are expected to take part in archaeological fieldwork in the classical world areas.
 k) At least three consecutive quarters of course work must be taken at Stanford.

3. Examinations:
 a) As soon as students arrive, they must take a diagnostic exam in either Greek or Latin. Depending on performance, students may be required to enroll in undergraduate language classes in that language to improve their skills to the level required for graduate work.
 b) reading examinations in two of the following languages: French, German, Italian, and modern Greek. Candidates may petition to substitute a different modern language for one of these, if their area of specialization requires it. One modern language exam must be passed by the end of the second year, the other by the end of the third year. These examinations are administered once each quarter.
 c) a translation examination from Latin or Greek into English. This examination must be taken either at the end of the first year or at the end of the second year. A grade of 'B-' or higher on every passage is required to pass. If a student does not attain a 'B-', the exam must be retaken later in the summer before registering for Autumn Quarter, in order to continue in the program. The exam can only be retaken once.
 d) general examinations in Greek archaeology and Roman archaeology, and two of the following fields: Greek literature, Latin literature, ancient philosophy, Greek history, Roman history. Candidates select the fields in consultation with the graduate director no later than the first week of Spring Quarter of the second year of graduate study. Candidates must have taken at least one course at Stanford in each of the chosen fields (in the case of ancient philosophy, a seminar or its equivalent). General examinations must be taken by October of the third year.
 e) the University oral examination, which is a defense of the candidate’s dissertation.

4. The graduate director assigns a dissertation proposal director to each candidate who has passed the general examination. During the third year, the candidate, in consultation with the dissertation proposal director, prepares a dissertation proposal which is examined by the dissertation proposal defense committee (set up by the dissertation proposal director and consisting of the dissertation proposal director and two other faculty members, one of whom may be from outside the department), no later than the end of the first quarter of the fourth year. The exam can only be retaken once.

5. All students are required to undertake the equivalent of four one-semester courses of teaching under department supervision. This teaching requirement is normally completed during the second and third years of study.

6. Atypical program for a graduate student in Classics is as follows. First year: CLASSLAT 275A,B (6 units), CLASSGRK 275A,B (6 units), CLASSGEN 205A,B, Semantics (3 units), either CLASSGEN 207A-C or 208A-C, Literature Survey (offered alternate years; 15 units), and three elective seminars (12-15 units). Second year: either CLASSGEN 207A,B,C or 208A,B,C, Literature Survey (offered alternate years) (15 units), five to nine elective seminars (20-45 units), and one to three Teaching Assistantships (9-27 units). Third year: three to eight elective seminars (12-40 units), one to three Teaching Assistantships (9-27 units). Fourth year: three quarters of predoctoral dissertation research assistantship (30 units).
If the proposal is deemed unsatisfactory, this proposal examination is repeated in the following quarter and must be passed. Subsequently, each candidate, in consultation with the graduate director and the dissertation proposal director, selects a dissertation director who must be a member of the Academic Council. The candidate, the dissertation director, and the graduate committee collaborate to select an appropriate dissertation reading committee. Two of the three members of the reading committee, including the chair, must be members of the Academic Council.

5. All students are required to undertake the equivalent of four, one-quarter courses of teaching under department supervision. This teaching requirement is normally completed during the second and third years of study.

III. Ancient History—Candidates for the Ph.D. degree in Classics with specialization in ancient history must fulfill the following requirements:

1. Complete 135 units of academic credit or equivalent in study beyond the bachelor’s degree at the end of the fourth year. This includes:
 a) in the Autumn Quarter of the first year, Approaches to History (HISTORY 304), offered in the History department
 b) two proseminars. These introduce students to primary sources of evidence for ancient history that require special training: papyrology, epigraphy, paleography, numismatics, and archaeology. The department should offer one each year, but students may also fulfill this requirement by doing a directed reading, or (with the approval of the ancient history track adviser) by taking a course at another university with which Stanford has an exchange agreement.
 c) three skills courses relevant to the individual student’s chosen research approach. For example, a student could take classes in economy, demography, legal history, or anthropology. The skills courses can also be used to learn other ancient or modern languages, either by course work or directed reading. Students need to consult with their advisers and the graduate director.
 d) 10 graduate seminars. These normally have course numbers in the 300s. Most of these are taken in the department, but students may also take seminars outside the department or at another university with which Stanford has an exchange agreement. Approval from the ancient history adviser and the graduate director must be obtained prior to exercising this option. While only two of the ten seminars can be replaced by directed readings, up to three additional seminars may be taken outside the department. This leaves five ancient history seminars that must be chosen from those in the department. Other Classics graduate seminars may be substituted for these ancient history seminars, with approval of the ancient history track adviser.
 e) The range and sequence of other courses to be taken depend on which of the following two options the student selects within the Ancient History track.

1. **Option 1:** Students focus more on one language. This requires students to take: the three quarter survey course in either Greek or Latin (CLASSGEN 207A,B,C or CLASSGEN 208 A,B,C); the fifteen-week syntax course in the same language (CLASSGEN 275A,B or CLASSLAT 285A,B); one quarter of the survey course sequence in the other language; and the two quarter Semantics of Grammar sequence (CLASSGEN 205A,B).

 2. **Option 2:** Students emphasize broader linguistic skills. This requires students to take the three quarter survey sequence in both Greek and Latin (CLASSGEN 207A,B,C and 208A,B,C).

2. Examinations:
 a) As soon as students arrive, they take diagnostic exams in two areas of ancient history. Choices are: Egyptian, Greek, and Roman history. The test is mainly on narrative history, especially important names, dates, and events. Depending on performance, students may be asked to sit in on the undergraduate history courses and take directed reading or a graduate survey if offered. Reading lists are available upon request.
 b) Students must take the final offered at the end of each quarter of Greek or Latin survey (for Option 1 above) or both Greek and Latin surveys (for Option 2 above). Students must earn a “B-” or higher on each final to pass.
 c) Students must pass modern language translation exams in both German and French; Italian or modern Greek may be substituted in place of French with consent of the graduate director. One modern language exam must be passed by the end of the second year, the other by the end of the third year. These examinations are administered once each quarter.
 d) General examinations: Students must take two exams in history (Egyptian, Greek, or Roman) and two exams in other fields (Greek literature, Latin literature, Greek archaeology, Roman archaeology, or ancient philosophy). Students select the fields in consultation with the graduate director no later than June of their second year of graduate study. Candidates must have taken at least one course at Stanford in each of the chosen fields (in the case of ancient philosophy, a seminar or its equivalent). General examinations must be taken by October of the third year. In preparing for the general examinations, candidates are expected to make full use of relevant secondary material in modern languages. They should therefore plan to satisfy the requirements in French and German as soon as possible, preferably before the translation examinations.
 e) the University oral examination which is a defense of the candidate’s dissertation.

3. The graduate director assigns a dissertation proposal director to each candidate who has passed the general examination. During the third year, the candidate, in consultation with the dissertation proposal director, prepares a dissertation proposal which is examined by the dissertation proposal defense committee (set up by the dissertation proposal director and consisting of the dissertation proposal director and two other faculty members, one of whom may be from outside the department), no later than the end of the first quarter of the fourth year. If the proposal is deemed unsatisfactory, this proposal examination is repeated in the following quarter and must be passed. Subsequently, each candidate, in consultation with the graduate director and the dissertation proposal director, selects a dissertation director who must be a member of the Academic Council. The candidate, the dissertation director, and the graduate committee collaborate to select an appropriate dissertation reading committee. Two of the three members of the reading committee, including the chair, must be members of the Academic Council.

4. All candidates are required to undertake the equivalent of four, one-quarter courses of teaching under department supervision. This teaching requirement is normally completed during the second and third years of study.

IV. Joint Program in Ancient Philosophy—This specialization is jointly administered by the departments of Classics and Philosophy and is overseen by a joint committee composed of members of both departments. It provides students with the training, specialist skills, and knowledge needed for research and teaching in ancient philosophy while producing scholars who are fully trained as either philosophers or classicists.

Graduate students admitted by the Classics department receive their Ph.D. from the Classics department. This specialization includes training in ancient and modern philosophy. Each student in the program is advised by a committee consisting of one professor from each department.

All candidates for the Ph.D. degree in Classics with specialization in ancient philosophy must fulfill the following requirements:

1. Complete 135 units of academic credit or equivalent in study beyond the bachelor’s degree at the end of the fourth year. This includes:
 a) all the requirements listed for the language and literature specialization in the graduate program in Classics (see “I” above).
 b) three courses in the Philosophy department (including 100/200 and two courses at the 200 level or higher). These include:
 1. one course in logic which can be fulfilled at any level
 2. one course in aesthetics, ethics, or political philosophy
one course in metaphysics, epistemology, philosophy of mind, or philosophy of science.
c) at least three courses in ancient philosophy at the 200 level or above, one of which must be in the Philosophy department.
d) All of the courses taken in the Philosophy department count for seminar credit (i.e. as contributing to the 12 seminar requirement in the Language and Literature track in the Classics department).
2. Examinations: The requirements are the same as those listed in the language and literature specialization, except that one of the four areas of general examination must be taken in ancient philosophy.
3. The graduate director assigns a dissertation proposal director to each candidate who has passed the general examination. During the third year, the candidate, in consultation with the dissertation proposal director, prepares a dissertation proposal which is examined by the dissertation proposal defense committee (set up by the dissertation proposal director and consisting of the dissertation proposal director and two other faculty members, one of whom may be from outside the department), no later than the end of the first quarter of the fourth year. If the proposal is deemed unsatisfactory, this proposal examination is repeated in the following quarter and must be passed. Subsequently, each candidate, in consultation with the graduate director and the dissertation proposal director, selects a dissertation director who must be a member of the Academic Council. The candidate, the dissertation director, and the graduate committee collaborate to select an appropriate dissertation reading committee. Two of the three members of the reading committee, including the chair, must be members of the Academic Council.
4. All students are required to undertake the equivalent of four, one-quarter courses teaching under department supervision. This teaching requirement is normally completed during the second and third years of study.

PH.D. MINOR

For a graduate minor, the department recommends at least 20 units in Latin or Greek at the 100 level or above, and at least one course at the graduate (200) level.

CLASSES AND A MINOR FIELD

The Ph.D. in Classics may be combined with a minor in another field, such as anthropology, history, humanities (see below), or classical linguistics (see below). Requirements for the minor field vary, but might be expected to involve about six graduate-level courses in the field and one written examination, plus a portion of the University oral exam. Such a program is expected to take five years. The department encourages such programs for especially able and well prepared students and is normally available only to freshmen seeking to fulfill I.H.U.M. requirements; see the “Introduction to the Humanities” section of this bulletin for further information. Prospective majors in Classics are advised to consider satisfying their I.H.U.M. requirements by registering for the following courses.

INTRODUCTION TO THE HUMANITIES (I.H.U.M.)

The following Introduction to the Humanities courses are taught by Classics department faculty members. I.H.U.M. courses are typically available only to freshmen seeking to fulfill I.H.U.M. requirements; see the “Introduction to the Humanities” section of this bulletin for further information. Prospective majors in Classics are advised to consider satisfying their I.H.U.M. requirements by registering for the following courses.

I.H.U.M. 31A. Ancient Empires — Two-quarter sequence. A decisive place and period in world history: Mediterranean basin from 800 B.C. to 400 A.D. Great empires (Assyria, Persia, Macedonia, and Rome) were carved out in war and changed the course of human development. Why did these empires arise when and where they did, how did they work, and what is their legacy? Their economic, religious, and artistic achievements are balanced against genocide, enslavement, and warfare by examining the evidence surviving from ancient literature and archaeology, and tracing the roles of religion, property, and freedom. What they mean for the world today. GER:I.H.U.M.-2,3

I.H.U.M. 31A, 5 units, Win (Morris)

I.H.U.M. 31B, 5 units, Spr (Morris)

GREEK UNDERGRADUATE

Students whose major work is in another department and who wish to fulfill a departmental foreign language requirement by taking Greek should consult their department advisors to determine the precise nature of that department’s requirements.

Courses in Greek have the subject code CLASSGRK. Classics majors and minors must take courses for letter grade.

CLASSGRK 1, 2, 3. Beginning Greek: Attic Prose — The language of Attic prose, leading to reading passages from Plato and other authors of the classical period. No previous knowledge of Greek is assumed. Classics majors and minors must take course for letter grade.

CLASSGRK 10, Intensive Beginning Greek — Equivalent to CLASSGRK 1, 2, and 3. Goal is to read easy classical or New Testament Greek by the end of the quarter. Short readings in philosophical Greek. Classics majors and minors must take course for letter grade.

INTERMEDIATE/ADVANCED

Students are admitted to these courses by completing CLASSGRK 3 or 10, or on the basis of previous work in secondary school or elsewhere. Usually two to three years of secondary school Greek qualifies a student for 101, three to four years for 111. Students with previous knowledge of Greek should consult the Undergraduate Director in Classics to determine the course for which they are best suited.

Students whose major work is in another department and who wish to fulfill a departmental foreign language requirement by taking Greek should consult their department advisors to determine the precise nature of that department’s requirements. Most departments are satisfied if part of the series 101, 102, 103 is completed.
CLASSGRK 101. Intermediate Greek: Athenian Oratory — The art of legal and political speechmaking in Athens during the 5th and 4th centuries B.C.E. Historical and cultural background, rhetorical technique, and review of vocabulary and syntax.
 5 units, Aut (Lakin)

CLASSGRK 102. Intermediate Greek: Tragedy — One play of Aeschylus, Sophocles, or Euripides is chosen each year for reading and analysis with attention to questions of poetic, dramatic structure, theatrical performance, myth, and history. Classics majors and minors must take course for letter grade.
 5 units, Win (Aftosmis)

CLASSGRK 103. Intermediate Greek: Homer — Selections from the Iliad. Focus is on reading Homeric poetry with fluency and rapid comprehension. Style, meter, poetic techniques, and cultural background. Classics majors and minors must take course for letter grade.
 5 units, Win (Aftosmis)

CLASSGRK 111. Advanced Greek: Lyric Poetry — Invents, love songs, drinking songs, elegies, and choral odes from 700-500 B.C.E. Readings include Sappho, Alcaeus, Archilochus, Solon, and Alcman. Classics majors and minors must take course for letter grade.
 3-5 units, Spr (Peponi)

CLASSGRK 112. Advanced Greek: Aristophanes — Poetry, satire, puns, and slapstick. Focus is on translation of Lysistrata and The Clouds. Other plays read in English. Theater, sexuality, philosophy, and Athenian politics.
 3-5 units, Aut (Urquhart)

CLASSGRK 113. Advanced Greek: Scientific Writing — Reading texts from Greek mathematics, physics, biology, and other areas. The relationship between form and meaning in the presentation of scientific information. Classics majors and minors must take course for letter grade.
 3-5 units, Win (Netz)

CLASSGRK 175A,B/275A,B. Greek Syntax: Prose Composition — (First-year graduate students register for 275A,B.) The nuances of Greek syntax and style, stylistic analysis of prose authors, techniques of sight translation, and writing idiomatic Greek prose. Begins Winter Quarter and continues through the 5th week of Spring Quarter. Prerequisite for undergraduates: three years of Greek. Classics majors and minors must take course for letter grade.
 A: 2 units, B: 4 units (Staff) not given 2005-06

LATIN

UNDERGRADUATE

Students whose major work is in another department and who wish to fulfill a departmental foreign language requirement by taking Latin should consult their department’s advisers to determine the precise nature of those requirements. Most departments are satisfied if part of the series 101, 102, 103 is completed.

Courses in Latin have subject code CLASSLAT.

CLASSLAT 1,2,3. Beginning Latin: Vocabulary and Syntax — Vocabulary and syntax of the classical language, preparing students for readings including Cicero, Caesar, and Catullus. No previous knowledge of Latin is assumed. Classics majors and minors must take course for letter grade.
 5 units, 1: Aut (Staff), 2: Win (Staff), 3: Spr (Gladhill)

CLASSLAT 10. Intensive Beginning Latin — Equivalent to CLASSLAT 1, 2, 3; or 51 and 52. Goal is to read easy Latin prose and poetry by the end of the quarter. Classics majors and minors must take course for letter grade.
 8-9 units, Sum (Staff)

CLASSLAT 51,52. Accelerated Beginning Latin — Classics majors and minors must take course for letter grade.
 4 units, A: Win, B: Spr (Lain)

INTERMEDIATE/ADVANCED

Students are admitted to these courses by completing CLASSLAT 3 or 10, or on the basis of previous work in secondary school or elsewhere. Usually two to three years of secondary school Latin qualifies a student for 101, three to four years for 111. Students with previous knowledge of Latin should consult the Undergraduate Director in Classics to determine the course for which they are best suited. Students whose major work is in another department and who wish to fulfill a departmental foreign language requirement by taking Latin should consult their department's advisers to determine the precise nature of those requirements. Most departments are satisfied if part of the series 101, 102, 103 is completed.

CLASSLAT 101. Intermediate Latin: Portrayals of Rome — Readings introducing major literary genres and figures of the period. Focus is on physical, moral, and societal aspects of Rome. Classics majors and minors must take course for letter grade. May be repeated for credit.
 5 units, Aut (Levin-Richardson)

CLASSLAT 102. Intermediate Latin: Literature of the Empire — Readings from the Satyricon and Seneca’s Letters. Classics majors and minors must take course for letter grade. May be repeated for credit.
 5 units, Win (Visvardi)

CLASSLAT 103. Intermediate Latin: Virgil — Readings from the Aeneid; its literary, artistic, and cultural background. Classics majors and minor must take course for letter grade. May be repeated for credit.
 5 units, Spr (Braund)

CLASSLAT 111. Advanced Latin: Cicero — Political and constitutional theory, early Roman history, attitudes to Greek culture, and a vision of the afterlife in De republica. Classics majors and minors must take course for letter grade. May be repeated for credit.
 3-5 units, Aut (Collins)

CLASSLAT 112. Advanced Latin: Seneca — Seneca’s Medea. Focus is on Roman tragedy and the figure of Medea in literature. Classics majors and minors must take course for letter grade. May be repeated for credit.
 3-5 units, Win (Balsley)

CLASSLAT 113. Advanced Latin: Elegiac Poetry — The genre of love elegy as practiced by Propertius, Ovid, and Tibullus. Its antecedents and related forms in classical literature. Classics majors and minors must take course for letter grade. May be repeated for credit.
 3-5 units, Spr (Ahern)

CLASSLAT 117. Advanced Latin: Augustine — The Confessions; its literary, cultural, and philosophical background. May be repeated for credit.
 3-5 units, Aut (Staff)

CLASSLAT 175A,B/275A,B. Latin Syntax — (First-year graduate students register for 275A,B.) Intensive review of Latin syntax. Begins Autumn Quarter and continues through the 5th week of Winter Quarter. Prerequisite for undergraduates: three years of Latin. Classics majors and minors must take course for letter grade.
 A: 4 units, B: 2 units, Win (5 weeks) (Devine)

GRADUATE

These courses have subject code CLASSGEN.

 2 units, A: Aut, B: Win (Devine)
CLASSGEN 207A,B,C/208A,B,C. Survey of Greek and Latin Literature—Required two-year sequence focusing on the origins, development, and interaction of Greece and Latin literature, history, and philosophy. Greek and Latin material are taught in alternate years. Some courses may be continued the following quarter by arrangement with instructor; this usually requires an extended research paper based on work related to the course.

CLASSGEN 207A. Survey of Greek and Latin Literature: Republican Latin
4-5 units (Staff) alternate years, given 2006-07

CLASSGEN 207B. Survey of Greek and Latin Literature: Augustan Age
4-5 units (Staff) alternate years, given 2006-07

CLASSGEN 207C. Survey of Greek and Latin Literature: Imperial Latin
4-5 units (Stephens) alternate years, given 2006-07

CLASSGEN 208A. Survey of Greek and Latin Literature: Archaic Greek
4-5 units, Aut (Martin)

CLASSGEN 208B. Survey of Greek and Latin Literature: Classical Greek
4-5 units, Win (Nightingale)

CLASSGEN 208C. Survey of Greek and Latin Literature: Hellenistic and Late Greek
4-5 units, Spr (Staff)

COURSES IN TRANSLATION

UNDERGRADUATE

These courses have the subject code CLASSGEN.

CLASSGEN 3N. Introduction to the Writing Systems of Ancient Egypt—Stanford Introductory Seminar. Preference to freshmen. The structure of Egyptian grammar, basic hieroglyphic signs, the culture and institutions of writing, and the range of texts from ancient Egypt.
3-4 units, Spr (Manning)

CLASSGEN 12. Greek Tragedy—The tragedies produced in 5th-century Athens as a seminal moment in the history of human creativity; their range and depth. Twelve plays by Aeschylus, Sophocles, and Euripides studied with Aristotle’s *Poetics* and Aristophanes’ *Frogs*. Emphasis is on the power and complexity of the poetry, the connections to 5th-century social and political issues, and the performance conditions and conventions of the ancient theater. GER:DB-Hum
3-5 units (McCall) not given 2005-06

CLASSGEN 18. Greek Mythology—The heroic and divine in the literature, mythology, and culture of archaic Greece. Interdisciplinary approach to the study of individuals and society. Illustrated lectures. Readings in translation of Homer, Hesiod, Herodotus, and the poets of lyric and tragedy. GER:DB-Hum
3-5 units, Aut (Hunt)

CLASSGEN 22N. Technologies of Civilization: Writing, Number, Money—Stanford Introductory Seminar. Preference to freshmen. The technological keys to the growth of civilization that enabled the creation of complex societies and enhanced human cognition. The role of cognition in shaping history and the role of history in shaping cognition. Global perspective, emphasizing the Western tradition and its ancient Greek roots. GER:DB-Hum
3-4 units, Spr (Netz)

CLASSGEN 27N. The Invention of Travel, Ancient and Modern—Stanford Introductory Seminar. Preference to freshmen. The discovery of the New World imperiled the authority and outdated the geography of ancient travel texts. New definitions of primitive people and modern explorations inspired new archaeological ventures in the Mediterranean. How much is new and old in any travel experience? Are tourists a modern or ancient invention? Sources include Homer, Herodotus, 18th- and 19th-century explorers, and archaeological texts and images. GER:DB-Hum
4-5 units, Win (Ceserani)

CLASSGEN 31. Serious Laughter in Ancient Athens—The bawdy, satirical, and lyric compositions of Aristophanes and the view they offer of Athenian society. Relationships between comic drama and the dramas of actual Athenian social life. The meaning and power of ancient and modern popular culture; modern analogues from stand-up to cartoons.
3-5 units, Win (Martin)

CLASSGEN 32. New Atlantis: Greek Ideas and American Culture—Greek thought from the 8th through 5th centuries B.C.E. through comparisons to modern American political and intellectual culture. Topics include categories initially shaped by the Greeks such as law, ethics, and the arts.
3-5 units, Spr (Martin)

CLASSGEN 33N. Women Poets in Antiquity—Stanford Introductory Seminar. Preference to freshmen. Sappho and other women throughout Classical antiquity. Multiple sources of indirect information regarding the lives and works of women poets, even in cases where their poetry has been lost.
3-5 units, Win (Peponi)

CLASSGEN 34. Ancient Athletics—The cultural history of ancient athletics, including funerary games described in Homer and Virgil. The balance between soul and body sought by ancient philosophers including Plato. Striving for excellence, finding glory without seeking it, and aiming for self-mastery in athleticism and intellectual training. Scholar-athletes at Nemea, Delphi, and Isthmia; city-state festivals hosted by Athens and Sparta.
3-5 units, Win (Hunt)

CLASSGEN 50N. Journeys of the Mind—Stanford Introductory Seminar (Same as COMPLIT 50N.) The concept of the journey of the mind in Western philosophical and literary texts. Narratives that represent the mind journeying in search of goodness, happiness, truth, God, self, or nature. Comparison of journey narratives across cultures and historical periods. Interactions among mind, body, and nature. Focus is on: mind separating itself from body and moving from the natural world toward higher beings; and mind as a natural entity that searches for truth or happiness on Earth. GER:DB-Hum
3-4 units, Spr (Nightingale)

CLASSGEN 66. Herodotus—For Ancient History majors; others by consent of instructor. Structure and historical method. Recommended: Greek. GER:DB-Hum
3-4 units, Win (Manning)

CLASSGEN 114. Economy and Economics of Ancient Greece—(Enroll in ECON 114.)
5 units, Aut (Amemiya)

CLASSGEN 117. Gender, Violence, and the Body in Ancient Religion—The sex-gender system of ancient Greece. How did polarization of the sexes become a master metaphor for power struggles between husbands and wives, among men, and among parts of the self? How did religious activity, including drama, mitigate or intensify the stresses of living in a society polarized along gender lines? GER:DB-Hum, EC-Gender
3-4 units, Spr (Gleason)

CLASSGEN 123. Judaism in Late Antiquity—(Enroll in RELIGST 123.)
4 units, Spr (Foerster)

CLASSGEN 137. The Greek Invention of Harmony and Proportion—A painting by Leonardo, a Bach fugue, and Einstein’s theory of relativity all represent the idea that the Universe embodies simple, mathematical relations which offer the key to truth and beauty, proportion and harmony. Where did such ideas come from; what was their original significance? Proportion and harmony led to intellectual and aesthetic breakthroughs including perspective painting, Western musical harmony, and mathematical physics. This historical background reveals how many strands in contemporary culture from the arts and sciences belong together. GER:DB-Hum
3-4 units, Spr (Netz)
CLASSGEN 139. Ancient Medicine — Contemporary medical practice traces its origins to the creation of scientific medicine by Greek doctors such as Hippocrates and Galen. Is this something of which modern medicine can be proud? The scientific achievements and ethical limitations of ancient medicine when scientific medicine was no more than another form of alternative medicine. Scientific medicine competed in a marketplace of ideas where the boundaries between scientific and social aspects of medicine were difficult to draw. GER:DB-Hum
3-4 units, Win (Netz)
CLASSGEN 176. Majors Seminar: Literature and Culture of Symposia and Banquets in Antiquity — Verbal and visual representations of drinking parties and banquets. How Greeks and Romans experienced, theorized, and fantasized about this revealing aspect of their social culture. GER:DB-Hum, WIM
3-5 units, Win (Peponi)

CLASSICS/HISTORY

These courses have the subject code CLASSHIS.

CLASSHIS 21N. Roman Scandals: Representations and Perceptions of Rome — Ancient and modern constructions of Roman morality and immorality. Representations of Rome in 18th- through 20th-century literature, art, and movies, compared against evidence from the ancient texts in English. GER:DB-Hum
3-5 units, Win (Braund)

CLASSHIS 60. The Romans — How did a tiny village create a huge empire and shape the world, and why did it fail? Roman history, imperialism, politics, social life, economic growth, and religious change. GER:DB-Hum
3-5 units (Scheidel) not given 2005-06

CLASSHIS 101. The Greeks — Greek history from the palaces of the late Bronze Age through Alexander the Great’s conquest of Persia, surveying the economics, society, culture, and technology. Why Greek culture combined unusual freedom for ordinary men with large-scale chattel slavery and extreme gender ideologies; the origins and practices of democracy; and relations with non-Greek peoples. Focus is on ancient sources and archaeological remains. GER:DB-Hum
4-5 units, Win (Morris)

CLASSHIS 105. History and Culture of Ancient Egypt — From 3000-30 B.C.E. Emphasis is on long term social and economic development. GER:DB-Hum, EC-GlobalCom
3-5 units, Spr (Manning)

CLASSHIS 131. Science and Technology in Ancient Egyptian Society — (Same as STS 120.) From 3000 B.C.E. to the Roman period. Sources of technological change and innovation in Egypt; importance of the ancient Egyptian legacy; the balance between changes internal and external to Egypt? Ancient texts concerned with science, technology, mathematics, astronomy, medicine; Egyptian material culture and building techniques; the economic role of technology; Alexandrian science and its legacy.
4 units (Manning) not given 2005-06

CLASSHIS 150. Ancient Greece in the Modern West: History, Politics, and Classics — How ancient Greece became central to the definition of modernity; why for the last 250 years to be modern one first became a classical Greek. The Black Athena controversy. Sources include ancient and modern historians, traveler and antiquarian writings, French and American revolutionary debates, archaeological images, and modern visuals.
3-5 units (Ceserani) not given 2005-06

CLASSHIS 171. Alexander the Great and the Hellenistic World — When Alexander the Great swept through and conquered the Persian empire at the end of the 4th century B.C., it touched off massive changes in the political and socioeconomic structure of the Mediterranean world. Focus is on the major developments in the history, culture, and economy of the Mediterranean world from these conquests of Alexander to the annexation of Egypt by Augustus in 30 B.C.E. GER:DB-Hum
3-4 units, Win (Manning)

CLASSICS, ART/ARCHAEOLOGY

Courses in Classical Art and Archaeology have the subject code CLASSART.

CLASSART 21Q. Eight Great Archaeological Sites in Europe — Stanford Introductory Seminar. Preference to sophomores. Focus is on excavation, features and finds, arguments over interpretation, and the place of each site in understanding the archaeological history of Europe. Goal is to introduce the latest archaeological and anthropological thought, and raise key questions about ancient society. The archaeological perspective foregrounds interdisciplinary study: geophysics articulated with art history, source criticism with analytic modeling, statistics interpretation. A web site with resources about each site, including plans, photographs, video, and publications, is the basis for exploring. GER:DB-Hum
3-5 units, Aut (Shanks)

CLASSART 102/202. Classical and 4th-Century Greek Art — (Graduate students register for 202; same as ARTHIST 102/302.) The formation of the classical ideal in 5th-century Athenian art, and its transformation and diffusion in the 5th and 4th centuries against changing Greek history, politics, and religion. GER:DB-Hum
4 units, Win (Maxmin)

CLASSART 103/203. Classical and 4th-Century Greek Art — (Graduate students register for 203; same as ARTHIST 103/303.) Greek vases and their painters, emphasizing the masters of Athenian black figure and red figure who flourished in the era of the tyrant Peisistratos and his sons. GER:DB-Hum
4 units, Spr (Maxmin)

CLASSART 113/213. Ten Things: Science, Technology, and Design — (Graduate students register for 213; same as STS 112.) Connections among science, technology, society and culture by examining the design of a prehistoric hand axe, Egyptian pyramid, ancient Greek perfume jar, medieval castle, Wedgewood teapot, Edison’s electric light bulb, computer mouse, Sony Walkman, supersonic aircraft, and BMW Mini. Interdisciplinary perspectives include archaeology, cultural anthropology, science studies, history and sociology of technology, cognitive science, and evolutionary psychology.
4-5 units, Win (Shanks)

CLASSART 126. Alpine Archaeology — What distinguishes archaeological research in high montane environments with year-round cold temperatures from other archaeological contexts and fieldwork? Comparison with other global field methodologies. Emphasis is on Gallo-Roman, Celtic, and medieval finds. Required for students participating in Stanford’s late summer dig in the Grand-St-Bernard pass in the Alps. GER:DB-Hum
3-5 units, Spr (Hunt)

4-5 units, Win (Shanks)

CLASSART 198S. Digital Humanities — (Same as HUMNTIES 198S.) How digital technologies are implicated in rethinking research and learning in the arts and humanities. Topics include: visualization, simulation and gaming, authoring, collaborative research, publication and dissemination, interactivity, and information management. Examples of cutting-edge research. Project-based.
4-5 units, Spr (Shanks)
INDIVIDUAL STUDY
CLASSGEN 160. Directed Readings (Undergraduate)
 1-15 units, Aut, Win, Spr, Sum (Staff)
CLASSGEN 199. Undergraduate Thesis: Senior Research
 1-6 units, Aut, Win, Spr, Sum (Staff)
CLASSGEN 260. Directed Reading in Classics (Graduate Students)
 1-15 units, Aut, Win, Spr, Sum (Staff)
CLASSGEN 360. Dissertation Research in Classics
 10 units, Aut, Win, Spr, Sum (Staff)

GRADUATE SEMINARS
Graduate seminars vary each year. The following are given this year.

ART/ARCHAEOLOGY (CLASSART)
 4-5 units, Win (Shanks)
CLASSART 322. Reception and Literacy in Roman Art — Beyond a focus on artists and patrons: how Roman art was seen and understood by its contemporary viewers. Themes include memory, performance, gender, replication, and constructions of space. Goal is to draft a differentiated model of viewing and literacy, with attention to collective experience, hierarchy, access, and subversion.
 5 units, Aut (Trimble)

GENERAL (CLASSGEN)
CLASSGEN 241. Words and Things in the History of Classical Scholarship — How have scholars used ancient texts and objects since the revival of the classical tradition? How did antiquarians study and depict objects and relate them to texts and reconstructions of the past? What changed and what stayed the same as humanist scholarship gave way to professional archaeologists, historians, and philologists? Focus is on key works in the history of classics, such as Erasmus and Winckelmann, in their scholarly, cultural, and political contexts, and recent critical trends in intellectual history and the history of disciplines.
 4-5 units, Win (Ceserani)
CLASSGEN 249. Greek Tragedy: Some Special Problem Plays — Greek tragedies resistant to understanding, focusing on: Aeschylus’ Eumenides, Sophocles’ Ajax and Philoctetes, and Euripides’ Alcestis.
 3-5 units, Aut (McCall)
CLASSGEN 250. Introduction to Greek Epigraphy — How to use the epigraphic corpora and read stones and squeezes. Inscriptional layout and letter forms; language and dialects; places of publication; literacy and orality; types of inscriptions including religious, legal, honorary, financial, and funerary; and the use of inscriptions in literary texts.
 4-5 units, Win (Kamen)
CLASSGEN 252. Ovid’s Metamorphoses: Time, Space, Art, Myth, and Politics — The Metamorphoses as the most important secular text from the first millennium C.E. Reception and exegesis. Consequences for scholarly approaches to myth, aesthetics, paganism, and the relationship between Greece and Rome. Contemporary approaches to Roman poetry.
 4-5 units, Win (Barchiesi)
CLASSGEN 263. A City without Walls: Lucretius on the Body — Lucretius’ materialist theory of nature in De rerum natura; his use of rhetoric, narrative, and poetic discourse. How does Lucretius’ theory of atomism deconstruct Platonic and Aristotelian metaphysics? How does he use poetry and argument to de-transcendentalize the world? What are the boundaries between human beings and nonhumans? How do humans deal with embodiment and finitude? What does it mean for humans to live in accordance with nature?
 4-5 units, Aut (Nightingale)
CLASSGEN 266. Topics and Problems in Hellenistic History — Topics may include: policies and aspirations of Alexander the Great; ruler cult; the construction of the Seleucid and Attalid kingdoms; religion and power in Judea; federalism and the Spartan revolution; and the advent of Rome. May be repeated for credit.
 4-5 units, Spr (Gruen)
CLASSGEN 272. Criticism, Interpretation, and Reception in Antiquity: The Case of Sappho — Concepts and practices of literary criticism and interpretation in the archaic, classical, and postclassical periods. Focus is on the poetry of Sappho and how it has been re-interpreted, evaluated, and re-adapted throughout Greek and Roman antiquity.
 4-5 units, Spr (Peponi)
CLASSGEN 298. German for Classicists — Advanced reading course. The complexities of academic German, and German scholarship in Classics.
 1-3 units, Spr (Krotscheck)
CLASSGEN 317. The Professional Classicist — How to develop a line of research interest, keep up with current literature, and write reviews, abstracts, and grant proposals; also pedagogy and professional ethics.
 3-5 units, Aut (Gleason)
CLASSGEN 328. Latin Poetry Englished: Theory and Practice — Translating classical Latin poetry into English. What is translation? Did the same idea operate in antiquity? Issues include fidelity, equivalence, and appropriation. Is translation a process of recovery, conversion, adaptation, or transplantation? Is the translator a traitor or the Italian traduttore traditore implies? Poets may include Catullus, Virgil, Lucan, Plautus, Seneca, Lucretius, Horace, Ovid, and Juvenal.
 4-5 units, Spr (Braund)

HISTORY (CLASSHIS)
CLASSHIS 229. Historiography — Historical writing of ancient Greece, Herodotus to Polybius. What people told each other about the past. Complete texts in translation with key passages in Greek; secondary sources.
 4-5 units, Aut (Gleason)
COMMUNICATION

Emeriti: (Professors) Henry S. Breitrose, Richard A. Brody; (Professors, Teaching) Ronald Alexander, Marion Lewenstein, James Risser
Chair: James Fishkin
Director, Institute for Communication Research: James Fishkin
Director, John S. Knight Fellowships for Professional Journalists: James R. Bettinger
Director, Documentary Film and Video: Kristine M. Samuelson
Acting Director, Journalism: William F. Woo
Deputy Director, John S. Knight Fellowships for Professional Journalists: Dawn E. Garcia
Professors: James Fishkin, Theodore L. Glasser, Shanto Iyengar, Jan Krawitz, Jon Krosnick, Clifford Nass, Byron B. Reeves, Donald F. Roberts, Kristine M. Samuelson
Associate Professor: Marcyliena Morgan
Assistant Professors: Jeremy Bailenson, Frederick Turner
Professor (Teaching): James R. Bettinger
Lecturers: John Markoff, Howard Rheingold, James Wheaton, Gregg Zachary
Visiting Professors: Ann Grimes, Robert Luskin, William F. Woo
Department Offices: McClatchy Hall, Building 120, Room 110
Mail Code: 94305-2050
Phone: (650) 723-1941
Web Site: http://communication.stanford.edu

Courses given in Communication have the subject code COMM. For a complete list of subject codes, see Appendix.

The Department of Communication engages in research in communication and offers curricula leading to the B.A., M.A., and Ph.D. degrees. The M.A. degree prepares students for a career in journalism. The department also offers students who are completing a B.A. in another department, a coterminal program with an M.A. emphasis in Media Studies. The Ph.D. degree leads to careers in university teaching and research-related specialties.

The Institute for Communication Research offers research experience primarily to advanced Ph.D. students.

The John S. Knight Fellowships program brings outstanding mid-career journalists to the University to study for an academic year. The John S. and James L. Knight Foundation sponsors twelve U.S. journalists. They are joined by eight International Fellows sponsored by the Shinyoung Journalism Fund, the Lyle and Corrine Nelson International Fellowship Fund, the Knight Foundation, the Heast Foundation, the Fulbright Program, the Koura Foundation, and others.

ADMISSION

Prospective Undergraduate Students—Write to the University’s Office of Undergraduate Admissions, Stanford University, Stanford, California 94305-3005.

Prospective Coterminal Students—Applications are available online at http://registrar.stanford.edu/publications/#Coterm.

Prospective Graduate Students—Online applications are strongly preferred and can be submitted on the web at http://gradadmissions.stanford.edu.

The department requires that applicants for graduate admission submit verbal and quantitative scores from the Graduate Record Examination (GRE). Admission to each graduate degree program is competitive, based on the pool of applicants each year rather than on standard criteria that can be stated in advance. The GRE should be taken no later than early November prior to the early December application deadline.

UNDERGRADUATE PROGRAMS

BACHELOR OF ARTS

PREPARATION

Before declaring the major, students must have completed or be concurrently enrolled in one of the following:
COMM 1A (formerly COMM 1) or COMM 1B
COMM 106
COMM 108

Students interested in declaring the major should see the student services administrator in Building 120, Room 110A during scheduled office hours.

PROGRAM OF STUDY

The undergraduate curriculum is intended for liberal arts students who wish to develop a fundamental understanding of communication in society, drawing on the perspective of the social sciences. Undergraduate students majoring in communication are expected to become acquainted with the fundamental concerns, theoretical approaches, and methods of the field, and to acquire advanced knowledge in one or more of the sub-areas of communication institutions, processes, and effects.

While the department does not attempt to provide comprehensive practical training at the undergraduate level, the curriculum provides a diverse range of internship opportunities including professional print journalism, some of which are funded by the department’s prestigious Rebele Internship Program.
The department is committed to providing students with the analytical and critical skills that are necessary for future success, be it in graduate programs, professional schools, or immediate career entry.

The major is structured to provide several levels of study: a core curriculum, intended to expose students to a broad-based understanding of communication theory and research, and a number of intermediate-level options and electives. Majors also have the opportunity to do advanced research in the form of senior projects and honors theses. All undergraduate majors are required to complete a set of core communication courses which include COMM 1A (formerly COMM 1), Media Technologies, People, and Society (5 units) or COMM 1B, Media, Culture and Society (5 units); COMM 120, Digital Media in Society (WIM, 5 units); COMM 106, Communication Research Methods (5 units); and COMM 108, Media Processes and Effects (5 units). Core courses are usually given only once each year.

The department also requires completion of or concurrent registration in an introductory statistics course (STATS 60 or PSYCH 10) prior to registration in COMM 106, Communication Research Methods, in preparation for courses in methodology and advanced courses in communication processes and effects. It is recommended that this be done as soon as possible so as not to prevent registration in a course requiring statistical understanding.

In addition to the core courses and the statistics requirement, undergraduate majors select courses from the areas described below. Many of the courses require core courses as prerequisites.

Area I: Communication Processes and Effects — Area I emphasizes the ways in which communication scholars conduct research in, and consider the issues of, human communication. These studies aim to provide expert guidance for social policy makers and media professionals. A minimum of two courses must be taken from COMM 135, 146, 160, 162, 166, 169, 170, 172.

Area II: Communication Systems/Institutions — Area II considers the roles and interaction of institutions such as broadcasting, film, journalism, constitutional law, and business within communication and mass communication contexts. A minimum of two courses must be taken from COMM 104, 114, 116, 120, 122A or B, 125, 131, 136, 141A or B, 148.

Tracks — The communication curriculum is designed to provide a theoretical base that can be effectively applied to numerous environments. The potential tracks listed below are not required, but are examples of how to focus your interests.

1. Communication Technologies
 a) Department of Communication (COMM):
 120. Digital Media in Society
 166. Virtual People
 169. Computers and Interfaces: Psychology and Design
 172. Psychological Processing of Media
 b) Affiliated department offerings (elective credit toward the major):
 1) Computer Science (CS)
 105. Introduction to Computers
 106A. Programming Methodology
 147. Introduction to HCI
 201. Computers, Ethics, and Social Responsibility
 2) Science, Technology, and Society (STS)
 101. Science, Technology, and Contemporary Society

2. Communication and Public Affairs
 a) Department of Communication (COMM)
 125. Perspectives on American Journalism
 136. Democracy and the Communication of Consent
 160. The Press and the Political Process
 162. Analysis of Political Campaigns
 170. Communication and Children
 b) Affiliated department offerings (elective credit toward the major)
 1) Department of Political Science (POLISCI)
 123. Politics and Public Policy
 2) Department of Psychology (PSYCH)
 75. Cultural Psychology
 167. Seminar on Aggression
 180. Social Psych. Perspectives on Stereotyping and Prejudice
 3) Public Policy Program (PUBLPOL)
 104. Economic Policy Analysis
 194. Technology Policy

3. Media Practices and Performance
 a) Department of Communication (COMM)
 120. Digital Media in Society
 122A or B. The Documentary Tradition
 125. Perspectives on American Journalism
 131. Media Ethics and Responsibilities
 141A or B. Film History
 160. The Press and the Political Process

The remainder of the 60 required units may be fulfilled with any elective Communication courses, or crosslisted courses in other departments. To be recommended for the B.A. degree in Communication, the student must complete at least 60 units (approximately twelve courses) in the department. No more than 10 units of transfer credit or Summer Session may be applied to meet department requirements. Communication majors must receive a grade of C- or higher in all Communication courses unless they are offered only for satisfactory/no credit (S/NC), and maintain a C average (2.0) in courses towards the major.

Internship Opportunities — Internship credit is available for Communication majors and minors. For those interested in internships, select “Internships” at http://communication.stanford.edu. Communication students who have received academic credit for internship experience through COMM 185 have prepared reports which are available in the department’s Mendenhall Library.

MINORS

PREPARATION

Before declaring the minor, students must have completed or be concurrently enrolled in one of the following:

COMM 1A (formerly COMM 1) or COMM 1B
COMM 106
COMM 108

Students interested in declaring the minor should apply via Axess. Students are required to take at least 40 units (approximately 8 courses), not counting statistics, to complete the minor.

PROGRAM OF STUDY

The minor is structured to provide a foundation for advanced course work in communication through a broad-based understanding of communication theory and research.

The minor in Communication consists of three introductory Communication core courses that include COMM 1A (formerly COMM 1), Media Technologies, People, and Society (5 units) or COMM 1B, Media, Culture, and Society (5 units); COMM 106, Communication Research Methods (5 units); and COMM 108, Media Processes and Effects (5 units).

In addition to the three core courses, the minor requires a minimum of five intermediate-level elective courses in the department. The department also requires completion of or concurrent registration in an introductory statistics course (STATS 60 or PSYCH 10) prior to registration in COMM 106, Communication Research Methods. It is strongly recommended that the course in statistics be taken as early as possible, preferably in the Autumn Quarter of the junior year. The Statistics course does not count toward the 40 units to complete the Communication minor.

Students interested in declaring a minor must do so no later than registration day in the Autumn Quarter of the junior year. Core courses are usually offered only once annually, and they constitute a sequence:

Prerequisite: introductory statistics course (for example, PSYCH 10)

Core Courses: COMM 1A (formerly COMM 1) or COMM 1B, 106, 108

Area I: Communication Processes and Effects: a minimum of one course from COMM 135, 146, 160, 162, 166, 169, 170, 172
Area II: Communication Systems/Institutions: a minimum of one course from COMM 104, 114, 116, 120, 122A or B, 125, 131, 136, 141A or B, 148, 238

Plus elective courses amounting to 15 units.

Some courses are not given every year. Refer to program handout and the Time Schedule for details.

HONORS PROGRAM

The honors program provides undergraduates the opportunity to undertake a significant program of research in an individual professor/student mentoring relationship. The aim is to guide students through the process of research, analysis, drafting, rethinking, and redrafting, which is essential to excellence in scholarship. Working one-on-one with a faculty adviser, seniors earn 15 Communication units, culminating in an honors thesis. In order to be eligible for the honors program, interested majors must have: (1) successfully completed both a research methods and statistics course, (2) selected an adviser, and (3) submitted an application to the department by the end of their junior year. An application may be picked up outside Room 110, Building 120.

Students are expected to make steady progress on their honors thesis throughout the year. Students who fail to submit a satisfactory draft Autumn Quarter will be dropped from the program.

A final copy of the honors thesis must be read and approved by the adviser and submitted to the department by the eighth week of Spring Quarter (exact date to be arranged). It becomes part of a permanent record held by the department. Honors work may be used to fulfill communication elective credit but must be completed and a letter grade submitted prior to graduation. A student failing to fulfill all honors requirements may still receive independent study credit for work completed and it may be applied toward fulfilling major requirements.

The designation “graduation with honors” is awarded by the Department of Communication to those graduating seniors who, in addition to having completed all requirements for the Communication major:

1. complete an honors thesis
2. maintain a distinguished grade point average (GPA) in all Communication course work
3. are recommended by the Communication faculty

COTERMINAL BACHELOR’S AND MASTER’S PROGRAM

The Department of Communication offers students who are completing a B.A. in another department, a coterminous program with an M.A. emphasis in Media Studies; see “Media Studies Program” below for more information.

Applications for coterminous study must be submitted at least four quarters in advance of the expected master’s degree conferment date. Applicants must have earned a minimum of 120 units toward graduation (UTG) as shown on the undergraduate unofficial transcript. This includes allowable advanced placement (AP) and transfer credit. Applications may be submitted no later than December 1, 2005 for admission beginning in either Winter or Spring Quarter 2005-06 or Autumn Quarter 2006-07. There is no rolling admission in the Communication department. Requirements include: Application for Admission to Coterminous Master’s Program form, preliminary program proposal, statement of purpose, three letters of recommendation from Stanford professors, and a current Stanford transcript. GRE scores are not required. Coterminous applications are submitted directly to the department. Review procedures and the Graduate Admissions Committee determine criteria.

For University coterminous degree program rules and University application forms, see http://registrar.stanford.edu/publications/#Coterm.

GRADUATE PROGRAMS

MASTER OF ARTS

University requirements for the master’s degree are described in the “Graduate Degrees” section of this bulletin.

The department awards a terminal M.A. degree in Journalism. Applicants for this program, and for doctoral work, are evaluated for admission on different criteria. A student may complete more than one M.A. degree in the department, but course work applied to the requirements for one M.A. degree may not be applied to a second. All work to fulfill graduate degree requirements must be in courses numbered 100 or above.

Students who complete an M.A. degree and who desire entry into the Ph.D. program must file a Graduate Program Authorization Petition application that may be picked up at the Registrar’s Information Windows or at http://registrar.stanford.edu/publications/#GradStud. Such students are considered alongside all other doctoral applicants.

The M.A. degree in Media Studies is only available to current Stanford University undergraduates who are majoring in another department. See more information on subsequent pages for additional description.

JOURNALISM

Stanford’s Graduate Program in Journalism focuses on the knowledge and skills required to report, analyze, and write authoritatively about public issues. The curriculum combines a sequence of specialized reporting and writing courses with seminars and courses devoted to deepening the students’ understanding of the roles and responsibilities of American news media in their coverage of public issues.

The program emphasizes preparation for the practice of journalism and a critical perspective from which to understand it. The program’s objective is twofold: (1) to graduate talented reporters and writers to foster public understanding of the significance and consequences of public issues and the debates they engender; and (2) to graduate thoughtful journalists to respond openly and eloquently when called on to explain and defend the methods of their reporting and the quality of their writing.

CURRICULUM

The curriculum includes nine required courses and a master’s project:

- 216. Journalism Law
- 217. Digital Journalism
- 220. Digital Media in Society
- 225. Perspectives on American Journalism
- 236. Democracy and the Communication of Consent
- 273. Public Issues Reporting I
- 274. Public Issues Reporting II
- 289. Journalism M.A. Project
- 291. Graduate Journalism Seminar

Additionally, students are required to take two specialized writing courses, typically one each during Winter and Spring quarters; and one or two approved electives from among graduate-level courses in the Department of Communication, or from among courses on campus that deal substantively with issues of public importance. The M.A. degree in Communication (Journalism) requires a minimum of 49 units.

A typical schedule follows:

Autumn Quarter 2005
- 216. Journalism Law
- 236. Democracy and the Communication of Consent
- 273. Public Issues Reporting I
- 291. Graduate Journalism Seminar
- Elective

Winter Quarter 2006
- 217. Digital Journalism
- 225. Perspectives on American Journalism
- 274. Public Issues Reporting II
- 277. Specialized Reporting/Writing
- 291. Graduate Journalism Seminar
- 220. Digital Media in Society
- Elective

Spring Quarter 2006
- 277. Specialized Reporting/Writing
- 289. Journalism M.A. Project
- 291. Graduate Journalism Seminar
- Elective

Except for the Graduate Journalism Seminar and the Journalism Project, all courses must be taken for a letter grade. To remain in good academic standing, students must maintain a grade point average (GPA) of 3.0 or better. Graduation requires a GPA of 3.0 or better.

JOURNALISM PROJECT

The master’s project, a requirement for graduation, is intended as an opportunity for students to showcase their talents as writers and reporters. It is also an opportunity to undertake an in-depth critique of an area
of journalism in which the author has a special interest. Work on the project usually begins during the Winter Quarter and continues through the Spring Quarter. It represents a major commitment of time, research, and writing. Although it is not a requirement that the project be published, it must be judged by a member of the faculty to be of a quality acceptable for publication. At a minimum, the project should demonstrate the rigor and discipline required of good scholarship and good journalism; it should offer ample evidence of students’ ability to gather, analyze, and synthesize information in a manner that goes beyond what ordinarily appears in daily newspapers.

MEDIA STUDIES

The Media Studies coterminal master’s program provides a broad introduction to scholarly literature in mass communication. This one-year program is designed for current Stanford students without prior academic work in communication, who wish academic preparation for teaching. Media Studies students need to satisfy four basic requirements:

1. **Required Units and GPA:** students must complete a minimum of 45 units in Communication and related areas, including items 2 and 3 below. All courses, except for the Media Studies M.A. Project, must be taken for a letter grade if offered, and courses in related areas outside the department must be approved by the student’s adviser. To remain in good academic standing, students must maintain a grade point average (GPA) of 3.0 or better. Graduation requires a GPA of 3.0 or better.

2. **Core Requirements:** students must complete COMM 206, 208, and a statistics course. Typically, the statistics requirement is met with STAT 160 or 190. Other courses occasionally are approved as a substitute before the student is admitted to the program. The Statistics course does not count toward the 45 units.

3. **Six Media Studies Courses:** students must complete a minimum of 6 additional communication courses from the following list of department courses concerned with the study of media. While the department also offers graduate-level courses teaching media-related skills (e.g., COMM 277), these courses are intentionally excluded from the list. Not all the listed courses are offered every year and the list may be updated from one year to the next. However, its intent is to include only courses in media studies, not media skills. In addition to the core requirements and a minimum of 6 courses listed below, students may select additional courses from the list and any related course approved by the student’s adviser.
 - 211. Media Technologies, People, and Society
 - 216. Journalism Law
 - 217. Digital Journalism
 - 220. Digital Media in Society
 - 222A. The Documentary Tradition
 - 225. Perspectives on American Journalism
 - 231. Media Ethics and Responsibility
 - 236. Democracy and the Communication of Consent
 - 238. Democratic Theory
 - 246. Language and Discourse: Race, Class, and Gender
 - 248. Hip-Hop and Don’t Stop: Introduction to Modern Speech Communities
 - 260. The Press and the Political Process
 - 262. Analysis of Political Campaigns
 - 266. Virtual People
 - 268. Experimental Research in Advanced User Interfaces
 - 269. Computers and Interfaces: Psychology and Design
 - 270. Communication and Children
 - 272. Psychological Processing of Media
 - 273. Public Issues Reporting I
 - 274. Public Issues Reporting II
 - 314. Doctoral Research Methods IIB*
 - 318. Doctoral Research Methods II*
 - 319. Doctoral Research Methods III*

4. **The Media Studies MA Project:** students complete a project usually related to one of the required Communication courses listed in item 3 above. The project requirement is intentionally flexible to permit students to adjust it to their interests, in consultation with professors.

 a) The project typically evolves from a paper assigned in a Communication course that has been pre-approved by the student’s Media Studies adviser.

 b) The project must be supervised by a faculty member, usually the professor who taught the course that inspired the project (but not necessarily the student’s adviser for the Media Studies program). Only a faculty member, not a Ph.D. student, can approve a topic and supervise a paper.

Additional courses are selected in consultation with an academic adviser. A course in statistical methods is strongly recommended.

DOCTOR OF PHILOSOPHY

University requirements for the Ph.D. are described in the “Graduate Degrees” section of this bulletin. The minimum number of academic units required for the Ph.D. at Stanford is 135, up to 45 of which can be transferred either from a master’s degree at the University or from another accredited institution.

The department offers a Ph.D. in Communication Theory and Research. First-year students are required to complete introductory courses in communication theory and research, research methods, and statistics. These core courses, grounded in the social science literature, emphasize how people respond to media and how media institutions function. In addition, Ph.D. students must complete a minimum of three literature survey courses and related advanced seminars in Communication. Students also take significant course work outside the department in their area of interest.

Each student builds a research specialty relating communication to current faculty interests in such areas as ethics, human-computer interactions, information processing, information technology, law, online communities, politics and voting, virtual reality, and youth and media. Regardless of the area of specialization, the Ph.D. program is designed primarily for students interested in university research and teaching or other research or analyst positions.

The Ph.D. program encompasses four years of graduate study (subsequent to completion of the B.A. degree) during which, in addition to fulfilling University residency requirements, Ph.D. candidates are required to:

1. Complete all departmental course requirements with grades of ‘B+’ or above. Currently these courses include COMM 206, 208, 311, 314 or 318, 317, and 319. Students are also required to take two quarters of statistics or one quarter of statistics and an advanced methods course.
2. Pass the general qualifying examinations by the end of the second academic year of study and pass a specialized area examination by the end of the third academic year of study.
3. Demonstrate proficiency in tools required in the area of research specialization. Identified with the advice of the faculty, such tools may include detailed theorectical knowledge, advanced statistical methods, computer programming, a foreign language, or other technical skills.
4. Complete at least two pre-dissertation research projects (the Major Project and the Complementary Project).
5. Teach or assist in teaching at least two courses, preferably two different courses, at least one of which is ideally a core undergraduate course (COMM 1, 106, and 108).
6. Complete a dissertation proposal and proposal meeting approved by the dissertation committee.
7. Apply for candidacy by the end of the second year of graduate study. The requirements and procedures for applying for candidacy can be found in the document, “Official Rules and Procedures for the Ph.D. in the Department of Communication,” available from the student services administrator of the department.
8. Complete a dissertation satisfactory to a reading committee of three or more faculty members in the Department of Communication and one faculty member not in the Department of Communication.
9. Pass the University oral examination, which is a defense of the dissertation.

Because the multifaceted nature of the department makes it possible for the Ph.D. student to specialize in areas that draw on different related disciplines, the plan of study is individualized and developed between the faculty adviser and the student.
Ph.D. candidacy is valid for five years. Other requirements and details of the requirements can be found in the document, “Official Rules and Procedures for the Ph.D. in the Department of Communication,” available from the student services administrator of the department.

PH.D. MINOR

Candidates for the Ph.D. degree in other departments who elect a minor in Communication are required to complete a minimum of 20 units of graduate courses in the Department of Communication, including a total of three theory or research methods courses, and are examined by a representative of the department. A department adviser in consultation with the individual student determines the particular communication theory and methods courses.

THE INSTITUTE FOR COMMUNICATION RESEARCH

The Institute is an office of project research for the faculty of the Department of Communication and operates under grants to faculty from government, industry, and non-profit organizations. Research assistantships are often available to qualified Ph.D. students in Communication.

COURSES

WIM indicates that the course satisfies the Writing in the Major requirements.

PRIMARILY FOR UNDERGRADUATES

COMM 1A. Media Technologies, People, and Society — (Graduate students register for 211.) Open to non-majors. Introduction to the concepts and contexts of communication. Atopics-structured orientation emphasizing the field and the scholarly endeavors represented in the department. GER:DB-SocSci
5 units, Aut (Nass)

COMM 1B. Media, Culture, and Society — The institutions and practices of mass media, including television, film, radio, and digital media, and their role in shaping culture and social life. The media’s shifting relationships to politics, commerce, and identity. GER:DB-SocSci
5 units, Win (Iyengar, Turner)

5 units, Aut (Grimes)

COMM 106. Communication Research Methods — (Graduate students register for 206.) Conceptual and practical concerns underlying commonly used quantitative approaches, including experimental, survey, content analysis, and field research, in communication. GER:DB-SocSci
5 units, Win (Krosnick)

COMM 108. Media Processes and Effects — (Graduate students register for 208.) The process of communication theory construction including a survey of social science paradigms and major theories of communication. Recommended: 1 or PSYCH 1. GER:DB-SocSci
5 units, Aut (Bailenson)

COMM 109. Research Practicum in Media Effects — Topic and instructor change each year. May be repeated for credit. Prerequisite: 106 and 108 or consent of instructor.
3 units, Win (Roberts)

COMM 114. Introduction to the Moving Image — (Same as FILM-PROD 114.) Hands-on. Techniques of film and video making including conceptualization, visualization, story structure, cinematography, sound recording, and editing.
5 units, Aut (Krawitz), Win (Samuelson), Spr (Krawitz)

COMM 116. Journalism Law — (Undergraduate section; see 216.)
5 units, Aut (Wheaton)

COMM 117. Digital Journalism — (Undergraduate section; see 217.)
5 units, Win (Rheingold)

COMM 118Q. Theories of Film Practice — Stanford Introductory Seminar. Preference to sophomores. How theory connects with practice in the production of film and television. Film and television from the perspectives of practitioners who have theorized about their work in directing, editing, screenwriting, cinematography, and sound, and social scientists whose research has explored similar issues empirically.
4 units, Win (Breitrose)

COMM 120. Digital Media in Society — (Graduate students register for 220.) Contemporary debates concerning the social and cultural impact of digital media. Topics include the historical origins of digital media, the cultural contexts of their development and use, and the influence of digital media on our conceptions of self, community, and state. GER:DB-SocSci, WIM
5 units, Aut (Breitrose)

COMM 122A. The Documentary Tradition — (Graduate students register for 222A.) The evolution of the documentary idea as evidenced in the ideas and work of film makers from the late 19th century until 1960. Prerequisite: consent of instructor. GER:DB-SocSci
5 units, Aut (Breitrose)

COMM 122B. Contemporary Issues in Documentary — (Graduate students register for 222B.) Issues include objectivity/subjectivity, ethics, censorship, representation, reflexivity, responsibility to the audience, and authorial voice. The viewing and analysis of films has a parallel focus on form and content. Prerequisite: consent of instructor. GER:DB-SocSci
5 units (Krawitz) alternate years, given 2006-07

COMM 123N. Documentary Film: Voice and Vision — Stanford Introductory Seminar. Preference to freshmen. Authorship and voice in nonfiction film through a conceptual overview of forms, strategies, and conventions. Focus is on the social and political documentary. The evolution of documentary concerns including filmmaker-subject relations, aesthetic, ethics, the reality/fiction dialectic, censorship, objectivity, the implied contract between filmmaker and audience, authorship/voice in documentary, and technological innovations. Documentary styles such as observational cinema, the personal essay, reflexivity, video diaries, and participatory cinema.
4 units, Aut (Krawitz)

COMM 123Q. Autobiographical Storytelling in Documentary Film — Stanford Introductory Seminar. The personal voice in nonfiction film. Films, such as Fahrenheit 9/11 and Super Size Me, with a first-person perspective including diary, memoir, reflexive, essay, and advocacy films. Issues related to form and content, and ethics and aesthetics. Readings include nonfiction memoirs to approach techniques employed in autobiographical storytelling through literature and film.
2 units, Win (Krawitz)

COMM 125. Perspectives on American Journalism — (Graduate students register for 225.) Issues, ideas, and concepts in the development of American journalism, emphasizing the role of the press in society, the meaning and nature of news, and professional norms that influence conduct and outside the newsroom. Prerequisite: 1 or junior standing.
GER:DB-SocSci
5 units, Win (Glasser)

COMM 131. Media Ethics and Responsibilities — (Graduate students register for 231.) The development of professionalism among American journalists, emphasizing the emergence of objectivity as a professional and the epistemological norm. An applied ethics course where questions of power, freedom, and truth autonomy are treated normatively so as to foster critical thinking about the origins and implications of commonly accepted standards of responsible journalism. GER:DB-SocSci
5 units (Glasser) not given 2005-06
COMM 135. Survey Research Methods: Describing Large Populations with Small Samples and Precise Measures — The science of survey methodology and the principles of optimal survey design. Comparative study designs (cross-sections versus panels); sampling techniques; modes of data collection (face-to-face, telephone, paper, Internet); designing questions to accurately measure behavior, attitudes, and personality; data collection procedures; data processing and analysis; reporting results; ethics of surveys; causal inference with surveys; and approaches to critiquing surveys. GER:DB-SocSci
5 units (Krosnick) not given 2005-06

COMM 136. Democracy and the Communication of Consent — (Graduate students register for 236.) Focus is on competing theories of democracy and the forms of communication they presuppose, combining normative and empirical issues, and historical and contemporary sources. Topics include representation, public opinion, mass media, small group processes, direct democracy, the role of information, and the prospects for deliberative democracy. GER:DB-SocSci
5 units, Aut (Fishkin)

COMM 141A. History of Film: The First 50 Years — (Graduate students register for 241A.) Studies in the development of the motion picture as art form and cultural industry. Lab.
5 units (Breitrose) not given 2005-06

COMM 141B. History of Film: The Second 50 Years — (Graduate students register for 241B.) The evolution of the motion picture as an art form and culture industry in the U.S. and other nations from 1941. Topics: the decline of the studio system, the impact of WWII, the rise and fall of auteurs cinema, television, industrial concentration and its effects, and the high-concept film. Mandatory evening screenings.
5 units (Breitrose) not given 2005-06

COMM 148. Hip-Hop and Don’t Stop: Introduction to Modern Speech Communities — (Graduate students register for 248.) Focus this year is hip-hop and the media. Hip-hop as a global phenomenon with social influences beyond the music and entertainment industries. The development of standards. Hip-hop in the U.S. and its role as a cultural, political, social, and artistic resource for youth. Perspectives include cultural and linguistic anthropology, and media studies. Guest lecturer.
5 units, Win (Morgan)

COMM 160. The Press and the Political Process — (Graduate students register for 260; same as POLISCI 323R.) The role of mass media and other channels of communication in political and electoral processes. GER:DB-SocSci
5 units, Win (Iyengar)

COMM 162. Analysis of Political Campaigns — (Graduate students register for 262; same as POLISCI 323S.) Seminar. The evolution of American political campaigns, and the replacement of the political party by the mass media as intermediary between candidates and voters. Academic literature on media strategies, the relationship between candidates and the press, the effects of campaigns on voter behavior, and inconsistencies between media campaigns and democratic norms. Do media-based campaigns enable voters to live up to their civic responsibility? Has the need for well-financed campaigns increased the influence of elites over nominations? Have citizens become disengaged? GER:DB-SocSci
5 units, Aut (Iyengar)

COMM 165. Mass Media Economics and Policy — (Enroll in PUBLPOL 172.)
4-5 units (Owen) not given 2005-06

COMM 166. Virtual People — (Graduate students register for 266.) The concept of virtual people or digital human representations; methods of constructing and using virtual people; methodological approaches to interactions with and among virtual people; and current applications. Viewpoints including popular culture, literature, film, engineering, behavioral science, computer science, and communication.
5 units, Spr (Bailenson)

COMM 169. Computers and Interfaces — (Graduate students register for 269.) Interdisciplinary. User responses to interfaces and design implications of those responses. Theories from different disciplines illustrate responses to textual, voice-based, pictorial, metaphorical, conversational, adaptive, agent-based, intelligent, and anthropomorphic interfaces. Group design project applying theory to the design of products or services for developing countries. GER:DB-SocSci
5 units, Win (Nass)

COMM 170. Communication and Children I — (Graduate students register for 270.) Developmental approach to how children come to use and process mass media, what information they obtain, and how their behavior is influenced by the media. Prerequisite: 1, PSYCH 1, or SOC 1. GER:DB-SocSci
5 units, Win (Roberts)

COMM 172. Psychological Processing of Media — (Graduate students register for 272.) The literature related to psychological processing and the effects of media. Topics: unconscious processing; picture perception; attention and memory; emotion; the physiology of processing media; person perception; pornography; consumer behavior; advanced film and television systems; and differences among reading, watching, and listening. GER:DB-SocSci
5 units, Spr (Reeves)

COMM 177A. Specialized Writing and Reporting: Commentary — (Same as 277A; see 277A.)
5 units, Win (Woo)

COMM 177F. Specialized Writing and Reporting: Literary Journalism — (Same as 277F; see 277F.)
5 units, Win (Bettinger)

COMM 177G. Specialized Writing and Reporting: Book Writing — (Same as 277G; see 277G.)
5 units, Spr (Grimes)

COMM 177P. Specialized Writing and Reporting: Book Writing — (Same as 277P; see 277P.)
5 units (Staff) not given 2005-06

COMM 177R. Writing and Reporting: Covering Silicon Valley — (Same as 277R; see 277R.)
5 units, Spr (Markoff, Zachary)

COMM 177T. Specialized Writing and Reporting: Journalism as Biography — (Same as 277T; see 277T.)
5 units (Staff) not given 2005-06

COMM 180. Film Criticism — (Graduate students register for 280.) A practical and critical view of film. Models of artistic and literary criticism as points of comparison. Weekly reviews stress analysis and a lucid writing style. Prerequisite: 101 or 141.
5 units (Breitrose) not given 2005-06

COMM 185. Internship Experience — Professional experience in the media. Prerequisite: Communication major or minor.
1-4 units, Aut, Win, Spr (Staff)

COMM 190. Senior Project — Research project. Prerequisite: senior standing.
5 units, Aut, Win, Spr (Staff)

COMM 195. Honors Thesis — Qualifies students to conduct communication research. Student must apply for department honors thesis program during Spring Quarter of junior year.
5 units, Aut, Win, Spr (Staff)

COMM 199. Individual Work — For students with high academic standing. May be repeated for credit.
1-5 units, Aut, Win, Spr, Sum (Staff)
Communication

PRIMARILY FOR MASTER’S STUDENTS

COMM 202A,B,C. Graduate Colloquium in Documentary — Topics in film and television focusing on production-related issues. Prerequisite: documentary film and video graduate student or consent of instructor.

1 unit, A: Aut (Samuelson), B: not given 2005-06, C: Spr (Krawitz)

COMM 204. Communication Research Methods — (Graduate section; see 106.)

4 units, Win (Krosnick, Iyengar)

COMM 208. Media Processes and Effects — (Graduate section; see 108.)

4 units, Aut (Bailenson)

COMM 211. Media Technologies, People, and Society — (Graduate section; see 1A.)

4 units, Aut (Nass)

COMM 216. Journalism Law — (Undergraduates register for 116.) Laws and regulation impacting journalists. Topics include libel, privacy, news gathering, protection sources, fair trial and free press, theories of the First Amendment, and broadcast regulation. Prerequisite: Journalism M.A. student or advanced Communication major.

4 units, Aut (Wheaton)

COMM 217. Digital Journalism — (Undergraduates register for 117.) Seminar and practicum. The implications of new media for journalists. Professional and social issues related to the web as a case of new media deployment, as a story, as a research and reporting tool, and as a publishing channel. Prerequisite: Journalism M.A. student or consent of instructor.

4 units, Win (Rheingold)

COMM 220. Digital Media in Society — (Graduate section; see 120.)

4 units, Spr (Turner)

COMM 222A. The Documentary Tradition — (Graduate section; see 122A.)

4 units, Aut (Breitrose)

COMM 222B. Contemporary Issues in Documentary — (Graduate section; see 122B.)

4 units (Krawitz) alternate years, given 2006-07

COMM 223. Film/Video Writing and Directing — Emphasis is on conceptualizing and executing ideas for the production work done jointly with 224, covering all aspects of preproduction at an introductory level. Prerequisite: documentary film and video graduate student.

5 units (Samuelson) not given 2005-06

COMM 225. Perspectives on American Journalism — (Graduate section; see 125.)

4 units, Win (Glasser)

COMM 228. Digital Video — Fundamentals of digital storytelling. Working with small format cameras, interviewing techniques, and nonlinear editing skills. Prerequisite: documentary film and video graduate student.

5 units (Krawitz) not given 2005-06

COMM 229. Advanced Film Production — Final quarter of professional training in motion picture production. Production of a short observational, sync-sound exercise, and a 5-7 minute documentary shot in 16mm film and edited on digital video. Techniques of visual storytelling and observational shooting. Prerequisite: documentary film and video graduate student.

5 units (Samuelson) not given 2005-06

COMM 231. Media Ethics and Responsibilities — (Graduate section; see 131.)

4 units (Glasser) not given 2005-06

5 units (Staff) not given 2005-06

COMM 236. Democracy and the Communication of Consent — (Graduate section; see 136.)

4 units, Aut (Fishkin)

COMM 236G. Democracy, Justice, and Deliberation — (For undergraduates and M.A. students; Ph.D. students, register for 336G.) Decision processes that make a normative claim to resolve questions of public choice, at any of these levels of choice: first principles, constitutions, public policies, or particular outcomes. Topics include democratic theory, the theory of justice and issues of deliberation in small groups, public consultations, conventions, juries, and thought experiments popular in contemporary political theory. Readings include Madison, de Tocqueville, Mill, Marx, Rawls, Nozick, Ackerman, and Schudson. Preference to graduate students. Prerequisite: consent of instructor.

1-5 units (Fishkin) not given 2005-06

COMM 238. Democratic Theory: Normative and Empirical Issues — (For undergraduates and M.A. students; Ph.D. students, register for 338.) Conflicting visions in terms of normative conflicts and empirical evidence. How citizens communicate with each other and their representatives, and how their representatives deliberate. Topics include theories of deliberation, how democracy is transformed when brought to the mass public, how informed a public is needed, and potential pathologies of small group communication in settings including juries, town meetings, and contemporary public consultations. Readings include Madison, Burke, Mill, Lippmann, Dewey, Schumpeter, Dahl, Sunstein, and Mansbridge.

1-5 units, Win (Fishkin, Luskin)

COMM 239. Questionnaire Design for Surveys and Laboratory Experiments: Social and Cognitive Perspectives — The social and psychological processes involved in asking and answering questions via questionnaires for the social sciences; optimizing questionnaire design; open versus closed questions; rating versus ranking; rating scale length and point labeling; acquiescence response bias; don’t-know response options; response choice order effects; question order effects; social desirability response bias; attitude and behavior recall; and introspective accounts of the causes of thoughts and actions.

4 units (Krosnick) not given 2005-06

COMM 241A. History of Film: The First 50 Years — (Graduate section; see 141A.)

4 units (Breitrose) not given 2005-06

COMM 241B. History of Film: The Second 50 Years — (Graduate section; see 141B.)

4 units (Breitrose) not given 2005-06

COMM 244. Democracy, Press, and Public Opinion — (For undergraduates and M.A. students; Ph.D. students register for 344.) The democratic tradition provides conflicting visions of what a democracy is or might be, offering different views of the role of the press and citizens in engaging public issues. Focus is on democratic theory with empirical work on public opinion and the role of the media. Topics include campaigns, the effects of new technology, competing strategies of public consultation, public journalism, and possibilities for citizen deliberation. Prerequisite: consent of instructor.

1-4 units (Fishkin) not given 2005-06

COMM 246. Language and Discourse: Race, Class, and Gender — Theories concerning the discursive construction of identity and representation of cultures. Relationships between power and powerful speech. How language mediates and constructs identity; how it is associated with race, class and gender; and how people resist and manipulate these associations. Sources include conversation, public and popular culture, education, literature, and film.

1-4 units (Morgan) not given 2005-06
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
<th>Units</th>
<th>Winter</th>
<th>Spring</th>
<th>Autum</th>
<th>Win</th>
<th>Spr</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 248</td>
<td>Hip-Hop and Don’t Stop: Introduction to Modern Speech Communities</td>
<td>(Graduate section; see 148.) Opinions written in the form of editorials, op-ed essays, and first person columns. Prerequisite: 104 or consent of instructor.</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 260</td>
<td>The Press and the Political Process</td>
<td>(Graduate section; see 160; same as POLISCI 323R.)</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 262</td>
<td>Analysis of Political Campaigns</td>
<td>(Graduate section; see 162; same as POLISCI 323S.)</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 266</td>
<td>Virtual People</td>
<td>(Graduate section; see 166.)</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 268</td>
<td>Experimental Research in Advanced User Interfaces</td>
<td>(For undergraduates and M.A. students; Ph.D. students register for 368.) Project-based course involves small groups designing and implementing an experiment concerning voice and agent user interfaces. Each group is involved in a different, publishable research project. Prerequisite: consent of instructor.</td>
<td>1-5</td>
<td>Win</td>
<td>Spr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 269</td>
<td>Computers and Interfaces</td>
<td>(Graduate section; see 169.)</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 270</td>
<td>Communication and Children I</td>
<td>(Graduate section; see 170.)</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 272</td>
<td>Psychological Processing of Media</td>
<td>(Graduate section; see 172.)</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 273</td>
<td>Public Issues Reporting I</td>
<td>Reporting and writing on government and public policies and issues; their implications for the people and the press. Required for journalism M.A. students.</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 274</td>
<td>Public Issues Reporting II</td>
<td>Students study one major public policy issue that has broad societal impact. Students report and write individually, and as a team produce a body of journalism that advances the understanding of a new issue each year, published on a website and offered for publication to newspapers and other media outlets. Prerequisites: 273, Journalism M.A. student.</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 277A</td>
<td>Specialized Writing and Reporting: Commentary</td>
<td>(Undergraduates register for 177A.) Opinion writing in the form of editorials, op-ed essays, and first person columns. Prerequisite: 104 or consent of instructor.</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 277F</td>
<td>Specialized Writing and Reporting: Literary Journalism</td>
<td>(Undergraduates register for 177F.) Using the tools of literature to tell the true stories of journalism. Characterization, narrative plotting, scene-setting, point of view, tone and style, and the techniques of reporting for literary journalism, interviewing, and story structure. Prerequisite: 104 or consent of instructor.</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 277G</td>
<td>Specialized Writing and Reporting: Covering a Business Beat</td>
<td>(Undergraduates register for 177G.) How to write news and feature stories about companies and personalities in the business world. Prerequisite: 104 or consent of instructor.</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 277P</td>
<td>Specialized Writing and Reporting: Book Writing</td>
<td>(Undergraduates register for 177P.)</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 277R</td>
<td>Writing and Reporting: Covering Silicon Valley</td>
<td>(Undergraduates register for 177R.) Techniques to write and report about Silicon Valley technologies. Visits from professional writers. Prerequisite: 104 or consent of instructor.</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 277T</td>
<td>Specialized Writing and Reporting: Journalism as Biography</td>
<td>(Undergraduates register for 177T.) How journalistic techniques, such as interviews and public record searches, can be used in writing biographies and profiles. The limits and challenges of such methods, and the opportunities and ethical dilemmas. Prerequisite: 104 or consent of instructor.</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 280</td>
<td>Film Criticism</td>
<td>(Graduate section; see 180.)</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 289</td>
<td>Journalism Master’s Project</td>
<td>4 units, Spr (Staff)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 290</td>
<td>Media Studies M.A. Project</td>
<td>Individual research for coterminal Media Studies students.</td>
<td>1</td>
<td>Aut</td>
<td>Win</td>
<td>Spr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 291</td>
<td>Graduate Journalism Seminar</td>
<td>Required of students in the graduate program in Journalism. Forum for current issues in the practice and performance of the press. Journalists in or visiting the Bay Area are often guest speakers. May be repeated for credit.</td>
<td>1</td>
<td>Aut (Woo), Win (Staff), Spr (Bettinger)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 292</td>
<td>Producing the Nonfiction Film</td>
<td>Research and conceptualization of documentary media projects, including development of nonfiction proposals. Prerequisite: documentary film and video master’s student.</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 293A</td>
<td>Documentary Film and Video M.A. Project Seminar I</td>
<td>Production of master’s documentary film or video project. Focus is on storytelling structure and practical, aesthetic, and ethical issues. Prerequisite: documentary film and video master’s student.</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 293B</td>
<td>Documentary Film And Video M.A. Project Seminar II</td>
<td>Editing and post-production of master’s documentary film or video project. Focus is on aesthetic choices (structure, narration, music), distribution, contracts, and audience. Prerequisite: documentary film and video master’s student.</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 299</td>
<td>Individual Work</td>
<td>1-4 units, Aut, Win, Spr (Staff)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRIMARILY FOR DOCTORAL STUDENTS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
<th>Units</th>
<th>Winter</th>
<th>Spring</th>
<th>Autum</th>
<th>Win</th>
<th>Spr</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 311</td>
<td>Theory of Communication</td>
<td>Required of Communication doctoral students.</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 314</td>
<td>Doctoral Research Methods II B</td>
<td>Part of the doctoral research methods sequence. Focus is on the logic of qualitative research methods and modes of inquiry relevant to the study of communication and meaning. Prerequisite: Communication Ph.D. student, or consent of instructor.</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 317</td>
<td>Doctoral Research Methods I</td>
<td>Approaches to social science research and their theoretical presuppositions. Readings from the philosophy of the social sciences. Research design, the role of experiments, and quantitative and qualitative research. Cases from communication and related social sciences. Prerequisite: consent of instructor.</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 318</td>
<td>Doctoral Research Methods II</td>
<td>Prerequisite: consent of instructor.</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 319</td>
<td>Doctoral Research Methods III</td>
<td>Prerequisite: consent of instructor.</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
COMM 320G. Advanced Topics in New Media and American Culture —Primarily for Ph.D. students. Prerequisite: 220 (formerly 219) or consent of instructor.
1-5 units, Spr (Turner)

COMM 325G. Comparative Studies of News and Journalism —Focus is on topics such as the roles and responsibilities of journalists, news as a genre of popular literature, the nexus between press and state, and journalism’s commitment to political participation.
1-5 units (Glasser) not given 2005-06

COMM 326. Advanced Topics in Human Virtual Representation —Topics include the theoretical construct of person identity, the evolution of that construct given the advent of virtual environments, and methodological approaches to understanding virtual human representation. Prerequisite: consent of instructor.
1-5 units, Win (Bailenson)

COMM 331G. Communication and Media Ethics —Limited to Ph.D. students. Advanced topics in press ethics and responsibility. Prerequisite: 231 or consent of instructor.
1-3 units (Glasser) not given 2005-06

COMM 336G. Democracy, Justice, and Deliberation —(Same as 236G; see 236G.)
1-5 units (Fishkin) not given 2005-06

COMM 338. Democratic Theory: Normative and Empirical Issues —(Same as 238; see 238.)
1-5 units, Win (Fishkin, Luskin)

COMM 344. Democracy, Press, and Public Opinion —(Same as 244; see 244.)
1-4 units (Fishkin) not given 2005-06

COMM 347. Research in Political Psychology —Multi-methodological. Public preferences about government policies; the impact of the mass media on public opinion; party identification formation and change; voter decision making; determinants of voter turnout; issue public membership and its effects; measurement of public opinion; and the interface of democratic governments with their constituents.
2-4 units (Kronnick) not given 2005-06

COMM 348. Gender, Culture, and Communication —The field of gender and communication and principal questions in feminism theory in the context of linguistics, media studies, and sociolinguistics. Historiographical and theoretical perspectives on feminism and technology. International and multicultural focus. Areas include discourse and interaction, gender and culture, communication theory, gender and media, cultural studies, political economy, and symbolic communication. How everyday interactions, media, film, popular culture, and journalism incorporate gender and sexuality and perpetuate stereotypes of men, women, and sexuality. Prerequisite: consent of instructor.
1-5 units, Win (Morgan)

COMM 349. Ethnography of Communication —Ethnographic methods and the study of discourse and interaction. The impact of ethnography on research and field methods; how results validate knowledge across disciplines. The relationship of ethnography of communication to disciplines such as anthropology, linguistics, communications, and sociology. Focus is on the integration of ethnography and other research techniques for the documentation of communication and its role in the establishment and management of social encounters. Prerequisite: consent of instructor.
1-5 units, Spr (Morgan)

COMM 360G. Political Communication —Limited to Ph.D. students. Advanced topics. Prerequisite: 260 or consent of instructor.
1-5 units, Spr (Iyengar)

COMM 361. Field Experimentation in Political Communication Research —The design of large-scale field experiments. Recent developments in analysis of experimental data including matching, propensity scores, and other techniques that address the problem of selection bias. Prerequisite: consent of instructor.
4 units (Iyengar) not given 2005-06

COMM 368. Experimental Research in Advanced User Interfaces —(Same as 268; see 268.)
1-5 units, Win, Spr (Nass)

COMM 370G. Communication and Children —Limited to Ph.D. students. Prerequisite: 270 or consent of instructor.
1-5 units (Roberts) not given 2005-06

COMM 372G. Seminar in Psychological Processing —Limited to Ph.D. students. Advanced topics. Prerequisite: 272 or consent of instructor.
1-5 units, Win (Reeves)

COMM 374G. Freedom and Control of Communication —The meaning of freedom of public communication in democratic communities, focusing on the tensions between freedom and control, rights and opportunities, individual liberty and political equality.
1-5 units, Spr (Glasser)

COMM 379. History of the Study of Communication —The origins of communication/media theory and research emphasizing the rise of communication as a separate field of study. The influence of schools of thought concerning the scope and purpose of the study of communication. Readings include foundational essays and studies. Prerequisite: Ph.D. student or consent of instructor.
1-5 units (Glasser) not given 2005-06

COMM 380. Curriculum Practical Training —Practical experience in the communication industries. Prerequisites: graduate standing in Communication, consent of instructor. Meets requirements for Curricular Practical Training for students on F-1 visas. 380 May be repeated four times for credit.
1-5 units, Aut, Win, Spr, Sum (Staff)

COMM 397. Complementary Project —Individual research for Ph.D. candidates.
1-6 units, Aut, Win, Spr, Sum (Staff)

COMM 398. Major Research Project —Individual research for Ph.D. candidates.
1-6 units, Aut, Win, Spr, Sum (Staff)

COMM 399. Advanced Individual Work
1-9 units, Aut, Win, Spr, Sum (Staff)

OVERSEAS STUDIES
Courses approved for the Communication major and taught overseas can be found in the “Overseas Studies” section of this bulletin, or in the Overseas Studies office, 126 Sweet Hall.

FLORENCE
COMM 53. The Cinema Goes to War: Fascism and World War II as Represented in Italian and European Cinema —(Same as ITALGEN 191F, ARTHIST 160Y, HISTORY 235V.)
5 units, Win (Campani)
COMPARATIVE LITERATURE

Emeriti: (Professors) Joseph Frank, John Freccero, René Girard, Herbert Lindenberger, Mary Pratt, Richard Rorty; (Courtesy Professors) W. B. Carnochan, Gerald Gillespie, Marjorie G. Perloff

Chair: Russell Berman
Director of Admissions: Russell Berman
Director of Graduate Studies: Seth Lerer
Director of Undergraduate Studies: David Palumbo-Liu
Chair of Curriculum Committee: Andrea Nightingale

Professors: John Bender (English, Comparative Literature), Russell Berman (German Studies, Comparative Literature), Margaret Cohen (French and Italian, Comparative Literature), Roland Greene (English, Comparative Literature; on leave), Hans U. Gumbrecht (French and Italian, Spanish and Portuguese, Comparative Literature; on leave), Seth Lerer (English, Comparative Literature), Franco Moretti (English, Comparative Literature), Andrea Nightingale (Classics, Comparative Literature), David Palumbo-Liu (Comparative Literature), Patricia Purker (English, Comparative Literature), Ramón Saldívar (English, Comparative Literature), Jeffrey T. Schnapp (French and Italian, Comparative Literature)

Associate Professors: Amir Eshel (German Studies, Comparative Literature), Monika Greenleaf (Slavic Languages and Literatures, Comparative Literature; on leave), Elisabeth Mudimbe-Boyì (French and Italian, Comparative Literature)

Lecturer: Ann Gelder (Spring)

Consulting Professor: David G. Halliburton, John Wang

Visiting Professor: Abbas M. Milani (Autumn)

Visiting Lecturer: Jessie Labov (Humanities Fellow)

Department Offices: Building 260, Room 209
Mail Code: 94305-2031
Phone: (650) 723-3566
Email: comparativelit@stanford.edu

Web Site: http://www.stanford.edu/dept/complit

Courses given in Comparative Literature have the subject code COMPLIT. For complete list of subject codes, see Appendix.

The Department of Comparative Literature offers courses in the history and theory of literature through comparative approaches. The department accepts candidates for the degrees of Bachelor of Arts, Master of Arts, and Doctor of Philosophy. Several distinct major tracks are available for each degree, some of them offered in cooperation with other departments.

UNDERGRADUATE PROGRAM

BACHELOR OF ARTS

The undergraduate major in Comparative Literature is designed for students who combine the drive and ability to master foreign languages with a strong commitment to literary study. In all cases, students must do a substantial portion of their work in at least one foreign language. The major enables these students to pursue carefully constructed programs involving the in-depth study of literature in one or more languages not their own; and the study of their literature of specialization, its theory, and its practice in relation to other literatures, communications media, and disciplines.

The major is distinguished from those in the national literatures by its comparative scope, by the requirement of seminars that focus on fundamental theoretical questions regarding the nature of literature and literary inquiry, and by its requirement that the students' programs of study be structured around the exploration of a single literary genre, historical epoch, or theoretical problem. It differs from the “interdisciplinary” majors in English and Modern Thought and Literature (MTL) by its requirement that every student’s program be anchored in the study of a literature other than that of his or her native language and, with specific regard to MTL, by its chronological scope.

The “comparative” aspect of each student’s program of specialization is fulfilled according to which of the three available tracks he or she elects to follow:

Track A: The Literary Studies track integrates in-depth work in a primary literature with extensive work in a second literature (in the original language) and complementary course work in an outside field.

Track B: The Interdisciplinary track integrates in-depth work in a primary literature with the focused study of literature in relation to other arts (film, music, painting, etc.), intellectual disciplines (anthropology, history, linguistics, philosophy, etc.), or comparative work in area studies.

Track C: Interdisciplinary track with special concentration in the study of Philosophical and Literary Thought. This track integrates in-depth work in a primary literature with a systematic and articulated study of philosophy and its relations to literature.

An honors program is available in Comparative Literature for all three of these tracks (see below) that integrates substantial in-depth work in a primary literature with extensive work in a second literature (in the original language) or discipline, but also requires the writing of a senior honors paper.

In all three tracks, students work closely with the department’s Director of Undergraduate Studies in designing an individually tailored program of specialization involving two related areas of study. Individual study plans require considerable advance planning and must meet the approval of the Director of Undergraduate Studies.

Declaring the Major—As soon as a student knows that he or she would like to declare the Comparative Literature major (and no later than Autumn Quarter of the junior year), he or she should obtain a worksheet for the appropriate track (see below) from the Comparative Literature office. The completed worksheet (with prospective courses for future years) should be handed to the Director of Undergraduate Studies with an updated official transcript and the student’s advising file. The director should sign the worksheet, indicating his or her approval of the feasibility of the proposed program. This worksheet needs to be updated at least once during each academic year.

Advising—When a student declares Comparative Literature, he or she may choose to declare the Director of Undergraduate Studies as his or her adviser since the director approves credit for all course work (including course work abroad). The adviser may also be a member of the core Comparative Literature faculty. If this occurs, the student must meet periodically with the Director of Undergraduate Studies to monitor his/her progress in the major and for all questions regarding the major’s requirements.

Overseas Campuses and Abroad Programs—The Department of Comparative Literature encourages time abroad, both for increased proficiency in language and the opportunity for advanced course work. Course work done at campuses other than Stanford is counted toward proficiency in language and the opportunity for advanced course work. Course work done at campuses other than Stanford is counted toward the major at the discretion of the Director of Undergraduate Studies and is contingent upon the University’s acceptance of classes for units. To that end, students abroad must make an effort to save all notes, papers, correspondence, etc., to increase the chance of acceptance.

Honors College—The Department of Comparative Literature encourages all honors students to enroll in the honors college scheduled during the weeks preceding the beginning of every academic year. Applications to the college are available from the department administrator. The honors college is coordinated by the Division of Literatures, Cultures, and Languages (DLCL).

Writing in the Major (WIM)—In 2005-06, the WIM requirement for Comparative Literature should be met through completion of a WIM course in the student’s primary literary field:

- Chinese—CHINGEN 133/233
- French—FRENLIT 130, 131, 132, 133
- Italian—ITALLANG 114
- Japanese—JAPANGEN 138/238
- German Studies—GERLIT 123N, 131A/231A
- Slavic Languages—SLAVGEN 146/246
- Spanish and Portuguese—SPANLANG 102, 102B
- English—ENGLISH 160

318
REQUIREMENTS
CORE FOR TRACKS A, B, AND C

All majors in Comparative Literature (including honors) are required to complete the following courses, the first as near as possible to the date of declaration and the second during the senior year. Together, these core seminars ensure that majors have been introduced to the framing propositions and principal methods of the discipline. More specifically these courses are designed to lead students to inquire about the historical standing of such concepts as the literary, the aesthetic, criticism, genre, text, and theory.

1. COMPLIT 101, Seminar on Literature and the Institution of Literary Study (5 units), provides students with an introduction to the comparative study of literature, to the history of poetic theory, and to the historical development of literary fields. It is concerned with addressing foundational questions such as: what kind of knowledge is literary knowledge and how has this knowledge been codified and categorized with respect to other forms of knowledge? Fulfills the Writing in the Major requirement for Comparative Literature majors.

2. COMPLIT 199, Senior Seminar on Literary Theory (5 units), offers advanced students of comparative literature the opportunity for in-depth study of the evolution of modern literary theory and, particularly, of contemporary theoretical perspectives regarding the study of literary artifacts.

TRACK A—LITERARY STUDIES

Literary works are shaped by a complex interplay of historical forces and constraints, including contacts between differing cultures and traditions; the evolution of literary genres, practices, and conventions; shifts in media and technologies of reproduction and diffusion; and the imitation of model authors. By combining in-depth work in a primary literature with work in a second literature, this track emphasizes the study of such phenomena. It requires:

1. Courses using materials in the original language:
 a) five courses which make up an intellectually coherent program, in the literature of the first language A.
 b) three courses are in the literature of language B. These course selections must be coordinated with the courses selected in the literature of language A in order that, taken together, they form a cohesive program of study focused on one of:
 1) a specific literary genre
 2) a historical epoch
 3) a theoretical question

 Note: if either A or B is the student’s native language, further work must be done in a third language to the extent of at least one course in its literature. Literature courses usually begin after two years of college-level study. Bilingual students may count either tongue as native and the other as acquired. If language A, B, or C is Chinese, Japanese, Russian, or another language in which two years of language study does not constitute sufficient basis for literary study, some of the advanced work required for the major may be completed in translation or fulfilled through work in an advanced language course. An appropriate program should be approved following consultation with the department’s Director of Undergraduate Studies.

2. Three cognate courses supplementing a student’s work in the two chosen literatures and lending it further intellectual shape according to the criteria noted above. One course from the COMPLIT 100 series (but neither 101 or 199), or another course offered by the Department of Comparative Literature may be counted under this rubric.

3. One course, usually in translation, in a literature distant from the literatures of the student’s concentration that can provide an outside perspective on the student’s area of specialization.

4. Students in this track must also write at least one seminar paper that is comparative in nature. This paper should draw on previous course work, the paper must be an original composition; general guidelines for length require 18–20 pages. It must be submitted to the Director of Undergraduate Studies and receive his or her approval no later than the end of Winter Quarter in the fourth year of study.

TRACK B—INTERDISCIPLINARY

Literary creation is a complex human enterprise that intersects with a wide array of other fields of human endeavor and creation. Track B is designed to promote the focused study of intersections between literature and the arts (including film, music, and painting), and other disciplines (including anthropology, feminist studies, history, history of science, linguistics, and philosophy). It requires:

1. Five courses using materials in the original language, and making up an intellectually coherent program in the literature of a language other than the student’s native tongue. Bilingual students may satisfy this requirement in either of their original languages or in a third language.

2. Six courses (chosen as a function of the courses noted above) in:
 a) a single discipline or closely related cluster of disciplines
 b) the cultural history of a single historical epoch
 c) one or more of the fine arts; media or film studies
 d) area studies

 This course work must be shaped around the literature courses selected in item 1. It must either treat cogent analytical or thematic issues in the chosen discipline, or be directly relevant to the chosen historical specialization. Students who chose option ‘2d’ must select courses that include work outside a single area studies focus that have a genuinely comparative aspect. Each of these six courses must be approved in advance by the Director of Undergraduate Studies.

3. At least two of the eleven courses in items 1 and 2 shall be taught by Comparative Literature faculty.

4. One course, usually in translation, on a literature distant from the student’s two concentrations. The intention here is, as above, to offer an outside perspective on the student’s field of specialization.

5. Students in this track must also write at least one seminar paper that is interdisciplinary in nature. This paper should bring together material from courses taken in their primary literature and in another discipline and may be an honors paper (see below), an individual research paper (developed through independent work with a faculty member in COMPLIT 194), or a paper integrating materials developed for two separate courses (by arrangement with the two instructors). Though it may draw on previous course work, the paper must be an original composition; general guidelines for length require 18–20 pages. It must be submitted to the Director of Undergraduate Studies and receive his or her approval no later than the end of Winter Quarter in the fourth year of study.

 Students who choose the interdisciplinary option should be aware that it requires careful advance planning given that many course offerings are offered in alternate years.

TRACK C—PHILOSOPHICAL AND LITERARY THOUGHT

Undergraduates may major in Comparative Literature with a special degree field in interdisciplinary studies at the intersection of literature and philosophy. Students in this track take courses alongside students from other departments that also have specialized tracks associated with the program for the study of Philosophical and Literary Thought. Each student in this track is assigned an adviser in Comparative Literature, and students who chose option ‘2d’ must submit course schedules and course of study must be approved in writing by the adviser, the Director of Undergraduate Studies of Comparative Literature, and the Director of Undergraduate Studies of the program.

A total of 65 units must be completed for this track, including the following requirements:

1. Five courses using materials in the original language and making up an intellectually coherent program in the literature of a language other than the student’s native tongue. Bilingual students may satisfy this requirement in either of their original languages or in a third language.
The coherence of this program must be approved in writing by the Director of Undergraduate Studies of Comparative Literature.

2. Philosophy and Literature Gateway Course (4 units): COMPLIT 181 (enroll in PHIL 81, FRENGEN 181, OR ITALGEN 181). This course should be taken as early as possible in the student’s career, normally in the sophomore year.

3. Philosophy Writing in the Major (5 units): PHIL 80. Prerequisite: introductory philosophy class.

4. Aesthetics Writing in the Major (ca. 4 units): one course from the PHIL 170 series.

5. Language, Mind, Metaphysics, and Epistemology (ca. 4 units): one course from the PHIL 180 series.

6. History of Philosophy (ca. 8 units): two courses in the history of philosophy, numbered above PHIL 100.

7. Related Courses (ca. 8 units): two upper division courses relevant to the study of philosophy and literature as identified by the committee in charge of the program. A list of approved courses is available from the undergraduate adviser of the program in philosophical and literary thought.

8. One course, typically in translation, in a literature distant from that of the student’s concentration and offering an outside perspective on that literary tradition.

9. Capstone Seminar (ca. 4 units): in addition to COMPLIT 199, students take a capstone seminar of relevance to philosophy and literature approved by the undergraduate adviser of the program in philosophical and literary thought. The student’s choice of a capstone seminar must be approved in writing by the Director of Undergraduate Studies of Comparative Literature and by the Director of Undergraduate Studies of the program.

10. Seminar Paper Requirement: students must write at least one seminar paper that is interdisciplinary in nature. This paper brings together material from courses taken in philosophy and literature, and may be an honors paper (see below), an individual research paper (developed through independent work with a faculty member), or a paper integrating materials developed for two separate courses (by arrangement with the two instructors). Though it may draw on previous course work, the paper must be an original composition, 18-20 pages in length. It must be submitted to the Director of Undergraduate Studies and receive approval no later than the end of Winter Quarter in the fourth year of study.

At least two of the courses counted toward requirements 1, 2, 7, 8, and 9 must be taught by Comparative Literature faculty. Transfer units may not normally be used to satisfy requirements 2, 3, 4, 5, 6 and 9. Units devoted to acquiring language proficiency are not counted toward the 65-unit requirement.

MINORS

The undergraduate minor in Comparative Literature (CL) represents an abbreviated version of the major. In all cases, students must do a substantial portion of their work in at least one foreign language.

All minors in Comparative Literature are required to complete COMPLIT 101, Seminar on Literature and the Institution of Literary Study (5 units). This provides an essential introduction to the framing propositions and principal methods of the discipline.

In addition, all minors must complete two courses in the literature of a language other than their native tongue. All materials in each course must be in the original language.

1. Literary Studies Track: integrates in-depth work in a primary literature with work in a second literature. Requirements are:
 a) two courses in a second literature (this may include courses in translation, as well as courses in English and/or American literature).
 b) one additional course in Comparative Literature.

2. Interdisciplinary Track: integrates in-depth work in the primary literature with the focused study of literature in relation to another art or intellectual discipline. Requirements are:
 a) two courses in a single discipline, or the cultural history of a single historical epoch.
 b) one additional course in Comparative Literature.

The minor is modeled primarily on the structure and progression of the major (with the appropriate reduction in course and unit requirements, as stipulated by the Committee on Undergraduate Studies). It retains the distinction between the two CL tracks and enables students to design a course of study built around the core CL seminar.

The Director of Undergraduate Studies is responsible for evaluating all requests and individual study plans for the minor.

HONORS PROGRAM

The honors option is reserved for exceptionally motivated students who wish to undertake an even more intensive and extensive program of study leading to the writing of a senior honors paper. The program allows for either a “Literary Studies” or an “Interdisciplinary” emphasis and it requires:

1. Six courses, using materials in the original language and making up an intellectually coherent program, in the literature of language A. For the interdisciplinary emphasis, these courses must be in the literature of a language other than the student’s native tongue.

2. Emphasis:
 a) For a Literary Studies Emphasis: three courses using materials in the original language, in the literature of language B. Note: Track A’s rules regarding students’ native languages, bilingualism, and special exemptions for students studying Chinese, Japanese, Russian, etc., also govern students in the honors program who opt for a literary studies emphasis. These course selections must be coordinated with the courses selected in the literature of language A in order that, taken together, they form a cohesive program of study focused on one of the following:
 1) a specific literary genre
 2) an historical epoch
 3) a theoretical question and three cognate courses that supplement a student’s work in the two chosen literatures and lend it further intellectual shape. One course from the COMPLIT 100 series (but not 101 or 199) may be counted under this rubric.
 b) For an Interdisciplinary Emphasis: six courses as outlined in the general requirements for the Interdisciplinary Track (Track B), above. This course work must be shaped around the literature courses selected in item 1. It must either treat cogent analytic or thematic issues in the chosen discipline, or be directly relevant to the chosen historical specialization. Each of these six courses must be approved in advance by the Director of Undergraduate Studies.

3. One further course is required, usually in translation, on a literature distant from the two of the student’s concentrations, so as to provide an “outside” perspective on the student’s area of specialization.

4. During Spring Quarter of the junior year, a letter requesting admission to the honors program must be submitted to the department’s Director of Undergraduate Studies. This letter must be accompanied by:
 a) the completed, signed worksheet
 b) an updated transcript
 c) a sample seminar paper
 d) an intended plan of study for the senior year (drawn up according to the emphasis selected)
 e) a preliminary statement (two to five pages) regarding the proposed topic of the honors paper (elaborated in consultation with the Director of Undergraduate Studies)

 In Spring Quarter of the junior year, the student may enroll for 2 units of credit for independent research in COMPLIT 194.

 This application is voted on by the Comparative Literature honors committee, made up of the Director of Undergraduate Studies and the Chair of the Department of Comparative Literature. Should it be approved, a faculty tutor is appointed by the director according to the topic. At the appropriate time, a second reader is designated by the honors committee.

5. Once the request for admission to the honors track has been approved, the student must enroll in a 2-unit seminar focusing on research and writing the honors thesis, in the Autumn Quarter of the senior year.
This course helps to refine the project description and begin research in preparation for composing the honors paper.

6. During Winter Quarter of the senior year, the student must enroll in a 5-unit independent study (COMPLIT 195) with his or her faculty tutor for purposes of drafting the honors paper. At the end of the quarter, a completed draft must be submitted to the tutor. If it meets his or her approval as is, two copies must then be forwarded to the honors committee, which decides on the basis of the paper’s quality whether or not the student is awarded honors. If the faculty tutor feels that the paper still requires rewriting at the end of Winter Quarter, the student may complete revisions during Spring Quarter for purposes of final submission. In order to be considered for honors in Comparative Literature, two copies of the final paper must be submitted to the honors committee no later than the fifth week of Spring Quarter. Completion of honors course work, independent research, and the finished thesis earns a total of 10-12 units of credit.

Honors papers vary considerably in length as a function of their topic, historical scope, and methodology. They may make use of previous work developed in seminars and courses, but must be of appropriate comparative or theoretical scope and should reflect the student’s chosen emphasis. Quality (not quantity) is the key criterion. As a rule of thumb, however, they run in the range of 40-70 pages.

Honors Awards — The two readers of any honors thesis in Comparative Literature may elect to nominate the thesis in question for University-wide awards if they feel that it is deserving. In addition, the department honors committee evaluates on a competitive basis the honors theses completed in a given year and nominates one for University-wide awards competitions.

GRADUATE PROGRAM

DOCTOR OF PHILOSOPHY

University requirements for the Ph.D. are described in the “Graduate Degrees” section of this bulletin.

The Ph.D. program is designed for a small group of students whose linguistic background, breadth of interest in literature, and curiosity about the problems of literary scholarship and theory (including the relation of literature to other disciplines) make this program more appropriate to their needs than the Ph.D. in one of the individual literatures. Students take courses in at least three literatures (one may be that of the native language), to be studied in the original. The program is designed to encourage familiarity with the major approaches to literary study prevailing today.

Before starting graduate work at Stanford, students should have completed an undergraduate program with a strong background in one literature and some work in a second literature studied in the original language. Since the program demands an advanced knowledge of two non-native languages and a reading knowledge of a third non-native language, students should at the time of application have an advanced enough knowledge of one of the three to take graduate-level courses in that language when they enter the program. They should be making enough progress in the study of a second language to enable them take graduate courses in that language not later than the beginning of the second year, and earlier if possible. Applicants are expected to take an intensive course in the third language before entrance.

A considerable part of a student’s work consists of individual study toward the oral examinations, for which each student devises reading lists in consultation with the graduate adviser. These examinations are centered on the study of particular periods, genres, and problems of literary study.

Students are admitted under a fellowship plan which attempts to integrate financial support and completion of residence requirements with their training as prospective university teachers. Tenure as a fellow, assuming satisfactory academic progress, is for a maximum of four or five years. The minimum teaching requirement is the same regardless of financial support. (For specific teaching requirements, see below.) Five years of support are normally available, from a combination of fellowships and teaching assistantships, to Ph.D. candidates admitted to the Comparative Literature Department who are making satisfactory progress toward the degree.

APPLICATION PROCEDURES

Competition for entrance into the program is keen. The program is kept small so that students have as much opportunity as possible to work in individual projects under faculty supervision throughout the period of study. No more than 16 students are in residence at any one time. The department does not plan to admit more than three or four new students for the class entering in September. Completed applications are due January 3. Because of the special nature of comparative literature studies, the statement of purpose included in the application for admission should contain the following information besides the general plan for graduate work called for on the application:

1. A detailed description of the applicant’s present degree of proficiency in each of the languages studied, indicating the languages in which the applicant is prepared to do graduate work at present and outlining plans to meet additional language requirements of the program.
2. A description of the applicant’s area of interest (for instance, theoretical problems, genres, periods) within literary study and the reasons for finding comparative literature more suitable to his or her needs than the study of a single literature. Applicants should also indicate what they think will be their primary field.

All applicants should arrange to have the results of the general section of the Graduate Record Examination sent to the Department of Comparative Literature.

Recommendations should, if possible, come from faculty in at least two of the literatures in which the student proposes to work.

Applicants must submit a copy of an undergraduate term paper which they consider representative of their best work.

DEGREE REQUIREMENTS

Residence — A candidate for the Ph.D. degree must complete three years (nine quarters) of full-time work, or the equivalent, in graduate study beyond the B.A. degree. The student must take 135 units of graduate work, in addition to the doctoral dissertation, of which at least 72 units must be within the department. At least three consecutive quarters of course work must be taken at Stanford.

Languages — Students must know three non-native languages, two of them sufficiently to qualify for graduate courses in these languages and the third sufficiently to demonstrate the ability to read a major author in this language. Only the third language may be certified by examination. The other two are certified by graduate-level course work specified below. Language preparation must be sufficient to support graduate-level course work in at least one language during the first year and in the second language during the second year. Students must demonstrate a reading knowledge of the third non-native language no later than the beginning of the third year.

Literatures made up of works written in the same language (such as Spanish and Latin American) are counted as one. One of the student’s three literatures usually is designated as the primary field, the other two as secondary fields, although some students may offer two literatures at the primary level (six or more graduate courses).

Teaching — Fellows, whatever their sources of financial support, are ordinarily required to undertake a total of five quarters of supervised apprenticeships and teaching at half time. Fellows must complete whatever pedagogy courses are required by the departments in which they teach. The department’s minimum teaching requirement is a total of three quarters.

Minimum Course Requirements — Students are advised that the range and depth of preparation necessary to support quality work on the dissertation, as well as demands in the present professional marketplace for coverage of both traditional and interdisciplinary areas of knowledge, render these requirements as bare minimums. The following are required:

1. COMPLIT 369
2. COMPLIT 396L
3. A sufficient number of courses (six or more) in the student’s primary field to assure knowledge of the basic works in one national literature from its beginnings until the present.
4. At least two additional complementary courses, with most of the reading in the original, in each of two different national literatures. Students whose primary field is a non-native language are required to take two courses in one additional literature not their own. Minimum course requirements must be completed before the student is scheduled to take the University oral examination. These requirements are kept to a minimum so that students have sufficient opportunity to seek out new areas of interest. A course is an offering of 3-5 units. Independent study may take the place of up to two of the required courses, but no more; classroom work with faculty and other students is central to the program.

Examinations—Three examinations are required. The third and last is the University oral examination. Students’ reading lists for each examination must be approved by an examination committee and by the graduate adviser. The examinations consist of the following, each of which takes the form of an oral colloquy between the student and a committee of faculty members with interests in the subject areas:

1. First One-Hour Examination: on a literary genre to consist of (a) a knowledge of a substantial number of literary works in a single genre, the list to include works from a number of centuries and from at least three national literatures, and (b) a grasp of the theoretical problems involved in dealing with this genre and with the question of genre in general. The examination must be taken no later than the beginning of the student’s second year of graduate work (or the third quarter of the first year for students who enter with a year of previous graduate work).

2. Second One-Hour Examination: on literary criticism and theory, to consist of the exploration of a specific problem proposed and defined by the student. The problem must be sufficiently wide-ranging to demand the reading of critical texts from a variety of periods. The examination must be taken no later than the first quarter of the student’s third year of graduate work (or the third quarter of the second year for students who enter with a year of graduate work). Students may elect to take this section of the examination before the genre section, in which case it must be taken at the earlier time.

3. University Oral Examination: on a literary period, to consist of in-depth knowledge of a period of approximately a century, in three or more literatures with primary emphasis on a single national literature or, in occasional cases, two national literatures. The reading list covers chiefly the major literary texts of this period but may also include some studies of intellectual backgrounds and modern critical discussions of the period. Students must demonstrate a grasp of how to discuss and define this period as well as the concept of periods in general. This examination is not to be on the dissertation topic, on a single genre, or on current criticism, but rather on a multiplicity of texts from the period. Students whose course work combines an ancient with a modern literature have the option of dividing the period sections into two wholly separate periods.

Qualifying Procedures—The qualification procedures for students in Comparative Literature take place during the quarter in which the student takes the first Ph.D. examination. Ordinarily, this is the beginning of the second year, but students who enter with a year of graduate work elsewhere must take the examination no later than the third quarter of the first year. Any student may elect to take the examination during the third quarter of the first year.

Students are judged qualified to proceed to the Ph.D. on the basis of the first part of the Ph.D. examination as well as other aspects of their work (for example, performance in courses, ability to do original research) that predict strong promise for their dissertations and future careers as scholars and critics. As soon as the student has completed the qualifying procedures, the chair recommends him or her for admission to candidacy for the Ph.D. At this time the student is also recommended for the Master of Arts degree in Comparative Literature if he or she has completed 45 units of work at Stanford and has not already completed an M.A. before entering the program.

Colloquium—The colloquium normally takes place in the quarter following the University oral examination. The colloquium lasts one hour, begins with a brief introduction to the dissertation prospectus by the student lasting no more than five minutes, and consists of a discussion of the prospectus by the student and the three readers of the dissertation. At the end of the hour, the faculty readers vote on the outcome of the colloquium. If the outcome is favorable (by majority vote), the student is free to proceed with work on the dissertation. If the proposal is found to be unsatisfactory (by majority vote), the dissertation readers may ask the student to revise and resubmit the dissertation prospectus and to schedule a second colloquium.

The prospectus must be prepared in close consultation with the dissertation adviser during the months preceding the colloquium. It must be submitted in its final form to the readers no later than one week before the colloquium. A prospectus should not exceed ten double spaced pages, in addition to which it should include a working bibliography of primary and secondary sources. It should offer a synthetic overview of the dissertation, describe its methodology and the project’s relation to prior scholarship on the topic, and lay out a complete chapter by chapter plan.

It is the student’s responsibility to schedule the colloquium no later than the first half of the quarter after that quarter in which the student passed the University Oral Examination. The student should arrange the date and time in consultation with the department administrator and with the three examiners. The department administrator schedules an appropriate room for the colloquium.

Members of the dissertation reading committee ordinarily are drawn from the University oral examination committee, but need not be the same.

PH.D. MINOR

This minor is designed for students working toward the Ph.D. in the various foreign language departments. Students working toward the Ph.D. in English are directed to the program in English and Comparative Literature described among the Department of English offerings. Students must have:

1. A knowledge of at least two foreign languages, one of them sufficient to qualify for graduate-level courses in that language, the second sufficient to read a major author in the original language.

2. A minimum of six graduate courses, of which three must be in the department of the second literature and three in the Department of Comparative Literature, the latter to include a seminar in literary theory or criticism. At least two of the three courses in comparative literature should originate in a department other than the one in which the student is completing the degree. Except for students in the Asian languages, students must choose a second literature outside the department of their major literature.

COURSES

WIM indicates that the course satisfies the Writing in the Major requirement.

Students interested in literature and literary studies should also consult course listings in the departments of Asian Languages, Classics, English, French and Italian, German Studies, Slavic Languages and Literatures, and Spanish and Portuguese, in the Program in Modern Thought and Literature, and in the Division of Literatures, Cultures, and Languages.

Course Numbering System

<table>
<thead>
<tr>
<th>Course Topic</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>10–19</td>
</tr>
<tr>
<td>Genre</td>
<td>20–29</td>
</tr>
<tr>
<td>Periods and Movements</td>
<td>30–39</td>
</tr>
<tr>
<td>Cultures</td>
<td>40–49</td>
</tr>
<tr>
<td>Philosophy and Theory</td>
<td>50–59</td>
</tr>
<tr>
<td>Required courses</td>
<td>101, 181, 199, 369, 396L</td>
</tr>
</tbody>
</table>
INTRODUCTION TO THE HUMANITIES (IHUM)

The following Introduction to the Humanities courses are taught by Comparative Literature department faculty members. IHUM courses are typically available only to freshmen seeking to fulfill GER I requirements; see the “Introduction to the Humanities” section of this bulletin for further information. Prospective majors in Comparative Literature are advised to consider satisfying their GER I b, c requirements by registering for the following IHUM courses.

IHUM 8A.9A. Myth and Modernity: Culture in Germany — Two quarter sequence. The tension between tradition and progress through an examination of German cultural history. The experience of modernity typically involves overcoming or denying the past, but that same past can return to haunt the present in the form of myths. The interplay of myth and modernity, the irrationality of narrative, and the reason of progress, through the example of German culture, especially in literature, from the heroic epics of the medieval era through the catastrophes of the last century. GER: IHUM 2.3

IHUM 8A. 5 units, Win (Berman)
IHUM 9A. 5 units, Spr (Eshel, Strum)

GENERAL

These courses are aimed at freshmen and sophomores who are non-majors (and/or potential majors) and provide an entry point to the discipline of Comparative Literature.

All majors are required, as soon as possible after declaration, to complete COMPLIT 101. During the senior year, majors enroll in 199.

COMPLIT 10N. Shakespeare and Performance — Stanford Introductory Seminar. Preference to freshmen. The problem of performance including the performance of gender through the plays of Shakespeare. In-class performances of scenes from plays by students. The history of theatrical performance. Sources include filmed versions of plays, and readings on the history of gender, gender performance, and transvestite theater. GER: DB-Hum, EC-Gender

3 units, Spr (Parker)

COMPLIT 11Q. Shakespeare, Playing, Gender — Stanford Introductory Seminar. Preference to sophomores. Focus is on several of the best and lesser known plays of Shakespeare, on theatrical and other kinds of playing, and on ambiguities of both gender and playing gender. Topics: transvestism inside and outside the theater, medical and other discussions of sex changes from female to male, hermaphrodites, and fascination with the monstrous. GER: DB-Hum, EC-Gender

3 units, Win (Parker)

COMPLIT 20N. Travel: Real and Imagined Worlds — Stanford Introductory Seminar (Same as FRENGEN 20N.) Focus is on the foreign and the stranger. How otherness and difference are represented through the outsiders’ gaze. Sources include literary works and travel accounts. Topics such as utopia and monstrosity, cultural encounter, and the diversity of cultures. Readings include Plato, Marco Polo, Rabelais, Montaigne, Jean de Léry, Thomas Mann, Alexis de Toqueville, Claude Lévi-Strauss, Bernard Dadie, Italo Calvino, and Barbara Chase-Riboud. GER: DB-Hum

3-4 units, Win (Boyi)

COMPLIT 40N. Reading Across Literature — Preference to freshmen. How literature serves as a medium across which we encounter others. What happens when people are not only other readers but also other authors. What happens when the boundary between reading and writing is blurred, confused, refracted; how that enables a particular aesthetic and ethics. Introduction to literary texts which incorporate issues of culture, history, and ethics. Sources include Barthes, Woolf, Coetzee, Dafis, Shammas, and Ozeki. GER: DB-Hum, EC-GlobalCom

5 units, Spr (Palumbo-Liu)

COMPLIT 41Q. Ethnicity and Literature — Stanford Introductory Seminar. Preference to sophomores. What is meant by ethnic literature? How is ethnic writing different from non-ethnic writing, or is there such a thing as either? How does ethnicity as an analytic perspective affect the way literature is read by ethnic peoples? Articles and works of fiction; films on ethnic literature and cultural politics. How ethnic literature represents the nexus of social, historical, political, and personal issues. GER: DB-Hum, EC-AmerCul

3-5 units, Aut (Palumbo-Liu)

COMPLIT 50N. Journeys of the Mind — Stanford Introductory Seminar (Same as CLASSGEN 50N.) The concept of the journey of the mind in Western philosophical and literary texts. Narratives that represent the mind journeying in search of goodness, happiness, truth, God, self, or nature. Comparison of journey narratives across cultures and historical periods. Interactions among mind, body, and nature. Focus is on: mind separating itself from body and moving from the natural world toward higher beings; and mind as a natural entity that searches for truth or happiness on Earth. GER: DB-Hum

3-4 units, Spr (Nightingale)

COMPLIT 101. Introduction to Comparative Literature: Critical Aesthetics, Thinking, and Feeling the Beautiful — Sources include the history of aesthetics, literary criticism, and literary theory. The major figures, texts, and issues that have contributed to the development of comparative literature. The shifting importance of the work of art, artist, audience, and represented world in the history of literary criticism from classical antiquity to the postmodern era. GER: DB-Hum, WIM

5 units (Saldívar) not given 2005-06

COMPLICIT 194. Independent Research
1-5 units, Aut, Win, Spr (Staff)

COMPLICIT 195. Honors Research — 195A and B should total 10 units between two quarters. 195B and C must be the same grade.

COMPLIT 195A. Honors Thesis
1-10 units, Aut (Staff)

COMPLIT 195B. Honors Thesis
1-10 units, Win (Staff)

COMPLIT 195C. Honors Thesis
2 units, Spr (Staff)

COMPLICIT 199. Senior Seminar on Literary Theory — Introduction to structuralist, poststructuralist, psychoanalytic, and Marxist thinking about language, literature, and culture. Theoretical readings and literary texts. Readings in English translation. Prerequisite: senior Comparative Literature major or consent of instructor. GER: DB-Hum

5 units, Win (Lerer)

UNDERGRADUATE/GRADUATE

COMPLIT 118/218. Dostoevsky and His Times — (Same as SLAVGEN 151/251.) Open to juniors, seniors, and graduate students. Major works in English translation with reference to related developments in Russian and European culture, literary criticism, and intellectual history. GER: DB-Hum

4 units, Win (Frank)

COMPLICIT 119. What Isn’t an Author?: Forgery and Attribution in Chinese and Western Literature — (Enroll in CHINLIT 167/267.)

3-5 units, Aut (Rusk)

COMPLICIT 121/221. Poetics: The Grammar of the Self When the Poet Is a Woman — (Same as SLAVGEN 161/261.) Seminar. Literary works by women poets from the U.S., Russia, E. Europe, and Germany (Dickinson, Moore, Brooks and the Harlem Renaissance, Bishop, Akhmatova, Tsvetaeva, Sachs, Plat, Cisneros, Angelou, Graham, Howe, and Szymborska.) Theoretical and practical issues: breaking and entering the male preserve of high poetry; the interaction of written and oral, political, and performative modes of expression; representations of the feminine body and experience in the visual arts; and the development of a female lineage and modes of poetic legitimation, association, and inspiration. GER: DB-Hum, EC-Gender

4 units (Greenleaf) not given 2005-06
COMPLIT 123. History of Children’s Literature — (Same as ENGLISH 177.) From origins to the present. Focus is on writings for children in the English and American tradition. European texts and contexts. Techniques of critical analysis, the history of publishing and reading, and the rise of children’s literature as a commercial venture. GER:DB-Hum
3-4 units, Spr (Lerer)

COMPLIT 129. Lovers at Dawn — Medieval lyrics of courtly love in which adulterous lovers discuss physical love, strong emotions, right and wrong, and separation. How such poems accommodate a multiplicity of voices, or a woman’s voice. How medieval and later lyric is conditioned by this poetics of sex and regret? Genres: Occitan tenso and alba, German Tageliet, and the Iberian cantiga de amigo. Poets: Dante, Wolfram von Eschenbach, Chaucer, Auden, Larkin.
3-5 units, Aut (Galvez)

COMPLIT 131N. Memory in the Modernist Novel — (Enroll in GERGEN 121N.)
4 units, Spr (Douwaldzi)

COMPLIT 139. History, Fiction, and the Romantic Age — How do history and fiction interact? Focus is on 1800-50 when the historical novel was born and history was codified as a discipline. Readings of fictional and historiographical accounts include Scott, Kleist, Hegel, Hugo, Michelet, and Pushkin and others. Visual materials and films.
3-5 units, Spr (Golburt)

COMPLIT 141. Literature and Society: Introduction to Francophone Literature from Africa and the Caribbean — (Same as FRENLIT 133.) Major African and Caribbean writers. The issues raised in literary works which reflect changing aspects of the societies and cultures of Francophone Africa and the French Caribbean: meeting the challenge of acculturation and the search for identity; tradition competing with modernity; the use of oral tradition and writing; women’s role and status; writers’ social responsibility. Visual material; readings from fiction, poetry, plays, and criticism. In French. GER:DB-Hum, EC-GlobalCom
3-5 units, Spr (Boyí)

COMPLIT 142. The Literature of the Americas — (Same as ENGLISH 172E.) Representations of the creation of an American new world experience, myths of America as utopia, and critiques of notions of the self and the nation to which such myths give rise in political, historical, literary, and mass media forms. Readings include Columbus, Bernal Díaz del Castillo, Aztec codices, Sor Juana, Tocqueville, Fenimore Cooper, Whitman, Machado de Assis, Mario de Andrade, Martí, Neruda, Williams, Rulfo, Faulkner, Morrison, and Sandra Cisneros. GER:DB-Hum, EC-AmerCul
5 units (Greene, Saldívar) not given 2005-06

COMPLIT 147. The Yiddish Novel — (Enroll in SLAVGEN 123/223.)
3-4 units, Spr (Glaser)

COMPLIT 147L. Reflection on the Other: The Jew in Arabic Literature, the Arab in Hebrew Literature — (Enroll in AMELANG 126.)
4 units, Win (Barhoum, Shentov)

COMPLIT 148. Introduction to Asian American Cultures — Asian American cultural production (film, drama, poetry, fiction, music) in sociohistorical context. Topics include ethnicity, race, class, and gender, and the political economy of ethnic culture in the U.S. GER:DB-Hum, EC-AmerCul
3-5 units, Win (Palambo-Liu)

COMPLIT 148S/248S. The Literatures of Ukraine: The Modern Period — (Same as SLAVGEN 135/235.) Borderlands, national identity, geography, and narrative uses of landscape and travel within Ukraine. Contemporary literature in and about Ukraine. Readings include Ukrainian writers such as Kotliarevsky and Ukrainka, Russian writers such as Gogol and Bulgakov, and Polish and Yiddish writers. Readings in English; optional reading groups in original languages.
3-4 units, Aut (Glaser)

COMPLIT 149. What is Nobel Literature? Reading, Assessing, and Interpreting the Nobel Novels on the World Stage — Recent Nobel laureates in literature: Gabriel García Márquez, Nadine Gordimer, Toni Morrison, Kenzaburo Oe, and V.S. Naipaul. These writers from different locations participate in a global conversation about the human condition. The impact of their identities upon their thought and writing. How the Nobel prize is awarded. The role of literature in the world, and analytical skills for reading literary texts. GER:DB-Hum, EC-GlobalCom
5 units, Sum (Palambo-Liu)

COMPLIT 151A. Oedipus, Hamlet, Moses — (Enroll in GERGEN 191A/291A.)
3-5 units, Spr (Douwaldzi)

COMPLIT 159. Does Literature Matter? — What literature means to people in their daily lives. Topics include current and historical considerations of literature as a tool of ethical education; the values of leisure and pleasure as they affect perceptions and definitions of literature; and literature as a method of community building. Students examine personal experiences with literature. Readings include Tolstoy, Wright, Woolf, Eggers, and literary and cultural theorists. GER:DB-Hum
3-5 units, Spr (Gelder)

COMPLIT 181. Philosophy and Literature — (Enroll in FRENGen 181, ITALGen 181, PHIL 81.)
4 units, Aut (Landy, Anderson)

COMPLIT 227. Literary Translation — (Enroll in ENGLISH 293.)
5 units, Spr (Felstiner)

COMPLIT 241. Comparative Fictions of Ethnicity — How authors create fiction informed by the notions of ethnicity, difference, and social ideologies. Focus is on narratives written by racial and ethnic minorities whose representation reveals how they came to write and how they sense themselves to be written by historical, social, and cultural forces. How ideas such as identity, national character, ethnicity, and gender evolved. Novels from settings including the U.S., Middle East, and Asia. Authors include Sandra Cisneros, John Wideman, Zora Neale Hurston, Toshio Mori, Nieh Hualing, Anton Shammas, and N. Scott Momaday. GER: DB-Hum, EC-AmerCul
5 units, Spr (Palambo-Liu)

COMPLIT 244. Twentieth Century Central European Literature and Film: 1918 to 1968 — Is there a distinct Central European culture? The origins of literary avant-gardism inspired by Dada and Surrealism, the traumas of WWII, and anti-authoritarian reactions to censorship and socialist realism. Czechoslovakia, Hungary, Poland, Romania, and Yugoslavia. Texts and films by Esterházy, Gombrowicz, Kafka, Milosz, Schulz, Szabo, Kis, and Wajda.
5 units, Win (Labov)

COMPLIT 245. Twentieth Century Central European Literature and Film: 1968 to the Present — Political upheavals in Central Europe including Solidarity, perestroika, and the post-Communist present. How these changes are reflected in the literatures and cultures of Czechoslovakia, Hungary, Poland, Romania, and Yugoslavia. How writers and artists have been subject to political, national, and commercial demands. Texts and films by Esterházy, Gombrowicz, Kieslowski, Kundera, Milosz, Szymborska, Topol, and Zagajewski.
5 units, Spr (Labov)

COMPLIT 246. Rethinking Identities in the Era of Globalization — (Same as FRENLIT 278.) Cultural issues faced by postcolonial societies and new visions proposed by writers and thinkers to meet the challenge of globalization and preserve the local. Emphasis is on questions of difference, language, nation and identities, and identity construction. Theoretical and fictional readings include Derrida, Glissant, Kristeva, Malouf, Morejon, Senghor, and Serres. May be repeated for credit.
3-5 units, Spr (Boyí)

The problem of censorship in Iranian literary history. Were the sources of Iranian and Muslim modernity derived from the West or as an indigenous development? GER:DB-Hum
5 units, Aut (Milani)

COMPLIT 249C. History, Memory, and Cultural Discourse in Germany, Austria, and Israel—(Same as INTNLREL 103.) Comparative, theoretical, and interdisciplinary approach to literary, visual, and cinematic representations and appropriations of WW II, the Holocaust, and the founding of Israel. The relationships among representation, memorialization, and cultural and political discourses: what are the implications of different modes of historical representation? How can the memory boom of the 90s and the beginning of the 21st century be explained? How does this interest in history and memory relate to cultural globalization? In English.
5 units, Win (Saldívar)

COMPLIT 257. Self-Deception in Literature and Philosophy: Putting Philosophy at the Risk of Narrative—(Enroll in FRENLIT 257.)
3-5 units, Spr (Dupuy)

5 units, Win (Parker)

COMPLIT 315. Petrarch and Petrarchism—(Same as ITALLIT 345.) Readings from the Canzoniere, Epistole, De Vita Solitaria, and Secretum, in relation to later developments in Petrarchan poetry in Italy (Ariosto, Gaspara, Stampa, Tasso), Spain (Garcilaso, Quevedo, Gongora), England (Sydney, Shakespeare), and France (Ronsard). Topics: Petrarch and Dante, Petrarch and the aesthetics of fragmentation, and Pietro Bembo and the Petrarchan canon. In Italian.
3-5 units, Aut (Schnapp)

COMPLIT 320. Materials and Methods for the Study of Poetry—(Same as ENGLISH 350C.) For graduate students in all national literatures and for comparatists. The intellectual and professional tools relevant to scholarship on poetry in any language. Theoretical issues and practical knowledge of forms, techniques, and cultural formations in verse. Topics such as lineation, stanza, meters, material and concrete poems, prose poems, translation voices, and persona.
3-5 units (Greene) not given 2005-06

COMPLIT 320A. Epic and Empire—(Same as ENGLISH 314.) Focus is on Virgil's Aeneid and its influence, tracing the European epic tradition (Ariosto, Tasso, Camoes, Spenser, and Milton) to New World discovery and mercantile expansion in the early modern period.
5 units, Spr (Parker)

COMPLIT 321. Present Past: History, Fiction, Temporality—(Same as GERLIT 299.) The crisis of temporality and aversion to traditional notions of history in late 20th-century Western culture. Sources include literary, philosophical, and historical works with focus on the cultural dislocations attending the rebellion against modernity and the difficulty of making sense of the relation between past and present as traditional values, ideologies, and utopias weaken. Readings may include Heidegger, Benjamin, Koselleck, Ricouer, Sartre, Levi, Kafka, Agnon, Woolf, Celan, and Weiss. GER:DB-Hum
5 units, Win (Eshel, White)

COMPLIT 322A. Theories of the Novel—(Same as FRENGEN 356.) The novel as the genre most closely identified with the development of cultural modernity by literary historians and theorists. Critical models for defining the novel's poetics and cultural work. Critical readings: Bakhtin, Auerbach, Barthes, Armstrong, Genette, Radway, Bourdieu, Macherey, Jameson, and Robbe-Grillet. Tutor texts: Defoe's Robinson Crusoe, Flaubert's Madame Bovary, and Woolf's To the Lighthouse.
3-5 units, Spr (Cohen)

COMPLIT 326C. The Ethnic Bildungsroman and Historical Novel—(Same as ENGLISH 309.) Can a case be made for defining the classical stage of minority novels in formal rather than thematic terms? The Bildungsroman as the novel of human emergence despite how a human being can emerge in diverse ways. Focus is on contemporary ethnic novels to establish a formal definition for ethnic and minority narratives in the historical mode.
5 units, Win (Saldívar)

COMPLIT 331C. Institutions of Enlightenment: The Invention of the Public Sphere—(Same as HISTORY 331A, ENGLISH 303F.) The cultural foundations of the Enlightenment as public sphere and its relationship to the private or intimate sphere. The invention and naturalization of fundamental institutions of the Enlightenment such as the public, the private, the market, public opinion, literature, the individual, society, culture, knowledge, and politics.
5 units, Aut (Bender)

COMPLIT 335. F. T. Marinetti and Futurism—(Same as ITALGEN 353E.) The history and influence of the Futurist movement. Links between avant garde cultural experimentation and themes of speed, acceleration, intensification, and novelty that shaped modern and postmodern ideas about experience, subjectivity, rhythm, power, and production.
3-5 units, Spr (Schnapp)

COMPLIT 350. Mediating Otherness—How distant others are delivered via literary and other sorts of narratives. How the traditional function of literary narrative to present others across space and time is still fulfilled or fulfilled differently in the contemporary moment. The ethical importance of different modes of conveying otherness. Sources include Badiou, Derrida, Levinas, Nancy, Nussbaum, Ricouer, Spivak, new media theory, films, and novels.
5 units, Aut (Palambo-Liu)

COMPLIT 351. Explanation/Interpretation—(Same as ENGLISH 366A.) What should literary critics and historians do: explain or interpret? What is the difference between these intellectual activities, and what is at stake in the choice of one over the other? Readings include Weber, Freud, Popper, Gadamer, Hempel, Douglas, Geertz, Nussbaum, Panofsky.
5 units, Spr (Moretti)

COMPLIT 353. The Theory of the Text—Studies in the theory of textuality, textualism, discourse, and interpretation. Issues connected with narrative and narrativity; the structure of tales, stories, and myths; the modernist rejection of narrativity; and narrative as a cognitive mode. Theorists include Lukács, Propp, Greimas, Barthes, Genette, Girard, and Jameson. GER:DB-Hum
4-5 units, Win (White)

COMPLIT 354B. The Modern Tradition II—(Same as MTL 334B.) Responses, refutations, elaborations, modifications to texts in critical theory such as Gramsci, Lacan, and Derrida, and postcolonial, postmodern, and feminist theory. Prerequisite: 334A.
3-5 units, Win (Palambo-Liu)

COMPLIT 358. The Sublime and the Ugly—(Enroll in ENGLISH 383.)
5 units, Spr (Gigante)

COMPLIT 359A. Philosophical Reading Group—(Enroll in FRENGEN 395, ITALGEN 395.)
1 unit, Aut, Win, Spr (Harrison)

COMPLIT 369. Introduction to Graduate Studies: Criticism as Profession—(Same as GERLIT 369.) Major texts of modern literary criticism in the context of professional scholarship today. Readings by critics such as Lukács, Auerbach, Frye, Ong, Benjamin, Adorno, Szondi, de Man, Abrams, Bourdieu, Vender, and Said. Contemporary professional issues including scholarly associations, journals, national and comparative literatures, university structures, and career paths.
5 units, Aut (Berman)
COMPLIT 395. Research
1-15 units, Aut, Win, Spr (Staff)

COMPLIT 396L. Pedagogy Seminar I
(Same as ENGLISH 396L.)
Required for first-year Ph.D. students in English, Modern Thought and Literature, and Comparative Literature (except for Comparative Literature students teaching in a foreign language). Preparation for surviving as teaching assistants in undergraduate literature courses. Focus is on leading discussions and grading papers.
2 units, Aut (Lerer)

COMPLIT 399. Dissertation
1-15 units, Aut, Win, Spr, Sum (Staff)

OVERSEAS
These courses are approved for the Comparative Literature major and taught overseas at the campus indicated. Students should discuss with their major advisers which courses would best meet individual needs. Descriptions are in the “Overseas Studies” section of this bulletin, or at the Overseas Studies Office, 126 Sweet Hall.

PARIS
COMPLIT 150X. Gardens of Earthly Delight: Landscape, Culture, and Social Spaces in France
(Same as ENGLISH 150X.)
4 units, Spr (Saldívar)

COMPARATIVE STUDIES IN RACE AND ETHNICITY (CSRE)

Director: C. Matthew Snipp
Curriculum Committee: Lawrence Bobo, David Palumbo-Liu, C. Matthew Snipp, Yvonne Yarbro-Bejarano, Steven Zipperstein
Affiliated Faculty and Teaching Staff: David Abernethy (Political Science, emeritus), Lalita Ameriarian (Asian American Studies), Anthony Antonio (Education), Rick Banks (Law), Lucius Barker (Political Science, emeritus), Donald Barr (Human Biology), Joel Beinin (History), Lawrence Bobo (Sociology), Graciela Borsato (Chicana/o Studies), Michele Elam (English), Albert Camarillo (History), Darshan Elena Campos (Chicana/o Studies), Martin Carnoy (Education), Clayborne Carson (History), Gordon Chang (History), Karen Cook (Sociology), Irene Corso (Spanish and Portuguese), Larry Cuban (Education), Linda Darling-Hammond (Education), Carol Delaney (Cultural and Social Anthropology), Carolyn Duffy (Comparative Studies in Race and Ethnicity), Keila Diehl (Asian American Studies), Jennifer Eberhardt (Psychology), Paulla Ebron (Cultural and Social Anthropology), Penny Eckert (Linguistics), Arnold Eisen (Religious Studies), Harry Elam (Drama), Luis Fraga (Political Science), George Federickson (History, emeritus), Estelle Freedman (History), Claudine Gay (Political Science), Vera Grant (African and African American Studies), Akhil Gupta (Cultural and Social Anthropology), Estella Habal (Asian American Studies), Elizabeth Hansot (Political Science, emeritus), Miyako Inoue (Cultural and Social Anthropology), Gavin Jayes (English), Terry Karl (Political Science), Pamela Karlan (Law), Michael Kirt (Education), Matthew Kohrman (Cultural and Social Anthropology), Jan Krawitz (Communication), Teresa LaF romboise (Education), Herbert Leiderman (Psychiatry, emeritus), Yvonne Maldonado (Pediatrics), Purmina Manekar (Cultural and Social Anthropology), Hazel Markus (Psychology), Monica McDermott (Sociology), Raymond McDermott (Education), James Montoya (Comparative Studies in Race and Ethnicity), Cherríe Moraga (Drama), Marcyliena Morgan (Communication), Joanna Mountain (Anthropological Sciences), Paula Moya (English), Norman Naimark (History), Na’ilah Nasir (Education), Sharon Nelson-Beer (Native American Studies), Hilton Obenzinger (Undergraduate Research Programs), Susan Olzak (Sociology), Amado Padilla (Education), Jose Palafox (Chicana/o Studies), David Palumbo-Liu (Comparative Literature), Teresa Pellinen-Chavez (Comparative Studies in Race and Ethnicity), Jack Rakove (History), Arnold Rampersad (English), Robert Reich (Political Science), Ian Read (Comparative Studies in Race and Ethnicity), John Rickford (Linguistics), Cecilia Ridgeway (Sociology), Richard Roberts (History), Aron Rodrigue (History), Richard Rosa (Spanish and Portuguese), Michael Rosenfeld (Sociology), Ramón Saldívar (English), Joel Samoff (Center for African Studies), Stephen Sano (Music), Debra Satz (Philosophy), JoEllen Shively (Native American Studies), C. Matthew Snipp (Sociology), Paul Snidman (Political Science), Sandra Soo-Jin Lee (Cultural and Social Anthropology), Claude Steele (Psychology), James Steyer (Comparative Studies in Race and Ethnicity), Ewart Thomas (Psychology), Jeanne Tsai (Psychology), David Tyack (Education, emeritus), Guadalupe Valdés (Education, Spanish and Portuguese), Richard White (History), Michael Wilcox (Cultural and Social Anthropology), Joy Williamson (Education), Carolyn Wong (Political Science), Sylvia Yanagisako (Cultural and Social Anthropology), Yvonne Yarbro-Bejarano (Spanish and Portuguese), Bob Zajonc (Psychology), Steven Zipperstein (History)

Teaching Fellows: Rachael Joo, Frank Sampson, Victor Thompson

Program Offices: Building 240, Room 103
Mail Code: 94305-2152
Phone: (650) 723-8449
Email: mibarra@stanford.edu
Web Site: http://ccsre.stanford.edu
Courses given in CSRE have the subject code CSRE. For a complete list of subject codes, see Appendix.

UNDERGRADUATE PROGRAMS

MAJORS

CORE CURRICULUM

The Interdisciplinary Program in Comparative Studies in Race and Ethnicity (CSRE) provides students the opportunity to structure a major or minor in comparative ethnic studies or to focus their course work in a single ethnic studies area. Four majors and minors (Asian American Studies, Comparative Studies, Chicana/o Studies, and Native American Studies) are offered as part of CSRE. All courses taken for the major must be taken for a letter grade. In addition, majors in the Program in African and African American Studies and in the Program in Jewish Studies enroll in the core curriculum offered by CSRE. The directors of the programs and of each major constitute the CSRE curriculum committee, the policy making body for the interdisciplinary program.

Students who declare any of the five majors participate in a common curriculum of the CSRE consisting of at least two introductory core courses and a senior seminar. Individually designed majors in Jewish Studies may also enroll in the CSRE core curriculum.

There are two types of introductory, interdisciplinary core courses taught by senior CSRE-affiliated faculty: regular core courses that compare across racial and ethnic groups; and single-group core courses that focus on a specific racial or ethnic group.

MINORS

Students who wish to minor in the study areas must complete six courses (a minimum of 30 units) from the approved CSRE course list, two of which must be introductory core courses. Proposals for the minor must be approved by the director of each study area.

DIRECTED READING AND RESEARCH

Directed reading and research allows students to focus on a special topic of interest. In organizing a reading research plan, the student consults with the director of the major and one or more faculty members specializing in the area or discipline.

SENIOR SEMINAR

Research and the writing of the senior honors thesis or senior paper is under the supervision of a faculty project adviser. The seminar is offered in Autumn Quarter, and discussions take students through the process of research (conceptualization, development of prospectus, development of theses, research, analysis, and writing). This course meets the Writing in the Major requirement (WIM). Those who opt to write senior papers are organized into tutorial groups in Autumn Quarter. All CSRE-related students, even those who opt to write honors theses in other departments and programs, must enroll in CSRE 200X, Senior Seminar.

RELATED PROGRAMS

CSRE-related majors have several unique opportunities available to them. The program supports full-time paid summer internships for those who apply to work in a non-profit or government agency in a public policy-related area. The CSRE Public Policy/Leadership Institute is a two-week, pre-Autumn Quarter seminar that provides exposure to critical public policy issues and is taught by a leading faculty member. The residence-based institute provides room and board and all seminar materials for participants, including a visit to Sacramento to meet with policy makers. The CSRE program also sponsors quarterly career workshops and informal luncheons for all majors and minors.

HONORS

Majors in each of the study areas who meet academic qualifications (at least a grade point average of 3.5 in CSRE-related courses) may apply for admission. Majors are expected to participate in a Spring Quarter junior workshop in preparation for their honors thesis research. Prizes for the best undergraduate honors theses are awarded annually by the Curriculum Committee of CSRE.

AFRICAN AND AFRICAN AMERICAN STUDIES (AAAS)

Director: Lawrence Bobo

Since 1997-98, AAAS has been a CSRE-related major. For major and minor descriptions and requirements, see the “African and African American Studies” section of this bulletin.

ASIAN AMERICAN STUDIES

Director: David Palumbo-Liu

Asian American Studies (AAS) provides an interdisciplinary approach to understanding the historical and current experiences of persons of Asian ancestry in the United States. In using the term “Asian American,” the AAS faculty recognize that the term seeks to name a rapidly developing, complex, and heterogeneous population and that there is neither a single Asian American identity nor one community that comprises all Asian Americans. Asian Americans include those with ancestral ties to countries or regions in East Asia, South Asia, Southeast Asia, or the Philippines, among others.

AAS brings together courses that address the artistic, historical, humanistic, political, and social dimensions of Asian Americans and is an appropriate course of study for students interested in a variety of concerns related to Asian Americans, including: artistic and cultural contributions; current social significance; historical experiences; immigration, intellectual, and policy issues; relationships with other social groups; and the construction of the notion of Asian American as it addresses important theoretical and practical issues.

REQUIREMENTS

Asian American majors must take the 15-unit CSRE core curriculum including two introductory core courses and a senior seminar taken in Autumn Quarter of the senior year. One single-group, core course that focuses on a non-Asian ethnic group may be counted toward the 15-unit core requirement.

Majors are required to take one foundational thematic course in Asian American Studies, such as COMPLIT 148, Introduction to Asian American Cultures. Majors must complete an additional 40 units of course work from an approved list. One course must have an international dimension, preferably a focus on Asia. Five additional courses must have an Asian American focus and must be selected from social science and humanistic departments. Majors must take two courses offering a comparative perspective on race and ethnicity. Students may obtain credit for their study of a related Asian language towards their degree. A total of 60 units of course work is required for the major.

Students who wish to minor in Asian American Studies must complete two core introductory courses and four additional courses related to the thematic concentration. A total of 30 units of approved course work are required for the minor.

CHICANA/O STUDIES

Director: Yvonne Ybarro-Bejarano

Chicana/o Studies is an interdisciplinary major focusing on the Mexican-origin population of the U.S., the second largest ethnic group in the nation. Students who major or minor in Chicana/o Studies have an opportunity to select from a courses in the humanities, social sciences, and courses offered by affiliated faculty in the School of Education.

REQUIREMENTS

Chicana/o Studies majors must take the 15-unit CSRE core curriculum including two introductory core courses and a senior seminar taken in Autumn Quarter of the senior year. One single-group, core course that focuses on a non-Mexican origin group may be counted toward the 15-unit core requirement.
Majors are required to take ENGLISH 172A/HISTORY 162, Introduction to Chicana/o Life and Culture (not given 2005-06). Majors complete an additional 40 units of courses relevant to the thematic concentration and approved by the adviser. A total of 60 units of coursework are required for the major.

Students who wish to minor in Chicana/o Studies must complete two core introductory courses, including ENGLISH 172A/HISTORY 162, and four additional courses related to the thematic concentration. A total of 30 units of approved course work are required for each minor.

COMPARATIVE STUDIES IN RACE AND ETHNICITY

Director: C. Matthew Snipp

Comparative Studies in Race and Ethnicity, the largest of the five major/minors offered in the program, does not focus on a particular ethnic group. Rather, a student in consultation with the adviser designs a curriculum in relation to a thematic concentration that compares various ethnic groups or explores topics that cut across group experiences in the United States and elsewhere in the world. For example, students may compare groups within the U.S., or compare groups in the U.S. to ethnic groups elsewhere, or study the diaspora of a single group or the sovereignty of indigenous peoples within and across different national contexts. Students in this major are able to take advantage of courses in over 22 fields offered by the affiliated faculty of CSRE.

REQUIREMENTS

All CSRE-related majors enroll in the 15-unit CSRE core curriculum, which consists of two introductory core courses and a senior seminar taken in Autumn Quarter of the senior year. One single-group, core course may be counted toward the 15-unit core requirement.

Comparative Studies majors complete another 45 units of course work relevant to the thematic concentration they have chosen in consultation with the adviser.

Students who wish to minor in Comparative Studies must complete six courses (a minimum of 30 units) from the approved course list.

TAUBE CENTER FOR JEWISH STUDIES

Directors: Aron Rodrigue, Steven Zipperstein

Jewish Studies is an affiliated program of CSRE. For program and course descriptions, see the “Jewish Studies” section of this bulletin.

NATIVE AMERICAN STUDIES

Director: C. Matthew Snipp

Native American Studies provides an intensive approach to understanding the historical and contemporary experiences of Native American people. Attention is paid not only to the special relationship between tribes and the federal government, but to issues across national boundaries, including tribal nations within Canada, and North, Central, and South America. In using the term “Native American,” the NAS faculty recognize the heterogeneous nature of this population. Native Americans include the Alaska Native population, which comprises Aleuts, Eskimo, and other Native American people residing in Alaska.

The purpose of the Native American Studies major and minor is to introduce students to approaches in the academic study of Native American people, history, and culture. Students who major in Native American Studies have the opportunity of doing advanced work in related fields, including literature, sociology, education, and law. In addition to specialized course work on Native American issues, students also are expected to concentrate in a traditional discipline such as anthropology, history, or psychology to ensure a well rounded educational experience. The area of concentration and related course work should be selected in consultation with a faculty adviser in Native American Studies. All courses in the program promote the discussion of how academic knowledge about Native Americans relates to the historical and contemporary experiences of Native American people and communities.

REQUIREMENTS

Native American Studies must take the 15-unit CSRE core curriculum including two introductory core courses and a senior seminar taken in Autumn Quarter of the senior year. One single-group, core course that focuses on a non-Native American group may be counted toward the 15-unit core requirement.

Majors complete an additional 45 units of course work that satisfy three categories of their thematic concentration: Native American focus, comparative focus, and a methodology/research course. A total of 60 units of coursework are required for the major.

Students who wish to minor in Native American Studies must complete two core introductory courses and four additional courses related to the thematic concentration. A total of 30 units of approved course work are required for the minor.

COURSES

CORE

COMPARATIVE LITERATURE

COMPLIT 241. Comparative Fictions of Ethnicity

5 units, Spr (Palumbo-Liu)

COMPARATIVE STUDIES IN RACE AND ETHNICITY

CSRE 196C. Introduction to Comparative Studies in Race and Ethnicity — (Same as ENGLISH 172D, PSYCH 155.) How different disciplines approach topics and issues central to the study of ethnic and race relations in the U.S. and elsewhere. Lectures by senior faculty affiliated with CSRE. Discussions led by CSRE teaching fellows. GER:DB-SocSci

5 units, Win (Markus, Moya)

CSRE 200X. CSRE Senior Seminar — WIM

5 units, Aut (Thompson, Snipp)

CULTURAL AND SOCIAL ANTHROPOLOGY

CASA 88. Theories in Race and Ethnicity

5 units, Aut (Yanagisako)

EDUCATION

EDUC 156A. Understanding Racial and Ethnic Identity

3-5 units, Win (LaFromboise)

HISTORY

HISTORY 64. Introduction to Race and Ethnicity in the American Experience

5 units, Aut (Camarillo)

PSYCHOLOGY

PSYCH 75. Introduction to Cultural Psychology

5 units (Markus) alternate years, given 2006-07

SOCIIOLOGY

SOC 145. Race and Ethnic Relations

5 units, Win (Bobo)

THEMATIC FOR MAJORS AND MINORS

AFRICAN AND AFRICAN AMERICAN STUDIES

For courses in African and African American Studies with the subject code AFRICAAM, see the “African and African American Studies” section of this bulletin.

ASIAN AMERICAN STUDIES

ASNAMST 182W. Filipino Experience — Filipino American history, culture, and politics. Colonial contact in the Philippines; Spanish and American imperialism; U.S. politics and Filipino American activism; problems of identity related to class, gender, sexuality, and generational differences; mass media depiction, and attempts by Filipinos to redefine their experiences.

5 units, Spr (Habal)
ASNAMST 184A. Asian Diasporas in America and Canada: Culture, History, Place—(Same as CSRE 184A.) Interdisciplinary. Comparative perspectives; how migration is shaped by the social, economic, and cultural specificities of countries of departure and arrival. How Asian immigrants negotiate citizenship abroad. Cultural productions of diasporic communities, binaries of home and abroad, and new ways of thinking about the global map of Asia. How gender, sexuality, and class affect the formation of diasporic identities.
1-5 units, Win (Ameeriar)

ASNAMST 200R. Directed Research
1-5 units, Aut, Win, Spr (Staff)

ASNAMST 200W. Directed Reading
1-5 units, Aut, Win, Spr (Staff)

CHICANA/O STUDIES

CHICANAST 181S. U.S.-Mexico Borderlands in Comparative Perspective—(Same as CSRE 181S.) The border as zone of political, social, economic, and cultural interaction, conflict, and interdependence from before the U.S.-Mexico War. Manifest destiny, the incorporation of the boundary into the capitalist world system, and contemporary boundary issues including the border industrialization program, urbanization and migration, and the function of borders in reinforcing global apartheid.
5 units, Spr (Palafox)

CHICANAST 186C. Popular Culture in the Americas—(Same as CSRE 186C.) José Martí’s vision of America and how Latino/as have reshaped dominant discourses of nationalism, belonging, and citizenship in the U.S. through migration and presence in popular culture and the public sphere. Global capital; transnational movement of peoples, ideas, and products; dance, music, cinema, and performance; and popular culture as a means of politicization and site of discourse and conflict. The politics of incorporation into commercial popular culture in relation to practices on the margins of the marketplace.
5 units, Win (Campos)

CHICANAST 187C. Latino Children: Cultural and Social Contexts of Development—(Same as CSRE 187C.) Ecological contexts, including family, school, and society, that shape the psychosocial and educational outcomes of Latino children. Sources include developmental and cultural psychology, anthropology of education, and sociology.
5 units, Spr (Borsato)

CHICANAST 200R. Directed Research
1-5 units, Aut, Win, Spr (Staff)

CHICANAST 200W. Directed Reading
1-5 units, Aut, Win, Spr (Staff)

COMPARATIVE STUDIES IN RACE AND ETHNICITY

3 units, Win (Pellinen-Chavez)

CSRE 192. Race and Slavery in Brazil and the United States—Did race motivate enslavement or was racial profiling a product of slavery? Brazilian or American slavery and what it means to be a person of color in these countries today. Love, hatred, and endurance in divided societies. Sources include historical narratives, literature, film, music and iconography.
5 units, Win (Read)

CSRE 199. Pre-Honors Seminar—For students interested in writing a senior honors thesis. Conceptualizing and defining a manageable honors project, conducting interdisciplinary research, the parameters of a literature review essay, and how to identify a faculty adviser.
1 unit, Spr (Thompson)

CSRE 200R. Directed Research
1-5 units, Aut, Win, Spr (Staff)

CSRE 200W. Directed Reading
1-5 units, Aut, Win, Spr (Staff)

CSRE 200Y. CSRE Senior Honors Research
1-10 units, Win (Thompson, Snipp)

CSRE 200Z. CSRE Senior Honors Research
1-10 units, Spr (Thompson, Snipp)

CSRE 203A. The Changing Face of America: Civil Rights and Education Strategies for the 21st Century—For students with leadership potential who have studied these topics in lecture format. Race discrimination strategies, their relation to education reform initiatives, and the role of media in shaping racial attitudes in the U.S.
5 units, Spr (Montoya, Steyer)

NATIVE AMERICAN STUDIES

NATIVEAM 115B. Native American History Since 1934—(Same as CSRE 115B.) The Indian Reorganization Act, urbanization, federal government policies, the American Indian Movement and activist era of the 60s and 70s, religious freedom, economic development, and Indian gaming. Emphasis is on native sovereignty.
5 units, Spr (Staff)

NATIVEAM 116. Language, Culture, and Education in Native North America—(Same as CSRE 116.) Communication and language in crosscultural education, including literacy and interethenic communication in relation to native classrooms in the mainland U.S., Alaska, and nations and territories of the Pacific. Focus is on implications of social, cultural, and linguistic diversity for educational practice in bridging intercultural differences between schools and native communities.
GER:DB-SocSci
5 units, Win (Nelson-Barber)

NATIVEAM 117A. Diversity in Contemporary American Indian Cultures and Communities—(Same as CSRE 117A.) 1890 to the present. The demographic resurgence of American Indians, changes in social and economic status, ethnic identification and political mobilization, and institutions such as tribal governments and the Bureau of Indian Affairs. GER:DB-SocSci
5 units (Shively) not given 2005-06

NATIVEAM 119S. History of Indian Education—(Same as CSRE 119S.) How the federal government placed education at the center of its Indian policy in second half of 19th century, subjecting Native Americans to programs designed to erase native cultures. American Indian responses to those programs. Topics include traditional Indian education, role of religious groups, Meriam Report, Navajo-Hopi Rehabilitation Act, Johnson-O’Malley Act, and public schools.
5 units, Aut (Shively)

NATIVEAM 200R. Directed Research
1-5 units, Aut, Win, Spr (Staff)

NATIVEAM 200W. Directed Reading
1-5 units, Aut, Win, Spr (Staff)

INTERDEPARTMENTAL OFFERINGS

AFRICAN AND AFRICAN AMERICAN STUDIES

AFRICAAM 101. African American Lecture Series
1-3 units, Aut, Win, Spr (Grant)

AFRICAAM 105. Introduction to African and African American Studies
5 units, Aut (Carson)

AMERICAN STUDIES

AMSTUD 183. Border Crossings and American Identities
5 units, Win (Duffy)
<table>
<thead>
<tr>
<th>COMMUNICATION</th>
<th>EDUC 193B. Peer Counseling: Chicano Community</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 148. Hip Hop and Don’t Stop: Introduction to Modern Speech Communities</td>
<td>2 units, Aut (Martinez)</td>
</tr>
<tr>
<td>4-5 units, Win (Morgan)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EDUC 193C. Peer Counseling: The African American Community</td>
</tr>
<tr>
<td></td>
<td>2 units, Aut (Edwards)</td>
</tr>
<tr>
<td></td>
<td>EDUC 193D. Peer Counseling: Asian American Community</td>
</tr>
<tr>
<td></td>
<td>2 units, Spr (Brown)</td>
</tr>
<tr>
<td></td>
<td>EDUC 193E. Peer Counseling: Native American Community</td>
</tr>
<tr>
<td></td>
<td>2 units, Win (Simms, LaFromboise, Martinez)</td>
</tr>
<tr>
<td></td>
<td>EDUC 201. History of Education in the United States</td>
</tr>
<tr>
<td></td>
<td>3-4 units, Win (Williamson)</td>
</tr>
<tr>
<td></td>
<td>EDUC 201A. History of African American Education</td>
</tr>
<tr>
<td></td>
<td>3-4 units, Aut (Williamson)</td>
</tr>
<tr>
<td></td>
<td>EDUC 201B. Education for Liberation</td>
</tr>
<tr>
<td></td>
<td>3-4 units, Aut (Williamson)</td>
</tr>
<tr>
<td></td>
<td>EDUC 233A. Counseling Theories and Interventions from a Multicultural Perspective</td>
</tr>
<tr>
<td></td>
<td>3 units, Win (LaFromboise)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HISTORY 259A,B. Poverty and Homelessness in America
5 units (Camarillo) not given 2005-06

HISTORY 260. Race and Ethnicity in the American Metropolis: A Case Study of Los Angeles
5 units, Win (Camarillo)

HISTORY 264. California History
5 units (Camarillo) not given 2005-06

HISTORY 265. New Research in Asian American History
5 units, Spr (Chang)

HISTORY 357. Race and Ethnicity in the American Metropolis: A Case Study of Los Angeles
5 units, Win (Camarillo)

HISTORY 365. New Research in Asian American History
5 units, Spr (Chang)

HUMAN BIOLOGY
HUMBIO 141. Race, Poverty, and the Environment
4 units, Win (Rosencranz)

LINGUISTICS
LINGUIST 150. Language in Society
4 units, Spr (Mendoza-Denton)

LINGUIST 156. Language and Gender
4 units, Win (Eckert)

LINGUIST 169. Linguistic Perspectives on American Indian Languages
3-4 units, Spr (Lillehaugen)

MUSIC
3 units, Aut (Sano)

MUSIC 17Q. Perspectives in North American Taiko
4 units, Spr (Sano, Uyechi)

POLITICAL SCIENCE
POLISCI 121. Urban Politics
5 units, Win (Fraga)

POLISCI 131. Children’s Citizenship: Justice Across Generations
5 units, Spr (Reich)

POLISCI 133. Ethics and Politics in Public Service
5 units, Aut (Reich)

POLISCI 141. The Global Politics of Human Rights
5 units, Win (Karl)

POLISCI 221T. Politics of Race and Ethnicity in the United States
5 units (Fraga) not given 2005-06

POLISCI 225R. Black Politics in the Post-Civil Rights Era
5 units, Aut (Gay)

POLISCI 226S. Asian Americans in Politics
5 units, Spr (Wong)

POLISCI 325S. Race and Place in American Politics
5 units, Aut (Gay)

PSYCHOLOGY
PSYCH 215. Mind, Culture, and Society
3 units, Win (Markus, Steele)

PSYCH 217. Topics and Methods in Cultural Psychology
1-3 units, Win (Tsai)

SOCIOLOGY
SOC 138. American Indians in Comparative Historical Perspective
3-5 units, Win (Snipp)

SOC 139. American Indians in Contemporary Society
5 units, Spr (Snipp)

SOC 140. Introduction to Social Stratification
5 units, Win (Grusky)

SOC 141A. Social Class, Race, Ethnicity, Health
5 units, Win (Barr)

SOC 142. Sociology of Gender
5 units, Aut (Mollborn)

SOC 143. Prejudice, Racism, and Social Change
5 units, Spr (Bobo) not given 2005-06

SOC 144. Race and Crime in America
5 units, Spr (Bobo)

SOC 148. Racial Identity
5 units (McDermott) not given 2005-06

SOC 149. The Urban Underclass
5 units, Spr (Rosenfeld)

SPANISH LITERATURE
SPANLIT 101N. Visual Studies and Chicana/o Art
3-5 units, Win (Yarbro-Bejarano)

SPANLIT 287. Teatro America Workshop: The Theater of Native/Chicano America
5 units, Spr (Díaz-Sánchez)

SPANLIT 289. The Body in Chicana/o Cultural Representation
5 units, Win (Yarbro-Bejarano)
CULTURAL AND SOCIAL ANTHROPOLOGY

Chair: James Ferguson
Professors: James Ferguson, Ian Hodder (on leave), Lynn Meskell, Sylvia J. Yanagisako
Associate Professors: Carol L. Delaney (on leave), Paulla Ebron, Akhil Gupta, Liisa Malkki, Purnima Manekar (on leave)
Assistant Professors: Miyako Inoue, Sarah S. Jain (on leave), Matthew Kohrman (on leave), Barbara Voss (on leave), Michael V. Wilcox
Lecturers: Tristan Carter, Cari Costanzo Kapur, Kiela Diehl, Carolyn Duffey, Claudia Engel, Marisa Lazzari, Sangeeta Luthra
Acting Instructor: Alexandra Choby
Course Directors: Penelope Eckert, Raymond McDermott
Visiting Professors: Martin Hall, Alma Kunanbaeva
Visiting Associate Professor: Ewa Domanska
Affiliated Faculty: J. Gordon Brotherston, Susan Cashion, Jean-Pierre Dupuy, James A. Fox, Shirley Brice Heath, Jack Kollman, Hazel R. Markus, Peggy Phelan, Thomas P. Rohlen, Michael Shanks
Teaching Fellows: Rochelle Davis, Bart Ryan, Helle Rytkonen, Christina Schwenkel
Teaching Affiliates: Lalita Ameeriar, Christa Amouroux, Fernando Armstrong, Yoon Jung Lee, Nejat Dinc, Tiffany Romain
Mail Code: 94305-2145
Phone: (650) 723-3421
Email: anthroCASA@stanford.edu
Web Site: http://anthroCASA.stanford.edu

*recalled to active duty

Courses given in Cultural and Social Anthropology have the subject code CASA. For a complete list of subject codes, see Appendix.

The courses offered by this department are designed to: (1) provide undergraduates with instruction in cultural and social anthropology; (2) provide undergraduate majors in anthropology with a program of work leading to the bachelor’s degree; and (3) prepare candidates for advanced degrees in cultural and social anthropology.

Cultural and social anthropology addresses a wide range of issues in the comparative study of society and culture. These include issues of race, class, national origin, gender, sexual orientation, and religion as they are shaped by the experiences of education, history, and migration through which people in past and contemporary societies have defined themselves in relation to others. The scope of cultural and social anthropology includes our own society and culture as well as those of other parts of the world, especially as these are drawn together and shape one another in increasingly transnational and global interactions.

The Department of Cultural and Social Anthropology offers a wide range of approaches to the various subfields and topics within anthropology including: archaeology, environmental anthropology, linguistics, medical anthropology, political economy, science and technology studies, and sociocultural anthropology. Methodologies for the study of micro- and macro-social processes are taught through the use of qualitative and quantitative approaches. Training is offered in ethnographic research; the collection and interpretation of oral histories, surveys, and archival materials; the analysis of material culture, including mapping, cataloguing, and interpretation of material objects; and methodologies in the performative arts, including visual and performing studies. The department provides students with excellent training in theory and methods to enable them to pursue graduate study in any of the above mentioned subfields of anthropology. Students interested in the biological and evolutionary approaches to anthropology are urged to consult the Department of Anthropological Sciences.

UNDERGRADUATE PROGRAMS

BACHELOR OF ARTS

The Department of Cultural and Social Anthropology (CASA) offers a B.A. degree in Cultural and Social Anthropology and an honors program. The major provides students with expertise for understanding social and cultural transformations from an international and cross-cultural perspective. In addition to gaining an excellent foundation for graduate research and study, students majoring in Cultural and Social Anthropology can pursue careers in government, international business, international development agencies, international education, law, mass media, non-profit organizations, and public policy.

Within the major, students may include course offerings in other departments such as Anthropological Sciences, Classics, Economics, English, History, Political Science, Psychology, and Sociology, as well as course offerings in programs such as African Studies, American Studies, Archaeology, Comparative Studies in Race and Ethnicity, East Asian Studies, Feminist Studies, Latin American Studies, Public Policy, and Urban Studies.

To declare a major in Cultural and Social Anthropology, students should contact the department’s student peer adviser or student program coordinator. The department checklist for the major can be downloaded in .pdf format from http://www.stanford.edu/dept/anthroCASA/programs/undergrad.html. The checklist must be signed by the CASA faculty program adviser for the major. Submit the checklist to the student program coordinator and apply for the major in AXESS.

All undergraduate majors in Cultural and Social Anthropology (CASA) must fulfill the following requirements:

1. A program of 65 units, with at least 40 units in Cultural and Social Anthropology. The remaining 25 units may be taken from courses in related departments, including Anthropological Sciences, or transferred from other anthropological study programs, such as overseas programs. The 65 units must form a coherent program of study and be approved by the student’s faculty adviser.

2. A grade of ‘B-’ or better in CASA 90, Theory in Cultural and Social Anthropology. This course is required of all CASA majors and should be taken within a year of declaring the major or before the end of the junior year. It introduces students to anthropological theory and prepares them for upper-division courses in the department.

3. The units required for the CASA major must include at least one course from four of the six topical categories listed below:
 a) Archaeology
 b) Gender and Feminism
 c) Globalization and Transnationalism
 d) Linguistic and Symbolic Anthropology
 e) Race and Ethnicity
 f) Science, Technology, or Medicine

4. Students must choose a concentration, taking at least 15 units in three or more courses on one theme or topic. Concentrations can be defined by subject matter or cultural area. Some examples of themes for a concentration are: cultural studies, economic development, kinship, mass media, material culture, migration and immigration, political economy, popular culture, race and ethnicity, religion, urban cultures, or a particular culture area, that is, Japan, Europe, South Asia. Students must have areas of concentration approved by their advisers.

5. A minimum of 15 units must be in CASA seminars numbered 100 or above.

6. Competence in a foreign language beyond the first-year level. Such competence is usually demonstrated by completing a 5 unit course at the second-year level with a grade of "B-" or better. The requirement may be met by special examination administered through the Language Center.

7. 10 units from IHUM 27A,B (Introduction to the Humanities) may be counted towards the major. Students whose programs require non-English language study as part of a geographical or linguistics focus may ask their faculty adviser to approve up to 5 units from language courses toward the degree if such courses are at the second-year level and above, or are in a second non-English language. No more than 10
in the department. Students must initiate their participation in the senior paper program by filing an application of intent with the student program coordinator. The application must include a description of the proposed project, a program of study, and a letter of approval from a faculty sponsor. Students are encouraged to apply to the senior paper program in their junior year prior to initiating fieldwork or other research. The senior paper application of intent must be submitted no later than the second week of Autumn Quarter in the senior year.

All CASA majors are encouraged to write a senior paper. Majors should begin research for a senior paper during their junior year with guidance from their CASA faculty adviser. At the latest, department majors must submit an application of intent to write a senior paper to the student program coordinator no later than the end of the second week of Autumn Quarter in the senior year. Enrollment in CASA 95A, Research in Anthropology, is recommended during Autumn and Winter quarters. The Senior Paper Checklist must be completed, signed by the program adviser, and handed in to the student program coordinator by the end of the second week in Autumn Quarter in the senior year. Students must enroll in CASA 95B, Senior Paper, in the final quarter in the undergraduate degree program before graduating. The senior paper is submitted in the final quarter before graduation. For more information, see the student program coordinator.

All CASA majors are encouraged to write an honors paper. Majors should begin research for an honors paper prior to the last quarter of the junior year with guidance from their CASA faculty adviser. At the latest, department majors must submit an application of intent to write an honors paper to the student program coordinator no later than the end of Spring Quarter (or the third quarter) in the junior year. Department majors are eligible to apply for honors candidacy with a 3.5 GPA in the department major and a 3.0 GPA in overall course work. Enrollment in CASA 95A, Research in Anthropology, is recommended during Autumn and Winter quarters. The Honors Checklist and Timeline must be completed, signed by the program adviser, and handed in to the student program coordinator by the end of the second week in Autumn Quarter in the senior year. Students must enroll in CASA 95B, Senior Paper, in the final quarter in the undergraduate degree program before graduating. A senior paper to be considered for departmental honors is submitted in the final quarter before graduation. Senior papers with a letter grade of ‘A-‘ or better may be awarded departmental honors. For more information, see the student program coordinator.

GRADUATE PROGRAMS

University requirements for the degrees of Master of Arts and Doctor of Philosophy are described in the “Graduate Degrees” section of this bulletin.

MASTER OF ARTS

The Department of Cultural and Social Anthropology offers the M.A. degree to four groups of students: (1) Stanford undergraduates who enroll in the coterminal program; (2) Stanford graduate students taking advanced degrees in other departments or schools at Stanford who enroll in the terminal M.A. program; (3) Ph.D. students in Cultural and Social Anthropology who fulfill the M.A. requirements on the way to the Ph.D. degree; and (4) students who apply from outside Stanford for entry into the terminal M.A. program.

Applicants whose ultimate goal is the Ph.D. degree should apply directly to the Ph.D. program. Students accepted for the terminal M.A. degree program cannot transfer to the Ph.D. program; they must reapply on the same basis as other Ph.D. applicants and in competition with other Ph.D. applicants. Ph.D. students who decide to take the M.A. on the way to the Ph.D. are governed by separate requirements described in the department’s Guide to the Ph.D. Program.

COTERMINAL B.A./M.A. PROGRAM

The deadline for graduate applications to the coterminal M.A. degree program is March 14, 2006. Prospective applicants should refer to the department’s web site for information about application for graduate admission. Successful applicants for the M.A. program usually enter in
Autumn Quarter. Applicants must submit a writing sample in English that demonstrates the ability to produce original analytical work at the graduate level. Applicants should also submit three letters of reference, recent original transcripts, and a statement of purpose.

The department prerequisite requirements for application to the coterminal M.A. program are listed below. Stanford undergraduates who are currently enrolled and interested in making a coterminal M.A. application to the department’s graduate M.A. degree program are required to enroll in CASA 90, Theory in Cultural and Social Anthropology, and in a minimum of 10 additional units of CASA course work with a grade of ‘A-’ or better. An overall undergraduate GPA of 3.3 (B+) or better is also required.

Graduate enrollment at Stanford for at least three quarters of full tuition for a minimum of 45 units is required of all candidates for the master’s degree, including coterminal students. Coterminal M.A. students in Cultural and Social Anthropology must take a minimum of 45 quarter units in social and cultural anthropology course work beyond the undergraduate degree with a grade point average (GPA) of 3.0 (B) or better. 45 units constitute the University minimum for the M.A. degree. However, the department requires 60 units of course work towards the coterminal M.A. degree. Of the required 60 units, 15 units may be accepted from previous undergraduate or other course work. Course work must be at or above the 100-level. 18 of the 45 units required from Cultural and Social Anthropology course work must be in courses designated primarily for graduate students (typically at least at the 200 level). Course work applied to the coterminal M.A. degree may not also be applied to the requirements for the undergraduate degree, or any other degree program.

Within the 45 units taken at Stanford, students must take CASA 290, History and Theory in Cultural and Social Anthropology or, if not given, CASA 301, History of Anthropological Theory, and two additional graduate-level seminars in the department. The remaining units may be made up of courses selected in consultation with the faculty adviser to meet the needs and interests of the student.

The coterminal program may require more than one year of study. However, full-time students entering the program with appropriate background can complete the coterminal program in one calendar year. To provide a meaningful M.A. program within a one-year period, advance planning of course work with an adviser is required. A field or library research paper, read and approved by at least two departmental faculty members, must be presented. Coterminal students must submit an acceptable project/paper proposal for the master’s paper to the faculty adviser for approval no later than the end of the fourth week in the first quarter of the graduate degree program. In addition, an acceptable Master’s Degree Program Proposal must be submitted no later than the end of the fourth week in the first quarter of the graduate degree program. Terminal M.A. students must submit an acceptable project/paper proposal for the master’s paper to their faculty adviser for approval no later than the end of the fourth week in the final quarter during which they will submit the M.A. paper.

For University coterminal degree program rules and University application forms, see http://registrar.stanford.edu/publications/#Coterm.

TERMINAL MASTER’S DEGREE PROGRAM

The deadline for graduate applications to the terminal M.A. degree program is March 14, 2006. Prospective applicants should refer to the department web site for information about application for graduate admission. Successful applicants for the M.A. program may enter only in Autumn Quarter. It is department policy not to defer graduate admission. Applicants must file a report of their Graduate Record Examination score electronically, and submit a writing sample in English that demonstrates the ability to produce original analytical work at the graduate level. Applicants should also submit three letters of reference, recent original transcripts, and a statement of purpose. In addition to a clear statement of research interests in the statement of purpose, it is especially important for those applicants who choose the Archaeology track to provide a detailed description of the area of specialization as well as the topical interests for dissertation research.

The Ph.D. program includes a number of required courses and examinations. It also allows the student to develop a flexible program reflecting special interests, under the supervision of a faculty committee chosen by the student. Students are encouraged to plan for completion of all work for the Ph.D. in five years.

The Ph.D. requirements for students who matriculate beginning 2005-06 are as follows (those matriculating earlier should consult the department’s Ph.D. Handbook for their entering cohort year). Ph.D. students in Cultural and Social Anthropology must take a minimum of 135 quarter units with a minimum grade point average (GPA) of 3.0 (B). The maximum allowable number of transfer units is 45.
1. Pass within the first year, with a grade of ‘B+’ or better:
 a) at least three of the graduate-level courses in the department designated by the faculty as theory/evaluation courses, including CASA 301, History of Anthropological Theory, during Autumn Quarter; CASA 300, Reading Theory Through Ethnography (Anthropology track only), or CASA 373, Introduction to Archaeological Theory (Archaeology track only), during Winter Quarter.
 b) CASA 302, Anthropological Research Methods (Anthropology track only), or CASA 360, Archaeological Methods and Research Design (Archaeology track only) during Spring Quarter; or for the Archaeology track, a primary-level methods survey or advanced-level methods course relevant to research interests.
 c) for the Archaeology track: a course, to be decided on in consultation with the faculty adviser, that satisfies the department specialization requirement in a topical interest required of graduate Ph.D. students. Although, it is suggested that the topical interest course requirement be completed during the first year in the Ph.D. degree program, it may also be completed at any time until the end of the third year.
 d) at least 45 units of completed course work overall.

2. Satisfy the department ethics requirement by attending a special session of CASA 302, usually announced at the first class meeting, for a review of ethics in Cultural and Social Anthropology.

3. Submit an acceptable, substantial research paper in Spring Quarter. Enroll in CASA 395A, First-Year Paper, during Winter Quarter for 2-3 units, and enroll in CASA 395B, First-Year Paper, during Spring Quarter for 2-3 units (no more than 5 units total for both courses over two quarters).

4. In the second year, pass at a satisfactory level:
 a) additional graduate-level theory/evaluation courses in the department for a total of six such courses with a grade of ‘B+’ or better over the first two years of the program.
 b) CASA 394, Proposal Writing Seminar (offered Spring Quarter).
 c) CASA 310, Intersections (offered Winter Quarter in 2005-06). This course requirement is usually completed during the second year in the Ph.D. program, but it may also be completed by the end of the third year.
 d) at least 40 units of completed course work overall for a total of at least 85 units of course work by the end of the second year.

5. At the beginning of Autumn Quarter in the second year, attend the teaching assistantship training workshop.

6. Serve as a teaching assistant for one quarter in the second year.

7. By the first week of Autumn Quarter in the second year, recruit two of four qualifying paper committee members for the first qualifying paper on either topic or area.

8. By the end of the fourth week of Autumn Quarter in the second year, declare and submit the title and preliminary bibliography for the first of two qualifying papers on either topic or area. During Autumn Quarter, enroll in CASA 391A, Qualifying Paper (Area), or CASA 360, Archaeological Methods and Research Design (Archaeology track only), or CASA 373, Introduction to Archaeological Theory (Archaeology track only), during Winter Quarter.

9. By the first day of finals week in Winter Quarter in the second year, submit the first of two qualifying papers on either topic or area. During Winter Quarter, enroll in CASA 391A, Qualifying Paper (Topic), or CASA 391B, Qualifying Paper (Area).

10. For those whose native language is English, pass, by the end of Spring Quarter of the second year, an examination in a language other than English in which there is a substantial body of general theoretical literature relevant to anthropology. For those whose native language is not English, demonstrate satisfactory command of English, as evidenced by successful completion of the first two years of graduate study. The examination may be taken through the Stanford Language Center, other Stanford language departments, or by appointment with the department’s language coordinator. The examination format must be approved in advance of the examination by the department’s language coordinator.

11. During Spring Quarter, enroll in CASA 394, Proposal Writing Seminar.

12. Upon completion of the above requirements, and upon recommendation of the CASA faculty, petition the University for candidacy by the end of Spring Quarter of the second year.

13. Upon completion of the above requirements, and upon recommendation of the Cultural and Social Anthropology faculty, request the Master’s Degree on the way to the Ph.D. degree program by the end of Spring Quarter of the second year.

14. In the third year, complete the following:
 a) during the Autumn Quarter, by December 9, 2005, submit three dissertation research grant proposals, including the approved dissertation proposal, the grant application, and the approved non-medical human subjects protocol, to the faculty adviser.
 b) by the first week in Autumn Quarter in the third year, recruit the remaining two of four qualifying paper committee members for the second qualifying paper on either topic or area.
 c) by the end of the fourth week of Autumn Quarter in the third year, declare and submit the title and preliminary bibliography for the second of two qualifying papers on either topic or area. During Autumn Quarter, enroll in CASA 397, Directed Individual Study, in preparation for the second Qualifying Paper due at the end of Winter Quarter in the third year.
 d) by the first day of finals week in Autumn Quarter, in the third year, provide a statement to the Committee on Higher Degrees declaring the date planned for the oral examination and submit declaration of the oral examination committee, inclusive of the external committee chair, the committee adviser, and the three committee members to the student program coordinator.
 e) by the last day of finals week in Winter Quarter in the third year, submit the second of two qualifying papers on either topic or area. During Winter Quarter, enroll in CASA 391A, Qualifying Paper (Topic), or CASA 391B, Qualifying Paper (Area).
 f) by the end of the fourth week in Spring Quarter, schedule and pass the University oral examination in the form of a dissertation proposal defense. During this exam, file the dissertation reading committee form and confirm the committee’s revisions to the dissertation proposal for fieldwork and dissertation research. Secure approval for the revised dissertation proposal before leaving for dissertation fieldwork.

15. In the fifth year, complete the following requirements:
 a) during the fifth year and after returning from fieldwork, complete one or more teaching assistant quarters in the department. During each of Autumn, Winter and Spring quarters of the fifth year, students must attend a minimum of four of five class meetings of CASA 392, Dissertation Writers Seminar. Each quarter, chapter drafts of the dissertation should be handed in to the dissertation reading committee for review.
 b) after submission of the penultimate draft of the dissertation and before the quarter preceding the quarter in which the dissertation will be submitted for Ph.D. degree, schedule and deliver an oral presentation of the dissertation in the department.

PH.D. MINOR

Prospective Ph.D. minors in Cultural and Social Anthropology should request an application from the student program coordinator. The requirements for a minor in Cultural and Social Anthropology consist of the following:

1. Complete 30 units of courses in the Department of Cultural and Social Anthropology (CASA) at Stanford with a grade point average (GPA) of 3.0 or better. Course work for a minor cannot also be used to meet requirements for a master’s degree.

2. Enlist a faculty member within CASA at Stanford who will provide written consent to serve as the adviser for the minor and serve on the student’s oral examination and dissertation committees (see the student program coordinator for a listing of faculty and office hours).

3. In conjunction with the program adviser, determine a coherent course of study related to the Ph.D. program, including CASA 301, History of Anthropological Theory, two additional CASA theory courses, and one CASA course in a geographical area. For a list of current theory courses, see the student program coordinator.
4. File the necessary paperwork with the student program coordinator.
 Please note that the department requirements, listed above, are more extensive than the University requirements.

FINANCIAL SUPPORT

The department endeavors to provide needed financial support (through fellowships, teaching and research assistantships, and tuition grants) to all students admitted to the Ph.D. program who maintain satisfactory degree progress. Applicants for the Ph.D. program must file a request for financial aid when applying to the program if they wish to be considered for support. Second-year students in the Ph.D. program are required to perform one teaching assistantship quarter. Second-year students who have not secured funding for the second year summer of pre-dissertation field research are advised to make at least two pre-dissertation field research funding applications for summer support. Third-year students in the Ph.D. program who have not secured outside funding are required to make at least three extramural applications for dissertation research funding by the end of Autumn Quarter of the third year. Fourth-year students must submit a department application for funding as a predoctoral research affiliate before leaving for fieldwork. Fifth-year students in the Ph.D. program may be required to perform one or more teaching assistantship quarters. Fifth-year students in the Ph.D. program who have not secured extramural funding for the sixth year and beyond are advised to make at least two dissertation write-up funding applications and secure extramural funding for dissertation write-up from the sixth year and beyond.

In order to be eligible for department funding of summer fieldwork and research, usually taken in either the first or second-year and again in the third-year of the Ph.D. degree program, first- through fifth-year students must submit the department’s application establishing eligibility for summer funding.

No financial support is available to students enrolled for the M.A. degree.

TEACHING CREDENTIALS

For information concerning the requirements for teaching credentials, consult the “School of Education” section of this bulletin or address the inquiry to the Credential Administrator, School of Education.

COURSES

Undergraduates register in courses numbered in the 100s or below. Graduate students register in courses numbered in the 200s or above.

WIM indicates that the course satisfies the writing in the major requirement.

UNDERGRADUATE

INTRODUCTION TO THE HUMANITIES (IHUM)

The following Introduction to the Humanities courses are taught by Cultural and Social Anthropology department faculty members. IHUM courses are typically available only to freshmen seeking to fulfill GER: IHUM requirements; see the “Introduction to the Humanities” section of this bulletin for further information. Prospective Cultural and Social Anthropology majors are advised to consider satisfying their GER: IHUM 2,3 requirements by registering for the following IHUM courses.

IHUM 27A, B. Encounters and Identities — Two quarter sequence. The formation of ideas about individual and collective identities in S. Africa, W. Europe, and the U.S. Contemporary ideas about identity, including national, racial, ethnic, and gender identity; historical encounters and social transformations linking these areas. Challenging popular assumptions about the origins of identities through similarities and differences among ideas of individual and collective identity in different regions of the world. GER: IHUM 2,3

IHUM 27A. 5 units, Win (Ferguson)
IHUM 27B. 5 units, Spr (J. Collier)
CASA 88. Theories in Race and Ethnicity — Concepts and theories of race and ethnicity in the social sciences and cultural studies. U.S. based definitions, ideas, and problems of race and ethnicity are compared to those that have emerged in other areas of the world. GER:DB-SocSci
5 units, Aut (Yanagisako)

CASA 90. Theory of Cultural and Social Anthropology — Preference to CASA majors. Anthropological interpretations of other societies contain assumptions about Western societies. How underlying assumptions and implicit categories have influenced the presentation of data in major anthropological monographs. Emphasis is on Karl Marx, Emile Durkheim, Max Weber, and anthropological analyses of non-Western societies. WIM
5 units, Win (Ebron)

CASA 92. Undergraduate Research Proposal Writing Workshop — Practicum. Students develop independent research projects and write research proposals. How to formulate a research question; how to integrate theory and field site; and step-by-step proposal writing.
1-3 units, Win, Spr (Lee)

CASA 93. Prefield Research Seminar — For CASA majors only; non-majors register for 93B. Preparation for anthropological field research in other societies and the U.S. Data collection techniques include participant observation, interviewing, surveys, sampling procedures, life histories, ethnography, and the use of documentary materials. Strategies for successful entry into the community, research ethics, interpersonal dynamics, and the reflexive aspects of fieldwork. Prerequisites: two CASA courses or consent of instructor.
5 units, Spr (Yanagisako)

CASA 93B. Prefield Research Seminar: Non-Majors — Preparation for anthropological field research in other societies and the U.S. Data collection techniques include participant observation, interviewing, surveys, sampling procedures, life histories, ethnography, and the use of documentary materials. Strategies for successful entry into the community, research ethics, interpersonal dynamics, and the reflexive aspects of fieldwork. Prerequisites: two CASA courses or consent of instructor.
5 units, Spr (Costanzo Kapur)

CASA 94. Postfield Research Seminar — Goal is to produce an ethnographic report based on original field research gathered during summer fieldwork, emphasizing writing and revising as steps in analysis and composition. Students critique classmates’ work and revise their own writing in light of others’ comments. Ethical issues in fieldwork and ethnographic writing, setting research write-up concerns within broader contexts.
5 units, Aut (Romain)

CASA 94B. Postfield Research Seminar: Non-Majors — Goal is to produce an ethnographic report based on original field research. Student critiques. Ethical issues in fieldwork and ethnographic writing, Research writing concerns within broader contexts.
5 units (Staff) not given 2005-06

CASA 95A. Research in Anthropology — Independent research conducted under faculty supervision, normally taken junior or senior year in pursuit of a senior paper or an honors project. May be taken more than one quarter for credit.
1-10 units, Aut, Win, Spr, Sum (Staff)

CASA 95B. Senior Paper — Taken in the final quarter before graduation. Independent study and work on senior paper for students admitted to the program. Prerequisite: consent of program adviser and instructor.
1-10 units, Aut, Win, Spr, Sum (Staff)

CASA 96. Directed Individual Study — For undergraduate students with special needs, and showing the capacity to do independent work. Prerequisite: consent of instructor.
1-15 units, Aut, Win, Spr, Sum (Staff)

CASA 103/203. Laboratory Methods in Archaeology — What do archaeologists do with the things they dig up, and how can they use artifacts to learn about past cultures? Hands-on experience cataloging, analyzing, and interpreting an archaeological collection. Students are exposed to standard methods in cataloging and curation, and in analysis of different types of artifacts, animal bone, and botanical remains. Individual or group analysis projects with reports that communicate the research findings. GER:DB-SocSci
5 units (Voss) not given 2005-06

CASA 108. History of Archaeological Thought — (Same as ARCHLGY 103.) Introduction to the history of archaeology and the forms that the discipline takes today, emphasizing developments and debates over the past five decades. Historical overview of culture, historical, processual and post-processual archaeology, and topics that illustrate the differences and similarities in these theoretical approaches.
5 units, Spr (Meskell)

CASA 150. Archaeological Methods — Methodological issues related to the investigation of archaeological sites and objects. Aims and techniques of archaeologists including: location and excavation of sites; dating of places and objects; analysis of artifacts and technology and the study of ancient people, plants, and animals. How these methods are employed to answer the discipline’s larger research questions.
5 units, Aut (Carter)

CASA 190/290. History and Theory in Cultural and Social Anthropology — Goal is to place anthropology in historical and national contexts and treat theoretical and methodological issues that inform contemporary theory and practices. Readings include Marx, Weber, Durkheim, and anthropological analysis of non-Western societies. 190 is limited to undergraduate non-CASA majors; 290 is limited to CASA undergraduate majors and master’s students. GER:DB-SocSci
5 units (Staff) not given 2005-06

CASA 199/299. Senior and Master’s Thesis Writing Workshop — Techniques of interpreting data, organizing bibliographic materials, writing, editing and revising. Preparation of papers for conferences and publications in anthropology. Seniors register for 199; master’s students register for 299.
2 units (Staff) not given 2005-06

GENERAL

AREA COURSES

5 units (Freidenfelds) not given 2005-06

CASA 72. Dance and Culture in Latin America — (Enroll in DANCE 168.)
4 units, Spr (Cashion)

CASA 74. South Asian Histories and Cultures through Popular Film: Bollywood and Beyond — Indian cinema has been a site for the articulation of ideas about nation, class, caste, gender and sexuality, community, and diaspora. Focus is on Bollywood films, and Indian cinema in general, as social, cultural, and political phenomena. How cinematic form, production and distribution networks, and audience reception mediate the emergence of postcolonial forms of identity and consciousness. Film screenings. GER:DB-SocSci, EC-GlobalCom
5 units (Mankekar) not given 2005-06

5 units, Win (Inoue)
CAS 107. Globalization of the Middle East — How processes of globalization contribute to the making of the modern Middle East. Transcending stereotypes about the Middle East to focus on historical, social, cultural, political, and economic diversities.

5 units, Aut (Dinc)

CAS 109. Anthropology in and of Mexico — The common origins of and tensions between Anglo American anthropology and the autochthonous anthropological tradition that emerged in Mexico during the 1910 Revolution.

5 units, Win (Armstrong-Fumero)

CAS 110. Crosscultural Perspectives on Women in Islam — The lives of contemporary Muslim women and constructions of gender in the Islamic world. Issues such as the veil, roles within the family, and feminist activism. Can Western categories be applied to women’s issues in the Muslim world? Is there a Muslim feminism?

5 units, Spr (Ameeriar)

CAS 127. Tibetan Ritual Life — (Same as RELIGST 217A.) The human life cycle, the calendar year, and pilgrimage as organizing principles to examine Buddhist and lay rituals that mark important occasions, bless people and places, ward off danger, heal wounds, alleviate suffering, predict the future, affirm Tibetan identity, and inspire political activism. Material culture of rituals including butter sculpture, thangka painting, and costumes; performance including monastic dance, chanting, instrumental music, song, and opera; and the meanings of rituals to those who participate in them. The role of ritual in human culture. GER:DB-Hum, EC-GlobalCom

5 units (Diehl) not given 2005-06

CAS 128. Cultural History of Japan — (Same as ANTHSCI 24/228.) Since WWII. Transformation of religion, kinship, gender, education, work, leisure, ideology, and national identity as interconnected institutions. Tokugawa and prewar Japan as antecedents to postwar developments.

GER:DB-SocSci

5-5 units (Befu) not given 2005-06

CAS 128B. Globalization and Japan — (Same as ANTHSCI 128B/228B.) Globalization theories in anthropology and sociology, and Japan in the context of these theories. Ethnographic cases of Japan’s global presence from the 15th century to the present. Processes of globalization in business management, popular culture, and expatriate communities. Japan’s multiculturalization through its domestic globalization. GER: DB-Hum, EC-GlobalCom

3-5 units, Spr (Befu)

CAS 141. Tibetan Buddhism and Culture in Exile — (Same as RELIGST 144D.) Coincides with the visit of the Dalai Lama to Stanford. The practice and meaning of formal Buddhist and lay rituals in exile; how traditionalbeliefs and practices have been reworked to meet the spiritual needs and material circumstances of Tibetan refugees. The role of the Dalai Lama in Tibetan religious and political life emphasizing the current Dalai Lama. Efforts at cultural preservation in India and the U.S., the hybrid expressive culture of refugee youth, political activism, and challenges of building and maintaining a diasporic community. Field trips to Bay Area Tibetan events; field work with local Tibetan refugees. GER:DB-Hum

5 units, Aut (Diehl)

CAS 148. The Zapatista Rebellion in Chiapas and New Indigenous Movements — How the Maya Indians of Chiapas have protagonized movements for indigenous rights and autonomy in the Americas. The rebellion in terms of its cultural, political, and economic background shaped by the Mexican context of globalization. Its relationship to indigenous movements in the Americas. GER:DB-SocSci, EC-GlobalCom

5 units, Spr (Collier)

CAS 171. Mythology, Folklore, and Oral Literature of Central Asia — Central Asian cults, myths, and beliefs from ancient time to modernity. Life crisis rites, magic ceremonies, songs, tales, narratives, taboos associated with childbirth, marriage, folk medicine, and calendrical transitions. The nature and the place of the shaman in the region. Sources include music from the fieldwork of the instructor and the Kyrgyz epoch Manas. The cultural universe of Central Asian peoples as a symbol of their modern outlook. GER:DB-SocSci

3-5 units (Kunanbaeva) not given 2005-06

CAS 184A. Asian Diasporas in America and Canada: Culture, History, Place — (Enroll in ASNAMST 184A, CSRE 184A.)

5 units, Win (Ameeriar)

TOPIC COURSES

CAS 82/282. Medical Anthropology — Emphasis is on how health, illness, and healing are understood, experienced, and constructed in social, cultural, and historical contexts. Topics: biopower and body politics, gender and reproductive technologies, illness experiences, medical diversity, and social suffering and the interface between medicine and science. GER:DB-SocSci, EC-GlobalCom

4-5 units, Spr (Choby)

CAS 111X. Introduction to Language Change — (Enroll in ANTHSCI 110, LINGUIST 160.)

4-5 units, Win (Kiparsky)

CAS 114. The Crusades and Their Legacies — Interdisciplinary. How Pope Urban II helped inaugurate and define an East/West dichotomy which still echoes discursively and literally today. The production of the divisions between East and West in the Crusade era, as seen by Europeans and Middle Easterners; current legacies of such divisions.

5 units, Spr (Duffey)

CAS 120X. Introduction to Queer Studies — (Enroll in FEMST 120.)

4-5 units, Win (Phelan)

5 units, Spr (Amouroux)

CAS 131. Archaeology and Anthropology of Visual Culture — Archaeological and anthropological inquiry into visual images and aspects of cultures.

5 units, Staff not given 2005-06

CAS 132. Science, Technology, and Gender — Why is engineering often seen as a masculine profession? What have women’s experiences been in entering fields of science and technology? How has gender been defined by scientists? Issues: the struggles of women in science to negotiate misogyny and cultural expectation (marriage, children), reproductive issues (surrogate motherhood, visual representations of the fetus, fetal surgery, breast feeding, childbirth practices), how the household became a site of consumerism and technology, and the cultural issues at stake as women join the ranks of scientists. GER:DB-SocSci, EC-Gender

3-5 units (Jain) not given 2005-06

CAS 133. City and Sounds — (Same as URBANST 133.) How do people experience modern cities and urban public cultures through auditory channels? How does sound mediate and constitute urban space? How to listen to and write about culture through sound. Students carry
out narrative interviews and sound fieldwork in the Bay Area. Readings include urban anthropology, semiotics, art history, social studies of science and technology, media studies, and musicology.

5 units (Inoue) not given 2005-06

CASA 135X. Pilgrimage and Sacred Landscapes — (Same as RELIGST 235.) Perspectives include cultural, spiritual, psychological, medical, economic, and political. Christianity, Buddhism, Hinduism, Islam, Native American and secular; sources include Europe, Tibet, India, Native America, and the Middle East. Why do pilgrims often make their journeys as difficult and painful as possible? How do landscapes become sacred? What happens when places such as Jerusalem are intersections for groups with different belief systems? Contemporary U.S. destinations such as Graceland and the Vietnam Memorial; journeys of personal or non-parochial cultural significance. GER:DB-SocSci

5 units (Diehl) not given 2005-06

5 units (Voss) not given 2005-06

CASA 146A. Language and Gender — (Enroll in LINGUIST 156.)

4 units, Win (Eckert)

CASA 158X. Culture and Learning — (Same as EDUC 287.) Learning in institutional settings in the U.S. and around the globe. Learning in families, in schools, on the job, and on the streets. Emphasis is on the cultural organization of success and failure in American schools. Tentative consideration of opportunities for making less inequality.

3-4 units (McDermott) not given 2005-06

CASA 159. New Frontiers in Biomedical Technologies: Anthropology and the Remaking of the Body — The relationship between innovations in biomedical technology and new ways of defining the body, health, and personhood through ethnographically grounded readings. Technologies that see inside and act on the living body in ways that challenge dichotomies of interior/exterior, self/other, and natural/artificial. How patients, doctors, and research scientists negotiate these technologies and how they inform human self-awareness.

5 units, Win (Remain)

ADVANCED UNDERGRADUATE AND GRADUATE SEMINARS

AREA SEMINARS

CASA 113/213. Women in Islam: The Central Asian Case — Roles of the Central Asian independent states in historical and modern perspectives. Traditional family and religious rituals, keeping an appropriate household, and women’s lore, craft, and art. Sources include instructor’s field data. GER:DB-SocSci

5 units, Win (Kunaanbaeva)

CASA 117/217. Archaeology of the American Southwest: Contemporary Peoples, Contemporary Debates — Cultural diversity and archaeology from paleo-indians to the present. Focus is on cultural fluences in areas such as the Mimbres Valley, Chaco Canyon, Mesa Verde, the Rio Grande, and the Hohokam in the Phoenix Basin. The development of agriculture, theories of social complexity and political economy, and the relationships between contemporary Native Americans, archaeologists, and the production of the past. GER:DB-SocSci

5 units, Spr (Wilcox)

CASA 118/218. Literature, Politics, and Gender in Africa — Intersections of gender, power, and desire; the politics of colonialism and Christianity; and nationalism and postcoloniality. Emphasis is on the politics of writing and critical imagination in historical and social context. Readings include novels and other texts by African writers. GER:DB-SocSci, EC-Gender

5 units (Malkki) not given 2005-06

CASA 119/219. The State in Africa — Postcolonial African states in historical and ethnographic context. Focus is on contemporary African states not as failures, but as the products of distinctive regional histories and political rationalities. GER:DB-SocSci

5 units (Ferguson) not given 2005-06

5 units (Wilcox) not given 2005-06

CASA 137E/237E. Excavation at Catalhoyuk, Turkey — Archaeological field experience by participating in Stanford’s excavation at Catalhoyuk in Summer. Focus is on the urban character of this earliest of towns. Prepares students for the Summer dig.

3-5 units, Spr (Carter)

CASA 145A/245A. Poetics and Politics of Caribbean Women’s Literature — Mid-20th century to the present. How historical, economic, and political conditions in Haiti, Cuba, Jamaica, Antigua, and Guadeloupe affected women. How Francophone, Anglophone, and Hispanophone women novelists, poets, and short story writers respond to similar issues and pose related questions. Caribbean literary identity within a multicultural and diasporic context, the place of the oral in the written feminine text, family and sexuality, translation of European master texts. History, memory, and myth, and responses to slave history, colonialism, neocolonialism, and globalization. GER:DB-SocSci, EC-AmerCul

5 units, Aut (Duffy)

CASA 153/253A. Nationalism, Culture, and Identity in Central Asia — Topics include the development of ethnic and national cultures and languages, the history behind geography, bilingualism and cultural patterns. Central Asian ways of life, cultural traditions, nationalism and identities, interrelations of language and art, in crosscultural, historical, geographical, and anthropological perspectives. GER:DB-SocSci

5 units, Spr (Kunaanbaeva)

CASA 163/263. The Politics of Humanitarianism — Anthropological approaches to contemporary practices of humanitarian intervention. How social theory can inform the politics of humanitarianism, charity, and philanthropy. Focus is on Africa from the colonial era to the present. GER:DB-SocSci

5 units, Aut (Malkki)

5 units, Aut (Malkki)

CASA 173/273. Nomads of Eurasia — The nomads of the Eurasian steppes, their lifestyles, and cultural history, including Mongolia, Kazakhstan, Kyrgyzstan, and Turkmenistan. Languages, traditional economics, art, the relationships between sedentary and nomadic peoples, and the early background and gradual Turkification and Islamization of Central Asia and Lamaization of S. Siberia. Regional trade networks (the Silk Road) where nomads were the mediators in innovations, the Mongol empire and its fate, Imperial Russian expansion, and the incorporation of Inner Asia into the USSR. GER:DB-SocSci

4-5 units (Kunaanbaeva) not given 2005-06

CASA 178/278. Archaeology of the Middle East — The roles of memory, archives, and deep time in the periods before writing in the Middle East and Europe. Prehistoric societies and their relationships with their own pasts. These societies constructed complex histories well in advance of writing. GER:DB-SocSci

5 units (Hodder) not given 2005-06
CASA 155/255. Virtual Communities: Online Technologies and Ethnographic Practice—Theoretical and practical approaches to ethnographic projects involving online technologies. Focus is on virtual communities. The methodological implications of online ethnographic research: researcher roles, the notion of identities, human subject issues, distributed collaboration, and alternative representations. Conceptual implications such as interpreting online technologies as virtual environments for human interaction versus a cultural artifact, and the nature of the Internet as setting and technology for ethnography. GER:DB-SocSci
5 units (Engel)

CASA 157/257. Fundamentalism and Modernity—Why is fundamentalism becoming more popular around the world? Is fundamentalism a reaction against or an integral aspect of modernity? GER:DB-SocSci
3-5 units (Delaney) not given 2005-06

CASA 161/261. Modern Material Culture—How social experience is impacted by material culture from toys to theme parks. How consumers perceive themselves and others through commodities. The historical development of the relationship between goods and identity from the 18th century; how systems of inequality are reproduced and subverted through material consumption. How archaeological techniques can probe the technological, social, and ideological meaning of everyday minutiae. GER:DB-Hum
5 units, Win (Mullins)

CASA 162/262. Historical Archaeology: From Colony to Heterotopia—The possibilities of historical archaeology, and of deriving meaning from the play between words and things. Premise is that the object of inquiry is to discover agency. Contradiction and discordance as indicators of points of explanation. The concept of heterotopia, or unstable places of creativity. GER:DB-Hum
5 units, Aut (Hall)

CASA 164/264. Ritual Musics of the World—(Same as MUSIC 164/264) The roles that music plays in human ritual life: physical effects of music, shamanic healing, spirit possession, and rites of worship. Gender issues in ritual music. The power of music to create and affirm communities, and as a medium for spiritual knowledge. What can be known about people, places, and cultures through sound? How does music express and shape social identity? How are belief systems and patterns of social interaction manifested in musical practices? Sources include readings and guided listening to recorded music from cultural and religious traditions around the world. GER:DB-Hum, EC-GlobalCom
4 units (Diehl) not given 2005-06

CASA 183D/283D. Border Crossings and American Identities—(Same as AMSTUD 183.) How novelists, filmmakers, and poets perceive racial, ethnic, gender, sexual preference, and class borders in the context of a national discussion about the place of Americans in the world. How Anna Devere Smith, Sherman Alexie, or Michael Moore consider redrawning such lines so that center and margin, or self and other, do not remain fixed and divided. How linguistic borderlines within multilingual literature by Caribbean, Arab, and Asian Americans function. Can Anzaldúa’s conception of borderlands be constructed through the matrix of language, dreams, music, and cultural memories in these American narratives? Course includes examining one’s own identity. GER:DB-Hum, EC-AmerCul
5 units, Win (Duffey)

CASA 185/285. Environmental Ethics—Crosscultural perspective. Application of environmental ethics to contentious or incommensurable beliefs or values. GER:DB-SocSci
5 units, Win (Gupta)

CASA 201X. Readings in Science, Technology, and Society—Focus is on anthropological approaches and contributions to the field. GER:DB-SocSci
5 units (Jain) not given 2005-06

CASA 213X. Political Anthropology from Rousseau to Freud—(Enroll in FRENGEN 256E.)
3-5 units (Dupuy) alternate years, given 2006-07
CASA 258X. Foundations of Nanoethics: Toward a Rapprochement between Europe and the U.S.—(Enroll in FRENGEN 258E, STS 211.)
3-5 units, Spr (Dupuy)

GRADUATE SEMINARS

Courses in this section numbered 300 through 380, except 302, satisfy the department’s evaluation course requirement.

CASA 300. Reading Theory Through Ethnography—Required of and restricted to first-year CASA Ph.D. students. Focus is on contemporary ethnography and related cultural and social theories generated by texts. Topics include agency, resistance, and identity formation, and discourse analysis.
5 units, Win (Yanagisako)

CASA 301. History of Anthropological Theory—Required of CASA Ph.D. students. The history of cultural and social anthropology in relation to historical and national contexts and key theoretical and methodological issues as these inform contemporary theory and practices of the discipline. Enrollment limited to 15. Prerequisite: consent of instructor.
5 units, Aut (Ferguson)

5 units, Spr (Ebron)

CASA 310. Intersections—Themes of materiality and visibility, aesthetic and other forms of cultural production, and the meanings of creativity and convention. Ethnographic and archaeological material and case studies from worldwide cultural contexts.
5 units, Win (Malkki, Meskell)

CASA 313. Anthropology of Neoliberalism—How is the recent worldwide restructuring under the name neoliberalism understood as a social, cultural, and economic phenomenon? Focus is on interrogation of analytic categories, and ethnographic explorations of social and political processes.
5 units (Ferguson) not given 2005-06

CASA 319. Naturalizing Power: Kinship, Gender, Race, and Sexuality—The discursive and material practices through which social relations of inequality are naturalized. Ideologies of family, kinship, gender, and sexuality compared to the parallel processes of naturalization and mutual affirmation, and the role of anthropological theory in these naturalizations. Enrollment limited to 20. Prerequisite: consent of instructor if not a CASA graduate student.
5 units (Yanagisako) not given 2005-06

CASA 320. Historic Archaeology—Methodological and theoretical foundations for the archaeology of European colonization and the postcolonial material world. Focus is on material life and social inequality in N. America since 1492. How historical archaeologists have interpreted life in the world of global capitalism and colonization; how archaeological insights can be used to critique modern society. The interdisciplinary nature of historical archaeology, social significance of archaeological knowledge, and cultural, class, and gendered influences on archaeological interpretation.
5 units, Win (Mullins)

CASA 325. Ethics and Anthropology: Contemporary Debates—Anthropology as multidisciplinary: archaeological, biological, linguistic, and sociocultural. The historical development of ethics within anthropology and changes in epistemological frameworks. Topics include: theories of race and gender; human genomics and the new raciology of DNA; development and poverty; cultural evolution and the primitive; and rational choice theory and economic modeling. How these controversial topics are dealt with in the profession and how this information is disseminated in the public sphere. Case studies.
5 units, Spr (Wilcox)

CASA 327. Language and Political Economy—Theories of language: Saussure, Jakobson, Hymes, Marx, Foucault, Butler, and Derrida. The theorization of language in its linkages to power, social relations, and history. Prerequisites: Linguistics or Anthropology course work.
5 units, Aut (Inoue)

5 units (Wilcox) not given 2005-06

CASA 338. Anthropological Approaches to Religion
5 units (Malkki) not given 2005-06

CASA 339. Cultural Studies of Science and Technology: Race, Knowledge, and Power—Interdisciplinary debates in science and technology studies. What is science: how scientific knowledge is generated and changes; how science has shaped identities such as racial, colonial, and postcolonial. Charles Darwin, his theory of evolution, and the subsequent spread of Darwinistic ideas. Evolutionism from early 20th-century discourses of racial hierarchies, eugenics, and progress to discourses of development, modernization, and genetics research. Review of issues from the 2004-05 Revisiting Race and Ethnicity in the Context of Emerging Genetic Research lecture series at Stanford.
5 units, Aut (Luthra)

CASA 340. Narrative, Memory, Materiality: Women’s Sense of the Past—(Same as ARCHLGY 340, FRENGEN 340.) Theoretical issues concerning women’s sense of the past in different cultural and social milieus, as approached through written stories, monuments and material objects. Themes such as subjectivity, identity, and the human body. Readings include Cixious, Irigaray, Grosz, Kristeva, Spivak, Meskell, Lacan, Levinas, Ricoeur, and Badiou.
3-5 units, Spr (Domanska)

CASA 343. Culture as Commodity—Focus is on theories of commodification, interests in tourism, national cultures as marketable objects, and how identities are constituted through production and consumption. The formation of global style and taste.
5 units, Win (Ebron)

CASA 346A. Sexuality Studies in Anthropology—Current research on sexuality from perspectives including paleoanthropology, archaeology, ethnography, and linguistic anthropology. Readings paired with case studies that explore theoretical and methodological issues.
5 units (Manekar, Voss) not given 2005-06

CASA 349. Anthropology of Capitalism—Issues in cultural theory and methodology through research on people who have greater material and cultural resources than those usually studied by anthropologists. How ideas about ideology, hegemony, identity, power, and practice are altered in studying those considered to be agents of power rather than the subaltern. Topics: global capitalism, masculinity, white racial subjectivity. Enrollment limited to 20.
4-5 units, Spr (Yanagisako)

CASA 350. Nationalism and Gender—The co-implication of discourses of nationalism and gender, focusing on nationalist movements and ideologies in newly-independent countries and Third World contexts. Themes: discourses and practices of nationalism with institutions such as the state, mass media, and the family; masculinity, femininity, and militarization; and questions of representation, historiography, location, and strategy.
5 units (Manekar) not given 2005-06

CASA 352. Foucault: The Question of Method—Foucault as methodological exemplar for historical and social research. Emphasis is on his historical studies of clinical medicine, prisons, and sexuality, and on applying his methods to empirical studies of topics such as colonialism, race, and liberal governmental rationality.
5 units (Ferguson) not given 2005-06
CAS 354. Narrative, History, and Memory — Interdisciplinary. The debates surrounding theories of narrative and their relevance to ideas of history and memory. Methodological implications and applicability to analysis of social research, particularly anthropology and history.
3-5 units (Ebron) not given 2005-06

CAS 360. Archaeological Methods and Research Design — Methodological aspects of field and laboratory practice from traditional archaeological methods to the latest interdisciplinary analytical techniques. The nature of archaeological data and inference; interpretive potential of these techniques.
5 units, Spr (Lazarri)

CAS 362. Topics in Political Economy — Emphasis is on Marxist approaches. Topics: the development and articulation of capitalism, imperialism, colonialism, dependency, and world systems; 20th-century capitalism, post-Fordism, and postmodernism; the political economy of race, gender, and ethnicity; class relations and productive inequalities in the Third World; the discourse of development; and the cultural mediation of political economic transformation. The ethnographic material that employs these theories used to examine sociohistorical contexts.
5 units (Gupta) not given 2005-06

5 units, Win (Ferguson, Gupta)

CAS 365. The Mexican Codices: An Introductory Reading — (Enroll in SPANLIT 364.)
3-5 units, Win (Brotherston)

CAS 367. Advanced Topics: Medical Anthropology — Ad hoc reading group. May be repeated for credit. Prerequisite: consent of instructor.
2 units (Kohrman) not given 2005-06

CAS 370P. Advanced Pro Seminar: Topics in Archaeology
1-15 units (Voss) not given 2005-06

CAS 372. Materiality — The relationships between people and things. The world of objects plays a major role in materialism and the anthropology of material culture. Approaches that break down subject-object opposition. New social and psychological approaches that explore the mutual constitution of people and things, and object and subject. Approaches in which objects are seen to have agency, and people are seen as entangled in object worlds. Authors include Hegel, Marx, Benjamin, Miller, Gell, and Latour.
5 units (Hodder) not given 2005-06

CAS 373. Introduction to Archaeological Theory — The history of archaeological thought emphasizing recent debates. Evolutionary theories, behavioral archaeology, processual and cognitive archaeology, and approaches termed feminist and post-processual archaeology in the context of wider debate in adjacent disciplines. The application and integration of theory on archaeological problems and issues.
5 units, Win (Meskell)

CAS 375. Archaeology and Globalism — The emergence of archaeology as a discipline in the context of the rise of the nation state. Global economies and other issues have created a new context for archaeology. How are archaeology and heritage responding? The idea of world heritage. The impact of postcolonialism. The commodification of the past: the past as theme park, as travel tourism or nostalgia, as exotic and other. Conflict between uses of the past for identity and as theme park; between heritage and resource or play. The impact of the Goddess, New Age, and other movements. Archaeology and human rights issues including forensic archaeology.
4-5 units (Hodder) not given 2005-06

CAS 380. Practice and Performance: Bourdieu, Butler, and Giddens — Ethnography and archaeological, poststructuralist theories of iteration and mimesis are used by social scientists to negotiate the tension between social structure and social practice. Readings of three prominent theoretical frameworks in this area: Gidden's structuration theory, Bourdieu's practice theory, and Butler's theories of gender performativity. Ethnographic and archaeological case studies that employ methodologies inspired by these approaches. Intersections and contradictions among these theorists' work. Their use in anthropological practice. Emphasis is on gender, sexuality, and ethnicity.
5 units (Voss) not given 2005-06

CAS 391A.B. Qualifying Paper — Required of second- and third-year Ph.D. graduate students.
2-5 units, A: Topic, B: Area, Aut, Win, Spr (Staff)

CAS 392. Dissertation Writers Seminar — For graduate students in the process of writing dissertations and preparing for professional employment.
1-3 units, Aut, Win, Spr (Malkki)

CAS 393. Internship
1-15 units, Aut, Win, Spr (Staff)

CAS 394. Proposal Writing Seminar — Required of second-year Ph.D. students in Cultural and Social Anthropology. The conceptualization of dissertation research problems, the theories behind them, and the methods for exploring them. Participants draft a research prospectus suitable for a dissertation proposal and research grant applications. Limited enrollment. Prerequisite: 212 or consent of instructor.
5 units, Spr (Gupta)

CAS 395A. First-Year Paper — Required of first-year students.
2-5 units, Win (Inoue)

CAS 395B. First-Year Paper — Required of first-year graduate students.
2-5 units, Spr (Inoue)

CAS 396. Research Apprenticeship — Supervised work with an individual faculty member on a research project. May be taken for more than one quarter.
1-15 units, Aut, Win, Spr (Staff)

CAS 397. Directed Individual Study — For CASA Ph.D. students, supporting the qualifying paper and pre-dissertation field research.
1-15 units, Aut, Win, Spr, Sum (Staff)

CAS 397A. Directed Individual Tutorial — For CASA Ph.D. students working directly with a faculty member on specialized course work supporting area of interest.
1-15 units, Aut, Win, Spr, Sum (Staff)

CAS 397B. Dissertation Fieldwork — For CASA Ph.D. students conducting 4th-year dissertation field research.
1-15 units, Aut, Win, Spr, Sum (Staff)

CAS 398. Teaching Apprenticeship — Supervised experience as assistant in one undergraduate course.
1-15 units, Aut, Win, Spr, Sum (Staff)

CAS 399. Master's Research Thesis
1-15 units, Aut, Win, Spr, Sum (Staff)

CAS 444. Cultural and Social Anthropology Colloquium — Required of first-year CASA Ph.D. students.
1 unit, Aut, Win, Spr, Sum (Staff)

CAS 445. Cultural and Social Anthropological Symposium — Current topics and trends in cultural and social anthropology, cultural archaeology, and archaeology.
1 unit, Aut, Win, Spr (Staff)

OVERSEAS STUDIES

Courses approved for the Cultural and Social Anthropology major and taught overseas can be found in the “Overseas Studies” section of this bulletin, or in the Overseas Studies office, 126 Sweet Hall.
DRAMA

Emeriti: (Professors) Wendell Cole, Helen W. Schrader, Carl Weber; (Associate Professor) William S. Eddelman; (Senior Lecturer) Patricia Ryan

Chair: Harry J. Elam, Jr.

Drama Division

Professors: Jean-Marie Apostolidès (French and Italian, Drama), Harry J. Elam, Jr., Peggy Phelan, Ruth Rehm (Drama, Classics)

Associate Professor: Alice Rayner

Assistant Professor: Ehren Fordyce

Professor (Teaching): Michael F. Ramsaur

Associate Professor (Teaching): Janice Ross

Senior Lecturer: Conni Strayer

Lecturers: Maya Arad, Jeffrey Bihr, Telory Davies, Alison Duxbury, Erik Flatto, Aleta Hayes, Daniel Klein, Kathryn Kostopoulos, Deborah Sussel

Visiting Professor: Stan Lai

Artists in Residence: Amy Freed, Cherríe Moraga

Black Performing Arts Division

Director: Harry J. Elam, Jr.

Steering Committee: Alice Endamme (Black Arts Quarterly), Jan Barker (BCSC), Elena Becks (Committee on Black Performing Arts), Chris Clarke (El Centro Chicano), Regina Covington (King Papers), Vera Grant (African and African American Studies), Naima Green (student), Ashley Hannah (student), Georgina Hernandez (Institute for Diversity in the Arts), Tony Kramer (Dance), Cherríe Moraga (Drama), Robert Moses (Committee on Black Performing Arts), Cindy Ng (Asian American Activities Center), Laura Selznick (VPUE)

Dance Division

Director: Tony Kramer

Senior Lecturers: Susan Cashon, Tony Kramer

Lecturers: Kasey Brown, Kristine Elliott, Diane Frank, Muisi-Kongo Malonga, Hope Mohr, Robert Moses, Richard Powers, Ronnie Reddick, Aliza Shapiro

Mail Code: Drama, 94305-5010; Dance, 94305-8125

Phone: Drama (650) 723-2576; Dance (650) 723-1234

Email: radavies@stanford.edu

Web Site: http://www.stanford.edu/dept/drama/

Courses given in Drama have the subject code DRAMA. Courses given in Dance have the subject code DANCE. For a complete list of subject codes, see Appendix B.

DRAMA DIVISION

The Department of Drama bases its undergraduate and graduate programs on the integration of theory and performance. The faculty commit themselves to the idea that artists must be able to analyze their creative work and that scholars must approach their own specializations creatively. The department prepares students for continued work in professional and university theaters, and to undertake further work in professional and university theaters.

UNDERGRADUATE PROGRAMS

BACHELOR OF ARTS

The requirements for the B.A. degree in Drama are planned to integrate the critical and historical study of drama with the study and experience of performance. The major provides aesthetic and critical opportunities for students to develop special aptitudes. For example, a student may elect an emphasis in acting, directing, design, or critical theory, or may combine areas of emphasis. Examples of how students can structure course work to take advantage of such an emphasis are available from the major adviser. Students are encouraged to declare a major in their sophomore year.

The core program of Drama courses required of all majors is:

1. Performance/Literature/Film: one of the following: DRAMA 120A, 120B, 120C, 121A, 121B
2. Stage Management Project: 134 or 34 plus two of 39A, B, C, or D
3. Senior Project: Drama majors must complete an approved senior project in the area of their specialization: a minimum of 2 units in DRAMA 200 or 205.

Two years of a college-level foreign language are recommended. All majors, in addition to completing the core described above, are required to complete one of the following seven specializations:

1. Acting:
 a) DRAMA 120A, B, Fundamentals of Acting; DRAMA 121M, Movement; DRAMA 121V, Voice and Stage Speech
 b) The student must have completed at least 4 units of DRAMA 29 and acted in at least two department productions.
 c) DRAMA 28, Makeup for the Stage
 d) 2 units of studio class in Dance
 e) three additional acting classes
 f) one course in dramatic literature
 g) 5 units of approved electives in Drama or Dance
 h) one of DRAMA 39A, B, C, or D

2. Directing:
 a) DRAMA 170A, Introduction to Directing; 170B, Advanced Directing; and 171, Undergraduate Theater Workshop
 b) one course in dramatic literature
 c) DRAMA 30, Introduction to Theatrical Design
 d) DRAMA 31, Introduction to Lighting and Production
 e) one course in acting
 f) one of 39A, B, C, or D
 g) nine units of approved electives in Drama

3. Playwriting/Dramaturgy:
 a) DRAMA 177F or M, Playwriting
 b) DRAMA 178M, Intensive Playwriting
 c) DRAMA 170A, Introduction to Directing; 170B, Advanced Directing; and 171, Undergraduate Theater Workshop
 d) DRAMA 31, Introduction to Lighting and Production
 e) one course in acting
 f) one of 39A, B, C, or D
 g) nine units of approved electives in Drama

4. Design:
 a) DRAMA 30, Introduction to Theatrical Design
 b) DRAMA 31, Introduction to Lighting and Production
 c) two of 131, 132, 133
 d) two units each: 39A, B, C, and D
 e) two of 231, 232, 233, or 235
 f) one course in acting
 g) nine units of approved electives in Drama or Art

5. Technical Production/Stage Management:
 a) DRAMA 30, Introduction to Theatrical Design
 b) DRAMA 31, Introduction to Lighting and Production
 c) one of 131, 132, 133
 d) two units each: 39A, B, C, and D
 e) DRAMA 34, Stage Management
 f) one course in acting
 g) DRAMA 136, Drafting or MUSIC 19
 h) DRAMA 135, Sound Design for Theater
 i) nine units of approved electives in Drama

6. Dance:
 a) DANCE 158, The Body in Motion
 b) DANCE 169, Choreography, Creation, Staging, and Reconstruction
 c) one additional dance theory class from DANCE 160, 161, 166, 168, 197, or 242
1. Application involves a written submission (including transcript) in addition to the other requirements of the Drama major: for departmental honors, students must meet the following requirements.

2. Students must complete the Drama core requirements by the end of their junior year, earlier if possible. Only in exceptional circumstances can this requirement be waived; transfer from another university, extended overseas study, or temporary withdrawal from the major due to illness might constitute extenuating circumstances.

3. Students also must have completed half of the courses in their specialization by the end of their junior year.

4. Students must complete 4 units in the Honors Colloquia (described below), beginning Spring Quarter of their junior year and continuing the following three regular quarters. Each quarter’s colloquium is offered for 1 unit, S/NC. In extenuating circumstances (overseas study, for example), an honors program student may substitute other equivalent work for one quarter of the colloquium, with the approval of the honors adviser.

5. GPA in courses counting towards the major must be 3.5 by the time of graduation.

6. By the end of the seventh week of the quarter in which they plan to graduate, all students in the honors program must submit an honors thesis (described below), to be read and evaluated by their thesis committee.

7. On the basis of a student’s work in the Drama core, in the area of specialization, on the senior project, in the honors colloquia, and on the honors thesis, the faculty determines and confers honors on graduating students who have successfully completed the honors program.

8. Failure to meet any of these requirements, or to make satisfactory progress on the honors thesis, leads to dismissal from the honors program.

HONORS COLLOQUIA AND THESIS

The honors colloquia aim to engage honors program students in an ongoing discussion of important issues in the field, with particular focus on the students’ areas of specialization and research. The honors program adviser convenes the colloquia three times per quarter and sets the agenda for meetings and discussion. The colloquia offer venues for honors students to discuss their work in the department (their senior projects, for example), and to present and discuss their research for their honors thesis.

The honors thesis represents an extended engagement with an important issue or subject, determined by the student, the honors program adviser, and the student’s senior project adviser. It typically consists of a long essay (7,500-10,000 words) presenting the student’s research on the subject. As an honors thesis may deal with issues related to the student’s senior project, or with issues related to the student’s specialization, the honors program adviser, the senior project adviser, and another faculty member constitute the student’s honors thesis committee. They read and evaluate the thesis, and make recommendations to the faculty at large regarding its strengths and weaknesses. In the case of an honors program student whose senior project does not involve production or performance but takes written form, the requirements for the honors thesis change. In discussions with the student’s honors committee, the student develops a performance/production-based project that provides the equivalent of a written honors thesis.

HUMANITIES

An honors program in Humanities is available for Drama majors who wish to supplement their major with related and carefully guided studies. See the “Interdisciplinary Studies in Humanities” section of this bulletin for a description of the honors program. Students who enroll in this program may offer HUMNTIES 160 and two seminars from 190-198 in fulfillment of the departmental elective requirement.

GRADUATE PROGRAMS

DOCTOR OF PHILOSOPHY

University requirements for the Ph.D. are described in the “Graduate Degrees” section of the bulletin.

All graduate study in the Department of Drama leads to the Ph.D. degree. The doctoral program in Drama aims to integrate practical theater work with the critical and historical study of dramatic literature and theory. All candidates are expected to function both as scholars and as theater directors. The curriculum offers a two-year practical concentration in
directing along with the study of critical and performance theory, aesthetics, history, and literature. The goal of the program is to give students a thorough knowledge of the field that leads to original and significant scholarly work grounded in practice as well as an inventive directorial practice that is based on solid scholarly analysis.

The following department requirements are in addition to the University’s basic requirements for the doctorate.

UNITS AND COURSE REQUIREMENTS

1. A minimum of 135 units of graduate courses and seminars in support of the degree. These units are in addition to units for the doctoral dissertation.
2. The sequence in Performance and Critical Theory (DRAMA 300, 301, 302).
3. Six additional graduate seminars within the Department of Drama. These must include at least one seminar in each of the following fields:
 a) intersections of theory and performance (designated by suffix A in course number)
 b) theater history (designated by suffix B in course number)
 c) dramatic literature (designated by suffix C in course number)
 In the first two years, students take 370, Concepts of Directing; 372, Projects in Directing; 371, Visual Aesthetics for the Director; and 373, Directing and Dramaturgy. The Projects class consists of the conceptual development, design, and production of a short play in a multi-form space. In the second year, students take 374, Graduate Directors’ Performance Project, to stage a more fully developed production chosen in consultation with the faculty.

LANGUAGE REQUIREMENT

The candidate must demonstrate reading knowledge of one foreign language in which there is a major body of dramatic literature. The language requirement may be fulfilled in any of the following ways:
1. Achievement of a sufficiently high score (70th percentile) on the foreign language examination prepared by the Educational Testing Service (ETS). Latin and Greek are not tested by ETS.
2. A reading examination given each quarter by the various language departments, except for Latin and Greek.
3. Pass with a grade of “B” or higher a course in literature numbered 100 or higher in a foreign language department at Stanford.

The language requirement must be met before the student can be advanced to candidacy.

TEACHING REQUIREMENT

Four quarters of supervised teaching at half time are a required part of the Ph.D. program. The requirement is normally met by teaching three courses during the fourth year and one course during the fifth year.

EXAMINATIONS

Candidates must complete three examinations (one comprehensive and two qualifying) by the end of the first three years of study at Stanford.

The comprehensive examination is taken over a weekend in the Spring Quarter of the first year. The exam is based on texts given to the student by the department at the beginning of the first year. Students study these texts independently throughout the year. For the exam, they should be able to identify and compare plays and playwrights from the list of texts in terms of dramatic genres, styles, and periods, and to address comparatively and analytically critical issues of texts and performance.

The first qualifying exam, which must be completed before advancement to candidacy at the end of the second year, consists of three 15-25 page essays written in consultation with a faculty adviser, covering a specific period of dramatic literature and theater history. These essays should not duplicate any written work from seminars. One essay should deal with practical aspects of the period, for example, directing; one essay should focus on theater history of the period; and one essay should focus on dramatic criticism related to a specific text of the period. After approval by the adviser, the Graduate Studies Committee reads and evaluates these essays, one in each of Autumn, Winter, and Spring quarters.

The second qualifying examination is a departmental oral with three faculty members, at least two of whom should be from the Department of Drama. This oral covers a second period of dramatic literature and theater history. The format of this exam approximates that of the University oral.

For the two qualifying examinations, the essays and the oral, each student works out a program of study with a faculty adviser drawing from the following periods of Western drama, but may include non-Western texts:
- Classical
- Medieval and Renaissance
- 17th, 18th, and early 19th century
- Modern: 1870-1980
- Contemporary: 1980 to the present

SAFISFACTORY PROGRESS

Graduate students in Drama are expected to make consistent progress toward the completion of the Ph.D. degree. At the end of the first year, the departmental Graduate Studies Committee evaluates the work of each student in classes, seminars, examinations, and performance. Production planning in the Spring of each year is contingent upon students making satisfactory progress. Continuation in the program depends upon the recommendation of this faculty group. At the end of the second year, the committee reviews the student’s work in consideration of advancement to candidacy. At the end of the third year, students are expected to have developed an approved dissertation prospectus in preparation for the University oral.

APPLICATION FOR CANDIDACY

By the end of the second year of residence, the following requirements or appropriate equivalents must be completed:
1. Performance and Critical Theory sequence (DRAMA 300, 301, 302) and four seminars
2. The directing workshop series (DRAMA 370-374), including the successful production of two works in public performance
3. A foreign language
4. At least two examinations

Based on its evaluation of the student’s progress, the Graduate Studies Committee certifies the student’s qualifications for candidacy. Upon favorable action, the student files a formal application for candidacy, as prescribed by the University, by the end of Summer Quarter of the second year.

RESEARCH ASSISTANTSHIP

Generally, the third year is devoted to graduate study and research assistantships with faculty members.

DISSERTATION PROSPECTUS

The dissertation prospectus must be approved by the candidate’s adviser and by the departmental Graduate Studies Committee by the end of Spring Quarter of the third year.

UNIVERSITY ORAL EXAMINATION

The University oral examination, to be taken during the fourth year, is to demonstrate the candidate’s ability to conduct significant research in the general area of the dissertation. The examining committee consists of four faculty members, at least two of whom must be from the Department of Drama, as well as one faculty chair from outside the department. The University oral covers the area of the dissertation and is based on the prospectus and bibliography of the candidate.

DISSERTATION

Normally, the Ph.D. program is completed in five years. The first two years should be devoted to full-time graduate study, and the third, fourth, and fifth years to research, teaching, and writing the dissertation. Fol-
lowing formal admission to candidacy (typically at the end of the second year), the dissertation must be completed and approved within five years from the quarter in which candidacy is granted. A candidate taking more than five years is required to restate candidacy by repassing the written examinations on dramatic literature.

APPLICATION AND FELLOWSHIPS

Applicants for the Ph.D. program must write directly to the Department of Drama for information. Online graduate applications are available at http://gradadmissions.stanford.edu/. In addition to the required statement of purpose, all applicants must submit a statement detailing their practical theater experience, a sample of their written critical work, and a statement on directing. An interview, while not required, is recommended. Interviews are best scheduled after January 17 and before February 9. Graduate students in the Department of Drama begin study in the Autumn Quarter of each academic year; there are no mid-year admissions. All graduate students must be degree candidates. All admissions materials must be submitted to the Department of Drama, Memorial Auditorium 144, 551 Serra Mall, Stanford, CA 94305-5010 by December 13.

The Department of Drama awards a number of fellowships to students in the Ph.D. program. For more information, write to the address above, telephone (650) 723-2576, fax (650) 723-0843, email radavies@stanford.edu, or see http://www.stanford.edu/dept/drama/ to download the latest information in .pdf format.

JOINT PH.D. IN DRAMA AND HUMANITIES

The Department of Drama participates in the Graduate Program in Humanities (GPH) leading to a joint Ph.D. degree in Drama and Humanities. For a description of that program, see the “Interdisciplinary Studies in Humanities” section of this bulletin.

BLACK PERFORMING ARTS DIVISION

Students founded the Committee on Black Performing Arts (CBPA) in 1968. The CBPA became an official University Program in 1972, and a division under the Department of Drama in 1997.

Under the auspices of the Institute for Diversity in the Arts (IDA), the CBPA functions as: (1) a liaison with departments in hiring faculty and developing courses in black performing arts; (2) a presenter of performances, master classes, and symposia with arts professionals in dance, drama, music, and film, framed by related academic study in anthropology, dance, drama, history, philosophy, and sociology; (3) a producer of student productions; and (4) a resource for student organizations promoting artistic expression in the black cultural tradition. While the offerings do not constitute an academic minor, students are able to concentrate studies in black performing arts as part of the B.A. major in African and African American Studies or Drama.

The CBPA publishes the Black Arts Quarterly (BAQ) twice a year. BAQ explores perforativity by and about black artists from Africa and the black diaspora, and is an international forum for artists, students, academics, and activists to present original works of art, criticism, and commentary addressing the material impact of black representation in the arts, literature, media, and popular culture.

The CBPA has developed relationships with neighboring communities through artist residencies including its collaboration in “Dreams of a City: The East Palo Alto Project.” The project produced two commissioned plays and a video documentary, a finalist at the Sundance Film Festival, based on community histories. An accompanying archive housed at the CBPA documents community history. The CBPA’s community programming continues with “Resident Dialogues,” funded by the Ford Foundation, which brings artists to campus to work with students in conversation with community members, and to create performance works shown on campus and in community settings. In 2005-06, the CBPA hosts percussionist/musician Will Calhoun from the ensemble Living Colour.

DANCE DIVISION

The Dance Division aims to develop trained bodies, inquiring minds, and aesthetic imaginations through movement as well as dance scholarship. The program emphasizes informed and active engagement in dance by stimulating a range of intelligences that honor somatic wisdom. Since its inception in 1920, dance at Stanford University has positioned itself responsive to the changing needs of the University and society. It offers a range of studio and lecture courses aimed at enhancing the understanding of dance as a way to create and communicate knowledge and meaning. The program encourages students to make connections between dance, other disciplines, culture, and society.

UNDERGRADUATE PROGRAMS

Students who wish to major in Drama with a specialization in Dance, or minor in Dance, should see the undergraduate adviser, Susan Cashion, in the Dance Division.

MINORS

For students wishing to minor in Dance, the following core requirements must be met and a program of study arranged in consultation with the minor adviser in Dance.

1. Studio Classes — A minimum of eight classes. There must be a concentration of at least three classes chosen from a particular dance form such as world, modern, jazz, ballet, or social, and the attainment of intermediate or advanced level; at least two classes in a style other than the concentration; and three additional classes. The studio dance classes are from series in: modern dance (DANCE 40, 45, 140, 141); world dance (DANCE 42, 43); jazz (DANCE 44, 58, 144, 145); social dance (DANCE 46, 146, 147, 156); ballet (DANCE 48, 148, 149); and acting (any class).

3. Performance Practice — DANCE 39D. Stage Management Project; and one of the following: DANCE 169, Staging and Choreography; DANCE 100, Performance Workshop; DANCE 190, Special Project.

COURSES

WIM indicates that the course satisfies the Writing in the Major requirements. (AU) indicates that the course is subject to the University Activity Unit limitations (8 units maximum).

INTRODUCTION TO THE HUMANITIES (IHUM)

The following Introduction to the Humanities courses are taught by Drama department faculty members. IHUM courses are typically available only to freshmen seeking to fulfill IHUM requirements; see the “Introduction to the Humanities” section of this bulletin for further information. Prospective majors in Drama are advised to consider satisfying their IHUM requirements by registering for the following courses.

IHUM 25A,B. Art and Ideas: Performance and Practice — Two quarter sequence. Issues in aesthetics and performance through examples from the classical age to the present. Concepts of art and practice intersecting with topics such as imitation, instruction through pleasure, the creative process, perception, social analysis, and embodiment as a form of knowledge. Texts and performances from drama, dance, music, visual arts, and performance art practices that reflect aesthetic ideas. GER: IHUM-2,3

IHUM 25A, 5 units, Win (Rayner)
IHUM 25B, 5 units, Spr (Ross)
DRAMA DIVISION

Registration for most drama classes takes place at the first class meeting; further registration information is printed in the Time Schedule each quarter. Some class sizes are limited and require advanced registration in the Department of Drama, Room 144, Memorial Auditorium.

INTRODUCTORY

DRAMA 11N. The Dancing Couple as a Lens on American Culture, 1890-1950—Stanford Introductory Seminar. Preference to Freshmen. Race, identity, gender redefinition, and the public body through the lens of social and theatrical dancing couples. The structure of domestic partnerships as mirrored on the social dance floor and theatrical and Hollywood stage. Sources include anti-dance treatises, African American dance spaces, dance marathons of the 20s and 30s, Savoy lindy hop, Irene and Vernon Castle, Fred Astaire and Ginger Rogers, precision dance, gay square dance, and same sex and gender switch tango. Live demonstrations.
4 units, Aut (Ross, Powers)

DRAMA 17N. From Inside the First World: Women of Color Playwrights Re-mapping the U.S.—(Same as SPANLIT 178N.) Stanford Introductory Seminar. Preference to freshmen. From the 60s to the present. Playwrights who create an aesthetic and political space outside the geopolitics of white capitalist patriarchy through social issues including the legacy of slavery and forced immigration, dislocation and relocation, diasporic ties, indigenous inheritance, sexuality, self-censorship, and the war on terror. Students create and perform in public short dramatic pieces informed by the playwrights’ style and subject matter. GER: DB-Hum, EC-AmerCul
3 units, Aut (Moraga)

DRAMA 20. Introduction to Acting—Theater games and physical exercises in concentration, attention, playing an objective, voice, movement, stage terminology, characterization, performing a monologue, and rehearsal techniques. Provides an experiential overview of actor training and prepares actors for advanced courses. Limited enrollment.
2 units, Aut, Win, Spr (Staff)

DRAMA 22. Scene Work—For actors who complete substantial scene work with graduate directors in the graduate workshop. 1-2 units, Aut, Win, Spr (Staff)

DRAMA 25. Shakespearean Skills—Scansion, stage combat, period movement, vocal production, and other skills for the Shakespearean actor. Limited enrollment.
1-2 units, Win, Spr (Kostopoulos)

DRAMA 28. Makeup for the Stage—The basic techniques of makeup application for the artist and/or actor: aging, prosthetics, stylization, characterization, animals, and fantasy makeup.
2 units, Aut (Strayer)

DRAMA 29. Theater Performance: Acting—Students cast in department productions receive credit for their participation as actors; 1-2 units for graduate directing workshop projects and 1-3 units for major productions (units determined by instructor). May be repeated. Prerequisite: consent of instructor.
1-3 units, Aut, Win, Spr (Staff)

DRAMA 30. Introduction to Theatrical Design—Lecture/lab. The basic skills of visual communication used in stage productions. Design and construction methods for stage scenery, costumes, and lighting.
4 units, Aut (Flatmoe)

DRAMA 31. Introduction to Lighting and Production—The technical and aesthetic aspects of lighting and the production process.
4 units, Win (Ramsaur)

DRAMA 32. Textiles—Introduction to fabric techniques and processes for stage costumes.
2-3 units, Win (Strayer)

DRAMA 34. Stage Management Techniques—The production process, duties, and responsibilities of a stage manager. Provides the skills needed to stage manage a production.
2-3 units, Aut, Spr (Duxbury)

DRAMA 35. Introduction to Sound for the Theater—Lecture/lab. The practical handling of sound equipment, acoustics, and editing. Analysis, creation, and implementation of theatrical sound effects, live and recorded.
3-4 units, Aut (Duxbury)

DRAMA 36A. Introduction to Woodworking—Techniques for building furniture and theatrical projects.
1-2 units, Aut (Duxbury)

DRAMA 36B. Scene Shop Techniques—Lecture/lab. Practical handling of shop equipment used in theatrical production.
1-2 units (Duxbury) not given 2005-06

DRAMA 39A, B, C, D. Theater Performance: Crew—Participation in the design and technical areas of department productions. Students commit to a specific show and receive credit for preparation and construction as a member of a running crew in a specific area.

DRAMA 39A. Theater Performance: Scenery and/or Property

DRAMA 39B. Theater Performance: Lighting/Sound

DRAMA 39C. Theater Performance: Costumes/Makeup

DRAMA 39D. Theater Performance: Prosser Stage Management
1-3 units, Aut, Win, Spr (Staff)

DRAMA 42. Costume Construction—Lecture/lab. The basic skills of constructing costumes for the stage.
2-3 units (Strayer) not given 2005-06

DRAMA 53. Greek Tragedy—(Enroll in CLASSGEN 12.)
3-5 units (McCall) not given 2005-06

INTERMEDIATE

Primarily for the major, but open to all undergraduates who have the necessary prerequisites.

DRAMA 103. Improvising—The improvisational theater techniques that teach spontaneity, cooperation, team building, and rapid problem solving, emphasizing common sense, attention to reality, and helping your partner. Based on TheatreSports by Keith Johnstone. Readings, papers, and attendance at performances of improvisational theater. Limited enrollment.
3 units, Aut, Win (Klein)

DRAMA 110. Cartographies of Race: The Institute for Diversity in the Arts at Stanford—Students work with one of four visiting California artists on artistic projects concerning diversity, culture, and race. Workshops include service learning within a community population to probe diversity and social change through the arts. GER: DB-Hum
5 units, Win (Elam)

DRAMA120A, B. Acting: The Fundamentals—For students who intend to begin serious actor training. First quarter emphasizes the understanding and utilization of the basic vocabulary of objective and action. Theater games and improvisation develop the actor’s ability to act with focus, intention, and energy. Introduction to the basics of characterization and transformation. Second quarter: the actor’s spontaneity and imagination are used to reveal the life of a play (working with dramatic texts). Approaches to the actor’s craft range from character biography to moment-to-moment truthful playing. Exercises from Strasberg, Meisner, Chaikin, Linklater, and others. Scene and monologue work are drawn from primarily naturalistic plays. Outside rehearsal time required. Must be taken in sequence. 120B. Prerequisite: 120A or consent of instructor.
3 units, 120A: Aut (Kostopoulos), Win (Freed),
120B: Spr (Kostopoulos)
DRAMA 121C. Acting: The Craft of Comedy — The basics of comedy playing, from its origins in the utterly truthful to its destination in the over-the-top. Characterization, mask, and exaggeration; class work on non-verbal scenes. The actor’s understanding of the mechanics of comedy, timing, and clowning are developed through improvisation and in-class exercises designed to free the imagination. Texts may include scenes from Feydeau, Woody Allen, Moss Hart, and Alan Ayckbourn.
3 units, Spr (Freed)

DRAMA 121M. Movement for Actors — Kinesthetic awareness and physical presence of the performer in relationship to others through techniques of focus, spatial intent, task, and choreographic improvisation.
3 units, Aut (Bihr)

DRAMA 121P. Acting: Period and Style — Opportunity to expand acting range through an exploration of heightened language. Scenes from non-contemporary dramatic literature including Shakespeare, Shaw, Turgenev, Ibsen, and Strindberg.
3 units (Freed) not given 2005-06

DRAMA 121R. Acting American Realism — Skills appropriate to the work of major American playwrights including Williams, Miller, and Mamet.
3 units (Freed) not given 2005-06

DRAMA 121V. Voice and Speech for the Stage — Goal is to strengthen, support, and vary the voice through breath, resonance, articulation, and projection. Speech work includes phonetics, text analysis, and verbal action as it relates to dramatic material.
2 units, Win (Sussel)

DRAMA 121W. Actors Who Write/Writers Who Act — The development of dramatic scripts for solo performance and multi-character plays. Work happens on its feet, with writing deadlines and an informal workshop environment in which students present scripts, with support and feedback in dramaturgy, and help with performance and staging issues.
3 units (Freed) not given 2005-06

DRAMA 122C. Contemporary Scene Study — Acting approach to contemporary plays.
3 units (Kostopoulos) not given 2005-06

DRAMA 131. Lighting Design — Lecture/lab. Practical and aesthetic aspects of lighting: electricity, light sources, color instrumentation, control, drafting, plotting, and the aesthetic principles of lighting design, interpretation, and concept. Prerequisites: 30, 31, or consent of instructor.
4 units, Spr (Ramsaur)

DRAMA 132. Costume Design — A visual analysis of the historical styles of costume design, interpreted for the modern theater and developed by the student in various presentational media. Prerequisite: 30 or consent of instructor.
4 units, Spr (Strayer)

DRAMA 133. Stage Scenery Design — Creations of increasing complexity involve text analysis, historical and artistic style, visual research, spatial organization, drafting, sketching, model building, and director-designer collaboration. Prerequisite: 30, or consent of instructor.
4 units, Win (Flattmlo)

DRAMA 133F. Design, Space, and Documentation — Art installation, theater, dance, film, and music video projects through studio techniques including drafting and model making. Emphasis is on design projects in unconventional spaces.
2-3 units (Flattmlo) alternate years, given 2006-07

DRAMA 133P. Scenic Painting — Techniques of painting for the stage.
2-3 units, Spr (Flattmlo)

DRAMA 134. Stage Management Project — For students stage managing a Department of Drama production.
2-9 units, Aut, Win, Spr (Duxbury)

DRAMA 135. Sound Design — All aspects of sound for the theater from equipment, acoustics, and editing to the creation of theatrical sound effects, live and recorded.
4 units, Win (Duxbury)

DRAMA 140. Projects in Theatrical Production — (Graduate students register for 240.) Assistant directing; stage, costume, lighting, and sound design; technical production, stage managing, or other work in connection with Department of Drama productions. Prerequisite: consent of instructor.
1-5 units, Aut, Win, Spr (Staff)

DRAMA 150. Chekhov and Before — (Graduate students register for 250.) Chekhov’s dramatic masterpieces in light of his Russian predecessors. Authors include Griboyedov, Gogol, Turgenev, and Ostrovsky; Chekhov’s early plays and vaudevilles.
4 units, Win (Arad)

DRAMA 151. Adaptation: Turning into Drama — (Graduate students register for 251.) Adaptation in theater: from script to production, from book to stage and screen, from one period and culture to another. The adaptations that a single author, Chekhov, has undergone: different productions of his plays and different dramatizations of his prose.
4 units, Spr (Arad)

DRAMA 152. Theater, Travel, and Technology — The theatrical nature of global tourism, the virtual travel of theatrical representation, and the role of modern technology in changing relationships between people and places. What it means to move through other spaces; how theater represents motion; and the nature of globalization and cyberspace. Sources include plays, videos, web sites, travel guides, and drives and train lines in the Bay Area.
4 units, Spr (Gillette)

4 units, Spr (Hayes)

DRAMA 159. Shakespeare — (Enroll in ENGLISH 163.)
5 units, Aut (Friedlander)

DRAMA 159B. Shakespeare — (Enroll in ENGLISH 163B.)
5 units, Spr (Parker)

DRAMA 160. Performance, Dance History, and Gender — (Graduate students register for 260; same as DANCE 160.) Shifting gender identities in western theatrical dance from the mid-18th to mid-20th centuries. The birth and development of theatrical dance. Changing notions of gender construction and the body in performance. GER:DB-Hum, EC-Gender WIM
4 units, Win (Ross)

5 units (Rayner) not given 2005-06

DRAMA 162. Performance and the Text — (Graduate students register for 262.) Formal elements in Greek, Elizabethan, Noh, Restoration, romantic, realistic, and contemporary world drama; how they intersect with the history of performance styles, character, and notions of action. Emphasis is on how performance and media intervene to reproduce, historicize, or criticize the history of drama. GER:DB-Hum
5 units (Rayner) not given 2005-06
DRAMA 163. Performance and America — (Graduate students register for 263.) Dramas by women, men, Asian Americans, Latino Americans, and African Americans are examined with regard to the role of dramatic performance within contemporary American society, and as an affective and effective arena for inducing social change. GER:DB-Hum, EC-AmerCul, WIM
5 units, Aut (Elam)

DRAMA 164. Performance and Gender — (Graduate students register for 264.) The intersectionality of race, sex, gender, and class in the formation of gendered performance. Readings from the work of Judith Butler, Eve Sedgwick, David Savran, Judith Halberstam, and David Eng. Case studies include: M. Butterfly, The Crying Game, Paris is Burning, Angels in America, and American Idol. GER:DB-Hum
5 units (Phelan) not given 2005-06

DRAMA 165. Theater History: Classical to 1900 — (Graduate students register for 265.) A dramaturgical, historical, and design approach to the study of drama, theater, and performance. GER:DB-Hum
4 units, Win (Lyons)

DRAMA 166. Theater History: 1900 to the Present — (Graduate students register for 266.) A dramaturgical, historical, and design approach to the study of drama, theater, and performance. GER:DB-Hum
4 units, Aut (Davies)

DRAMA 170A. Introduction to Directing — Practices of stage composition, work with the actor, approaches to character, and techniques of storytelling. Prerequisite: consent of instructor.
4 units, Aut (Rehm)

DRAMA 170B. Advanced Directing — Devised theater and non-text based directing. Prerequisite: 170A or consent of instructor. GER: DB-Hum
4 units, Win (Lai)

DRAMA 171. Undergraduate Theater Workshop — Undergraduate directors present one act plays in workshop performances. Credit available for actors and directors. Prerequisite: 170A/170B or consent of instructor.
1-4 units, Spr (Duxbury, Lai)

DRAMA 172. Late Postmodern Experimental Theater — (Graduate students register for 272.) History and theory behind artists such as Richard Foreman, Robert Wilson, The Wooster Group, Forced Entertainment, Goat Island, and Societas Raffaello Sanzio. Assignments include critical writing, creative writing, and mise-en-scène. GER:DB-Hum
4-5 units (Fordyce) not given 2005-06

DRAMA 173. Studies in Creativity — The creative process in composing and performing a theatrical work.
3-5 units, Spr (Lai)

DRAMA 176. Dramaturgy Project — (Graduate students register for 276.) Serve as a dramaturg on any department production. Research the production’s text source, the writing of program notes, the compilation and editing of the playbill, and possible adapting/editing of the performance text or translating text from a foreign language.
2 units, Aut, Win, Spr, Sum (Staff)

DRAMA 177. Playwriting — (Graduate students register for 277.) The autobiographical monologic/poetic possibilities in performance art explored to learn the elements of playwriting. GER:DB-Hum
5 units, Win (Freed)

DRAMA 178. Intensive Playwriting — (Graduate students register for 278.) Goal is to develop new material for the stage or complete a play-in-progress. Focus is on essential elements of playwriting, emphasizing the process of revision, and culminating in public readings of highlights of plays-in-progress. Prerequisite: experience in playwriting or consent of instructor. GER:DB-Hum
5 units, Aut (Moraga), Spr (Freed)

DRAMA 179A. Teatro America Workshop: The Theater of Native/Chicano America — (Same as SPANLIT 287.) A Chicana feminist and indigeneous approach to the theory and practice of performance. Introduction to writing for the stage. Readings include plays, stories, and performance texts by Chicano/a and Native American writers. Public performance. Prerequisite: consent of instructor. GER:DB-Hum
5 units, Spr (Díaz-Sánchez)

DRAMA 180Q. Noam Chomsky: The Drama of Resistance — Stanford Introductory Seminar. Preference to sophomores. Chomsky’s ideas and work which challenge the political and economic paradigms governing the U.S. Topics include his model for linguistics; cold war U.S. involvements in S.E. Asia, the Middle East, Central and S. America, the Caribbean, and Indonesia and E. Timor; the media, terrorism, ideology, and culture; student and popular movements; and the role of resistance. GER:DB-Hum
3 units, Win (Rehm)

DRAMA 188Q. From Brecht to Müller: German Theater and Performance since World War II — Stanford Introductory Seminar. Preference to sophomores. History and aesthetics of theater in the German-speaking countries of Central Europe: the Fascist-Nationalist tradition of the Third Reich; Brecht’s influence; developments of the 60s; political stagnation of the 70s and 80s; and the end of the Cold War.
3-5 units, Aut (Weber)

DRAMA 200. Senior Project — Individual project on the work of a playwright, period, or genre. Prerequisite: consent of instructor.
1-5 units, Aut, Win, Spr, Sum (Staff)

DRAMA 201A,B,C,D. Honors Colloquium — Individual supervision of off-campus internship. Prerequisite: consent of instructor.
1-18 units, Aut, Win, Spr, Sum (Staff)

ADVANCED COURSES
Courses numbered 200 through 299 are designed for advanced undergraduates and graduates.

DRAMA 200. Senior Project — See “Undergraduate Programs” for description.
2-9 units, Aut, Win, Spr, Sum (Staff)

DRAMA 201A,B,C,D. Honors Colloquium — See “Undergraduate Programs” for description.
1 unit, Aut, Win, Spr, Sum (Rayner)

DRAMA 202. Honors Thesis — See “Undergraduate Programs” for description. May be repeated for credit.
2-9 units, Aut, Win, Spr, Sum (Staff)

DRAMA 205. Senior Project: Acting — Collaborative work on a project culminating in a production.
2-5 units, Aut, Win (Kostopoulos)

DRAMA 210A,B. Actor in Performance — Preference to Drama majors and minors and to the serious student interested in further training in the performing arts. Taught in the professional conservatory tradition, with the creation of an acting ensemble. Skill building in the areas of acting, movement, voice, and speech. How to analyze and play the dramatic action of the text. Guest teachers from the professional theater complement and expand the work of the ensemble. Limited enrollment. Prerequisite: interview with instructor.
4-5 units (Kostopoulos) alternate years, given 2006-07

DRAMA 210C. Actor in Performance: Ensemble Workshop
4-5 units (Kostopoulos) alternate years, given 2006-07
DRAMA 213. Stanford Improv Ensemble—By audition only, for members of the improvisation troupe. Special project work. Prerequisite: 103. (AU)
1-2 units, Aut, Win (Klein)

DRAMA 231. Advanced Stage Lighting Design—Individually structured class in lighting mechanics and design through experimentation, discussions, and written reports. Prerequisite: 131 or consent of instructor.
1-5 units, Aut, Win, Spr, Sum (Ramsaur)

DRAMA 232. Advanced Costume Design—Individually structured tutorial for costume designers. May be repeated for credit. Prerequisite: 132 or consent of instructor.
1-5 units, Aut, Win, Spr, Sum (Strayer)

DRAMA 233. Advanced Scene Design—Fast-paced, individually structured workshop. May be repeated for credit. Prerequisite: 133 or consent of instructor.
1-5 units, Aut, Win, Spr, Sum (Staff)

DRAMA 234. Advanced Stage Management Project—For students stage managing a Department of Drama production. Prerequisite: 134.
2-9 units, Aut, Win, Spr, Sum (Duxbury)

DRAMA 235. Advanced Sound Design—Individually structured tutorial for sound designers. May be repeated for credit. Prerequisite: 135 or consent of instructor.
1-5 units, Aut, Win, Spr, Sum (Staff)

DRAMA 240. Projects in Theatrical Production—(Same as 140; see 140.)
1-5 units, Aut, Win, Spr (Staff)

DRAMA 242. The Work of Art and the Creation of Mind—(Enroll in EDUC 200.)
4 units (Staff) not given 2005-06

DRAMA 250. Chekhov and Before—(Same as 150; see 150.)
4 units, Win (Arad)

DRAMA 251. Adaptation: Turning into Drama—(Same as 151; see 151.)
4 units, Spr (Arad)

DRAMA 260. Performance, Dance History, and Gender—(Same as 160; see 160; same as DANCE 160.)
4 units, Win (Ross)

DRAMA 261. Performance and Politics—(Same as 161; see 161.)
5 units (Rehm) not given 2005-06

DRAMA 262. Performance and the Text—(Same as 162; see 162.)
5 units (Rayner) not given 2005-06

DRAMA 263. Performance and America—(Same as 163; see 163.)
5 units, Aut (Elam)

DRAMA 264. Performance and Gender—(Same as 164; see 164.)
5 units (Phelan) not given 2005-06

DRAMA 265. Theater History: Classical to 1900—(Same as 165; see 165.)
4 units, Win (Lyons)

DRAMA 266. Theater History: 1900 to the Present—(Same as 166; see 166.)
4 units, Aut (Davies)

DRAMA 272. Late Postmodern Experimental Theater—(Same as 172; see 172.)
4-5 units (Fordyce) not given 2005-06

DRAMA 273. Studies in Creativity—The creative process in composing and performing a theatrical work.
3-5 units, Spr (Lai)

DRAMA 276. Dramaturgy Project—(Same as 176; see 176.)
2 units, Aut, Win, Spr, Sum (Staff)

DRAMA 277. Playwriting—(Same as 177; see 177.)
5 units, Win (Freed)

DRAMA 278. Intensive Playwriting—(Same as 178; see 178.)
5 units, Aut (Maraq), Spr (Freed)

DRAMA 290. Special Research—Individual project on the work of a playwright, period, or genre.
1-5 units, Aut, Win, Spr, Sum (Staff)

GRADUATE
Open to advanced undergraduates with consent of instructor.

DRAMA 300. Theories of Drama and Performance—Seminar. Critical theory including readings from Marx, Freud, and Nietzsche.
5 units, Aut (Apostolides)

DRAMA 301. From Theory to Criticism—Performance theory in readings from Austin, Derrida, Butler, Schenect, Turner, Phelan, Auslander, Foster, Roach, and Diamond.
5 units, Win (Phelan)

DRAMA 302. Research Methods in Drama—Projects involving the examination of live performance, play texts, and theories of drama. The principles of argument. Goal is a foundation for course work and writing the dissertation.
5 units (Elam) alternate years, given 2006-07

DRAMA 304D. Classical Seminar—(Same as HUMNTIES 321.) The cultural and political formation of ancient Athens and Rome. Homer, Aeschylus, Sophocles, Euripides, Aristophanes, Thucydides, Plato, Virgil, Petronius, Seneca, and St. Augustine.
3-5 units, Aut (Rehm)

DRAMA 305A. Varieties of Time—Cosmological, mechanica, literary, and performative time: how the constructed, expressive, and lived perceptions of temporality intersect to syncopate in consciousness as history and ideology, memory and anticipation, space and change. Readings from Augustine, Ricoeur, Bergson, Merleau-Ponty, Bateson, Shakespeare, Chekhov, Beckett, and contemporary theater.
3-5 units, Win (Rayner)

DRAMA 320. Basic Approaches to Teaching Acting—Workshop. The pedagogy of acting to prepare graduate student teachers for introductory classes in acting.
1-3 units (Kostopoulos) alternate years, given 2006-07

DRAMA 321. Pro Seminar—Workshop. Skills needed to participate in the academic profession including abstract, conference presentation, and dissertation or book chapter.
1-3 units (Phelan) not given 2005-06

DRAMA 345. Shakespeare, Islam, and Others—(Enroll in ENGLISH 373D, COMPLIT 311.)
5 units, Win (Parker)

DRAMA 358C. Beckett—Seminar. Beckett’s plays and late writing, which have been described as proto-performance art. Recent Beckett scholarship, including new work about his analysis with Bion.
3-5 units, Spr (Phelan)

DRAMA 370-374. Graduate Directing Workshop—Core curriculum for graduate students in directing. Prerequisite: consent of instructor.

DRAMA 370. Concepts of Directing—Directorial definitions of time, space, movement, and the performer/spectator relationship. Experimentation with texts from literary and other sources, including works from the realistic tradition in drama, using a multi-form performance space.
5 units, Aut (Weber)
DRAMA 371. Visual Aesthetics for the Director — International theater design emphasizing the last thirty years. Productions from Europe, Asia, and the U.S.
2 units, Win (Eddelman)

3 units, Win (Elliott, Brown)

DRAMA 373. Directing and Dramaturgy — Dramaturgy, directorial methods, and visual concepts in the production of plays from the Elizabethan tradition to postmodernist texts. Work on the text is tested in the staging of scenes.
3-5 units, Aut (Weber)

DRAMA 374. Graduate Directors’ Performance Project — Production of a full-length play, selected in consultation with faculty. Project is designed by graduate students, sometimes in collaboration with undergraduate design students, under the supervision of design faculty. Four to five weeks rehearsal. Public performance.
3-5 units, Aut, Win, Spr, Sum (Ramsaur, Staff)

DRAMA 375. Graduate Directors’ Dramaturgy Project — Serve as a dramaturg on any department production. Work includes research on the production’s text source, the writing of program notes, and the compilation and editing of the play bill. Possible adapting/editing of the performance text, and translating text from a foreign language.
2 units, Aut, Win, Spr, Sum (Staff)

DRAMA 376. Graduate Directors’ Staged Reading Project — Presentation of a new or newly adapted work for the stage, in a mode employed in professional theater for the development of new plays. Two to four rehearsals. Public performance.
2 units, Aut, Win, Spr, Sum (Staff)

DRAMA 377. Graduate Directors’ Directed Reading Project — Directed readings of new or newly adapted works are offered. Students and faculty must agree on project.
2 units, Aut (Brown)

DRAMA 390. Tutorial
1-9 units, Aut, Win, Spr, Sum (Staff)

DRAMA 399. Dissertation Research
1-9 units, Aut, Win, Spr, Sum (Staff)

BLACK PERFORMING ARTS DIVISION
Students should consult the quarterly Time Schedule for offerings.

DANCE DIVISION
Registration for most dance classes takes place at the first class meeting; further registration information is printed in the Time Schedule each quarter. Some class sizes are limited and require advanced registration in the Dance office in Roble Gym. Series classes (I, II, III) should be taken in order, or with consent of instructor.

INTRODUCTORY
Open to all students. No previous dance experience needed.

DANCE 40. Modern Dance I — The technical and creative principles of modern dance to develop the body as an expressive instrument.
2 units, Aut, Win, Spr (Cashion)

DANCE 42. Dances of Latin America — Dances of Argentina, Brazil, Chile, Colombia, Cuba, Mexico, Peru, and Puerto Rico.
2 units, Aut (Cashion)

DANCE 43. Afro-Brazilian and Afro-Peruvian Dance — Brazilian dance forms of the Northeast: samba, coco, maculele, bloco afro. Peruvian dance of the coastal region: festejo and zamacueca.
2 units, Win (Cashion)

DANCE 44. Jazz Dance I — Basic techniques emphasizing current jazz style. Historical jazz steps enhance understanding of contemporary jazz forms.
2 units, Win, Spr (Kramer)

DANCE 45. Improvisation Plus Contact — The development of improvisation skills as a creative performance practice and as a basis for choreography; techniques of contact improvisation.
2 units, Win, Spr (Kramer)

DANCE 46. Social Dances of North America I — Introduction to the partner dances found in American popular culture: waltz, swing, tango, club two step, cha cha, merengue, and salsa. Fee. (AU)
1 unit, Aut, Win, Spr (Kramer)

2 units, Aut (Elliott, Brown)

DANCE 50. Social Dances of North America II — Swing dancing: the early Lindy of the 20s; 6- and 8-count Lindy hop, shag, Big Apple. Partnering and improvisation. Swing’s crosscultural influences and personal creativity.
2 units, Win (Powers)

DANCE 51. West African Dance — Movements and choreography from Senegal, Ghana, and the Congo. Elements unique to all African dance movement: body isolation, polyrhythmic movement, and body posture. Live drumming. Open to all levels of dancers.
2 units, Aut (Malonga)

DANCE 58. Beginning Hip-Hop — Steps and styling in one of America’s 21st-century vernacular dance forms. May be repeated for credit.
1 unit, Aut (Reddick)

DANCE 59. Intermediate-Advanced Hip-Hop — Steps and styling in one of America’s 21st-century vernacular dance forms. May be repeated for credit.
1 unit, Aut (Reddick)

INTERMEDIATE
Open to all undergraduates with dance experience.

DANCE 100. Modern Dance II — Intermediate technique. Improvisation and composition in directed studies. May be repeated for credit.
2 units, Aut (Frank), Win, Spr (Kramer)

DANCE 144. Jazz Dance II — Emphasis is on alignment, control, rhythmic coordination, and contemporary mixture of styles.
2 units, Win, Spr (Moses)

2 units, Aut, Spr (Powers)

DANCE 147. Living Traditions of Swing — Swing dancing: the early Lindy of the 20s; 6- and 8-count Lindy hop, shag, Big Apple. Partnering and improvisation. Swing’s crosscultural influences and personal creativity.
2 units, Win (Powers)

DANCE 148. Intermediate Ballet — Continuation of 48, repeating the fundamentals with increased complexity and introducing additional movement vocabulary.
2 units, Aut, Win, Spr (Brown)

ADVANCED
Open to all undergraduates with dance experience.

2 units, Aut (Mohr), Win, Spr (Frank)

DANCE 145. Jazz Dance III — Advanced level of technical proficiency in a contemporary mixture of styles. Focus is on performance skills of projection and movement quality. Prerequisite: consent of instructor.
2 units, Win, Spr (Moses)

DANCE 149. Advanced Ballet — Professional-level class in a supportive environment. Comprehensive classical ballet technique including pointe work if the student desires.
2 units, Aut, Win, Spr (Elliott)
DANCE 156. Social Dances of North America III — Advanced survey of the partner dances found in American popular culture: hustle, waltz, redowa, tango, cha cha, salsa, samba. Prerequisite: 146 or equivalent experience.
 2 units, Win (Powers)

PERFORMANCE
DANCE 23. Public Performance — For students participating in Dance Division performances.
 1 unit, Aut, Win, Spr (Kramer)
DANCE 27. Faculty Choreography — Rehearsal and performance of faculty choreography. Selection by audition.
 2 units, Aut, Win, Spr (Staff)
DANCE 57. Guest Artist — Students perform the work of a visiting artist. Audition required. May be repeated for credit.
 2 units, Aut, Win, Spr (Mohr)
DANCE 100. Performance Workshop — Student choreography is mentored to develop composition and performance skills. Required for participation in certain faculty and/or student-directed productions.
 2 units, Win, Spr (Frank, Kramer)

THEORY
Classroom or classroom/studio combination courses on topics in Dance and Performance.
DANCE 133. History of the Waltz — From Vienna in 1800. Redowa and mazurka, waltz variations, the 20th-century hesitation waltz, Parisian valse musette, and 30s Boston and waltz swing. Studio technique with performance practice for stage.
 2 units, Spr (Powers)
DANCE 134. Ballet Folklórico — The history of Ballet Folklórico including its roots in Mexican folk and N. American modern dance, Guadalajara choreographic narratives, and U.S. performance ensembles. GER:EC-GlobalCom
 3 units, Aut (Cashion)
DANCE 158. The Body in Motion — Approaches and methods in body therapy: body maintenance and conditioning, the Laban movement system, body-mind centering. GER:DB-Hum
 3 units, Aut (Shapiro)
DANCE 160. Performance, Dance History, and Gender — (Same as DRAMA 160/260.) Shifting gender identities in western theatrical dance from the mid-18th to mid-20th centuries. The birth and development of theatrical dance. Changing notions of gender construction and the body in performance. GER:DB-Hum, EC-Gender
 4 units, Win (Ross)
DANCE 161. Dance and Live Art in the Twentieth Century — History and development of postmodern dance and performance art. Topics include Dandyism, Bauhaus experiments, Black Mountain College, Judson Church, contact improvisation, the culture wars, and performance and illness. GER:DB-Hum
 4 units, Win (Ross)
DANCE 166. History of Social Dance in Western Culture — Movement and historic social dance from the past five centuries, including studio technique and history. Performance practices for stage, including deportment, body language, and demeanor distinctive to each era.
 2 units (Powers) alternate years, given 2006-07
DANCE 168. Dance and Culture in Latin America — Dance forms of Latin America as aspects of human behavior. Emphasis is on cultural influences (European, African, and indigenous) that have shaped the ritual and social dance forms of Argentina, Brazil, Chile, Cuba, Mexico, and Puerto Rico. GER:DB-Hum, EC-GlobalCom
 4 units, Spr (Cashion)

DANCE 169. Choreography: Creation, Staging, and Reconstruction — Skills and criteria for the choreographic process. Invention, staging, and reconstruction. The creative process and practical considerations in making a dance work.
 3 units, Aut (Kramer)
DANCE 190. Special Research — Topics related to the discipline of dance.
 1-5 units, Aut, Win, Spr, Sum (Staff)
DANCE 191. Independent Research — Individual supervision of off-campus internship. Prerequisite: consent of instructor.
 1-18 units, Aut, Win, Spr, Sum (Staff)
DANCE 197. Art and Community: Dance in Prisons — Participatory seminar. The nexus of art, community, and social action, using dance to study how the performing arts affect self-construction, perception and experiences of embodiment, and social control for incarcerated teenagers in Santa Clara Juvenile Hall. GER:DB-Hum
 4 units, Win (Ross)

ADVANCED THEORY
Courses numbered 200 through 299 are designed for advanced undergraduates and graduate students.
DANCE 242. The Work of Art and the Creation of Mind — (Enroll in EDUC 200.)
 4 units (Staff) not given 2005-06
DANCE 290. Special Research — Individual project on the work of any choreographer, period, genre, or dance-related topic.
 1-18 units, Aut, Win, Spr, Sum (Staff)

OVERSEAS STUDIES
Courses approved for the Drama major and taught overseas can be found in the “Overseas Studies” section of this bulletin, or in the Overseas Studies office, 126 Sweet Hall.

BERLIN
DRAMA 101A. Contemporary Theater — (Same as GERLIT 195.)
 5 units, Spr (Kramer)
DRAMA 153F. Exploration in Crosscultural Theater
 3 units, Spr (Friedlander)
EAST ASIAN STUDIES

Director: Carl Bielefeldt
Affiliated Faculty and Staff:
Anthropological Sciences: Melissa Brown, Arthur P. Wolf
Art and Art History: Melinda Takeuchi, Richard Vinograd
Business: Kenneth Singleton
Comparative Literature: David Palumbo-Liu
Cultural and Social Anthropology: Harumi Befu (emeritus), Miyako Inoue, Matthew Kohrman (on leave)
East Asian Studies: Joo-yoon Jung, Young Kwan Yoon, E. Anthony Zaloom
Economics: Masahiko Aoki
History: Gordon Chang, Peter Duus (emeritus), Harold L. Kahn (emeritus), Mark Lewis, Mark Mancall, Chihio Sawada, Matthew Sommer, Kären Wigen
Linguistics: Peter Sells
Political Science: John W. Lewis (emeritus), Lyman Miller, Daniel Okimoto, Jean C. Oi (on leave)
Religious Studies: Carl Bielefeldt, Keila Diehl, Bernard Faure (on leave Winters, Spring), Naoko Kumada, Fabrizio Pregadio, Lee H. Yearley, Michael Zimmermann
Sociology: Gi-Wook Shin, Andrew Walder (on leave)
Other Stanford faculty with teaching or research interests related to East Asia: Takeshi Amemiya (Economics), Barton Bernstein (History), Richard Dasher (Electrical Engineering), Larry Diamond (Hoover Institution), Walter P. Falcon (Institute for International Studies), Thomas Metzger (Hoover Institution), Ramon Myers (Hoover Institution), Leonard Ortolano (Civil and Environmental Engineering), Mark Peatit (Hoover Institution), Karen Seto (Geological and Environmental Sciences)
Center Offices: Building 50, Main Quad
Mail Code: 94305-2034
Phone: (650) 723-3362, 723-3363; fax: (650) 725-3350
Web Site: http://www.stanford.edu/dept/CEAS/

The Center for East Asian Studies (CEAS) coordinates all University instructional, research, and special activities related to East Asia, Japan, and Korea. Faculty and students who share a common interest in the study of East Asia are brought together by the center from a broad range of academic concerns covering nearly every discipline and historical period. As a National Resource Center designated by the Department of Education, Title VI, the center is also involved in programs that link the University’s resources on East Asia with civic groups, secondary schools, and local colleges in the San Francisco Bay Area. CEAS belongs to the Division of International and Comparative Area Studies in the School of Humanities and Sciences, and is affiliated with the Walter H. Shorenstein Asia-Pacific Research Center (http://iaparc.stanford.edu/).

UNDERGRADUATE PROGRAMS

BACHELOR OF ARTS

The undergraduate major in East Asian Studies enables students to obtain a comprehensive understanding of East Asia broadly conceived, which is the vast area stretching from Japan through Korea and China to the contiguous areas of the Central Asian land mass. Majors in East Asian Studies begin or continue the mastery of Chinese, Japanese, or Korean. Within the humanities or social sciences, they focus on a particular sub-region, for example, Japan, South China, Hong Kong and Taiwan; or western China and Central Asia; or a substantive issue involving the region as a whole, such as environment, public health, rural development, historiography, cultural expression, Buddhism’s impact on East Asian cultures, or traditional Japanese civilization. The major seeks to reduce the complexity of a region to intellectually manageable proportions and illuminate the interrelationships among the various facets of a society. Potential majors must submit a Student Proposal for a Major in East Asian Studies not later than the end of the first quarter of the junior year for approval by the East Asian Studies undergraduate committee.

Majors must complete at least 75 units of course work on China, Japan, and/or Korea. Courses to be credited toward major requirements must be completed with a grade of ‘C’ or better. Requirements are:

1. **Language**: proficiency in Chinese, Japanese, or Korean language at the second-year level or above, to be met either by course work or examination. Students who meet the requirement through examination are still expected to take an additional 1.5 units of language at a higher level, or literature courses taught in the language, or the first year in an additional Asian language. No more than 30 units of language courses are counted toward the major.

2. **Gateway Courses**: a minimum of three gateway courses, one in each area. The gateway courses are:
 a. **Art, Literature and Religion**
 ARTHIST 2. Ideas and Forms in Asian Art
 CHINGEN 91. Traditional East Asian Civilization: China
 JAPANGEN 92. Traditional East Asian Civilization: Japan
 RELIGST 150 Mahayana Buddhism in East Asia
 RELIGST 154 Buddhism Today: Responses to New Global Challenges
 b. **History**
 HISTORY 92A. Historical Roots of Modern East Asia
 HISTORY 92B. East Asia in the Age of Imperialism
 HISTORY 291E. Maps, Borders, and Conflict in East Asia
 c. **Contemporary Social Sciences**
 ANTHSCI 7. Marriage and Kinship
 POLISCI 148S: The U.S. and Asia During the Cold War
 SOC 167A. Asia-Pacific Transformation

3. **Substantive Concentration**: additional courses on East Asia, one of which must be a seminar.

4. **Capstone Essay**: completion of a paper of approximately 7,500 words, written either in a directed reading course or for one of the courses in item 3 above, which should be built upon the student’s thematic interests. A 1-unit Spring Quarter course is required for all majors, in which they discuss and work through their capstone essays or senior honors theses.

5. At least one quarter overseas in the country of focus.

Majors are encouraged to distribute their course work among at least three disciplines and two subregions in Asia. (The subregions need not be traditionally defined. Examples include China, Japan, or Korea; or, in recognition of the new subregions which are emerging: South China, Hong Kong, and Taiwan; or Central Asia, Xinjiang, and Mongolia.) At least four courses must have a thematic coherence built around a topic such as:

- Buddhism’s impact on East Asian cultures
- Culture and society of modern Japan
- Environmental issues of Asia
- Fine arts and literature in late imperial China
- Foreign Policy in East Asia
- Social transformation of modern China
- Traditional Japanese civilization

An East Asian Studies course that satisfies the University Writing in the Major requirement (WIM) should be completed before beginning the senior essay. This year, CHINGEN 133, JAPANGEN 138, and HISTORY 256 satisfy the WIM requirement.

The courses for the major must add up to at least 75 units and all must be taken for a letter grade.
MINORS

The goal of the minor in East Asian Studies is to provide the student with a broad background in East Asian culture as a whole, while allowing the student to focus on a geographical or temporal aspect of East Asia. The minor may be designed from the following, for a total of six courses. All courses should be taken for a letter grade.

1. Three gateway courses, one in each area (see above for listing of gateway courses).
2. One undergraduate seminar and two other courses from among those listed each quarter as approved for East Asian Studies majors, including literature courses but excluding language courses.

Applications for the minor are due no later than the second quarter of the junior year.

HONORS PROGRAM

Majors with a grade point average (GPA) of 3.25 or better in all courses related to East Asia may apply for the honors program no later than the final quarter of the junior year. Application entails submitting an honors prospectus to the student’s adviser for approval. Admission is granted by the CEAS undergraduate committee, acting on the adviser’s recommendation.

Honors requirements are satisfactory completion of:
1. An honors thesis of high quality of approximately 10,000 words to be submitted in lieu of the senior capstone essay
2. 5 to 10 units of directed individual study in connection with the thesis project
3. One advanced level colloquium or seminar dealing with China, Japan, or Korea

COTERMINAL BACHELOR’S AND MASTER’S PROGRAM

The center admits a limited number of Stanford undergraduates to work for a coterminous M.A. degree in East Asian Studies. Applications must be submitted by January 11 of the junior year. Applicants are expected to meet the same standards as those seeking admission to the M.A. program: they must submit a written statement of purpose; a Stanford transcript; three letters of recommendation, at least two of which should be from members of the department of concentration; and scores from the General Test of the Graduate Record Exam. In addition, applicants must provide a list of courses they intend to take to fulfill degree requirements. The decision on admission rests with the M.A. admissions committee of the Center for East Asian Studies. Students must meet all requirements for both B.A. and M.A. degrees. They must complete a total of 15 full-time quarters or the equivalent, or three full quarters after completing 180 units for a total of 225 units.

For University coterminous degree program rules and University application forms, see http://registrar.stanford.edu/publications/#Coterm.

OVERSEAS PROGRAMS

Internships — CEAS provides overseas summer internship opportunities in China, Japan, and Korea to undergraduates in any major. Host organizations include government and non-profit organizations, and media, financial, and electronic companies. Applications are due in February.

Language Study — CEAS provides undergraduate fellowships for language study in China, Japan, or Korea; students must simultaneously apply to a pre-approved language program abroad. Applications are due in February.

Overseas Seminars — Three-week seminars in China, Japan, or Korea are jointly offered in late summer by CEAS and the Overseas Studies Program office. See http://osp.stanford.edu in late autumn for next summer’s offerings.

For more information about CEAS overseas programs, contact Denise Chu at denisech@stanford.edu or see http://www.stanford.edu/dept/CEAS.

DISTINGUISHED PRACTITIONERS

Eminent professionals whose work in East Asia brings real-life knowledge to the classroom serve as visiting lecturers through the CEAS Distinguished Practitioners from East Asia program. Teaching this year are: Dr. Young Kwan Yoon, former Minister of Foreign Affairs and Trade of the Republic of Korea (EASTASN 185K, International Relations and Korea), and Anthony Zaloom, former partner at Skadden, Arps, Tokyo and Beijing (EASTASN 183C, Doing Business in China).

EAST ASIAN STUDIES (PAYSON J. TREAT) THEME HOUSE

EAST House, on campus at Governor’s Corner, is an undergraduate residence that houses 60 students and offers them a wide variety of opportunities to expand their knowledge, understanding, and appreciation of Asia. A member of the East Asian Studies faculty serves as resident fellow of EAST House. Assignment is made through the regular undergraduate housing draw.

STANFORD IN BEIJING

Stanford in Beijing allows Stanford undergraduates to live and study at Peking University. Classes are taught in English by a Stanford faculty-in-residence and Peking University professors. Students are considered enrolled in Peking University and may participate in athletic and musical activities on campus, including Chinese art and calligraphy, tai-chi, and wushu. For more information, contact the Overseas Studies office at Sweet Hall, or see http://osp.stanford.edu/program/beijing/.

KYOTO CENTER FOR JAPANESE STUDIES

Students interested in the study of Japanese language, history, culture, and social organization can apply to the Kyoto Center for Japanese Studies, a September-to-April program managed by Stanford that includes students from eight other American universities. Every Spring Quarter, the Stanford Center in Technology and Innovation, also at the Kyoto Center, offers an academic quarter focused on Japanese organizations and the political economy of research, development, and production of high technology and advanced industries. An internship in a Japanese firm, laboratory, or agency follows the training program. For information about the Kyoto Center, contact the Overseas Studies office at Sweet Hall, telephone (650) 723-3558.

GRADUATE PROGRAMS

MASTER OF ARTS

University requirements for the master’s degree are described in the “Graduate Degrees” section of this bulletin.

The M.A. program in East Asian Studies is designed both for students who plan to complete a Ph.D., but who have not yet decided on the particular discipline in which they prefer to work, and for students who wish to gain a strong background in East Asian Studies in connection with a career in nonacademic fields such as business, law, education, journalism, or government service. However, career-oriented students should realize that a master’s degree in East Asian Studies alone may provide insufficient preparation for work in many professions, and they are advised to plan for additional professional training.

The master’s degree program allows a great deal of flexibility in combining language training, interdisciplinary area studies, and a disciplinary concentration. The director of the center assigns faculty advisers to all students. Members of the staff and faculty are available for academic and career planning. The M.A. program is normally completed in two academic years, but students can shorten this time by receiving credit for prior language work or by attending summer sessions. Students are urged to complete the degree requirements within one year if their background makes it possible.

Applicants must submit scores for the General Test of the Graduate Record Examination. Foreign applicants are also required to take the Test of English as a Foreign Language. Applications for admission and financial aid should be made online; a paper application, if required, may
be obtained from Graduate Admissions, Old Union, 520 Lasuen Mall, Stanford University, Stanford, California 94305-3005.

The basic requirements for the M.A. degree in East Asian Studies are as follows:

Language Requirement—Students must complete the equivalent of Stanford’s first three years of language training in either Chinese, Japanese, or Korean. Students entering the program without any language preparation should complete first- and second-year Chinese, Japanese, or Korean within the first year of residence at Stanford. This will necessitate completing a summer language program. Language courses taken at Stanford must be for letter grades.

The language requirement may be satisfied in part or in full by placing into an appropriate Stanford language class through the language proficiency exam given by the Department of Asian Languages. Students who fulfill this minimum three-year language requirement before completing other requirements are encouraged to continue language study, or take courses in which Chinese or Japanese are used, for as long as they are in the program. Language courses beyond the third-year level may be applied to the Area Studies requirement discussed below.

Students in the M.A. program are eligible to apply for the Inter-University language programs in Beijing and Yokohama. For further information, see the "Institute for International Studies" section of this bulletin. Work completed in one of these programs may be counted toward the M.A. degree’s language requirement.

Area Studies Requirement—Students must complete the 1-unit core course, EASTASN 330, and an additional nine courses numbered 100 or above related to East Asia. (Chinese and Japanese language courses numbered 100-199 are considered to be at the third-year level and do not count toward the courses required for the degree.) The nine courses must be 3 or more units, taken for a letter grade. At least 23 units must be designated primarily for graduate students (typically at the 200-300 levels).

An integral part of the program is training in research and a demonstration of research ability in a discipline. Three courses, one of which must be a seminar, colloquium, or advanced course in which a research paper on China, Korea, or Japan is written, must be within a single department. The six additional area courses may be taken in departments of the student’s choosing. Some theory-oriented or methodological courses may be used to meet part of these requirements provided they are demonstrably useful for understanding East Asian problems. Credit toward the Area Studies requirement is not given for courses taken before entering the M.A. program. Students in this program, however, may take courses for exchange credit at the University of California, Berkeley, with the approval of their adviser and the Office of the Registrar.

M.A. Thesis Requirement—A master’s thesis, representing a substantial piece of original research, should be filed with the center’s program office as part of the graduation requirements. With the adviser’s approval, the master’s thesis requirement may be satisfied by expanding a research paper written for an advanced course.

DUAL DEGREE PROGRAMS

EAST ASIAN STUDIES AND LAW

This program grants an M.A. degree in East Asian Studies and a Doctor of Jurisprudence (J.D.) degree. It is designed to train students interested in a career in teaching, research, or the practice of law related to East Asian legal affairs. Students must apply separately to the East Asian Studies M.A. program and to the Stanford School of Law and be accepted by both. Completing this combined course of study requires approximately four academic years, depending on the student’s background and level of training in Chinese, Japanese, or Korean.

EAST ASIAN STUDIES AND EDUCATION

This program grants an M.A. degree in East Asian Studies and a secondary school teaching credential in social studies. To be eligible for this program, students should apply to the M.A. program in East Asian Studies and then apply to the Stanford Teacher Education Program during the first year at Stanford. Completing the dual program requires at least two years, including one summer session when beginning the education component of the program.

EAST ASIAN STUDIES AND BUSINESS

This program grants an M.A. degree in East Asian Studies and a Master of Business Administration degree. Students must apply separately to the East Asian Studies M.A. program and the Graduate School of Business and be accepted by both. Completing this combined course of study requires approximately three academic years (perhaps including summer sessions), depending on the student’s background and level of training in Chinese, Japanese, or Korean language.

DOCTORAL PROGRAMS

Stanford does not offer a Ph.D. in East Asian Studies. However, there are more than 100 doctoral students with a specialization on China, Korea, or Japan within various departments and schools of the University. The departments that offer an East Asian concentration are: Anthropological Sciences, Art and Art History, Asian Languages, Comparative Literature, Cultural and Social Anthropology, History, Linguistics, Political Science, Religious Studies, and Sociology. It is also possible to specialize in East Asia within some of the doctoral programs of the professional schools of Business, Education, and Law. Inquiries should be directed to the individual department or school concerning.

POSTDOCTORAL PROGRAMS

The Center for East Asian Studies offers two postdoctoral fellowships in Chinese Studies each year. Two postdoctoral fellowships in Japanese Studies are available from the Stanford Institute of International Studies, and the Asia-Pacific Research Center has a postdoctoral program in contemporary Chinese Studies.

FINANCIAL AID

Students in graduate programs who plan to do work in Chinese, Japanese, or Korean language, and area studies courses, may be eligible for Foreign Language and Area Studies (FLAS) fellowships and are encouraged to apply for them at the time of application to Stanford. Recipients of FLAS fellowships must be American citizens or permanent residents. For further information, see http://www.stanford.edu/dept/CEAS/.

COURSES

The courses listed below deal primarily with China, Japan, and/or Korea. Many other theoretical and methodological courses within the various departments at Stanford are taught by faculty who are East Asian specialists; these courses often have a substantial East Asian component and may be found under the department listings in this bulletin.

EAST ASIAN LANGUAGES

For courses in Chinese, Japanese, and Korean language instruction with the subject codes CHINLANG, JAPANLNG, and KORLANG, see the "Language Center" section of this bulletin. For courses in Classical Chinese with the subject code CHINLIT, see the “Asian Languages” section of this bulletin.

UNDERGRADUATE

EASTASN 5. East House Seminar — May be repeated for credit.
1 unit, Aut, Spr (Bielefeldt)

EASTASN 100E. Political Economy of Development and Reform in East Asia — (Same as ICA 100E.) Comparison of economic take-offs, crises, and reforms in China, S. Korea, and Japan. Institutional foundations of economic development; how such institutions generated problems, have undergone reform, and test the E. Asian model of development and reform.
5 units, Spr (Jung)

3-5 units, Win (Zalom)
EASTASN 185K. International Relations and Peace Building on the Korean Peninsula — Distinguished practitioner course; taught by former S. Korean foreign minister. Korea as the only remaining divided nation from the Cold War. The nature of and major issues related to Cold War confrontation on the Korean peninsula; scenarios for peace building in Korea and implications for international relations.

3-5 units, Aut (Yoon)

ADVANCED

EASTASN 191. Journal of East Asian Studies
1 unit, Aut, Win, Spr (Staff)

EASTASN 198. Senior Colloquium in East Asian Studies
1 unit, Spr (Bielefeldt)

EASTASN 199. Directed Reading
1-9 units, Aut, Win, Spr, Sum (Staff)

EASTASN 200E. Globalization and the State in East Asia — (Same as ICA 200E.) Changes in state economic roles at different stages of development in China, S. Korea, and Japan. How globalization has affected the functions and institutions of the state. Roles of the state in the economic miracle, financial crisis, and the reform process. Changes in institutions, functions, and authorities. The impact of political context in reform outcomes.
5 units, Win (Jung)

EASTASN 330. Core Seminar: Issues and Approaches in East Asian Studies — For East Asian Studies M.A. students only.
1 unit, Aut (Bielefeldt)

INTERDEPARTMENTAL OFFERINGS

See the respective department listings for course descriptions and General Education Requirements (GER) information.

ANTHROPOLOGICAL SCIENCES

ANTHSCI 7. Marriage and Kinship
4-5 units, Spr (Wolf)

ANTHSCI 128B/228B. Globalization and Japan
3-5 units, Spr (Befu)

ANTHSCI 203. Topics in the Anthropology of China and Taiwan
3-5 units, Win (Brown)

ART HISTORY

ARTHIST 2. Ideas and Forms in Asian Art
5 units, Win (Takeuchi)

4 units, Aut (Takeuchi)

ARTHIST 185/385. Art in China’s Modern Era
4 units, Win (Vinograd)

ARTHIST 187/387. Arts of War and Peace: Late Medieval and Early Modern Japan, 1500-1868
4 units (Takeuchi) not given 2005-06

ARTHIST 282A. Imagining the Imperial: Images of the Court in Late Ming Dynasty Public Culture
5 units, Win (Staff)

ARTHIST 283A. Paris and Shanghai: Sites of Modernity
5 units, Spr (Larkin, Vinograd)

ARTHIST 287. Pictures of the Floating World: Images from Japanese Popular Culture
5 units, Spr (Takeuchi)

CHINESE GENERAL

For complete listings of Chinese language and literature courses, see the “Asian Languages” section of this bulletin.

CHINGEN 51. Chinese Calligraphy
1-2 units, Spr (Chuang)

CHINGEN 91. Traditional East Asian Civilization: China
5 units, Aut (Rusk)

CHINGEN 131/231. Chinese Poetry in Translation
4 units, Win (DiBello)

CHINGEN 132/232. Chinese Fiction and Drama in Translation
4 units (J. Wang) not given 2005-06

CHINGEN 133/233. Literature in 20th-Century China
4 units, Spr (Jones)

CHINGEN 135. Lovers, Drinkers, and Fighters: The World of the Chinese Martial Arts Novel
4 units (Kam) not given 2005-06

CHINESE LITERATURE

For complete listings of Chinese language and literature courses, see the “Asian Languages” section of this bulletin.

CHINLIT 161/261A. Passion in Late Imperial Literature
4 units (Levis) not given 2005-06

CHINLIT 167/267. What Isn’t an Author?: Forgery and Attribution in Chinese and Western Literature
3-5 units, Aut (Rusk)

CHINLIT 201. Proseminar: Bibliographic and Research Methods in Chinese Studies
5 units, Aut (Dien)

CHINLIT 263. Lyric (Shih) I
2-4 units, Win (Wang)

CHINLIT 271. Traditional Chinese Fiction: Short Stories
2-4 units (J. Wang) not given 2005-06

CHINLIT 272. Traditional Chinese Fiction: Novels
2-4 units (J. Wang) not given 2005-06

CHINLIT 381. Early Chinese Thought
5 units (Levis) not given 2005-06

CULTURAL AND SOCIAL ANTHROPOLOGY

CASA 77/277. Japanese Society and Culture
5 units, Win (Inoue)

CASA 135X. Pilgrimage and Sacred Landscapes
4 units, Win (Diehl)

CASA 141. Tibetan Buddhism and Culture in Exile
5 units, Aut (Diehl)

ECONOMICS

ECON 124. Contemporary Japanese Economy
5 units, Win (Aoki)

ELECTRICAL ENGINEERING

EE 402A. Topics in International Technology Management
1 unit, Aut (Dasher)

EE 402T. Entrepreneurship in Asian High-Tech Industries
1 unit, Spr (Dasher)

HISTORY

HISTORY 90Q. Buddhist Political and Social Theory
5 units, Aut (Mancall)

356
HISTORY 92A. The Historical Roots of Modern East Asia
5 units, Spr (Miller)

HISTORY 92B. East Asia in the Age of Imperialism
5 units, Aut (De Boer)

HISTORY 192/392A. China: The Early Empires
5 units (M.E. Lewis) not given 2005-06

HISTORY 193. Late Imperial China
5 units, Spr (Sommer)

HISTORY 194B. Late Medieval and Early Modern Japan
5 units, Win (Wigen)

HISTORY 195. Introduction to Korean History and Culture
5 units (Sawada) not given 2005-06

HISTORY 256/356. U.S.-China Relations: From the Opium War to Tiananmen
5 units, Win (Chang)

HISTORY 291B. Modern China
4-5 units, Spr (Henriot)

HISTORY 291E. Maps, Borders, and Conflict in East Asia
5 units, Aut (Wigen)

HISTORY 293/392B. Law and Society in Late Imperial China
5 units, Aut (Sommer)

HISTORY 293J. Korean History and Culture through Film
5 units, Spr (Sawada)

HISTORY 295J/395J. Chinese Women’s History
5 units, Spr (Sommer)

HISTORY 297E. The Meiji Culture
5 units, Win (Duass)

HISTORY 297F. Japan Since 1945
5 units, Win (Duass)

HISTORY 392C. Key Topics in Qing History
5 units, Spr (Sommer)

HISTORY 394A. Directions in Asian Studies
5 units (Wigen) not given 2005-06

HISTORY 396D. Modern Japan
5 units, Spr (Wigen)

HISTORY 492A,B. The Family in Early China
4-5 units (M. E. Lewis) not given 2005-06

HISTORY 494. The Body in Early China
5 units, Win (M. E. Lewis)

HISTORY 495A,B. Qing Legal Documents
5 units, A: Win, B: Spr (Sommer)

HISTORY 496A,B. Research Seminar on Modern China
5 units, Spr (Henriot)

JAPANESE GENERAL
For complete listings of Japanese language and literature courses, see the “Asian Languages” section of this bulletin.

JAPANGEN 51/151. Japanese Business Culture
2-5 units, Win (Dasher)

JAPANGEN 73N. Japanese Horror: The Tropes of the Vengeful Ghost
4 units, Spr (Reichert)

JAPANGEN 92. Traditional East Asian Civilization: Japan
5 units, Win (Levy)

4 units (Reichert) not given 2005-06

JAPANGEN 137. Classical Japanese Literature in Translation
4 units, Aut (Nakamura)

JAPANGEN 138/238. Survey of Modern Japanese Literature in Translation
4 units, Aut (Reichert)

JAPANGEN 148/248. Modern Japanese Narratives: Literature and Film
2-5 units, Spr (Levy)

JAPANGEN 166. Japanese Buddhism
1-5 units, Aut (Odagiri)

JAPANESE LITERATURE
For complete listings of Japanese language and literature courses, see the “Asian Languages” section of this bulletin.

JAPANLIT 170/270. The Tale of Genji and Its Historical Reception
4 units, Spr (Carter)

JAPANLIT 201. Proseminar: Introduction to Graduate Study in Japanese
4-5 units (Carter) not given 2005-06

JAPANLIT 260. Japanese Poetry and Poetics
2-4 units, Win (Carter)

JAPANLIT 281. Japanese Pragmatics
4 units, Win (Staff)

JAPANLIT 282. Japanese Sociolinguistics
4 units, Win (Satoh)

JAPANLIT 296. Readings in Modern Japanese Literature
2-5 units, Aut (Levy)

JAPANLIT 298. The Theory and Practice of Japanese Literary Translation
2-5 units, Spr (Levy)

JAPANLIT 350. Japanese Historical Fiction
3-5 units (Carter) not given 2005-06

JAPANLIT 381. Topics in Pragmatics and Discourse Analysis
3-5 units (Matsumoto) not given 2005-06

JAPANLIT 396. Modern Japanese Literature
3-5 units (Staff) not given 2005-06

MATERIAL SCIENCE
MATSCI 159Q. Japanese Companies and Japanese Society
3 units, Spr (Sinclair)

MUSIC
MUSIC 164/264. Ritual Musics of the World
4 units (Diehl) not given 2005-06

POLITICAL SCIENCE
POLISCI 112/312. Japanese Foreign Policy
5 units, Aut (Okimoto)

POLISCI 115R. International Relations of Korea
5 units, Win (Kang)

POLISCI 140L. China in World Politics
5 units (Miller) not given 2005-06

POLISCI 148/348. Chinese Politics: The Transformation and the Era of Reform
5 units (Oi) not given 2005-06
RELIGST 308. Medieval Japanese Buddhism
3-5 units, Aut (Faure)

RELIGST 313. Buddhist Iconography and Ritual
3-5 units (Faure) not given 2005-06

RELIGST 370. Comparative Religious Ethics
4 units (Yearly) not given 2005-06

SOCIOMETRY

SOC 111/211. State and Society in Korea
5 units (Shin) not given 2005-06

SOC 117A/217A. China Under Mao
5 units (Walder) not given 2005-06

SOC 152/252. Sociology of Japanese Society
5 units, Spr (Tsutsui)

SOC 167A/267A. Asia-Pacific Transformation
5 units, Aut (Shin)

ECONOMICS

Honorary Emeritus: (Professor): Anne O. Krueger

Chair: Timothy F. Bresnahan

Associate Professor: Jonathan Levin, Mark McClellan

Assistant Professors: Ran Abramitzky, Liran Einav, Peter Hansen, Aprajit Mahajan, Muriel Niederle, Luigi Pistaferri, Antonio Rangel, Michele Tertilt, Mark Wright

Senior Lecturer: Geoffrey Rothwell

Lecturers: Doru Cojoc, Gregory Rosston, Derek Stimel

Assistant Professors: David Baron, Jay Bhattacharya, John Ferejohn, Alan Garber, Ilan Guttman, Kenneth Judd, David Kreps, Rosamond Naylor, Bruce Owen, Mitchell Polinsky, Peter C. Reiss, D. John Roberts, James Strnad, Barry Weingast, Robert Wilson

Visiting Professors: Orazio Attanasio, Ove Grandstrand, Anne Royalty, Jerun Schroeder, T.N. Srinivasan

Visiting Assistant Professors: Galina Hale, Alessandro Tarozzi

Instructors: Oren Ahooibam, Marcelo Clerici-Arias, Christine Gathmann, Alex Gould, Mark Tendall

Acting Instructor: Erik Snowberg

Mail Code: 94305-6072

Phone: (650) 725-3266

Web Site: http://www-econ.stanford.edu/

Courses given in Economics have the subject code ECON. For a complete list of subject codes, see Appendix B.

The department’s purpose is to acquaint students with the economic aspects of modern society, to familiarize them with techniques for the analysis of contemporary economic problems, and to develop in them an ability to exercise judgment in evaluating public policy. There is training for the general student as well as for those who plan careers as economists in civil service, private enterprise, teaching, or research.

The undergraduate program provides an excellent background for those going on to graduate work in the professional schools (for example, business and law) and may also be structured to prepare students for a Ph.D. program in economics. The department’s curriculum is an integral part of Stanford’s programs in International Relations, Public Policy, and Urban Studies.
The primary objective of the graduate program is to educate students as research economists. In the process, students also acquire the background and skills necessary for careers as university teachers and as practitioners of economics. The curriculum includes a comprehensive treatment of modern theory and empirical techniques. Currently, 20 to 25 students are admitted each year.

The faculty represent a wide spectrum of interests and conduct research on a broad range of topics. Most fields of economics are covered, including behavioral economics, comparative institutional analysis, econometrics, economic development, economic history, experimental economics, industrial organization, international trade, labor, macro- and microeconomic theory, mathematical economics, and public finance.

UNDERGRADUATE PROGRAMS

BACHELOR OF ARTS

The total number of units required for the major is 75. Students are encouraged to complete the core courses 1-5 below, as early as possible. Ideally, students should complete the core during the sophomore year, before taking upper division courses. Courses may not be taken before the prerequisites are completed. The required number of field courses is four. There is great flexibility in the choice of electives, including upper-division math and statistics.

Of the 75 units required for the major, at least 50 must be taken at Stanford in California. Students cannot declare Economics as their major or minor until they have completed ECON 50 with a grade of ‘B’ or better.

REQUIREMENTS FOR THE ECONOMICS MAJOR (75 UNITS)

1. **ECON 1 (5 units):** principles of economics.
2. **ECON 102A (5 units):** introduction to statistical methods. It is recommended that students satisfy this basic statistics requirement before proceeding with the rest of the program. Prerequisite: MATH 41 or equivalent.
3. **ECON 50 (5 units):** basic price theory. Prerequisite: ECON 1 and 50M or MATH 51, or passed diagnostic test (administered at the beginning of ECON 50) on multi-variable calculus.
4. **ECON 51 and 52 (10 units):** intermediate micro- and macroeconomics. Prerequisite: ECON 50.
5. **ECON 102B (5 units):** econometrics. Prerequisites: ECON 50 and 102A. Material in ECON 102B is used in a number of field courses. Students are strongly advised to design their program of study so that ECON 102B is not taken in their senior year but early in their program.

Field Courses (must be taken at Stanford in California; 20 units) — Four courses must be chosen from among ECON 111, 118, 121, 140,* 141, 145, 149, 150, 154, 155, 156, 157, 160, 165 (5 units each).

Writing in the Major Course (5 units) — This requirement is fulfilled by ECON 101. This course should be taken only after completing ECON 51 and 52, 102B, and at least two field courses.

Electives (20 units) — Choose from Economics courses numbered from 100 through 198, excluding 190 and 191. Up to 10 units may be satisfied by MATH 52, 53, 103, 113, 114, 115; or STATS 200.

A maximum of 10 units of transfer credit or of ECON 139D, Directed Reading, may be taken under this section. Suitable transfer credit must be approved in writing by the Associate Director of Undergraduate Studies. Advanced undergraduate majors with strong quantitative preparation may enroll in graduate (200-level) courses with permission of the Director of Undergraduate Studies and the course instructor. Some courses offered by Overseas Studies may be counted towards this requirement. The department does not give credit for internships.

* Students may not count units from both ECON 135 and 140 towards their major as the courses are too similar in content.

OTHER REQUIREMENTS

No courses receiving Department of Economics credit under the preceding requirements may be taken credit/no credit, and 50 of the 75 units required for the major must be taken at Stanford in California.

Students with sufficiently high scores on the Advanced Placement Microeconomics and Macroeconomics tests can receive AP credit which enables them to fulfill the Economics major without taking ECON 1. However, these students nevertheless must take 75 units of economics courses to obtain the major: the AP credit does not yield any units toward the major.

A grade point average (GPA) of 2.0 or better must be received for all units applied toward the preceding requirements.

To use transfer credit in partial satisfaction of the requirements, the student must obtain written consent from the department’s Associate Director of Undergraduate Study, who establishes the amount of credit to be granted toward the department requirements (see the Information Book for Economics Majors). Students must have completed all Stanford prerequisites for approved transfer credit courses in order to use those courses towards the Economics major.

The time limit for satisfactory completion of a course is one year from the date an “incomplete” is given, although instructors may set a shorter time limit. Students are responsible for seeing that all grades of incomplete are cleared within the time limit.

SAMPLE PROGRAMS

Sample listings of upper-division economics electives may be examined in the department’s Information Book for Economics Majors, available in the Economics Building, room 136. Sample programs are provided for the following areas of emphasis: (1) liberal arts, (2) pre-business, (3) quantitative, (4) international, (5) political economy and regulation, and (6) preparation for graduate school in economics.

MINORS

The minor in Economics has two main goals. The first is to acquaint students with the rudiments of micro- and macroeconomic theory that are required of all majors. The second is to allow students to build basic competence in the application of this theory to two fields of economics of their choosing, and the opportunity to specialize further in any one of these fields by taking one additional advanced course in the Department of Economics.

COURSE WORK

1. **ECON 1 (5 units):** principles of economics.
2. **ECON 50 (5 units):** basic price theory. Prerequisites: ECON 1 and 50M or MATH 51, or passed diagnostic test (administered at the beginning of ECON 50) on multi-variable calculus.
3. **ECON 51 and 52 (10 units):** intermediate micro- and macroeconomics. Prerequisite: ECON 50.
4. Two field courses (must be taken at Stanford in California; 10 units) may be chosen from the following list: ECON 102B, 111, 118, 121, 140,* 141, 145, 149, 150, 154, 155, 156, 157, 160, 165.
5. One elective (5 units) from Economics courses numbered 100 through 198, excluding 190 and 191.

* Students may not count units from both ECON 135 and 140 towards their major as the courses are too similar in content.

OTHER REQUIREMENTS

If the candidate’s major requires basic Economics courses (items 1 through 3), then only half of the units from those courses apply toward the economics minor. To attain the overall 35 units required by the minor, the student must take additional Economics courses under items 4 and 5. At least 20 out of the 35 units for the minor must be taken at Stanford. Students must have completed all Stanford prerequisites for approved transfer credit courses in order to use those courses towards the Economics minor.

No courses receiving Department of Economics credit under the preceding requirements may be taken credit/no credit. A grade point average (GPA) of 2.0 or better must be received for all units applied toward the minor.

Students must complete their declaration of the minor no later than the last day of the preceding quarter before their degree conferral.
HONORS PROGRAM

The honors program offers an opportunity for independent research, creativity, and achievement. It is designed to encourage a more intensive study of economics than is required for the normal major, with course and research work of exceptional quality. Honors students may participate in an Honors Research Symposium during Spring Quarter, with those nominated for prizes making oral presentations. The honors program requires:

1. Completing all requirements for the major.
2. Achieving a grade point average (GPA) of at least 3.5 for the 75 units required of the Economics major. See details in the Information Book for Economics Majors.
3. Complete ECON 102B and at least two lecture courses most relevant for the proposed topic of the honors thesis by the end of the junior year. (These can be included in the basic 75 units.)
4. Candidates must write an honors thesis in their senior year for at least one unit and up to 10 units of credit (ECON 199D). The thesis must be of very high quality and written under the direction of a member of the department or its affiliated faculty. Units of 199D do not count toward the course work requirements for the basic economics major, or in the computation of the GPA requirement for honors. Students who take ECON 199D for 10 units may apply 5 of those units to meet the Writing in the Major (WIM) requirement. Such students complete the major with at least 80 units overall.

Juniors interested in the honors program should attend an informational meeting scheduled by the honors program director during the first week of each quarter. At this meeting, students receive information on organizing an honors project and are given details on honors programs. Prospective candidates for the honors program should submit an application to the director no later than the end of the first month of the third quarter before graduation. (Typically Autumn Quarter of the senior year.) Also required, later in the same quarter, is a three-page thesis proposal that must be approved by the thesis adviser.

GRADUATE PROGRAMS

Graduate programs in economics are designed to ensure that students receive a thorough grounding in the methodology of theoretical and empirical economics, while at the same time providing specialized training in a wide variety of subfields and a broad understanding of associated institutional structures. Toward these ends, the program is arranged so that the student has little choice in the curriculum at the outset but considerable latitude later on.

Students admitted to graduate standing in the department are expected to have a strong background in college-level economics, mathematics, and statistics. Preparation ordinarily consists of a college major in economics, a year-long calculus sequence that includes multivariate analysis, a course in linear algebra, and a rigorous course in probability and statistics.

MASTER OF ARTS

University requirements for the master’s degree are described in the “Graduate Degrees” section of this bulletin.

The department does not admit students who plan to terminate their graduate study with the M.A. degree. Students may (but need not) elect this degree in preparation for the Ph.D. degree. A master’s option is also available to Ph.D. candidates from other departments.

Admission — Prospective students must have completed the Stanford requirements for a B.A. in Economics or approximately equivalent training. Since students are required to take some of the same courses as Ph.D. candidates, similar preparation in mathematics and statistics generally is expected. Prospective applicants should submit their credentials together with a plan of study to the Director of Graduate Study for approval.

Requirements — A master’s program must satisfy these criteria:

1. Completing, at Stanford, at least 45 units of credit beyond those required for the bachelor’s degree, of which at least 40 units must be in the Department of Economics. Students must complete ECON 202 and at least three other 200-level courses. They must receive a grade of ‘B’ or better in ECON 202. Undergraduate courses must be numbered 105 or higher. No seminar courses numbered 300 or above can be counted.

2. Demonstrating competence in empirical methodology by receiving a grade of ‘B’ or better in both ECON 270 and 271, or by receiving a grade of ‘B’ or above in each of ECON 102A, B, and C.

3. Submitting two term papers (or a thesis of sufficient quality). At least one of these papers must be deemed to represent graduate-level work. Normally, this means that it is written in connection with a 200-level course. A maximum of 10 units of credit can be earned for a thesis toward the 45-unit degree requirement.

4. A grade point average (GPA) of 3.0 must be maintained for all master’s level work. All courses must be taken for a letter grade.

DOCTOR OF PHILOSOPHY

University requirements for the Ph.D. are described in the “Graduate Degrees” section of this bulletin.

Admitted students must be adequately prepared in calculus, linear algebra, and statistics (see above). When deemed appropriate, a student may be required to complete the necessary background preparation at Stanford. All students take a common core curriculum at the outset and later branch out into the desired fields of specialization. Well-prepared students should anticipate spending, with some overlap, approximately two years in course work and another two years in seminars, independent study, and dissertation research. The goal is to complete the program in four years, although some types of research programs may require at least five years to complete. The department has a strong commitment to guiding students through the program expeditiously.

Questions and petitions concerning the program and the admissions process should be addressed to the Director of Graduate Study, who has responsibility for administering the graduate program.

Specific requirements are best discussed in two stages, the first consisting of requirements for admission to candidacy and the second involving further requirements for earning the degree.

Admission to Candidacy for Ph.D. — A student may apply for admission to candidacy when the following minimal requirements are met:

1. Successful results on comprehensive examinations in core economics (the examinations based on material from ECON 202, 203, 204; and 210, 211, 212), and econometrics (the examination based on material from ECON 270, 271, 272).

2. Completing the requirements in two additional fields of specialization from the list below or, if approved in advance by the Director of Graduate Study, in one such field together with a substantial amount of work toward a second field taught in a related department. Advanced fields include econometrics, economic development, economic history, industrial organization, international economics, labor economics, microeconomic theory, monetary theory and advanced macroeconomics, and public finance.

 Each field listed above can be satisfied by completing two courses, although students in some fields may be advised to add a third course, which can then be counted toward the distribution requirement discussed later. All courses (or comprehensive exams, when offered) must be passed with a grade of ‘B’ or better.

3. Completing a candidacy paper, normally written in conjunction with one of the special fields selected above.

 It is expected that the student will meet, and indeed exceed, the above standards by the beginning of the third year of residency. When this is not possible for any reason, the Director of Graduate Study should be consulted as early as possible during the second year. Once it is deemed that the above standards have been met, the student should complete the Application for Candidacy for Degree of Doctor of Philosophy. After approval, candidacy remains valid for five years (although it can be terminated earlier by the department if progress is deficient); it can be renewed or extended beyond this period only under unusual circumstances.
Further Requirements for the Ph.D. Degree —

1. Distribution Requirement: Students must complete four other graduate-level courses meeting the following requirements:
 a) at least one course from the area of economic history, unless history
 is one of the two fields of specialization.
 b) courses in at least two fields other than the two fields of speciali-
 zation. Distribution courses cannot be crosslisted in those fields.
 c) with advance approval of the Director of Graduate Study, some of
 these distribution courses may be drawn from related fields taught in
 other departments. However, including courses taken to meet either
 the specialization or distribution requirements, no more than two
 courses in total may be taken outside the Economics department.

2. Teaching Experience: each student must serve as a teaching assistant for at least one quarter. It is strongly recommended that this require-
 ment be satisfied before the final year of residence.

3. Seminar Participation: each student is expected to participate in at
 least two all-year research seminars by the end of the fourth year of
 residence. Normally, participation in a seminar requires one or more
 oral presentations and the submission of a research paper (which, how-
 ever, need not be completely separate from dissertation research).

4. Ph.D. Dissertation: the process involves selecting a topic, choosing
 an appropriate adviser, submitting a prospectus (signed by the adviser)
 outlining the proposed research, selecting a three-member reading
 committee (usually all from the Department of Economics, although
 exceptions can be made under certain circumstances), passing the
 University oral examination at which these three faculty (and two other
 members of the Academic Council) ask questions about the completed
 research, and submitting a final draft of the work signed by all members
 of the reading committee. The student is advised to initiate this process
 as early as possible.

PH.D MINOR

To be recommended for the Ph.D. degree with Economics as a minor
subject, a student must qualify in three fields of economics, at least one of
which must be in the core economics sequence. The standard of achieve-
ment in these fields is the same for minors as for major candidates, including
the department’s comprehensive examinations where appropriate.

JOINT DEGREE PROGRAMS WITH THE
SCHOOL OF LAW

The Department of Economics and the School of Law offer a joint
program leading to the Ph.D. in Economics and the J.D. degree in Law.
See the Stanford University bulletin Law School for descriptions of its
participation in the joint program.

To qualify, the student’s program objectives must clearly justify such
a joint program. Decisions are made by the Director of Graduate Study.
A student’s program in economics must satisfy the same standards as a
Ph.D. degree in Economics taken with a minor in Law. It is expected that
dissertation research will cross department lines and that members of the
dissertation committee will be drawn from both faculties.

Students normally spend the first year full-time either in Economics or
in Law and the second year full-time in the other department. After the second
year, courses in economics and law may be pursued simultaneously.

Other joint programs may be arranged; for example, the Ph.D. in Eco-
nomics combined with one or two years of study in the School of Law,
leading either to the nonprofessional Master of Legal Studies (M.L.S.)
degree or the nonprofessional Master of Jurisprudence (J.M.). See the
bulletin Law School for the requirements. Conversely, a student taking the
J.D. in the School of Law may apply for an M.A. in Economics.

FELLOWSHIPS AND ASSISTANTSHIPS

The department awards a number of fellowships for graduate study.
Many first-year and a few select second or third-year students are awarded
full fellowships, including a stipend and tuition. All students whose re-
ords justify continuation in the program may be assured support for the
second through fourth years in the form of employment as a teaching or
research assistant. These half-time appointments provide a stipend and
tuition allowance. Entering students are not normally eligible for research
or teaching assistantships.

Applications should be submitted before January 1 to the department
admissions committee.

COURSES

WIM indicates that the course satisfies the Writing in the Major
requirements.

ECON 1. Elementary Economics — The economic way of thinking
and the functioning of a modern market economy. The behavior of consumers
and firms. Markets for goods and inputs. Analysis of macroeconomic
variables: output, employment, inflation, interest rate. Determination of
long-run growth and short-term fluctuations. The role of government:
regulation, monetary, and fiscal policy. Limited enrollment. GER:DB-
SocSci
5 units, Aut (Clerici-Arias), Win (Rangel), Spr (Stinem), Sum (Staff)

ECON 11N. Understanding the Welfare System — Stanford Introduc-
tory Seminar. Preference to freshmen. Welfare reform legislation and
the devolution revolution. The transfer of responsibility for anti-poverty
programs to the states. How recent reforms change the welfare system
and who is likely to be affected. Food stamps, AFDC, TANF, SSI, and
Medicaid. Income transfer programs such as earned income tax credit
and income taxes, and labor market regulations such as minimum wages
and overtime rules. Economic principles to understand the effectiveness
of these programs and their consequences on the behavior of families.
Pre- or corequisite: ECON 1. Recommended: basic understanding of
labor markets, taxes, and transfers.
2 units, Aut (McCurdy)

ECON 50. Economic Analysis I — Individual consumer and firm behavior
under perfect competition. The role of markets and prices in a decen-
tralized economy. Monopoly in partial equilibrium. Economic tools are
developed from multi-variable calculus, using partial differentiation and
Techniques for constrained and unconstrained optimization. Prerequisites:
1, and 50M or MATH 51, or passed diagnostic test (administered at the
beginning of ECON 50) on multivariable calculus. GER:DB-Math
5 units, Aut (Tendall), Win (Abramitzky)

ECON 50M. Mathematical Preparation for Economics—Prepara-
tion for 50 and 102A for students who either did not pass the diagnostic
test administered at the beginning of 50 or who have not taken MATH
51. Elements of multi-variable calculus, constrained optimization, and
matrix algebra. Prerequisites: 1 and MATH 41.
5 units, Aut (Jacob), Win (Ahoobim), Spr (Asmundson)

ECON 51. Economic Analysis II — Introduction to neoclassical analy-
sis of general equilibrium, welfare economics, imperfect competition,
externalities and public goods, intertemporal choice and asset markets,
risk and uncertainty, game theory, adverse selection, and moral hazard.
Multivariable calculus is used. Prerequisite: 50.
5 units, Win (Tendall), Spr (Malkert), Sum (Staff)

ECON 52. Economic Analysis III — Growth and fluctuations in the
economic system as a whole. National income accounts and aggregate
relationships among stocks and flows in markets for goods, labor, and
financial assets. Economic growth, inflation, and unemployment. The role
of macroeconomic policies in the short and long run. Prerequisite: 50.
5 units, Aut (Tertilt), Spr (Klenow), Sum (Staff)

ECON 90. Introduction to Financial Accounting — (Graduate students
register for 190.) How to read, understand, and use corporate financial
statements. Oriented towards the use of financial accounting information
(rather than the preparer), and emphasizes the reconstruction of economic
events from published accounting reports.
5 units, Aut (Stanton), Win (Guttman)
ECON 91. Introduction to Cost Accounting—(Graduate students register for 191.) The use of internal financial data for managerial decision making.
5 units, Spr (Stanton)

3 units, Win (Marotta)

ECON 101. Economic Policy Analysis—Economic policy analysis, writing, and oral presentation. Topics vary with instructor. Limited enrollment. Prerequisites: 51 and 52, 102B, and two field courses. Some sections require additional prerequisites. WIM
5 units, Aut (Cojoc, Greif), Win (Gould, Clerici-Arias, Rothwell), Spr (Russell, Cojoc, Hansen)

ECON 102A. Introduction to Statistical Methods (Postcalculus) for Social Scientists—Description and examples of the use of statistical techniques relevant to economics. Basic rules of probability, conditional probability, discrete and continuous probability distributions. Point estimation, tests of hypotheses, confidence intervals, and linear regression model. Prerequisite: MATH 41 or equivalent. GER:DB-Math
5 units, Aut, Win (Stimel)

5 units, Win (Ryu), Spr (Royalty)

ECON 102C. Advanced Topics in Econometrics—Identification and estimation of the effect of human capital variables on earnings (e.g., the return to education, tenure), and identification and estimation of labor supply models, focusing on microeconomic data. Topics: instrumental variable estimation, limited dependent variable models (probit, logit, and tobit models), and panel data techniques (fixed effect and random effect models, dynamic panel data models).
5 units (Pistaferri) not given 2005-06

ECON 103. Applied Econometrics—The construction and use of econometric models for analyzing economic phenomena. Students complete individual projects and core material. Topics vary with the instructor. Limited enrollment. Prerequisites: 52, 102B.
5 units, Spr (Attanasio)

ECON 106. World Food Economy—The interrelationships among food, populations, resources, and economic development. The role of agricultural and rural development in achieving economic and social progress in low-income nations. Emphasis is on the public sector decision making as it relates to food policy.
5 units, Win (Falcon, Naylor)

ECON 111. Money and Banking—Money, interest rates, banks and other financial institutions at both micro and macro levels. Micro: alternative financial instruments, the determination of interest rates, the yield curve, and the role of banks and other capital market institutions in the intermediation process. Supply of money, regulation, and supervision. Macro: the choice of monetary policy by the central bank, the impact of monetary policy making institutions on this choice and the various channels through which monetary policy affects inflation and real variables in the economy. Emphasis is on the institutional structure of Federal Reserve System and the conduct of monetary policy in the U.S. Prerequisites: 50, 52.
5 units, Aut (Gould), S (Staff)

ECON 113. Technology and Economic Change—The economic causes and consequences of technological change. The historical experience of advanced industrial countries and the more recent experience of less developed economies. Topics: the origins of modern industry in the U.S. and Europe, technology and the growth of large-scale organizations, late-comers to industrialization (Japan and newly industrializing countries), economic growth and slowdown in mature industrial countries, and present concerns and future prospects (the influence of technology on employment, civilian spillover from military R&D, and coping with rapid technological change).
5 units, Spr (Grandstrand)

ECON 114. Economy and Economics of Ancient Greece—Introduction to the history of Greek civilization from the Mycenaean period to the 4th century B.C. The formalist-substantivist controversy: what behavioral assumptions should be made in order to understand the working of the Athenian economy. The economics and ethical thoughts of Plato and Aristotle in contrast to utilitarianism, which became a foundation of modern economics. Prerequisite: 1. GER:EC-GlobalCom
5 units, Aut (Amemiya)

ECON 115. European Economic History—Economic changes and growth in W. Europe from antiquity to the present. The transformation of Europe from an economically and culturally backward part of the world to the center of the world economy pre-WW I. Topics: the role of techniques and sciences, variations of the extent of market activities, institutional changes, international politics, demography. GER:DB-SocSci
5 units (Greif) not given 2005-06

ECON 116. American Economic History—From colonial times to the present. The application of economic analysis to historical issues, and the role of historical context in economics. Topics: American economic growth in international perspective; the economics of slavery and regional divergence; the origins and consequence of the American system of technology and business organization; recent U.S. economic performance in historical perspective. Prerequisite: 1. GER:DB-SocSci, EC-AmerCul
5 units, Spr (Wright)

ECON 117. Economic History and Modernization of the Islamic Middle East—From the rise of Islam to the present. Transformation of region from economically advanced to underdeveloped. Role of religion in economic successes and failures. Current obstacles to development. Topics: Islamic economic institutions; innovation and change; political economy of modernization; interactions with other regions; and economic consequences of Islamism.
5 units (Kuran) not given 2005-06

ECON 118. Development Economics—The economic problems and policy concerns of developing countries. Theories of growth and development: inequality and poverty; credit and labor markets; population growth and fertility choice; migration; sustainable development and globalization. Emphasis on economic models rather than case studies. Prerequisites: 50, 52, 102B. GER:EC-GlobalCom
5 units, Aut (Staff)

ECON 120. Socialist Economies in Transition—Privatization, restructured, and institutional change in E. Europe and the former Soviet Union. Analysis of property rights, corporate governance, incentives, and resource allocation in socialist and transitional economies. Emphasis is on liberalization and privatization policies (including mass and voucher programs) as the primary instruments to induce changes in behavior. Prerequisite: 50. Recommended: 51.
5 units, Spr (Gathmann)

ECON 121. Development Economics, with Special Reference to East Asia—The macroeconomic aspects of economic development: structural transformation, resource utilization, mobilization, and allocation; the sources of economic growth; intersectoral transfers; the role of the external sector; money and finance in development; stabilization in closed and open economies; strategies for economic development; the role of tangible capital; and endogenous technical progress. Illustrations
from the economic development experience of E. Asia, including Japan, China, Hong Kong, S. Korea, Singapore, Taiwan, Indonesia, Malaysia, Philippines, Thailand. Prerequisite: 52. GER:EC-GlobalCom

5 units (Staff) not given 2005-06

ECON 124. Contemporary Japanese Economy — The Japanese economy in comparative and historical perspective. Micro and institutional aspects, i.e., firms, the employment system, corporate governance and financial institutions, and the macro economy. Elementary applications of macro and micro economics. Prerequisite: 50. GER:EC-GlobalCom

5 units, Win (Aoki)

ECON 126. Economics of Health and Medical Care — (Graduate students register for 256; same as BIOMEDIN 150/256.) Graduate students with research interests should take ECON 248. Institutional, theoretical, and empirical analysis of the problems of health and medical care. Topics: institutions in the health sector; measurement and valuation of health; nonmedical determinants of health; medical technology and technology assessment; demand for medical care and medical insurance; physicians, hospitals, and managed care; international comparisons. Prerequisite: ECON 50 and ECON 102A or equivalent statistics, or consent of instructor. Recommended: ECON 51.

5 units, Aut (Bhattacharya)

ECON 135. Finance I for Non-MBAs — (Same as FINANCE 221, MS&E 245G.) For graduate students and advanced undergraduates. The foundations of finance with applications in corporate finance and investment management. Major financial decisions made by corporate managers and investors with focus on process valuation. Topics include criteria for investment decisions, valuation of financial assets and liabilities, relationships between risk and return, market efficiency, and the valuation of derivative securities. Major corporate financial instruments including debt, equity, and convertible securities. Equivalent to core MBA finance course, FINANCE 220. Prerequisites: 51, or ENGR 60, or equivalent; ability to use spreadsheets, and basic probability and statistics concepts including random variables, expected value, variance, covariance, and simple estimation and regression.

4 units, Win (Admati)

ECON 136. Auctions and Market Design — Competitive bidding for asset purchases and procurement of industrial needs; bidder entry decisions; design of mechanisms for complicated resource allocation problems. Prerequisites: 51, 160.

5 units, Win (Milgrom)

ECON 137. Information and Incentives — Incentives in situations where one part has more information than another. A part may have better information about things that it controls (moral hazard), or about things that are outside of its control (adverse selection). The general structure of incentive problems and the design of contracts and institutions to deal with such problems. Applications: executive and employee compensation, sharecropping, financial contracts and credit rationing, insurance, markets with unobservable quality, monopolistic price discrimination, regulation of natural monopolies, income taxation and redistribution, the provision of public goods, and auctions.

5 units (Staff) not given 2005-06

5 units, Aut (Kurz)

ECON 139D. Directed Reading

1-10 units, Aut, Win, Spr, Sum (Staff)

ECON 140. Introduction to Financial Economics — Modern portfolio theory and corporate finance. Topics: properties of various financial instruments including financial futures, mutual funds, the capital asset pricing model, and models for pricing options and other contingent claims. Prerequisites: 51, 102A.

5 units, Spr (Kurz), Sum (Staff)

ECON 141. Public Finance and Fiscal Policy — What role should and does government play in the economy? What are the effects of government expenditure, borrowing, and taxation? Policy topics: budget surpluses/deficits; tax reform; social security, public goods, and externalities; fiscal federalism; public investment; and cost-benefit analysis. Prerequisites: 51, 52.

5 units, Win (Cojoc)

ECON 142. The Political Economy of the Federal Budget — Tools of economic analysis; how the federal government makes budgetary decisions. Factors that have contributed to the growth in federal spending, taxation, and the national debt; congressional and executive branch budget processes and their effects on government policy making; spending programs including Social Security, Medicare, welfare, and infrastructure programs. Prerequisites: 50, 52; may be taken concurrently.

5 units, Spr (Snowberg)

5 units (Hammond) not given 2005-06

5 units, Win (Pencavel)

ECON 145. Urban Economics — Costs and benefits of cities, city location, land rent and land use, suburbanization, zoning, poverty, housing and segregation, homelessness, local government finance, transportation, schools, and crime. Prerequisites: 50, 102A.

5 units (Staff) not given 2005-06

ECON 147. Economics of Human Resources — Investments in human capital including education, on-the-job training, government training, and health. The effects of human capital accumulation on wages and wage growth and on wage differentials by gender and race. Sample selections and experimental data. Poverty and inequality. Optional research project for public policy organization on labor market/human resources issues. Prerequisite: 51.

5 units, Win (Staff)

ECON 148. Economic Policy Analysis — (Same as PUBLPOL 104.) The relationship between microeconomic analysis and public policy making. How economic policy analysis is done and why political leaders regard it as useful but not definitive in making policy decisions. Economic rationales for policy interventions, methods of policy evaluation and the role of benefit-cost analysis, economic models of politics and their application to policy making, and the relationship of income distribution to government policies.

5 units (Segal) not given 2005-06

5 units (Segal) not given 2005-06

ECON 150. Economic Policy Analysis — The relationship between microeconomic analysis and public policy making. How economic policy analysis is done and why political leaders regard it as useful but not definitive in making policy decisions. Economic rationales for policy interventions, methods of policy evaluation and the role of benefit-cost analysis, economic models of politics and their application to policy making, and the relationship of income distribution to government policies.
to policy choice. Theoretical foundations of policy making and analysis, and applications to program adoption and implementation. Prerequisites: ECON 50 and 102A.
5 units, Win (Noll)

ECON 152. Mass Media Economics and Policy — (Enroll in PUBLPOL 172.)
4-5 units (Owen) not given 2005-06

ECON 153. Economics of the Internet — Applications of microeconomic theory to Internet businesses: auctions, online transactions, entry barriers, valuation, pricing of facilities, policy for broadband communications, network economics, standards, economics of information. Prerequisites: 51 and one of 102B, 103, 104, 113, 135, 137, 140, 149, 157, or 160.
5 units, Aut (Hanson)

ECON 154. Economics of Legal Rules and Institutions — The design and consequences of legal rules. Common ideas that run through law including individual rationality, economic efficiency, conventional and Coasian analyses of externalities, enforcement, costs, and market consequences of legal restrictions on contract terms. Private versus public enforcement of law; the tradeoff between certainty and severity of punishment; the choice between ex post and ex ante sanctions; and the choice between property and liability rules. Applications to property, intellectual property, contract, criminal, tort, family, and environmental law. Prerequisite: 51.
5 units, Win (Owen)

5 units, Spr (Gouldner)

ECON 157. Imperfect Competition — The interaction between firms and consumers in markets that fall outside the benchmark competitive model. How firms acquire and exploit market power. Game theory and information economics to analyze how firms interact strategically. Topics include monopoly, price discrimination, oligopoly, collusion and cartel behavior, anti-competitive practices, the role of information in markets, anti-trust policy, and e-commerce. Sources include theoretical models, real-world examples, and empirical papers. Prerequisite: 51.
5 units, Aut (Hussein)

ECON 158. Antitrust and Regulation — The history, economics, and legal background of the institutions under which U.S. industry is subject to government control. Topics: antitrust law and economics; the economics and practice of public utility regulation in the communications, transportation, and energy sectors; and the effects of licensing. Emphasis is on the application of economic concepts in evaluating the performance and policies of government agencies. Prerequisite: 51.
5 units, Spr (Rosston, Noll)

ECON 160. Game Theory and Economic Applications — Mathematical introduction to game theory and its applications to economics. Topics: strategic and extensive form games, Nash equilibrium, subgame-perfect equilibrium, Bayesian equilibrium, and perfect Bayesian equilibrium. The theory is applied to repeated games, auctions, and bargaining. Examples from economics and political science. Prerequisites: 51 and course in calculus, or consent of instructor.
5 units, Spr (Hammond)

ECON 162. Monetary Economics — Dynamic analysis of the role of money and monetary policy in the macro economy, using calculus. Topics: the exchange process and the role of money; inside and outside money; inflation and the inflation tax; international monetary systems; the indeterminacy of floating exchange rates; policies to fix the exchange rate and inflationary incentives; currency crises and speculative attacks; money and interest-bearing government debt; the government’s budget constraint and the coordination of monetary and fiscal policies; hyperinflations and stabilizations; the effect of the national debt on consumption, savings, investment and output; time consistency of government policies. Prerequisite: 52.
5 units (Staff) not given 2005-06

ECON 165. International Economics — Comparative advantage in production and trade among nations; trade policy; increasing returns, imperfect competition and trade; the international monetary mechanism; domestic monetary, fiscal, and exchange rate policies and their relationship to foreign trade; global financial crises and trade. Prerequisites: 1, 51, 52.
5 units, Spr (Hale), Sum (Staff)

ECON 167. European Monetary and Economic Integration — The economics of the European Community and the internal market. Analysis of current competition, transportation, and factor market policies, including the problems of agriculture and unemployment. Fiscal harmonization and mercantilist rivalry. European Monetary Union (EMU): genesis, implementation, and consequences of a common currency and central bank. Foreign exchange and foreign trade. Prerequisites: 51, 52, or equivalents.
5 units, Win (Schoefer)

ECON 168. Path Dependence and Economic Analysis — Historically contingent change in the economy; theoretical and applied research on path-dependent phenomena and their implications for economic policy. Topics: self organization in economics; relationships between micro level irreversibilities, branching processes, positive feedback dynamics and the generation of emergent properties at the macroeconomic level; non convexities, lock-in to suboptimal equilibria, and the economics of QWERTY. Historical antecedents and modern formalizations of historical economics, applications of paradigmatic models of non-ergodic stochastic processes. Case studies. Research papers required. Prerequisites: two upper-level economics courses in applied fields. Limited enrollment.
5 units (Staff) not given 2005-06

ECON 169. International Financial Markets and Monetary Institutions — (Graduate students register for 269.) How nations are linked financially through money, capital, and exchange markets, emphasizing policy issues including the role of the International Monetary Fund, monetary and exchange rate policy, prevention and resolution of financial crises in emerging markets, current account imbalances, and capital mobility. Development and use of macroeconomic models of international financial linkages and microeconomic models of hedging, optimal selection of currencies for invoice and trade credit, and parity relationships in futures, swaps, and options markets. Prerequisite: 165.
5 units, Win (Taylor)

ECON 170. Intermediate Econometrics I — (Graduate students register for 270.) Probability, random variables, and distributions; large sample theory; theory of estimation and hypothesis testing. Limited enrollment. Prerequisites: math and probability at the level of Chapter 2, Paul G. Hoel, Introduction to Mathematical Statistics, 5th ed.
2-5 units, Aut (Hansen, Mahajan)

ECON 171. Intermediate Econometrics II — (Graduate students register for 271.) Linear regression model, relaxation of classical-regression assumptions, simultaneous equation models, linear time series analysis. Limited enrollment. Prerequisite: 270.
5 units, Aut (Wolak)

2-5 units, Win (MacCurdy)
ECON 178. Neuroeconomics—(Graduate students register for 278; same as PSYCH 278.) Techniques from neuroscience and psychology to study how the brain makes economic decisions; implications for the social sciences, especially economics and political science. Topics include: brain processes related to reward, control, and attention; role of emotion in decision making; morality; emotion in social encounters; bargaining and strategic thinking; decision making and probability assessment in risky situations; intertemporal decision making; and addiction. Prerequisite: graduate background in neuroscience or economics, or consent of instructor.

 5 units (Rangel) not given 2005-06

ECON 179. Experimental Economics—Methods and major subject areas that have been addressed by laboratory experiments. Focus is on a series of experiments that build on one another. Topics include decision making, two player games, auctions, and market institutions. How experiments are used to learn about preferences and behavior, trust, fairness, and learning. Final presentation of group projects. Prerequisites: 50, 51, 102A.

 5 units (Niederle) not given 2005-06

ECON 190. Introduction to Financial Accounting—(Same as 90; see 90.)

 5 units, Aut (Stanton), Win (Guttman)

ECON 191. Introduction to Cost Accounting—(Same as 91; see 91.)

 5 units, Spr (Stanton)

ECON 198. Junior Honors Seminar

 5 units, Spr (Rothwell)

ECON 199D. Honors Thesis Research—In-depth study of an appropriate question and completion of a thesis of very high quality. Normally written under the direction of a member of the Department of Economics (or some closely related department). See description of honors program. Register for at least 1 unit for at least one quarter. Meets first week of Autumn Quarter (see Stanford Daily for details).

 1-10 units, Aut, Win, Spr, Sum (Rothwell)

PRIMARILY FOR GRADUATE STUDENTS

ECON 239D. Directed Reading

 1-10 units, Aut, Win, Spr, Sum (Staff)

ECON 299. Practical Training—Students obtain employment in a relevant research or industrial activity to enhance their professional experience consistent with their degree programs. At the start of the quarter, students must submit a one page statement showing the relevance of the employment to the degree program along with an offer letter. At the end of the quarter, a three page final report must be supplied documenting work done and relevance to degree program.

 1-10 units, Aut, Win, Spr, Sum (Staff)

ECON 400. Ph.D. Dissertation

 1-15 units, Spr (Staff)

A. CORE ECONOMICS

ECON 202. Core Economics: Modules 1 and 2—(Non-Economics graduate students register for 202N.) Open to advanced undergraduates with consent of instructors. Theory of the consumer and the implications of constrained maximization; uses of indirect utility and expenditure functions; theory of the producer, profit maximization, and cost minimization; behavior under uncertainty; partial equilibrium analysis and introduction to models of general equilibrium. Limited enrollment. Prerequisite: thorough understanding of the elements of multivariate calculus and linear algebra.

 2-5 units, Aut (Levin, Segal)

ECON 202N. 202 For Non-Economics Ph.D. Students—Core Economics modules 1 and 2 for non-Economics Ph.D. students.

 2-5 units, Aut (Mumford)

 2-5 units, Win (Bernheim)

ECON 203N. 203 For Non-Economics Ph.D. Students

 2-5 units (Staff) not given 2005-06

ECON 204. Core Economics: Modules 9 and 10—The theory of contracts, emphasizing contractual incompleteness and the problem of moral hazard. Incentive regulation. Competition with imperfect information, including signaling and adverse selection. The theory of resource allocation over time, competitive equilibrium, and intertemporal efficiency. Limited enrollment. Prerequisite: 203.

 2-5 units, Spr (Milgrom)

 2-5 units, Aut (Terliti)

ECON 211. Core Economics: Modules 11 and 12—Capital asset pricing models, equilibrium with securities, pricing of securities, and arbitrage. Overlapping generations models with incomplete market structure and sunspots. Foundations of Bayesian dynamic learning. Investment theory and empirics, including adjustment costs and the q theory; consumption theory and empirics, focusing on the life-cycle model; and the labor market. Limited enrollment. Prerequisite: 210.

 2-5 units, Win (Hall, Klenow)

ECON 212. Core Economics: Modules 4 and 8—Monetary theory: economic fluctuations, the role of money (overlapping generations, cash in advance, money in the utility function), dynamic impact of changes in money on the economy, natural rate of unemployment and job creation/destruction, exchange rate determination, international transmission of money, dynamic stochastic general equilibrium models. Macroeconomic policy: rationale for central bank independence, time inconsistency, the impact of public debt, rules versus discretion, interest rate versus money rules, international monetary policy coordination, rational expectations, econometric policy evaluation. Limited enrollment. Prerequisite: 203, 211.

 2-5 units, Spr (Taylor)

ECON 301. Microeconomic Workshop

 1-10 units, Aut, Win, Spr (Staff)

ECON 305. Economic Applications Workshop

 1-10 units, Aut, Win, Spr (Staff)

ECON 310. Macroeconomic Workshop

 1-10 units, Aut, Win, Spr (Staff)

B. ECONOMIC DEVELOPMENT

To receive credit for this field, students must complete 214 and 217, and submit a paper from one of these courses. Students wishing to do research in the field are advised to take courses in international economics, such as 266, and in comparative institutional analysis.

ECON 214. Development Economics: Microeconomic Issues—Microeconomic analysis of markets and institutions in developing countries. Topics: the role of the household; models of savings, credit, and risk; adjustment to aggregate shocks; occupational choice, credit constraints, and credit market imperfections; health and nutrition; new technology; and education. Emphasis is on empirical tests of and evidence for theoretical models.

 2-5 units, Win (Tarozzi)
ECON 216. Development Economics and Growth: Macroeconomics—The historical experience of economic development; patterns of economic growth; sources of economic growth; models of economic development (two-gap models, dual economy models, open economy models, new growth models), savings and capital accumulation; the role of money and finance; inflation; taxation; stabilization in closed and open economies with incomplete and/or imperfect markets; human and other forms of intangible capital; infrastructural capital and externalities; income distribution; numerical general equilibrium models.

2-5 units, Aut (Attanasiu)

2-5 units (McKinnon) not given 2005-06

ECON 267. Special Topics in International Economics—The level and growth effects of trade and trade liberalization in neoclassical and endogenous growth models. The empirical evidence (country specific and cross country), on the effects of trade liberalization on growth, poverty, and inequality within and between countries. Implications for national and international policies. Multilateral versus preferential trade liberalization including the Doha round of multilateral trade negotiations.

2-5 units, Win (Hale)

ECON 315. Development Workshop
1-10 units, Aut, Win, Spr (Staff)

C. ECONOMIC HISTORY/INSTITUTIONS

The requirement for the field is one research paper on a subject approved by one of the faculty teaching any of the following courses.

ECON 224. Science, Technology, and Economic Growth—Upper-division undergraduates may enroll with consent of instructor. The roles played by the growth of scientific knowledge and technical progress in the development of industrial societies. Emphasis is on the interactions between science and technology, and the organizational factors which have influenced their effectiveness in contributing to productivity growth.

2-5 units, Win (David)

ECON 226. U.S. Economic History—The American economy from colonial times to the present. The role of economic history as a distinctive intellectual approach to the study of economics. Topics: American growth record and its determinants, the origins and character of U.S. technology, slavery, the Great Depression, recent U.S. performance in historical perspective.

2-5 units, Spr (Wright)

ECON 228. Institutions and Organizations in Historical Perspective—Emphasis is on the formative period from the 11th to 18th centuries. Formation, function, and evolution of institutions; alternative conceptual frameworks such as neoclassical, transaction cost economics, institutionalism, and Marxism and neo-Marxism; game theory, mechanism design, and contract theory. Institutions related to trade organization, the organization of production, feudalism, mercantilism, and the state.

2-5 units, Aut (Greif)

ECON 325A,B,C. Economic History Workshop
1-10 units, Aut, Win, Spr (Staff)

D. MONETARY THEORY AND ADVANCED MACROECONOMICS

Requirements for this field are completion of 233 and 234.

2-5 units, 233: Win (Klenow), 234: Spr (Hall), 235: (Klenow, Kocherlakota) not given 2005-06

E. PUBLIC FINANCE

To receive credit for the field, students must complete 241 and 242 by passing the final examinations, and submit an acceptable research paper on a topic approved by the instructor for either course. Students may take Public Finance as a field and still count 243 and/or 244 toward satisfying their distribution requirements.

2-5 units, Win (Bernheim)

2-5 units, Spr (Shoven)

ECON 243. Economics of Environment—Open to upper-division undergraduates with consent of instructor. Sources of environmental problems in market economies and policy options for addressing these problems. Topics: choice of policy instruments (taxes, standards, tradable permits), environmental risk assessment, valuation of non-marketed commodities (environmental amenities, biodiversity), environmental policy making under uncertainty, the optimal mix of corrective and distortionary tax instruments, and the dynamics of economic growth in the presence of non-reproducible natural resources.

2-5 units, Win (Goulding)

ECON 244. Psychology and Economics—Experimental and field evidence related to the psychological mechanisms behind static choice, intertemporal choice, choice under risk and uncertainty, choice in social situations, and hedonics. Models of economic choice based on these findings, and how they improve the explanatory and predictive value of standard theories. Prerequisites: 204, 271, or consent of instructor.

2-5 units, Spr (Rangel)

ECON 341. Workshop on the Economics of the Public Sector—Issues in measuring and evaluating the economic performance of government tax, expenditure, debt, and other policies; their effects on private economic activity, saving, investment, labor supply; alternative policies and methods of evaluation. Workshop combines student research, faculty presentations, and guest speakers. Prerequisite: 241 or consent of instructor.

1-10 units, Aut, Win, Spr (Staff)

ECON 343. Workshop in Environmental and Natural Resources Economics—Economic analyses of environmental and natural resource problems and policies. Presentations by faculty and graduate students.

1-10 units, Aut, Win, Spr (Staff)

F. ECONOMICS OF LABOR

To receive credit for this field, students must complete two from 246, 247, and 248.

2-5 units, Aut (Pencavel)

ECON 247. Labor Economics II—The economics and econometrics of program evaluation. The impact of public policies on labor demand, labor supply, human capital and wage determination. Social, natural, and quasi-experiments.

2-5 units, Win (Pistaferri)
ECON 249. Personnel Economics—(Enroll in MGTECON 652.)
4 units (Staff)

ECON 345. Applications Workshop
1-10 units, Aut, Win, Spr (Staff)

G. ECONOMICS OF INDUSTRY
To receive credit for the field, students must complete 257 and 258 and submit one research paper, the subject of which has been approved in advance by one of the faculty teaching 257, 258, or 260.

ECON 250A. Natural Resource and Energy Economics—First part of two course sequence. Issues in provision and management of non-renewable and renewable natural resources, and energy products and services. Theory and empirical methods related to: market structure, pricing, and performance of important energy and resource industries; sources of market failure in these industries; and alternative regulatory approaches. Prerequisites: 202, 203, 204, 270, 271, and 272, or equivalents with consent of instructor.
2-5 units, Aut (Gould, Wolak)

ECON 250B. Environmental Economics—Second of two course sequence. Sources of environmental problems in market economies; policy options for addressing these problems. Topics include: alternative environmental policy instruments such as taxes, standards, and tradable permits; valuation of non-marketed commodities such as environmental amenities and biodiversity; and environmental policy making under uncertainty. Applications include global climate change and green tax reform. Prerequisites: 202, 203, 204, 270, and 271, or equivalents with consent of instructor.
2-5 units, Win (Gould, Wolak)

ECON 256. Economics of Health and Medical Care—(Same as 156; see 156.)
5 units, Aut (Bhattacharya)

ECON 257, 258. The Economics of Industry, Regulation, and Firm Organizations I/II—Theoretical and empirical analyses of the determinants of market structure; firm behavior and market efficiency in oligopolies; price discrimination; price dispersion and consumer search; differentiated products; the role of information in markets, including insurance and adverse selection; auctions; collusion and cartel behavior; advertising; entry and market structure; market dynamics; strategic behavior.
2-5 units, 257: Aut (Levin, Einav), 258: Win (Noll, Wolak)

ECON 260. Special Topics in Industrial Organization and Regulation—Current research and policy interest. Topics may include: empirical tests of oligopoly theories; non-price competition; entry and market structure; the role of information in markets; auctions; e-commerce; dynamics of change in regulatory policy; theory of economics institutions; antitrust status of joint ventures; and use of capacity, innovation, and product variety as a barrier to entry. Significant unresolved research issues and promising ways to attack them. Prerequisite: 257. Recommended: 258.
2-5 units, Spr (Athey, Einav)

ECON 355. Industrial Organization Workshop—Current research in the field by visitors, presentations by students, and discussion of recent papers. Students write an original research paper, make a formal presentation, and lead a structured discussion.
1-10 units, Aut, Win, Spr (Staff)

H. INTERNATIONAL ECONOMICS
To receive credit for this field, students must complete 266 and either 265 or 269, and submit a paper from one of these courses. All three courses are recommended. For students doing research in the field, further supporting courses are found in the fields of economic development, industrial organization, and public finance.

ECON 265. International Finance and Open Economy Macroeconomics—Monetary foundations of international exchange; the rules of the game. The world dollar standard. Hedging foreign exchange risk. International capital flows and the current account. Monetary and fiscal policies in open economies. Currency crises in developing economies and institutional reform; the IMF.
2-5 units, Aut (McKinnon)

2-5 units, Spr (Srinivassan)

ECON 269. International Financial Markets and Monetary Institutions—(Same as 169; see 169.)
5 units, Win (Taylor)

ECON 365. International Trade Workshop
1-10 units, Aut, Win, Spr (Staff)

I. ECONOMETRICS
A student may satisfy the requirements for the econometrics field by completing the requirements of one of two subfields:
I-1: Theoretical Econometrics: To receive credit in the theoretical econometrics subfield, students must complete 273A and 273B.
2-5 units, Win (Hansen)

I-2: Applied Econometrics: To receive credit in the applied econometrics subfield, students must complete 273A and either 274 or 275. Students must also complete a course or set of courses that is empirically oriented. The last requirements must be approved by the Director of Graduate Study in consultation with the instructor of 274 or 275.
2-5 units, Win (MaCurdy)

ECON 270. Intermediate Econometrics I—(Same as 170; see 170.)
2-5 units, Aut (Hansen, Mahajan)

ECON 271. Intermediate Econometrics II—(Same as 171; see 171.)
5 units, Aut (Wolak)

ECON 272. Intermediate Econometrics III—(Same as 172; see 172.)
2-5 units, Win (MacCurdy)

ECON 273A. Advanced Econometrics I—Parametric asymptotic theory. Large-sample properties of estimators defined as the solution to an optimization problem, under a variety of assumptions for the true data generation process. General large sample results for maximum likelihood, nonlinear least squares, nonlinear instrumental variables estimators, including the generalized method of moments estimator under general conditions. Asymptotic hypothesis testing procedures derived for each estimation framework.
2-5 units, Win (Wolak)

ECON 273B. Advanced Econometrics II—Simulations methods. Semiparametric and nonparametric methods. Optimal rate of convergence and semiparametric efficiency bounds. Prerequisite: 273A.
2-5 units, Spr (Mahajan)

ECON 274. Limited Dependent Variables—Discrete choice models; Tobit models; Markov chain and duration models. Prerequisite: 273 or consent of instructor.
2-5 units, Spr (Ryu)

2-5 units, Win (Hansen)

ECON 276. Advanced Econometrics—Possible topics: robust estimation, stochastic control, prediction theory, Bayesian analysis, factor analysis, pooling of time series and cross section data. Prerequisite: 273A, B.
2-5 units (Staff) not given 2005-06

ECON 370. Econometrics Workshop
1-10 units, Aut, Win, Spr (Staff)
J. MICROECONOMIC THEORY

To receive credit for this field, students must complete two courses in one of the following two subfields:

J-1: General Theory: 280, 281, 284, 286, 287

J-2: Decisions, Contracts and Incentives: 282, 283, 286, 289

Note: taking one course from each track does not satisfy the microeconomic theory field requirement.

ECON 278. Neuroeconomics — (Same as 178, see 178.)
5 units (Rangel) not given 2005-06

ECON 279. Experimental Economics — An introduction to experimental economics, its methods, and major subject areas that have been addressed by laboratory experiments. Focus is on a series of experiments that build on one another, and allow researchers with different theoretical dispositions to narrow the range of potential disagreement. Prerequisites: 202, 203, 204, or consent of instructor.
2-5 units (Niederle) not given 2005-06

ECON 280. Welfare Economics — Social choice theory with and without interpersonal comparisons; Pareto efficiency with public goods, externalities, and non-convexities; potential Pareto improvements. Private information, incentive constraints, and mechanism design. Welfare measurement, cost benefit analysis, and analysis of economic policy reform.
2-5 units (Staff) not given 2005-06

2-5 units (Hammond) not given 2005-06

ECON 282. Contracts, Information, and Incentives — General issues and recent developments in mechanism design and the theory of contracts. Topics include: hidden characteristics and hidden action models with one and many agents, role of commitment and renegotiation in long-term relationships, incomplete contracts and applications to the theory of the firm.
2-5 units, Win (Segal)

ECON 283. Advanced Topics in Contracts and Organization — Recent developments and promising research. Topics may change from year to year, but may include: reputational concerns and implicit contracts in long-term relationships, property rights and the hold-up problem, multilateral contracting, communication requirements of allocation problems, communication without full commitment (cheap talk). Prerequisite: 282 or consent of instructor.
2-5 units (Johannes) not given 2005-06

ECON 284. Topics in Dynamic Financial Economics — Dynamic general equilibrium asset pricing and economic volatility. Characteristics of real and financial volatility, the equity risk premium, the term structure of interest rates, and the forward premium. The role of dynamic learning and diversity of beliefs in the propagation of economic volatility, and the relationship of such diversity to money non-neutrality, the real effect of monetary shocks, and real business cycles theories; implications for problems of time consistency in monetary policy, rules versus discretion and alternative monetary rules. Recent papers presented by students. Prerequisites: 204 or equivalent, basic probability theory, or consent of instructor.
2-5 units (Staff) not given 2005-06

ECON 285. Market Design — Analysis of rules that govern the operation of markets with and without the assistance of prices. Emphasis is on markets in which complicated preferences and constraints, limitations on the use of cash, or variations in contract details among bidders decisively impair the performance of simple market rules. Matching markets such as the National Resident Matching Program and airline slot exchanges, asset auctions such as the spectrum auctions, electricity markets, and Internet procurement services.
2-5 units, Spr (Milgrom)

ECON 286. Game Theory and Economic Application — Solution concepts for non-cooperative games, repeated games, games of incomplete information, reputation, and experiments. Standard results and current research topics. Prerequisite: 203 or consent of instructor.
2-5 units, Spr (Levin)

ECON 287. General Equilibrium Theory — Existence, efficiency, and Walrasian equilibrium in exchange economies. Production, financial markets, incomplete markets, sequence economies with infinitely-lived agents. Prerequisites: 204 or consent of instructor.
2-5 units, Aut (Hammond)

ECON 288. Computational Economics — Computational approaches to solving economic problems. Overview of numerical analysis. Economic problems in computationally tractable forms, and the use of numerical analysis techniques to solve them. Examples of problems solved numerically (general equilibrium models, optimal taxation, dynamic programming, economic growth, life-cycle models, intervention in commodity markets, Bayesian econometrics, equilibria of dynamic and repeated games, and nonlinear rational expectations equilibria with asymmetric information). Prerequisite: equivalent of first-year graduate core economics sequence.
2-5 units (Judd) not given 2005-06

ECON 289. Advanced Topics in Game Theory and Information Economics — Topics include repeated games with informational asymmetries, including applications to collusion as well as government policy games and dynamic insurance problems; advanced topics in auction theory and mechanism design; intrapersonal games, such as self-control problems and dynamic inconsistency; information acquisition in decision problems, games, and mechanisms.
2-5 units (Staff) not given 2005-06

ECON 290. Multiperson Decision Theory — (Same as MGTECON 608.) Students and faculty review and present recent research papers on theories and economic applications of decision theory, game theory, and mechanism design. Applications include market design and analyses of incentives and strategic behavior in markets, and topics such as auctions, bargaining, contracting, and computation.
4 units, Spr (Wilson)

ECON 292. Comparative Analysis of Organizations and Institutions — Game theoretic; classic and evolutionary analysis of institutions as multiple equilibria. Norms, social embeddedness, organizations as conventions, contract enforcement and corporate governance mechanisms, and states. Institutional complementarities and diachronic institutional linkage.
5 units (Staff) not given 2005-06

ECON 385. Mathematical Economics Workshop
1-10 units, Aut, Win, Spr (Staff)

ECON 387. Microeconomics Workshop — (Same as MGTECON 629A.) Focus is on game-theoretic analyses. Topics from related fields such as macroeconomics, experimental and behavioral economics, electronic commerce, computer science, law, political science, and psychology.
2 units, Aut, Win, Spr (Staff)

ECON 391. Microeconomic Theory Seminar — Game theoretic (classic and evolutionary analysis of institutions as multiple equilibria). Norms, social embeddedness, organizations as conventions, contract enforcement and corporate governance mechanisms, and states. Institutional complementarities and diachronic institutional linkage. May be repeated for credit.
1-10 units, Aut, Win, Spr (Staff)
OVERSEAS STUDIES

Courses approved for the Economics major and taught overseas can be found in the “Overseas Studies” section of this bulletin, or in the Overseas Studies office, 126 Sweet Hall.

BERLIN
ECON 161X. The German Economy in the Age of Globalization
4-5 units, Win (Klein)

FLORENCE
ECON 126X. The Euro, the Dollar, and the Developing Countries in a World of Globalization
4 units, Spr (Yotopoulos)

MOSCOW
ECON 120X. Economic Reform and Economic Policy in Modern Russia
5 units, Aut (Mau)

PARIS
ECON 124X. Building the European Economy: Economic Policies and Challenges Ahead
5 units, Aut (Le Cacheux)
ECON 125X. Globalization and Its Effect on France and the European Union
5 units, Spr (Germanangue)

SANTIAGO
ECON 119X. The Chilean Economy: History, International Relations, and Development Strategies
5 units, Spr (Muñoz)
ECON 160X. Latin America in the International Economy
5 units, Win (Di Filippo)
ECON 165X. Latin American Economies in Transition
5 units, Aut (DiFilippo)

ENGLISH

Chair: Ramón Saldívar
Director of Creative Writing Program: Eavan Boland
Director of Program in Writing and Rhetoric: Andrea A. Lunsford

Professors: John B. Bender (English, Comparative Literature), Eavan Boland, Terry Castle, W. S. Di Piero (on leave Autumn), J. Martin Evans, John Felstiner, Kenneth W. Fields (on leave Winter, Spring), Shelley Fisher Fishkin, Jay W. Fliegelman, Roland Greene (English, Comparative Literature; on leave), Seth Lerer (English, Comparative Literature), Andrea A. Lunsford, Franco Moretti (English, Comparative Literature), Stephen Orgel (on leave Spring), Patricia A. Parker (English, Comparative Literature), Robert M. Polhemus (on leave), Arnold Rampersad, David R. Rigs, Ramón Saldívar (English, Comparative Literature), Elizabeth Tallent, Tobias Wolff

Associate Professors: Michele Elam, Ursula Heise, Gavin Jones, Paula Moya, Jennifer Summit, Blakey Vermeule, Alex Woloch

Assistant Professors: Brett Bourbon, Denise Gigante, Nicholas Jenkins, Robert Kaufman (on leave Winter, Spring), Si anne Ngai (on leave), Judith Richardson, Christopher Rovee

Professor (Teaching): Larry Friedlander (on leave Winter)

Senior Lecturer: Claude Reichard

Lecturers: Andrew Altschul, Valerie Brelinski, Peter Campion, Angus Fletcher, Adam Johnson, Tom Kealey, Annette Keogh, David MacDonald, Tom McNeely, Joyce Moser, Hilton Obenzinger, Linda Paulson, Eric Puchner, Bruce Snider, Edward Steidle, Malena Watrous, Marvina White (on leave)

Acting Professors: Helen B. Brooks, Carol Shloss

Courtesy Professor: Bryan Wolf (on leave)

Consulting Assistant Professor: Matthew Jockers
Visiting Professor: Rukmini Bhaya Nair
Visiting Associate Professor: Steven Justice

Department Offices: Building 460, Room 201
Mail Code: 94305-2087
Phone: (650) 723-2635
Web Site: http://english.stanford.edu

Courses given in English have the subject code ENGLISH. For a complete list of subject codes, see Appendix.

UNDERGRADUATE PROGRAMS

BACHELOR OF ARTS

The English Major is designed to provide students with both an understanding of the development of literatures in English and an appreciation of the variety and richness of literary texts. It offers a rigorous training in interpretive thinking and precise expression.

PREPARATION FOR THE MAJOR

The following departmental requirements are in addition to the University’s basic requirements for the bachelor’s degree. With the exception of the course in Poetry and Poetics or any other when taken to satisfy the Writing in the Major (WIM) requirement, any two of the requisite courses may be taken on a satisfactory/no credit basis at the discretion of the instructor.

MAJOR PROGRAMS OF STUDY

Because the Department of English recognizes that the needs and interests of literature students vary, it has approved several major programs of study. Each of these has different objectives and requirements; students should consider carefully which major corresponds most closely to their
personal and intellectual objectives. Students who have declared a major before Autumn Quarter 2002 may choose to follow the department’s previous guidelines for the major. Please consult the departmental website or the undergraduate English coordinator for details about requirements for the major before Autumn 2002.

MAJOR IN ENGLISH LITERATURE

This program provides for the interests of students who wish to understand the range and historical development of British and American literatures and a variety of critical methods by which their texts can be interpreted. The major emphasizes the study of literary forms and genres and theories of textual analysis.

Students declaring a major in English Literature during Autumn Quarter 2002 and thereafter must choose a total of twelve 5-unit courses. At least one of these courses must be in American literature and at least one must be in British literature after 1750. The twelve courses must be chosen to fulfill the following six categories of requirements:

1. Two courses in British literature before 1750.
2. Two courses in British literature from 1750 to 1900 or American literature before 1900.
3. One course in Shakespeare.
5. One course in Critical Methods.
6. Five additional elective courses chosen from among those offered by the Department of English. Students must select three of these courses from one of the following concentrations:
 a) a specific genre: drama, film, lyric poetry, or prose fiction
 b) a specific historical period: literature before 1750, literature between 1750 and 1900, or literature after 1900
 c) one of the following areas of interest: gender and sexuality; language and rhetoric; literary theory; race and ethnicity; or single authors

Consult the English Department for a list of the courses under each of these concentrations for 2005-06. In lieu of one of these concentrations, students may take three courses from another well-defined area of interest with the approval of their adviser and the Director of Undergraduate Studies.

In place of one of these five elective courses, students may choose one upper-division course in a foreign literature read in the original language.

At least one of the courses satisfying the major must be a major’s seminar, which is any of the 5-unit seminar courses offered in the English department or an English seminar offered in the Stanford in Oxford program at St. Catherine’s College.

Students are urged not to postpone satisfying this requirement until late in their major career. Undue tardiness may result in a delay of degree conferral. Students are encouraged to take seminar format courses in both the junior and senior years.

Students may apply as many as four English courses taken at other approved universities towards the English major. Requests for transfer credit, including course syllabi and official transcript, should be submitted to the undergraduate student services coordinator. Approval of such courses towards the major is at the discretion of the Director of Undergraduate Studies.

Foreign Language Requirement — There is no foreign language requirement for English majors beyond the university requirement, but students who plan to study English at the graduate level should be aware that advanced reading skills in one or more foreign languages enhance their chances of admission to and success in most Ph.D. programs.

EMPHASIS IN THE ENGLISH MAJOR

English with a Creative Writing Emphasis — This program is designed for students who want a sound basic knowledge of the English literary tradition as a whole and at the same time want to develop skills in writing poetry or fiction. Students declaring an English major with a Creative Writing Emphasis must take a total of twelve 5-unit courses offered through the Department of English and the Program in Creative Writing and fulfill the seminar requirement. The twelve courses must be chosen to fulfill the following requirements:

1. Two courses in British literature before 1750.
2. Two courses in British literature from 1750 to 1900 or American literature before 1900.
3. One course in Shakespeare.
5. One course in Critical Methods.
6. One course in 20th-century literature.
7. Majors with the Creative Writing emphasis must take four courses specifically designed for either the fiction or the poetry concentration. Fiction writers must first take ENGLISH 90, Fiction Writing, then two quarters of 190, Intermediate Fiction Writing, or 290A, Advanced Fiction Writing, and 146, Development of the Short Story. Poetry writers must first take ENGLISH 92, then two quarters of 192, Intermediate Poetry Writing, or 292, Advanced Poetry Writing, and one course in poetry in addition to ENGLISH 160, Poetry and Poetics, to be approved by a professor in the Creative Writing program. Courses taken to satisfy one of the six requirements above cannot also satisfy a Creative Writing requirement. ENGLISH 198 or tutorials taken elsewhere (such as tutorials in the Overseas Studies Program) may not be substituted for required courses. Admission to ENGLISH 290A and 292 is by consent of the instructor and is based on the quality of the student’s work.

ENGLISH WITH INTERDISCIPLINARY EMPHASIS

This major is intended for students who wish to combine the study of one broadly defined literary topic, period, genre, theme or problem with an interdisciplinary program of courses relevant to that inquiry. Students are required to fulfill the language and seminar requirements listed under the major in English. Students declaring an English major with an interdisciplinary emphasis during Autumn Quarter 2002 and thereafter must choose a total of fourteen 5-unit courses. These courses must fulfill the following requirements:

1. Two courses in British literature before 1750.
2. Two courses in British literature from 1750 to 1900 or American literature before 1900.
3. One course in Shakespeare.
5. One course in Critical Methods.
6. Three additional elective courses chosen from among those offered by the Department of English. Students must select two of these courses in relation to their interdisciplinary focus.
7. Four courses related to the area of inquiry from such disciplines as anthropology, the arts (including the practice of one of the arts), classics, comparative literature, European or other literature, feminist studies, history, modern thought and literature, political science, and African American studies. These courses should form a coherent program and they must be relevant to the focus of the courses chosen by the student to meet the requirement. Each of these courses must be approved in advance by the interdisciplinary program director. In addition, students in the interdisciplinary program must write at least one interdisciplinary paper. This may be a senior honors essay (197), a senior independent essay (199), an individual research paper (194 or 198), or a paper integrating the material in two courses the student is taking in two different disciplines.

MINORS

Both the Department of English and the Creative Writing program offer a distinct minor.

English Literature — The minor in English Literature offers some flexibility for those students who want to pursue specific interests within British and American literature, while still requiring certain courses that ensure coverage of a variety of periods, genres, and methods of studying literature. In order to graduate with a minor in English, students must complete the following program of seven 5-unit courses, at least one of which must be a seminar:
1. ENGLISH 160. Poetry and Poetics.
2. One course from each of the following historical periods:
 a) British literature to 1750
 b) British literature from 1750 to 1900 or American literature before 1900
 c) 20th-century British or American literature
3. Shakespeare
4. Two elective courses.
 One of the two elective courses may be a course in Creative Writing.

Creative Writing — The minor in Creative Writing offers a structured environment in which students interested in writing fiction or poetry develop their skills while receiving an introduction to literary forms. Students choose a concentration in either fiction or poetry. All courses must be taken for a letter grade.

1. Four writing workshops, three in the chosen concentration, one outside.
 a) Fiction minors must first take ENGLISH 90, Fiction Writing, then one or two quarters of 190, Intermediate Fiction Writing, or 290A Advanced Fiction Writing. The fourth writing course must be ENGLISH 92, Poetry Writing.
 b) Poetry minors must first take ENGLISH 92, Poetry Writing, then one or two quarters of 192, Intermediate Poetry Writing, or 292, Advanced Poetry Writing. The fourth writing course must be ENGLISH 90, Fiction Writing.
2. Two literature courses:
 a) Fiction minors must take ENGLISH 146, The Development of the Short Story; poetry minors must take ENGLISH 160, Poetry and Poetics.
 b) One elective course, selected with the approval of the Creative Writing program adviser. Beginning with academic year 2004-05, ENGLISH 94, Introduction to the Creative Writing Minor, is required instead of the elective literature course.

INTERDEPARTMENTAL MAJORS

English and French Literatures — This major provides a focus in British and American literature with additional work in French literature. The program of each student must be approved by the Director of Undergraduate Studies in English and by the Department of French and Italian.

Students declaring a major in English and French during Autumn Quarter 2002 and thereafter must choose a total of thirteen 5-unit courses, at least one of which must be a seminar. In addition, at least one of the courses must be in American literature and at least one must be in British literature after 1750. These courses are to be selected from the following categories.

1. Two courses in British literature before 1750.
2. Two courses in British literature from 1750 to 1900 or American literature before 1900.
3. One course in Shakespeare.
5. One course in Critical Methods.
6. Two elective courses.
7. A coherent program of four courses in French literature, read in the original.

English and German Literatures — Candidates for the B.A. in this major who declare an English major after Autumn Quarter 2002 must complete a program exactly analogous to the preceding major, with nine courses in British and American literature, and a coherent program of four courses in German literature, read in the original, with approval by the departments involved as specified above.

English and Italian Literatures — Candidates for the B.A. in this major who declare an English major after Autumn Quarter 2002 must complete a program exactly analogous to the preceding major, with nine courses in British and American literature, and a coherent program of four courses in Italian literature, read in the original, with approval by the departments involved as specified above.

English and Spanish or Spanish American Literatures — Candidates for the B.A. in this major who declare an English major after Autumn Quarter 2002 must complete a program exactly analogous to the preceding major, with nine courses in British and American literature, and a coherent program of four courses in Spanish literature, read in the original, with approval by the departments involved as specified above.

ADVANCED WORK

INDIVIDUAL RESEARCH

Students taking 100- or 200-level courses may, with the consent of the instructor, write a follow-up 5-unit paper based on the course material and due no later than the end of the succeeding quarter (register for 194). The research paper is written under the direct supervision of the professor; it must be submitted first in a preliminary draft and subsequently in a final version.

INTEGRATED WORK

Students taking (either simultaneously or consecutively) two or three courses which have a clear thematic or historical relationship to each other may, with the consent of the relevant instructors, write one large-scale paper of 7,000-10,000 words integrating the material in the courses in question.

SENIOR INDEPENDENT STUDY

Independent study is open, on approval by the department, to seniors majoring in English literature who wish to work throughout the year on a critical or scholarly essay of about 10,000 words. In rare circumstances, advisers may nominate exceptional students for honors if the student’s thesis is outstanding and the program of study has been approximately equivalent to that required of regular honors students.

HONORS PROGRAM

Students who wish to undertake a more extensive program in English literatures, including the Honors Seminar and independent research, are invited to apply for the honors program no later than Autumn Quarter of the junior year. All outstanding students are encouraged to engage in an honors thesis project.

Admission is selective. Provisional admission is announced in December. Permission to continue in the program is contingent upon submission, by May 15 of the junior year, of a Senior Honors Essay proposal with a bibliography.

In the Spring Quarter of the junior year, students take a 5-unit honors seminar on critical approaches to literature. (Students who are studying at Oxford or at other institutions may be exempted from this seminar on request and with the approval of the director of the honors program). The junior year seminar is designed to help students develop proposals, pose methodological questions, investigate theoretical problems, and become aware of the various approaches to literary studies.

In Winter Quarter of the senior year, honors students take a 3-unit essay workshop focused on the process of researching and writing the essay.

In the senior year, honors students complete the senior honors essay for 10 units under supervision of a faculty adviser.

The deadline for submitting the honors essay is May 15.

Students in the honors program complete all the requirements of the major and the following:

Junior seminar and workshop, 8 units total
Senior Honors Essay, 10 units

Note — For other opportunities for extended essay projects, see Senior Independent Essay and ENGLISH 194 and 199.

HONORS PROGRAM IN HUMANITIES

An honors program in Humanities is available for English Literature majors who wish to supplement the major with a related and carefully guided program of studies. See the “Interdisciplinary Studies in Humanities” section of this bulletin for a description of the program. Students wishing to take the Comparative Literature option within the honors program in Humanities should see the “Comparative Literature” section of this bulletin.
THE ENGLISH MAJOR AND THE OVERSEAS CAMPUS

The flexibility of the English major permits students to attend an overseas campus in any quarter, but it is advisable, and in some cases essential, that students spend their senior year at Stanford if they wish to participate in the Honors Program or a special in-depth reading course. For more information on Stanford overseas programs, see the “Overseas Studies” section of this bulletin.

Students should consult their advisers and the undergraduate program officer to make sure that they can fulfill the requirements before graduation. The Stanford Program in Oxford usually offers courses which apply toward both University requirements and area requirements for the English major. In either case, students should save the syllabi from their courses if they wish to apply to use them to fulfill an English major requirement.

VISITING STUDENTS

Students who do not wish to become candidates for a graduate degree, but who are qualified to meet the standards of admission to a master’s or Ph.D. program, may apply to Graduate Admissions, Registrar’s Office, Stanford University for admission as nonmatriculated students for a period of not more than three consecutive quarters. Each quarter they may take up to three English courses numbered 101 to 299, or two such courses and (with the consent of the instructor) one English course numbered above 300.

GRADUATE PROGRAMS

For University regulations governing advanced degrees, see the “Graduate Degrees” section of this bulletin.

Eligibility—Students with a bachelor's degree of acceptable quality may apply to pursue graduate work toward an advanced degree in English at Stanford. (Formal application for candidacy is a separate step taken somewhat later.) Students whose previous preparation is in a field other than English are expected to make up deficiencies. Credits for previous graduate work at Stanford or elsewhere more than five years old may be reevaluated or rejected.

Graduate students are admitted as candidates for only the Ph.D. or the M.A. in English and American Literature. The M.A. program is a terminal, one-year program without financial aid.

MAJOR OF ARTS

Candidates may earn the master’s degree in English and American Literature by satisfying the following requirements:

1. Successful completion with a 3.0 (B) grade point average (GPA) of at least nine courses (a minimum of 45 units), two of which must be 300-level courses. Ordinarily, graduate students enroll in courses numbered 200 and above. They may take no more than three courses numbered 101-199 without the consent of the Director of Graduate Studies. The master’s student may take no more than 10 units of directed reading and research (ENGLISH 398). Interested students should consult their faculty adviser or the graduate program adviser for further details.

During the first two weeks of the first quarter, candidates for the master’s degree in English and American Literature should consult the adviser designated by the Director of Graduate Studies in order to draw up a three quarter study plan. The student’s program consists of five required courses: ENGLISH 296; two courses in literature before 1800 and two courses in literature after 1800; plus four elective courses representing a mixture of survey and specialized courses chosen to guarantee familiarity with a reasonable proportion of the works on the reading list for doctoral candidates. Students whose undergraduate transcripts do not show courses in the following areas must take courses in these areas as part of their M.A. program: Medieval, Renaissance, 18th century, 19th century, 20th century (the latter two in either British or American literature). Normally, no more than two courses taken outside the department may count toward the degree, but the Graduate Studies Committee considers exceptions. No creative writing courses may be used to fulfill the requirements.

Candidates who can demonstrate unusually strong preparation in the history of English literature may undertake a 40 to 60-page master’s thesis. Such candidates may register for up to 10 units of ENGLISH 399 with the faculty member who supervises the thesis work. Candidates who write a master’s thesis may petition to be excused from up to 10 units of the requirements described above. The additional 35 units normally consist of the five required courses and two elective courses. These courses are chosen by the student and approved by the adviser and the Director of Graduate Studies.

2. Demonstration of a reading knowledge of one foreign language. (For ways of fulfilling this requirement, see the section below on language requirements for the Ph.D.)

COTERMINAL BACHELOR’S AND MASTER’S DEGREES IN ENGLISH LITERATURE

Students in the major who are interested in further graduate work in English may apply for Stanford’s coterminal master’s program. Candidates for a coterminal master’s degree must fulfill all requirements for the M.A. in English (including the language requirement), as well as general and major requirements for the B.A. in English. A minimum GPA of 3.7 in the major is required of those applying for the coterminal master’s degree. Students must also take the GRE exam in the year in which they apply. No courses used to satisfy the B.A. requirements (either as General Education Requirements or department requirements) may be applied toward the M.A. No courses taken more than two quarters prior to admission to the coterminal master’s program may be used to meet the 45-unit University minimum requirement for the master’s degree.

For University coterminal degree program rules and University application forms, see http://registrar.stanford.edu/publications/#Coterm.

COTERMINAL PROGRAM WITH SCHOOL OF EDUCATION

Students interested in becoming middle school and high school teachers of English may apply for admission to the Ceterminal Teaching Program (CTP) of the Stanford Teacher Education Program (STEP) in the School of Education. CTP students complete a special curriculum in English language, composition, and literature that combines a full English major with supplemental coursework in subjects commonly taught in California public schools and a core program of foundational courses in educational theory and practice. They are then admitted to STEP for a fifth year of pedagogical study and practice teaching. Students who successfully complete the curriculum requirements are able to enter STEP without the necessity of taking either the GRE or the usual subject matter assessment tests. At the end of five years, CTP students receive a B.A. in English, an M.A. in Education, and a California Secondary Teaching Credential. Students normally apply to the Ceterminal Teaching Program at the end of their sophomore year or at the beginning of their junior year. For complete program details and for information on how to apply, consult the Director of Undergraduate Studies in English or the CTP coordinator in the School of Education.

DOCTOR OF PHILOSOPHY

University regulations regarding the Ph.D. are discussed in the “Graduate Degrees” section of this bulletin.

The following department requirements, dealing with such matters as residence, dissertation, and examinations, are in addition to the University’s basic requirements for the doctorate. (Students should consult the most recent edition of The Ph.D. Handbook; copies are available in the English graduate studies office.)

A candidate for the Ph.D. degree must complete three years (nine quarters) of full-time work, or the equivalent, in graduate study beyond the bachelor’s degree. Candidates are required to complete at least 135 units of graduate work in addition to the doctoral dissertation. At least
three consecutive quarters of graduate work, and the final course work in the doctoral program, must be taken at Stanford.
A student may count no more than 65 units of non-graded courses toward the 135 course units required for the Ph.D., without the written consent of the Director of Graduate Studies. A student takes at least 70 graded courses (normally fourteen courses) of the 135 required total units (396L, 397A, 398, and 399 do not count toward the 70 graded units). No more than 15 units (normally three courses) may come from 100-level courses.

This program is designed to be completed in five years. Five quarters of supervised teaching, two as a teaching assistant in a literature course, one as a teaching apprentice, and two as the instructor of a Program in Writing and Rhetoric (PWR) course, are a requirement of the Ph.D. program.

In the first quarter of their first year, students take a 2-unit seminar in pedagogy as preparation for their initial teaching assistantship. In the first quarter of their second year, students take a pedagogy seminar and an apprentice teaching program. The seminar and apprentice teaching constitute a 50-percent teaching appointment. Apprentice teachers attend the classes and conferences of a senior mentor/instructor for two to three weeks. While teaching during the second and third quarters of the second year, students continue to participate in a series of PWR pedagogy workshops and visit one another’s classrooms.

ENGLISH AND AMERICAN LITERATURE

All students are expected to do course work across the full range of English and American literature. Students would be required to fulfill the following requirements. Note: fulfillment of requirements 1, 2, and 3 must be through Stanford courses; students will not be excused from these three requirements or granted credit for course work done elsewhere.

1. ENGLISH 396, Introduction to Graduate Study for Ph.D. Students (5 units), a course that introduces students to the methods of literary study, and ENGLISH 396L, Pedagogy Seminar I, for first year students (2 units).
2. Graduate-level (i.e., at least 200-level) course work in English literature before 1700, and English and American literature after 1700 (at least 5 units of each).
3. Graduate-level (i.e., at least 200-level) course work in some aspect of literary theory (e.g., courses in literary theory itself, narrative theory, poetics, rhetoric, cultural studies, gender studies; at least 5 units).
4. Students concentrating in British literature are expected to take at least one course (5 units) in American literature; students concentrating in American literature are expected to take at least one course (5 units) in British literature.
5. Of all courses taken, a minimum of six courses for a letter grade must be graduate colloquia and seminars, of which at least three must be graduate seminars. The colloquia and seminars should be from different genres and periods, as approved by the adviser.
6. Completion, in Autumn Quarter of the second year, of a pedagogy seminar which includes the Apprentice Teaching Program described above, and a series of pedagogy workshops during winter and spring quarters. There are no units associated with this work.
7. The remaining units of graded, graduate-level courses and seminars should be distributed according to the adviser’s judgment and the candidate’s needs. A student may receive graduate credit for no more than three 100-level courses in the Department of English.
8. Consent of the adviser if courses taken outside the Department of English are to count toward the requirement of 70 graded units of course work.
9. An oral qualifying examination based on a reading guide, to be taken at the end of the summer after the first year of graduate work. The final decision as to qualification is made by the graduate studies committee in consideration of the student’s overall record for the first year’s work in conjunction with performance on the examination. Note: A student coming to the doctoral program who has done graduate work at another university must petition in the first year at Stanford for transfer credit for course work completed elsewhere. The petition should list the courses and grades, and describe the nature and scope of course work, as well as the content, contact hours, and writing requirements. A syllabus must be included. The Director of Graduate Studies considers the petition in conjunction with the student’s overall performance.

10. A University Oral Examination to be taken no later than the Spring Quarter of the student’s third year in the Ph.D. program. This examination covers the field of concentration as defined by the student and the student’s adviser.

ENGLISH AND COMPARATIVE LITERATURE

The Ph.D. program in English and Comparative Literature is designed for students wishing an extensive knowledge of the literature, thought, and history of England and of at least one foreign country, for one period. Approximately half of the student’s course work and reading is devoted to this period, with the remainder of the time given to other periods of English and American literature since 1350.

This degree, administered by the Department of English, is to be distinguished from the Ph.D. in Comparative Literature. The latter program is intended for students unusually well prepared in foreign languages and involves advanced work in three literatures, one of which may be English. Interested students should consult a Department of English adviser, but faculty from Comparative Literature may also provide useful supplementary information.

The requirements are as follows:

1. Qualifications: see item 9 under requirements of the Ph.D. program in English literature. For qualifications in the doctoral program in English and Comparative Literature, candidates are not held responsible for literature before 1350, but instead include on their reading list a selection of works from a foreign language read in the original language.
2. A knowledge of the basic structure of the English language and of Chaucer. This requirement may be met by examination, or by taking 10 units of courses chosen from among those offered in linguistics, English philology, and early and middle English literature including Chaucer. No particular courses are required of all students.
3. A 5-unit course, ENGLISH 396, Introduction to Graduate Study, and a 2-unit course, ENGLISH 396L, Seminar in Pedagogy I.
4. Completion, in Autumn Quarter of the second year, of a pedagogy seminar, which includes the Apprentice Teaching Program described above, and a series of pedagogy workshops during winter and spring quarter. There are no units associated with this work.
5. A knowledge of one foreign language sufficient to take graduate-level literature courses in a foreign-language department and an advanced reading knowledge of a second language.
6. A minimum of 45 units in the history, thought, and literature of one period, in two or more languages, one of which must be English and one foreign. Students normally include at least two courses in a foreign language read in the original language and two courses listed under Comparative Literature or Modern Thought and Literature. As many as 20 units of this requirement may be satisfied through courses in reading and research. A student may receive graduate credit for no more than three 100-level courses in the Department of English.
7. A minimum of six courses for a letter grade from graduate colloquia and graduate seminars, of which three must be graduate seminars and of which at least four must be in the Department of English. Among these courses, students should take one in literary theory or criticism. These colloquia and seminars should be in different genres and periods as approved by the adviser.
8. A University oral examination covering the field of concentration as defined by the student and the student’s adviser. This examination, based on a reading list established by the candidate in consultation with his or her adviser, is normally taken no later than the Spring Quarter of the third year of graduate study. However, those who spend the third year studying abroad may take this examination after their return early in the fourth year.
All candidates for the Ph.D. degree (except those in English and Comparative Literature, for whom special language requirements prevail) must demonstrate a reading knowledge of two foreign languages. Candidates in the earlier periods must offer Latin and one of the following languages: French, German, Greek, Italian, or Spanish. In some instances, they may be required to offer a third language. Candidates in the later period (that is, after the Renaissance) must offer either French, German, or Latin as one language and may choose the second language from the following: Greek, Latin, French, German, Italian, Spanish, Russian, or another language relevant to the student’s field of study. In all cases, the choice of languages offered must have the approval of the candidate’s adviser. Any substitution of another language must be approved by the Director of Graduate Studies.

The Graduate Studies Committee does not accept courses taken as an undergraduate in satisfaction of the language requirement for doctoral candidates. For students coming to doctoral work at Stanford from graduate work done elsewhere, satisfaction of a foreign language requirement is determined by the Director of Graduate Studies based on the contact hours, syllabus, reading list, etc. Transfer is not automatic.

The candidate must satisfy one language requirement by the end of the first year (that is, before registration in the following year), and the other by the end of the third year.

Foreign language requirements for the Ph.D. may be fulfilled in any of the following ways:

1. A reading examination given each quarter by the various language departments, except for Latin and Greek.
2. For Latin and Greek, an examination by the Department of English. The Latin examination is given before registration in the Autumn Quarter in order to permit those who need the course to register for Latin 3. It is also given in the eighth week of the Winter and Spring quarters, along with other department examinations for languages not tested by the Educational Testing Service.
3. Passage with a grade of ‘B’ or higher of a course in literature numbered 100 or higher in a foreign language department at Stanford. As an alternative for Latin, French, Italian, German, and Spanish, passage of CLASSLAT 51 and 52, FRENLANG 50, ITALLANG 50, GERLANG 52, and SPANLANG 50, respectively, with a grade of ‘B’ or higher.

CANDIDACY

Students are expected to file for candidacy after successful completion of qualifying procedures and, in any event, by the end of the second year of doctoral study. Candidacy is valid for five years, and may be extended, subject to satisfactory progress.

DISSERTATION

As early as possible during graduate study, a Ph.D. candidate is expected to find a topic requiring extensive original research and to seek out a member of the department as his or her adviser. The adviser works with the student to select a committee to supervise the dissertation. Candidates should take this crucial step as early in their graduate careers as possible. The committee may well advise extra preparation within or outside the department, and time should be allowed for such work.

Immediately after the dissertation topic has been approved by the adviser, the candidate should file a formal reading committee form as prescribed by the University.

The dissertation must be submitted to the adviser as a rough draft, but in substantially final form, at least four weeks before the University deadline in the quarter during which the candidate expects to receive the Ph.D. degree.

JOINT PH.D. IN ENGLISH AND HUMANITIES

The Department of English participates in the Graduate Program in Humanities leading to the joint Ph.D. degree in English and Humanities. For a description of that program, see the “Interdisciplinary Studies in Humanities” section of this bulletin.

PH.D. IN MODERN THOUGHT AND LITERATURE

Stanford also offers a Ph.D. degree in Modern Thought and Literature. Under this program, students devote approximately half of their time to a modern literature from the Enlightenment to the present, and the other half to interdisciplinary studies. Interested students should see the “Modern Thought and Literature” section of this bulletin and consult the chair of the program.

CREATIVE WRITING FELLOWSHIPS

The Creative Writing Program each year offers five two-year fellowships in poetry and five two-year fellowships in fiction. These are not degree-granting fellowships. Information is available in the Creative Writing office, (650) 725-1208.

COURSES

WIM indicates that the course satisfies the Writing in the Major requirements.

Students interested in literature and literary studies should also consult course listings in the departments of Asian Languages, Classics, Comparative Literature, French and Italian, German Studies, Slavic Languages and Literatures, and Spanish and Portuguese, in the Program in Modern Thought and Literature, and in the Division of Literatures, Cultures, and Languages.

NUMBERING SYSTEM

Pre-1750:
100-110 Lecture Courses
111-119 Seminar Courses
1750-1900:
120-129 Lecture Courses
130-139 Seminar Courses
Post-1900:
140-149 Lecture Courses
150-159 Seminar Courses

Required Courses:
160-169
Themes and Topics:
170-179 Lecture Courses
180-189 Seminar Courses

Courses for Advanced Undergraduates and Graduate Students:
200-289
Graduate Colloquia:
300-313
Graduate Seminars:
314-389
Writing Courses, Workshops, Individual Study:
90-99, 190-199, 290-299, 390-399

INTRODUCTION TO THE HUMANITIES (IHUM)

The following Introduction to the Humanities courses are taught by English department faculty members. IHUM courses are typically available only to freshmen seeking to fulfill GER:1 requirements; see the “Introduction to the Humanities” section of this bulletin for further information. Prospective majors in English are advised to consider satisfying their IHUM-2,3 requirements by registering for the following IHUM courses.

IHUM 37A, 5 units, Win (Riggs)
IHUM 37B, 5 units, Spr (Felstiner)
INTRODUCTORY (FOR NON-MAJORS)

Classes for students whose major is undeclared, or who are not majoring in English.

ENGLISH 5. Great Texts and Key Issues: An Introduction to Literature — How literary texts interact with issues such as morality, identity, sexuality, nationality, religion, and politics. Readings from national literatures including Italian, French, English, American, and German; genres including short story, essay, novella, drama, travelogue, and novel; historical spectra from the 14th-20th centuries. GER:DB-Hum
3 units, Spr (Evans)

ENGLISH 9. Masterpieces of English Literature I: Chaucer, Shakespeare, Milton, and their Contemporaries — (English majors and others taking 5 units, register for 109.) From the late 14th to the late 17th century. GER:DB-Hum
3 units, Aut (Fletcher)

ENGLISH 20. Masterpieces of English Literature II: From the Enlightenment to the Modern Period — (English majors and others taking 5 units, register for 120.) From the 18th to the 20th centuries. Topics include the development of the novel, rise of the lyric, Romanticism, realism, Modernism, characterization, representation of consciousness, and the cinematic imagination. GER:DB-Hum
3 units, Spr (Rovee)

ENGLISH 21. Masterpieces of American Literature — (English majors and others taking 5 units, register for 121.) Political, racial, and sexual questions which inform works of American literature from the early Republic to the mid-20th century. GER:DB-Hum
3 units, Win (Obenzinger)

ENGLISH 60. Poetry and Poetics — (English majors and others taking 5 units, register for 160.) Introduction to the reading of poetry, with emphasis on how the sense of poems is shaped through diction, imagery, and technical elements of verse. GER:DB-Hum, WIM
3 units, Aut (Jenkins), Win (Felstiner), Spr (Boland)

INTRODUCTORY SEMINARS

Suffix N = Preference to freshmen
Suffix Q = Preference to sophomores

ENGLISH 54N. Orwell: Literature and Political Engagement — Stanford Introductory Seminar. How Orwell made political writing into an art by representing political crises including imperialism, poverty, inequality, revolution, and totalitarianism. His experiments with literary forms that blurred the lines between fiction and nonfiction, literature and journalism, essay and memoir, realism and allegory. Focus is on major works and relevance to socially-engaged literature, writing, and journalism. GER:DB-Hum
3 units, Aut (Elam)

ENGLISH 56N. Mixed Race in the New Millennium — Stanford Introductory Seminar. Contemporary literary and cultural representations of the mixed race experience. Sources include novels, memoirs, and secondary texts in history, race theory, and literary criticism that engage issues related to racial and cultural hybridity including the literary history of the mulatto, passing, gender politics, identity formation, and social location. GER:DB-Hum
3 units, Aut (Elam)

ENGLISH 65N. Contemporary Women Fiction Writers — Stanford Introductory Seminar. Focus is on writers who contribute to a sense of contemporary domestic and global politics, sex and sexual orientation, and place and its meanings. Short stories, novels, essays, and poetry. Writers include Toni Morrison, Edwidge Danticat, Alice Munro, Edna O’Brien, and Mary Gaitskill. GER:DB-Hum
3 units, Spr (Tallent)

ENGLISH 68N. Mark Twain and American Culture — Stanford Introductory Seminar. Mark Twain defined the rhythms of American prose, the contours of its moral map, and its promise, failures, foibles, and flaws. Focus is on how his work provides a window on his time and speaks to the present. Sources include his travel books, journalism, short stories, and novels. GER:DB-Hum
4 units, Aut (Fishkin)

ENGLISH 70N. Shakespeare on Film — Stanford Introductory Seminar. Introduction to film studies. A Midsummer Night’s Dream directed by Reinhardt and Hall; Romeo and Juliet by Zeffirelli and Luhrman; Henry V by Olivier and Branagh; Hamlet by Gade, Olivier, Kozintsev, Zeffirelli, Branagh, and Almeryda. GER:DB-Hum
3 units, Win (Riggs)

ENGLISH 73N. Conflict and Resolution in the Novel — Stanford Introductory Seminar. Preference to freshmen. The social work of the novel, its strategies for articulating difference, and its capacity to objectify points of view and posit resolutions to ideological disputes. The novel as an artistic device, part of material history, and style of social consciousness. Its relationship to language and cultural systems of representation. Readings from Franz Kafka, Milan Kundera, Toni Morrison, Umberto Eco, and John Coetzee. GER:DB-Hum
3 units, Win (Shless)

ENGLISH 82Q. Shakespeare’s Plays — Stanford Introductory Seminar. Eight representative plays; sonnets. Student papers provide topics for discussion. Students direct and perform scenes from the plays studied. GER:DB-Hum
5 units, Aut (Rebholz)

ENGLISH 83Q. Playwriting: A Workshop in Craft — Stanford Introductory Seminar. Preference to sophomores. The fundamentals of crafting a stage play, including genre, dialogue, characterization, and plot. Professional models for such craft elements, and newer approaches. Students develop a dramatic idea into a more polished version of a scene or short one-act play to demonstrate the elements of stagecraft.
4 units, Aut (DiPirro)

ENGLISH 86N. Wicked Witches of the West and their Children: Dangerous Women in Greek and Shakespearean Tragedy — Stanford Introductory Seminar. Writers of tragedy, and powerful, heroic, or witch-like women. How these characters bring the unworlky and forbidden into theater. Comparison of women from Greek tragedy and Shakespeare such as Medea and Lady Macbeth to relate the depiction of female danger with the cultures and conventions of their periods. GER:DB-Hum, EC-Gender
3 units, Aut (Friedlander)

ENGLISH 87Q. The Graphic Novel: Literature Lite? — Stanford Introductory Seminar. The evolution of funnies to comics and graphic novels. How definitions and representations of this genre have changed over the last century. The controversy over the status of the graphic novel. GER:DB-Hum
5 units, Win Lunsford)

PRE 1750

Lecture courses: 100-109
Seminar courses: 110-119

ENGLISH 102. Chaucer — Chaucer’s Canterbury Tales, focusing on forms of medieval vernacular literature, the critical traditions of interpretation, and the social and political contexts for his work and its immediate reception. GER:DB-Hum
5 units, Win (Lerer)

ENGLISH 104C. From Epic to Romance: The Medieval Literature of Courtly Love — Cultural traditions and historical events that precipitated a shift in medieval narrative modes from epic to romance: the Germanic ethos, the Celtic tradition, Hispano-Arabic love poetry, the Crusades, the Provençal troubadours. Readings from Beowulf and the Volsunga Saga, the Tain and the Mabinogion, the Lais of Marie de France, the romances of Chrétien de Troyes, and Provençal lyrics. GER:DB-Hum
5 units, Spr (Steidle)
5 units, Aut (Orgel)

ENGLISH 109. Masterpieces of English Literature I: Chaucer, Shakespeare, Milton, and their Contemporaries—(Same as 9; see 9.) GER:DB-Hum
5 units, Aut (Fletcher)

ENGLISH 113B. Elizabeth I in Elizabethan Literature—Poems and plays by Spenser, Sidney, and Raleigh in which representations of the Queen merge concerns about national identity, gender, sexuality, and desire. Elizabeth as a writer whose poetry, letters, and speeches respond to those representations and raise questions about the historical meanings of female power. Elizabeth’s modern-day legacy in films such as *Elizabeth*. GER:DB-Hum
5 units, Spr (Summit)

ENGLISH 115D. Tragedy—The development of tragedy from Aristotle to *Apocalypse Now*. The origins of tragedy and its place in modern life. GER:DB-Hum
5 units, Aut (Fletcher)

ENGLISH 116C. Restoration Literature—Preference to majors. The 1660 return of the court after the Civil War and the flowering of literature and culture much of which focused on the king as charismatic and fascinating, yet embittered, lazy, dissolute, and promiscuous. The ambivalence provoked by the Stuart court. Literature that focuses on the figure of Satan, such as *Paradise Lost*. Why Satan becomes such a powerful figure in the culture’s imagination. Issues such as transgression, sexuality, regicide, and heroism. GER:DB-Hum
5 units, Spr (Vermeule)

ENGLISH 117. 18th-Century Satire—Preference to majors. Satire as a cultural universal. The commitment and intensity of 18th-century British satire, by turns funny, brutal, scabrous, and melancholy. How satire tends to focus on sex and power. The role satire in contemporary American culture: when does speech become too hot to handle? Authors include: Horace, Juvenal, Swift, Pope, Johnson, Burney, Voltaire, and Orwell. GER:DB-Hum
5 units, Win (Vermeule)

1750-1900
Lecture courses: 120-129
Seminar courses: 130-139

ENGLISH 120. Masterpieces of English Literature II: From the Enlightenment to the Modern Period—(Same as 20; see 20.) GER: DB-Hum
5 units, Spr (Rovee)

ENGLISH 121. Masterpieces of American Literature—(Same as 21; see 21.) GER:DB-Hum
5 units, Win (Obenzinger)

ENGLISH 123. American Literature and Culture to 1855—(Same as AMSTUD 150.) Major issues in early American cultural and literary history; developments in the fine and domestic arts; and methodological issues central to American Studies. Texts include Cotton Mather and Melville. GER:DB-Hum, EC-AmerCul
5 units, Win (Fliegelman)

ENGLISH 123A. American Women Writers, 1850-1920—How female writers negotiated literary, social, and intellectual movements including 19th-century abolitionism and sentimentalism, and 20th-century progressivism and avant garde modernism. Authors include Harriet Beecher Stowe, Harriet Jacobs, Rebecca Harding Davis, Emily Dickinson, Kate Chopin, Sui Sin Far, Gertrude Stein, Willa Cather, and Charlotte Perkins Gilman. GER:DB-Hum
5 units, Spr (Richardson)

ENGLISH 123C. Henry James—The tales, nouvelle, novels, and critical essays of America’s most influential novelist and theorist of fiction, including “Daisy Miller,” *Portraits of a Lady*, *Turn of the Screw*, and *Wings of the Dove*. GER:DB-Hum
5 units, Aut (Dekker)

ENGLISH 124. The Eighteenth-Century British Novel—Authors include Behn and Sterne. GER:DB-Hum
5 units, Spr (Castle)

ENGLISH 126B. The Nineteenth-Century British Novel—The novel as a recent innovation developing in 18th-century England. Seven novels spanning the 19th and early 20th centuries, including the Romanticism of Shelley’s *Frankenstein*, the realism of the major writers of high Victorian times, the nightmare of Conrad’s *Heart of Darkness*, and Woolf’s *To the Lighthouse* as a reflection on the 19th-century fictions to which the 20th century was compelled to respond. GER:DB-Hum
5 units, Aut (Paulson)

ENGLISH 135B. Jane Austen—Preference to majors. The fiction of Jane Austen, including the *Juvenilia*, *Lady Susan*, and her unfinished novel *Sanditon*. The critical tradition and how she has been interpreted on film. GER:DB-Hum
5 units, Win (Vermeule)

ENGLISH 135C. Dickens—How Dickens’ literary modes, including the comic, grotesque, sentimental, melodramatic, and realistic, widened the range of 19th-century fiction. Issues include: the relationship between Dickens and urban modernity; the complexity and strangeness of Dickensian humor; tensions between narrative fragmentation and coherence; self-reflexivity and the novel’s treatment of writing and language; and strategies of social representation. GER:DB-Hum
5 units, Spr (Woloch)

ENGLISH 136. Romantic Poetry—Romantic experiments with form. The philosophical, political, and cultural implications of the forms of imaginative writing during this period, including the epic and dramatic, sonnets, odes, lyrical ballads and prose, songs, and conversation poems. Authors include Wordsworth, Smith, Coleridge, Blake, Keats, Hunt, Byron, Lamb, and Shelley. GER:DB-Hum
5 units, Aut (Gigante)

5 units, Aut (Rovee)

ENGLISH 137. Keats and Wilde—Writing at different ends of the 19th century, Keats and Wilde shared a commitment to art and beauty. The political significance of that commitment in a culture of mechanization. Their major writings; close reading technique. Issues include: aestheticism and the politics of culture; art and public morality; eroticism; the role of the artist; book illustration; 19th-century masculinities; and imagination and lying. GER:DB-Hum
5 units, Spr (Rovee)

ENGLISH 138C. Huckleberry Finn and American Culture—(Same as AMSTUD 138C.) Preference to majors. From publication to the present, Mark Twain’s *Adventures of Huckleberry Finn* has generated widespread disagreement over what it is, what it does, and why it should be valued. The literature, history, and popular culture that shaped the novel, and that it helped shape. Topics include vernacular traditions in American literature, the history of racism in American society, and the role of African American voices in shaping the text. GER:DB-Hum
5 units, Win (Fishkin)

ENGLISH 139E. Irish American Literature—Preference to majors. From the late 18th-century pre-famine years to the present. Emphasis is on how this sub-canonical fits into the canon of American literature. GER: DB-Hum
5 units, Aut (Jockers)
POST 1900

Lecture courses: 140-149
Seminar courses: 150-159

ENGLISH 142C. The Dream Factory: Introduction to Classic Hollywood Movies — The great Hollywood film studios, the development of film genres such as comedy, film noir, adventure, and musicals, and how movies reflect or create American fears, fantasies, and dreams. Cultural and social background. Directors such as Alfred Hitchcock, Billy Wilder, William Wyler, Steven Spielberg, and Quentin Tarantino. GER:DB-Hum
5-3 units, Spr (Moser)

ENGLISH 146. Development of the Short Story — Required of creative writing students in fiction. The WW II, postwar, and contemporary short story. GER:DB-Hum
5 units, Win (Tallent)

ENGLISH 146C. Hemingway, Hurston, Faulkner, and Fitzgerald — While Hemingway and Fitzgerald flirted with the avant garde in Europe, Hurston and Faulkner performed anthropological fieldwork in the American South. The concerns and styles of four writers who marked America’s coming-of-age as a literary nation with their experiments in the regional and global, the racial and cosmopolitan, the macho and feminist, the decadent and impoverished. GER:DB-Hum
5 units, Aut (Jones)

5 units, Win (Di Piero)

ENGLISH 150D. Women Poets — Preference to majors. GER:DB-Hum
5 units, Spr (Boland)

ENGLISH 150F. W. B. Yeats — Preference to majors. Yeats’ poetry, prose writings, and two of his plays. Themes include nationalism, the imagination, sexuality, the occult, modernity, Irishness, eugenics, and authoritarianism. GER:DB-Hum
5 units, Win (Jenkins)

ENGLISH 152D. W.E.B. Du Bois and American Culture — Preference to majors. His life and career. Focus is on the first half of his life from his Harvard doctoral dissertation to the end of the Harlem Renaissance in which he played a crucial role. Sources include his books on history and sociology, scholarly essays, novels, and journals that he edited. GER:DB-Hum
5 units, Win (Elam)

5 units, Spr (Vermeule)

ENGLISH 153H. Digital Humanities: Literature and Technology — (Same as HUMNTIES 198.) How electronic texts, literary databases, computers, and digital corpora offer unique ways of reading, analyzing, and understanding literature. Intellectual and philosophical problems associated with an objective methodology within a traditionally subjective discipline. GER:DB-Hum
5 units, Aut (Jockers)

ENGLISH 153J. Virginia Woolf and the Social System — Woolf’s major prose narratives in light of the social and historical circumstances which brought them into being and to which they respond. Topics include The Voyage Out as the portrait of the artist as a young woman; Mrs. Dalloway and the English class system; the domestic politics of To the Lighthouse; feminism in historical perspective in A Room of One’s Own; pacifism and the coming of war in Between the Acts; and lesbian consciousness in Orlando. GER:DB-Hum
5 units, Spr (Shloss)

ENGLISH 154C. Modern British Poetry — Poets include Thomas Hardy, G. M. Hopkins, Thom Gunn, and W. S. Graham. GER:DB-Hum
5 units, Win (Di Piero)

ENGLISH 155. The Journey: Pound, Bishop, Walcott — Poetry’s basic axis is metaphor, a trope which enacts a kind of journey, a crossing from the known into the unknown and a return back. Why the journey has retained a poetic theme from ancient civilizations to the present. The work of three modern poets for whom the journey, as subject and structuring formal principle, has been especially important. GER:DB-Hum
5 units, Win (Jones)

REQUIRED COURSES

Lecture courses: 160-169; there are no required seminar courses.

ENGLISH 160. Poetry and Poetics — (Same as 60; see 60.)
5 units, Aut (Jenkins), Win (Felstiner), Spr (Boland)

ENGLISH 163. Shakespeare — Major plays emphasizing theatrical representation of extreme characters. GER:DB-Hum
5 units, Aut (Friedlander)

ENGLISH 163B. Shakespeare — GER:DB-Hum, EC-Gender
5 units, Spr (Parker)

THEMES AND TOPICS

Lecture courses: 170-179
Seminar courses: 180-189

ENGLISH 172. Contemporary Indian English Fiction, 1980-2005 — Styles, theme, and its ideological changes in the Indian novel in English since Rushdie’s Midnight’s Children. The new generation of Indian novelists known as Rushdie’s children. The vitality of this fiction. How the Indian subcontinent has been imaginatively reworked in recent Indian Anglophone writing and the crosscultural impact of such reinvention. GER:DB-Hum
5 units, Aut (Nair)

ENGLISH 172B. Multiculturalism and Magic Realism — The metaphors of multiculturalism in the vocabulary of popular culture. Multiculturalism as utopian vision of social amity and nightmarish fantasy of dystopia. How self intimacy and radical otherness intersect in the contemporary world through the mix-and-match style that multiculturalism shares with magic realist fictions such as Gabriel García Márquez, Ben Okri, and Salman Rushdie. GER:DB-Hum
5 units, Win (Nair)

ENGLISH 172D. Introduction to Comparative Studies in Race and Ethnicity — (Same as PSYCH 155, CSRE 196C.) How different disciplines approach topics and issues central to the study of ethnic and race relations in the U.S. and elsewhere. Lectures by senior faculty affiliated with CSRE. Discussions led by CSRE teaching fellows. GER: DB-SocSci
5 units, Win (Markus, Moya)

ENGLISH 176. Science Fiction — International science fiction from the late 19th century to the present. How writers and filmmakers imagine future societies in relation to evolving technologies and changing natural environments. Does cultural change drive technological development, or vice versa? Are alien worlds reflections of or alternatives to human society? What are the grounds for utopian hope or dystopian fear of the future? Authors include Verne, Wells, Strugatzky, Lem, Gibson, Sterling, Le Guin, Atwood, and Weller. GER:DB-Hum
5 units, Win (Heise)
ENGLISH 177. History of Children’s Literature — (Same as COMPLIT 123.) From origins to the present. Focus is on writings for children in the English and American tradition. European texts and contexts. Techniques of critical analysis, the history of publishing and reading, and the rise of children’s literature as a commercial venture. GER:DB-Hum 5 units, Win (Brooks)

ENGLISH 180A. Truth, Fiction, and Interpretation — (Same as HUMNTIES 194Z.) What does it mean for something to be fictional? How the answer to this question dictates what can be said about fiction and limits interpretative methods. What kind of thing is a fiction? Is there a realm of wisdom from which the logician is banned? Readings include fictions, poems, and philosophy. GER:DB-Hum 5 units, Aut (Rerer)

ENGLISH 180D. Poetics and Politics of Caribbean Women’s Literature — (Enroll in CASA 145A/245A.) 5 units, Aut (Duffey)

ENGLISH 180F. American Book History, 1660-1860 — Publishing, the marketplace, the history of reading, printing, and other aspects of the book in pre-Civil War America. GER:DB-Hum 5 units, Spr (Fliegelman)

ENGLISH 181. The English Essay Tradition — Mixing personal reflections with social critique, the familiar essay appeared at the beginning of the 18th century as a way to shape tastes and morals. How writers such as Joseph Addison, Samuel Johnson, Oliver Goldsmith, Henry Mackenzie, Leigh Hunt, Charles Lamb, and William Hazlitt developed confessional, critical, parodic, picturesque, melancholy, comic, and grotesque styles to portray contemporary character types and the universal human condition. GER:DB-Hum 5 units, Aut (Gigante)

ENGLISH 182. Conflict and Resolution: The Artist as Witness — (Same as HUMNTIES 194S.) The social work of the novel. Its strategies for articulating difference and capacity to objectify points of view and posit resolutions to ideological disputes. The novel as artistic device, material history, narrative, and style of social consciousness. Its relationship to language and systems of representation that it shares with the wider culture. Its formal organization of choice, creation of misapprehension, and construction of deviation. Theorists include Bakhtin, Barthes, Brooks, and Jameson. Reading include Tolstoy, Kafka, Swift, Kundera, Morrison, Coetzee, and Hosseini. GER:DB-Hum 5 units, Spr (Gross)

ENGLISH 182A. Does Literature Matter? — (Enroll in COMPLIT 159.) 3-5 units, Spr (Gelder)

ENGLISH 184A. The Reciprocal Vision — How European and American authors have represented and misrepresented each other’s national culture and character from the American Revolution to the present. GER:DB-Hum 5 units, Spr (Evans)

ENGLISH 184B. Text as Context — (Same as HUMNTIES 194B.) Conditions that situate texts in their social, political, religious, and artistic dimensions, and that impact on conceptions of meaning. Changing views of relationships between text and their audience. Film adaptations. Texts include Rumi, Donne, Shakespeare, Joyce, Woolf, Stein, Beckett, Pound, and Picasso. GER:DB-Hum 5 units, Win (Brooks)

ENGLISH 185. Narrative Theory and the Emotions — How cultures use stories to construct, memorize, and illuminate the world. Narrative as a universal discourse that regulates and stimulates emotional life. Major perspectives on narrative from Aristotle to Zizek. Why narratives are a universal discourse that regulates and stimulates emotional life. Major perspectives on narrative from Aristotle to Zizek. Why narratives are essential to the organization of inner worlds of feeling. GER:DB-Hum 5 units, Win (Nair)

ENGLISH 186. Tales of Three Cities: New York, Chicago, Los Angeles — How urban form and experience shape literary texts and how literary texts participate in the creation of place, through the literature of three American cities as they ascended to cultural and iconographical prominence: New York in the early to mid 19th century; Chicago in the late 19th and early 20th centuries; and Los Angeles in the mid to late 20th century. GER:DB-Hum 5 units, Win (Richardson)

UNDERGRADUATE WORKSHOPS AND DIRECTED READING

ENGLISH 191. Advanced Writing — (Enroll in PWR 191.) 3 units, Spr (Diogenes)

ENGLISH 192W. Projects in Research, Writing, and Rhetoric — (Enroll in PWR 192.) 1-5 units, Aut (Obenzinger)

ENGLISH 193. Writing the Honors Thesis — (Enroll in PWR 193.) 1-5 units, Win, Spr (Obenzinger)

ENGLISH 194. Individual Research — See section above on Undergraduate Programs, Opportunities for Advanced Work, Individual Research.

ENGLISH 195. Ad Hoc Undergraduate Seminar — Undergraduates (at least three) who wish, in the following quarter, to study a subject or an area not covered by regular courses may plan an informal seminar and approach a member of the department to supervise it. A syllabus should be submitted to the director of undergraduate advising at least two weeks before the end of the quarter. No more than 5 units of credit are given for 195 and/or 196 in one quarter. 195 may not be used to fulfill departmental area or elective requirements without permission. May be repeated for credit.

ENGLISH 195A. A Research Seminar in American Studies — (Same as AMSTUD 210.) For juniors and seniors who wish to pursue a paper topic or research question beyond the confines of a traditional course. Year-long sequence. Students meet individually and in a tutorial setting with the professor to discuss projects, participate in small group discussions, and present a chapter of a senior thesis, thesis prospectus, or research paper. Limited enrollment. May be repeated for credit.

ENGLISH 195W. Peer Writing Tutor Training Course — (Enroll in PWR 195.) 3 units, Spr (Moneyhun)

ENGLISH 196A. Honors Seminar: Critical Approaches to Literature — Required of all juniors in the English honors program.

ENGLISH 197. Seniors Honors Essay — In two quarters.

ENGLISH 198. Individual Work — Undergraduates who wish to study a subject or area not covered by regular courses may, with consent, enroll for individual work under the supervision of a member of the department. 198 may not be used to fulfill departmental area or elective requirements without consent. Group seminars are not appropriate for 198. 1-5 units, Win, Spr, Sum (Staff)

ENGLISH 199. Senior Independent Study — Open, with department approval, to seniors majoring in English who wish to work throughout the year on a 10,000 word critical or scholarly essay; see note under “Honors Program” above. Applicants submit a sample of their expository prose, proposed topic, and bibliography to the Director of Undergraduate Studies before preregistration in May of the junior year. Each student accepted is responsible for finding a department faculty adviser.

1-10 units, Aut, Win, Spr (Staff)
CREATIVE WRITING

ENGLISH 28B. The Occasions of Poetry
3 units, Win (Staff)

ENGLISH 29. Reading for Writers: Writing for Nations
3 units, Spr (Staff)

ENGLISH 90. Fiction Writing — Problems of narrative and imaginative writing. Prerequisite: PWR 1
5 units, Aut, Win, Spr (Brelinski, Kealey, McNeely, Watrous)

ENGLISH 92. Reading and Writing Poetry — Prerequisite: PWR 1.
5 units, Aut, Win, Spr (Campion)

ENGLISH 94. Introduction to the Creative Writing Minor — For minors in creative writing. The forms and conventions of the contemporary short story and poem. How form, technique, and content combine to make stories and poems organic. Prerequisite: 90 or 92.
5 units, Aut, Win (Johnson)

ENGLISH 94A. Creative Nonfiction — Historical and contemporary as a broad genre including travel and nature writing, memoir, biography, journalism, and the personal essay. Students use creative means to express factual content.
5 units, Aut, Win (Johnson)

ENGLISH 95. Form and Theory of the Novel — Seminar. For writers. How form and technique reveal the writer’s world view. How writers connect detail, description, action, dialog, and thought to create scenes. How the balance of these elements creates an author’s voice. How scenes build tension, create empathy, propel story, reveal character, explore setting, and raise or contest ideas. Tradition, conventions, design, narrative strategy, research, and historical perspective. Guest instructors from Stanford’s Jones Lecturers in fiction.
5 units, Spr (Johnson)

ENGLISH 190. Intermediate Fiction Writing — May be taken twice. Lottery. Priority to last quarter/year in school, majors in English with Creative Writing emphasis, and Creative Writing minors. Prerequisite: 90.
5 units, Aut, Win, Spr (Altschul, Kealey, MacDonald, McNeely, Puchner, Watrous)

ENGLISH 190F. Fiction Writing for Film — Workshop. For screenwriting students. Story craft, structure, and dialogue. Assignments include short scene creation, character development, and a long story. How fictional works are adapted to screenplays, and how each form uses elements of conflict, time, summary, and scene. Prerequisite: 90.
5 units, Win (Kealey)

ENGLISH 192. Intermediate Poetry Writing — May be taken twice. Lottery. Priority to last quarter/year in school, majors in English with Creative Writing emphasis, and Creative Writing minors. Prerequisite: 92.
5 units, Aut, Win, Spr (Campion, Snider)

ENGLISH 290A. Advanced Fiction Writing — Promising fiction writers who have completed the 90 and 190 workshops engage in practical criticism, and the challenges of refining a short story, draft to draft. Students selected by instructor.
5 units, Win (Tallent), Spr (MacDonald)

ENGLISH 292. Advanced Poetry Writing — Promising student poets write poetry in an atmosphere of mutual aid. Students selected by instructor.
5 units, Spr (Campion)

ENGLISH 390. Graduate Fiction Workshop — For Stegner fellows in the writing program. May be repeated for credit. Prerequisite: consent of instructor.
3 units, Aut (L’Heureux), Win (Tallent), Spr (Wolff)

ENGLISH 392. Graduate Poetry Workshop — For Stegner fellows in the writing program. May be repeated for credit. Prerequisite: consent of instructor.
3 units, Aut (Fields), Win (Boland), Spr (Di Piero)

ADVANCED UNDERGRADUATE/GRADUATE

ENGLISH 235D. The Shelley Circle — Themes and preoccupations of Romantic-era novels and poetry by radical, scandalous, and path-breaking members of the Shelley circle including Mary Wollstonecraft, William Godwin, Mary Shelley, Percy Bysshe Shelley, Lord Byron, and John Keats. GER:DB-Hum
5 units, Spr (Gigante)

ENGLISH 251. Donne and His Contemporaries — The influence of Donne’s dramatic realism on poets of his time and modern poets such as Browning, Eliot, and Rich. How intellectual and cultural changes in Donne’s lifetime left their mark on his writing. GER:DB-Hum
5 units, Aut (Brooks)

ENGLISH 256. The Cantos of Ezra Pound — Pound’s efforts to renew English poetry, translate and adapt works from other languages, found the imagist and vorticist movements, and influence the cultural, aesthetic, economic, and political literature of the 20th century. His image of the poet as visionary who simultaneously attempts to write a poem containing history and paradise. Focus is on his modernist epic The Cantos, and his early works and prose. GER:DB-Hum
5 units, Win (Shliss)

ENGLISH 257. Imagism: The Bigger Picture — Imagism as a poetic movement whose tenets had an major impact on later poetry. Philosophical and historical contexts, reasons for its brief lifespan, and reverberations of its doctrines in modern poetry’s obsession with the ocular, images, and the shape of the poem on the page. Authors include T. E. Hulme, Pound, H. D. Moore, and Williams. GER:DB-Hum
5 units, Spr (Jenkins)

ENGLISH 271. History of the English Language — From origins in the Germanic dialects, through Old and Middle English, to modern English. The development of English as a literary language, relationships between political control and linguistic expression, and the historical impact of writing and reading on the forms of English.
5 units, Aut (Lerer)

ENGLISH 271B. Chaucer: Early Works — Chaucer’s early works including lyrics, allegorical dream visions, and Troilus and Criseyde. His experiments with literary form and tradition; gender, desire, history, and writing as his central concerns. Readings include critical and contextual materials that illuminate his classical and medieval literary sources, responses to late medieval culture, and society, and place in literary history.
5 units, Win (Summit)

ENGLISH 276. The Enigma of Victorianism — The bizarre and effective combination of ruthless capitalism and sentimental moralism typical of 19th-century Britain and 21st-century America. Why would a culture build a train station and cover it with the shell of a gothic cathedral? Can people believe in ethical statements contradicted by reality? Focus is on novels, poetry, melodramas, journalism, and essays.
5 units, Spr (Moretti)

ENGLISH 279D. James Joyce: Ulysses — Close reading.
5 units, Win (Bourbon)

ENGLISH 293. Literary Translation — Baudelaire, Rilke, Neruda, Celan, Pagis, Shakespeare, Keats, Dickinson, Whitman, Yeats, Eliot, Frost, and Duncan. Students present work in progress, discussing practical and theoretical questions.
5 units, Spr (Felstiner)

ENGLISH 296. Introduction to Critical Theory: Literary Theory and Criticism Since Plato — Required colloquium for incoming M.A. students. Major critical texts from Plato and Aristotle to Stanley Fish, focusing on issues such as mimesis, canonicity, evaluation, and interpretation.
5 units, Aut (Evans)
ENGLISH 300. The Pearl Poet—Four poems of the Cotton Nero A.x. manuscript: Pearl, Cleanse, Patience, and Sir Gawain and the Green Knight. Conceptual problems of category, aesthetics, and literary history that attend them.
5 units, Win (Justice)

ENGLISH 302. The History of the Book
5 units, Aut (Orgel)

ENGLISH 303F. Institutions of Enlightenment: The Invention of the Public Sphere—(Same as HISTORY 331A, COMPLIT 331C.) The cultural foundations of the Enlightenment as public space and its relationship to the private or intimate sphere. The invention and naturalization of fundamental institutions of the Enlightenment such as the public, the private, the market, public opinion, literature, the individual, society, culture, knowledge, and politics.
5 units, Aut (Bender)

ENGLISH 307C. Methods and Materials for the Study of Modern Literature—Tools, strategies, and sources for cultural analysis of literary works from the late 18th century to the 20th century. Novels by Sterne, Gaskell, and DeLillo introduce the non-literary signifying practices that constitute their respective social formations. Readings of these competing discourses include 18th-century newspapers and political cartoons, mid-Victorian parliamentary reports and conduct manuals, and American mass market magazines and documentary films.
5 units, Spr (Keogh)

ENGLISH 308A. Mark Twain—Journalism, travel books, novels, stories, sketches, and essays by Mark Twain; critical responses to his work from the 19th century to the present; and creative responses to his work by 20th-century writers in the U.S. and other countries such as Japan. How Twain and his critics engaged issues such as race and racism, anti-Semitism, imperialism, history, gender, technology, identity, and performance. Field trip to Mark Twain papers at Berkeley.
5 units, Spr (Fishkin)

ENGLISH 309. The Ethnic Bildungsroman and Historical Novel—(Same as COMPLIT 326C.) Can a case be made for defining the classical stage of minority novels in formal rather than thematic terms? The Bildungsroman as the novel of human emergence despite how a human being can emerge in diverse ways. Focus is on contemporary ethnic novels to establish a formal definition for ethnic and minority narratives in the historical mode.
5 units, Win (Saldivar)

SEMINARS

ENGLISH 311. British Women Novelists of the Twentieth Century, Excluding Woolf—Writers may include Rebecca West, Sylvia Townsend Warner, Elizabeth Bowen, Muriel Spark, Clemence Dane, Mary Butts, Kate O’Brien, Mary Renault, Jean Rhys, Maureen Duffy, and Iris Murdoch.
5 units, Win (Castles)

ENGLISH 314. Epic and Empire—(Same as COMPLIT 320A.) Focus is on Virgil’s Aeneid and its influence, tracing the European epic tradition (Ariosto, Tasso, Camoes, Spenser, and Milton) to New World discovery and mercantile expansion in the early modern period.
5 units, Spr (Parker)

ENGLISH 319. Realisms and Anti-Realisms—The strategies and aesthetics of representation in fiction and film. Foundational articulations of a realist aesthetic crossing political and generic divides. Georg Lukács, Erich Auerbach, and André Bazin, in relation to polemics against realism developed since the 60s. The significance of returning to these theories and to the idea of realism itself in the wake of poststructuralism and deconstruction.
5 units, Win (Woloch)

ENGLISH 334A. The Modern Tradition I—(Same as MTL 334A.) Preference to first-year students in Modern Thought and Literature and English. Texts that have formed the foundation for contemporary cultural and social theory including Kant, Hegel, Marx, Weber, Lukács, Nietzsche, Freud, and Heidegger.
5 units, Aut (Moya)

ENGLISH 361. Memoria: The Arts and Practices of Memory—Questions of memory at the forefront of research, from neurosciences to anthropology to literary studies, and the flood of memoirs and memories attest to the contemporary power of memory. Goal is to reclaim the canon of memoria for English and rhetoric studies. Sources include primary texts in the history of memory. The role of memory in writing and literature, focusing on the 20th century to the present.
5 units, Aut (Lunsford)

ENGLISH 363D. Identity, Experience, and Knowledge in Feminist Theory—Debates in contemporary feminist thought focusing on texts that interrelate identity, experience, and knowledge.
5 units, Win (Nair)

ENGLISH 365B. Antebellum American Literature and Culture—Interdisciplinary. Cultural production in the decades before the Civil War from furniture to literature.
5 units, Win (Fliegelman)

ENGLISH 366A. Explanation/Interpretation—(Same as COMPLIT 351.) What should literary critics and historians do: explain or interpret? What is the difference between these intellectual activities, and what is at stake in the choice of one over the other? Readings include Weber, Freud, Popper, Gadamer, Hempel, Douglas, Geertz, Szondi, and Panofsky.
5 units, Spr (Moretti)

ENGLISH 369. Literature and Visual Culture in 19th-Century Britain—Ethical, political, and aesthetic issues implicated by the rise of the museum, popular spectacles, photography and painting, novels and games, and traditional literary-artistic relations from Reynolds to Ruskin.
5 units, Aut (Rovee)

ENGLISH 369E. Postcolonial Theory and Practice—Postcoloniality as a contested term in literary and cultural theory. When, why, what, where, and how was the postcolonial? Theorists include Fanon, Said, Appiah, Moi, and Spivak. Bridging the gap between postcolonial theory and practice to discover its emancipatory potential.
5 units, Aut (Nair)

ENGLISH 369X. Introduction to Graduate Studies: Criticism as Profession—(Enroll in COMPLIT 369, GERLIT 369.)
5 units, Aut (Berman)

ENGLISH 373C. Who was Shakespeare?—Methods and materials of literary biography in the early modern period. Focus is on the life and work of Shakespeare.
5 units, Aut (Riggs)

ENGLISH 373D. Shakespeare, Islam, and Others—(Same as COMPLIT 311.) Shakespeare and other early modern writers in relation to new work on Islam and the Ottoman Turk in early modern studies. Othello, Twelfth Night, Titus Andronicus, The Merchant of Venice, and other Shakespeare plays. Kyd’s Solomon and Perseda, Daborne’s A Christian Turned Turk, Massinger’s The Renegado, Marlowe’s The Jew of Malta, and literary and historical materials.
5 units, Win (Parker)

ENGLISH 378. Emerson—His essays as literature and philosophy.
5 units, Win (Bourbon)

ENGLISH 381. Toni Morrison and the Occasion of Black Feminism—The acclaimed American novelist and literary critic. Sources include her novels, and literary and political criticism. Her role as a public intellectual. 20th-century black feminist theory and criticism.
5 units, Win (Elam)
ENGLISH 383. The Sublime and the Ugly—18th- and 19th-century aesthetics at the nexus of philosophy, science, literature, and theory. Categories include: the sublime and the beautiful; the ugly and the uncanny; the monstrous, deformed, and grotesque. Writers including Wordsworth, Coleridge, Mary Shelley, and John Polidori; philosophers and aesthetic theorists include Burke, Kant, Blumenbach, Freud, Adorno, and Zizek.

5 units, Spr (Gigante)

ENGLISH 388B. The Theory of the Text—(Enroll in COMPLIT 353.)
4-5 units, Win (White)

5 units, Spr (Heise)

WORKSHOPS AND DIRECTED READING

ENGLISH 394. Independent Study—Preparation for qualifying examination and for the Ph.D. oral examination.
1-10 units, Aut, Win, Spr, Sum (Staff)

ENGLISH 395. Ad Hoc Graduate Seminar—Three or more graduate students who wish in the following quarter to study a subject or an area not covered by regular courses and seminars may plan an informal seminar and approach a member of the department to supervise it.
1-5 units, Aut, Win, Spr, Sum (Staff)

ENGLISH 396. Introduction to Graduate Study for Ph.D. Students—For incoming Ph.D. students. The major modes of research, criticism, and theory at work in the discipline of English studies.
5 units, Aut (Jones)

ENGLISH 396L. Pedagogy Seminar I—(Same as COMPLIT 396L.)
Required for first-year Ph.D. students in English, Modern Thought and Literature, and Comparative Literature (except for Comparative Literature students teaching in a foreign language). Preparation for surviving as teaching assistants in undergraduate literature courses. Focus is on leading discussions and grading papers.
2 units, Aut (Lerer)

ENGLISH 397A. Pedagogy Seminar II—Apprenticeship for second-year graduate students in English, Modern Thought and Literature, and Comparative Literature who teach in the Program in Writing and Rhetoric. Each student is assigned as an apprentice to an experienced teacher and sits in on classes, conferences, and tutorials, with eventual responsibility for conducting a class, grading papers, and holding conferences. Meetings explore rhetoric, theories and philosophies of composition, and the teaching of writing. Each student designs a syllabus in preparation for teaching PWR 1.
1 unit, Aut (Lansford)

ENGLISH 398. Research Course—A special subject of investigation under supervision of a member of the department. Thesis work is not registered under this number.
1-18 units, Aut, Win, Spr, Sum (Staff)

ENGLISH 398R. Revision and Development of a Paper—Students revise and develop a paper under the supervision of a faculty member with a view to possible publication.
5 units, Aut, Win, Spr, Sum (Staff)

ENGLISH 399. Thesis
1-10 units, Aut, Win, Spr, Sum (Staff)

OVERSEAS STUDIES
Courses approved for the English major and taught overseas can be found in the “Overseas Studies” section of this bulletin, or in the Overseas Studies office, 126 Sweet Hall.

OXFORD

ENGLISH 114Z. English Literature: 1509-1642
5 units, Aut (van Es)

ENGLISH 116Z. Restoration Literature, 1642-1740
5 units, Win (Bullard)

ENGLISH 154Z. English Literature, 1740-1832
5 units, Spr (Plaskitt)

ENGLISH 163X. Shakespeare
5 units, Aut, Win (Groves)

ENGLISH 174X. The Rise of the Novel
5 units, Spr (Plaskitt)

PARIS

ENGLISH 150X. Gardens of Earthly Delight: Landscape, Culture, and Social Spaces in France—(Same as COMPLIT 150X.)
4 units, Spr (Saldivar)
PROGRAM IN ETHICS IN SOCIETY

Director: Debra Satz (Philosophy)

Steering Committee: Eamonn Callan (Education), Arnold Eisen (Religious Studies), John Ferejohn (Political Science), Barbara Fried (Law School), Agnieszka Jaworska (Philosophy), Scotty McLennan (Dean of Religious Life), Rob Reich (Political Science), Eric Roberts (Computer Science), Debra Satz (Philosophy), Allen Wood (Philosophy), Lee Yearley (Religious Studies)

Affiliated Faculty: Kenneth Arrow (Economics, emeritus), Donald Barr (Sociology), Barton Bernstein (History), Michael Bratman (Philosophy), Albert Camarillo (History), Nadeem Hussain (Philosophy), David Kennedy (History), Tamar Schapira (Philosophy), David K. Stevenson (Pediatrics), Sylvia Yanagisako (Cultural and Social Anthropology)

Mail Code: 94305-2155
Phone: (650) 723-0997
Email: joanieb@stanford.edu
Web Site: http://ethicsinsociety.stanford.edu

Courses given in Ethics in Society have the subject code ETHICSOC. For a complete list of subject codes, see Appendix B.

The Program in Ethics in Society is designed to foster scholarship, teaching, and moral reflection on fundamental issues in personal and public life. The program is grounded in moral and political philosophy, but it extends its concerns across a broad range of traditional disciplinary domains. The program is guided by the idea that ethical thought has application to current social questions and conflicts, and it seeks to encourage moral reflection and practice in areas such as business, international relations, law, medicine, politics, and science.

Current and planned initiatives of the program include:
1. Supporting and fostering ethics research.
2. Supporting innovative teaching focusing on the ethical dimensions relevant to the different disciplines across the curriculum.
3. Establishing a yearly faculty-graduate seminar focusing on topics in ethics and public life.
4. Ethics@Noon, a weekly discussion by faculty, students, and staff on topics of ethical concern.

The program also sponsors several annual public lecture series, including the Tanner Lectures in Human Values and the Wesson Lectures in Problems of Democracy.

Students interested in pursuing studies that bring moral and political theory to bear on issues in public life should consult the director. There are many course offerings at Stanford that address moral and political questions. Not all of these courses are crosslisted with the Program in Ethics in Society. Students should consult the director to determine whether such courses may be applied towards an Ethics in Society honors program or minor.

UNDERGRADUATE PROGRAM HONORS

The honors program in Ethics in Society is open to majors in every field and may be taken in addition to a department major. Students should apply for entrance at the end of Spring Quarter of the sophomore year or no later than the beginning of the Autumn Quarter of the junior year. Applicants should have a cumulative grade point average (GPA) of 3.3 (B+) or higher. They should also maintain this minimum average in the courses taken to satisfy the requirements.

Requirements —
1. Required courses (at least one of a or b must be taken at the 100 level):
 a) ETHICSOC 20. Introduction to Moral Theory, or ETHICSOC 170. Ethical Theory: normally taken in the sophomore year.
 b) ETHICSOC 30. Introduction to Political Philosophy, or ETHICSOC 171. Political Philosophy: normally taken in sophomore year.
 c) ETHICSOC 77. Methodology in Ethics: Translating Theory into Practice: normally taken after the moral and political philosophy classes listed above.
2. One 4- or 5-unit undergraduate course on a subject approved by the honors adviser, designed to encourage students to explore those issues in Ethics in Society that are of particular interest to them. Courses of relevance to the Program in Ethics in Society are offered by members of the program committee and by other departments. Students may also take a course with the honors thesis in mind. To promote a broad interdisciplinary approach, this elective should normally be outside the Department of Philosophy. Students are not restricted to choosing from the sample of such courses included below.
3. ETHICSOC 190. Honors Seminar.
4. ETHICSOC 200A,B. Honors Thesis, on a subject approved by the honors adviser, with the work spread over two quarters.

A typical student takes ETHICSOC 20 or 170 and 30 or 171 in the sophomore year. Upon admission to the honors program as a junior, he or she takes ETHICSOC 190 in the Winter Quarter, ETHICSOC 77 in the Spring Quarter, and requirement 2 (the optional subject) at any time during the junior year, or possibly Autumn Quarter of the senior year. The honors thesis is normally written during the Autumn and Winter quarters of the senior year. Courses taken to fulfill the Ethics in Society honors requirement may be double-counted for Philosophy and other majors; Ethics in Society minors may not double count courses.

MINORS

The Ethics in Society minor is open to students in any department who wish to explore moral issues in personal and public life. Students must declare the minor on Axess no later than the last day of Autumn Quarter of their senior year, although they are strongly advised to declare sooner. The student should discuss the minor with an adviser chosen from the Ethics in Society faculty list, and prepare a draft proposal that includes a list of courses planned to fulfill the requirements and the name of the faculty adviser.

A minor in Ethics in Society requires six courses for a minimum of 25 and a maximum of 30 units toward the minor.

Requirements —
1. Three Ethics in Society courses:
 a) ETHICSOC 20. Introduction to Moral Theory, or ETHICSOC 170. Ethical Theory
 b) ETHICSOC 30. Introduction to Political Philosophy, or ETHICSOC 171. Political Philosophy
 c) ETHICSOC 77. Methodology in Ethics: Translating Theory into Practice
2. Two courses at the 100 level or above that address some dimension of moral or political theory or practice.
3. One course at the 200 level or above that addresses a moral or political problem, in either theory or practice.

The 100-level and 200-level courses should be focused around a central theme such as biomedical ethics, ethics and economics, ethics and politics, or environmental ethics. The courses at the 100 and 200 level are normally taken after completion of ETHICSOC 20 and 30.

Subject to the approval of the Director of the Ethics in Society Program, a course covering similar subject matter in another department or program may be substituted for ETHICSOC 20/170 or 30/171. No course credited to the ETHICSOC minor may be double-counted toward major requirements.

CITIZENSHIP OPTION

The citizenship option for the minor introduces students to the theory, history, and practice of citizenship in democracies. When a student declares the minor in EIS on Axess, no notation is made of the citizenship option, and this notation does not appear on transcripts or the diploma. All students taking the citizenship option must take ETHICSOC 198, Community Engagement Internship. In addition to the courses listed in (1) above, students must take a total of three additional classes from a total of two of the following categories. Students may petition to have other relevant courses counted towards the minor.
ETHICSOC 108. Ethics and the Professions — Ethical challenges facing professionals in society. Readings and case studies. Individual moral obligations in relation to obligations as professionals. Topics: conflict of interest, client/professional privilege, and use of confidential information. Focus is on medicine, law, engineering, and ethical issues common to all professions.

4 units (Staff) not given 2005-06

ETHICSOC 131. Children’s Citizenship: Justice Across Generations — (Same as POLISCI 131.) The development of children into citizens, focusing on major social institutions responsible for their civic education: schools, families, communities, and civil society. How does each institution develop citizenship? What is the relationship between civic education and the reproduction of social equality or inequality? Do children’s rights differ from those of adults? Readings: political theorists on justice, feminist theorists on family and children, court cases on tensions between the state and community interest in education, and social critics on the practice of civic education. GER:DB-SocSci

5 units, Spr (Reich)

ETHICSOC 133. Ethics and Politics in Public Service — (Same as POLISCI 133.) Primarily for freshmen and sophomores who participate or intend to participate in service activities through the Haas Center or register for courses with service learning components. The basis for a connection between an undergraduate’s service activities and academic experiences at Stanford. What does it mean to do public service? Why should or should not citizens do volunteer work? Is public service a good thing? The history, hazards, responsibilities, and dilemmas of doing public service. Historical context of public service work in the U.S., including ethical concerns involved with service. GER:DB-SocSci

5 units, Aut (Reich)

ETHICSOC 170. Ethical Theory — (Same as PHIL 170/270.) Major strands in contemporary ethical theory. Readings include Bentham, Mill, Kant, and contemporary authors. GER:DB-Hum

4 units, Spr (Jaworska)

ETHICSOC 171. Political Philosophy — (Same as PHIL 171/271.) Questions about a just society. Which liberties should a just society protect: economic, political, expressive? What sorts of equality should a just society ensure: opportunity, outcome, economic, political? Can a just society ensure both liberty and equality? Focus is on answers from rival, contemporary theories of justice: utilitarianism, libertarianism, and egalitarian liberalism. GER:DB-Hum, EC-EthicReas

4 units, Win (Satz)

ETHICSOC 190. Ethics in Society Honors Seminar — (Same as PHIL 178.) For students planning honors in Ethics in Society. Methods of research. Students present issues of public and personal morality; topics chosen with advice of instructor.

3 units, Win (Reich)

ETHICSOC 198. Community Engagement Internship — Opportunities for students to engage in community work via the Haas Center for Public Service. Students work with Haas Center staff to design an internship for students to engage in community work via the Haas Center. Historical context of public service work in the U.S., including ethical concerns involved with service. GER:DB-SocSci

3-5 units, Aut, Win, Spr, Sum (Cotterman)

ETHICSOC 199. Independent Studies in Ethics in Society

1-15 units, Aut, Win, Spr, Sum (Staff)

ETHICSOC 200A,B. Ethics in Society Honors Thesis — Limited to Ethics in Society honors students, who may enroll once in A and once in B.

1-5 units, Aut, Win, Spr, Sum (Staff)
INTERDEPARTMENTAL OFFERINGS

AMERICAN STUDIES
AMSTUD 221. Public and Professional Service: Theories and Ethical Practice of Public and Community Service
3 units, Spr (Stanton)

ANTHROPOLOGICAL SCIENCES
ANTHSCI 178. Contagion and Conflict
3-5 units (R. Barrett) not given 2005-06
ANTHSCI 191B/291B. Conduct and Misconduct in Science
3-5 units, Win (DeGusta)

ARCHAEOLOGY
ARCHLGY 103. History of Archaeological Thought
5 units, Spr (Meskell)

CLASSICS, GENERAL
CLASSGEN 317. The Professional Classicist
3-5 units, Aut (Gleason)

COMMUNICATION
COMM 131/231. Media Ethics and Responsibilities
4-5 units (Glasser) not given 2005-06
COMM 236G. Democracy, Justice, and Deliberation
1-5 units (Fishkin) not given 2005-06

COMPUTER SCIENCE
CS 201. Computers, Ethics, and Social Responsibility
3-4 units, Spr (Johnson)

CULTURAL AND SOCIAL ANTHROPOLOGY
CASA 90. Theory of Cultural and Social Anthropology
5 units, Win (Ebron)
CASA 108. History of Archaeological Thought
5 units, Spr (Meskell)
CASA 185/285. Environmental Ethics
5 units, Win (Gupta)

DRAMA
DRAMA 161/261. Performance and Politics
5 units (Rehm) not given 2005-06

ECONOMICS
ECON 224. Science, Technology, and Economic Growth
2-5 units, Win (David)

FRENCH
FRENGEN 258E. Foundations of Nanoethics: Toward a Rapprochement between Europe and the U.S.
3-5 units, Spr (Dupuy)

HISTORY
HISTORY 236. The Ethics of Imperialism
5 units, Aut (Daughton)
HISTORY 243G/343G. Tobacco and Health in World History
5 units, Aut (Proctor)
HISTORY 259A.B. Poverty and Homelessness in America
5 units (Camarillo) not given 2005-06

PHILOSOPHY
PHIL 174/274. Freedom and the Practical Standpoint
4 units, Aut (Ferrero)
PHIL 377. Topics in Democratic Theory
3-5 units (Ferejohn, Satz) alternate years, given 2006-07

POLITICAL SCIENCE
POLISCI 1. Introduction to International Relations
5 units, Aut (Tomz)
5 units, Win (Sagan, Blacker, Perry)
POLISCI 130B/330B. History of Political Thought II: Early Modern Political Thought, 1500-1700
5 units, Win (Adcock)
POLISCI 130C/330C. History of Political Thought III: Freedom, Democracy, and Power
5 units, Spr (Stone)
POLISCI 131. Children’s Citizenship: Justice Across Generations
5 units, Spr (Reich)
POLISCI 143. Nongovernmental Organizations and Development in Poor Countries
5 units, Spr (Abernethy)

PSYCHOLOGY
PSYCH 179/270. The Psychology of Everyday Morality
4 units (Monin) not given 2005-06

SCIENCE, TECHNOLOGY, AND SOCIETY
STS 110. Ethics and Public Policy
5 units, Win (McGinn)

SOCIOLOGY
SOC 141A/241A. Social Class, Race, Ethnicity, Health
5 units, Win (Barr)

FEMINIST STUDIES
Director: Penelope Eckert
Program Committee: Jo Boaler (Education), Benjamin Davidson (LGBT Community Resource Center), Penelope Eckert (Linguistics), Heather Hadlock (Music), Laura Harrison (Women’s Community Center), Miyako Inoue (CASA), Andrea Lunsford (English), Londa Schiebinger (History), Elizabeth Tallent (English)

Resource Faculty and Staff:
Anthropological Sciences: Melissa Brown
Art and Art History: Wanda Corn, Pamela Lee, Melinda Takeuchi
Asian Languages: Yoshiko Matsumoto
Biological Sciences: Joan Roughgarden
Business: Sonya Grier, Joanne Martin
Classics: Maud Gleason, Susan Stephens, Yasmin Syed
Comparative Literature: Patricia Parker
Cultural and Social Anthropology: Carol Delaney, Paulla Ebron, Akhil Gupta, Miyako Inoue, Sarah Jain, Matthew Kohnman, Purnima Mankekar, Barbara Voss, Sylvia Yanagisako
Developmental Biology: Ellen Porzig
Drama: Harry J. Elam, Cherrie Moraga, Peggy Phelan
Education: Jo Boaler, Susanna Loeb, Myra Strober, Joy Williamson
English: Eavan Boland, Terry Castle, Michele Elam, Andrea Lunsford, Paula Moya, Siânne Ngai, Stephen Orgel, Ramón Saldívar, Jennifer Summit, Elizabeth Tallent
Feminist Studies: Kathleen Coll, Susan Krieger, Valerie Miner
French and Italian: Carolyn Springer
German Studies: Russell Berman, Kathryn Strachota
The Program in Feminist Studies is an interdisciplinary undergraduate program offering students the opportunity to investigate the significance of gender and sexuality in all areas of human life from the study of women and medicine to the study of transgender issues. Feminist analysis assumes that gender is a central factor in the organization of society, and that definitions of gender, sex, and sexuality do not stem from nature but are social constructions. As such, they vary across time and place, have strong ideological underpinnings, and serve political ends. The courses offered by the program use feminist perspectives to expand and reevaluate the assumptions at work in traditional disciplines in the study of individuals, cultures, social institutions, policy, and other areas of scholarly inquiry.

The Program in Feminist Studies coordinates the courses offered on women, gender, sexuality, and feminism throughout the University and facilitates the undergraduate major and minor in Feminist Studies. In addition, it encourages feminist analysis and teaching at Stanford, both in courses within the program and those housed within departments.

The program committee awards the annual Michelle Z. Rosaldo and Francisco Lopes prizes for the best undergraduate essays on women, gender, or feminism. The prizes are awarded in two divisions: a thesis division for senior honors theses and master’s papers written by undergraduates in coterminous degree programs, and an essay division. The Rosaldo prizes are awarded for the best work in the social sciences and the Lopes prizes for the best work in the humanities. Submissions are due in the Feminist Studies office April 3 for essays and May 12 for theses. Essays and theses completed later in Spring or Summer Quarter may be submitted for consideration the following year.

UNDERGRADUATE PROGRAMS

Curriculum guidelines, the Feminist Studies Handbook, and forms for the major, minor, and honors are available at the Feminist Studies office in Serra House or at http://feminist.stanford.edu. Students interested in majoring, minoring, or doing honors in Feminist Studies should consult the program administrator.

BACHELOR OF ARTS

The major in Feminist Studies may be taken as a single major, as one of multiple majors, or as a secondary major. If taken as one major of multiple majors, none of the 60 units counted toward the major in Feminist Studies may overlap with units counted toward the major in another department or program. If taken as a secondary major, up to 30 of the units counted toward the Feminist Studies major may also be counted as fulfilling the major requirements in another department or program if that department or program consents. A maximum of 10 of the 60 units for the major may be taken on a credit/no credit or satisfactory/no credit basis; a maximum of 10 may be taken as independent study or directed reading. FEMST core courses must be taken for letter grade.

The major should normally be declared by the beginning of a student’s junior year. Majors should choose two faculty advisers from the list of resource faculty, one of whom is usually the director of the Feminist Studies program. Faculty advisers work closely with the student in helping design an appropriate program of study. A proposal explaining the rationale for the plan of study and signed by both advisers must be submitted to the program office to declare the major.

CURRICULUM

The major in Feminist Studies includes a total of at least 12 courses at the 100 level or above for 60 units, plus a practicum. The courses are divided among the core and the focus, plus electives (crosslisted courses in Feminist Studies) to reach the total course requirement.

THE CORE

1. FEMST 101. Introduction to Feminist Studies. This course must be taken before 102 and 103.
2. FEMST 102. Feminist Theory. There may be several offerings in a given year.
3. FEMST 103. Feminist Methodologies. There may be several offerings in a given year.
4. One Feminist Studies course in the social sciences. Courses that fulfill this requirement can be found among courses listed under Anthropological Sciences, Communication, Cultural and Social Anthropology, Education, History, Human Biology, Law, Medicine, Political Science, Psychology, and Sociology.
5. One Feminist Studies course in the humanities. Courses that fulfill this requirement can be found among courses listed in English, Linguistics, Philosophy, Religious Studies, the arts, and languages.

THE FOCUS

Every student designs a thematic focus consisting of at least 5 courses:
1. At least three of the focus courses should be Feminist Studies courses or be selected from the list of interdepartmental offerings.
2. At least one course should be a major survey, methodology, or theory course offered by a department or interdepartmental program as an initiation into the practice of study in the field.
3. The focus should be designed in consultation with the student’s adviser. The following are examples of common focuses, but students are also encouraged to develop new focuses:

Crosscultural Perspectives on Gender
Feminist Perspectives on Science, Technologies, and Health
Gender and Education
Gender and Popular Culture
Gender in Language and Symbol
Medieval Gender Studies
Queer Studies
Women and Health
Women and Modernity
Women and Religion
Women and Work

WRITING IN THE MAJOR

Every student must complete the writing in the major (WIM) requirement. See the Feminist Studies Handbook for more details.

PRACTICUM

A practicum, in addition to the 60 units for the major, is required in order to bring together theory and practical, real-world experience. The practicum, taken for 3 to 6 units, should involve field research, community service, or other relevant experience such as a public service internship. Students plan their practicum (normally in the Winter and Spring quarters of their junior year) with the help of the Feminist Studies mentor in the major. The practicum is followed by FEMST 104 (2-4 units) which provides follow-up and reflection.
MINORS

Students interested in minoring in Feminist Studies should consult the program administrator. The minor proposal should be drafted in discussion with a faculty adviser selected from the Feminist Studies resource faculty list.

The minor in Feminist Studies consists of at least six courses, for a minimum of 30 and a maximum of 36 units. None of the units for the minor may count towards the student’s major. The minor in Feminist Studies should be declared by the Winter Quarter of a student’s junior year.

Requirements —
1. FEMST 101. Introduction to Feminist Studies. This must be taken before 102 or 103.
2. FEMST 102. Feminist Theory, or FEMST 103. Feminist Methodologies

FOCUS

A four-course thematic focus may be designed by the student or may follow one of the suggested clusters listed above. One course within the thematic focus should address crosscultural issues.

HONORS CERTIFICATION

FEMINIST STUDIES MAJORS/MINORS

Admission — The honors program offers an opportunity to do independent research for a thesis of superior academic quality. It is open to students with a grade point average (GPA) of 3.3 or better in course work in Feminist Studies. Normally, students must apply for honors certification by the end of the junior year. To apply, students should design a project in consultation with their major or minor adviser and the Feminist Studies honors tutor. A proposal describing the project and the number of units to be awarded must be submitted to the director of the program for final approval. See the Feminist Studies Handbook for details.

Requirements —
1. In addition to the normal requirements for the major, students enroll in FEMST 105 for 10-15 units towards the preparation of the honors thesis, and one unit of directed research with the director of the program which is granted for satisfactory attendance at meetings conducted by the honors tutor throughout the year.
2. Throughout the senior year, students work with faculty advisers and the Feminist Studies honors tutor. The final thesis must be submitted by May 31 and be of acceptable quality to the student’s faculty advisers. Creative projects of high intellectual caliber are eligible if they contain a section of scholarly analysis.

MAJORS IN OTHER DEPARTMENTS

Honors certification in Feminist Studies for majors in other departments or programs, as distinguished from honors for students pursuing a major in Feminist Studies, is intended to complement study in any major. See the Feminist Studies Handbook for further details.

Admission — Honors certification is open to students majoring in any field with a GPA of 3.3 or better.

As a prerequisite, students must have completed the following courses with a grade of (B+) or better:
1. FEMST 101 and a core theory course
2. or three Feminist Studies courses related to the topic of their proposed honors research.
3. and 1 unit of directed research with the director of the program which is granted for satisfactory attendance at meetings conducted by the honors tutor throughout the year.

To apply, students must first consult the Director of the Program in Feminist Studies outlining the plan for course work, the rationale for the program, and an honors project. Students must apply for honors by the end of the junior year. The chair acts as one of the student’s faculty advisers, along with the faculty member(s) who advise the thesis.

Requirements — Students enroll in FEMST 105 for 10-15 units. The final thesis must be submitted by May 31, and must be of acceptable quality to the student’s faculty advisers. Creative projects of high intellectual caliber are eligible if they contain a section of scholarly analysis.

COURSES

WIM indicates that the course satisfies the Writing in the Major requirement.

Courses listed in Interdepartmental Offerings pay significant attention to gender difference, the situation of women in Western or non-Western cultures, or the role of sex-gender systems in social organization. Updated listings, including courses not offered 2005-06, are available at the Feminist Studies office and at http://feminist.stanford.edu.

FEMINIST STUDIES COURSES

FEMST 14N. Women Making Music — Stanford Introductory Seminar. Preference to freshmen. Women’s roles as composers and performers across history and cultures. Music from diverse cultures, styles, and eras as a medium for women to express individuality and build community. Women’s musical activities in folk and art music of Japan, India, Ireland, and Albania; women in popular music in America, Egypt, and Africa; female musicians of the medieval, Renaissance, Romantic, and contemporary eras. GER:DB-Hum, EC-Gender
3 units (Hadlock) not given 2005-06

4 units, Spr (Robinson)

FEMST 84Q. Shakespeare, Playing, Gender — Stanford Introductory Seminar. Preference to sophomores. Focus is on several of the best and lesser known plays of Shakespeare, on theatrical and other kinds of playing, and on ambiguities of both gender and playing gender. Topics: transvestism inside and outside the theater, medical and other discussions of sex changes from female to male, hermaphrodites, and fascination with the monstrous. GER:DB-Hum, EC-Gender
3 units, Win (Parker)

FEMST 87Q. Women and Aging — Stanford Introductory Seminar. Biology, diseases, demographics, and politics of aging; relationships and sexuality; wise women and grandmothers; lifestyles and scientific articles, fiction, art, and film. Students write a research paper or participate in a service learning experience with older women. GER:EC-Gender
4 units, Win (Winograd)

FEMST 92Q. International Women’s Health and Human Rights — Stanford Introductory Seminar. Preference to sophomores. Focus is on women in poorer countries. Issues include women’s status, poverty, violence, and unequal access to education, food, and health care. Maternal mortality, sexually transmitted diseases, refugee situations, traditional practices affecting women’s and girls’ health, trafficking and prostitution, and women’s roles as they age. Readings include materials from women’s organizations outside the U.S. GER:EC-Gender
3 units, Aut (Firth-Murray)

FEMST 95Q. Gender, Culture, and HIV/AIDS — Stanford Introductory Seminar. Preference to sophomores. Issues include individual HIV risk, societal vulnerability, and gender. Sources include web resources, primary research, and research data on HIV/AIDS including the National Health and Social Life Survey (NHLS). Student presentations. GER: EC-Gender, WRITE-2
4 units, Win (Brown, Amarillas)

FEMST 101. Introduction to Feminist Studies — How gender inequality is created and perpetuated, and how feminist theory and movements respond to it. Theories of inequality; history of feminism; international and multicultural perspectives on feminism; women’s work, health, and sexuality; creativity; spirituality; and movements for social change. GER: DB-SocSci, EC-Gender
5 units, Win (Coll)
FEMST 102L. Feminist Theories of Work and Families—(Same as EDUC 196.) Economic, sociological, and legal perspectives; mainstream and feminist theories are contrasted. Emphasis is on the present day U.S. with issues in other countries and/or other historical periods. Topics: labor force participation, occupational segregation, labor market discrimination, emotional labor, unpaid work, caring labor, child care, combining work and family, single-parent families, poverty, marriage, and divorce.
4-5 units (Strober) not given 2005-06

FEMST 103/203. Feminist Theories and Methods Across the Disciplines—(Graduate students register for 203.) The interdisciplinary foundations of feminist thought, and the nature of disciplines and of interdisciplinary work. The challenges of feminism for scholarship and research, taught by a Feminist Studies resource faculty member from the discipline in question. WIM
4-5 units, Win (Longino)

FEMST 104. Practicum/Senior Seminar—For Feminist Studies majors only. Students present oral reports on the relation of the practicum to their academic work, submit a draft and revised written analysis of the practicum, and discuss applications of feminist scholarship.
2-4 units, Aut (Coll)

FEMST 105. Honors Work
1-15 units, Aut, Win, Spr, Sum (Staff)

FEMST 108. Internship in Feminist Studies—For non-majors. Augments course work in Feminist Studies with a supervised field, community, or lab experience in law offices, medical research and labs, social service agencies, legislative and other public offices, or local and national women’s organizations. One unit represents approximately three hours work per week during a 10-week quarter. Required paper. See application form on the Feminist Studies web site. Prerequisites: course in Feminist Studies, consent of program office, written consent of faculty sponsor.
1-15 units, Aut, Win, Spr, Sum (Staff)

FEMST 117. Gender, Violence, and the Body in Ancient Religion—The sex-gender system of ancient Greece. How did polarization of the sexes become a master metaphor for power struggles between husbands and wives, among men, and among parts of the self? How did religious activity, including drama, mitigate or intensify the stresses of living in a society polarized along gender lines? GER:DB-Hum, EC-Gender
3-4 units, Spr (Gleason)

FEMST 120. Introduction to Queer Studies—Gay, lesbian, bisexual, transgender, transsexual, and queer political movement and theory; sexual identities and feminism; sexual identities and cultural representation; alternative family practices; queer theory in academia. Film screenings, guest speakers, and community field trips. GER:EC-Gender
4-5 units, Win (Phelan)

FEMST 139. Rereading Judaism in Light of Feminism—During the past three decades, Jewish feminists have asked new questions of traditional rabbinic texts, Jewish law, history, and religious life and thought. Analysis of the legal and narrative texts, rituals, theology, and community to better understand contemporary Jewish life as influenced by feminism. GER:EC-Gender
4-5 units, Spr (Karlin-Neumann)

4-5 units, Win (Rivers)

FEMST 140K. Transnational Feminisms: Women’s Struggles in Global Perspective—Feminist approaches to resistance and power. Uneven forms of oppression; everyday struggles of women of color. Who writes history; about whom is it written? How do silences speak of the subjects of history? Narratives of the self through theory and ethno-
CLASSICS
CLASSGEN 117. Gender, Violence, and the Body in Ancient Religion
3-4 units, Spr (Gleason)

CULTURAL AND SOCIAL ANTHROPOLOGY
CASA 88. Theories in Race and Ethnicity
5 units, Aut (Yanagisako)

CASA 110. Crosscultural Perspectives on Women in Islam
5 units, Spr (Ameeriar)

CASA 118/218. Literature, Politics, and Gender in Africa
5 units (Maliki) not given 2005-06

CASA 132. Science, Technology, and Gender
3-5 units (Jain) not given 2005-06

CASA 144/244. Sex, Blood, Kinship, and Nation
5 units (Delaney) not given 2005-06

CASA 145A/245A. Poetics and Politics of Caribbean Women’s Literature
5 units, Aut (Duffey)

CASA 183D/283D. Border Crossings and American Identities
5 units, Win (Duffey)

CASA 346A. Sexuality Studies in Anthropology
5 units (Mankekar, Voss) not given 2005-06

DANCE
DANCE 160. Performance, Dance History, and Gender
4 units, Win (Ross)

DANCE 161. Dance and Live Art in the Twentieth Century
4 units, Spr (Ross)

DRAMA
DRAMA 11N. Dancing Couples as a Lens on American Culture, 1890-1950
4 units, Aut (Ross, Powers)

DRAMA 163/263. Performance and America
5 units, Aut (Elam)

DRAMA 164/264. Performance and Gender
5 units, Spr (Phelan)

EDUCATION
EDUC 197. Education and the Status of Women: Comparative Perspective
4-5 units (Staff) not given 2005-06

EDUC 201. History of Education in the United States
3-4 units, Win (Williamson)

EDUC 201B. Education for Liberation
3-4 units, Aut (Williamson)

EDUC 273. Gender and Higher Education
5 units, Win (Strober)

ENGLISH
ENGLISH 150D. Women Poets
5 units, Spr (Boland)

HISTORY
HISTORY 144/344. The History of Women and Gender in Science
5 units (Schiebinger) not given 2005-06

HISTORY 161. U.S. Women’s History, 1890s-1900s
5 units, Spr (Freedman)

5 units, Spr (Lougee Chappell)

HISTORY 221B. The Woman Question in Modern Russia
5 units, Win (Jolluck)

HISTORY 227/327. East European Women and War in the 20th Century
5 units, Aut (Jolluck)

HISTORY 258/358. History of Sexuality in the U.S.
5 units, Aut (Freedman)

HISTORY 295J/395J. Chinese Women’s History
5 units, Spr (Sommer)

HISTORY 298A/398A. Modernizing Women in Japan
5 units (Wigen) not given 2005-06

HUMAN BIOLOGY
HUMBIO 108. Boys’ Psychosocial Development
4 units, Spr (Chu)

HUMBIO 123. Adolescent Sexuality
3 units, Spr (Brown)

HUMBIO 126. Adolescent Development
4 units, Win (S. Feldman)

HUMBIO 169. Critical Issues in International Women’s Health
4 units, Win (Firth-Murray)

LINGUISTICS
LINGUIST 156. Language and Gender
4 units, Win (Eckert)

POLITICAL SCIENCE
POLISCI 141. The Global Politics of Human Rights
5 units, Win (Karl)

PSYCHOLOGY
PSYCH 162. The Psychology of Gender
4 units (Carstensen) not given 2005-06

RELIGIOUS STUDIES
RELIGST 112. Handmaids and Harlots
4 units (Leveen, Pitkin) not given 2005-06

RELIGST 156/356. Goddesses and Gender in Indian Religion
4 units (Hess) not given 2005-06

RELIGST 172. Sex, Body, and Gender in Medieval Religion
4 units, Spr (Gelber)

SOCIOLOGY
SOC 142/242. Sociology of Gender
5 units, Aut (Mollborn)

SPANISH LITERATURE
SPANLIT 194. Women in Film and Film by Women: A Different Gaze?
3-5 units, Aut (Haro)

SPANLIT 283/383. Chicana Feminism
3-5 units, Spr (Yarbro-Bejarano)
FINANCIAL MATHEMATICS

Director: Tze Leung Lai
Core Faculty:
Business: D. Duffie, J. M. Harrison, K. Singleton
Economics: T. Amemiya, F. Hansen, M. Kurz, J. Shoven
Electrical Engineering: T. Cover
Management Science and Engineering: K. Giesecke, P. Glynn, D. Luenberger, J. Primbs
Mathematics: S. Brendle, A. Dembo, P. Diaconis, V. Durrleman, G. Papanicolaou
Steering Committee:

This is an interdisciplinary program that aims to provide a master’s level education in applied and computational mathematics, statistics, and financial applications to individuals with strong mathematical skills.

The departments of Mathematics and Statistics, in close cooperation with the departments of Economics, and Management Science and Engineering, as well as the Graduate School of Business, provide many of the basic courses.

GRADUATE PROGRAMS
MASTER OF SCIENCE

The program requires that the student take 45 units of work. Of these 45 units of work, 12 courses must be taken from the offerings provided on the lists of required and elective courses. Ordinarily, four quarters are needed to complete all requirements.

Admission — To be eligible for admission, students are expected to have taken the following courses or their equivalent:
1. Linear algebra at the level of MATH 103.
2. Advanced calculus (real analysis) at the level of MATH 115.
3. Basic ordinary and partial differential equations at the level of MATH 131 and 132 (basic partial differential equations).
4. Probability at the level of STATS 116; theory of statistics at the level of STATS 200; and stochastic processes at the level of STATS 217 or, preferably, MATH 136.
5. Computer programming at the level of CS 106A.

Some of these courses are offered as summer courses and may be taken by candidates lacking the required background.

Candidates for admission must take the general Graduate Record Examination and preferably the subject test in Mathematics. Information about this exam can be found at http://www.gre.org.

Requirements — For the M.S. degree in Financial Mathematics, students must fulfill six of the following required courses:
1. In stochastic processes and statistics:
 a) MATH 236. Introduction to Stochastic Differential Equations
 b) STATS 240. Statistical Methods in Finance or ECON 275. Time Series and Simultaneous Equation
2. In differential equations, simulation, and computing:
 a) MATH 220B. Partial Differential Equations of Applied Mathematics
 b) MATH 239. Computation and Simulation in Finance
3. In finance and economics:
 a) MATH 180. Introduction to Financial Mathematics or MS&E 242. Investment Science or FINANCE 620 (offered by GSB; contact GSB for description). Introduction to Financial Economics
 b) MATH 238/STATS 250. Mathematical Finance

Courses that are equivalent to the above and have been taken previously may be waived by the adviser, in which case they must be replaced by elective courses in the same subject area.

In addition, students must take at least six approved elective courses from a list that can be found on the website at http://finmath.stanford.edu/. With the approval of the instructor, credit can be obtained for practical training in industry. Students must sign up for MATH 201 (not given 2005-06) or STATS 297 and write a detailed report in order to receive credit.

A seminar in Financial Mathematics is an integral part of the program and an opportunity to interact with leading academic and industry speakers (for credit, enroll in STATS 239).

These courses must be taken for letter grades where available, and an overall grade point average (GPA) of 2.75 is required. There is no thesis requirement.

Any remaining units required to complete the 45 total must be taken from the following options:
1. Courses from the approved list of electives with emphasis on computation, information technology, or finance.
2. STATS 200, 217, 218; MATH 131, 132, 202; or ECON 140
3. additional practical CS courses

The requirements must be met within two years of entering the program, or four academic quarters for those already at Stanford.

COURSES

The following are required core courses.

ECONOMICS
2-5 units, Spr (Hansen)

GRADUATE SCHOOL OF BUSINESS
4 units, Win (Staff)

MANAGEMENT SCIENCE AND ENGINEERING
MS&E 242. Investment Science — Theory and application of modern quantitative investment analysis from an engineering perspective. How investment concepts are used to evaluate and manage opportunities, portfolios, and investment products including stocks, bonds, mortgages, and annuities. Topics: deterministic cash flows (term structure of interest rates, bond portfolio immunization, project optimization); mean-variance theory (Markowitz model, capital asset pricing); and arbitrage pricing theory. Group project. Prerequisites: 120, ENGR 60, MATH 51, or equivalents. Recommended: 140, ENGR 62, knowledge of spreadsheets. Limited enrollment.
3 units, Aut (Staff)

3 units, Aut (Durrleman)

3 units, Win (Liu)

3 units, Win (Papanicolaou)

3 units, Win (Papanicolaou)

MATH 239. Computation and Simulation in Finance—(Formerly MATH 240.) Monte Carlo, finite difference, tree, and transform methods for the numerical solution of partial differential equations in finance. Emphasis is on derivative security pricing. Prerequisite: 238 or equivalent.

3 units, Spr (Durrleman)

STATISTICS

3-4 units, Spr (Lai)

FRENCH AND ITALIAN

Emeriti: (Professors) John G. Barson, Marc Bertrand, Robert G. Cohn, John Freccero, Raymond D. Giraud, René Girard, Ralph M. Hester, Pauline Newman-Gordon, Roberto B. Sangiorgi, Leo Weinstein

Chair: Robert Harrison

Directors of Graduate Studies: Joshua Landy (French), Robert Harrison (Italian)

Directors of Undergraduate Studies: Laura Wittman (French), Carolyn Springer (Italian)

Professors: Jean-Marie Apostolidès, Margaret Cohen, Jean-Pierre Dupuy, Hans U. Gumbrecht, Robert Harrison, Jeffrey T. Schnapp, Michel Serres

Associate Professors: Elisabeth Mudimbe-Boyi, Joshua Landy, Carolyn Springer

Assistant Professors: Cécile Alduy, Dan Edelstein, Laura Wittman

Lecturer: Kathy Richman

Courtesy Professors: Paula Findlen, Michael Marrinan

Department Offices: Building 260, Room 122-123
Mail Code: 94305-2010
Department Phone: (650) 723-4183
Email: fren-ital@stanford.edu, vfahren@stanford.edu
Web Site: http://www.stanford.edu/dept/fren-ital/

Courses given in French and Italian have the subject codes FRENGEN, FRENLIN, ITALGEN, and ITALLIT. For courses in French or Italian language instruction with the subject code FRENLIT or ITALLIT, see the “Language Center” section of this bulletin. For a complete list of subject codes, see Appendix B.

FRENCH SECTION

The French section provides students with the opportunity to pursue course work at all levels in French language, literature, cultural and intellectual history, theory, film, and Francophone studies. It understands the domain of “French Studies” in the broadest possible sense: as encompassing the complex of cultural, political, social, scientific, commercial, and intellectual phenomena associated with French-speaking parts of the world, from France and Belgium to Canada, Africa, and the Caribbean.

Three degree programs are available in French: a B.A. (with two concentrations), a terminal M.A., and a Ph.D. (with various possible minors and combined degrees).

A curator for Romance Languages oversees the extensive French collection at Green Library. The Hoover Institute on War, Revolution, and Peace also includes a wealth of materials on 20th-century France and on French social and political movements.

A distinguished group of visiting faculty and instructors contribute regularly to the life of the French section. The section maintains frequent contacts with the Ecole Normale Supérieure, the Institut d’Études Politiques, the École Polytechnique, and other prestigious institutions.

France-Stanford Center for Interdisciplinary Studies — The France-Stanford Center for Interdisciplinary Studies, founded in partnership with the French Ministry of Foreign Affairs, aims to bridge the disciplines of the humanities, social sciences, sciences, engineering, business, and law, addressing historical and contemporary issues from a broad range of perspectives. Its programs bring faculty and students from across Stanford’s departments and schools together and in contact with colleagues in France to explore issues of common intellectual concern. The center invites to campus French-speaking scholars who offer courses or give lectures or seminars in various University centers and programs. It currently facilitates internships for Stanford students in computer science and engineering in Sophia-Antipolis, France’s new high-tech center near Nice.

Stanford in Paris — The Stanford Overseas Studies Program in Paris offers undergraduates the opportunity to study in France during the Autumn, Winter, and Spring quarters. It provides a wide range of academic options, including course work at the Stanford center and at the University
of Paris, independent study projects, and internships. In addition, the program promotes a high degree of interaction with the local community through volunteer employment, homestays, and internships. The minimum language requirement for admission into Stanford in Paris is one year of French at the college level.

Courses offered in Paris may count toward fulfillment of the requirements of the French major or minor. Specialized offerings at the Stanford home campus and in Paris encourage engineering students to study abroad and to coordinate internships through the department to work in France. Students should consult with the Director of Undergraduate Studies before attending the program, and after returning, in order to ensure that course work and skills acquired abroad can be coordinated appropriately with their degree program. Detailed information, including program requirements and curricular offerings, may be obtained from the “Overseas Studies” section of this bulletin, the Stanford in Paris web site http://osp.stanford.edu/program/paris, or the Overseas Studies Program Office in Sweet Hall.

UNDERGRADUATE PROGRAMS
BACHELOR OF ARTS

The French section offers a major and a minor in French. Students are encouraged to pursue a course of study tailored to their individual needs and interests. For some students, a degree in French serves as a stepping stone to entering international business or law: for others, it provides training as a translator or teacher; for others, it serves as preparation for graduate studies in French, History, or Comparative Literature.

The French literature, culture, and civilization specialization allows students to combine their work in French with work from other fields, such as African studies, linguistics, art history, music, economics, history, education, medicine, international relations, political science, or other foreign languages and literatures. The literature and philosophy specialization offers students the opportunity to pursue interdisciplinary studies at the intersection of literature and philosophy in a structured manner and alongside similarly interested students from a variety of humanistic disciplines.

Students who complete the department’s two quarter IHUM sequence are eligible for 5 units towards the French major or minor. Students enrolled in the French language discussion section of the IHUM sequence receive, in addition to these 5 units, an additional 4 units (2 per quarter), assuming that they complete the written work in French.

Prerequisites—Before declaring a French major, a student must be proficient in written and spoken French at a second-year college level. Such proficiency must be demonstrated either:

1. by having completed the entire language sequence up to and including FRENLANG 23;
2. by having scored a 5 or better on either the French language or the French literature Advanced Placement (AP) exams; or
3. by having demonstrated equivalent proficiency on the departmental placement exam offered at the beginning of each academic quarter.

Students not meeting at least one of these criteria are required to complete the portion of the language sequence as deemed necessary by the department before beginning to take courses toward the major.

REQUIREMENTS

The French major requires a minimum of 56 units, all courses of which must be taken for a letter grade and must be selected in accordance with the following requirements:

1. Advanced language (ca. 4 units): FRENLANG 126, Stylistics and Textual Analysis
2. Introductory series on French and Francophone literature and culture (ca. 12 units): three courses must be taken from the FRENLANG 130, 131, 132, 133 sequence. A 130-level course fulfills the Writing-in-the-Major requirement.
3. Research Seminar (2 units): a majors-only seminar, DLCL 189, must be taken in the Autumn Quarter of the senior year. This course prepares and assists students as they undertake either their senior project (see below) or honors thesis. It also familiarizes them with research resources in the department and University and helps students think critically about their research topics. By the end of the course, students must have chosen an adviser, generally a faculty member in the department, who offers support and feedback throughout the development of the senior project or honors thesis.

4. Ancien Régime courses (ca. 8 units): at least two courses must concern the period before July 1789. Courses fulfilling this requirement within the department must be drawn from the 140 level or above. Courses chosen from outside the department must be preapproved by the Director of Undergraduate Studies.
5. Upper-level French courses (ca. 8 units): at least two additional courses must be taken with the department. In total, at least 32 units of course work must be taken within the department. No more than three courses numbered lower than 130 may be counted towards the major.
6. Remaining courses (ca. 22 units): the student is encouraged to use the remaining five or more courses to develop a specialized knowledge of a specific domain related to either the senior project or the honors thesis. These courses must show obvious internal consistency and relevance to the chosen focus, and must be approved by the Director of Undergraduate Studies. Where possible, students are encouraged to complete their written work in French.
7. One course, for a maximum of 4 units, may be drawn from individual work (199).

Senior Project—In order to demonstrate the quality of his or her scholarly work and command of written French, each major not writing an honors thesis (see “Honors Program” below) is required to submit a senior project to the project adviser before May 15 of the senior year. The project consists of a research paper with a target length of 20 pages and must be written in French.

The senior project is not graded and no credit is offered for it. However, acceptance of the senior project by the project adviser is a condition for graduation from the department. A paper deemed unsatisfactory by the project adviser is returned to the student for rework and resubmission by an agreed-upon date.

Students are advised to begin thinking about their senior projects as early as their junior year, even if they are in Paris. While in Paris, students should avail themselves of the unique resources the city has to offer for research on their chosen topic.

FRENCH AND PHILOSOPHY

The French and Philosophy major specialization requires a minimum of 16 courses, for a minimum total of 65 units, distributed as follows:

1. Advanced language (ca. 4 units): FRENLANG 126, Stylistics and Textual Analysis
2. Introductory Series on French and Francophone Literature and Culture (ca. 12 units): three courses must be taken from the FRENLANG 130, 131, 132, 133 sequence.
3. Philosophy Writing in the Major (5 units): PHIL 80. Prerequisite: introductory philosophy class.
4. Philosophy and Literature Gateway Course (4 units): FRENLANG 181 (same as PHIL 81). This course should be taken as early as possible in the student’s career, normally in the sophomore year.
5. Aesthetics, Ethics, Political Philosophy (ca. 4 units): one course from the PHIL 170 series.
6. Language, Mind, Metaphysics, and Epistemology (ca. 4 units): one course from the PHIL 180 series.
7. History of Philosophy (ca. 8 units): two courses in the history of philosophy, numbered above PHIL 100.
8. Upper Division French Courses (ca. 12 units): at least three courses numbered FRENLANG/FRENLANG 140 or higher.
9. Related Courses (ca. 8 units): two upper division courses relevant to the student’s chosen area of specialization. One course (4 units) may be FRENLANG 199, Individual Work.
10. Capstone Seminar (ca. 4 units): to be selected from a set of seminars chosen by the undergraduate adviser of the program in philosophical and literary thought. This course must be taken in the student’s senior year.
The capstone seminar and the two related courses must be approved by both the undergraduate adviser of French and the undergraduate adviser of the program in philosophical and literary thought administered through the DLCL. Substitutions, including transfer credit, will not normally be permitted for items 5, 6, and 7, and are not permitted under any circumstances for items 3, 4, and 10. Up to 10 units of courses taken in the Philosophy department may be taken CR/NC or S/NS; the remainder must be taken for a letter grade.

EXTENDED MAJORS
Requirements for both extended majors are essentially identical to those of the French major with a concentration in French literature.

French and English Literatures — In addition to the requirements for the B.A. in French, candidates complete four English literature courses numbered 100 and above related to their French program.

French and Italian Literatures — In addition to the requirements for the B.A. in French, students complete four Italian courses numbered 200 and above related to their concentration in French.

MINORS
Students considering a minor in French are encouraged to design a course of studies that fosters their understanding of the interaction between French and their major field of specialization. A minimum of 24 units of undergraduate work beyond the French 23 level must be completed. All courses must be taken for a letter grade.

Requirements for the minor include one advanced language course (at the 120 level); three of the introductory series on French and Francophone literature and culture (FRENLIT 130-133); and a minimum of two additional courses in language or literature numbered 121 and above. Of these, only one may be taught in English. All courses must be chosen in consultation with the Director of Undergraduate Studies.

Double-counting is not permitted; in other words, courses used to satisfy French minor requirements may not be counted toward a student’s major or toward a second minor.

CROS DISCIPLINARY STUDIES
FRENCH AND LINGUISTICS
Linguistics majors may elect to specialize in the French language. In addition to 50 units in Linguistics, of which two courses (LINGUIST 110 and 160) may be replaced by comparable courses in French, students opting for a French Language specialization must take three courses in the introductory series devoted to French and Francophone literature and culture (FRENLIT 130-133). For full details, contact the Department of Linguistics.

HONORS PROGRAM
Majors are eligible to apply to the honors program if they have maintained an average grade point average (GPA) of 3.5 in five upper-division French courses. The honors program candidate must fulfill all regular requirements for the major, save the senior project, from which he or she is exempt. Instead, the student undertakes the writing of a research paper no shorter than 50 pages in length, written in French or English, on a specialized topic. No later than the end of the Spring Quarter of the junior year, the student must submit to the Director of Undergraduate Studies an “Application for Honors in French,” the central portion of which must contain an outline of the proposed honors essay. If it is in need of revisions, the Director of Undergraduate Studies helps the student through the revision process until the proposal is granted his or her approval. (The Director of Undergraduate Studies also helps the student identify an appropriate adviser for the essay.) Students may enroll for 2 units of credit in FRENLIT 198 for the drafting or revision of the thesis proposal in Spring Quarter of the junior year. In Autumn Quarter of the senior year, honors students must enroll in DLCL 189, a 5-unit seminar that focuses on researching and writing the honors thesis. Students then enroll for 5 units of credit in FRENLIT 198 while composing the thesis during Winter Quarter. A total of 10-12 units are awarded for successful completion of honors course work, independent study, and the finished thesis. All honors essays are due to the thesis adviser no later than 5:00 p.m. on May 15 of the terminal year. If an essay is found deserving of grade of “A-” or better by the thesis adviser, honors are granted at the time of graduation.

Honors College — The Department of French and Italian encourages all honors students to enroll in the honors college run by the Division of Literatures, Cultures, and Languages. The college meets at the end of every summer, during the weeks directly preceding the start of the academic year, and is designed to help students develop their honors thesis projects. Applications must be submitted by the Spring Quarter of the same calendar year. For more information, contact the undergraduate student services officer.

COTERMINAL BACHELOR’S AND MASTER’S PROGRAM
Each year the department admits a very small number of highly motivated undergraduates to its coterminous B.A. and M.A. degree in French. Applications must be submitted by January 31 of the senior year to the department chair and must include: a written statement of purpose, two letters of recommendation from faculty at Stanford, and a transcript. Students accepted into the coterminous program must have been undergraduate French majors and must meet all requirements that apply to both degrees.

For University coterminous degree program rules and University application forms, see http://registrar.stanford.edu/publications/#Coterm.

LA MAISON FRANÇAISE
La Maison Française, 610 Mayfield, is an undergraduate residence that serves as a campus French cultural center, hosting in-house seminars as well as social events, film series, readings, and lectures by distinguished representatives of French and Francophone intellectual, artistic, and political life.

GRADUATE PROGRAMS

Admission to the M.A. and Ph.D. Programs — Applications and admissions information may be obtained from Graduate Admissions in the Registrar’s Office, or at http://gradadmissions.stanford.edu. Applicants should read the general regulations governing degrees in the “Graduate Degrees” section of this bulletin. They should have preparation equivalent to an undergraduate major in French and should also have reached a high level of speaking and writing proficiency in French. Previous study of a language other than French is also highly desirable. Recent Graduate Record Examination (GRE) results are required, as is a writing sample representative of the applicant’s best undergraduate work.

MASTER OF ARTS
The terminal M.A. in French provides a flexible combination of language, literature, cultural history, and methodology course work designed to enhance the preparation of secondary school, junior college, or college teachers.

Candidates must complete a minimum of 45 units of graduate work, all courses being taken for a letter grade, with a grade point average (GPA) of 3.3, as well as pass the master’s examination at the end of their training. To fulfill the requirements in a single year, enrollment must be for an average of 12 units per quarter.

Applications for admission to the Masters of Arts program must be received by March 29 of the prior academic year. Candidates for this degree are not eligible for financial aid or for teaching assistantships.

REQUIREMENTS
The basic program of 45 units requires the following course work:

1. One teaching methodology course, ordinarily APPLING 201, The Learning and Teaching of Second Languages, the second-language- pedagogy course offered by the Stanford Language Center.
2. A cultural history course (to be taken either inside or outside the Department of French and Italian).
3. All remaining units are to be taken in advanced French literature courses (200 level or above), three of which must be concerned with the prerevolutionary period of French cultural history.

EXAMINATION

The terminal M.A. examination is normally administered two weeks before the end of the Spring Quarter by the three members of the examination committee, selected each year by the Director of Graduate Studies. It consists of two parts:

1. The written exam (two hours) tests the candidate’s general knowledge of French literature and is based on the same reading list as that for the Ph.D. qualifying exam (see below).

 The exam requires that the candidate answer four questions (out of six) in a manner that demonstrates his/her ability to synthesize and draw parallels between periods, genres, and systems of representation on the basis of the standard reading list. At least one question must be answered in French and two in English. Use of a dictionary is allowed.

 If the student’s performance on the exam is deemed a ‘pass’ by two out of three of the members of the examining committee, the student is then permitted to go on to the oral examination (which is ordinarily taken later the same week).

 Should the candidate fail the M.A. written exam, he/she is given a second chance at the end of the Spring Quarter.

2. The oral exam (90 minutes) assumes as its point of departure the student’s answers on the written exam. It examines the candidate’s knowledge and understanding of French literary history on the basis of the standard reading list.

 At the conclusion of the oral exam, the examination committee meets in closed session and discusses the student’s performance on the written and the oral portions of the examination. If it is judged adequate, the M.A. degree is granted. In no event may the master’s written and oral exams be taken more than twice.

DOCTOR OF PHILOSOPHY

The Department of French and Italian provides students with the opportunity to pursue advanced work in French language, literature, cultural history, theory, and Francophone studies within a uniquely flexible interdisciplinary framework. Unlike conventional Ph.D. programs, it encourages students to construct a highly individualized course of study, integrating specialization in a particular literary period or area with work in such fields as art history, classics, film studies, the history of science and technology, linguistics, literary theory, music, and philosophy. The program is founded on the belief that such a balance between period/area specialization and interdisciplinary breadth is not only desirable but essential in a field such as French Studies. Students in the Ph.D. program are normally admitted as French Fellows on a four- to five-year fellowship plan that integrates their financial support with rigorous training as scholars and as prospective university faculty.

Students admitted to the program work closely with the Director of Graduate Studies in structuring a plan consistent with their needs and interests. Aside from the benefits of the program’s flexible structure, a number of unique resources are available to students. The French section’s exchange program with the Ecole Normale Supérieure provides candidates (selected on a competitive basis) with the opportunity to pursue dissertation research in Paris.

ADVISING

Given the interdisciplinary nature of the Ph.D. program in French and the opportunity it affords each student to create an individualized program of study, regular consultation with an adviser is of the utmost importance. The adviser for all entering graduate students is the Director of Graduate Studies, whose responsibility it is to assist students with their course planning and to keep a running check on progress in completing the course, teaching, and language requirements. By the end of the first year of study, each student must choose a faculty adviser whose expertise is appropriate to his or her own area of research and interests.

Entering graduate students are also paired with a faculty mentor as a function of their stated research interests at the time of admission. The role of the mentor is to advise the student on an informal basis regarding the student’s academic program and plans.

REQUIREMENTS

A candidate for the Ph.D. degree in French must complete at least 135 units of graduate-level study and teach five language courses in the section. 72 of the 135 units must be taken within the department.

Students entering with a master’s degree or previous graduate work may receive credit as determined on a case-by-case basis, up to a maximum of 45 units. Fellowship funding, teaching, and other requirements are adjusted according to University regulations.

REQU/RE进步/ENDB/ED COURSES

Three courses are required:

1. FRENGEN 369, Introduction to Graduate Studies: Fragments of a Material History of Literature, a 5-unit seminar offered in the Autumn Quarter of each year, designed to acquaint students with the theoretical and methodological concerns of literary study. This course must be taken in the first quarter of study.

2. Definition and Inquiry: FRENGEN 201E, New Methods and Sources in French and Italian Studies, a three-unit course designed to familiarize graduate students with research materials and techniques. This course must be taken no later than the end of the third year of study.

3. APPLLING 201, The Learning and Teaching of Second Languages, the second-language pedagogy course offered by the Stanford Language Center in the Spring Quarter of each year in order to prepare entering graduate students for teaching in their second year.

Distribution of Elective Courses—Apart from these requirements, students are granted considerable freedom in structuring a course of study appropriate to their individual needs. Of the 135 minimum units of graduate course work required for the Ph.D., at least 72 units must be taken within the Department of French and Italian.

Language Requirements—Attaining a native or near-native fluency in French is the individual responsibility of all candidates in the Ph.D. program, and remedial course work needed to achieve such fluency cannot count towards the Ph.D. degree. In addition, candidates are required to achieve a high level of proficiency in one additional foreign language, with the language in question to be determined by the student and his or her adviser as a function of the student’s area of specialization. Such proficiency may be demonstrated either by successfully completing a third-year level or above undergraduate course or, better, a graduate seminar in the language in question; or by passing an exam that establishes a third-year or above level of competence in writing, reading, and speaking. (In no case is passage of a standard reading competence exam considered sufficient.) In the case of ancient Greek and Latin, a high level of proficiency means a level superior to a second-year collegiate level of proficiency in reading and writing.

The second foreign language requirement should be completed as soon as possible, but in any case not later than the end of the third year for students who entered the program without an M.A., and not later than the end of the second year for students who entered the program with a master’s degree. Completion of the language requirements is a prerequisite for taking the University Oral Examination.

EXAMINATIONS

There are three examinations: the 90-minute qualifying exam, the special topic exam, and the University oral examination.

Qualifying Examination — The first oral examination, which normally takes place at the end of Spring Quarter of the first year of study, tests the student’s knowledge of the French language and of French literature. The student is responsible for scheduling the exam one month in advance. The date and time chosen must be determined in consultation with the examining committee (see below).

The exam is based on a standard reading list covering major works from all periods of French literature, from the Middle Ages to the contemporary scene. The list may be expanded to reflect a student’s particular interests, but not abridged.
Half of the exam takes place in English, half in French (with the student free to choose which portion transpires in which language).

The exam consists of two parts:

1. A 20-minute presentation by the candidate on a topic to be determined by the student. This presentation may be given either in English or in French and should engage, in a succinct and synthetic manner, an issue or set of issues of broad relevance to French literary history about which the student has been thinking as he or she has been preparing the exam. The presentation must not simply be a text read aloud, but rather must be given from notes. It is meant to be suggestive and not exhaustive, so as to provoke further discussion.

2. A 70-minute question and answer period in which the examining committee follows up on the candidate’s presentation and discusses the reading list with the student. At least part of this portion of the exam takes place in French. The student is expected to demonstrate a solid knowledge of the texts on the reading list and of the basic issues which they raise, as well as a broader sense of the cultural/literary context into which they fit.

The examining committee consists of two faculty members selected by the student, as well as the Director of Graduate Studies.

Two weeks before the exam, the student must also submit a graduate seminar paper which he or she considers representative of the quality of his or her graduate work at Stanford.

On the basis of this paper, the results of the qualifying examination, and an evaluation of the student’s overall progress, the members of the student’s examining committee vote for or against admission to candidacy for the Ph.D. The terminal master’s degree may be awarded to students who have completed the qualifying procedure, but whose work is judged insufficient for admission to candidacy for the Ph.D. If the overall case for or against promotion to candidacy is deemed uncertain, students may be asked either to retake the qualifying exam, to submit a new paper, or they may be admitted to candidacy on a probationary basis. Subject to approval by the Director of Graduate Studies and department chair, students already holding an advanced degree in French Studies, when admitted to the French Ph.D. program, may be excused from the qualifying exam. However, they must present a formal request for a waiver to the Director of Graduate Studies upon their arrival at Stanford. Such a request must document the course work completed elsewhere and include all relevant reading lists. Only in cases where taking the qualifying exam would involve considerable repetition of already completed work is such a waiver likely to be granted.

Special Topic Examination — The second oral examination, which normally takes place at the end of Spring Quarter of the second year of study, concerns a topic (a particular literary genre or a broad theoretical, historical, or interdisciplinary question) freely chosen and developed by the individual student working in collaboration with his or her adviser and the Director of Graduate Studies. Students should design this research project so that it has the breadth and focus of a book they might write or a seminar they might teach. The proposed topic should be discussed with the Director of Graduate Studies before the end of the quarter preceding the quarter in which they take the University Ph.D. examination. The University oral exam should virtually always be taken at the end of Spring Quarter of the third year of study. Students must complete minimum course requirements (as listed in this bulletin) and all language and course requirements before the quarter in which they take the University oral exam.

Early in the quarter before they intend to take the University Ph.D. examination, students must discuss the scope and nature of the period to be covered, as well as the dissertation proposal, with the Director of Graduate Studies. The reading list should include works in all genres relevant to the period covered. The amount of non-literary or crossdisciplinary material on the reading list varies according to the period and the research interests of the student. Students ordinarily cover about a century of writing in great depth. As with the preceding examinations, the Director of Graduate Studies and the student determine the committee’s makeup.

The governing principle is that the University oral examination in French must be a period exam rather than one on the specific concerns of the dissertation proposal, which is dealt with separately in a later colloquium. It follows from this basic principle that the examination will cover the major authors and genres in the student’s period of choice. The lists may well include critical and scholarly works or texts from outside the traditional domain of French literary studies (such as film, philosophy, other literary traditions), but such coverage should be regarded as supplemental except in rare instances where the chair and faculty advisers have agreed to define these materials as the student’s “field.”

The aim of the University oral is to establish the student’s credentials as a specialist in the period of his or her choosing, so the core of the reading list must be made up of texts that constitute the cultural baggage essential to any specialist. It follows that reading lists must not focus on the narrow area of the student’s research interests. The tendency to bias reading lists toward the dissertation topic, be it an author or a genre, does not cancel the obligation to cover the major figures and genres. It is understandable that some students, by their third year, have become so deeply committed to their work toward the dissertation that they wish to use the preparation period for the examination as part of their dissertation research. Certainly, some of the exam work will prove relevant, but they should also remember that the examination is the central means of certifying their expertise in a literary period.
The exam committee consists of four members, in addition to a committee chair from outside the Department of French and Italian whose principal functions are to keep track of time and to call on the four members of the committee who question the candidate on the talk and on the reading list. Students are required to discuss the reading list for the examination with the Director of Graduate Studies and with members of their committee during the quarter preceding the examination. A final reading list must be in the hands of the committee and the student services officer for the Division of Literatures, Cultures, and Languages no later than two weeks preceding the examination. Students must submit the Request for University Oral Exam form to the student services officer at least three weeks before the proposed date of the exam. At the same time this form is submitted, students should also submit the Notice of Appointment of the Ph.D. dissertation reading committee. In addition, a Report on Ph.D. Foreign Language must be completed, certifying a reading knowledge of the foreign language the student presents to meet the language requirements. The two-hour examination consists of the following two parts:

1. Forty minutes: a 20-minute talk by the candidate followed by a 20-minute question and answer period concerning the talk.

 Working with the committee members, the candidate’s adviser will prepare three or more questions to be presented to the candidate at 8:00 a.m. on the day of the examination. These questions concern broad topics pertinent to the candidate’s reading list and period of specialization, including concerns relevant, but by no means limited to, the student’s projected dissertation. The candidate chooses one of the questions and develops a 20-minute talk in response. Students must not read from a prepared text, but rather must speak from notes. They are free to consult any necessary materials while preparing the talk. The candidate is questioned for 20 minutes on the talk, with the dissertation adviser starting the questioning.

2. One hour, 20 minutes: questions on the area of concentration.

 Each member of the committee, except for the chair, is assigned a 20-minute period to question the candidate on the reading list and its intellectual-historical implications.

 The University oral examination is a formal University event. It represents the last occasion for the faculty to evaluate a student’s overall preparation as a candidate for the Ph.D. After the University orals, only the colloquium on the dissertation prospectus and certification of the final dissertation by the student’s reading committee stand in the way of conferral of the Ph.D. The examination, therefore, is a uniquely significant event and is designed to evaluate the student’s preparation as a specialist in a given sector of French studies, but within a broader context than that provided by a single course, examination, or even the dissertation itself.

Dissertation

The doctoral dissertation should demonstrate the ability to carry out research, organize, and present the results in publishable form. The scope of the dissertation should be such that it could be completed in 12 to 18 months of full-time work.

Colloquium on the Dissertation Proposal — The colloquium normally takes place in the quarter following the University oral examination; in most cases this means early in Autumn Quarter of the student’s fourth year of study. The colloquium lasts one hour, begins with a brief introduction to the dissertation prospectus by the student (lasting no more than ten minutes), and consists of a discussion of the prospectus by the student and the three readers of the dissertation. At the end of the hour, the faculty readers vote on the outcome of the colloquium. If the outcome is favorable (by majority vote), the student is free to proceed with work on the dissertation. If the proposal is found to be unsatisfactory (by majority vote), the dissertation readers may ask the student to revise and resubmit the dissertation prospectus and to schedule a second colloquium.

The prospectus must be prepared in close consultation with the dissertation director during the months preceding the colloquium. It must be submitted in its final form to the readers no later than one week before the colloquium. A prospectus should not exceed ten double-spaced pages, in addition to which it should include a working bibliography of primary and secondary sources. It should offer a synthetic overview of the dissertation, describe its methodology and the project’s relation to prior scholarship on the topic, and lay out a complete chapter-by-chapter plan.

It is the student’s responsibility to schedule the colloquium no later than the first half of the quarter subsequent to the quarter in which the student passed the University oral examination. The student should arrange the date and time in consultation with the student services officer and with the three examiners. The student services officer schedules an appropriate room for the colloquium.

Members of the dissertation reading committee ordinarily are drawn from the University oral examination committee, but need not be the same.

Joint Degrees and Minors

A candidate may also take a joint degree in French and Humanities, as described in the “Interdisciplinary Studies in Humanities” section of this bulletin. Minors are possible in Comparative Literature, Italian, Linguistics, Modern Thought and Literature, and other departments offering related courses such as Art and Art History, History, Music, Philosophy, and Spanish.

Students interested in a joint degree or a minor should design their course of study with their adviser(s). Joint degrees and minors usually require 24 additional units. With careful planning, students may complete course work for the Ph.D. and the minor in a total of nine quarters.

Ph.D. Minor in French Literature — The department offers a minor in French Literature. The requirement for a minor in French is successful completion of 24 units of graduate course work in the French section with a grade point average (GPA) of 3.0 or above. Interested students should consult the graduate adviser.

Italian Section

The Italian section offers a variety of graduate and undergraduate programs in Italian language, literature, culture, and intellectual history. Course offerings range from small and highly specialized graduate seminars to general courses open to all students on authors such as Dante, Boccaccio, and Machiavelli.

On the undergraduate level, a number of options are available. In addition to the Italian major, students may choose from a minor in Italian, an honors program in the Humanities (see the “Interdisciplinary Studies in Humanities” section of this bulletin), an honors program in Italian, and two extended majors: one in Italian and French literature, and one in Italian and English literature.

On the graduate level, programs of study leading to the M.A. degree and the Ph.D. degree are offered in Italian literature. Joint programs for the Ph.D. degree with the graduate programs in Comparative Literature, Humanities, and Modern Thought and Literature are also available.

Special collections and facilities at Stanford offer the possibility for extensive research in Italian studies and related fields. These include the undergraduate and graduate libraries and the Hoover Institution for the Study of War, Revolution, and Peace. Collections in Green Research Library are especially strong in the Medieval, Renaissance, and contemporary periods; the Italian section is one of the larger constituents of the Western European collection at the Hoover Library; and the Music Library has excellent holdings in Italian opera.

Stanford in Italy — Stanford in Florence affords undergraduates with at least three quarters of Italian the opportunity to take advantage of the unique intellectual and visual resources of the city and to focus on two areas: Renaissance History and Art, and Contemporary Italian and European Studies. The program is structured to help integrate students as fully as possible into Italian culture through homestays, Florence University courses, the Language Partners Program, research, internship and public service opportunities, and by conducting some of the program’s classes completely in Italian. Many of the courses offered in Florence may count toward the fulfillment of requirements for the Italian major or minor. Students are encouraged to consult with the Italian undergraduate adviser before and after a sojourn in Florence to ensure that their course selections meet Italian section requirements. Information on the Florence program
is available in the “Overseas Studies” section of this bulletin, the Stanford in Florence web site http://osp.stanford.edu/program/florence, or at the Overseas Studies office in Sweet Hall.

UNDERGRADUATE PROGRAMS

BACHELOR OF ARTS

The Italian major offers students the opportunity to develop an in-depth knowledge of Italian literature, language, and civilization through a highly flexible program combining course work in Italian with work in such fields as art history, classics, comparative literature, economics, English, French, history, international relations, music, philosophy, and political science. All Italian majors are required to have completed three second-year language courses (or the equivalent taken at the Florence campus):

ITALLANG 21. Second-Year Italian, First Quarter
ITALLANG 22. Second-Year Italian, Second Quarter
ITALLANG 23. Second-Year Italian, Third Quarter

Completion of the department’s two quarter Great Works IHUM sequence (see above) entitles a student to 5 units towards the Italian major or minor. Students considering an Italian major should consult with the Italian undergraduate adviser as early as possible (even before completing the language requirement) in order to ensure a maximum of flexibility in designing a course of study suited to individual needs and cultural interests.

Italian majors must complete 60 units of course work above the 100 level. The remaining requirements for the major are:

1. A minimum of 32 units of Italian courses (selected from courses numbered 100 and above).
2. Of these courses, at least one on Dante is required, as well as at least one in each of the following areas: (a) the Middle Ages (b) the early modern period, and (c) the modern period. A Dante course may fulfill the Middle Ages requirement.
3. The intermediate-level survey sequence (ITALLIT 127, 128, 129).
4. One advanced language course beyond the level of ITALLANG 114.

Of the 60 units required for the major, up to 28 units of course work in related fields may be taken outside the department.

ITALIAN AND PHILOSOPHY

A second option is now possible within the Italian major, offering students the opportunity to combine studies in literature and philosophy. Students take most of their courses alongside students from departments specializing in the intersection of literature and philosophy.

The Italian and Philosophy major track requires a minimum of 16 courses, for a minimum total of 65 units, distributed as follows:

1. Italian Survey Sequence (ca. 12 units): ITALLIT 127, 128, 129.
2. Advanced Language Course (ca. 4 units): ITALLANG 114 and above.
3. Philosophy Writing in the Major (5 units): PHIL 80. Prerequisite: introductory philosophy class.
4. Philosophy and Literature Gateway Course (4 units): ITALGEN 181 (same as PHIL 81). This course should be taken as early as possible in the student’s career, normally in the sophomore year.
5. Aesthetics, Ethics, Political Philosophy (ca. 4 units): one course from the PHIL 170 series.
6. Language, Mind, Metaphysics, and Epistemology (ca. 4 units): one course from the PHIL 180 series.
7. History of Philosophy (ca. 8 units): two courses in the history of philosophy, numbered above PHIL 100.
8. Upper Division Italian Courses (ca. 12 units): at least three courses numbered ITALLIT/ITALGEN 100 or higher.
9. Related Courses (ca. 8 units): two upper division courses relevant to the student’s chosen area of specialization.
10. Capstone Seminar (ca. 4 units): to be selected from a set of seminars chosen by the undergraduate adviser of the program in philosophical and literary thought. This course must be taken in the student’s senior year.

The capstone seminar and the two related courses must be approved by both the undergraduate adviser of Italian and the undergraduate adviser of the program in philosophical and literary thought administered through the DLCL. No more than 24 units may be drawn from courses offered overseas. Substitutions, including transfer credit, will not normally be permitted for items 5, 6, and 7, and are not permitted under any circumstances for items 3, 4, and 10. Up to 10 units of courses taken in the Philosophy department may be taken CR/NC or S/NS; the remainder must be taken for a letter grade.

EXTENDED MAJORS

Requirements for both extended majors are essentially identical to those of the Italian major with a concentration in Italian literature.

Italian and English Literatures — In addition to the 32 units required for the B.A. in Italian, candidates must complete four English literature courses numbered 100 and above related to the field of concentration in Italian Studies.

Italian and French Literatures — In addition to the 32 units required for the B.A. in Italian, candidates must complete four French literature courses numbered 100 and above related to the field of concentration in Italian Studies.

MINORS

Students considering a minor in Italian are encouraged to design a course of studies that fosters their understanding of the interaction between Italian and their second area of expertise. A minimum of 24 units of undergraduate work beyond the Italian 3 level must be completed.

Requirements for the minor include two intermediate language courses (chosen from ITALLANG 21, 22, and 23); all three of the introductory series on Italian literature and culture (ITALLIT 127, 128, 129); and a minimum of one advanced course in language or literature numbered 114 and above. All courses must be chosen in consultation with the Director of Undergraduate Studies, who is responsible for evaluating all requests and individual study plans for the minor.

HONORS PROGRAMS

ITALIAN

Italian majors with a grade point average (GPA) of 3.3 (B+) or better in all Italian courses are eligible for department honors. Students interested in the honors program should consult the Italian undergraduate adviser early in their junior year. In addition to the requirements listed above, the student must submit to the Italian faculty a proposal for the honors essay by the end of Spring Quarter of the junior year. During the quarter, students may enroll in ITALLIT 198 while drafting and revising the proposal and conducting preliminary research. In Autumn Quarter of the senior year, honors students must enroll in DLCL 189, a 5-unit seminar that focuses on researching and writing the honors thesis. Students then enroll for 5 units of credit in ITALLIT 198 while composing the thesis during Winter Quarter. A total of 10-12 units are awarded for successful completion of honors course work, independent study, and the finished thesis.

HUMANITIES

An honors program in the Humanities is available for Italian majors who wish to supplement their studies with a carefully structured program of humanistic studies. See the “Interdisciplinary Studies in Humanities” section of this bulletin for further information.

COTERMINAL BACHELOR’S AND MASTER’S PROGRAM

Each year the department admits a small number of highly motivated undergraduates to its coterminal B.A. and M.A. degree in Italian. Applications must be submitted by January 31 of the senior year to the department chair and must include: a written statement of purpose, two letters of recommendation from faculty at Stanford, and a transcript. Students accepted into the coterminal program must have been undergraduate Italian majors and must meet all requirements that apply to both degrees.
LA CASA ITALIANA

La Casa Italiana, 562 Mayfield, is an undergraduate residence devoted to developing an awareness of Italian language and culture. It works closely with the Italian Cultural Institute in San Francisco and with other local cultural organizations. It often hosts visiting representatives of Italian intellectual, artistic, and political life. A number of departmental courses are regularly taught at the Casa, which also offers in-house seminars. Assignment is made through the regular undergraduate housing draw.

GRADUATE PROGRAMS

Admission to the Program — Candidates are expected to be proficient in the Italian language and to have done significant course work in Italian literature and/or Italian studies on the undergraduate level. Candidates with a broad humanistic and linguistic background are especially encouraged to apply. Contact Graduate Admissions in the Registrar’s Office, Old Union, or see http://gradadmissions.stanford.edu, for application information. Recent Graduate Record Examination (GRE) results are required.

MASTER OF ARTS

TERMINAL PROGRAM

The M.A. in Italian provides a combination of language, literature, civilization, and general courses designed to prepare secondary school, junior college, or college teachers. It is preferred that applicants have undergraduate degrees in Italian or in a related field. Knowledge of a second Romance language is desirable.

Candidates must complete a minimum of 45 units of graduate work, all courses being taken for a letter grade, with a GPA of 3.3 (B+), and pass a comprehensive oral examination (see “Qualifying Examination” section below for the Ph.D.). To fulfill the requirements in one year (four quarters), students should enroll for an average of 12 units per quarter.

The basic course program (45 units) is nine graduate courses in Italian, one of which may be in a related field. The option of substituting a master’s thesis for two literature courses is available.

Reading knowledge of a second Romance language is required. French is recommended.

Requirements for the completion of the M.A. include a comprehensive literature and language oral examination, which is given before the end of Spring Quarter or at the beginning of the following Autumn Quarter. Before taking the exam, a candidate for the degree must submit to the Italian faculty a sample graduate seminar paper representative of the quality of his or her graduate work. On the basis of this paper, the results of the comprehensive examination, and the student’s overall progress, members of the department vote for or against awarding of the M.A. degree.

Applications for admission must be received by May 31. Candidates for this degree are not eligible for financial aid or teaching assistantships.

DOCTOR OF PHILOSOPHY

Stanford’s Ph.D. program in Italian offers the opportunity for advanced work in Italian literature and studies within an unusually flexible interdisciplinary framework. It is fully independent of the Ph.D. program in French and aims to encourage students to bring broader methodological and interdisciplinary concerns to bear on the study of Italian literature. Like conventional Italian Ph.D. programs, it places primary emphasis on developing a command of Italian literature as a whole. Unlike conventional Italian Ph.D. programs, it allows students to construct a highly individualized course of study, integrating specialization in a particular literary period with work in such fields as art history, classics, comparative literature, feminist studies, film, French, history, history of science, linguistics, literary theory, Medieval or Renaissance studies, philosophy, and religion. The program is founded on the belief that this sort of balance between period specialization and interdisciplinary breadth is not only desirable but also essential in a small field such as Italian studies, particularly given the diversity of the Italian literary canon, which extends over a wide variety of disciplines.

Students admitted into the Ph.D. program in Italian work closely with the adviser in structuring a plan of study appropriate to needs and interests. Such a plan usually involves a mix of teaching and courses taken within the Italian program, courses taken in other departments, and independent work under supervision of a member of the Italian faculty, thus integrating financial support with training as scholars and prospective university teachers. Assuming satisfactory academic progress, fellowships are typically offered for three or four years. Graduate-level work completed elsewhere may be counted as fulfilling part of the requirements for the degree. Students in the fifth year normally apply for outside fellowships or part-time teaching positions in the department.

Aside from the benefits of the program’s structure and fellowship plan, a number of unique resources are available to Ph.D. students in Italian at Stanford. During their years of study, students may be permitted to take courses, pursue dissertation research, and do independent work at the Stanford campus in Florence under supervision of a member of the Italian faculty. The Florence center, located in a palazzo along the Arno, is near important Florentine libraries and archives and the University of Florence. Graduate students also have at their disposal the resources of La Casa Italiana, a residential theme house which serves as an Italian cultural center and hosts such events as colloquia, lectures, and film series.

REQUIREMENTS

A candidate for the Ph.D. degree in Italian must complete at least 135 units of graduate-level study and teach five language courses in the section. 72 of the 135 units must be taken within the department.

Students entering with a master’s degree or previous graduate work may receive credit as determined on a case-by-case basis, up to a maximum of 45 units. Fellowship funding, teaching, and other requirements are adjusted according to University regulations.

Required/Recommended Courses — Three courses are required:

1. ITALGEN 369, Introduction to Graduate Studies: Fragments of a Material History of Literature, a 5-unit seminar, offered in Autumn Quarter of each year, designed to acquaint students with the theoretical and methodological concerns of literary study. This course must be taken in the first quarter of study.

2. Definition and Inquiry: ITALGEN 201E, New Methods and Sources in French and Italian Studies, a 3-unit course designed to familiarize graduate students with research materials and techniques. This course must be taken no later than the end of the third year of study.

3. APPLING 201, The Learning and Teaching of Second Languages, the second-language pedagogy course offered by the Stanford Language Center in the Spring Quarter of each year in order to prepare entering graduate students for teaching in their second year.

Apart from the above requirements, students are granted considerable freedom in structuring a course of study appropriate to individual needs. During the first year, most course work is usually done within the Italian section in order to ensure an adequate preparation for the qualifying examination. In the second and third years, the students’ programs normally consist of a combination of course work done inside and outside the Italian section, supplemented by tutorials and independent work pursued under supervision of the Italian faculty.

Language Requirements — As soon as possible, but not later than the end of the third year, the candidate must have passed reading examinations in two additional foreign languages. If the candidate’s period of concentration is earlier than the Romantic period, one of these must be Latin; if Romantic or later, French. Completion of the language requirement is a prerequisite for taking the University oral examination.

EXAMINATIONS

There are three examinations: the 90-minute qualifying exam, the special topic exam, and the University oral examination.

Qualifying Examination — The first oral examination, which normally takes place at the end of Spring Quarter of the first year of study, tests the student’s knowledge of the Italian language and of Italian literature. The student is responsible for scheduling the exam one month in advance.
In the course of the quarter, the student should regularly consult with committee members to discuss his or her progress. The actual examination lasts one hour. The candidate must present a tentative reading list to the members of the committee about twelve weeks before the examination and a final reading list at least one week before the examination. This list, to be headed by a title describing the topic of the examination, may be divided into two parts: core works that the student has found to be central to his or her topic, and works that fill out the periphery of the topic. Two copies of the final reading list must be given to the student services officer for the Division of Literatures, Cultures, and Languages: one for the student’s file and one for a special file which subsequent students can consult. The examination assumes the form of an oral colloquy between the student and the examining committee. It concentrates on the conclusions to which the student’s research has led him or her, and aims to determine the student’s overall mastery of the research topic in question. At the beginning of the examination, the student presents a talk of no longer than 20 minutes (not to be written out, but to be presented from notes) reviewing the results of his or her reading and outlining the major features and implications of the chosen topic. The remainder of the hour is devoted to a discussion between the student and the committee regarding the problems the student raised in the talk and the reading list itself.

The following procedures are applicable to both the qualifying and special topic exams:

1. The committee meets briefly at the end of the exam and immediately informs the student whether he or she has passed the examination.
2. In the week after the examination, the student is expected to meet individually with members of the committee to discuss strengths and weaknesses revealed during the qualifying exam or colloquy.
3. The Director of Graduate Studies places a brief letter describing each one-hour oral exam in the student’s file, a copy of which is also be furnished to the student.

THE UNIVERSITY ORALS

The University Ph.D. examination follows most of the same procedures outlined above. Normally students put one, and at most two, full-time quarters of study into preparation for the exam. The University oral exam should virtually always be taken at the end of Spring Quarter of the third year of study. Students must complete minimum course requirements (as listed in this bulletin) and all language and course requirements before the quarter in which they take the University oral examination.

Early in the quarter before they intend to take the University Ph.D. examination, students must discuss the scope and nature of the period to be covered, as well as the dissertation proposal, with the Director of Graduate Studies. The reading list should include works in all genres relevant to the period covered. The amount of “non-literary” or cross-disciplinary material on the reading list varies according to the period and the research interests of the student. Students ordinarily cover about a century of writing in great depth. As with the preceding examinations, the Director of Graduate Studies and the student determine the committee’s makeup.

The governing principle is that the University oral examination in Italian must be a period examination rather than one on the specific concerns of the dissertation proposal, which is dealt with separately in a later colloquium. It follows from this basic principle that the examination will cover the major authors and genres in the student’s period of choice. The lists may well include critical and scholarly works or texts from outside the traditional domain of Italian literary studies (such as film, philosophy, other literary traditions), but such coverage should be regarded as supplemental except in rare instances where the chair and faculty advisers have agreed to define these materials as the student’s “field.”

The aim of the University oral is to establish the student’s credentials as a specialist in the period of his or her choosing, so the core of the reading list must be made up of texts that constitute the cultural baggage essential to any specialist. It follows that reading lists must not focus on the narrow area of the student’s research interests. The tendency to bias reading lists toward the dissertation topic, be it an author or a genre, does not cancel the obligation to cover the major figures and major genres. It is understandable that some students, by their third year, have become so deeply committed to their work toward the dissertation that they wish to...
use the preparation period for the examination as part of their dissertation research. Certainly, some of the exam work will prove relevant, but they should also remember that the examination is the central means of certifying their expertise in a literary period.

The exam committee consists of four members, in addition to a committee chair from outside the Department of French and Italian whose principal functions are to keep track of time and to call on the four members of the committee who question the candidate on the talk and on the reading list. Students are required to discuss the reading list for the examination with the Director of Graduate Studies and with members of their committee during the quarter preceding the examination. A final reading list must be in the hands of the committee and the student services officer for the Division of Literatures, Cultures, and Languages no later than two weeks preceding the examination. Students must submit the Request for University Oral Exam form to the student services officer at least three weeks before the proposed date of the exam. At the same time this form is submitted, students should also submit the Notice of Appointment of the Ph.D. dissertation reading committee. In addition, a Report on Ph.D. Foreign Language must be completed, certifying a reading knowledge of the two foreign languages the student presents to meet the language requirements. The two-hour examination consists of the following two parts:

1. Forty minutes: a 20-minute talk by the candidate followed by a 20-minute question and answer period concerning the talk.

Working with the committee members, the candidate’s adviser prepares three or more questions to be presented to the candidate at 8:00 a.m. on the day of the examination. These questions concern broad topics pertinent to the candidate’s reading list and period of specialization, including concerns relevant, but by no means limited to, the student’s projected dissertation. The candidate chooses one of the questions and develops a 20-minute talk in response. Students must not read from a prepared text, but rather must speak from notes. They are free to consult any necessary materials while preparing the talk. The candidate is questioned for 20 minutes on the talk, with the dissertation adviser starting the questioning.

2. One hour, 20 minutes: questions on the area of concentration.

Each member of the committee, except for the chair, is assigned a 20-minute period to question the candidate on the reading list and its intellectual-historical implications.

The University oral examination is a formal University event. It represents the last occasion for the faculty to evaluate a student’s overall preparation as a candidate for the Ph.D. After the University orals, only the colloquium on the dissertation prospectus and certification of the final dissertation by the student’s reading committee stand in the way of conferral of the Ph.D. The examination, therefore, is a uniquely significant event and is designed to evaluate the student’s preparation as a specialist in a given sector of Italian studies, but within a broader context than that provided by a single course, hour examination, or even the dissertation itself.

Dissertation

The fourth and (if necessary) fifth years of graduate study are devoted to writing and researching the doctoral dissertation. The dissertation should demonstrate the ability to carry out research, organize, and present the results in publishable form. The scope of the dissertation should be such that it could be completed in 12 to 18 months of full-time work.

Colloquium on the Dissertation Proposal — The colloquium normally takes place in the quarter following the University oral examination; in most cases this means early in Autumn Quarter of the student’s fourth year of study. The colloquium lasts one hour, begins with a brief introduction to the dissertation prospectus by the student (lasting no more than ten minutes), and consists of a discussion of the prospectus by the student and the three readers of the dissertation. At the end of the hour, the faculty readers vote on the outcome of the colloquium. If the outcome is favorable (by majority vote), the student is free to proceed with work on the dissertation. If the proposal is found to be unsatisfactory (by majority vote), the dissertation readers may ask the student to revise and resubmit the dissertation prospectus and to schedule a second colloquium.

The prospectus must be prepared in close consultation with the dissertation director during the months preceding the colloquium. It must be submitted in its final form to the readers no later than one week before the colloquium. A prospectus should not exceed ten double-spaced pages, in addition to which it should include a working bibliography of primary and secondary sources. It should offer a synthetic overview of the dissertation, describe its methodology and the project’s relation to prior scholarship on the topic, and lay out a complete chapter-by-chapter plan.

It is the student’s responsibility to schedule the colloquium no later than the first half of the quarter subsequent to the quarter in which the student passed the University oral examination. The student should arrange the date and time in consultation with the student services officer and with the three examiners. The student services officer schedules an appropriate room for the colloquium.

Members of the dissertation reading committee ordinarily are drawn from the University oral examination committee, but need not be the same.

Joint Degrees and Minors

A joint degree program in Humanities and Italian Literature is described in the “Interdisciplinary Studies in Humanities” section of this bulletin. Minors are possible in a wide variety of related fields. Joint degree programs and minors frequently require 24 additional units of work, making completion of all course requirements in nine quarters difficult if careful advance planning is not done.

Ph.D. Minor in Italian Literature — The section offers a minor in Italian Literature. The requirement for a Ph.D. minor is a minimum of 24 units of graduate course work in Italian literature. Students interested in a minor in Italian should consult the graduate adviser.
Courses

WIM indicates that the course satisfies the Writing in the Major requirements.

Students interested in literature and literary studies should also consult course listings in the departments of Asian Languages, Classics, Comparative Literature, English, German Studies, Slavic Languages and Literatures, and Spanish and Portuguese, in the Program in Modern Thought and Literature, and in the Division of Literatures, Cultures, and Languages.

French Section

Note — Changes in course offerings after this bulletin has gone to print are sometimes necessary. Students are advised to consult the department bulletin board regularly.

Undergraduate courses in Literature and Culture (130-199)
Courses for Advanced Undergraduates and Graduates (200-299)
Graduate Seminars (300-399)

French Language Courses

The following courses in French language instruction represent a typical sequence for three years of French language study. Majors and prospective majors should consult the requirements for a B.A. in French above. For descriptions, other information, and additional courses including special emphasis, intensive, summer, and activity courses at La Maison Française, see the “Language Center” section of this bulletin.

FRENLANG 1, 2, 3. First-Year French
5 units, Aut, Win, Spr (Ashalaou, Howard, Shashko, Tsethlikai, Staff)

FRENLANG 22, 23. Second-Year French
4-5 units, Aut, Win, Spr (Tsethlikai, Shashko, Staff)

FRENLANG 120. Advanced French Oral Communication
3 units, Aut, Win, Spr (Le Teuff)

FRENLANG 122. Introduction to French Culture and Civilization
3-4 units, Win (Palumbo-Liu)

FRENLANG 124. Advanced French Grammar
3-4 units, Aut, Win (Staff)

FRENLANG 126. French Stylistics and Textual Analysis
3-4 units, Spr (Le Teuff)

Introduction to the Humanities (IHUM)

The following introduction to the Humanities courses are taught by French and Italian department faculty members. IHUM courses are typically available only to freshmen seeking to fulfill IHUM requirements; see the “Introduction to the Humanities” section of this bulletin for further information. Prospective majors in French or Italian are advised to consider satisfying their IHUM requirements by registering for the following IHUM courses.

IHUM 2. Epic Journeys, Modern Quests
— Two quarter sequence. Great religious, philosophical, and literary texts that have addressed timeless questions about human identity and the meaning of human life. Focus is on the epic tradition in the ancient and classical worlds and its transformations or abandonment in modernity. Comparisons conceptions of the afterlife. How traditions about the afterlife are created and appropriated. The diminished importance of the dead and increased emphasis on the afterlife. How traditions about the afterlife are created and appropriated. The importance of literary form to philosophical works, and the ethical significance of literary works. Texts include philosophical analyses of literature, works of imaginative literature, and works of both philosophical and literary significance. Authors may include Plato, Montaigne, Nietzsche, Borges, Beckett, Barthes, Foucault, Nussbaum, Walton, Nehamas, Pavel, and Pippin. GER:DB-Hum
4 units, Spr (Apostolidès)

FREN 190. Images of Women in French Cinema: 1930-1990
— The myth of the feminine idol in French films in historical and cultural context. The myth of stars as the imaginary vehicle that helped France to change from traditional society to modern nation after 1945. Filmmakers include Renoir, Truffaut, and Nelly Kaplan. The evolution of the role of women in France over 60 years. Lectures in English; films in French with English subtitles. GER:DB-Hum, EC-Gender
3-5 units, Spr (Apostolidès)

FREN 228E. Getting Through Proust
— Seminar. Selections from In Search of Lost Time. Themes: habit, heredity, constitution of the self; language, names, metaphor, and metonymy; aesthetics, music, photography, and painting; truth, lies, belief, and disenchantment; sleep, dreams, memory, time, modernity, and technology; friendship, love, homosexuality, jealousy, and mediated desire. Readings in French or English.
3-5 units, Aut (Landy)

General (in English)

These courses, with the subject code FREN 20N, do not require knowledge of French and are open to all students.

FREN 20N. Travel: Real and Imagined Worlds
— (Same as COMPLIT 20N) Stanford Introductory Seminar. Preference to freshmen. Focus is on the foreign and the stranger. How otherness and difference are represented through the outsiders’ gaze. Sources include literary works and travel accounts. Topics such as utopia and monstrosity, cultural encounter, and the diversity of cultures. Readings include Plato, Marco Polo, Rabelais, Montaigne, Jean de Léry, Thomas Mann, Alexis de Tocqueville, Claude Lévi-Strauss, Bernard Dadié, Italo Calvino, and Barbara Chase-Riboud. GER:DB-Hum
3-4 units, Win (Boyli)

FREN 47Q. Albert Camus: Novelist and Philosopher
— Stanford Introductory Seminar. Preference to freshmen. The works and thoughts of Camus, one of the most influential thinkers of his century. His artistic and intellectual production including novels, plays, and philosophical essays. The absurd and the rebellion against the absurd in his works. Readings include The Myth of Sisyphus, The Fall, and The First Man. GER:DB-Hum
4 units, Spr (Apostolidès)

FREN 481. Philosophy and Literature
— (Same as ITALGEN 481) Required gateway course for Philosophical and Literary Thought track offered through Philosophy and DLCL. Introduction to major problems at the intersection of philosophy and literature. Issues may include authorship, selfhood, truth and fiction, the importance of literary form to philosophical works, and the ethical significance of literary works. Texts include philosophical analyses of literature, works of imaginative literature, and works of both philosophical and literary significance. Authors may include Plato, Montaigne, Nietzsche, Borges, Beckett, Barthes, Foucault, Nussbaum, Walton, Nehamas, Pavel, and Pippin. GER:DB-Hum
4 units, Spr (Apostolidès)

FREN 190Q. Parisian Cultures of the 19th and Early 20th Centuries
— Preference to sophomores. Political, social, and cultural events in Paris from the Napoleonic era and the Romantic revolution to the 30s. The arts and letters of bourgeois, popular, and avant garde cultures. Illustrated with slides. GER:DB-Hum
4 units, Spr (Bertrand)

FREN 192E. Images of Women in French Cinema: 1930-1990
— The myth of the feminine idol in French films in historical and cultural context. The mythology of stars as the imaginary vehicle that helped France to change from traditional society to modern nation after 1945. Filmmakers include Renoir, Truffaut, and Nelly Kaplan. The evolution of the role of women in France over 60 years. Lectures in English; films in French with English subtitles. GER:DB-Hum, EC-Gender
3-5 units, Spr (Apostolidès)

FREN 481E. New Methods and Sources in French and Italian Studies
— (Same as ITALGEN 481E) Based on student interest. Changes in research methods: the use of digitized texts, resources, and databases available through Stanford Library’s gateways. Emphasis is on strategies for exploration of broad and specialized topics through new and traditional methods. Using a flexible schedule based on enrollment and the level of students’ knowledge, may be offered in forms including a shortened version on the basics, independent study, or a syllabus split over two quarters. Unit levels adjusted accordingly.
1-4 units, Aut (Sussman)

FREN 228. Theological Poets: Gods, Laws, and Rhythms in European Romanticism
— Why are poets held in high esteem? How did the poet supersede the philosopher as a cultural authority? The cultural, philosophical, and political transformations behind this shift and Romantic ideology. From the late Enlightenment to the mid-1800s, the religious and revolutionary reasons for the poet’s relationships with human beings and gods. Readings include Vico, Rousseau, Kant, Schelling, Hölderlin, Blake, Shelley, Keats, Lamartine, Hugo, and Musset. GER:DB-Hum
3-5 units (Edelstein) not given 2005-06
—How the notion of decadence, initially 3-4 units, Win (Cohen)

FRENGEN 258E. Foundations of Nanoethics: Toward a Rapprochement between Europe and the U.S. —(Same as STS 211.) Nanoethics as a new discipline that accompanies the rise of nanotechnology research in the U.S. and Europe. Differing approaches to the ethics of science and technology in the case of a fledgling technology. 3-5 units (Dupuy) alternate years, given 2006-07

FRENGEN 259. Walter Benjamin and Paris —How Benjamin’s writings and concepts were shaped by his encounter with the literature, visual culture, and social history of 19th- and 20th-century Paris. Writings may include the Arcades Project, essays on Charles Baudelaire, reflections on the work of art in the age of mechanical reproducibility and on photography, essay on surrealism and One-Way Street, and “Theses on the Philosophy of History.” Benjamin’s criticism juxtaposed to works by French authors such as Hugo, Fourier, Baudelaire, Rimbaud, Breton, and Aragon. 3-4 units, Win (Cohen)

FRENGEN 256E. Political Anthropology from Rousseau to Freud —A confrontation between ways of accounting for society in an individualistic framework: the social contract; political economy; individualistic sociology; society as crowd; mass psychology; and sociopolitical institutions. Creating a typology of the ways in which a given anthropological constrains conceptions of the social and political order. Writers include Rousseau, Hume, Smith, Constant, Tocqueville, Marx, Durkheim, Weber, and Freud. GER:DB-Hum 3-5 units (Dupuy) not given 2005-06

FRENGEN 231E. Philosophy and Literature —(Same as PHIL 375.) Points of intersection between philosophy and literature. Philosophy on literature: philosophical approaches to the understanding of literary texts, and issues of truth, fiction, authorship, selfhood. Philosophy in literature: literary texts that invoke philosophical problems or approaches, particularly those in ethics. Philosophy as literature; problems raised by philosophical texts whose proper use requires attention to their form. Readings from Sophocles, Beckett, Plato, Montaigne, Nehamas, Nussbaum, MacIntrye, Walton. 2-4 units (Anderson, Landy) not given 2005-06

FRENGEN 340. Narrative, Memory, Materiality: Women’s Sense of the Past —(Same as ARCHLGY 340, CASA 340.) Theoretical issues concerning women’s sense of the past in different cultural and social milieus, as approached through written stories, monuments and material objects. Themes such as subjectivity, identity, and the human body. Readings include Cixious, Irigaray, Grosz, Kristeva, Spivak, Meskell, Lacan, Levinas, Ricoeur, and Badiou. 3-5 units, Spr (Domanska)

FRENGEN 353. Realism in France, 1830-34 —Practices of the novel in the first years of modern French realism; the realist novel as part of a historically located generic system. The usefulness of genre as a category of literary analysis, the semi-autonomy of literature as part of a social formation, how to make sense of forgotten literature including its challenge to norms of literary value, and materialist models for understanding literary production. Authors may include Stendhal, Balzac, Hugo, Sand, Paul de Kock, Eugène Sue, Edouard Corbière, Madame Charles Reybaud, and Théophile Gautier. Critical readings include Bourdieu, Jameson, Macherey, and Moretti. 3-5 units (Cohen) not given 2005-06

FRENGEN 318E. Philosophy and Literature —(Same as COMPLIT 322A.) The novel as the literary genre most closely identified with the development of cultural modernity by literary historians and theorists. Critical models for defining the novel’s poetics and cultural work. Critical readings such as Bakhtin, Auerbach, Barthes, Armstrong, Genette, Radway, Bourdieu, Macherey, Jameson, and Robbe-Grillet. Tutor texts such as Defoe’s Robinson Crusoe, Flaubert’s Madame Bovary, and Woolf’s To the Lighthouse. 3-5 units, Spr (Cohen)

FRENGEN 369. Introduction to Graduate Studies: Criticism as Profession —(Enroll in COMPLIT 369, GERLIT 369.) 5 units, Aut (Berman)

FRENGEN 395. Philosophical Reading Group —(Same as ITALGEN 395.) Discussion of one contemporary or historical text from the Western philosophical tradition per quarter in a group of faculty and graduate students. For admission of new participants, a conversation with H. U. Gumbrecht or R. Harrison is required. May be repeated for credit. 1 unit, Aut, Win, Spr (Harrison)

LITERATURE, THOUGHT, AND CULTURE

Courses in this section have the subject code FRENLIT.

UNDERGRADUATE

FRENLIT 130. Authorship, Book Culture, and National Identity in Medieval and Renaissance France —Readings: epics (La Chanson de Roland), medieval romances (Tristan; Chrétien de Troyes’ Yvain), post-Petrarchan poetics (Du Bellay, Ronsard, Labé), and prose humanists (Rabelais, Montaigne). Prerequisite: FRENLANG 126 or consent of instructor. GER:DB-Hum, WIM 4 units, Spr (Alday)

FRENLIT 131. Absolutism, Enlightenment, and Revolution in 17th- and 18th-Century France —The literature, culture, and politics of France from Louis XIV to Rousseau. How this period produced the
ITALIAN SECTION

Note — Changes in course offerings are sometimes necessary after this bulletin has gone to print. Students are advised to consult the department bulletin board on a regular basis.

Undergraduate courses in Literature and Culture (130-199)
Courses for Advanced Undergraduates and Graduates (200-299)
Graduate Seminars (300-399)

ITALIAN LANGUAGE COURSES

The following courses in Italian language instruction represent a typical sequence for three years of Italian language study. Majors and prospective majors should consult the requirements for a B.A. in Italian above. For descriptions, other information, and additional courses including special emphasis, intensive, summer, and activity courses at La Casa Italiana, see the “Language Center” section of this bulletin.

ITALLANG 1,2,3. First-Year Italian
2-5 units, Aut, Win, Spr (Baldocchi, Devine, Gelmetti, Napolitano, Tempesta)

ITALLANG 21,22,23. Second Year Italian
4-5 units, A: Aut, Win, Spr (Baldocchi, Devine, Gelmetti), B: Aut, Win, Spr (Baldocchi, Devine, Gelmetti), C: Spr (Gelmetti)

ITALLANG 114. Advanced Stylistics and Composition — WIM
3-4 units, Win (Baldocchi)

ITALLANG 115. Translation and Composition — WIM
3-4 units, Spr (Napolitano)

GENERAL (IN ENGLISH)

These courses, with the subject code ITALGEN, do not require knowledge of Italian and are open to all students.

ITALGEN 41N. Imagining Italy — Stanford Introductory Seminar. Preference to freshmen. Literary responses to Italy by writers in English during the past hundred years and how they continue to construct myths of Italy. How these myths have been transformed into commodities in consumer culture, making Italy a profitable fiction. Authors include Hawthorne, Howells, James, Wharton, Forster, Unsworth, Hellenga, and Mayes. GER.DB-Hum
3-4 units, Win (Springer)

ITALGEN 125. Italian Club — Exploration and appreciation of aspects of Italian and Italian American culture. Events may include: field trips, film screenings, Italian conversation, soccer games, and dinners. (AU)
1 unit, Aut, Win, Spr (Staff)

ITALGEN 166E. Women’s Voices in Contemporary Italian Literature — The canon of Italian literature consists almost exclusively of male authors, yet Italian women writers have been active since the time of Dante. Women’s prose fiction of the last 100 years. Issues include: sexual violence in female autobiographies; the experience of motherhood; the conflict between maternal love and self-determination and autonomy; and paths to political awareness. Authors include Sibilla Aleramo, Dacia Maraini, Anna Banti, Francesca Duranti, Fabrizia Ramondino. Eight novels in English translation; students encouraged to read excerpts in Italian. GER.DB-Hum
4 units (Springer) not given 2005-06

ITALGEN 181. Philosophy and Literature — (Same as FRENGEN 181, PHIL 81.) Required gateway course for Philosophical and Literary Thought track offered through Philosophy and DLCL. Introduction to major problems at the intersection of philosophy and literature. Issues may include authorship, selfhood, truth and fiction, the importance of literary form to philosophical works, and the ethical significance of literary works. Texts include philosophical analyses of literature, works of imaginative literature, and works of both philosophical and literary significance. Authors may include Plato, Montaigne, Nietzsche, Borges, Beckett, Barthes, Foucault, Nussbaum, Walton, Nehamas, Pavel, and Pippin. GER.DB-Hum
4 units, Aut (Landy, Anderson)

ITALGEN 191Q. Eating Life — Preference to sophomores. Interpretation and functions of food in social contexts. Positive aspects: internalization of others, life giving and self denial, offering conviviality of social and intellectual exchange, expression of traditional and religious community solidarity and intent, pleasure of the senses. Negative aspects: offense to oneself such as overeating, obesity, and anorexia, offense to others such as starvation, cannibalism, and human sacrifice as a means to commit suicide, substitution for other pleasures, useless waste. Illustrations in contemporary films.
3 units, Win (Napolitano)

ITALGEN 210E. New Methods and Sources in French and Italian Studies — (Same as FRENGEN 210E.) Based on student interest. Changes in research methods: the use of digitized texts, resources, and databases available through Stanford Library’s gateways. Emphasis is on strategies for exploration of broad and specialized topics through new and traditional methods. Using a flexible schedule based on enrollment and the level of students’ knowledge, may be offered in forms including a shortened version on the basics, independent study, or a syllabus split over two quarters. Unit levels adjusted accordingly.
1-4 units, Aut (Sussman)

ITALGEN 235E. Inferno — The first canticle of Dante’s masterpiece. GER.DB-Hum
3-5 units, Spr (Harrison)

ITALGEN 247. Petrarch and Boccaccio — Their respective roles as founders of European Petrarchism and modern Italian prose. Petrarch’s Canzoniere and My Secret Life and Boccaccio’s Decameron. Readings in Italian and translation.
3-5 units (Harrison) not given 2005-06

ITALGEN 273. Sex, Religion, and Politics in Italian Cinema — How cinema represents conflicts central to the development of contemporary Italian society, such as sexual and racial politics, the development of countercultures including the Mafia, religion’s place in democratic political discourse, and the subversive possibilities of popular religion. Major Italian directors including Fellini, Pasolini, Giordana, and Bellochio.
3-4 units, Win (Wittman)

ITALGEN 283. Poetry and Politics in French and Italian Modernism — (Same as FRENGEN 283.) The poetic production of major modern poets in the context of their writings on politics, other poets, and contemporary political issues. To what extent can the Italian hermetic poets such as Ungaretti and Montale be considered anti-Fascist? Is there a link between the universalizing diplomatic agenda of diplomat-poets such as Claudel and Perse and their work? The notions of négritude in the communist verse of Pasolini, Glissant’s creolization, and Zanzotto’s left-wing environmentalism?
3-4 units, Aut (Wittman)

ITALGEN 284. Philosophy and Poetry in 20th-Century French and Italian Theory — (Same as FRENGEN 284.) To what extent is poetry the other of modern philosophy? How does modern aesthetic theory understand the distinction and blur the boundaries between philosophical and poetic thinking? Authors include Croce, Gentile, Sartre, Bataille, Agamben, Ricoeur, Cacciari, Derrida, and Vattimo. GER.DB-Hum
3-5 units (Wittman) not given 2005-06

ITALGEN 288. Decadence and Modernism from Mallarmé to Marini — (Same as FRENGEN 288.) How the notion of decadence, initially a term of derision, shapes and underlies the positive terms of Symbolism and Modernism. Readings include theories of decadence and examples of Symbolist and Modernist texts that attempt to exercise decadent demons, such as lust, mysticism, and the retreat into artificiality. Authors include Huysmans, Poe, Mallarmé, Nietzsche, Nordau, d’Annunzio, Valry, Ungaretti, Marinetti, and Breton. GER.DB-Hum
3-5 units (Wittman) not given 2005-06

ITALGEN 299. Modernism and Modernity — How modernism is not just a style of art but a way of thinking, a philosophy of experience that bears the hallmarks of the 20th century. Readings include works of Mallarmé, Nietzsche, Kafka, Beckett, Bataille, Proust, Benjamin, and lots of visual materials. GER.DB-Hum
1 unit, Aut (Sussman)
ITALGEN 321. Giambattista Vico—Vico’s New Science in historical context, its polemic against the rise of Cartesian critical philosophy, the basis of his original aesthetic theories, and the relationship of his thought to the traditions it foreshadows such as Hegelianism, Marxism, structuralism, hermeneutics, and speech-act theory. Readings: On the Most Ancient Wisdom of the Italians and The New Science; Descartes’ Discourse on Method; Rousseau’s Origin of Language; and Hegel’s Introduction to the Philosophy of History.
4 units, Win (Harrison)

ITALGEN 353E. F. T. Marinetti and Futurism — (Same as COMPLIT 335.) The history and influence of the Futurist movement. Links between avant garde cultural experimentation and themes of speed, acceleration, intensification, and novelty that shaped modern and postmodern ideas about experience, subjectivity, rhythm, power, and production.
3-5 units, Spr (Schnapp)

ITALGEN 369. Introduction to Graduate Studies: Criticism as Profession — (Enroll in COMPLIT 369, GERLIT 369.)
5 units, Aut (Berman)

ITALGEN 395. Philosophical Reading Group — (Same as FRENGEN 395.) Discussion of one contemporary or historical text from the Western philosophical tradition per quarter in a group of faculty and graduate students. For admission of new participants, a conversation with H. U. Gumbrecht or R. Harrison is required. May be repeated for credit.
1 unit, Aut, Win, Spr (Harrison)

LITERATURE, THOUGHT, AND CULTURE
Courses in this section have the subject code ITALLIT.

UNDERGRADUATE

ITALIT 127. Inventing Italian Literature: Dante, Boccaccio, Petrarcha—Dante’s Inferno and Vita Nuova, Boccaccio’s Decameron, and the love lyrics of Petrarch. Prerequisite: 3 or equivalent. GER:DB-Hum
4 units, Aut (Schnapp)

ITALIT 128. The Italian Renaissance and the Path to Modernity—The literature, art, and history of the Renaissance and beyond. Readings from the 15th through 18th centuries include Moderata Fonte, Machiavelli, Ariosto, Tasso, Galileo, and Goldoni. Prerequisite: 21 or equivalent. GER:DB-Hum
4 units, Win (Springer)

ITALIT 129. Modern Italian History and Literature—The history of the Italian nation and national literary identity in the 19th and 20th centuries. Focus is on the Risorgimento and the romantic lyric, futurism, feminism, fascism, and resistance. Authors include Foscolo, Leopardi, Verga, D’Annunzio, Aleramo, Marinetti, Pirandello, Ungaretti, and Montale. Prerequisite: 21 or equivalent. GER:DB-Hum
4 units, Spr (Springer)

ITALIT 139. Thematics of Twentieth-Century Italian Poetry—Recurring themes in 20th-century Italian poetry within a larger European context. Aesthetic, political, and philosophical issues in modernity. The poetic intent behind recurring themes of time, the void, isolationism, enclosure, and memory. Readings include Saba, Ungaretti, Montale, Eliot, Bergson, Bachelard, and Agamben.
4 units, Spr (Lopez)

ITALIT 198. Honors—Open to juniors and seniors with consent of adviser; 9-12 total units for completion of honors essay.
3-12 units, Aut, Win, Spr (Staff)

ITALIT 199. Individual Work
1-12 units, Aut, Win, Spr (Staff)

ADVANCED LITERATURE

ITALIT 245. Tasso and the Italian Baroque—The Gerusalemme liberata in the context of the cultural politics of the Counterreformation including Baroque visual culture, literature, architecture, urban planning, sculpture, and painting. In English. Prerequisite: reading knowledge of Italian.
4-5 units, Spr (Springer)

ITALIT 273. Past Imperfect: Revisiting World War II in Italian Fiction and Film—Art’s role, positive and negative, in rewriting traumatic historical events. Changing views of Fascism and WW II from the 30s to the present. Authors include Carlo Levi, Silone, Primo Levi, Morante, Bassani, and Moravia; directors include Rossellini, De Sica, Bertolucci, Scola, Cavani, and Benigni.
3-5 units (Wittman) not given 2005-06

ITALIT 299. Individual Work
1-12 units, Aut, Win, Spr, Sum (Staff)

GRADUATE

ITALIT 345. Petrarch and Petrarchism— (Same as COMPLIT 315.) Readings from the Canzoniere, Epistola, De Vita Solitaria, and Secretum, in relation to later developments in Petrarchan poetics in Italy (Ariosto, Gaspara, Stampa, Tasso), Spain (Garcilaso, Quevedo, Gongora), England (Sydney, Shakespeare), and France (Ronsard). Topics: Petrarch and Dante, Petrarch and the aesthetics of fragmentation, and Pietro Bembo and the Petrarchan canon. In Italian.
3-5 units, Aut (Schnapp)

ITALIT 399. Individual Work—For graduate students working on a special project or predissertation research. May be repeated for credit.
1-15 units, Aut, Win, Spr, Sum (Staff)

OVERSEAS STUDIES
Courses approved for the French or Italian major and taught overseas can be found in the “Overseas Studies” section of this bulletin, or in the Overseas Studies office, 126 Sweet Hall.

PARIS

FRENGEN 156P. American Writers in Paris: Twentieth-Century Expatriate Writers in Paris
4 units, Aut (Alduy)

FRENLIT 143P. Theater in Transition: Stage and Audience in France Today
4 units, Spr (Mervant-Roux)

FRENLIT 178F. Literature and the City
4 units, Aut (Dupas)

FRENLIT 182P. Making Films in France: An Insider’s View
4 units, Win (Apostolidès)

FRENLIT 186F, Contemporary African Literature in French— (Same as AFricaAM 186F)
4 units, Win (Azarian)

FRENLIT 191P. Women in French Cinema— (Same as FEMST 192E)
4 units, Aut (Alduy)

FRENLIT 194P. French Avant Garde Movements in the Twentieth Century
3 units, Win (Apostolidès)

FLORENCE

ITALGEN 135F. Women in Italian Cinema: Maternity, Sexuality, and the Image— (Same as FEMST 135F)
4 units, Spr (Campani)

ITALGEN 150F. High Renaissance and Maniera— (Same as ART-HIST 112Y)
5 units, Spr (Verdon)

ITALGEN 191F. The Cinema Goes to War: Fascism and World War II as Represented in Italian and European Cinema— (Same as ART-HIST 160Y, HISTORY 235V, COMM 53)
5 units, Win (Campani)
GERMAN STUDIES

Emeriti: (Professors) Theodore M. Andersson, Gerald Gillespie, Walter F. W. Lohmes, Katharina Mommsen, Kurt Müller-Vollmer
Chair: Amir Eshel
Professors: Russell A. Berman, Elizabeth Bernhardt, Orrin W. Robinson III
Associate Professor: Amir Eshel
Assistant Professors: Charitini Douvaldzi, Arthur C. T. Strum
Senior Lecturers: William E. Petig, Kathryn Strachota
Visiting Professor: Marton Dornbach (Autumn, Winter)
Affiliated Academic Staff: Henry Lowood (Curator, Germanic Collections)
Director of Graduate Studies: Russell A. Berman
Director of Undergraduate Studies: Arthur C. Strum
Department Office: Building 260, Room 211
Mail Code: 94305-2030
Phone: (650) 723-3266
Email: germanstudies@stanford.edu
Web Site: http://www.stanford.edu/dept/german/

Courses given in German Studies have the subject code GERGEN and GERLIT. For courses in German language instruction with the subject code GERLANG, see the “Language Center” section of this bulletin. For a complete list of subject codes, see Appendix.

The department offers a variety of programs in German; and majors in German Studies formulate their plans in quarterly consultation with the Director of Undergraduate Studies.

By carefully planning their programs, students may fulfill the B.A. requirements for a double major in German Studies and another subject. An extended undergraduate major in English and German literature is available, as are co-terminal programs for the B.A. and M.A. degrees in German Studies, and joint programs for the Ph.D. degree with Comparative Literature, Interdisciplinary Studies in Humanities, Linguistics, and Modern Thought and Literature.

Special collections and facilities at Stanford offer possibilities for extensive research in German Studies and related fields pertaining to Central Europe. Facilities include the Stanford University Libraries and the Hoover Institution on War, Revolution, and Peace. Special collections include the Hildebrand Collection (texts and early editions from the 16th to the 19th century), the Austrian Collection (with emphasis on source material of the time of Maria Theresa and Joseph II, the Napoleonic wars, and the Revolution of 1848), and the Stanford Collection of German, Austrian, and Swiss Culture. New collections emphasize culture and cultural politics in the former German Democratic Republic. The Hoover Institution has a unique collection of historical and political documents pertaining to Germany and Central Europe from 1870 to the present. The department also has its own reference library. Extensive use is made of the language lab as well as the department’s own audio-visual equipment, films, tapes, and slides.

The Republic of Austria has endowed the Distinguished Visiting Professorship in Austrian Studies. The professorship rotates on a yearly basis through several departments.

Haus Mitteleuropa, the German theme house at 620 Mayfield, is an undergraduate residence devoted to developing an awareness of the culture of Central Europe. A number of department courses are regularly taught at the house, and there are in-house seminars and conversation courses. Assignment is made through the regular undergraduate housing draw.

UNDERGRADUATE PROGRAMS

BACHELOR OF ARTS

The major in German Studies provides students with the linguistic and analytic facility to explore the significance of the rich cultural traditions and political histories of the German-speaking countries of Central Europe. At the same time, the interdisciplinary study of German culture, which can include art, history, literature, media theory, philosophy, political science, and other areas, also encourages students to evaluate broader and contradictory legacies of modernity. For example, the literary, artistic, and cultural responses to the belated and rapid modernization of Germany allow for reflection on the modern condition in general.

Similarly, the German experience of national identity and political unification sheds light on wider issues of cultural cohesion and difference, as well as on the causes and meaning of phenomena such as racial prejudice, anti-Semitism, and the Holocaust. In general, an education in German Studies not only encourages the student to consider the profound effects of German-speaking thinkers and artists on the modern world, but also provides a lens through which the particular contours of the present and past can be evaluated.

Majors must demonstrate basic language skills, either by completing GERLANG 1, 2, 3, First-Year German, or the equivalent such as an appropriate course of study at the Stanford in Berlin Center. Students then enroll in intermediate and advanced courses on literature, culture, thought, and language. Requirements for the B.A. include at least three courses at the 130-139 level (introduction surveys on topics in German literature, thought, linguistics, and culture). Every major is expected to complete at least one Writing in the Major (WIM) course. Including GERLANG 1, 2, 3, the total requirement for the B.A. is a minimum of 60 units of work. With the approval of the Director of Undergraduate Studies, appropriate courses offered by other departments can be accepted toward this total, up to a maximum of 25 units. Ten units from the IHUM 8A,9A sequence, Myth and Modernity, can be counted towards the major.

Internships—Internships in Germany are arranged through the Overseas Studies program. In addition, students may consult with the department to arrange local internships involving German language use or issues pertaining to Germany or Central Europe. Interns who prepare papers based on their experience enroll in GERLIT 298.

Extended Major in English and German Literatures—Students may enter this program with the consent of the chairs of both departments. See the “English” section of this bulletin.

Multiple Majors—Students can combine a major in German Studies with a major in any other field. By carefully selecting courses in such disciplines as history, international relations, or economics, students can prepare themselves exceptionally well in the area of Central Europe. Multiple majors are especially recommended for students spending one or more quarters at the Stanford in Berlin Center.

GERMAN AND PHILOSOPHY

The German and Philosophy major option offers students the opportunity to combine studies in literature and philosophy. Students take most of their courses from departments specializing in the intersection of literature and philosophy.

The German and Philosophy major track requires a minimum of 16 courses, for a minimum total of 65 units, distributed as follows:

1. 35 units in German Studies, including:
 a) three courses at the 130 level
 b) a WIM course
2. PHIL 81, the gateway course in philosophy and literature, preferably in the sophomore year.
3. Requirements in Philosophy:
 a) PHIL 80. Prerequisite: introductory philosophy class
 b) a course in the PHIL 180 series
 c) a course in the Philosophy 170 series
 d) two courses in the history of philosophy numbered above 100
4. Two additional elective courses of special relevance to the study of philosophy and literature as identified by the committee in charge of the program. In German, these courses include GERLIT 241-243 series, Deutsches Geistesgeschichte, and other advanced seminars in German thought and literature. Students must consult with their advisers, the Director of Undergraduate Studies, and undergraduate adviser of the program in philosophical and literary thought.
5. Capstone: in place of a standard capstone course in the major, students take a capstone seminar approved through the program in philosophical and literary thought. The student’s choice of capstone seminar must be approved in writing by the Director of Undergraduate Studies and
undergraduate adviser of the program in philosophical and literary thought.

6. Units devoted to meeting the department’s language requirement are not counted toward the 65-unit requirement.

The capstone seminar and the two related courses must be approved by both the German Studies Director of Undergraduate Studies and the undergraduate adviser of the program in philosophical and literary thought administered through the DLCL. Substitutions, including transfer credit, are not normally permitted for items 3b, 3c, and 3d, and are not permitted under any circumstances for items 2, 3a, and 5. Up to 10 units taken in the Philosophy Department may be taken CR/NC or S/NC; the remainder must be taken for a letter grade.

MINORS

There are two minor options.

German Language and Culture — Students may choose to minor in German Language and Culture if they are particularly interested in developing a strong ability in the German language, or in pursuing linguistic issues pertinent to German. Students satisfy the requirements for the minor in German Language and Culture by completing 35 units of course work, including at least three courses at the 100-129 level in either GERLANG or GERLIT, taught in German. Study at the Stanford in Berlin Center for at least one quarter is highly recommended.

German Cultural Studies — Students who wish to study German literature, culture, or thought, without necessarily acquiring facility in the German language, may pursue a minor in German Cultural Studies. Students meet the requirements for the minor in German Cultural Studies by completing 35 units of course work in German literature, culture, and thought in translation, including at least three courses at the 130 or 140 level. (Five units of the Introduction to the Humanities sequence Myth and Modernity may be counted towards the completion of requirements for the minor in German Cultural Studies.)

HONORS

Majors with a minimum grade point average (GPA) of 3.3 in German courses are eligible for departmental honors. Students interested in the honors program should consult the undergraduate adviser early in their junior year. The essay topic is chosen in consultation with a faculty member of the department and opportunities to start research projects are offered at the Stanford in Berlin Center. In addition to the requirements listed above, the student must submit a proposal for the honors essay to the German faculty by the end of Spring Quarter of the junior year. During this quarter, students may enroll for 2 units of credit in GERLIT 298 for the drafting or revision of the thesis proposal. In Autumn Quarter of the senior year, the student must enroll in DLCL 189, a 5-unit seminar that focuses on researching and writing the honors thesis. Students then enroll for 5 units of credit in GERLIT 298 while composing the thesis during Winter Quarter. A total of 10-12 units are awarded for completion of honors course work, independent study, and the finished thesis.

STANFORD IN BERLIN

All undergraduates interested in Germany are urged to enroll in the Berlin program, which is open for academic study during the Autumn, Winter, and Spring quarters. The program also offers internships in German industry, government, and cultural organizations year round. Through the Center, students with at least two years of college-level German can also take courses at the Freie Universität, Technische Universität, or Humboldt Universität. Most students live in homes with German hosts.

Most credits earned in Berlin can be applied to the undergraduate major in German Studies. All students who are planning to study at Stanford in Berlin or engage in an internship are encouraged to consult with their major Director of Undergraduate Studies and the Overseas Studies office about integrating work done abroad into their degree program. Returning interns who wish to develop a paper based on their experience should enroll in GERLIT 298. More detailed information is available at the Overseas Studies Program in Sweet Hall or with the faculty adviser in the department.

COTERMINAL PROGRAMS

Students may elect to combine programs for the B.A. and M.A. degrees in German Studies. For details, see the “Undergraduate Degrees” section of this bulletin.

For University coterminal degree program rules and University application forms, see http://registrar.stanford.edu/publications/#Coterm.

GRADUATE PROGRAMS

The University requirements for the M.A. and Ph.D. degrees are described in the “Graduate Degrees” section of this bulletin.

MASTER OF ARTS

This program is designed for those who do not intend to continue studies through the Ph.D. degree. Students desiring the M.A. degree must complete a minimum of 45 units of graduate work. If students enroll for three quarters for a minimum of 15 units per quarter, they can fulfill the M.A. requirements in one year. The program normally includes at least one course in each of the three areas of concentration: language and linguistics, literature, and thought.

In addition, students must take graduate-level courses in German and/or approved courses in related fields such as art history, comparative literature, linguistics, history, or philosophy.

M.A. candidates must take an oral examination toward the end of their last quarter.

DOCTOR OF PHILOSOPHY

The requirements for the Ph.D. include: (1) a minimum of 36 graduate units during the first year of graduate study and a minimum of 9 units per quarter during the six quarters following the first year; (2) a reading knowledge of one language other than English and German, normally French; (3) a master’s oral examination, unless the student already has an M.A. upon entering the program; (4) a qualifying paper; (5) a qualifying examination; (6) the University oral examination; and (7) a dissertation. Students in Medieval Studies must also have a reading knowledge of Latin.

During the first year of work, the student should select courses that provide an introduction to the major areas of the discipline. During Spring Quarter of the first year, all students, except those admitted with a master’s degree, must take an oral M.A. examination. During the one-hour examination, the student is questioned by three faculty members from German Studies, chosen by the student, on work undertaken in specific graduate courses.

By July 1 of the summer following the first year of graduate study, students should present as a qualifying paper an example of their course work. Although ordinarily not meant to represent an original contribution to scholarship, it should demonstrate the candidate’s ability to grasp complex subject matter with sufficient competence to organize materials and to present arguments in a clear and concise manner commensurate with scholarly standards. The paper is submitted to the department chair, who passes it on for approval by the student’s faculty adviser and a second reader appointed by the chair in consultation with the Director of Graduate Studies.

By July 1 of the summer following the first year of graduate study, students should present as a qualifying paper an example of their course work. Although ordinarily not meant to represent an original contribution to scholarship, it should demonstrate the candidate’s ability to grasp complex subject matter with sufficient competence to organize materials and to present arguments in a clear and concise manner commensurate with scholarly standards. The paper is submitted to the department chair, who passes it on for approval by the student’s faculty adviser and a second reader appointed by the chair in consultation with the Director of Graduate Studies.

Students who enter the program with a master’s degree from another institution must submit, in lieu of a qualifying paper, a master’s thesis or a major research paper as evidence of ability to pursue advanced scholarly work.

At the end of the sixth quarter of study (and only if the qualifying paper has been accepted), the student takes a one-hour oral qualifying exam with two faculty members from German Studies, the student’s chosen adviser, and another faculty member appointed by the chair. The purpose of this examination is to demonstrate a broad familiarity with the literature of the major periods, movements, and some major figures. Only after completion of the qualifying procedure will the department approve the student’s admission to candidacy. A student who fails the qualifying examination may retake it once at the beginning of the seventh quarter.

After passing the qualifying exam, the student should consult with appropriate faculty members in order to develop a dissertation topic. It
is important to consider scholarly significance, access to resources, and feasibility of completion within a reasonable period. The student then prepares a preliminary statement describing the topic (no more than five pages), which is circulated to prospective committee members for discussion at a meeting normally held during the eighth quarter. The purpose of this meeting is to provide the student with feedback and guidance in the preparation of the formal prospectus.

The University oral examination in the Department of German Studies is based on the dissertation prospectus. The prospectus, normally 25 pages plus bibliography, elaborates on the topic, the proposed argument, and the organization of the dissertation. It must be distributed to the committee members and the outside chair at least two weeks before the formal University oral examination. Students should plan this examination for the end of the third year or the end of the subsequent summer. The examination lasts approximately two hours, permitting each of the four examiners a 25-minute question period and reserving an optional ten minutes for questions from the chair of the examination.

Students, regardless of their future fields of concentration, are expected to acquire excellence in German and thorough knowledge of the grammatical structure of German. The department expects Ph.D. candidates to demonstrate teaching proficiency in German; GERLIT 200, Teaching of Second Language Literatures (not given 2005-06), is required. The teaching requirement is five quarters during the second and third years of study. The fifth and final quarter of teaching may be postponed until the student has worked extensively on the dissertation and may be devoted to a literary topic related to the dissertation. Such courses are subject to departmental review procedures.

The department expects candidates to demonstrate research skills appropriate to their special areas of study. The requirement can be fulfilled in the capacity of either a University Fellow or a Research Assistant.

Graduate students are also advised to start developing skills in the teaching of literature by participating in the teaching of undergraduate literature courses. Students can earn up to 3 units of graduate credit for practice teaching in literature.

Regular attendance at the departmental colloquium is mandatory. Each student is expected to make a formal presentation at the colloquium for public discussion.

INTERDISCIPLINARY PROGRAMS

The department participates in the Graduate Program in Humanities leading to a joint Ph.D. degree in German Studies and Humanities. For a description of that program, see the “Interdisciplinary Studies in Humanities” section of this bulletin.

Students may work toward a Ph.D. in German Studies with minors in such areas as comparative literature, modern thought and literature, linguistics, or history. Students obtaining a Ph.D. in such combinations may require additional training.

Courses

WIM indicates that the course satisfies the Writing in the Major requirements. (AU) indicates that the course is subject to the University Activity Unit limitations (8 units maximum).

Students interested in literature and literary studies should also consult course listings in the departments of Asian Languages, Classics, Comparative Literature, English, French and Italian, Slavic Languages and Literatures, and Spanish and Portuguese, in the Program in Modern Thought and Literature, and in the Division of Literatures, Cultures, and Languages.

GERMAN LANGUAGE COURSES

The following courses in German language instruction represent a typical sequence for three years of German language study. Majors and prospective majors should consult the requirements for a B.A. in “German Studies above. For descriptions, other information, and additional courses including special emphasis, intensive, summer, and activity courses at the Haus Mitteleuropa, see the “Language Center” section of this bulletin.

GERLANG 1,2,3. First-Year German

5 units, Aut, Win, Spr (Staff)

GERLANG 21,22. Intermediate German

3-4 units, 21: Aut, 22: Win (Petig)

GERLANG 100. Hundert Deutsche Jahre: One Hundred German Years

3-4 units, Aut (Strachota)

GERLANG 101,102. Advanced Language Study

3-4 units, 101: Aut, 102: not given 2005-06

INTRODUCTION TO THE HUMANITIES (IHUM)

The following Introduction to the Humanities courses are taught by German Studies faculty members. IHUM courses are typically available only to freshmen seeking to fulfill IHUM requirements; see the “Introduction to the Humanities” section of this bulletin for further information. Prospective majors in German Studies are advised to consider satisfying their IHUM requirements by registering for the following courses.

IHUM 8A,9A. Myth and Modernity: Culture in Germany — Two quarter sequence. The tension between tradition and progress through an examination of German cultural history. The experience of modernity typically involves overcoming or denying the past, but that same past can return to haunt the present in the form of myths. The interplay of myth and modernity, the irrationality of narrative, and the reason of progress, through the example of German culture, especially in literature, from the heroic epics of the medieval era through the catastrophes of the last century. GER:IHUM-2,3

IHUM 8A. 5 units, Win (Berman)

IHUM 9A. 5 units, Spr (Eshel, Strum)

GENERAL (IN ENGLISH)

These courses, with the subject code GERGEN, do not require knowledge of German and are open to all students.

GERGEN 103A. 19th-Century Philosophy—(Enroll in PHIL 103.)
4 units, Win (A. Wood)

GERGEN 104Q. Resistance Writings in Nazi Germany—Stanford Introductory Seminar. Preference to freshmen. The letters and diaries of individuals who resisted Nazi oppression and paid with their lives. Readings include the Scholl diaries, Bonhoeffer’s letters and his Ethics, and letter exchanges from other crucial figures. No knowledge of German required; students may read texts in original if able. GER:DB-Hum
3 units, Aut (Bernhardt)

GERGEN 110A. Introductory German Conversation: Langs Die Nibelungen — Conversation adjunct to IHUM 8A, including Fritz Lang’s films Siegfried and Die Nibelungen. Corequisite: IHUM 8A, 1 unit, Win (Mitchell)

GERGEN 110C. Introductory German Conversation: German Culture in Transnational Context—German conversation course accompanying IHUM 9A. Topics may include: German colonialism and its legacy; minorities in Germany; the feminist movements; divided Germany; the Berlin Holocaust memorial; unification and the European Constitution; and Germany on film. Speakers with any level of German welcome. Corequisite: IHUM 9A.
1 unit, Spr (Hosek)

GERGEN 111A. German Modernism and Fascism—The Weimar period and its relationship to the fascist aesthetic. Major modernist works, from Expressionism to Neue Sachlichkeit; works associated with the rise of National Socialism; and the relation between art and politics. Works by Berthold Brecht, Thomas Mann, and Klaus Mann; films by Fritz Lang and Leni Riefenstahl.
3 units, Spr (Song)
GERGEN 121N. Memory in the Modernist Novel—Stanford Introductory Seminar. Preference to freshmen. The art of memory as one of the main characteristics of modernity. The relationship between memory and modernism through major narrative texts: Rainer Maria Rilke’s The Notebooks of Malte Laurids Brigge; James Joyce’s A Portrait of the Artist as a Young Man; and Marcel Proust’s Combray. How memory is represented in the novels, and its role in the perception of external reality. How memory helps to constitute personal identity. The metaphors used to define memory. Readings include theoretical and critical essays, and primary texts. GER:DB-Hum

3-5 units, Win (Douvaldzic)

GERGEN 122N. Virtue and Terror: Kant, Rousseau, and the French Revolution—Stanford Introductory Seminar. Preference to freshman. The French Revolution as culmination of the Enlightenment and effort to construct state and society in the image of reason. A philosophical interpretation of central features of revolutionary culture and politics such as festivals, paintings, and the Terror. Their importance to modern conceptions of revolution and social change through Rousseauvian and Kantian ideas either at play in the Revolution or affected by it. Sources include works by Rousseau, Kant, Robespierre, David, and Mozart.

4 units, Win (Strum)

GERGEN 166A. European Memories: Peter Weiss’ Modernism Contextualized—Weiss and the tradition of Brecht, Beckett, and Artaud; his relevance for rethinking the European past and present. The re-introduction of preeminent European intellectuals into contemporary literary-theoretical discourse. Comparative readings of texts and films which influenced Weiss to contextualize his works within European modernism. Sources include his Marat/Sade, The Investigation, and The Aesthetic of Resistance. In English.

4 units, Aut (Bach)

GERGEN 168A/268A. Freud and the Enterprise of Psychoanalysis—Psychoanalysis at the juncture of its multiple meanings as a therapeutic practice, a theory of the functioning of the human mind, a method of textual interpretation, a cultural critique, and a genealogy that accounts for the origins of morality, religion, art, and other social institutions. Readings include Freud’s major works, and Nietzsche, Ferenczi, Lacan, Laplanche, de Certeau, Kristeva, and Irigaray. GER:DB-Hum

4 units, Win (Douvaldzic)

GERGEN 181. Philosophy and Literature—(Enroll in FRENGEN 181, ITALGEN 181, PHIL 81.)

4 units, Aut (Landy, Anderson)

GERGEN 191A/291A, Oedipus, Hamlet, Moses—Texts that provided psychoanalysis with its foundational myths. Oedipus, Moses, and Hamlet as archetypes of the hero related to moments of emerging modernity: from mythos to logos, polytheism to monotheism, and action to thought. The interplay among knowledge, recognition, and desire; the role of sameness and alterity in the construction of personal, familial, and national identities; and the relation between violence and the construction of history. Readings include: Exodus, Sophocles, Shakespeare, Freud, Aeschylus, Euripides, Cavafy, Hofmannsthal, and Wolf; theoretical and critical essays by Laplanche, Lyotard, Lacan, de Certeau, Kofman, Assmann, Said, and Cavell. GER:DB-Hum

3-5 units, Spr (Douvaldzic)

GERGEN 201. The Learning and Teaching of Second Languages—(Same as APPLLING 201.) Teaching second languages from a learning perspective rather than traditional teaching methods. Focus is on instructional decision making within the context of student intellectual and linguistic development in university settings to different populations. Readings in second language acquisition.

3 units, Spr (Bernhardt)

GERGEN 206/306. Arts of Memory—From its beginnings as memorization technique for orators, ars memoriae evolved to encompass phenomena such as hermetic practices and logic, sermon composition, taxonomic systems, and ekphrastic representation. The tension between artificial and natural memory; the role of mnemonics in empirical psychology and the psychological novel; mnemonics as an alternative model to linear time and a mode of resistance to domination. Authors include Aristotle, Cicero, Augustine, Aquinas, Hugh of St. Victor, Leonardo, Comenius, Montaigne, Locke, Lessing, Goethe, Moritz; Yates, Carruthers, Foucault, Beaujour, Derrida, Mitchell, Krieger, and LeGoff. No knowledge of German required.

3-5 units, Win (Douvaldzic)

GERGEN 248. Culture Industry—German intellectual exile in California in the 40s and its encounter with Hollywood film. Topics include: the Frankfurt School and its approach to commercial and industrially produced art: popular cultures and political agenda; and elitism and modernism. Authors include Adorno, Brecht, Dieterle, and Eisler; films include Chaplin, Lang, and Godard.

4 units, Spr (Berman)

GERGEN 272. The Politics of the Humanities—Contemporary analyses of the politics of the humanities, including Rorty, Nussbaum, and Edmundson, in the context of the literary works these writers valorize, and classic analyses of the politics of art, including Plato, Rousseau, Kant, Schiller, DuBois, and Heidegger.

3-5 units, Win (Strum)

GERGEN 300. The Theory of the Text—(Enroll in COMPLIT 353.)

4-5 units, Win (White)

INTERMEDIATE

At this level, students have several options depending on their interests. After completing GERLANG 3 or the equivalent, students may register directly for courses on the GERLIT 120-level, which consider special topics in German culture while advancing language learning. Alternatively, GERLANG 21, 22, and 101 emphasize a systematic review of the language, while GERLANG 21W, 22W, and 105 study the language of business and international relations. GERLANG 100, 110, and 111 develop German language skills in the context of media such as film, television, and news’” papers. All language instruction courses with the subject code GERLANG are listed in the “Language Center” section of this bulletin.

GERLIT 119. Werther to West-Eastern Divan: Goethe’s Poetry Beyond the National Horizon—(Same as 219.) Poetic voice and vision beyond Western poetic tradition: Persian poetry and Goethe: Goethe’s vision of poetic vocation in the age of reason; Goethe’s poetry in the context of European Enlightenment; Poetic form and experience at the dawn of modernity. Readings in German and English. Discussion in English.

3-4 units, Win (Shamel)

GERLIT 123N. The Brothers Grimm and Their Fairy Tales—Stanford Introductory Seminar. Preference to freshmen. Historical, biographical, linguistic, and literary look at the Kinder- and Hausmärchen of Jacob and Wilhelm Grimm. Readings from the fairy tales, plus materials in other media such as film and the visual arts. Small group performances of dramatized fairy tales. Prerequisite: GERLANG 3 or equivalent. (In German) GER:DB-Hum, WIM

4 units, Spr (Robinson)

GERLIT 131A. The Young Goethe—(Same as 231A.) Goethe’s 18th-century works and their contexts. The spirit of rebellion in Götz von Berlichingen, Prometheus, and Werther; the classical form of Iphigenie; the bourgeois idyll Hermann and Dorothea; and Faust I. In German. GER:DB-Hum, WIM

3-4 units, Win (Strum)

GERLIT 133C. German Romanticism—(Same as 233.) The literary and theoretical innovations of early Romanticism, and works from the later phase. In German. GER:DB-Hum, WIM

3-5 units, Win (Dornsbach)
GERLIT 133F. German Self-Understanding: Between Culture and Civilization — (Same as 233F.) German-language writers’ attempts to come to terms with German culture from 1800. Visions of a national Kultur in opposition to the universalistic civilization of modernity; the role of language and the arts in this ideal; the emergence of militant nationalism and attempts to counter this tendency with enlightened patriotism; and the quandaries of postwar and post-1989 German self-understanding. GER:DB-Hum, WIM
3-5 units, Win (Dornbach)

GERLIT 133Q. Modernism and Fiction — Stanford Introductory Seminar. Preference to sophomores. Innovative ideas and narrative forms in German modernism. International and specifically German features. Problems of narration. Texts such as Musil’s Tod in Venedig, Mann’s Die Verwandlung, and Broch’s Pasenow. Close reading technique. GER:DB-Hum
4 units, Aut (Berman)

GERLIT 189Q. From Brecht to Müller: German Theater and Performance since World War II — (Enroll in DRAMA 188Q.)
3-5 units, Aut (Weber)

GERLIT 199. Independent Reading — 36 hours of reading per unit, weekly conference with instructor. May be repeated for credit. Prerequisite: consent of instructor.
1-10 units, Aut, Win, Spr, Sum (Staff)

ADVANCED UNDERGRADUATE AND GRADUATE

GERLIT 219. Werther to West-Eastern Divan: Goethe’s Poetry Beyond the National Horizon — (Same as 119; see 119.)
3-4 units, Win (Shamel)

GERLIT 226B. Kant’s Ethical Theory — (Enroll in PHIL 126/226.)
4 units, Spr (Schapiro)

GERLIT 231A. The Young Goethe — (Same as 131A; see 131A.)
3-4 units, Win (Strum)

GERLIT 233. German Romanticism — (Same as 133C; see 133C.)
3-5 units, Win (Dornbach)

GERLIT 233F. German Self-Understanding: Between Culture and Civilization — (Same as 133F; see 133F.)
3-5 units, Win (Dornbach)

GERLIT 237A. 1800: The Creation of Aesthetic Modernism in Early German Romanticism — (Same as 337.) The formation of the modern aesthetic paradigm through the interplay of philosophy, hermeneutics, and literary and poetic discourse among leading representatives of the period. Texts by Fichte, Hölderlin, Schelling, Hegel, Schleiermacher, H. Wackenroder, Tieck, Novalis, A. W. and F. Schlegel, and Jean Paul Richter. Readings and discussions in English; German Studies majors read primary texts in German.
3-5 units, Aut (Müller-Vollmer)

GERLIT 238. The Femme Fatale in German Literature and Cinema — Recent depictions in films by Fassbinder and novellas by Kirchhof. The classic femme fatale epitomized by Louise Brooks and Marlene Dietrich as icons in Hollywood film production. GER:DB-Hum
4 units, Win (Bach)

GERLIT 239. Identity/Memory: The Jewish Image in German Cinema — (Same as JEWISHST 235C.) Post-Cold War German cinema about Jewish contributions to German society, German resistance to the Nazis, and Jewish normalization in German. Perspectives on the socio-political position of Jews in German history. The emotional reality of the Jewish collective experience of assimilation, betrayal, displacement, and memory. Sources include dramatic, documentary, pre-WW II, and W. and E. German films. In English.
4 units, Win (Plotkin)

GERLIT 241. Deutsche Geistesgeschichte 1: German Aesthetic Thought, 1790-1872 — The seminal tradition of writing about art including the German Idealists (Kant, Schelling, Hegel, and Schiller), Romantics (Schlegel, Novalis, and Hoffmann), and Schopenhauer, Kierkegaard, and Nietzsche. In English. GER:DB-Hum
4 units, Aut (Dornbach)

GERLIT 289. History, Memory, and Cultural Discourse in Germany, Austria, and Israel — (Same as INTNLREL 103.)
5 units, Spr (Eshel)

GERLIT 298. Individual Work — Open only to German majors and to students working on special projects, including written reports for internships. Honors students use this number for the honors essay. May be repeated for credit.
1-15 units, Aut, Win, Spr, Sum (Staff)

GERLIT 299. Present Past: History, Fiction, Temporality — (Same as COMPLIT 321.) The crisis of temporality and aversion to traditional notions of history in late 20th-century Western culture. Sources include literary, philosophical, and historical works with focus on the cultural dislocations attending the rebellion against modernity and the difficulty of making sense of the relation between past and present as traditional values, ideologies, and utopias weaken. Readings may include Heidegger, Benjamin, Koselleck, Ricoeur, Sartre, Levi, Kafka, Agnon, Woolf, Celan, and Weiss. GER:DB-Hum
5 units, Win (Eshel, White)

GERLIT 310. Theorizing Experience — The theoretical relevance of the category of experience (Erfahrung). Key articulations including Hegel, Benjamin, Gadamer, and more recent authors. Topics such as: negativity in experience; the tension between internal and external standpoints; contrast between lived and interiorized experience; the character of aesthetic experience and its power to confront audiences with, or compensate them for, the experiential poverty brought on by modernity. In English.
4 units, Aut (Dornbach)

GERLIT 337. 1800: The Creation of Aesthetic Modernism in Early German Romanticism — (Same as 237A; see 237A.)
3-5 units, Aut (Müller-Vollmer)

GERLIT 369. Introduction to Graduate Studies: Criticism as Profession — (Same as COMPLIT 369.) Major texts of modern literary criticism in the context of professional scholarship today. Readings of critics such as Lukács, Auerbach, Frye, Ong, Benjamin, Adorno, Szondi, de Man, Abrams, Bourdieu, Vendler, and Said. Contemporary professional issues including scholarly associations, journals, national and comparative literatures, university structures, and career paths.
5 units, Aut (Berman)

GERLIT 399. Independent Study
1-15 units, Aut, Win, Spr, Sum (Staff)

GERLIT 400. Dissertation Research — For graduate students in German working on dissertations only.
1-15 units, Aut, Win, Spr, Sum (Staff)

OVERSEAS STUDIES

These courses are approved for the German major and taught at the campus indicated. Course descriptions can be found in the “Overseas Studies” section of this bulletin or in the Overseas Studies Program office, 126 Sweet Hall.

BERLIN
GERGEN 174. Sports, Culture, and Gender in Comparative Perspective
5 units, Spr (Junghanns)

GERLIT 177A. Culture and Politics in Modern Germany
4-5 units, Aut (Kramer)

GERLIT 195. Contemporary Theater — (Same as DRAMA 101A.)
5 units, Spr (Kramer)
HISTORY

Emeriti: (Professors) Gordon A. Craig, Carl N. Degler, Peter Duus, Terence Emmons, George M. Fredrickson, Harold L. Kahn, George H. Knole, Richard W. Lyman, Mark Mancall, Peter Parret, Paul Seaver, Rixford K. Snyder, Peter Stansky, David B. Tyack, Lyman P. Van Slyke

Chair: Aron Rodrigue

Associate Professors: Kennell A. Jackson Jr., Jessica Riskin, Matthew H. Sommer, Amir Weiner, Karen E. Wigen

Assistant Professors: David R. Como, Robert Crews, James P. Daughton, Zephyr Frank, Sean Hanretta, Kathryn Miller, Priya Satia, Caroline WINTERER

Professor (Teaching): Herbert Klein

Courtesy Professors: Lawrence Friedman, Avner Greif, Gavin Wright

Senior Lecturers: Joseph J. Corn, Katherine Jolluck

Lecturer: Martin W. Lewis

Acting Assistant Professor: Margaret O’Mara

Department Office: Building 200, Room 113

Mail Code: 94305-2024

Phone: (650) 723-2651

Web Site: http://history.stanford.edu/

Courses given in History have the subject code HISTORY. For a complete list of subject codes, see Appendix.

History courses teach the foundational knowledge and skills (analytical, interpretive, writing) necessary for understanding the deep connections between past and present. History is a pragmatic discipline in which the analysis of change over time involves sifting the multiple influences and perspectives that affect the course of events, as well as evaluating critically the different forms of evidence historians exploit to make sense of them. Teaching students how to weigh these sources and convert the findings into a persuasive analysis lies at the heart of the department’s teaching. Graduates with a history major pursue careers and graduate study in law, public service, business, writing, and education. Further information on the department, its programs, and faculty can be found at http://history.stanford.edu/.

UNDERGRADUATE PROGRAMS

BACHELOR OF ARTS

The Department of History offers three pathways to the B.A. in History. The General Major emphasizes breadth of study among historical areas and periods as well as concentration in one selected field. The two Majors with Interdisciplinary Emphasis (Literature and the Arts, and History of Science and Medicine) combine the study of history with the methods and approaches of other disciplines, and involve substantial course work outside of History.

All History majors require the following:

1. Completion of a minimum of 58 units and at least twelve courses of at least 3 units each, to include:
 a) one Sources and Methods seminar
 b) two 200-level undergraduate colloquia
 c) at least one other small group course, to be chosen among the department’s undergraduate colloquia, research seminars, or Stanford Introductory Seminars.

2. All courses comprising the 58 units must be taken for a letter grade, and the student must maintain a grade point average (GPA) in History courses of 2.0 or higher.

3. At least six courses must be taken from regular faculty members of the Department of History.

4. History’s Writing in the Major requirement is satisfied by completing one of the following: a WIM-option colloquium or seminar; an Honors thesis in History; or a 15-page research paper in History written under faculty direction (HISTORY 299W). Work on the research paper must begin no later than Winter Quarter of the senior year (at least two quarters prior to graduation).

5. At least six quarters of enrollment in the major. Each candidate for the B.A. in History should declare a major by the Autumn Quarter of the third year of study (earlier, if possible).

One Directed Reading (299R) or Directed Research (299S) taken for 3-5 units and for a letter grade may be applied toward the twelve courses required for the B.A. in History. A maximum of five transfer courses may be applied toward the major. Advanced placement credits do not fulfill any major requirements.

Completion of the major requires planning. In Spring Quarter of the junior year, following consultation with faculty advisers, History majors are required to complete a departmental Degree Progress Review and submit it to the History office.

The department also strongly encourages students to acquire proficiency in foreign languages and study at one of Stanford’s overseas programs. Such studies are not only valuable in themselves; they can provide an opportunity for independent research and a foundation for honors essays and graduate study.

For information on specific History courses’ satisfaction of major requirements, refer to the Department of History course information web site at http://history-db.stanford.edu/courses/.

THE GENERAL HISTORY MAJOR

In pursuing the above requirements for all History majors, the student in the General History major is required to satisfy breadth and concentration requirements.

1. Breadth: to ensure chronological and geographical breadth, at least two courses must be completed in a premodern chronological period and in each of three geographical fields: Field I (Africa, Asia, and Middle East); Field II (the Americas); and Field III (Europe, including Western Europe, Eastern Europe, and Russia). Courses fulfilling the premodern chronological period may also count for Fields I-III.

2. Concentration: to develop some measure of expertise, students must complete four courses in one of the following fields of concentration: Africa, Asia, Eastern Europe and Russia, Europe before 1700, Europe since 1700, Jewish history, Latin America, science and technology, the United States, the Middle East, international history, Comparative Empires and Cultures; or a thematic subject treated comparatively, such as war and revolution, work, gender, family history, popular culture/high culture, and so on. The proposed concentration must be approved by the major adviser; a proposal for a thematic concentration must have the approval of both the adviser and the department’s Undergraduate Studies Committee. At least one and preferably two of these four courses should be an undergraduate colloquium or seminar.

Certain Introduction to the Humanities courses taught by History faculty in a Winter-Spring sequence count toward the General History major.

HISTORY MAJORS WITH INTERDISCIPLINARY EMPHASIS (HMIE)

These majors are designed for several types of students: students interested in other disciplines who want to focus on the historical aspects of the subject matter covered by that discipline; students in History who want to understand how interdisciplinary approaches can deepen their understanding of history; and students primarily interested in developing interdisciplinary approaches to historical scholarship by combining

SCHOOL OF HUMANITIES AND SCIENCES

410
the careful attention to evidence and context that motivates historical research with the analytic and methodological tools of science and the humanities. In pursuing the above requirements for all History majors, students in HMIE are required to complete their twelve courses for the major as follows:

Gateway Course (one course)—Students are required to take the appropriate gateway course for their interdisciplinary major. This introduces students to the application of particular interdisciplinary methods to the study of history. See the section on each HMIE for the gateway course appropriate to that major.

Methodological Cluster (three courses)—This cluster is designed to acquaint students with the ways in which interdisciplinary methods are employed in historical scholarship, both by practicing historians and by scholars in other disciplines whose work is historical. This program of study must provide methodological coherence and must be approved in advance by the student’s adviser. See the section on each HMIE for the appropriate Historical Methods courses.

Geographic Cluster (four courses)—History is embedded in time and place. This cluster is designed to emphasize that the purpose of studying methodology is to more fully understand the history of a particular region of the world. Students select a particular geographic region, as specified in the History major, and complete four courses in that area.

Interdisciplinary Cluster (four courses)—These courses, taken outside the Department of History, acquaint students with the methods and approaches of another discipline appropriate for the interdisciplinary study of history. This program of study must provide methodological coherence and must be approved in advance by the student’s adviser. See the section on each HMIE for appropriate interdisciplinary courses.

HMIE majors do not mandate the breadth or concentration requirements of the General History major. Introduction to the Humanities courses taught by History faculty may apply to HMIEs only to the extent that the content is specifically appropriate to the particular methodological or geographic cluster. Courses preapproved for the clusters in Interdisciplinary tracks are listed on the History advising web site.

HISTORY, LITERATURE, AND THE ARTS

The History, Literature, and the Arts major is designed for the student who wishes to complement his or her work in history with study in literature, particularly in a foreign language. For the purposes of this major, literature is defined broadly, including art, drama, films and poetry, memoirs and autobiography, novels, as well as canonical works of philosophy and political science. It appeals to students who are interested in studying literature primarily in its historical context, or who want to focus on both the art and history of a specific geographical area while also learning the language of that area.

Gateway Course HISTORY 239E, History, Literature, and Arts, gives students a broad introduction to the study of literary texts in history.

Methodological Cluster This cluster teaches students how historians, in particular, analyze literary texts as documentary sources. Students choose three courses from among the preapproved HLA Methodology curriculum; other courses must be approved by the HLA coordinator. These courses need not be in the student’s geographic concentration.

Geographic Cluster Students select four History courses in one geographic area. Examples include: Europe, Britain and the countries of the former British Empire, Asia, North America, Latin America, the Middle East or Africa. These four courses must be taken in addition to the three methodological courses required above.

Interdisciplinary Cluster—Four courses, taken outside the Department of History, must address the literature and arts, broadly defined, of the area chosen for the geographic concentration. The student’s adviser must pre-approve all courses in this cluster; these courses may not be double-counted towards a minor or major other than History.

General Requirements—Among the history courses taken, students must include a Sources and Methods seminar, two 200-level courses, and one other small group class. In addition, the Writing in the Major (WIM) requirement must be completed.

HISTORY, SCIENCE, AND MEDICINE

The History, Science, and Medicine (HS&M) major is a collaborative program of the Department of History, the Program in the History and Philosophy of Science, and the Stanford School of Medicine. The major is designed for: (1) students who wish to complement their work in science and/or pre-medical study with a History major that focuses explicitly on science and medicine; (2) students in the humanities and social sciences whose interest in science and medicine is primarily historical and contextual. This major allows students who are contemplating medical school to study the history of medicine and the medical humanities while fulfilling the pre-medical curriculum.

Gateway Course (1 course)—Students fulfill this requirement by taking the gateway course for HS&M that is offered annually: HISTORY 232F, The Scientific Revolution (Winter Quarter).

Methodological Cluster (3 courses)—These History courses focus on the history of science, technology, and medicine. Courses must be approved by the student’s adviser. The choice of courses depends on the student’s particular interests (for example, premodern science, medical history and literature, history of technology, medical anthropology).

Geographic Cluster (4 courses)—Students select four History courses in one geographic area. Examples include: Europe, Britain and the countries of the former British Empire, Asia, North America, Latin America, the Middle East or Africa. These four courses must be taken in addition to the three methodological cluster courses. Courses in the history of science, technology, and medicine that have a geographic focus may be used to fulfill this requirement, but cannot be double-counted in the methodological cluster.

Interdisciplinary Cluster (4 courses)—These courses are taken outside the Department of History. The cluster can be defined in any of four ways:

1. two medical humanities courses plus two complementary science courses
2. two courses about science (e.g., anthropology of science, sociology of science, philosophy of science) plus two complementary science courses
3. four courses in medical humanities
4. two courses in medical humanities and two about science. In all instances, the Interdisciplinary Cluster must be approved in advance by the student’s adviser.

Medical Humanities Course in the Medical School—Majors in the Medical Humanities track of the major in History, Science, and Medicine are expected to take at least one course in the School of Medicine.

General Requirements—Among the history courses taken, students must include a Sources and Methods seminar, two 200-level courses, and one other small group class. In addition, the Writing in the Major (WIM) requirement must be completed.

MINORS

Candidates for the minor in History must complete six courses, at least three of which must have a field or thematic focus. The department ordinarily defines fields in terms of geography or chronology, but it also invites students to pursue thematic topics that can be examined in broadly comparative terms. Students completing the minor may choose to concentrate in such fields as African, American, British, Asian, European (medieval, early modern, or modern), Russian and East European history, comparative empires and cultures, or such thematic topics as the history of gender, the family, religion, technology, or revolution. Students may also petition to have a concentration of their own design count toward the minor.

All six courses must be of at least 3 units each and must be taken for a letter grade. The student must maintain a grade point average (GPA) in History courses of 2.0 (C) or higher. Two of the six courses must be small-group in format (Stanford Introductory Seminars, Sources and Methods Seminars, departmental colloquia and research seminars). History courses taken at overseas campuses may count toward the minor, but at least three of the six courses must be taken from Stanford faculty. One History course from Introduction to the Humanities may count toward the six-course requirement, but not for the field concentration. One
Directed Reading (200R) course may count towards the minor, if taken for 3-5 units and for a letter grade. A maximum of three transfer courses may be used toward the minor. Advanced placement credits do not fulfill any minor requirements.

Students must declare the minor in History no later than the Autumn Quarter of the senior year. They do so via Axess under Declare Major/Minor. Minor declarations are then approved by the Department of History and confirmation is sent via email to the student.

HONORS PROGRAM

For a limited number of majors, the department offers a special program leading to honors in History. Students accepted for this program, in addition to fulfilling the general requirements stated above, begin work on an essay in Spring Quarter of the junior year and complete the essay by mid-May of the senior year. In addition to the Junior Honors Colloquium, 299H, students normally take 11 to 15 units of Senior Research, to be distributed as best fits their specific project. For students in the honors program, Senior Research units (299A,B,C) are taken in addition to the twelve required courses in History.

To enter this program, the student must be accepted by a member of the department who agrees to advise the research and writing of the essay, and must complete the Junior Honors Colloquium (299H). An exception to the latter requirement may be made for those studying overseas Winter Quarter of the junior year, but such students should consult with the director of the honors program, if possible, prior to going overseas. Under exceptional circumstances, students are admitted to the program in the Autumn Quarter of the senior year.

In considering an applicant for such a project, the adviser and director of the honors program take into account general preparation in the field of the project and expect a GPA of at least 3.5 (B+) in the student’s previous work in history and in the University. Students completing the thesis with a grade of ‘B+’ or higher are eligible for honors in History. To enter the honors program, apply at the Department of History office.

Outstanding honors essays may be considered for the University’s Golden Medals, as well as for departmental James Birdsall Weter prizes.

SECONDARY (HISTORY) TEACHER’S CREDENTIAL

Applicants for the Single Subject Teaching Credential (Secondary) in the social studies may obtain information regarding this program from the Credential Administrator, School of Education.

COTERMINAL B.A. AND M.A. PROGRAM

The department each year admits a limited number of undergraduates for coterminal B.A. and M.A. degrees in History. Coterminal applications are only accepted during Autumn Quarter; check with the History office for the application deadline. Applicants are responsible for checking their compliance with University coterminal requirements listed in the “Undergraduate Degrees and Programs” section of this bulletin. Applicants must meet the same general standards as those seeking admission to the M.A. program; they must submit a written statement of purpose, a transcript, GRE test scores, and three letters of recommendation, at least two of which should be from members of the Department of History faculty.

To be competitive, coterminal applicants should have a 3.75 GPA in their undergraduate history major (or equivalent if they are entering without a History major.) The decision on admission rests with the department faculty upon recommendation by the Graduate Admissions Committee. Students must meet all requirements for both degrees. They must complete 15 full-time quarters (or the equivalent), or three full-time quarters after completing 180 units, for a total of 225 units. During the senior year they may, with the consent of the instructors, register for as many as two graduate courses. In the final year of study, they must complete at least three courses that fall within a single Ph.D. field.

For University coterminal degree program rules and University application forms, see http://registrar.stanford.edu/publications/#Coterm.

GRADUATE PROGRAMS

ADMISSION

Applicants for admission to graduate work must take the General Test of the Graduate Record Examination. It may be taken at most American colleges and in nearly all foreign countries. For details, see the Guide to Graduate Admission, available at Graduate Admissions, the Registrar’s Office, Old Union or at http://registrar.stanford.edu/publications.

Students admitted to graduate standing do not automatically become candidates for a graduate degree. With the exception of students in the terminal M.A. program, they are admitted with the expectation that they will be working toward the Ph.D. degree and may become candidates to receive the M.A. degree after completing three quarters of work.

MASTER OF ARTS

University requirements for the M.A. degree are described in the “Graduate Degrees” section of this bulletin.

The department requires the completion of nine courses (totaling not less than 45 units) of graduate work; seven courses of this work must be Department of History courses. Of the seven, one must be a seminar and four must be either graduate colloquia or graduate seminars. Directed reading may be counted for a maximum of 10 units. A candidate whose undergraduate training in history is deemed inadequate must complete nine courses of graduate work in the department. The department does not recognize for credit toward the M.A. degree any work that has not received the grade of ‘A’ or ‘B.’

Terminal M.A. Program—Applicants who do not wish to continue beyond the M.A. degree are admitted to this program at the discretion of the faculty in individual fields (U.S., modern Europe, and so on). Students admitted may not apply to enter the Ph.D. program in History during the course of work for the M.A. degree.

M.A. in Teaching (History) The department cooperates with the School of Education in offering the Master of Arts in Teaching degree. For the general requirements, see the “School of Education” section of this bulletin. For certain additional requirements made by the Department of History, contact the department office. Candidates must possess a teaching credential or relevant teaching experience.

DOCTOR OF PHILOSOHY

Students planning to work for the doctorate in history should be familiar with the general degree requirements of the University outlined in the “Graduate Degrees” section of this bulletin. Those interested in applying for admission to the M.A. and Ph.D. programs should contact Graduate Admissions, the Registrar’s Office, Old Union, in order to receive an application. Applications become available in September of the year prior to intended enrollment. The application filing deadline is January 1. Applicants must file a report of their general scores on the Graduate Record Examination and submit a writing sample of 10-25 pages on a historical topic. Successful applicants for the M.A. and Ph.D. programs may enter only in Autumn Quarter.

Upon enrollment in the graduate program in History, the student has a member of the department designated as an adviser with whom to plan the Ph.D. program. Much of the first two years of graduate study is spent taking courses, and, from the outset, the student should be aware that the ultimate objective is not merely the completion of courses but preparation for general examinations and for writing a dissertation.

Admission to the Department of History in the graduate division does not establish any rights respecting candidacy for an advanced degree. At the end of the first year of graduate study, students are evaluated by the faculty and given a progress report. A decision as to whether she or he will be admitted to candidacy for the Ph.D. is normally made by the middle of the student’s third year.

After the completion of certain further requirements, students must apply for acceptance for candidacy for the doctorate in the graduate division of the University.
REQUIREMENTS

1. In consultation with the adviser, students select an area of study from the list below in which to concentrate their study and later take the University oral examination. The major concentrations are:
 - Europe, 300-1400
 - Europe, 1400-1789
 - Europe since 1700
 - Jewish History
 - Russia
 - Eastern Europe
 - Middle East
 - East Asia before 1600
 - East Asia since 1600
 - Japan
 - Africa
 - Britain and the British Empire since 1460
 - Latin America
 - The United States (including colonial America)
 - History of Science and Technology

2. The department seeks to provide a core colloquium in every major concentration. Students normally enroll in this colloquium during the first year of graduate study.

3. Students are required to take two research seminars, at least one in the major concentration. Normally, research seminars are taken in the first and second years.

4. Each student, in consultation with the adviser, defines a secondary concentration. This concentration should represent a total of four graduate courses or their equivalents, and it may be fulfilled by working in a historical concentration or an interdisciplinary concentration. The historical concentrations include:
 - a) One of the concentrations listed above (other than the student’s major concentration).
 - b) One of the concentrations listed below, which falls largely outside the student’s major concentration:
 - The Ancient Greek World
 - The Roman World
 - Europe, 300-1000
 - Europe, 1000-1400
 - Europe, 1400-1600
 - Europe, 1600-1789
 - Europe, 1700-1871
 - Europe since 1848
 - England, 450-1460
 - Britain and the British Empire, 1460-1714
 - Britain and the British Empire since 1714
 - Russia to 1800
 - Russia since 1800
 - Eastern Europe to 1800
 - Eastern Europe since 1800
 - Jewish History
 - Middle East to 1800
 - Middle East since 1800
 - Africa
 - China before 1600
 - China since 1600
 - Japan before 1600
 - Japan since 1600
 - Latin America to 1825
 - Latin America since 1810
 - The United States (including Colonial America) to 1865
 - The United States since 1850
 - The History of Science and Technology
 - c) Work in a national history of sufficiently long time to span chronologically two or more major concentrations. For example, a student with Europe since 1700 as a major concentration may take France from 1000 to the present as a secondary concentration.
 - d) A comparative study of a substantial subject across countries or periods. The secondary concentration requirement may also be satisfied in an interdisciplinary concentration. Students plan these concentrations in consultation with their advisers. Interdisciplinary concentrations require course work outside the Department of History which is related to the student’s training as a historian. Interdisciplinary course work can either add to a student’s technical competence or broaden his or her approach to the problems of the research concentration.

5. Each student, before conferral of the Ph.D., is required to satisfy the department’s teaching requirement.

6. There is no University or department foreign language requirement for the Ph.D. degree. A reading knowledge of one or more foreign languages is required in concentrations where appropriate. The faculty in the major concentration prescribes the necessary languages. In no concentration is a student required to take examinations in more than two foreign languages. Certification of competence in commonly taught languages (that is, French, German, Latin, Portuguese, Russian, and Spanish) for candidates seeking to fulfill the language requirement in this fashion is done by the appropriate language department of the University. Certification of competence in other languages is determined in a manner decided on by faculty in the major concentration. In either case, certification of language competence must be accomplished before a student takes the University oral examination.

7. The student is expected to take the University oral examination in the major concentration early in the third graduate year.

8. The student must complete and submit a dissertation which is the result of independent work and is a contribution to knowledge. It should evidence the command of approved techniques of research, ability to organize findings, and competence in expression. For details and procedural information, inquire in the department.

JOINT PH.D. IN HISTORY AND HUMANITIES

The Department of History participates in the Graduate Program in Humanities leading to a joint Ph.D. degree in History and Humanities. See the “Interdisciplinary Studies in Humanities” section of this bulletin.

FINANCIAL SUPPORT

Students who are admitted with financial support are provided multiple years of support through fellowships, teaching and research assistantships, and tuition grants. Applicants should indicate on the admissions application whether they wish to be considered for such support. No separate application for financial aid is required.

U.S. citizens and permanent resident aliens who are interested in area language studies in East Asia, Latin America, Africa, and the republics of the former Soviet Union may request a Foreign Language and Area Studies (FLAS) fellowship application from the FLAS coordinator, (650) 723-0564. The FLAS application deadline is in mid-January.

RESOURCES

The above section relates to formal requirements, but the success of a student’s graduate program depends in large part on the quality of the guidance received from faculty and on the library resources available. Prospective graduate applicants are advised to study the list of History faculty and the courses this faculty offers. As to library resources, no detailed statement is possible in this bulletin, but areas in which library resources are unusually strong are described following.

The University Library maintains strong general collections in almost all fields of history. It has a very large microtext collection, including, for instance, all items listed in Charles Evans’ American Bibliography, and in the Short-Title Catalogues of English publications, 1474-1700, and virtually complete microfilmed documents of the Department of State to 1906. It also has a number of valuable special collections including the Borel Collection on the History of California; many rare items on early American and early modern European history; the Brasch Collection on Sir Isaac Newton and scientific thought during his time; the Gimon Collection on French political economy, and other such materials.
COURSES

See the Time Schedule and http://history.stanford.edu/courses/ for updated information.

Note: many History courses have been renumbered this year; in such cases, the former number is noted in the course description.

Courses are listed in the following order:

Introductory Undergraduate
Undergraduate (by Area or Theme)
Graduate (by Area or Theme)
Overseas Studies Program Courses in History

INTRODUCTORY UNDERGRADUATE

Introductory undergraduate History courses are listed in the following subsection order:

Introduction to the Humanities (IHUM)
Introductory Lectures: 1-99
Stanford Introductory Seminars: 1N-99N, 1Q-99Q
Sources and Methods Seminars: 1S-99S

IHUM (INTRODUCTION TO THE HUMANITIES)

The following Introduction to the Humanities courses are taught by History faculty members. IHUM courses are typically available only to freshmen seeking to fulfill GER:1-IHUM requirements; see the “Introduction to the Humanities” section of this bulletin for further information. Prospective majors in History are advised to consider satisfying their IHUM requirements by registering for the following courses.

IHUM 5A,B. Worlds of Islam: Global History and Muslim Societies

Two quarter sequence. Chronological and geographical overview of times and places in which Islam has been the dominant cultural framework. Elements of the Muslim faith and its related political, social, and cultural practices from the 7th-century rise of Islam to the recent past. Geographic range includes the historic Arab heartland of Islam, Africa, Persia, the Ottoman Empire, and Central Asia. GER: I-HUM 2-3

IHUM 5A. 5 units, Win (Beinin, Crews, Hanretta, Rodrigue)

IHUM 5B. 5 units, Spr (Beinin, Crews, Hanretta, Rodrigue)

INTRODUCTORY LECTURES

HISTORY 20. Introduction to Modern Russian History — The Soviet polity from establishment to collapse, and its successor states. Marxist ideology, the empire before the revolution, and basic questions that accompanied the Soviet experience: causations, visions, and interpretations of revolution; socialist state building; social engineering through col-
HISTORY 64. Introduction to Race and Ethnicity in the American Experience—How ethnicity influenced the American experience and how prevailing attitudes about racial and ethnic groups over time have affected the historical and contemporary reality of the nation’s major minority populations. Focus is on the past two centuries. GER:DB-SocSci, EC-AmerCul
5 units, Aut (Camarillo)

HISTORY 66. The United States and East Asia—(Formerly 75.) Political, social, military, and cultural interactions between the U.S. and the societies of E. Asia (China, Japan, Korea, Vietnam, and the Philippines) from the mid-19th century to the present. Major wars and diplomatic events, mutual perceptions, reciprocal consequences, and long-term trends generated by these events, and the circumstances that brought them about. American narrative with E. Asian perspectives. GER:DB-Hum
5 units (Chang) not given 2005-06

HISTORY 70. Culture, Politics, and Society in Latin America—(Formerly 80.) Introduction to the political and social history of Latin America. Emphasis is on interactions among institutional change, social structure, and political movements, emphasizing the environment and cultural values. GER:DB-SocSci, EC-GlobalCom
5 units, Win (Frank)

HISTORY 92A. The Historical Roots of Modern East Asia—China and Japan before and during the transition to modernity. From the 17th century when E. Asia was populous, urbanized, economically advanced, and culturally sophisticated to the early 20th century when European and America dominated the Pacific, while China was in social and political upheaval and Japan had begun its march to empire. Films; mandatory discussions.
5 units, Spr (Miller)

HISTORY 92B. East Asia in the Age of Imperialism—For students planning to do additional work on the region. Interdisciplinary. Political, social, cultural, and economic development of E. Asia, 1840-1945. Responses to Western penetration of the region. Asian perspectives.
5 units, Aut (De Boer)

STANFORD INTRODUCTORY SEMINARS

These seminars serve as foundations for more advanced course work within the department. See http://introsems.stanford.edu/ for applications and information.

HISTORY 20N. Early Modern European Views of Eastern Europe and Russia—Stanford Introductory Seminar. Preference to freshmen. The contrast between the early modern image of Europe as free, civilized, democratic, rational, and clean against the notion of New World Indians, Turks, and Chinese as savage. The more difficult, contemporary problem regarding E. Europe and Russia which seemed both European and exotic. Readings concerning E. Europe and Russia from the Renaissance to the Enlightenment; how they construct a positive image of Europe and conversely a negative stereotype of E. Europe. GER:DB-Hum, EC-GlobalCom, WRITE-2
5 units, Spr (Kollmann)

4 units, Win (Stansky)

HISTORY 32N. The English Revolution—Stanford Introductory Seminar. Preference to freshmen. The English Civil War and the 11-year period in which it became a republic ruled not by a hereditary king but by a lord protector. During this revolutionary period, English men and women wrote about freedom and liberty in terms of the individual and the state, and of religion and society. The meaning of these writings which sketched for the first time in premodern Europe what democracy and a democratic republic might entail. GER:DB-Hum
4-5 units, Spr (Como)

4 units, Win (Schiebinger)

HISTORY 44N. The History of Women and Gender in Science—Stanford Introductory Seminar. The history of women’s participation in science; women as objects of scientific research; gender in the culture of the sciences; and how gender analysis has changed science theory and practice. GER:DB-Hum, EC-Gender
4 units, Win (Schiebinger)

HISTORY 48Q. South Africa: Contested Transitions—Stanford Introductory Seminar. Preference to sophomores. The inauguration of Nelson Mandela as president in May 1994 marked the end of an era and a way of life for S. Africa. The changes have been dramatic, yet the legacies of racism and inequality persist. Focus: overlapping and sharply contested transitions. Who advocates and opposes change? Why? What are the historical and social roots and strategies? How do pride re-construct their society? Historical and current sources, including films, novels, and the Internet.
3 units, Win (Samoff)

HISTORY 49N. The Slave Trade—Stanford Introductory Seminar.
4 units, Win (Roberts)

4 units, Aut (Kennedy)

HISTORY 62N. The Atomic Bomb in Policy and History—Stanford Introductory Seminar. Preference to freshmen. Emphasis is on declassified files from WW II and recent interpretations. Why did the U.S. drop A-bombs on Japan? Were there viable alternatives, and, if so, why were they not pursued? What did the use of the A-bombs mean then and later? How have postwar interpreters explained, and justified or criticized, the A-bombings? Approaches from history, international relations, American studies, political science, and ethics address the underlying conceptions, the roles of evidence, the logic and models of explanation, ethical values, and cultural/social influences. GER:DB-SocSci
4-5 units, Win (Bernstein)

HISTORY 68Q. Why They Do or Do Not Hate Us: Political Islam and the New Global Economy—Stanford Introductory Seminar. GER: EC-GlobalCom
2 units, Aut (Beinin)

HISTORY 90Q. Buddhist Political and Social Theory—Stanford Introductory Seminar. Preference to sophomores. Contemporary Buddhist political theory and its historical and textual roots, emphasizing Tibetan, Thai, and Sri Lankan Buddhism. Topics: society and politics in Buddhist thought, Buddhist spiritual practice as social and political practice, sovereignty, the individual and society, Buddhist economic theory and practice, Buddhism and the state, Buddhist political and social theory in practice, differences between Vajrayana (Tibetan) and Theravada (S.E. Asian) Buddhist social theory.
4-5 units, Aut (Muncall)
SOURCES AND METHODS SEMINARS

Sources and methods seminars introduce the processes of historical investigation and interpretation by providing experience in interpreting documents, constructing a coherent story from them, interpreting their implications, and discovering how it is possible to agree on facts while disagreeing on meaning.

HISTORY 13S. Conspiracy, Confession, and Carnival: Urban Life in Late Renaissance Venice—The claim that 16th-century Venice had entered a period of decline. Changes in internal politics, foreign policies, and economic structures, and the strained relationship between the republic and the Church. Sources include ambassador’s reports, private letters, public decrees, works of art, contemporary histories, civic rituals, and records of the Inquisition. Readings in English.

5 units, Spr (Jackson)

HISTORY 19S. Sables, Shamans, Salvation, and Civilization: Changing Meanings of Siberia—Siberia in the minds and experiences of rulers, traders, explorers, entrepreneurs, academics, writers, revolutionaries, missionaries, and political and criminal exiles. The real and imagined impacts of this sparsely populated land on Russian history.

5 units, Aut (Monahan)

HISTORY 20S. The Soviet Citizen on Trial—Soviet state mechanisms for controlling its citizens emphasizing trials and quasi-judicial procedures. How courts, schools, workplaces, and Communist Party organizations took part in judging people. Sources include memoirs, autobiographies, literature, and trial. Approaches to Soviet history and possible narratives of Russia’s recent past.

5 units, Aut (Moyal)

HISTORY 31S. The Awful and Awesome Clock: The French and Time in the Nineteenth Century—French modifications in their relations to time including scientists embracing theories of evolution and relativity, politicians promising progress, and individuals entering a world of speed, efficiency, and anticipation. How the new outlooks on and organizations of time liberated and constrained people’s lives and elicited mixed feelings toward modernity. Sources include scientific and political treatises, pamphlets, memoirs, tourist guides, advertisements, and literary and artistic media.

5 units (Chapin) not given 2005-06

HISTORY 32S. European Intellectuals in Politics from the French Revolution to World War II—The roles that intellectuals played in shaping policy and political debate during the 19th and early 20th centuries. Sources include the political writings of Marx, Orwell, de Tocqueville, and Hugo, and political debates about empire, culture, and economics.

5 units, Win (Lobert)

HISTORY 34S. Art and Ideology in Modern European Culture—Art as emancipatory and oppressive, revelatory and deceptive, and ecstatic and dangerous. How modern European artists and thinkers conceived of art in relation to self, society, politics, gender, and ideology. Sources include philosophy, fiction, criticism, poetry, film, and the visual arts. Readings include Kant, Shelley, Marx, Poe, Nietzsche, Wilde, Woolf, Benjamin, Adorno, Barthes, and Nabokov.

5 units, Aut (Garretson)

HISTORY 35S. Heretics, Idolaters, and Libertines: The Religious Reformations of the Sixteenth Century—The shattering of a unified western Christendom. Sources include theological treatises, letters, plays, music, woodcuts, paintings, popular pamphlets, martyrologies, and official confessions of faith. What was the Reformation about and why was it important to its participants?

5 units, Aut (Gray)

HISTORY 46S. Photography and African History—Issues relating to the rise of photography by Africans in Africa towns and cities since the late 1880s. GER:DB-Hum, EC-GlobalCom

5 units, Aut (Jackson)

HISTORY 48S. Modern Africa through Its Cities

5 units, Spr (Petrocelli)

HISTORY 50S. California Conservatism—Often portrayed as a haven for liberalism, California also incubated strands of modern American conservatism. The rise of California conservatism. Primary sources include political tracts and bumper stickers.

5 units, Win (Herzog)

HISTORY 51S. Social Reform in Antebellum America

5 units, Spr (Frink)

HISTORY 70S. Race and Status in Colonial Latin America—What extent was race an organizing principle of colonial society? Focus is on the caste system of the 17th and 18th centuries. How racial labels were bestowed; what they implied for personal and social identity; and to what degree people acted and categorized others according to this classification system. Emphasis is on mixed-race descendents of Amerindians, Europeans, and African slaves. Sources include paintings, travelogues, Inquisition documents, and diaries. Readings are in English.

5 units, Spr (Flynn-Roller)

HISTORY 80S. Palestinian History and Historiography, 1948-2005—The efforts of Palestinian intellectuals and leaders to articulate alternative narratives of the Palestinian struggle for self-determination after 1948. Emphasis is on the interdisciplinary work of intellectuals such as Edward Said, Mahmoud Darwish, and Ghassan Kanafani. Official Palestinian positions such as those advanced by Yasser Arafat, Hanan Ashrawi, and Marwan Barghouti.

5 units, Win (Hanania)

UNDERGRADUATE

Lecture courses (100-199) are surveys of geographical regions and time periods.

Colloquia (200-299) are small-group courses on historical themes, primarily for juniors and seniors majoring in history. Admission is by consent of the instructor. Courses with a suffix ‘H’ are for honors students only.

Undergraduate research seminars (200-299) provide opportunities to research and write a paper using primary sources.

Suffixes A,B,C,D indicate a course sequence. Unless otherwise stated, earlier courses are not prerequisites to later courses, and students need not take an entire sequence. Other letter suffixes, and numbers without suffixes, denote stand-alone courses

Undergraduate courses are listed in the following subsection order:

International, Global, and Thematic: 100-109, 200-209
Europe Survey: 110A,B,C
Ancient and Medieval Europe: 111-119, 211-219
Eastern Europe, Russia, and Eurasia: 120-129, 220-229
Early Modern and Modern Europe: 130-139, 230-239
History of Science and Technology: 140-144, 240-244
Africa: 145-149, 245-249
United States Survey: 150A,B,C
United States: 151-169, 251-269
Latin America: 170-179, 270-279
Middle East: 180-184, 280-284
Jewish History: 185-189, 285-289
Asia: 190-198, 290-298
Individual Work: 299

INTERNATIONAL, GLOBAL, AND THEMATIC

HISTORY 101. Empires and Cultures in the Modern World—The formation of modern European empires and their expansion into Asia, Africa, and the Middle East. Topics: cultural encounters, military conquest, economic integration, the new imperialism, colonialism, nationalism, the mutual constitution of colonial power and forms of knowledge, and the culture and politics of the postcolonial world. Readings: historical texts, films, and novels. GER:DB-Hum, EC-GlobalCom

5 units (Beinin) not given 2005-06
HISTORY 102. The History of the International System—(Formerly 102A.) World politics and international relations from the dominance of empires and nation states at the turn of the century to the present. The influence of communism, fascism, and anti-imperialism, and the emergence of society as a factor in international relations. Questions of sovereignty versus the new world order. GER:DB-SocSci, EC-GlobalCom, WIM
5 units, Spr (Sheehan)

HISTORY 102G. History of Ancient Political Thought I: Constructing and Questioning Political Obligation—(Enroll in POLISCI 130A/330A.)
5 units, Aut (Adcock)

HISTORY 103E. History of Nuclear Weapons—(Formerly 101D; same as POLISCI 116.) The development of nuclear weapons and policies. How existing nuclear powers have managed their relations with each other. How nuclear has been avoided so far and whether it can be avoided in the future. GER:DB-SocSci
5 units (Holloway) not given 2005-06

HISTORY 103G. The History of the Cold War—(Formerly 126; same as 307G.) From its beginnings in the post-WW II period to its end with the collapse of the Soviet Union. Documents and insights from the new Cold War historiography are applied to questions about the worldwide struggle between the Soviet Union and the U.S. GER:DB-SocSci
5 units (Naimark) not given 2005-06

HISTORY 105. History and Culture of Ancient Egypt—(Enroll in CLASSHIS 105.)
3-5 units, Spr (Manning)

5 units, Win (M.W. Lewis)

HISTORY 106B. Global Human Geography: Europe and Americas—(Same as ICA 161B, IPS 261B, INTNLREL 161B.) Patterns of demography, economic and social development, geopolitics, and cultural differentiation. Use of maps to depict geographical patterns and processes.
5 units, Win (M.W. Lewis)

HISTORY 202. International History and International Relations Theory—(Formerly 201D; same as 306E, POLISCI 316.) GER:DB-SocSci
5 units (Holloway) not given 2005-06

HISTORY 203. Sovereignty and the State—(Same as 306F.) The theory of sovereignty and the practice of states in modern European and America. Readings include classic texts and political documents.
GER:DB-Hum
5 units, Spr (Kennedy, Sheehan)

HISTORY 204E. Modernity, Revolution, and Totalitarianism—(Formerly 226; same as 307E.) Modern revolutionary and totalitarian politics. Sources include monographs on the medieval, Reformation, French Revolutionary, and Great War eras. Topics: the essence of modern ideology, the concept of the body national, state terror, charismatic leadership, gender assignments, private and public spheres, and identities. GER: DB-SocSci, EC-GlobalCom, WIM
5 units, Spr (Weiner)

HISTORY 204G. War, Culture, and Society in the Modern Age
5 units, Win (Weiner)

HISTORY 205. Historical Geography: Maps in the Early Modern World—(Formerly 202E; same as 309F.) Historians have recently generated a body of spatially attuned work, probing territorial identi-
HISTORY 217. The Woman Question in Medieval Europe

— Formerly 107. GER: DB-Hum
5 units (Miller) not given 2005-06

HISTORY 220C. 20th-Century Popular Culture in Russia

— Formerly 220A; same as 316. The religions based on the New Testament, by virtue of having an old to which to refer the new, entail a complicated relationship with Judaism. Focus is on the relationship of Christianity to Judaism and Jews under Christian rule during the formative medieval centuries. The formation of anti-Semitism as a factor both in this interaction and the self-identity of Christian communities. The connections between medieval anti-Semitism and modern forms of racism.
GER: DB-SocSci, WIM
5 units (Buc) not given 2005-06

HISTORY 221. The Woman Question in Modern Russia

— Formerly 217B. Russian radicals believed that the status of women provided the measure of freedom in a society and argued for the extension of rights to women as a basic principle of social progress. The social status and cultural representations of Russian women from the mid-19th century to the present. The arguments and actions of those who fought for women's emancipation in the 19th century, theories and policies of the Bolsheviks, and the reality of women's lives under them. How the status of women today reflects on the measure of freedom in post-Communist Russia.
GER: DB-SocSci, EC-Gender
5 units, Win (Jolluck)

HISTORY 221B. The Woman Question in Modern Russia

— Formerly 217B. Russian radicals believed that the status of women provided the measure of freedom in a society and argued for the extension of rights to women as a basic principle of social progress. The social status and cultural representations of Russian women from the mid-19th century to the present. The arguments and actions of those who fought for women's emancipation in the 19th century, theories and policies of the Bolsheviks, and the reality of women’s lives under them. How the status of women today reflects on the measure of freedom in post-Communist Russia.
GER: DB-SocSci, EC-Gender
5 units, Win (Jolluck)

HISTORY 221C. Historiography of the Soviet Union

— Formerly 321C. Major schools of interpretation of the Soviet phenomenon through works representative of a specific school, in chronological order, from the first major interpretation of the Soviet polity by Trotsky to postmodernist theories.
GER: DB-SocSci
5 units (Weiner) not given 2005-06

HISTORY 222. Honor, Law and Modernity

— How Europe evolved from medieval to modern; focus is on standards for conflict resolution emphasizing insults to honor. How attitudes towards the self and society, and the state’s relationship to individuals, changed from the 16th to 18th centuries in Europe and Russia. Traditional concepts of honor and patterns of settling disputes contrasted to early modern concepts of honor, private life, civility, and crime and punishment.
GER: DB-Hum, WIM
5 units, Win (N. Kollmann)

HISTORY 223. Art and Ideas in 19th-Century Russia

— Formerly 217D; same as 323. Why did so many artistic, intellectual, and revolutionary figures including Pushkin, Tolstoy, Dostoevsky, Mussorgsky, Tchaikovsky, and Lenin emerge from autocratic imperial Russia? How did the czarist state and society shape their work? Focus is on Russia’s cultural engagement with Europe and Asia through literature, music, painting, architecture, and political thought. Controversies in 19th-century thought and culture surrounding conservatism, Westernization, Slavophilism, socialism, nihilism, populism, revolutionary terrorism, empire, anti-Semitism, national identity, and revolutionary change.
GER: DB-Hum
5 units (Crews) not given 2005-06

HISTORY 224. Violence, Islam, and the State in Central Asia

— Formerly 220A; same as 324. The uses of violence in projects of empire and national state formation that have competed with Islamic and other political alternatives to shape modern Central Asia from the onset of the British and Russian imperial eras through the flight of the Taliban. Focus is on the shared experiences and geopolitics of the former Soviet republics and Afghanistan. Themes include colonial wars and imperial competition, state formation, mass mobilization, women’s emancipation, cultural revolution, developmentalism, anti-Soviet jihad, the Taliban movement, and contemporary Islamist, nationalist, and regionalist contests for the state.
5 units, Aut (Crews)

HISTORY 226F. Stalinism in Eastern Europe

5 units, Spr (Fidelis)

HISTORY 227. East European Women and War in the 20th Century

— Formerly 225D; same as 327. Thematic chronological approach through conflicts in the region: the Balkan Wars, WW I, WW II, and the recent wars in the former Yugoslavia. The way women in E. Europe have been involved in and affected by these wars compared to women in W. Europe in the two world wars. Women’s involvement in war as members of the military services, the backbone of underground movements, workers in war industries, mothers of soldiers, subjects and supporters of war aims and propaganda, activists in peace movements, and objects of wartime destruction, dislocation, and sexual violation.
GER: DB-SocSci, EC-Gender
5 units, Aut (Jolluck)
HISTORY 228. Circles of Hell: Poland in World War II—(Formerly 222B; same as 328.) In September 1939, Poland disappeared from the map of Europe, and the next six years brought unspeakable horrors. The experience and representation of Poland’s wartime history from the Nazi-Soviet Pact of 1939 to the aftermath of Yalta in 1945. Nazi and Soviet ideology and practice regarding the Poles and the ways Poles responded, resisted, and survived. The traditional self-characterization of Poles as innocent victims, and their involvement or complicity in the Holocaust, thus engaging in a current debate in Polish society. GER:DB-SocSci
5 units (Jolluck) not given 2005-06

HISTORY 229. Poles and Jews—(Same as 329.) Focus is on the period since WW I. The place of the Jews in interwar Poland, WW II, surviving Jews after the war, Polish memorialization of the Holocaust, the reality and mythology of Jews in the communist apparatus, the manipulation of anti-Semitism by the communist government, and post-communist movement toward reconciliation. Memory and national mythology emphasizing Polish wartime behavior and the relationship of Jews to communism. The sources and uses of stereotypes, and the state of Polish-Jewish relations today. GER:DB-Hum
5 units, Spr (Jolluck)

EARLY MODERN AND MODERN EUROPE

HISTORY 132. Martin Luther—(Enroll in RELIGST 141.)
5 units, Spr (Pitkin)

HISTORY 133A. Yorkist and Tudor England—(Formerly 141.)
GER:DB-Hum
5 units (Como) not given 2005-06

HISTORY 133B. Revolutionary England: The Stuart Age—(Formerly 142.) From the accession of King James I in 1603 to the death of Queen Anne in 1714: a brutal civil war, the execution of an anointed king, and the deposition of another. Topics include the causes and consequences of the English Revolution, the origins of Anglo-American democratic thought, the rise and decline of Puritanism, and the emergence of England as an economic and colonial power. GER:DB-Hum
5 units, Aut (Como)

HISTORY 134. The French Revolution—(Formerly 106A.) GER:DB-Hum
5 units (Baker) not given 2005-06

5 units, Aut (Robinson)

HISTORY 136B. European Thought and Culture in the 20th Century—European thinkers and intellectual movements from Freud to Foucault. GER:DB-Hum
5 units (Robinson) not given 2005-06

HISTORY 137. The Holocaust—(Same as 337.) The emergence of modern racism and radical anti-Semitism. The Nazi rise to power and the Jews. Anti-Semitic legislation in the 30s. WW II and the beginning of mass killings in the East. Deportations and ghettos. The mass extermination of European Jewry. GER:DB-Hum
5 units (Rodrigue) not given 2005-06

HISTORY 138. European Economic History—(Formerly 134.) Enroll in ECON 115.
5 units (Greif) not given 2005-06

HISTORY 139. Modern Britain and the Empire—(Formerly 140D.) From American Independence to the latest war in Iraq. Topics include: the rise of the modern British state and economy; imperial expansion and contraction; the formation of class, gender, and national identities; mass culture and politics; the world wars; and contemporary racial politics. Focus is on questions of decline, the fortunes and contradictions of British liberalism in an era of imperialism, and the weight of the past in contemporary Britain. GER:DB-Hum, EC-GlobalCom
5 units (Satta) not given 2005-06

HISTORY 232A. Power, Art, and Knowledge in Renaissance Italy—(Formerly 213C; same as 332A.) What were the defining features of the society that produced the idea and art of the Renaissance? The world of Leonardo, Machiavelli, and Michelangelo. The intersections of history, politics, art, and literature in the 15th and 16th centuries. The relationship between the Renaissance and the Reformation.
5 units (Findlen) not given 2005-06

HISTORY 232F. The Scientific Revolution—(Formerly 213; same as 332F) What do we know and how do we know it? What counts as scientific knowledge? In the 16th and 17th centuries, understanding the nature of knowledge engaged the attention of individuals and institutions including Copernicus, Galileo, Descartes and Newton, the early Royal Society, and less well-known contemporaries. Observing, collecting, experimenting, and philosophizing took on new meaning in this period. Their ramifications in relationship to the political, religious, and cultural events of early modern Europe. GER:DB-Hum, WIM
5 units, Win (Findlen)

HISTORY 232G. When Worlds Collide: The Trial of Galileo—(Formerly 216; same as 332G.) In 1633, the Italian mathematician Galileo was condemned by the Catholic Church for the heresy of believing the sun to be the center of the Universe. In 1992 the Church admitted that Galileo was right. What do these events reveal about the relationship between science and religion? Why has the Galileo affair been one of the most discussed episodes in Italian history and the history of science? Documents from Galileo’s life and trial and related literature on Renaissance Italy. Historians’ interpretations of the trial in relation to its documentation. GER:DB-Hum, WIM
5 units (Findlen) not given 2005-06

HISTORY 233F. Political Thought in Early Modern Britain—From 1500-1700. Theorists include Hobbes, Locke, Harrington, the Levellers, and lesser known writers and schools. Foundational ideas and problems underlying modern British and American political thought and life. GER:DB-Hum
5 units, Win (Como)

HISTORY 234. Paris and Politics, 1600-2006—The emergence of the modern city of lights. Paris as a mirror of French politics: top down, capital to country, center to periphery, noble to bourgeois to people. Sources include maps, art, music, essays, and memoirs. 5 units, Win (Lougee)

HISTORY 236. The Ethics of Imperialism—How the 19th century, defined by liberty, equality, progress, and universal human ideals, also witnessed Europe’s colonial expansion; how Europeans justified the acquisition of territories and colonial subjects. The ethical underpinnings of empire. Focus is on primary source material. Case study on the settlement of Australia; how European ideals justified inequality, violence, and genocide. The breakdown of liberal justifications of imperialism and shifts in support for empire. The modern human rights movement and the legacy of imperialism. The ethics of contemporary globalization and American imperialism.
5 units, Aut (Daughton)

HISTORY 236E. Cultures of Violence in Twentieth-Century Europe—(Formerly 228D; same as 336E.) Political, social, and cultural factors that made the 20th century the most violent in history; the triumph of European civilization and an age of catastrophe. The social and political uses of and intellectual and cultural responses to violence. How people witnessed, coped with, survived, and remembered violent episodes. State violence, and political, ethnic, and religious conflict. Topics include: colonialist violence, the WW I and II, the Holocaust, the Russian Revolution and Stalinism, decolonization, the IRA, and the former Yugoslavia. GER:DB-SocSci
5 units (Daughton) not given 2005-06
HISTORY 238K. Occupation, Terror, Civil War, and Ethnic Cleansing—(Same as 337J.) The Nazis’ attempt to build an empire and to unmix the peoples of Central and East Europe to facilitate German rule. Responses including resistance, settling accounts with neighbors, creating new territorial and political entities, oppression of minorities, and joining the Nazis. The irony of the flight, expulsion, and killing of millions of long-established German settlers after WWII. How the death and departure of Jews and Germans, and the establishment of Communism, set the region back culturally, economically, and morally, and hastened the take-over of cities by the peasant population.

5 units, Aut (Deak)

HISTORY 239E. History and the Arts in 19th- and 20th-Century Britain—(Formerly 204.) Novels, poetry, buildings, images, and music. The works in themselves and what they reveal about the society that produced them. GER:DB-Hum, WIM

5 units, Win (Stansky)

HISTORY 239F. Empire and Information—(Same as 339F.) How do states see? How do they know what they know about their subjects, citizens, economies, and geographies? How does that knowledge shape society, politics, identity, freedom, and modernity? Focus is on the British imperial state activities in S. Asia and Britain: surveillance technologies and information-gathering systems, including mapping, statistics, cultural schemata, and intelligence systems, to render geographies and social bodies legible, visible, and governable.

5 units, Aut (Satia)

HISTORY OF SCIENCE AND TECHNOLOGY

See also 41A,B, 45, 232F, 235, and 332G.

HISTORY 140. World History of Science: From Prehistory to the Scientific Revolution—(Formerly 135.) The earliest developments in science, the prehistoric roots of technology, the scientific revolution, and global voyaging. Theories of human origins and the oldest known tools and symbols. Achievements of the Mayans, Aztecs, and native N. Americans. Science and medicine in ancient Greece, Egypt, China, Africa, and India. Science in medieval and Renaissance Europe and the Islamic world including changing cosmologies and natural histories. Theories of scientific growth and decay; how science engages other factors such as material culture and religions. GER:DB-SocSci

5 units, Spr (Proctor)

HISTORY 141. Minds and Worlds from Aristotle to Newton to Einstein—(Formerly 106.) The technological, medical, philosophical, and scientific history of the five senses. Readings from antiquity to the present. How physiologists and philosophers have explained the functioning of the senses; how doctors have tampered with them both to help and to hinder; and how technologies including medical devices, scientific instruments, and tools of the arts have continually transformed the nature and experience of sensation. GER:DB-SocSci

1-5 units (Riskin) not given 2005-06

HISTORY 142J. Intellectual Revolutions—Intellectual change from Aristotle to Descartes to Newton; borrowings, byways, and fellow travelers. The 17th-century intellectual revolution and changes in concepts of knowing.

5 units, Spr (Pal)

HISTORY 143. The History of Twentieth-Century Physics: The Quantum Century—(Formerly 140.) The major scientific changes which characterized the 20th century. Relativity, quantum notions, and scientific fashions including nuclear and particle physics, superconductivity, and chaos. Emphasis is on corresponding changes in sociology and demography, the impact on philosophy, and the changed role of physics.

3-5 units, Aut (Riordan)

HISTORY 144. The History of Women and Gender in Science—(Formerly 134A, same as 344.) Women’s participation in science from the 17th century to the present in Europe and the U.S with comparisons around

the world. Why were 14 percent of German astronomers women in 1700, but only 6 percent today? Why are there more women biologists but few women physicists? Women scientists, cultural and scientific ideals of gender, changing structures of scientific institutions, and gender in the results of scientific research. GER:DB-SocSci, EC-Gender

5 units (Schiebinger) not given 2005-06

HISTORY 241F. Origins and History of the Scientific Fact—(Formerly 206P; same as 341F.) Gateway course for graduate students and advanced undergraduates. Focus is on the early modern emergence of notions that operate at the crux of modern science, including fact, evidence, experiment, demonstration, and objectivity. The development and transformation of these notions over the last four centuries, and the recent body of historical writing on the history of evidence, the history of objectivity, and the history of the modern fact. GER:DB-SocSci, WIM

5 units (Riskin) not given 2005-06

HISTORY 241G. History of the Senses—(Formerly 203A; same as 341G, STS 134.) Technological, medical, philosophical, and scientific history of the five senses, drawing upon readings from antiquity to the present. How physiologists and philosophers have explained the functioning of the senses; how doctors have tampered with them both to help and to hinder; and how technologies including medical devices, scientific instruments, and tools of the arts have continually transformed the nature and experience of sensation. GER:DB-SocSci

5 units (Riskin) not given 2005-06

HISTORY 241J. The Prehistory of Computers—(Formerly 204B; same as 341J.) From the automata of Hero of Alexandria in the 1st century A.D. to Charles Babbage’s Analytical and Difference Engines in the 1830s, the evolution of areas of inquiry during the emergence of modern computers. Topics: automata; other automatic machinery; calculating devices; representational scientific instruments; theories of language and logic; and the nature of human and artificial thought. GER:DB-SocSci

3-5 units (Riskin) not given 2005-06

HISTORY 242G. Medicine and Society in Early Modern Europe—The changing place of medicine in early modern culture. Modern medicine as a hybrid of thinking, seeing, knowing, and doing. What defined medicine for the early modern era; was it science, art, or a random assortment of practices; who were its practitioners.

5 units, Win (Pal)

HISTORY 243G. Tobacco and Health in World History—(Same as 343G.)

5 units, Aut (Proctor)

HISTORY 243S. Human Origins: History, Evidence, and Controversy—(Formerly 266S; same as 443A.) Research seminar. Debates and controversies include: theories of human origins; interpretations of fossils, early art, and the oldest tools; the origin and fate of the Neanderthals; evolutionary themes in literature and film; visual rhetoric and cliché in anthropological dioramas and phyletic diagrams; the significance of hunting, gathering, and grandmothering; climatological theories and neocatastrophic geologies; molecular anthropology; the impact of racial theories on human origins discourse. Previous knowledge of human evolution not required.

5 units, Win (Proctor)

HISTORY 244L. Theory and Practice of Feminism in Science—(Same as 344L.)

5 units, Spr (Schiebinger)

AFRICA

HISTORY 145A. Power and Knowledge in Early African History—From the earliest records to the early 19th century. How knowledge about the natural, social, and spiritual worlds was linked to the exercise of power; how technological innovations affected the emergence of states and other forms of social complexity; how religious beliefs and practices were used to legitimate or undermine authority; and how notions of health and healing knit together the physical and the social to give meaning to
gender and age relations. How the knowledge of the past was woven into
relations of power. GER:DB-Hum
5 units, Win (Hanretta)

HISTORY 145B. Africa in the 20th Century — (Formerly 148C.) The challenges facing Africans from when the continent fell under colonial rule until independence. Case studies of colonialism and its impact on
African men and women drawn from West, Central, and Southern Africa.
Novels, plays, polemics, and autobiographies written by Africans. GER:
DB-SocSci, EC-GlobalCom, WIM
5 units (Roberts) not given 2005-06

HISTORY 147G. African History in Novels and Film — (Formerly 147A.) The principal episodes in African history have been captured in
novels and, to a lesser extent, in film. What happens to history and
historical understanding as they undergo transformation in imaginative
literature and film? Does the African novel fairly represent history? Is
film only an imperfect vision of African past events GER:DB-Hum,
EC-GlobalCom
5 units, Spr (Jackson)

including philosophers, contemporary artists, and historians, and how
they have responded over the last half century to the world, Africa’s
trajectory, and Africans. Also, thinkers from everyday African life.
GER:DB-Hum
5 units (Jackson) not given 2005-06

HISTORY 245E. Health and Society in Africa — (Formerly 247B; same
as 347E.) The history of disease, therapeutic and diagnostic systems,
and the definition of health in precolonial, colonial, and postcolonial Africa.
The social and political histories of specific epidemics, including sleeping
sickness, influenza, TB, mental illness, and AIDS. The colonial contexts
of epidemics and the social consequences of disease. WIM
5 units, Spr (Roberts)

HISTORY 245G. Law and Colonialism in Africa — (Formerly 248D; same
as 348D.) Law in colonial Africa provides an opportunity to examine
the meanings of social, cultural, and economic change in the
anthropological, legal, and historical approaches. Court cases are a new
frontier for the social history of Africa. Topics: meanings of conflicts
over marriage, divorce, inheritance, property, and authority. GER:DB-
SocSci, WIM
4-5 units (Roberts) not given 2005-06

HISTORY 246. Successful Futures for Africa: An Inventory of the
1970s-2000s — (Same as 346.) How the world has talked and written
about Africa as a land of major crises. The discourses of Africa’s failures,
helping Africa, and choosing new development tactics. GER:DB-Hum,
EC-GlobalCom
5 units, Aut (Jackson)

HISTORY 246S. Popular Culture in Africa — (Same as 446A.) African
popular culture as a growing field for historical research. Case studies of
popular culture phenomena. Students explore a topic through primary
research. GER:DB-Hum, EC-GlobalCom, WIM
5 units (Jackson) not given 2005-06

HISTORY 247H. Intellectual and Cultural History in Modern
Africa — (Same as 447A.)
5 units (Hanretta) not given 2005-06

HISTORY 248. Islam in Africa — (Formerly 248B; same as 348.) Rela-
tionships between African Muslims and the broader Islamic tradition
over the last 1200 years. The roots of the Islamic tradition. Its adoption,
deriogenization, and elaboration by African Muslims. The interplay of
religion, politics, culture, and society, and how a tradition exercises
influence. The worldviews and lives of African Muslims, and how and
why they change. GER:DB-Hum, EC-GlobalCom, WIM
4-5 units, Aut (Hanretta)

HISTORY 248S. African Societies and Colonial States — (Same as
448A.) The encounter between African societies and European colonialism
in the colony or region of their choice. Approaches to the colonial state;
tours of primary source collections in the Hoover Institution and Green
Libraries. Students present original research findings and may continue
research for a second quarter. GER:DB-SocSci, WIM
5 units (Roberts) not given 2005-06

HISTORY 249. History Without Documents in Africa — (Same as
349.) From the earliest records to the 19th century. How knowledge
about the natural, social, and spiritual worlds was linked to the exercise
of power; how technological innovations affected the emergence of
states and other forms of social complexity; how religious beliefs and
practices were used to legitimate or undermine authority; how notions
of health and healing combined the physical and social to give meaning
to gender and age relations; and how knowledge of the past was woven
into relations of power. GER:DB-Hum
5 units, Win (Jackson)

HISTORY 249S. Reappraising Two African Nationalists — (Same as
449.) Kenyatta and Nkrumah were major African nationalist leaders of
the 1950s-1960s, of Kenya and Ghana respectively, two very important
African states. Increasingly, scholars and writers are re-evaluating their
significance, as this course will do. GER:DB-Hum
5 units, Win (Jackson)

UNITED STATES SURVEY

HISTORY 150A. Colonial and Revolutionary America — (Formerly
165A.) Survey of the origins of American society and polity in the 17th
and 18th centuries. Topics: the migration of Europeans and Africans
and the impact on native populations; the emergence of racial slavery
and of regional, provincial, Protestant cultures; and the political origins
and constitutional consequences of the American Revolution. GER:DB-
SocSci, EC-AmerCul
5 units, Aut (Rakove)

HISTORY 150B. 19th-Century America — (Formerly 165B.) Emphasis
is on the causes and consequences of the Civil War. Topics: Jacksonianism
and the market revolution, slavery and the old South, sectional conflict,
the rise and fall of Reconstruction, late 19th-century society and politics,
and the crisis of the 1890s. GER:DB-SocSci, EC-AmerCul, WIM
5 units, Win (White)

HISTORY 150C. The United States in the Twentieth Century — (For-
merly 165C.) Major political, economic, social, and diplomatic develop-
ments in the U.S. Themes: the economic and social role of government
(Progressive, New Deal, Great Society, and Reagan-Busheras); ethnic
and racial minorities in society (mass immigration at the turn of the
century and since 1965, the civil rights era of the 50s and 60s); the changing
status of women since WW II; shifting ideological bases, institutional
structures, and electoral characteristics of the political system (New Deal
and post-Vietnam); determinants of foreign policy in WW I and II, and
the Cold War. GER:DB-SocSci, EC-AmerCul
5 units (Staff) not given 2005-06

THE UNITED STATES

See also 62, 107.

HISTORY 150X. Introduction to African and African American
Studies — (Same as AFRICAAM 105.) Interdisciplinary, Central themes
in African American culture and history related to race as a definitive
American phenomenon. Possible topics: African survivals and interpre-
tations of slavery in the New World, contrasting interpretations of the
Black family, African American literature, and art. Possible readings:
Frederick Douglass, Harriet Jacobs, Booker T. Washington, W.E.B.
DuBois, Richard Wright, Maya Angelou, James Baldwin, Malcolm X,
Alice Walker, and Bell Hooks. Focus may vary each year. GER:DB-
Hum, EC-AmerCul, WIM
5 units, Aut (Carson)
HISTORY 154. 19th-Century U.S. Cultural and Intellectual History, 1790-1860.—(Formerly 151.) How Americans considered problems such as slavery, imperialism, and sectionalism. Topics include: the political legacies of revolution; biological ideas of race; the Second Great Awakening; science before Darwin; reform movements and utopianism; the rise of abolitionism and proselytization; phrenology and theories of human sexuality; and varieties of feminism. Sources include texts and images. GER:DB-Hum, EC-AmerCul
5 units, Spr (Winterer)

HISTORY 158. The United States Since 1945.—(Formerly 172A.) Focus is on foreign policy and politics with less attention to social and intellectual history. Topics include nuclear weapons in WWII, the Cold War, the Korean and Vietnam wars, Eisenhower revisionism, the Bay of Pigs and Cuban missile crisis, civil rights and the black freedom struggle, the women’s movement, the Great Society and backlash, welfare policy, conservatism and liberalization, the 60s anti-war movement, Watergate and the growth of executive power, Iran-Contra and Reagan reversionism, Silicon Valley, the Gulf War, the Clinton impeachment controversy, 2004 election, and 9/11 and Iraq war. GER:DB-SocSci, EC-AmerCul
4-5 units, Win (Bernstein)

HISTORY 158A. History of Education in the United States—(Enroll in EDUC 201.)
3-4 units, Win (Williamson)

HISTORY 159F. U.S. Urban History since 1920—(Enroll in UR-BANST 161.)
5 units, Aut (Kahan)

HISTORY 161. U.S. Women’s History, 1890s-1900s—(Formerly 173B.) The transformation of Victorian womanhood in the late 19th century, including the workforce participation of immigrant and black women, educational and professional opportunities for middle class white women, impact of wars and depression on 20th-century women’s lives, and rebirth of feminism. GER:DB-SocSci, EC-Gender
5 units, Spr (Freedman)

HISTORY 162. Introduction to Chicano/o Life and Culture—(Same as ENGLISH 172A.) Team-taught. The history and culture of Mexican Americans in the U.S. Readings include Américo Paredes, Luis Rodríguez, Tomás Rivera, and Sandra Cisneros. GER:DB-Hum, EC-AmerCul
5 units (Camarillo, Moya) not given 2005-06

HISTORY 164. American Spaces: An Introduction to Material Culture and the Built Environment—(Formerly 152; same as AM-STUD 152.) American history through the evidence of things, including spaces, buildings, and landscapes of the built environment. How to read such artifacts using methods and theories from anthropology, cultural geography, history, and other disciplines. GER:DB-Hum
5 units, Spr (Corn)

HISTORY 165. Mexican American History through Film—Focus is on the 20th century and themes such as immigration, urbanization, ethnic identity, the role of women, and the struggle for civil rights. GER: DB-Hum
4-5 units, Spr (Camarillo)

HISTORY 166. Introduction to African American History: The Modern African American Freedom Struggle—(Formerly 150B.) Focus is on political thought and protest movements after 1930. Individuals who have shaped and been shaped by modern African American struggles for freedom and justice. Sources include audiovisual materials. Research projects required for fifth unit. GER:DB-SocSci, EC-AmerCul
4-5 units, Spr (Carson)

HISTORY 166J, American Economic History—(Enroll in ECON 116.)
5 units, Spr (Wright)

HISTORY 251. Creating the American Republic—(Formerly 272; same as 352, POLISCI 321.) Concepts and developments in the late 18th-century invention of American Constitutionalism; the politics of constitution making and ratifying; emergence of theories of constitutional interpretation including originalism; early notions of judicial review. Primary and secondary sources. GER:DB-SocSci, WIM
5 units, Win (Rakove)

HISTORY 251G. Topics in Constitutional History—(Formerly 250B; same as POLISCI 222S.) Topics in the history of the American Constitution and its interpretation, including the invention of the concept of the written constitution in the Revolutionary era, the crisis of Civil War and Reconstruction, and the controversies over interpretation and the rights revolution in the 20th century. GER:DB-SocSci, EC-AmerCul
5 units (Rakove) not given 2005-06

HISTORY 252. Decision Making in International Crises; The A-Bomb, the Korean War, and the Cuban Missile Crisis—(Same as 355.) For advanced undergraduates and graduate students. Primary documents and secondary literature.
5 units, Aut (Bernstein)

HISTORY 252G. Environmental History in Urban America
5 units, Aut (Rawson)

HISTORY 253. America’s Greece, America’s Rome
5 units, Win (Winterer)

HISTORY 253E. Perspectives on American Identity—(Formerly 260A; same as AMSTUD 160.) Required for American Studies majors. Changing interpretations of American identity and Americanness. GER: DB-Hum, EC-AmerCul, WIM
5 units, Win, Spr (Corn, Gilliam)

HISTORY 253H. American Utopias
5 units, Spr (Rawson)

HISTORY 254. Popular Culture and American Nature—(Formerly 268A.) Despite John Muir, Aldo Leopold, and Rachel Carson, it is arguable that the Disney studios have had more to do with molding popular attitudes toward the natural world than politicians, ecologists, and activists. Disney as the central figure in the 20th-century American creation of nature. How Disney, the products of his studio, and other primary and secondary texts see environmentalism, science, popular culture, and their interrelationships. GER:DB-Hum, WIM
5 units, Spr (White)

HISTORY 256. U.S.-China Relations: From the Opium War to Tiananmen—(Formerly 275A; same as 356.) The history of turbulent relations, military conflict, and cultural clashes between the U.S. and China, and the implications for the domestic lives of these increasingly interconnected countries. Diplomatic, political, social, cultural, and military themes from early contact to the recent past. GER:DB-SocSci, EC-GlobalCom, WIM
5 units, Win (Chang)

HISTORY 257. The Politics and Ethics of Modern Science and Technology—(Same as 367, STS 221.) The WW II decision to build and use the atomic bomb. The controversy over the H-bomb. The Oppenheimer loyalty-security case and the relationship of scientist to the state. Medical experimentation on humans and pitfalls of technology. Relations among science, technology, and university. GER:DB-Hum
5 units (Bernstein) not given 2005-06

HISTORY 258. History of Sexuality in the U.S.—(Formerly 265A; same as 358.) Priority to History and Feminist Studies majors; a limited number of graduate students may be admitted. Readings on the social construction of sexuality, primarily U.S., in the 19th and 20th centuries. Topics: reproduction, sexual identities, and race and sexuality. Prerequisite: consent of instructor. GER:DB-SocSci, EC-Gender
5 units, Aut (Freedman)
HISTORY 258C. The U.S. West: 20th-Century Environmental History — Industrial development and population shifts; the growth of industries including agriculture, hydroelectric power, mining, and logging; and fast-growing Western cities.
5 units, Spr (Brock)

HISTORY 259A.B. Poverty and Homelessness in America — Students participate in an internship with the Emergency Housing Consortium, the primary agency providing shelter for homeless people in Santa Clara and San Mateo counties, while learning about homelessness and poverty through readings and discussions. Prerequisite: interview with instructor. GER:DB-SocSci
5 units (Camarillo) not given 2005-06

HISTORY 260. Race and Ethnicity in the American Metropolis: A Case Study of Los Angeles — (Formerly 257A, same as 357.) Contemporary history of ethnic and racial groups in urban America. Historical and social science literature focusing on groups in the Los Angeles area. Topics include immigration, poverty, education, demographic changes, political participation, conflict and cooperation, and cultural life in the modern, multicultural metropolis. GER:DB-SocSci, EC-AmerCul, WIM
5 units, Win (Camarillo)

HISTORY 264. California History — (Formerly 256A.) The myths and realities about California’s past, focusing on the 20th century. The origins of California’s diverse society. Social, political, economic, demographic, and cultural dimensions of the state’s history. GER:DB-SocSci
5 units (Camarillo) not given 2005-06

5 units, Spr (Chang)

HISTORY 265E. American Ecologies and Environments — The rise of environmental thought and scientific ecology in America. How they built upon each other in the 19th and 20th centuries. GER:DB-Hum
5 units, Aut (Brock)

HISTORY 267E. Cities in the North American West, 1840-1940 — (Formerly 270A.) Political, social, economic, and environmental forces shaping development of the major metropolitan areas of the Rocky Mountain and Pacific from Mexican pueblos to Gold Rush boomtowns to shipping capitals and military metropolises. Comparison with cities in other regions of the U.S. Topics include immigration and migration patterns, local politics, architecture and city planning, urban infrastructure, and relationships to the natural environment. GER:DB-SocSci
4-5 units (O’Mara) not given 2005-06

HISTORY 268. The Other Wests — GER:DB-Hum
5 units (White) not given 2005-06

HISTORY 268E. Politics and Politicians in the American West — (Formerly 271B; same as 367G.) — Elected officials from Western states including Leland Stanford, Lyndon Johnson, Barry Goldwater, and Arnold Schwarzenegger as dominant figures on the national political stage. Political biography as a tool to survey the political history of the West from the Gilded Age to the present. The social, economic, and environmental characteristics of the West that shaped the careers of these politicians, and the effect of Western political culture upon national electoral politics and policy.
5 units (O’Mara) not given 2005-06

HISTORY 268F. U.S. National Parks: History, Policy, and Context
4 units, Win (R. Kennedy)

HISTORY 268S. American Wests: Studies in Culture and the Environment — (Same as 457A.) GER:DB-Hum
5 units (White) not given 2005-06

HISTORY 269. Forest and Logging in North America and the World — The role of forests and lumber in modern history and contemporary times. Cultural and political claims on the forests, logging technology, the role of forest science, and the globalization of the lumber industry. GER:DB-SocSci
5 units (Brock) not given 2005-06

HISTORY 269G. History of the Indigenous North American West
4-5 units, Spr (Wadewitz)

LATIN AMERICA
See also 70.

HISTORY 170. Colonial Latin America — (Formerly 178.) The Iberian and indigenous roots of Latin American culture and society. The colonial era: encounter and conquest through the eyes of victors and vanquished; strategies of domination and resistance for central Mexico, the Andes, and Brazil. The mature socioeconomic and cultural structures of colonial life; sources of tension and change within colonial Latin America during the 18th century. The breakdown of colonial authority and the rise of independence movements. GER:DB-SocSci
5 units (Herzog) not given 2005-06

HISTORY 273. The European Expansion
5 units, Spr (Herzog)

HISTORY 275. Slavery in the Americas — (Formerly 282.)
5 units (Klein) not given 2005-06

HISTORY 275F. Social Change in Latin America Since 1900 — (Same as 375F, LATINAM 201/301.) Changes in the social and demographic characteristics of Latin American populations since 1900 and the response of national governments in terms of the evolution of social welfare, health, and educational systems. Fulfills requirement for Latin American Studies honors seminar.
5 units (Klein) not given 2005-06

HISTORY 276. Modern Brazil — (Same as 376.) From independence in 1822 to the present. Social and cultural history. Literary and historical sources.
5 units, Spr (Frank)

HISTORY 276G. Demographic History of the U.S. — (Same as 376G.)
5 units, Win (Klein)

HISTORY 277G. Health, Medicine, and Society in Latin America — (Same as 377G, LATINAM 137/237.) The role played by disease, public health and medicine in Latin American societies during the 19th and 20th centuries. How changing perceptions and definitions of health and disease, gender and the body, and race and ethnicity have shaped official and popular understandings of the health of individuals, populations, and societies. GER:DB-SocSci
5 units, Win (Cueto)

HISTORY 278. Problems of Governance and Economic Growth in Mexico: From the Aztecs to NAFTA — (Same as POLISCI 248T.) Political and economic institutions of Mexico. The origins and economic consequences of authoritarianism. GER:DB-SocSci
5 units, Spr (Haber)
HISTORY 279. Latin American Development: Economy and Society, 1800-2000—(Same as 379.) The newly independent nations of Latin America began the 19th century with economies roughly equal to, or even ahead of, the U.S. and Canada. What explains the economic gap that developed since 1900? Why are some Latin American nations rich and others poor? Marxist, dependency, neoclassical, and institutionalist interpretive frameworks. The effects of globalization on Latin American economic growth, autonomy, and potential for social justice. GER:DB-SocSci, EC-GlobalCom, WIM
5 units, Aut (Frank)

MIDDLE EAST
See also 226.

HISTORY 181. Palestine Zionism and the Arab-Israeli Conflict—(Formerly 187.) From the mid-19th century to the present. Topics: Palestine under late Ottoman rule, the development of Zionism, Palestinian nationalism, the Palestine mandate, the establishment of the state of Israel, the Arab-Israeli wars, U.S. policy toward the conflict, the Camp David agreements, both Palestinian uprisings, and the Oslo Accords. Readings from a range of viewpoints.
5 units, Aut (Beinin)

HISTORY 281. Economic and Social History of the Modern Middle East—(Formerly 286; same as 381.) The integration of the Middle East into the world capitalist market on a subordinate basis and the impact on economic development, class formation, and politics. Alternative theoretical perspectives on the rise and expansion of the international capitalist market are combined with possible case studies of Egypt, Iraq, and Palestine.
5 units, Win (Beinin)

HISTORY 283. The New Global Economy, Oil, and Islamic Movements in the Middle East—(Formerly 286A; same as 383.) The integration of the Middle East into the world capitalist market on a subordinate basis and the impact on economic development, class formation, and politics. Alternative theoretical perspectives on the rise and expansion of the international capitalist market; case studies of Egypt, Iraq, and Palestine. GER:DB-SocSci, EC-GlobalCom, WIM
5 units (Beinin) not given 2005-06

HISTORY 284G. Ottoman Reform in the 19th Century
5 units, Spr (Downes)

HISTORY 287S. Research Seminar on the Modern Middle East—(Same as 481.) Student-selected research topics. GER:DB-SocSci 3-5 units (Beinin) not given 2005-06

JEWS AND MUSLIMS

JEWISH HISTORY

HISTORY 185B. Jews in the Modern World—(Formerly 188C.) Possible themes: the restructuring of Jewish existence during the Enlightenment and legal emancipation at the end of the 18th century in W. Europe, the transformation of Jewish life in E. Europe under the authoritarian Russian regime, colonialism in the Sephardic world, new ideologies (Reform Judaism and Jewish nationalisms), the persistence and renewal of anti-Semitism, the destruction of European Jewry under the Nazis, new Jewish centers in the U.S., and the State of Israel. GER:DB-Hum, EC-GlobalCom
5 units, Spr (Zipperstein)

HISTORY 187. Judaism in Late Antiquity—(Enroll in RELIGST 123.)
4 units, Spr (Fonrobert)

HISTORY 286. Jews and Muslims—(Formally 285C; same as 386.) The history of Jewish communities in the lands of Islam and their relations with surrounding Muslim populations from the time of Muhammad to the 20th century. Topics: the place of Jews in Muslim societies, Jewish communal life, variation in the experience of communities in different Muslim lands, the impact of the West in the modern period, the rise of nationalisms, and the end of Jewish life in Muslim countries. GER:DB-Hum
5 units (Rodrique) not given 2005-06

ASIA

See also 92A,B

HISTORY 191. East Asia in the Early Buddhist Age—(Formerly 193.) Evolution of cities in imperial China through early imperial, medieval, and early modern periods. Topics include physical structure, social order, cultural forms, economic roles, relations to rural hinterlands, and the contrast between imperial capitals and other cities. Comparative examination of cases from European history. GER:DB-Hum, EC-GlobalCom
5 units (M.E. Lewis) not given 2005-06

HISTORY 192. China: The Early Empires—(Formerly 192B; same as 392A.) The major developments of the first unitary empires in China, the Qin and the Han; institutions and social patterns that defined imperial China as a political form and social type. Topics include geography, urbanism, the peasantry, military organization, kinship, religion, intellectual life, literary genres, and changing forms of imperial cohesion. GER:DB-Hum
5 units (M.E. Lewis) not given 2005-06

HISTORY 193. Late Imperial China—(Formerly 192B; same as 392B.) An introduction to the form and function of imperial China, from the Tang-Song transition until the collapse of imperial order. The rise of absolutism and gentry society, and concomitant shifts in culture, gender relations, and the economy. The threat of steppe nomadism which produced the Mongol and Manchu conquest dynasties. The last imperial dynasty, the Qing, which solved traditional problems but was confronted by new ones. How simultaneous disasters of internal rebellion and Western imperialist invasion destroyed the old order. GER:DB-Hum
5 units, Spr (Sawada)

HISTORY 194B. Japan in the Age of the Samurai—(From the Warring States Period to the Meiji Restoration. Topics include the three great unifiers, Tokugawa hegemony, the samurai class, Neoconfucian ideologies, suppression of Christianity, structures of social and economic control, frontiers, the other and otherness, castle-town culture, peasant rebellion, black marketing, print culture, the floating world, National Studies, food culture, samurai activism, black ships, unequal treaties, anti-foreign terrorism, restorationism, millenarianism, modernization as westernization, Japan as imagined community. GER:DB-Hum, EC-GlobalCom
5 units, Win (Wigen)

HISTORY 195. Introduction to Korean History and Culture—(Formerly 194D.) Japanese history from 1840 to the present. Topics include archiological records, philosophical and religious traditions, literature and the performing arts, international relations, socioeconomic change, immigration and Asian American experiences, gender issues, and popular youth cultures. GER:DB-Hum, EC-GlobalCom
5 units (Wigen) not given 2005-06

HISTORY 195C. The Rise of Modern Japan—(Formerly 194D.) The nature of borders and border conflicts in N.E. Asia from the 17th to the early 20th century. Focus is on contact zones between China, Russia, Korea, and Japan. The geopolitical imperatives that drove states to map their terrain in variable ways. Cultural, diplomatic, and imperial contexts. European pressures and contributions to E. Asian cartography; the uses of maps in surveillance, diplomacy, identity, and war. Student projects focus on a contested border zone. GER:DB-SocSci
5 units, Aut (Wigen)

HISTORY 291E. Maps, Borders, and Conflict in East Asia—(Same as 391E.) The nature of borders and border conflicts in N.E. Asia from the 17th to the early 20th century. Focus is on contact zones between China, Russia, Korea, and Japan. The geopolitical imperatives that drove states to map their terrain in variable ways. Cultural, diplomatic, and imperial contexts. European pressures and contributions to E. Asian cartography; the uses of maps in surveillance, diplomacy, identity, and war. Student projects focus on a contested border zone. GER:DB-SocSci
5 units, Aut (Wigen)
HISTORY 293. Law and Society in Late Imperial China — (Formerly 296B; same as 392B.) Connections between legal and social history. Ideology and practice, center and periphery, and state-society tensions and interactions. Readings introduce the work of major historians on concepts and problems in Ming-Qing history. GER:DB-Hum, EC-GlobalCom
5 units, Aut (Sommer)

HISTORY 293A. Tokyo: From Castle Town to Megalopolis — (Same as 393A.) The transformation of Edo, one of the world’s largest early modern cities, into Tokyo, one of the contemporary world’s largest conurbations. Topics include: the founding of Edo; the early modern built environment; the Meiji Restoration; urban social structure and residential patterns; popular culture; the 1923 earthquake; and wartime destruction and postwar reconstruction. GER:DB-Hum
5 units (Duus) not given 2005-06

HISTORY 293J. Korean History and Culture through Film — Focus is on S. Korea in the postcolonial era, 1945-present, including seminal political events, family/communal structures, educational institutions, gender norms, socioeconomic and cultural change. Analytical approaches include aesthetics, formalist readings of cinematic and literary texts, and media/cultural studies approaches that underscore political-economic issues of representation. Films and videos have English subtitles; readings in English translation.
5 units, Spr (Sawada)

HISTORY 295F. Modern China — (Same as 391B.)
4-5 units, Spr (Henirot)

HISTORY 295J. Chinese Women’s History — (Formerly 296A; same as 395J.) The lives of women in the last 1,000 years of Chinese history. Focus is on theoretical questions fundamental to women’s studies. How has the category of woman been shaped by culture and history? How has gender performance interacted with bodily disciplines and constraints such as medical, reproductive, and cosmetic technologies? How relevant is the experience of Western women to women elsewhere? By what standards should liberation be defined? Readings include primary sources in translation including fiction, memoirs, and oral histories of the Maoist era. GER:DB-Hum, EC-Gender
5 units, Spr (Sommer)

HISTORY 297. Contemporary Chinese Foreign Relations — (Same as 397, POLISCI 348S.)
5 units, Spr (Sommer)

HISTORY 297E. Meiji Culture — (Formerly 295A; same as 397E.) The political and social culture of Japan in the wake of the Meiji Restoration. Topics include the ideology of civilization and enlightenment; political dissent and social criticism; the success ethic and the new middle class; capitalism and the new business culture; urbanization and the working class; gender ideology and the family; war and militarism in popular culture; and conservatism and racial ideology. Readings from historical sources in translation including literary works. GER:DB-Hum
5 units, Win (Duus)

HISTORY 297F. Japan Since 1945 — Social, political, and cultural developments in Japan during and after the economic miracle of the 50s and 60s. Topics include: the dynamics of economic growth; transformation of rural society; growth of the new urban middle class; changing gender roles and attitudes; youth and popular culture; new religions; and cultural nationalism. GER:DB-SocSci
5 units, Win (Duus)

HISTORY 298A. Modernizing Women in Japan — (Formerly 297A; same as 398A.) Women as objects and agents of experiments in social change in the modern world. Focus is on issues raised by modernizing Japanese women from the late 19th- to the 20th-centuries. Sources include film, fiction, journalism, essays, diaries, and secondary works. Research paper using primary sources. Recommended: coursework on Japan or gender. GER:DB-Hum, EC-Gender, WIM
5 units (Wigen) not given 2005-06

HISTORY 298B. The Great East Asia War — GER:DB-SocSci
5 units (Duus) not given 2005-06

INDIVIDUAL WORK

HISTORY 299A. Senior Research I — (Formerly 200A.) WIM
1-5 units, Aut, Win, Spr (Staff)

HISTORY 299B. Senior Research II — (Formerly 200B.) WIM
1-5 units, Aut, Win, Spr (Staff)

HISTORY 299C. Senior Research III — (Formerly 200C.) WIM
1-5 units, Aut, Win, Spr (Staff)

HISTORY 299H. Junior Honors Colloquium — (Formerly 200H.)
5 units, Win (Winterer)

HISTORY 299M. Undergraduate Directed Research: Martin Luther King, Jr., Papers Project
1-4 units, Aut, Win (Carson)

HISTORY 299R. Undergraduate Directed Reading
1-5 units, Aut, Win, Spr (Staff)

HISTORY 299S. Undergraduate Directed Research and Writing— (Formerly 200X.) WIM
1-5 units, Aut, Win (Staff)

HISTORY 299W. Undergraduate Directed Writing— (Formerly 200W.)
1-5 units, Aut, Win (Staff)

HISTORY 299X. Design and Methodology for International Field Research— (Formerly 206B; same as 399A.)
1 unit, Win (N. Kollmann, Roberts)
Graduate History courses are listed in the following subsection order:
Required Colloquia, Workshops, and Seminars: 300-305, 400-405
Ancient and Medieval Europe: 311-319, 411-419
Eastern Europe, Russia, and Eurasia: 320-329, 320-329
Early Modern and Modern Europe: 330-339
History of Science and Technology: 340-344, 440-444
Africa: 345-349, 445-449
United States: 351-369, 451-469
Latin America: 370-379, 470-479
Middle East: 380-384, 480-484
Jewish History: 385-389, 485-489
Asia: 390-398, 490-498
Individual Study: 399, 499

Required Colloquia, Workshops, Seminars
HISTORY 304. Approaches to History — Required of first-year History Ph.D. students.
5 units, Aut (Kahn)

HISTORY 305. Graduate Workshop in Teaching — Introduction to teaching, lecturing, and curriculum development.
1 unit, Spr (Roberts)

International, Global, and Thematic
HISTORY 306E. International History and International Relations Theory — (Same as 202, POLISCI 316.)
5 units (Holloway) not given 2005-06

HISTORY 306F. Sovereignty and the State — (Same as 203.) The theory of sovereignty and the practice of states in modern European and America. Readings include classic texts and political documents.
5 units, Spr (Kennedy, Sheehan)

HISTORY 307E. Modernity, Revolution, and Totalitarianism — (Same as 204E.)
5 units, Spr (Weiner)

HISTORY 307G. The History of the Cold War — (Same as 103G.)
5 units (Naimark) not given 2005-06

HISTORY 308. Biography and History — (Formerly 302C; same as 207.)
5 units (Zipperstein) not given 2005-06

HISTORY 309E. History Meets Geography — Focus is on developing competence in GIS computer applications and applying it to historical problems. Previous experience with GIS not required. Recommended: complete the GIS tutorial in Branner Library before the course starts.
5 units, Spr (Frank)

HISTORY 309F. Historical Geography: Maps in the Early Modern World — (Same as 205.)
5 units (Wigen) not given 2005-06

HISTORY 337C. The International System — (Same as 237C.)
5 units, Spr (Sheehan)

Ancient and Medieval Europe
HISTORY 313. Core Colloquium in Medieval European History
4-5 units (Buc) not given 2005-06

HISTORY 314. Graduate Core Colloquium in Medieval European History
4-5 units (Miller) not given 2005-06

HISTORY 316. Medieval Antisemitism — (Same as 216.)
5 units (Buc) not given 2005-06

HISTORY 318. The Medieval Mediterranean: Power and Commerce — (Same as 218.)
5 units, Spr (Goldberg)

HISTORY 411. Empire and Hellenism: Athens and Syracuse — (Formerly 403)
4-5 units (Morris) not given 2005-06

HISTORY 413A,B. Medieval History
4-5 units (Buc) not given 2005-06

HISTORY 414A,B. Medieval History
4-5 units (Miller) not given 2005-06

Eastern Europe and Russia
HISTORY 321A. Early Modern Russian Historiography
5 units (Kollmann) not given 2005-06

HISTORY 321B. Imperial Russian Historiography
5 units (Crews) not given 2005-06

HISTORY 321C. Historiography of the Soviet Union — (Same as 221C.)
5 units (Weiner) not given 2005-06

HISTORY 323. Art and Ideas in 19th-Century Russia — (Same as 223.)
5 units (Crews) not given 2005-06

HISTORY 323B. Research Methodologies in Early Modern Russian History
5 units, Aut (Kollmann)

HISTORY 324. Violence, Islam, and the State in Central Asia — (Formerly 320; same as 224.)
5 units, Aut (Crews)

HISTORY 326. Modern Eastern Europe
4-5 units (Naimark) not given 2005-06

HISTORY 327. East European Women and War in the 20th Century — (Same as 227.)
5 units, Aut (Jolluck)

HISTORY 328. Circles of Hell: Poland in World War II — (Same as 228.)
5 units (Jolluck) not given 2005-06

HISTORY 329. Poles and Jews — (Same as 229.)
5 units, Spr (Jolluck)

HISTORY 421A. Early Modern Russia
5 units (Kollmann) not given 2005-06

HISTORY 422A,B. Research Seminar in Imperial Russia — (Formerly 431.)
5 units, A: Spr, B: not given 2005-06 (Crews)

HISTORY 423. Stalin and Europe; Europe and Stalin — (Same as 223S.)
5 units (Naimark) not given 2005-06

HISTORY 424A,B. Soviet Civilization
4-5 units, A: Win, B: Spr (Weiner)

Early Modern and Modern Europe
HISTORY 330. Core Colloquium on Early Modern Europe
4-5 units, Aut (Lougee Chappell)

HISTORY 331A. Core Colloquium on Modern Europe: The 19th Century — (Formerly 331E.) The major historical events and historiographical debates of the long 19th century from the French Revolution to WW I.
4-5 units (Daughton) not given 2005-06

HISTORY 331B. Core Colloquium on Modern Europe — (Formerly 331B.) The historiography of 20th-century Europe. Topics include WW I, the Russian Revolution, National Socialism, and the EU.
4-5 units, Aut (Sheehan)
HISTORY 331D. Core Colloquium on Modern Europe: Intellectual History
4-5 units, Win (Robinson)

HISTORY 332A. Power, Art, and Knowledge in Renaissance Italy — (Formerly 313C; same as 232A.)
5 units (Findlen) not given 2005-06

HISTORY 332B. Heretics, Prostitutes, and Merchants: Venice and its Empire — (Formerly 313B.) Why was the myth of Venice so powerful? How Venice created an empire at the boundary between East and West, that controlled much of the Mediterranean, with a merchant society that allowed social groups, religions, and ethnicities to coexist. Venetian society as a microcosm of late medieval and early modern Europe. The relationship between center and periphery, order and disorder, orthodoxy and heresy, and the role of politics, art, and culture in the Venice Renaissance. Its decline as a political power and reinvention as a tourist site, living museum, and subject for literature and film.
5 units, Spr (Findlen)

HISTORY 332F. The Scientific Revolution — (Formerly 313; same as 232F.)
5 units, Win (Findlen)

HISTORY 332G. When Worlds Collide: The Trial of Galileo — (Formerly 316; same as 232G.)
5 units (Findlen) not given 2005-06

HISTORY 333. Religion and Politics in Early Modern England — (Formerly 344.)
5 units, Aut (Como)

HISTORY 334. Enlightenment Seminar — (Enroll in HUMNTIES 324.)
3-5 units, Aut (Sockness)

HISTORY 335F. Europe and the Colonial Experience — (Formerly 327B.) GER:DB-Hum
5 units (Daughton) not given 2005-06

HISTORY 336. Modern France
5 units, Win (Daughton)

HISTORY 336E. Cultures of Violence in Twentieth-Century Europe — (Formerly 328D; same as 236E.)
5 units (Daughton) not given 2005-06

HISTORY 337. The Holocaust — (Same as 137.)
5 units (Rodrigue) not given 2005-06

HISTORY 337C. The International System — (Same as 237C.)
5 units, Spr (Sheehan)

HISTORY 337J. Occupation, Terror, Civil War, and Ethnic Cleansing — (Same as 232K)
5 units, Aut (Deak)

HISTORY 338A. Modern Britain: Facing Europe and Empire, Part I — Influential approaches to problems in British, European, and imperial history. The 19th-century British experience and its relationship to Europe and empire. National identity, the industrial revolution, class formation, gender, liberalism, and state building. Goal is to prepare specialists and non-specialists for oral exams.
5 units (Satia) not given 2005-06

HISTORY 338B. Modern Britain: Facing Europe and Empire, Part II — Themes include empire and racism, the crisis of liberalism, the rise of the welfare state, national identity, the experience of total war, the politics of decline, and modernity and British culture. GER:DB-SocSci
5 units (Satia) not given 2005-06

HISTORY 339F. Empire and Information — (Same as 239F.)
4-5 units, Aut (Satia)

HISTORY 339G. European Legal History Colloquium — (Same as LAW 441.)
3 term units, Aut semester (Kessler)

HISTORY 430A,B. Graduate Research Seminar: Early Modern Europe — (Formerly 413.)
4-5 units, A: Win, B: Spr (Findlen)

HISTORY 432A,B. Graduate Research Seminar: The French Revolution — (Formerly 430.)
4-5 units (Baker) not given 2005-06

HISTORY 433A,B. European History
4-5 units, Win, Spr (Sheehan)

HISTORY 434A,B. Modern European History
4-5 units (Robinson) not given 2005-06

HISTORY 438. European History Workshop — All European history graduate students in residence register for this weekly workshop, at which dissertation chapters and prospectuses, papers, and grant proposals by students and faculty are read and discussed.
1 unit, Spr (Robinson)

HISTORY OF SCIENCE AND TECHNOLOGY
See also 332F.

HISTORY 341F. Origins and History of the Scientific Fact — (Formerly 306P; same as 241F.)
5 units (Riskin) not given 2005-06

HISTORY 341G. History of the Senses — (Formerly 303A; same as 241G, STS 134.)
5 units (Riskin) not given 2005-06

HISTORY 341J. The Prehistory of Computers — (Formerly 304B; same as 241J.)
3-5 units (Riskin) not given 2005-06

HISTORY 343G. Tobacco and Health in World History — (Same as 243G.)
5 units, Aut (Proctor)

HISTORY 344. The History of Women and Gender in Science — (Formerly 334A; same as 144.)
5 units (Schiebinger) not given 2005-06

HISTORY 344L. Theory and Practice of Feminism in Science — (Same as 244L.)
5 units, Spr (Schiebinger)

HISTORY 347. The Politics and Ethics of Modern Science and Technology — (Same as 257, STS 221.)
5 units (Bernstein) not given 2005-06

HISTORY 443A. Human Origins: History, Evidence, and Controversy — (Same as 243S.)
5 units, Win (Proctor)

AFRICA

HISTORY 345A. Core Colloquium: Precolonial Africa — (Formerly 349.)
4-5 units (Roberts) not given 2005-06

HISTORY 345B. Core Colloquium African History: The Colonial Period — (Formerly 347B.)
4-5 units, Win (Roberts)

HISTORY 346. Successful Futures for Africa: An Inventory of the 1970s-2000s — (Same as 246.)
5 units, Aut (Jackson)

HISTORY 347E. Health and Society in Africa — (Formerly 347A; same as 245E.)
5 units, Spr (Roberts)
HISTORY 348. Islam in Africa—(Formerly 348B; same as 248.)
4-5 units, Aut (Hanretta)

HISTORY 348D. Law and Colonialism in Africa—(Same as 245G.)
4-5 units (Roberts) not given 2005-06

HISTORY 349. History Without Documents in Africa—(Same as 249.)
5 units, Spr (Hanretta)

HISTORY 446A,B. Popular Culture in Africa—(Same as 246S.)
4-5 units, A: Aut, B: Win (Jackson)

HISTORY 447A,B. Intellectual and Cultural History in Modern Africa—(Same as 247S.)
4-5 units (Hanretta) not given 2005-06

HISTORY 448A,B. African Societies and Colonial States—(Same as 248S.)
5 units (Roberts) not given 2005-06

HISTORY 449. Reappraising Two African Nationalists—(Same as 249S.)
5 units, Win (Jackson)

HISTORY 450. Intellectual and Cultural History in Modern Africa
5 units (Hanretta) not given 2005-06

THE UNITED STATES
HISTORY 351A. Core in American History, Part I
4-5 units, Aut (Rakove)

HISTORY 351B. Core in American History, Part II
4-5 units, Aut (Winterer)

HISTORY 351C. Core in American History, Part III
4-5 units (White) not given 2005-06

HISTORY 351D. Core in American History, Part IV
4-5 units, Win (Freedman)

HISTORY 351E. Core in American History, Part V
4-5 units, Spr (Chang)

HISTORY 351F. Core in American History, Part VI
5 units, Spr (Bernstein)

HISTORY 352. Creating the American Republic—(Formerly 372; same as 251, POLISCI 321.)
5 units, Win (Rakove)

HISTORY 355. Decision Making in International Crises: The A-Bomb, the Korean War, and the Cuban Missile Crisis—(Formerly 352; same as 252.)
5 units, Aut (Bernstein)

HISTORY 356. U.S.-China Relations: From the Opium War to Tiananmen—(Same as 256.)
5 units, Win (Chang)

HISTORY 357. Race and Ethnicity in the American Metropolis: A Case Study of Los Angeles—(Formerly 357A; same as 260.)
5 units, Win (Camarillo)

HISTORY 358. History of Sexuality in the U.S.—(Formerly 365A; same as 258.)
5 units, Aut (Freedman)

HISTORY 365. New Research in Asian American History—(Same as 265.)
5 units, Spr (Chang)

HISTORY 367E. U.S. Economic History—(Enroll in ECON 226.)
2-5 units, Spr (Wright)

HISTORY 367F. The Suburban West—(Formerly 371A; same as 267E.)
5 units (O’Marra) not given 2005-06

HISTORY 367G. Politics and Politicians in the American West—(Formerly 371B; same as 268E.)
5 units (O’Marra) not given 2005-06

HISTORY 452A,B. U.S. Cultural and Intellectual History: 1750-1900—(Formerly 475.) Major methods and issues. Goal is to produce a research paper based on primary sources suitable for inclusion in a doctoral dissertation or submission to a peer-reviewed scholarly journal. Topics include: compiling primary and secondary source bibliographies; primary and secondary source issues; and how to articulate an argument. Students produce a prospectus by the end of Winter Quarter. Spring Quarter meetings to discuss outlines, drafts, and problems, culminating in presentation of papers in scholarly conference format.
4-5 units (Winterer) not given 2005-06

HISTORY 456A,B. The United States in the 20th Century
4-5 units (White) not given 2005-06

5 units (White) not given 2005-06

HISTORY 460. America in the World—Ways to place American history in an international context. Comparative, transnational, diplomatic, and world systems approaches to research building on research primary materials. Historical methodologies, research strategies, and essay projects.
5 units (Chang) not given 2005-06

HISTORY 461A,B. U.S. Women’s Family and Sexual History
4-5 units (Freedman) not given 2005-06

HISTORY 463A,B. Race, Ethnicity, and Class in the 20th Century—(Formerly 474.)
4-5 units, A: Spr, B: not given 2005-06 (Camarillo)

LATIN AMERICA
HISTORY 372. The European Expansion
5 units, Spr (Hertzog)

HISTORY 375F. Social Change in Latin America Since 1900—(Formerly 382A; same as 275F, LATINAM 201/301.)
5 units (Klein) not given 2005-06

HISTORY 376. Modern Brazil—(Same as 276.)
5 units, Spr (Frank)

HISTORY 376G. Demographic History of the U.S.—(Same as 276G.)
5 units, Win (Klein)

HISTORY 377. Colonial Latin America—(Formerly 380A.)
5 units, Win (Klein)

HISTORY 377G. Health, Medicine, and Society in Latin America—(Same as 237G, LATINAM 137/237.)
5 units, Win (Cueto)

HISTORY 378E. Comparative Political Economy—(Same as POLISCI 440B.) Required of all Political Science Ph.D. students with comparative politics as a first or second concentration; others by consent of the instructor. Micro- and macro-level explanations for variation in economic policies and outcomes. The formation of cleavages and political coalitions, and the economic and political consequences of variation in partisanship, political institutions, regime types, and economic openness.
5 units, Win (Haber)

HISTORY 379. Latin American Development: Economy and Society, 1800-2000—(Same as 279.)
5 units, Win (Rebinin)

MIDDLE EAST
HISTORY 381. Economic and Social History of the Modern Middle East—(Formerly 386; same as 281.)
5 units, Win (Rebinin)
HISTORY 383. The New Global Economy, Oil, and Islamic Movements in the Middle East—(Same as 283.)
5 units (Beinin) not given 2005-06

HISTORY 481. Research Seminar on the Modern Middle East—(Formerly 487; same as 287S.)
3-5 units, Spr (Beinin)

HISTORY 484. Ottoman/Turkish History—(Formerly 489.)
4-5 units (Rodrique) not given 2005-06

JEWISH HISTORY
HISTORY 385A. Core in Jewish History, 17th-19th Centuries—(Formerly 384A.)
4-5 units, Aut (Rodrique)

HISTORY 385B. Core in Jewish History, 20th Century—(Formerly 384B.)
4-5 units, Win (Zipperstein)

HISTORY 386. Jews and Muslims—(Formerly 385C; same as 286.)
5 units (Rodrique) not given 2005-06

4-5 units, Win (Z. Baker)

HISTORY 485A,B. Graduate Research Seminar in Jewish History
4-5 units (Zipperstein) not given 2005-06

HISTORY 486A,B. Graduate Research Seminar in Jewish History
4-5 units, A: Spr (Rodrique), B: (Zipperstein) not given 2005-06

ASIA
HISTORY 391B. Modern China—(Same as 295E.)
4-5 units, Spr (Henriot)

HISTORY 391E. Maps, Borders, and Conflict in East Asia—(Same as 291E.)
5 units, Aut (Wigen)

HISTORY 392B. Law and Society in Late Imperial China—(Formerly 396; same as 293.)
5 units, Aut (Sommer)

HISTORY 392C. Key Topics in Qing History—Graduate colloquium. Goal is to provide the foundation of a field in Qing history for Ph.D. oral examinations; M.A. students also welcome. Issues include: the ethnic dimension of Qing imperialism; the imperial state’s relationship with the peasantry; economic and demographic dynamics; and the impact of Western imperialism.
5 units, Spr (Sommer)

HISTORY 393A. Tokyo: From Castle Town to Megalopolis—(Same as 293A.)
5 units (Duus) not given 2005-06

HISTORY 394A. Directions in Asian Studies—Colloquium. Legacies and futures of Asian Studies in the U.S. at a time of crisis in area studies. Institutional issues include the root of Asian studies in the Cold War, the role of foundations, and trends in graduate training and funding; intellectual issues include the 60s leftist critique, the 80s social science critique, and competing configurations of interdisciplinary research in cultural and ethnic studies. Each student investigates one campus or foundation’s efforts to reconfigure and revitalize Asian studies.
5 units (Wigen) not given 2005-06

HISTORY 395J. Chinese Women’s History—(Same as 295J.)
5 units, Spr (Sommer)

HISTORY 395K. Sinological Research Methods
5 units, Aut (Shao)

HISTORY 396C. Nineteenth-Century Japan—(Formerly 395C.) Third in a four-part core colloquium series for graduate students. Classic and recent works that span Japan’s 19th century, contrasting those that configure the Meiji disjuncture as a revolution with those that emphasize continuities across the 1868 divide. Emphasis is on economic, social, and cultural developments. In English.
5 units, Spr (Wigen)

HISTORY 397. Contemporary Chinese Foreign Relations—(Same as 297, POLISCI 348S.)
5 units, Spr (Miller)

HISTORY 397E. Meiji Culture—(Formerly 395; same as 297E.)
5 units, Win (Duus)

HISTORY 397F. Japan Since 1945—Social, political, and cultural developments in Japan during and after the economic miracle of the 50s and 60s. Topics include: the dynamics of economic growth; transformation of rural society; growth of the new urban middle class; changing gender roles and attitudes; youth and popular culture; new religions; and cultural nationalism.
5 units, Win (Duus)

HISTORY 398. Imperialism, Colonialism, and National Identity in Modern Japan—(Same as 298.)
5 units (Duus) not given 2005-06

HISTORY 398A. Modernizing Women in Japan—(Formerly 397A; same as 298A.)
5 units (Wigen) not given 2005-06

HISTORY 398M. Historical Geography: Maps in the Early Modern World—(Formerly 302E; same as 205.)
5 units (Wigen) not given 2005-06

HISTORY 492A,B. The Family in Early China—Proseminar on conducting research.
4-5 units (M. E. Lewis) not given 2005-06

HISTORY 494. The Body in Early China
5 units, Win (M. E. Lewis)

HISTORY 495A,B. Qing Legal Documents—How to use Qing legal documents for research. Winter: sample documents that introduce the main genres including: the Qing code and commentaries; magistrates’ handbooks and published case collections; and case records from Chinese archives. Spring: class meets occasionally; students complete research papers. Prerequisite: advanced reading ability in Chinese.
4-5 units, A: Win, B: Spr (Sommer)

HISTORY 496A,B. Research Seminar on Modern China—(Formerly 497.)
5 units, Spr (Henriot)

INDIVIDUAL STUDY
HISTORY 399A,B. Design and Methodology for International Field Research—(Formerly 306B; same as 299X.)
1 unit, A: Win, B: Spr (N. Kollmann, Roberts)

HISTORY 399W. Graduate Directed Reading—(Formerly 300W.)
1-10 units, Aut, Win, Spr (Staff)

HISTORY 499X. Graduate Research—(Formerly 400X.) Units by arrangement.
1-10 units, Aut, Win, Spr (Staff)
These courses are approved for the History major and taught overseas at the campus indicated. Students should discuss with their major advisers which courses would best meet individual needs. Descriptions are in the “Overseas Studies” section of this bulletin or at the Overseas Studies office, 126 Sweet Hall.

BEIJING

HISTORY 191V. The City in Imperial China
5 units, Spr (Lewis)

HISTORY 192V. Female Divinities in Late Imperial China—(Same as FEMST 193E.)
5 units, Spr (Lewis)

BERLIN

HISTORY 105V. Industry, Technology, and Culture, 1780-1945—(Same as STS 120V.)
4 units, Win (Campani)

HISTORY 229V. Architecture and the City, 1871-1990: Berlin as a Nucleus of Modernity—(Same as ARTHIST 110Y, STS 119V, URBANST 143U.)
4 units, Spr (Neckenig)

FLORENCE

HISTORY 106V. Italy: from an Agrarian to a Postindustrial Society—(Same as POLISCI 145P.)
4 units, Aut (Mammarella)

HISTORY 235V. The Cinema Goes to War: Fascism and World War II as Represented in Italian and European Cinema—(Same as ITALGEN 191F, ARTHIST 160Y, COMM 53.)
5 units, Win (Campani)

OXFORD

HISTORY 138V. The European City
5 units, Spr (Tyack)

HISTORY 141V. European Imperialism and the Third World, 1870-1970—(Same as POLISCI 148P.)
5 units, Spr (Darwin)

HISTORY 239V. Britain in the Era of the Two World Wars
5 units, Win (Tyack)

HISTORY 244V. Art and Society in Britain—(Same as ARTHIST 221Y.)
5 units, Aut (Tyack)

PROGRAM IN HISTORY AND PHILOSOPHY OF SCIENCE AND TECHNOLOGY

Co-chairs: Michael Friedman (Philosophy), Paula Findlen (History)
Committee-in-Charge: Barton Bernstein (History), Joe Corn (History), Paula Findlen (History), Michael Friedman (Philosophy), Helen Longino (Philosophy), Reviel Netz (Classics), Robert Proctor (History)

Program Committee: Paula Findlen (History), Michael Friedman (Philosophy), Helen Longino (Philosophy), Reviel Netz (Classics), Robert Proctor (History), Jessica Riskin (History), Londa Schiebinger (History)

Professors: Keith Baker (History), Barton Bernstein (History), Paula Findlen (History), Michael Friedman (Philosophy), David Holloway (History, Institute for International Studies, Political Science), Reviel Netz (Classics), Robert Proctor (History), Londa Schiebinger (History, Institute for Research on Women and Gender), Richard White (History)

Associate Professors: Jessica Riskin (History)
Assistant Professors: Sarah Jain (Cultural and Social Anthropology)
Senior Lecturer: Joseph Corn (History)
Lecturers: Carol Pal (History), Michael Riordan (SLAC), Tom Ryckman (Philosophy)

Other Affiliation: Henry Lowood (Stanford University Libraries), Audrey Shafer (Anesthesiology), Larry Zaroff (Anesthesiology)

Mail Code: 94305-2024
Email: trogers@stanford.edu
Web Site: http://HPST.stanford.edu

The Program in History and Philosophy of Science and Technology (HPST) is an interdisciplinary program focusing on the historical and contemporary aspects of science, medicine, and technology. It offers graduate degrees at the doctoral level through the departments of History and Philosophy, as well as at the master’s level through a variety of affiliated department and programs, principally Classics, Cultural and Social Anthropology, English, and Modern Thought and Literature. In addition, graduate students in such affiliated departments and programs may participate in the HPST program by taking selected courses (see below).

Its courses span the period from antiquity to the late 20th century, with special emphasis on ancient and Islamic science; Renaissance science; the scientific revolution; history of medicine and the body; history and philosophy of biology; history and philosophy of modern physics; history of the philosophy of science in the modern period; history of computers and information sciences; and gender, science, and technology. These courses are designed both for students looking for a humanistic perspective on the sciences and for students trying to understand the relationship of the sciences to humanistic knowledge.

Stanford has unique resources for the history and philosophy of science. Situated in the heart of Silicon Valley at an institution with a long and distinguished tradition in many sciences, the University is surrounded by archives for the recent history of science and technology. Stanford University Libraries has rich holdings in Special Collections for the Scientific Revolution, as well as modern and contemporary study of science and technology. The University is in close proximity to some of the most interesting public science museums in the country: the California Academy of Sciences, the Exploratorium, the Computer History Museum, and the Tech Museum. Graduate students can take advantage of faculty, classes, and archives at UC Berkeley through Stanford’s exchange program. The core of the community is the colloquium series which brings together faculty and students several times a quarter to discuss the work of invited speakers on topics of broad concerns to science and technology studies.
UNDERGRADUATE DEGREES

Students who wish to pursue the history and philosophy of science and technology should major in the Department of History, which offers an interdisciplinary major in History and Science, in the Department of Philosophy, which offers a specific degree in History and Philosophy of Science, or in the Program in Human Biology, which offers a concentration in history of science and medicine. A concentration in the anthropology of science or in ancient science can be arranged with the departments of Cultural and Social Anthropology and Classics respectively. Alternatively, students may consult with a member of the Committee-in-Charge to construct an individually designed major. The major must conform to the requirements for Individually Designed Majors (see the “Individually Designed Majors” section of the bulletin).

GRADUATE DEGREES

Students can pursue a Ph.D. in HPST through the departments of History and Philosophy. Students can pursue an M.A. in HPST through any of the participating departments and programs. Students completing the requirements of the HPST program for the M.A. or Ph.D. (including appropriate dissertation work) graduate with a diploma stating their concentration in HPST. In addition, students may also participate in the HPST program on a non-degree basis. The degree and program requirements are as follows:

All students participating in the program are required to attend the HPST colloquium series and are expected to present their own research at least once in the course of their studies at Stanford. The colloquium series meets four times per quarter as a one-unit course.

All students participating in the program take the HPST core graduate seminar (a one quarter, 6-unit course). This course is offered every other year, crosslisted in HPST, History, and Philosophy, and is team-taught by two faculty as an introduction to historical and philosophical perspectives on science and technology. In alternate years, both History and Philosophy offer their departmental core seminars in history or philosophy of science and technology respectively.

The core seminars are designated each year by the HPST program committee.

In addition to the HPST colloquium series, all doctoral students in HPST complete a four-course sequence:

1. HPST core seminar
2. Department core seminar in History or Philosophy
3. One elective seminar in history of science and/or technology
4. One elective seminar in philosophy of science and/or technology

In addition to participating in the HPST colloquium series, all master’s students in HPST are required to complete a three-course sequence:

1. HPST core seminar (or department core in alternate years)
2. One elective in history of science
3. One elective in philosophy of science

In addition to participating in the HPST colloquium series, all students in other programs participating in HPST are required to complete a two-course sequence:

1. HPST core seminar
2. One elective seminar in history or philosophy of science

Electives, in all cases, are to be selected from a list approved each year by the HPST program committee.

COURSES

INTRODUCTORY

HPS 60. Introduction to Philosophy of Science — (Same as PHIL 60) 20th-century views on the nature of scientific knowledge. Logical positivism and Popper; the problem of induction; Kuhn, Feyerabend, and radical philosophies of science; subsequent attempts to rebuild moderate empiricist and realist positions. GER:DB-Hum
 5 units, Spr (Longino)

HPS 61. Philosophy and the Scientific Revolution — (Same as PHIL 61) The relationship between the scientific revolution of the 17th century that resulted in the birth of modern science and the contemporaneous intellectual developments constituting the birth of modern philosophy. Readings focus on Galileo and Descartes. GER:DB-Hum
 5 units, Aut (Friedman)

HPS 62. World History of Science: From Prehistory to the Scientific Revolution — (Enroll in HISTORY 140.)
 5 units, Spr (Proctor)

HPS 62N. Values and Objectivity — (Enroll in PHIL 16N.)
 3 units, Win (Ryckman)

HPS 63N. Freedom, Community, and Morality — (Enroll in PHIL 15N.) Stanford Introductory Seminar.
 3 units, Win (Friedman)

HPS 65N. The History of Women and Gender in Science — (Enroll in HISTORY 44N.) Stanford Introductory Seminar.
 5 units, Win (Schiebinger)

 3-4 units, Spr (Netz)

SCIENCE IN HISTORY

This sequence is designed to introduce students to fundamental aspects of the history of science from antiquity to the 20th century. Students concentrating in the history of science are advised to take most or all of this sequence as a core foundation.

HPS 102. The Scientific Revolution — (Enroll in HISTORY 232F/332F.)
 5 units, Win (Findlen)

HPS 104. The History of Twentieth-Century Physics: The Quantum Century — (Enroll in HISTORY 143.)
 3-5 units, Aut (Riordan)

HPS 105. Origins and History of the Scientific Fact — (Enroll in HISTORY 241F/341F.)
 5 units (Riskin) not given 2005-06

HPS 106. The Greek Invention of Harmony and Proportion — (Enroll in CLASSGEN 137.)
 3-4 units, Spr (Netz)

HPS 107. Intellectual Revolutions — (Same as HISTORY 142J.)
 5 units, Spr (Pal)

HPS 108. Darwin in the History of Life — (Enroll in HISTORY 45.)
 5 units, Aut (Proctor)

MEDICINE IN HISTORY

This sequence is designed to introduce students to fundamental aspects of the history of medicine from antiquity to the 20th century. Students concentrating in the history of medicine are advised to take most or all of this sequence as a core foundation.

HPS 122. The Rise of Scientific Medicine — (Enroll in HISTORY 41B/343.)
 4-5 units (Lenoir) not given 2005-06

HPS 123. Ancient Medicine — (Enroll in CLASSGEN 139.)
 3-4 units, Win (Netz)

HPS 124. Tobacco and Health in World History — (Enroll in HISTORY 243G/343G.)
 5 units, Aut (Proctor)

HPS 125. Medicine and Society in Early Modern Europe — (Enroll in HISTORY 242G.)
 5 units, Win (Pal)
PHILOSOPHICAL PERSPECTIVES ON SCIENCE, MEDICINE, AND TECHNOLOGY

This sequence is designed to introduce students to fundamental aspects of the philosophy of science. Students concentrating in the philosophy of science are advised to take HPS 60 above as a starting point, and combine a number of the electives listed below in conjunction with courses in the other concentrations that address their specific interests.

HPS 140. Popper, Kuhn, and Lakatos—(Enroll in EDUC 214, PHIL 156.)
 3 units, Spr (Phillips)

HPS 141. Philosophical Applications of Cognitive Science—(Enroll in PHIL 189.)
 4 units (Staff) not given 2005-06

HPS 142. Central Topics in the Philosophy of Science: Theory and Evidence—(Enroll in PHIL 164/264.)
 4 units, Win (Ryckman)

HPS 143. Philosophy of Physics—(Enroll in PHIL 165/265.)
 4 units, Spr (Ryckman)

HPS 144. Philosophy of Biology—(Enroll in PHIL 167A.)
 4 units (Staff) not given 2005-06

HPS 145. Philosophy, Biology, and Behavior—(Enroll in PHIL 167B/267B.)
 4 units, Win (Longino)

HPS 146A. Plato’s Ontology and Mathematics—(Enroll in PHIL 107/207.)
 3 units (Moravcsik) not given 2005-06

HPS 147. Kant’s Philosophy of Physical Science—(Enroll in PHIL 224.)
 4 units, Aut (Friedman)

HPS 148. Seminar in Philosophy of Science: Structural Realism—(Enroll in PHIL 365.)
 4 units (Ryckman) not given 2005-06

HPS 150. Core Seminar in Philosophy of Science—(Enroll in PHIL 360.)
 4 units (Friedman, Ryckman) alternate years, given 2006-07

ADVANCED

HISTORICAL PERSPECTIVES ON SCIENCE

The following classes focus on specific episodes in or approaches to the history of science.

HPS 151. History of the Senses—(Enroll in HISTORY 241G/341G, STS 134.)
 5 units (Riskin) not given 2005-06

 5 units, Win (Findlen)

HPS 154. When Worlds Collide: The Trial of Galileo—(Enroll in HISTORY 232G/332G.)
 5 units, Win (Findlen)

HPS 155. The Prehistory of Computers—(Enroll in HISTORY 241J/341J.)
 3-5 units (Riskin) not given 2005-06

 5 units, Win (Proctor)

CONTEMPORARY PERSPECTIVES ON SCIENCE, MEDICINE, AND TECHNOLOGY

The following classes focus on contemporary cultural and social science approaches to science, technology, and medicine.

HPS 159. Theory and Practice of Feminism in Science—(Enroll in HISTORY 244/344L.)
 5 units, Spr (Schiebinger)

HPS 163. History of Computer Game Design: Technology, Culture, and Business—(Enroll in STS 145.)
 4 units (Lowood) not given 2005-06

HPS 164. Science, Technology, and Gender—(Enroll in CASA 132.)
 3-5 units (Jain) not given 2005-06

HPS 166. Foundations of Nanoethics: Toward a Rapprochement between Europe and the U.S.—(Enroll in FRENGEN 258E.)
 3-5 units, Spr (Dupuy)

HPS 167. Health Care as Seen Through Medical History, Literature, and the Arts—(Enroll in HUMBIO 175.)
 4 units, Aut (Zaroff)

HPS 196. Minds and Worlds from Aristotle to Newton to Einstein—(Enroll in HISTORY 141.)
 1-5 units (Riskin) not given 2005-06

OVERSEAS STUDIES

Descriptions of these courses are in the “Overseas Studies” section of this bulletin or at the Overseas Studies office, 126 Sweet Hall. Students overseas are encouraged to participate in a wide range of internships and independent research as well.

BEIJING

HPS 105V. History of Science and Technology in China—(Same as STS 127V.)
 4 units, Spr (Ren)

FLORENCE

HPS 43V. Eating and Eating Disorders in the Context of History and Culture
 4 units, Spr (R. Casper)

HPS 44V. Medicine and Art in the Renaissance
 4 units, Win (R. Casper)

HPS 104V. In the Footsteps of Freud in Florence
 4 units, Aut (Pallanti)
PROGRAM IN HUMAN BIOLOGY

Emeriti: (Professors) Clifford Barnett (Anthropological Sciences), Luigi Cavalli-Sforza (Genetics), Carl Djerassi (Chemistry), Sanford Dornbusch (Sociology), Albert H. Hastorf (Psychology), Herant Katchadourian (Human Biology), Donald Kennedy (Biological Sciences), Carol Winograd (Medicine)

Director: Jeffrey Wine (Psychology)

Associate Director: Shirley Feldman (Psychiatry)

Professors: William H. Durham (Anthropological Sciences), Russell D. Fernald (Biological Sciences), James Ferrell (Molecular Pharmacology), Margaret Fuller (Developmental Biology), Larry Gould (Economics), H. Craig Heller (Biological Sciences), Dale Kaiser (Biochemistry), Richard Klein (Anthropological Sciences), Michael Marmor (Ophthalmology), Gordon Matheson (Orthopedic Surgery), Roeland Nusse, (Developmental Biology), Robert Sapolsky (Biological Sciences), Stephen H. Schneider (Biological Sciences), Matthew Scott, (Developmental Biology), Marcia L. Stefanick (Medicine), Shripad Tuljapurkar (Biological Sciences), Brian Wandell (Psychology), Irving Weissman (Pathology), Arthur B. Wolf (Anthropological Sciences)

Associate Professors: Anne Fernald (Psychology), Paul Fisher (Neurology and Neurological Sciences), James Fox (Anthropological Sciences), Deborah Gordon (Biological Sciences), David Katzenstein, (Medicine), David Lyons (Psychiatry), John Rick (Anthropological Sciences), Debra Satz (Philosophy), William Talbot (Developmental Biology)

Assistant Professors: Ronald Barrett (Anthropological Sciences), Rebecca Bird (Anthropological Sciences), Melissa Brown (Anthropological Sciences), Christopher Gardner (Medicine), Jamie Jones (Anthropological Sciences), Joanna Mountain (Anthropological Sciences)

Professors (Teaching): Carol Boggs (Biological Sciences), Ellen Porzig (Developmental Biology, Molecular Pharmacology)

Associate Professors (Teaching): Donald Barr (Sociology, Human Biology), Catherine Heaney (Psychology, Human Biology), David Magnus (Medicine), Robert Siegel (Microbiology and Immunology)

Other Teaching Faculty and Staff: William Abrams, Wesley F. Alles (Medicine), Douglas Bird (Anthropological Sciences), Nancy Brown (Education), Judy Chu (Education), Gerda Endemann (Biological Sciences), Anne Firth-Murray, Anne Friedlander, Daniel Garza (Orthopedic Surgery), Geoffreay Heller, Renu Heller, Judy Illes (Medicine), Philip Lee, Armin Rosenzweig, Lynn Rothschild, Merritt Ruhlen (Anthropological Sciences), Christopher Scott (Pediatrics), Darvin Scott Smith, Larry Zaroff

Course Associates: Leila Ben-Youssef, Elizabeth Brannan, Julia Carnevale, Eli Carrillo, Jamie Funamura, Victoria Parikh, Alicia Sheen, Alison Silvis

Student Advisers: Sarah Baker, David Berg, Laura Billadello, Alice Chow, Kimberly Komatsubara, Avni Patel

Advising Chairs: Carol Boggs, Robert Siegel

Honors Chair: Shirley Feldman

Program Offices: Building 80

Mail Code: 94305-2160

Phone: (650) 725-0336

Email: cacciari@stanford.edu (Student Services)

Web Site: http://humbio.stanford.edu/

Courses given in Program in Human Biology have the subject code HUMBIO. For a complete list of subject codes, see Appendix.

The Program in Human Biology is an interschool, interdepartmental, undergraduate major. The program’s mission is to provide an interdisciplinary approach to understanding the human being from biological, behavioral, social, and cultural perspectives.

The program seeks: (a) to provide a broad and rigorous introduction to the biological and behavioral sciences and their interrelationships, and (b) to explore how this knowledge, in conjunction with studies in other fields, can be applied to analyze and formulate health, environmental, and other public policies that influence human welfare.

To achieve these goals, all students complete a 30-unit core sequence, normally in the sophomore year, that provides the foundation for the major. Also during the sophomore year, students consult with student advisers to choose a faculty adviser and complete the declaration process. Together they plan a roadmap of course work designed to help each student focus on an area of interest within Human Biology. Early planning and subsequent refining of an individualized course of study, in consultation with student and faculty advisers, is a strength and requirement of the program.

The curriculum draws on faculty from across the University. To complete a B.A. in Human Biology, students must take courses from within the program and from other University departments. Most Human Biology majors go on to advanced training in professional schools, or graduate programs in the behavioral, natural, and social sciences, including coterminal master’s degree programs in other University departments. Additional information about the major may be obtained from the program’s offices or at http://humbio.stanford.edu/.

UNDERGRADUATE PROGRAMS

BACHELOR OF ARTS

The B.A. in Human Biology (HUMBIO) requires a minimum of 84 units in the major divided between four levels of courses:

1. Fundamental Program: at least 38 units, to include

 Human Biology Core (30 units)

 Statistics (4-5 units)

 Internship (HUMBIO 197: 4 units)

The Human Biology Core refers to HUMBIO 2A and 2B, 3A and 3B, and 4A and 4B. See “Required Courses” below for more information. HUMBIO 3B fulfills the policy requirement of the major.

Statistics may be selected from courses such as STAT 20 or 141, PSYCH 10, ECON 102A, EDUC 160, and BIOSCI 141. For questions about other statistics courses that might fulfill this requirement, see the program office.

The core and statistics courses must be taken for a letter grade by majors.

The internship requirement, an independent field experience project, is graded satisfactorily/no credit only.

2. Foundation Courses: 20-unit minimum. Total units vary, depending on the focus of study selected by the student for the area of concentration. They may include introductory-level courses from across the University and lab courses. A maximum of 10 premed units (from the chemistry, physics, and calculus series, and biology lab courses) are allowed.

3. Area of Concentration: a minimum of five courses totaling at least 20 units. This in-depth area of study enables the student to focus on educational and post-baccalaureate goals. Courses must be numbered 100 to 189. Three or more departments must be represented in the concentration. Each course must be taken for a minimum of 3 units. Final approval of the concentration rests with the student advisers and faculty adviser. All area of concentration courses must be taken for a letter grade. Examples of numerous possible areas of concentration are available in the program’s student advisers’ office.

4. Upper-Division Courses: students must take three Human Biology upper-division courses numbered 100 to 189 outside their area of concentration. Lab courses cannot be used to fulfill the upper-division requirement. One upper-division course may be taken satisfactorily/no credit. Each course must be taken for a minimum of 3 units. All non-laboratory advanced HUMBIO courses (those numbered 100 to 189) fulfill the Human Biology upper-division requirement, including those listed as “enroll in” another department.

A prospective major must consult with the student and faculty advisers to obtain detailed information about the program and guidance in the development of an individual course of study. At the time the major is declared, the student must submit a written statement (3-5 pages) of
academic and long-term goals and the proposed list of courses satisfying the requirements for the major. The proposal is then reviewed by the student advisers who help identify an appropriate faculty adviser. Final approval of the proposed course of study rests with the faculty adviser. It is important to declare early, preferably by the end of Spring Quarter of the sophomore year, but not later than the end of Autumn Quarter of the junior year; students must petition the director to declare later than Autumn Quarter of the junior year. Petitions to declare late require additional documentation and are less likely to be approved.

Students who plan to pursue graduate work should be aware of the admission requirements of the schools to which they intend to apply. Early planning is advisable to guarantee completion of major and graduate school requirements.

MINORS

A minor in Human Biology provides an introductory background to the relationship between the biological and social aspects of humanity’s origin, development, and prospects. Many of the major problems facing human civilization today involve both biological and social aspects. Scientific approaches to these problems are essential, but they must be broadly conceived, integrating what we know of the biological with an understanding of the social and cultural setting in which they exist. Students with a minor in Human Biology will have a strong background in the integration between the biological and social aspects of humans.

To minor in Human Biology, students must take the core curriculum (HUMBIO 194, Honors) and one additional upper-division course (for example, any course offering by Human Biology numbered 100-189, including courses crosslisted with other departments or programs). These must be taken for a minimum letter grade of “C-”. Courses that count towards the fulfillment of major requirements may not be counted towards the minor.

Students declaring a minor in Human Biology must do so no later than two quarters prior to their intended quarter of degree conferment (for example, a student must declare a minor before the end of the Autumn Quarter to graduate the following Spring Quarter).

HONORS PROGRAM

The honors program in Human Biology affords qualified majors the opportunity to work closely with faculty on an individual research project, culminating in an honors thesis. Students may begin honors research from a number of starting points including: topics introduced in the core or upper-division courses; independent interests stemming from an internship experience; or collaborating with faculty from the natural, social, or behavioral sciences. Students may apply to the honors program once they have completed the Human Biology core, have an overall Stanford grade point average (GPA) of 3.2, and meet other requirements detailed in the honors handbook. Interested students should consult resources in the Human Biology office including the Human Biology Honors Handbook, the honors program application available from the student services office, and appointments during office hours with the Human Biology honors chair.

Courses of interest to honors students include: HUMBIO 193, Research in Human Biology, and HUMBIO 194, Honors. Most honors projects involve a total of 10-15 units of course work in HUMBIO 193 and 194.

Admission to the honors program is by application in April of the junior year. Students planning to undertake honors begin research or preparation as early as completion of the sophomore year. The honors thesis is normally completed by the middle of Spring Quarter of the senior year. Each honors student then presents a brief summary of honors research at the Human Biology Honors Symposium in May. Human Biology also holds a Summer Honors College just prior to Autumn Quarter each year for students who have applied to the honors program. Students apply to Summer Honors College in April of the junior year. For applications, contact the program office.

STOREY HOUSE

Storey House, 544 Lasuen Mall, is an undergraduate residence for the Human Biology Academic Theme House, devoted to developing an intellectual community among Human Biology majors at Stanford, and allowing faculty and students to become acquainted and share their Human Biology interests and research. Its goals are to foster intellectual discussion in the residential lives of the students living in Storey House, mentoring relationships between upperclassmen and core students in the house, and stimulating events for all Human Biology majors facilitated by academic theme associates. Assignment is made through the regular undergraduate housing draw.

STUDENT ADVISERS

Human Biology has an advising program comprising faculty and student advisers. Before declaring Human Biology as their undergraduate major, each student must meet with one of six student advisers who assist them in developing a coherent study plan based on an individualized area of concentration, and the selection of foundation, concentration, and upper-division courses. They also assist students in selecting an appropriate faculty adviser and a suitable internship for their area of concentration and career goals. Student advisers offer drop-in services during scheduled office hours every weekday and some evenings. The student advisers also sponsor events including the Advising Extravaganza, the Internship Faire, and Beyond Hum Bio. To maintain high standards of advising that respond to the needs of individual students, student advisers meet weekly with the program’s faculty advising chair and the student services coordinator to review the program’s policies and specific student inquiries and petitions concerning the program.

COURSES

WIM indicates that the course satisfies the Writing in the Major requirements. AU indicates that the course is subject to the University Activity Unit limitations (8 units maximum).

The faculty and staff of Human Biology prepare a student handbook, on the web at http://humbio.stanford.edu/, that provides a detailed description of the Human Biology major and outlines possible areas of concentration. It reflects the most up-to-date information for the academic year and is the definitive guide for Human Biology majors.

REQUIRED CORE

Required core sequences (2A,B, 3A,B, and 4A,B) introduce the biological and social sciences, and most importantly, relationships between the two. Classes meet throughout the academic year. Students must register concurrently for the A and B series and take the core in sequence. Students should initiate the core in Autumn Quarter of the sophomore year. Freshmen are not permitted to enroll. Majors must earn a minimum letter grade of ‘C-’ in core courses.

HUMBIO 2A,B. Genetics, Evolution, and Ecology

HUMBIO 2A. Genetics, Evolution, and Ecology — Introduction to the principles of classical and modern genetics, evolutionary theory, and population biology. Topics: micro- and macro-evolution, population and molecular genetics, population dynamics, and community ecology, emphasizing the genetics of the evolutionary process and applications to human populations. GER:DB-NatSci 5 units, Aut (Durham, Boggs)

HUMBIO 2B. Culture, Evolution, and Society — Introduction to the evolutionary study of human diversity. Hominid evolution, the origins of social complexity, social theory, and the emergence of the modern world system, emphasizing the concept of culture and its influence on human differences. GER:DB-SocSci 5 units, Aut (M. Brown, Klein)
HUMBIO 3A,B. Cell Biology and Developmental Biology: Environmental and Health Policy Analysis

HUMBIO 3A. Cell and Developmental Biology — The principles of the biology of cells: principles of human developmental biology, biochemistry of energetics and metabolism, the nature of membranes and organelles, hormone action and signal transduction in normal and diseased states (diabetes, cancer, autoimmune diseases), drug discovery, immunology, and drug addiction. GER:DB-NatSci
5 units, Win (Fuller, Kaiser, Nusse, Scott, Talbot)

HUMBIO 3B. Environmental and Health Policy Analysis — The relationship of the biological sciences to public policy in resource management and conservation practices, the regulation of environmental and health risks, agricultural production, the delivery of health services, the protection of biodiversity, and global climate change. Assigned policy challenges in lectures and section meetings. Readings on actual cases. GER:DB-SocSci, WIM
5 units, Win (Gould, Barr)

HUMBIO 4A,B. The Human Organism: Biology and Culture

HUMBIO 4A. The Human Organism — Organ system physiology: the principles of neurobiology and endocrinology, and the functions of body organs. The mechanisms of control, regulation, and integration of organ systems function. GER:DB-NatSci
5 units, Spr (Heller)

HUMBIO 4B. Biology and Culture — Introduction to the research and theory on early human development. How psychobiological factors shape the developing child, and how cultural practices shape the environments of childhood and influence human cognitions, emotions, moral judgments, relationships, and social behavior from birth through adolescence. GER:DB-SocSci
5 units, Spr (Feldman)

ADDITIONAL INTRODUCTORY OFFERINGS

HUMBIO 4Y. Practicum in Child Development — Practical experience at Bing Nursery School for 3.5 hours per week. Pre- or corequisite: 4B. (AU)
1 unit, Spr (F. Feldman)

HUMBIO 6. Human Origins — (Same as ANTHSCI 6.) The human fossil record from the first non-human primates in the late Cretaceous or early Paleocene, 80-65 million years ago, to the anatomically modern people in the late Pleistocene, between 100,000 to 50,000 B.C.E. Emphasis is on broad evolutionary trends and the natural selective forces behind them. GER:DB-NatSci
5 units (Klein) not given 2005-06

HUMBIO 14. Introduction to Anthropological Genetics — (Same as ANTHSCI 14.) The extent and pattern of variation among human genomes, the origin of these patterns in human evolution, and the social and medical impact of recent discoveries. Topics include: the Human Genome Project; human origins; ancient DNA; genetic, behavioral, linguistic, cultural, and racial diversity; the role of disease in shaping genetic diversity; DNA forensics; genes and reproductive technology. GER:DB-NatSci
5 units (Mountain) not given 2005-06

HUMBIO 21. Introduction to Brain and Behavior — (Same as BIOSCI 20.) Evolutionary principles to understand how the brain regulates behavior, described in physiological terms, and is influenced by behavioral interactions. Topics include neuron structure and function, transmission of neural information, anatomy and physiology of sensory and motor systems, regulation of body states, the biological basis of learning and memory, and behavioral abnormalities. GER:DB-NatSci
3 units (Fernald) alternate years, given 2006-07

HUMBIO 25. Human Ecology of the Amazon — (Same as ANTHSCI 25.) The diversity of peoples and cultures in the Amazon Basin and the ecosystems in which they live. Themes in ecological anthropology of Amazonia including limiting factors, the protein debate, indigenous knowledge and resource management, and anthropogenic modification. Ethnographic, historical, and archeological evidence. GER:DB-SocSci, EC-GlobalCom
5 units (Ocampo-Raeder) not given 2005-06

HUMBIO 27. Traditional Chinese Medicine — The philosophy and history behind traditional Chinese medicine. Concepts such as Qi, Yin/Yang, meridians, Chinese organs, and the 5 elements. How these concepts are applied through techniques such as acupuncture, herbal medicine, Qi gong, and massage. How traditional Chinese medicine is understood from a scientific standpoint. Political and socioeconomic implications. Observation of an acupuncturist. Readings on the integration of Eastern and Western medicine and on traditional Chinese medicine.
1 unit, Spr (Goliana)

HUMBIO 60. Population Studies — (Enroll in BIOSCI 146.)
1 unit, Win (Feldman)

HUMBIO 61. Introduction to Philosophy of Science — (Enroll in PHIL 60, HPS 60.)
5 units, Spr (Longino)

HUMBIO 78. Medical Ethics — (Enroll in PHIL 78, ETHICSOC 78.)
4 units, Spr (Jaworska)

HUMBIO 82A. Qualitative Research Methodology — Goal is to develop knowledge and skills for designing and conducting qualitative research studies including purposes, conceptual contexts, research questions, methods, validity issues, and interactions among these facets. Each student designs a qualitative research study.
3 units, Win (J. Wolf)

HUMBIO 82B. Advanced Data Analysis in Qualitative Research — For students writing up their own qualitative research. Students prepare a complete draft presenting their own qualitative research study including results, with reports drafted section by section, week by week. Class provides feedback, guidance, support.
1-3 units, Aut (J. Wolf)

STANFORD INTRODUCTORY SEMINARS

HUMBIO 87Q. Women and Aging — Stanford Introductory Seminar. Preference to sophomores. Biology, diseases, demographics, and politics of aging; relationships and sexuality; wise woman and grandmothers; lifestyles and scientific articles, fiction, art, and film. Research paper or service-learning experience with older women. GER:EC-Gender
4 units, Win (Winograd)

HUMBIO 88Q. Neuroethics: Neurotechnology, Free Will, and the Privacy of Human Thought — Stanford Introductory Seminar. Preference to sophomores. Focus is on neurotechnology and pharmacology for imaging and manipulating the brain. Free will, moral responsibility, and the privacy of human thought. What can be done versus what should be done with pioneering neurotechnologies in research, clinical medicine, and in the public arena including education, athletics, and law.
3 units, Spr (Illes)

HUMBIO 89Q. The Eye and the Implications of Vision — Stanford Introductory Seminar. Preference to sophomores. The working of the eye and vision; comparisons to animal eyes. The role of vision in pursuits such as art, history, literature, and sports. Experience in research and presentation.
3 units, Win (Marmor)

HUMBIO 91Q. Neuroethology: The Neural Control of Behavior — Stanford Introductory Seminar. Preference to sophomores. Animal behavior offers insights about evolutionary adaptations. The origins of the study of animal behavior and its development to the present. Discussion of original research papers. The use and misuse of parallels between animal and human behavior. Possible field trip to observe animals in their natural habitat. GER:DB-NatSci
3 units, Aut (R. Fernald)
HUMBIO 92Q. International Women’s Health and Human Rights — Stanford Introductory Seminar. Preference to sophomores. Focus is on women in poorer countries. Issues include women’s status, poverty, violence, and unequal access to education, food, and health care. Maternal mortality, sexually transmitted diseases, refugee situations, traditional practices affecting women’s and girls’ health, trafficking and prostitution, and women’s roles as they age. Readings include materials from women’s organizations outside the U.S. GER:EC-Gender, WRITE-2
3 units, Aut (Murray)

3 units, Aut (G. Heller)

HUMBIO 95Q. Gender, Culture, and HIV/AIDS — Stanford Introductory Seminar. Preference to sophomores. Issues include biological, social, cultural, psychological, economic, and political aspects of HIV/AIDS. Introduction to research methods and grant-proposal writing skills. Student presentations. Prerequisite: GER:EC-Gender
4 units, Win (N. Brown)

5-4 units, Spr (Abrams)

HUMBIO 97Q. Sport, Exercise, and Health: Exploring Sports Medicine — Stanford Introductory Seminar. Preference to sophomores. Sports medicine is the practice of clinical medicine at the interface between health and performance, competition and well-being. While sports medicine had its origins in providing care to athletes, medical advances developed in care of athletes exerted a great effect on the nature and quality of care to the broader community. Topics include sports injuries, medical conditions associated with sport and exercise, ethics, coaching, women’s issues, fitness and health, and sports science. Case studies.
3 units, Spr (Matheson)

HUMBIO 98Q. The Alien Tort Claims Act of 1789 — Stanford Introductory Seminar. Preference to sophomores. The Alien Tort Claims Act of 1789 (ATCA), the oldest American law currently in force, has been used in recent years by foreign claimants of human rights or environmental injury to sue U.S. companies in U.S. courts. International, human rights, and environmental law; civil procedure and legal history; and federalism and the constitutional separation of powers.
4 units, Aut (Rosencranz)

HUMBIO 99Q. Becoming a Doctor: Readings from Medical School, Medical Training, Medical Practice — Stanford Introductory Seminar. Preference to sophomores. For students considering medicine as a career. Goal is to acquaint students with medical school, training in medicine and surgery, and the practice of medicine and surgery. Topics include: how to pick a medical school and a residency; how medicine affects family life, especially children; the differences between surgical and medical specialties; the advantages and disadvantages among academic/teaching, pure research, group practice, HMO, hospital staff, or private practice; malpractice concerns; and financial considerations.
3 units, Aut (Zaroff)

ADVANCED
Open to non-majors with the proper prerequisites. Human Biology majors have preference when enrollment is restricted. All classes listed here fulfill the Human Biology upper-division requirement, including those that say “enroll in” another department.

HUMBIO 101. Assisted Reproductive Technologies — (Enroll in DBIO 202.)
3-4 units, Win (Porzig, Behr)

HUMBIO 102A.B. Children, Youth, and the Law — The legal rights of children and adolescents in the U.S. and how those rights are defined, protected, and enforced through the legal process within the context of the developmental needs of children and youth and competing societal interests. Topics: the origins and definitions of children’s rights; adoption; custody; the juvenile justice system (abused, neglected, and dependent children, status offenders such as runaways and truants, and minors accused of crimes); education; informed consent; health care; protection from harm and child welfare; due process; privacy, freedom of expression, and exercise of First Amendment rights. Interactive, using hypotheticals for discussion and analysis. A and B alternate annually; students may take one or both.
A. 5 units (Abrams) alternate years, given 2006-07
B. 5 units, Win (Abrams)

HUMBIO 103. Parasites and Pestilence: Infectious Public Health Challenges — (Same as MI 103.) Parasitic and other diseases with public health impact. Pathogenesis, clinical syndromes, complex life cycles, and the interplay among environmental, vector, hosts, and reservoirs in historical context to understand public health policy approaches to halting disease transmission. Focus is on World Health Organization tropical disease research-targeted disease entities including: river blindness, sleeping sickness, leishmaniasis, schistosomiasis, mycobacterial disease (tuberculosis and leprosy), malaria, toxoplasmosis, dracunculiasis, and intestinal helminthes. Guest lecturers in disease control. Original proposal to solve a current disease.
4 units,Spr (Smith)

HUMBIO 104. Aging: From Biology to Social Policy — (Enroll in ANTHSCI 171.) What people can expect when they join the ranks of the elderly. Issues include social security, medical care, lifespan, and the cultural, social, and economic consequences of a large elderly population in the U.S. and other countries. Films, service learning component. GER:DB-SocSci
5 units, Win (Barnett)

HUMBIO 106. The Anthropology of Death and Dying — (Same as ANTHSCI 175.) Death as a biocultural process. Funerary practices and attitudes toward dying in different societies. Issues include hospice care, palliative care, and euthanasia. Instructor is an anthropologist and registered nurse with hospice experience. GER:DB-SocSci
5 units, Win (Barnett)

HUMBIO 107. Astrobiology and Space Exploration — Evolution is cast against space and time, focusing on the emergence of life, intelligence, and civilization on Earth and possibly elsewhere. Human space exploration and the biological, psychological, sociological, and philosophical issues. Integrates information from astrophysics, biochemistry, chemistry, evolutionary biology, geology, paleontology, physiology, psychology, and sociology. Taught by scientists from NASA Ames Research Center. Enrollment limited to 30. Prerequisite: one year college-level mathematics, physics, chemistry, biology, or psychology; or consent of instructor.
4 units, Win (Rothschild)

HUMBIO 108. Boys’ Psychosocial Development — From early childhood through adolescence. Emphasis is on how boys’ lives and experiences are embedded within their interpersonal relationships and social and cultural contexts. Interdisciplinary approach including perspectives from fields such as psychology, sociology, anthropology, family studies, and education. GER:EC-Gender
4 units, Spr (Chu)

HUMBIO 109. Human Behavioral Biology — (Enroll in BIOSCI 150.)
3-6 units, Spr (Sapolsky) alternate years, not given 2006-07

HUMBIO 110. Vertebrate Biology — The evolution, form, function, and behavior of the vertebrates including primitive fishes, birds, mammals, and human beings. Prerequisite: Biological Sciences or Human Biology core.
3-4 units (Porzig) not given 2005-06
HUMBIO 111. Human Physiology — (Enroll in BIOSCI 112.)
4 units, Win (Garca)

4 units, Spr (Garca)

HUMBIO 113. The Economic Individual in the Behavioral Sciences — (Same as BIOSCI 128/228.) Empirical evidence for the idea of the economic individual and its associated models in economics. How the economic individual maximizes utility and cooperates with others only when it is rational to do so. Applications of this idea to animal behavior. Readings include political philosophy, psychology, and evolutionary biology; recent research articles on empirical work in animal behavior. Student presentations.
3 units, Aut (Gordon, Satz)

HUMBIO 114. The Human Genome and Disease — (Same as BIOSCI 109/209.) The variability of the human genome and the role of genomic information in research, drug discovery, and human health. Concepts and interpretations of genomic markers in medical research and real life applications. Human genomes in diverse populations. Original contributions from thought leaders in academia and industry and interaction between students and guest lecturers. GER:DB-NatSci
3 units, Spr (R. Heller, Kumm)

HUMBIO 115A. Humans and Viruses — (Same as MI 115A.) Concepts in biology and the social sciences, focusing on emerging infections, viral classification, transmission and prevention, vaccination and treatment, eradication of disease, viral pathogenesis, mechanisms of virally-induced cancer, and viral evolution. Topics: molecular biology of genetic shift and drift in influenza virus, cellular tropism of HIV, developmental biology of virally-induced birth defects, clinical aspects of infantile diarrhea, social aspects of the common cold, policy issues of blood antibody tests, factors in pathogenesis and transmission of prions. Prerequisites: Human Biology core or consent of instructor.
6 units, Aut (Siegel)

HUMBIO 115B. The Vaccine Revolution — (Same as MI 115B.) Advanced seminar. Human aspects of viral disease, focusing on recent discoveries in the area of vaccine development and emerging infections. Journal club format: students select articles from primary scientific literature, write formal summaries, and synthesize it into a literature review on a specific topic. Emphasis is on analysis, experimental design, and interpretation of data. Oral presentations. Enrollment limited to 10. Prerequisite: 115A.
6 units (Siegel) alternate years, given 2006-07

HUMBIO 117A. Community Health: Assessment and Planning I — Major determinants of health in a community. Working with community partners to identify health issues and plan programs and policies to prevent disease and promote health. Service learning component involving students in utilizing community health assessment techniques.
3 units, Win (Heaney)

HUMBIO 117B. Community Health: Assessment and Planning II — Continuation of 117A. Service learning course with emphasis on conducting community health assessment and planning projects in collaboration with community-based organizations.
3 units, Spr (Heaney)

HUMBIO 117S. Work, Stress, and Health — How work is experienced in the U.S. and how it affects American health and quality of life. Topics include technological innovations, global competition, and demographic and social transitions.
3 units (Heaney) not given 2005-06

HUMBIO 118. Human Diversity: A Linguistic Perspective — (Same as ANTHSCI 112.) The diversity and distribution of human language and its implications for the origin and evolution of the human species. The origin of existing languages and the people who speak them. Where did current world languages come from and how can this diversity be used to study human prehistory? Evidence from related fields such as archaeology and human genetics. Topics: the origin of the Indo-European languages, the peopling of the Americas, and evidence that all human languages share a common origin.
3 units, Spr (Ruhlen)

HUMBIO 119. Conservation Biology — (Same as BIOSCI 144.) Principles and application of the science of preserving biological diversity. Topics: sources of endangerment of diversity; the Endangered Species Act; conservation concepts and techniques at the population, community, and landscape levels; reserve design and management; conflict mediation. Case studies and local field trips. 3 units if taken without field trips. Prerequisites: BIOSCI 101, or HUMBIO 2A with consent of instructor. GER:DB-NatSci
3-4 units, Win (Boggs, Launer)

HUMBIO 120. Human Nutrition — The study of food, and the nutrients and substances therein. Their action, interaction, and balance in relation to health and disease. Emphasis is on the biological, chemical, and physiological processes by which humans ingest, digest, absorb, transport, utilize, and excrete food. Dietary composition and individual choices are discussed in relationship to the food supply, and to population, cultural, race, ethnic, religious, and social economic diversity. The relationships between nutrition and disease; eating disorders; ethnic diets; vegetarianism; nutritional deficiencies; nutritional supplementation; phytochemicals; and food safety. Prerequisite: Human Biology core or consent of instructor.
3 units, Spr (Gardner)

HUMBIO 121. International Health Policy: Comparative National Health Care Systems — The structure and policies of national health care systems in Europe, N. America, and Japan. How other countries have addressed issues of organization, finance, and allocation of scarce health care resources. Limited enrollment. Prerequisites: HUMBIO 160, consent of instructor.
4 units, Win (Lee, G. Heller)

HUMBIO 122. Human Physiology — Interdisciplinary approach. Anatomy of the body's major joints in the context of exercise and movement. Emphasis is on adaptations that occur with intensity and nature of exercise, age, and disease. Histology and properties of bone, muscle, tendons, ligaments, and other connective tissue. Physiology, pathology, and biomechanics.
4 units, Win (Garca)

HUMBIO 123. Adolescent Sexuality — Developmental perspective. Issues related to scientific, historical, and cultural perceptions; social influences on sexual development; sexual risk; and the limitations and future directions of research. Sexual identity and behavior, sexually transmitted diseases including HIV, pregnancy, abortion, gay and lesbian youth, sex education and condom availability in schools, mass media, exploitative sexual activity, and difficulties and limitations in studying adolescent sexuality. Legal and policy issues, gender differences, and international and historical trends. Research project, including original data collection. Limited enrollment. GER:EC-Gender
3 units, Spr (N. Brown)

HUMBIO 124. Principles of Sleep Research — (Enroll in BIOSCI 149.)
4 units (Franken, C. Heller) not given 2005-06

HUMBIO 126. Adolescent Development — Adolescence from sociological, psychological, and psychiatric perspectives. Topics: physical, physiological, and cognitive development; identity; peer group; parent/child relations; impact of school; vocational development; and problem outcomes (eating disorders, violence, and teen pregnancy). Prerequisite: 3B or PSYCH 1, or consent of instructor.
4 units, Win (S. Feldman)

HUMBIO 127. From Question to Answer: Conducting Research in the Social Sciences — For juniors preparing for honors research in their senior year. Small groups design, conduct, analyze, and write up original research. Research skills including how to design a survey, enter data on a computer, and data analysis. Enrollment limited to 12. Pre- or corequisite: PSYCH 10 or equivalent, or consent of instructor.
4 units, Aut (S. Feldman)
HUMBIO 129. Ethnicity and Medicine—(Enroll in INDE 244.)
1-3 units, Spr (R. Garcia)

HUMBIO 131. Natural Resources Policy—Focus is on federal public land and natural resources policy; mining, timber, and grazing law and policy; the legal aspects of forest, range, park, wilderness, wetlands, and wildlife management; recreation and preservation; and related issues. The role of the courts, administrative discretion, the Endangered Species Act, and the tension between protecting resources and respecting property rights. Students research one aspect of law and policy governing the management of natural resources.
5 units, Spr (Rosencranz)

HUMBIO 132. Seminar on Problem Behavior in Adolescence—Risk, protective factors, treatments, and intervention programs designed to ameliorate or prevent these problems. Externalizing behaviors (violence, delinquency, drug abuse, risk taking), internalizing problems (depression, eating disorders, suicide), and sexuality-related problems (teen pregnancy, date violence, STDs/HIV). Enrollment limited to 20. Prerequisite: 126 or consent of instructor.
4 units (S. Feldman) not given 2005-06

HUMBIO 133. Obesity in America: Clinical and Public Health Implications—Interdisciplinary clinical, research, and policy approaches. The prevalence, predictors, and consequences of obesity and diabetes; biological and physiological mechanisms; clinical treatments including medications and surgery; and the relevance of behavioral, environmental, economic, and policy approaches to obesity prevention and control. Case studies.
3 units, Win (Kiernan, Stafford)

HUMBIO 134. Ecological Anthropology—(Same as ANTHSCI 164.) Dynamics of culturally inherited human behavior and its relationship to social and physical environments. Topics include a history of ecological approaches in anthropology, subsistence ecology, sharing, risk management, territoriality, warfare, and resource conservation and management. Case studies from Australia, Melanesia, Africa, and S. America. GER: DB-SocSci
3-5 units (R. Bird) not given 2005-06

HUMBIO 135. Global Environmental Policy—Advanced seminar. Focus is on international management of regional and global environmental issues, and on the international institutions and agreements created to manage them. The need for international environmental law, its sources, and the participants in its creation and implementation. What works in international environmental management and what does not. Topics: ozone depletion, global warming, forests, transboundary and marine waters, Antarctica, endangered species, biodiversity, plant genetic resources, trade and the environment, and the rights of indigenous people. The future of global environmental policy and law.
5 units, Win (Rosencranz)

HUMBIO 136. Foundations of Bioethics—(Enroll in INDE 136.)
3 units, Win (D. Magnus)

3 units, Spr (Taljapurkar)

2-4 units (Nelson, Popat) not given 2005-06

3 units, Spr (Endemann)

HUMBIO 140. Social Class, Race, Ethnicity, Health—(Enroll in SOC 141A.)
5 units, Win (Barr)

HUMBIO 141. Race, Poverty, and the Environment—Connection between race and poverty and environmental conditions. Theoretical and practical approaches to environmental justice. Empirical evidence of environmental injustice, and causes and barriers to remediating it. How the courts, legislative bodies, executive agencies, public interest organizations, and community groups, and their lawyers have responded.
4 units, Win (Rosencranz)

HUMBIO 142C. Alternative Spring Break: AIDS and HIV in San Francisco—Preparation for the alternative Spring Break trip in which students visit and volunteer at HIV support organizations. Background on HIV and its impact on the San Francisco community.
1 unit, Win (Siegel)

HUMBIO 142G. Post-Field Seminar: A Practical Next Step for Students Returning from Abroad—For students who have recently worked abroad for two months or longer to share what they learned through international research, internship, or volunteer work. Lecture component connects international experiences with at-home activism and helps students explore directions for future work, either domestically or internationally, that builds on their experiences abroad. Students create a final product to benefit the community in which they worked and/or be used as an educational tool locally. Focus is on a practical next step for students interested in international development and related fields.
1 unit, Aut (Siegel)

HUMBIO 142P. HIV Prevention in East Africa Prefield Seminar
3 units (Siegel) not given 2005-06

HUMBIO 143. Globalization, Labor, and the Environment—Interdisciplinary. The responsibility of multinational corporations and institutions (World Bank, WTO, IMF) in the global economy, emphasizing labor and environmental standards in developing countries. Local and global case studies and research focus on social justice and empowerment for domestic and foreign victims of labor, environmental, and human rights abuses, the role of certain multinational institutions and corporations in those abuses, and tools for holding these bodies more accountable. Service-learning component with Bay Area organizations.
4 units, Spr (Rosencranz)

HUMBIO 144. Conservation and Evolutionary Ecology—(Enroll in ANTHSCI 169.)
3-5 units, Spr (D. Bird)

HUMBIO 145. Children’s Citizenship: Justice Across Generations—(Enroll in POLISCI 131.)
5 units, Spr (Reich)

HUMBIO 146. The AIDS Epidemic: Biology, Behavior and Global Response—Interdisciplinary approach to the HIV/AIDS pandemic from the view of public health, public policy nationally and internationally. The global epidemic of a fatal, sexually transmitted disease has led to attempts to change human behavior, produce a vaccine, and other approaches that bring into sharp focus the need for cost effectiveness analysis as a part of influencing public policy.
3 units (Katzenstein) not given 2005-06
HUMBIO 147. Controlling Climate Change in the 21st Century—(Enroll in EARTHSYS 147, BIOSCI 147.)
3 units (Schneider, Rosencranz) alternate years, given 2006-07

HUMBIO 148. Promoting Health Over the Life Course: Multidisciplinary Perspectives—Disease prevention and health promotion topics pertinent to different stages of the life span with focus on nutrition, physical activity, obesity, and other risk factors. Focus is on scientific investigation, the application of behavioral science to risk reduction strategies, and the importance of health promotion as a social and economic imperative.
3 units, Aut (Alles, Stefanick)

HUMBIO 149. Birds to Words: Cognition, Communication, and Language—(Enroll in PSYCH 137.)
3 units (A. Fernald, Ramscar)

HUMBIO 150. Current Topics and Controversies in Women’s Health—Interdisciplinary. Topics include health research, legal and policy issues, sex and gender differences, scientific and cultural perspectives, social influences, environmental and lifestyle effects on health, complementary medicine, and issues related to special populations.
3 units (Staff) not given 2005-06

HUMBIO 152. Environment and Growth in Developing Countries—(Enroll in INTNLREL 135.)
5 units, Aut (Rosencranz)

HUMBIO 153. Reading: Science, Education, and Politics—(Same as PSYCH 153.) The intellectual foundations of reading curriculum development including contributions of scientists, educators, and policy makers. Neural mechanisms of reading including the methodology used to measure complex behavior. Intervention studies to improve reading skills, and the implications of basic and applied science for social policy.
3 units, Spr (Wandell, Dougherty)

HUMBIO 154. Cancer Epidemiology—Epidemiological methods relevant to human research in cancer. The concepts of risk; case-control, cohort, and cross-sectional studies; clinical trials; bias; confounding; interaction; screening; and causal inference. Social, political, economic, and ethical controversies surrounding cancer screening, prevention, and research.
4 units, Win (Fisher)

HUMBIO 155. Exercise Physiology—How body systems respond to the stress of acute exercise and adapt to chronic exercise training. How the cardiovascular system adapts to optimize oxygen delivery and utilization, how muscles generate force and hypertrophy in response to training, how metabolic/biochemical pathways are regulated to support the increased energy demand of exercise. Theories on the causes of fatigue and muscle soreness, and on what limits human performance. Applied topics such as the effects of aging, gender, and environmental conditions (high altitude, heat, cold) on exercise capacity will also be discussed. Prerequisite: Human Biology core or consent of instructor.
4 units, Win (Friedlander)

HUMBIO 155S. Applied Topics in Exercise Physiology and Metabolism—Student-selected topics in exercise physiology. Emphasis is on readings of scientific research. Student presentations. Summary paper. Enrollment limited to 12. Prerequisites: 155, consent of instructor.
3 units, Spr (Friedlander)

HUMBIO 156. Human Developmental Biology and Medicine—(Same as DBIO 156.) The biological, medical, and social aspects of normal and abnormal human development. Topics: in vitro fertilization and embryo transfer; gene and cell therapy; gametogenesis; pattern formation in the nervous system and limb development; gene and grand multiple pregnancies; prematurity, in utero effects of teratogens; sex determination and differentiation; growth control; gigantism and dwarfism; neural tube defects; cardiac morphogenesis; progress in the developmental biology of humans. Limited enrollment. Prerequisites: Human Biology or Biological Sciences core, or consent of instructor.
4 units, Spr (Porzig)

HUMBIO 157. The Stem Cell: Science, Ethics, and Politics—The biology of stem cells. Their role in human development and potential for treating disease. Guest lectures by biologists, ethicists, and legal scholars. Prerequisite: Biology or Human Biology Core or consent of instructor.
3 units, Win (Nusse, C. Scott, Weissman)

HUMBIO 158. Human Abilities—(Enroll in EDUC 255, PSYCH 133.)
3 units (Shavelson) not given 2005-06

HUMBIO 159. Sports Medicine—(Same as MED 260.) Sports, exercise, health, and medicine throughout the human performance continuum. Exercise as therapy; injuries and illnesses that result from sports and exercise. Sources include physiology, nutrition, psychology, and biomechanics. Medical problems exacerbated or caused by exercise and sport; maximizing performance in elite athletes; and population-based issues such as exercise and its relationship to health, women’s issues, drugs in sport, and aging. Prerequisite: medical school enrollment, upper-division Human Biology standing, or consent of instructor.
4 units, Win (Matheson, Garza)

HUMBIO 160. Health Care in America: The Organizations and Institutions that Shape the Health Care System—Focus is on key organizations and institutions that shape U.S. health policy and health care delivery. How to assess options for health care reform.
4 units, Aut (Barr)

HUMBIO 160A. American Health Policy—Issues in health care policy making, the evolution of current systems, and theories underlying efforts for change. The national search for solutions to the problems of the uninsured, and the feasibility, options, and ramifications of universal health insurance in light of past experience and stakeholder views. Student presentations. Prerequisites: HUMBIO 160, consent of instructor. GER:DB-SocSci
3 units, Spr (G. Heller, Lee)

HUMBIO 160W. Seminar in Federal Health and Environment Programs and Agencies—Priority to students going to Stanford in Washington during Winter Quarter. The role of federal agencies and Congress in health policy making, and the agencies’ role in implementation of health and environmental policies. Emphasis is on federal policies, but includes federal-state relations. Enrollment limited to 25.
3 units, Aut (Lee)

HUMBIO 161. Human Behavioral Ecology—(Same as ANTHSCI 163.) Theory, method, and application in anthropology. How theory in behavioral ecology developed to understand animal behavior is applied to questions about human economic decision making in ecological and evolutionary contexts. Topics include decisions about foraging and subsistence, competition and cooperation, mating, and reproduction and parenting. GER:DB-SocSci
3-5 units, Win (R. Bird)

HUMBIO 163. Neural Systems and Behavior—(Enroll in BIOSCI 163.)
4 units, Aut (Fernald)

HUMBIO 166. The Death Penalty: Human Biology, Law, and Policy—Combines academic study with direct student involvement. Students participate in forensic research and case investigation, including DNA evidence, psychological and physiological development, mental and physical disabilities, and witness interviews. The philosophy, structure, and application of capital punishment in the U.S. Goal is to examine, understand, and challenge the issues involved in the death penalty from the perspective of involvement in a real case. Course not taught from a preconceived belief or political or philosophical agenda except to involve students in an intellectual challenge of policy and philosophy. May be repeated for credit.
3 units, Aut, Spr (Abrams)
HUMBIO 101. International Health — Concepts of health and wellness and major descriptors and determinants of health status. International organizations and control programs, disease-related problems within population groups from an epidemiologic viewpoint, health care delivery methods, efforts to improve health through examination of current and previous programs and projects. Cultural, economic, and political contexts in international health. Prerequisites: Human Biology core or consent of instructor.

4 units (Siegel) not given 2005-06

HUMBIO 168. Medical Anthropology — (Same as ANTHSCI 170.) The crosscultural study of the health beliefs and healing systems around the world. How social processes shape human health. GER:DB-SocSci

EC-GlobalCom

3 units, Win (R. Barrett)

HUMBIO 169. Critical Issues in International Women’s Health — Women’s lives, from childhood through adolescence, reproductive years, and aging. Economic, social, and human rights factors, and the importance of women’s capacities to have good health and manage their lives in the face of societal pressures and obstacles. Emphasis is on life or death issues of women’s health that depend on their capacity to negotiate or feel empowered, including maternal mortality, violence, HIV/AIDS, access to abortion, and sex trafficking. Organizations addressing these issues.

4 units, Win (Firth-Murray)

HUMBIO 174. Ethics and Politics in Public Service — (Enroll in POLISCI 133, ETHICSCOC 133.)

5 units, Aut (Reich)

HUMBIO 175. Health Care as Seen Through Medical History, Literature, and the Arts — The differences between disease as pathology and as the patient’s experience. Topics include patient-doctor relationships, medical technology, the changing focus on illness, gender issues, mental illness, sick children, death and dying.

4 units, Aut (Zaroff)

HUMBIO 175S. The Literature of Health Care: Novels and Theater of Illness — Illness and disease through novels and plays by authors including Shakespeare, Miller, Sophocles, Hemingway, and Camus. How sickness involves the patient, family, community, and state.

4 units, Spr (Zaroff)

HUMBIO 177. Skeletal Development and Evolution — (Enroll in ME 280.)

3 units, Spr (Carter)

HUMBIO 178. Community Health Psychology — (Same as PSYCH 101.) Social ecological perspective on health emphasizing how individual health behavior is shaped by social forces. Topics include: biobehavioral factors in health; health behavior change; community health promotion; and psychological aspects of illness, patient care, and chronic disease management.

3 units, Spr (Heaney)

HUMBIO 179. Environmental Change and Emerging Infectious Diseases — (Same as ANTHSCI 179/279.) The changing epidemiological environment. How human-induced environmental changes, such as global warming, deforestation and land-use conversion, urbanization, international commerce, and human migration, are altering the ecology of infectious disease transmission, and promoting their re-emergence as a global public health threat. Case studies of malaria, cholera, hantavirus, plague, and HIV. GER:DB-NatSci

3-5 units, Win (Durham, Jones)

HUMBIO 180. Human Osteology — (Same as ANTHSCI 133A/233A.) The human skeleton. Focus is on identification of fragmentary skeletal remains. Analytical methods such as paleopathology, taphonomy, and forensic techniques. Students work independently in laboratory with the collection. GER:DB-NatSci

5 units, Win (DeGusta)

HUMBIO 181. The Evolution of Human Diet — (Enroll in ANTHSCI 173A.)

5 units (Jones) not given 2005-06

HUMBIO 182. Biological Clocks — (Same as BIOSCI 135.) The biological basis for endogenous timekeeping in organisms from flies to human beings. How biological clocks are constructed at the molecular, tissue, and behavioral levels; how these clocks interact with other physiological systems and allow animals to anticipate changes in their environment. Applications of circadian rhythm principles to treating human disorders and diseases such as cancer. Prerequisite: Biological Sciences or Human Biology core, or consent of instructor. GER:DB-NatSci

3 units, Spr (C. Heller, Ruby)

HUMBIO 185. Science and Religion — (Enroll in RELIGST 270.)

4 units (Bergman, Eisen) not given 2005-06

HUMBIO 186. Evolution of Human Disease — (Enroll in ANTHSCI 172.) Seminar. Understanding human health and disease from an evolutionary perspective. Topics: Darwinian medicine, genes and disease, aging, infectious diseases, mental illness, and cancer. Prerequisites: 2A,B, upper division standing, or consent of the instructor.

5 units (R. Barrett) not given 2005-06

HUMBIO 187. Introduction to Imaging and Image-Based Human Anatomy — (Enroll in RAD 220, BIOE 220.)

3 units, Win (Gold, K. Pauly)

HUMBIO 189. Philosophy of Biology — (Enroll in PHIL 167A.)

4 units (Staff) not given 2005-06

HUMBIO 193. Research in Human Biology — Independent research conducted under faculty supervision, taken junior or senior year, normally (but not necessarily) in pursuit of an honors project. May be taken more than one quarter for credit. Students must complete application in student services office.

1-5 units, Aut, Win, Spr (Staff)

HUMBIO 194. Honors — Completion of the honors project, normally taken in the student’s final quarter. First component: the honors thesis, a final paper providing evidence of rigorous research, fully referenced, and written in an accepted scientific style. Second component: participation in the honors symposium, including a 10-minute oral presentation followed by a brief question and answer session. Prerequisites: 193 (or 199), and acceptance into the honors program.

1-10 units, Aut, Win, Spr (Staff)

HUMBIO 197. Human Biology Internship — Limited to and required of Human Biology majors. The internship is a supervised field, community, or lab experience of student’s choosing, pre-approved by Human Biology faculty and student advisers, and initiated at least three quarters prior to graduation. May be repeated for credit. Prerequisite: Human Biology Core.

1-4 units, Aut, Win, Spr (Staff)

HUMBIO 198. Senior Tutorial in Human Biology — Reading for Human Biology majors in exceptional circumstances and under sponsorship of Human Biology associated faculty. Students must apply through Human Biology student services before registering. Reading list, paper, and evaluation required.

1-5 units, Aut, Win, Spr (Staff)

HUMBIO 199. Directed Reading/Special Projects — Human Biology majors must obtain a sponsor from the Human Biology associated faculty or the Academic Council. Non-majors and students who have not declared must obtain a sponsor only from the Human Biology associated faculty. Students must complete application in student services office.

1-4 units, Aut, Win, Spr (Staff)
HUMBIO 200. Teaching of Human Biology — For upper division undergraduates and graduate students. Practical experience in teaching Human Biology or serving as an assistant in a lecture course.

1-3 units, Aut, Win, Spr (Staff)

OVERSEAS STUDIES

Descriptions of these courses are in the “Overseas Studies” section of this bulletin or at the Overseas Studies office, 126 Sweet Hall. Students overseas are encouraged to participate in a wide range of internships and independent research as well.

AUSTRALIA

HUMBIO 61X. Coral Reef Ecosystems — (Same as BIOSCI 109Z, EARTHSYS 120X.)

3 units, Win (Arrigo, Dove, Hoegh-Guldberg)

HUMBIO 62X. Coastal Resource Management — (Same as BIOSCI 110Z, EARTHSYS 121X.)

3 units, Win (Johnstone)

HUMBIO 63X. Coastal Forest Ecosystems — (Same as BIOSCI 111Z, EARTHSYS 122X.)

3 units, Win (Duke, Pole)

HUMBIO 121X. From Spirit to Brain to Mind: The Evolving Understanding of Neurology and Neuroscience

3 units, Spr (Giffard)

OXFORD

HUMBIO 122X. Comparative Health Care Systems: UK and U.S

4 units, Win (Senior)

HUMBIO 175X. Medical Ethics through Literature, Film, and Theater

4 units, Spr (Giffard)

PARIS

HUMBIO 153X. Health Systems and Health Insurance: France and the U.S., a Comparison across Space and Time — (Same as PUBLPOL 111P.)

4-5 units, Win (Staff)

SEMINARS

4 units, Win (Stanton)

PROGRAM FOR INDIVIDUALLY DESIGNED MAJORS

The Individually Designed Major program (IDM) is overseen by the School of Humanities and Sciences, located in Building 1. See also the “School of Earth Sciences” and the “School of Engineering” sections of this bulletin for IDMs in these curriculum areas.

This program is intended for currently registered undergraduates in good academic standing interested in pursuing an area of scholarly inquiry that falls outside the purview of an established academic department or program of the University. Students submit proposals for consideration by the Curriculum Committee. These should be intellectually coherent majors designed by the students themselves, with the assistance of faculty members of their choice. IDM students are required to complete a capstone requirement either as an honors project or a senior project. Information about proposal procedures, and the procedure for an honors project, is available at the Undergraduate Advising Center, Sweet Hall, first floor, and the School of Humanities and Sciences (Building 1).

In designing a major, the student consults with three faculty members (all must be Academic Council members and be from three separate departments); one of the faculty members is selected as the student’s primary adviser. In helping the student design the major and in signing the proposal requesting approval from the Curriculum Committee, the faculty members are committing themselves to act as a regular academic advisory group for the student until graduation. The committee does not consider proposals without the approval of the faculty advisory group.

APPLICATION PROCEDURE AND CURRICULUM COMMITTEE REVIEW

The program is administered by the Curriculum Committee, the School of Humanities and Sciences, and the dean’s office in the School of Humanities and Sciences. Applications are due by the fifth week of the Spring Quarter of the sophomore year.

The committee acts in lieu of a regular department of the University. This role involves certifying the scholarly merit of the program and includes the obligation to consider, approve, and recommend changes in each proposed major.

In carrying out its role, the committee reserves the right to reject proposals that, in its opinion, lack scholarly merit or are not clearly interdisciplinary. Occasionally, the committee must reject a proposal that, though of considerable academic merit, requires resources not available at Stanford. The committee also reserves the right to recommend additions to a student’s faculty advisory group.

ADVISING AND PROPOSAL

Students who are interested in the program and have met with an adviser at Undergraduate Advising, are directed to the dean’s office in the School of Humanities and Sciences to speak with the Assistant Dean for Student Affairs. The final stage of the process is the application review by the Curriculum Committee.

The proposal should begin with a statement that describes the major, articulates the motivation for and the justification and ultimate goal of the major, and shows how the courses listed relate to and fulfill the major’s goal. This statement should be followed by a list of the proposed core courses to be counted toward the major and, as far as possible, the sequence in which they are to be taken. The proposal must be signed by the selected faculty advisory group; their signatures certify that they endorse the major as described in the proposal and agree to serve as the student’s permanent advisory group. The proposal must be accompanied by a letter of recommendation from each of the three advisers giving separate appraisals of the academic viability of the proposed major. The proposal must also include a current copy of the student’s unofficial transcript.

These requirements are in addition to the general guidelines discussed under “The Major” section of this bulletin. The monitoring of the requirements and subsequent changes to the original proposal must be approved by the Cognizant Dean for Graduate and Undergraduate Studies.
THE GUIDELINES

To establish the IDM program as being fully equivalent to a Stanford B.A. or B.S. degree in an established department or program, the Senate of the Academic Council has approved specific requirements. The criteria for approval of proposals submitted include:

1. Each major shall consist of at least 75 units, all in courses at or above the 100 level (or their equivalent).
2. A maximum of 5 units of these 75 units may be taken on a credit/no credit basis.
3. A maximum of 8 units of these 75 units may be taken in practical or directed reading.
4. None of the 75 units can count towards another major or other special program.
5. Students are required to take a core sequence and WIM course in the department of one of their advisers.
6. There is a grade point requirement of 3.5.
7. The proposed major must constitute a coherent academic program that fulfills the student’s objectives and achieves a clear academic goal.
8. The proposed major must be comparable in quality and in academic rigor to degrees obtained by students in other degree-granting programs offered at Stanford.
9. The proposed major must achieve both breadth and depth within the academic discipline(s), involve interdisciplinary study, and be compatible with a liberal arts education.
10. The proposed major must not duplicate or be achievable through a major already offered by another degree-granting program or department.
11. Students must present evidence that demonstrates their ability to do independent work.
12. Students proposing individually designed majors must have at least three full quarters of undergraduate work remaining at Stanford after the date on which the proposal is approved by the committee.

INTERDISCIPLINARY STUDIES IN HUMANITIES

Emeriti: (Professors) Kurt Mueller-Vollmer, Lawrence V. Ryan
Director: Paul Robinson
Associate Director: Helen Brooks
Steering Committee: (Chair) Paul Robinson; Kendra Berenson (undergraduate student representative), Helen Brooks (English, Interdisciplinary Studies in Humanities), Colin Garretson (Graduate Program in Humanities student representative), Heather Hadlock (Music), Linda Paulson (English), Rush Rehm (Drama), Morgan Russell (undergraduate student representative), Sebastian Salvado (Graduate Program in Humanities student representative), Alex Woloch (English), Rega Wood (Philosophy)
Department Offices: Building 250, Room 251F
Mail Code: 94305-2020
Department Phone: (650) 723-3413
Email: idstudies.moore@stanford.edu
Web Site: http://www.stanford.edu/group/HSP/GPH/

Courses given in Interdisciplinary Studies in Humanities have the subject code HUMNTIES. For a complete list of subject codes, see Appendix.

The office of Interdisciplinary Studies in Humanities administers the following programs:
1. Honors Program in Humanities
2. Interdisciplinary Major in Humanities
 a) Interdisciplinary Major
 b) Interdisciplinary Major for Premeds
 c) Interdisciplinary Major in Digital Humanities
 d) Interdisciplinary Major in Philosophical and Literary Thought
3. Graduate Program in Humanities
 a) Master of Arts
 b) Joint Ph.D.
4. American Studies (see the “American Studies” section of this bulletin.)
5. Medieval Studies (see the “Medieval Studies” section of this bulletin.)
6. Program in Modern Thought and Literature (see the “Modern Thought and Literature” section of this bulletin.)

UNDERGRADUATE PROGRAMS
See also the “Honors Program” below.

BACHELOR OF ARTS

THE MAJOR IN INTERDISCIPLINARY STUDIES IN HUMANITIES

This undergraduate major is designed for students with a strong commitment to interdisciplinary study in the various humanities. A student may choose to pursue the B.A. degree in Humanities through one of four concentration options: (1) the standard student designed thematic concentration; (2) the concentration designed for students who also plan to complete the established premedical curriculum for careers in the health sciences; (3) the concentration in digital humanities; or (4) the concentration in philosophical and literary thought. For all options, the B.A. degree conferred is in Humanities. Each student chooses a field that reflects the focus of study, which is noted on the transcript after degree conferral.

Unlike the disciplines in natural and social sciences, the humanities focus on the formation of ideas through language. The goal of the program is to introduce students to different disciplinary methods as well as their intersections. Students interested in Interdisciplinary Studies in Humanities have the opportunity to arrange their courses by thematic subject matter, genre, or historical period.

Each applicant to the major submits a study plan, accompanied by a statement of purpose which outlines the rationale for a particular field of study. Students who wish to major in Humanities should receive approval of their fields before the end of the junior year. Students may complete fields in

1. Culture and Politics
2. Digital Humanities (see below)
3. Early Modern Studies
4. Ecology, Philosophy, and Literature
5. Film Studies
6. Medieval Studies
7. Modern Thought and Literature
8. Performance Studies
9. Philosophical and Literary Thought (see below)
10. Philosophy and the Visual Arts

REQUIREMENTS FOR THE MAJOR
With the exception of the premed option, each program of study must include at least 12 courses for a minimum of 60 units over and above the requirements of the Humanities honors program (30 units). However, students may count one of the core seminars taken for the honors program (see below) as one of the courses toward the major if appropriate to the area of concentration.

INTERDISCIPLINARY MAJOR

The program of study for the thematic concentration includes:

1. A statement of purpose designating the field and outlining the rationale for the program of study.
2. Six courses in one of the three areas: literary, historical, or philosophical study.
3. Three courses in each of the other two areas above.
4. The requirements for the Humanities honors program.
If additional courses are needed to make up the 60 unit minimum, the student may take those courses in any of the three categories. Each program of study must be signed by a Stanford faculty member who has agreed to act as the student’s academic adviser; the proposed program must then be approved by the director. Changes in the study plan must be approved by the student’s adviser and kept on file in the program office.

For some fields, such as film studies or modern thought and literature, specific courses or types of courses may be strongly recommended. Consult the student handbook for such recommendations.

INTERDISCIPLINARY MAJOR FOR PREMEDS

The Interdisciplinary Major in Humanities offers an option for students who are preparing to attend medical school, but who wish to focus their studies in the humanities. This program of study gives students a coherent way to organize interdisciplinary interests by theme, nationality, or historical period. In addition, students choosing this track take all the courses usually required by medical schools (two years of organic and inorganic chemistry with labs, one year of physics, one year of biology with labs, and one or two courses to provide proficiency in quantitative skills as determined by a premed adviser), as well as course work in various humanities disciplines (eight courses and a minimum of 40 units) distributed as follows:

1. A statement of purpose choosing one of the fields listed above.
2. Four courses in the student’s chosen field. Generally these four courses address different aspects of literature, history, and philosophy.
3. Three courses in medical ethics, history or philosophy of science, science, and the humanities.
4. One course in the arts.
5. The courses recommended by the Undergraduate Advising Program to fulfill medical school entrance requirements.
6. The requirements for the Humanities honors program.

INTERDISCIPLINARY MAJOR IN DIGITAL HUMANITIES

The development of new technologies has produced new topics for scholarly discussion in the humanities as well as new forms of cultural expression. The Interdisciplinary Major in Humanities offers a track for students who wish to concentrate study in the new field of Digital Humanities with the following course requirements:

1. A statement of purpose outlining a narrowly defined field of study and approved by a digital humanities adviser.
2. HUMNTIES 198 as one of the core seminars for the Humanities honors program.
3. CS 105, Introduction to Computers, or CS 106A, Programming Methodology, or equivalent.
4. Seven humanities courses relevant to the student’s focus as articulated in the statement of purpose.
5. Three computer science or technology courses relevant to the student’s focus; one course should have a technical focus, and one should deal with societal issues.
6. HUMNTIES 201, Digital Humanities Practicum, in preparation for the student’s honors project.
7. The requirements for the Humanities honors program.

INTERDISCIPLINARY MAJOR IN PHILOSOPHICAL AND LITERARY THOUGHT

The concentration in philosophical and literary thought is available in association with the crossdisciplinary Program for the Study of Philosophical and Literary Thought. Students wishing to major in Humanities with this focus must consult with the director of that program, as well as the director or associate director of Interdisciplinary Studies in Humanities. Students prepare a program of study including at least 12 courses in literary, philosophical, and historical study, of which six courses are in philosophical or literary thought, and three in each of the other two categories. Requirements:

1. A statement of purpose defining a focus in philosophical or literary thought.
2. PHIL 81, Philosophy and Literature Gateway, which can be counted toward the course requirements for philosophical study or toward the requirements for literary study.
3. PHIL 80, Mind, Matter, and Meaning
4. Courses in philosophical study normally include at least one course from the PHIL 170 sequence and one course from the PHIL 180 sequence.
5. Courses in literary study should focus on one national literature.
6. Courses in historical study should include at least one course in the history of philosophy.
7. The requirements for the Humanities honors program.
8. Students in this track are strongly encouraged, where possible, to select one or two Interdisciplinary Core Seminars which are approved as courses of special relevance for philosophical and literary thought. Interested students should consult the director of undergraduate studies for a listing of courses of special relevance to the study of philosophy and literature (which includes some of the HUMNTIES interdisciplinary core seminars).

HONORS PROGRAM

The Honors Program in Humanities aims to heighten a sense of the relations among various humanistic disciplines, and to study issues in intellectual and cultural history through aesthetic, literary, historical, religious, social, and ethical perspectives.

ADMISSION

As an extra-departmental honors program, the Humanities Honors Program is open to any qualified undergraduate at Stanford, regardless of major. Interested students may obtain information from the program office. Students are encouraged to register for the program at the earliest opportunity and to take the Core Colloquium in the sophomore year. However, students may join the program as late as the junior year under certain circumstances (e.g., transfer students). Students enrolled in the crossdisciplinary majors affiliated with the Program for the Study of Philosophical and Literary Thought, whether through the Philosophy major or one of the literature majors, are strongly encouraged to write their honors essays through the Humanities honors program. Students must meet the following entrance requirements before being admitted to the program:

1. Completion of at least two quarters of the Area One requirement, except in the case of transfer students, who will be granted exception.
2. A grade point average (GPA) of at least 3.3 (B+) in all course work in the humanities. Such course work includes any Area One sequence and all Program in Writing and Rhetoric sections; all courses in the departments of Art and Art History, Drama, and Music (except studio or performance courses); all courses in the departments of Asian Languages, Classics, English, French and Italian, German Studies, Slavic Languages and Literatures, and Spanish and Portuguese (except first-year language courses); all courses in the departments of Comparative Literature, History, Philosophy, and Religious Studies; and all courses in the programs in Feminist Studies and Modern Thought and Literature.

REQUIREMENTS

1. Completion of 100, Honors Core Colloquium: Humanities, 3 units, preferably in the sophomore year.
2. Two different seminars in the series 190-198: 8-10 units, sophomore or junior year. Both seminars must be completed by the end of the tenth quarter of undergraduate study in order for students to remain members in good standing.
3. At least one survey course in intellectual or cultural history, 4-5 units, in a field relevant to the anticipated topic of the senior essay, choosing from among courses in history, philosophy, religious studies, literature, and the arts. Students should consult the course list in the program office.
In order to develop the requisite knowledge and methodological background to write a Humanities honors essay, students must take, during their sophomore and junior years, the required Humanities honors courses and additional humanities courses in disciplines germane to their honors essays.

5. Enrollment in 200A, one unit each, Winter and Spring quarters of the junior year.

6. An honors essay on a topic approved by the Steering Committee (usually 5 units Autumn Quarter and 5 units Winter Quarter, senior year).

7. A minimum GPA of 3.3 (B+) in all courses taken for the Honors Program, as well as an overall minimum GPA of 3.0 (B) in all course work in order to remain in the program.

GRADUATE PROGRAMS

University requirements for the M.A. and Ph.D. degrees are described in the “Graduate Degrees” section of this bulletin.

MASTER OF ARTS

The Master of Arts program within the Graduate Program in Humanities is designed to broaden the student’s academic background and cultural knowledge through a series of seminars that study intellectual history from the classical period to the modern era. Students gain added depth by taking four advanced courses within a defined field of study.

Application is made through the Interdisciplinary Studies in Humanities office. Application procedures and deadlines are available on the web at http://gradmissions.stanford.edu. The M.A. program in Humanities is ideally completed as a half-time, two-year program, but under some circumstances it may be completed in one year as a full-time program. The department does not offer financial aid for the master’s program. Qualified undergraduates at Stanford may petition to complete the M.A. program coterminally with their bachelor’s degrees; for University coterminal degree program rules and University application forms, see http://registrar.stanford.edu/publications/#Coterm.

REQUIREMENTS

1. Complete the five Interdisciplinary Studies in Humanities seminars (321-325).

2. Complete four graduate-level courses in an approved, established discipline to be determined in consultation with the director. At least one of these must be a graduate-level research seminar for which a research paper is required. Under “Statement of Purpose” on the application form, the candidate must indicate the field of study (for example, art history, early modern studies, philosophy, etc.) from which the graduate-level courses are drawn. The candidate must also note his or her qualifications for undertaking graduate study in that designated field. Once admitted, the student submits a proposed program of study to the director, specifying the particular courses to be taken. The proposed program is approved on its own merits to ensure that the chosen graduate courses are suited to the M.A. in Humanities.

3. Satisfactory completion of 298, the (Spring Quarter) Graduate Program in Humanities Symposium, or prior completion of the Symposium Paper by special permission.

 The minimum number of units for the M.A. degree is 45. Additional elective units may be taken at the option of the student.

 Undergraduates wishing to pursue the M.A. as part of a coterminal program should speak with the program administrator about the application procedures for coterminal students.

 For University coterminal degree program rules and University application forms, see http://registrar.stanford.edu/publications/#Coterm.

JOINT PH.D.

The Graduate Program in Humanities (GPH) provides graduate students in different disciplines an opportunity to broaden their knowledge of intellectual and cultural history by focusing on texts and ideas which have been central to all humanistic disciplines from the ancient world to the present. The program’s seminars usually focus on specific topics or issues in the context of historical, literary, philosophical, religious, and other disciplinary and theoretical orientations. The program provides a unique opportunity to study highly influential texts with a view to their relevance to the student’s own disciplinary field.

GPH members must be students earning the Ph.D. in an academic department at Stanford. Doctoral students who complete the requirements for their departments and the GPH are awarded joint doctoral degrees. Students may register for the program at any time, usually during the first quarter of graduate study. Members of the program are given first preference in registration for all of its offerings. Students complete the five GPH seminars (321-325). The course of study culminates in the GPH student symposium, which is developed and organized by the students in the program.

Although students in the GPH generally complete the program course work in their first two years of graduate study, requirements of some participating departments may necessitate completion of the GPH over three years. In some instances, one or more of the GPH seminars may fit within the requirements of the student’s home department.

The following are participating departments in the program: Art and Art History, Classics, Comparative Literature, Drama, Education, English, French and Italian, German Studies, History, Modern Thought and Literature, Music, Philosophy, Religious Studies, Slavic Languages and Literatures, and Spanish and Portuguese. Doctoral students from other departments may participate with permission of their home departments and approval of the Director of Interdisciplinary Studies in Humanities.

REQUIREMENTS

1. Complete satisfactory work in the student’s major field, in accordance with department requirements.

2. Complete the five GPH seminars. To qualify for candidacy, students should complete at least three seminars in the first two years of graduate residence. Exemption from, or permission to audit, a seminar may be secured by petition if the student can show coverage of the material at an advanced level.

3. Participate in the GPH student symposium, usually at the end of the second year of GPH course work (298; registration for units is optional).

4. At least one quarter of teaching for Interdisciplinary Studies in Humanities, normally a teaching internship in the third or fourth year (299; registration for units is optional).

5. Reading knowledge of at least one foreign language, ancient or modern, to be certified in the first two years of graduate work.

6. Passing the University oral examination according to the schedule prescribed by the major department with one GPH representative, approved by the director, as a member of the examining committee.

7. Submission of a Ph.D. dissertation acceptable to a committee which includes one representative of the GPH, approved by the director.

COURSES

See quarterly Time Schedule for changes in listings.

HUMNTIES 100. Honors Core Colloquium: Humanities — Required of all students in the Humanities Honors Program. Introduction to Interdisciplinary Studies in Humanities through the study and application of a range of theoretical approaches to a major literary text. This year, the course focuses on *Hamlet*, including film adaptations. Experience in both disciplinary and interdisciplinary analysis and writing is designed to help prepare students to write their honors essays in Humanities. GER:DB-Hum

3 units, Win (Brooks, Robinson)

HUMNTIES 121. The Alienated Self — The derivation of the concept of self from which the fundamentals of personal identity arise based on two propositions: a close reading of a literary work can be facilitated by psychological sensibility; and psychological principles can be elucidated through close reading. Authors include Dostoevsky, Camus, Freud, Mann, and McCullers.

3-5 units, Spr (Van Natta)
HUMNTIES 170. Media Studies Internship—Practical experience working with a film or media company for six to eight weeks. Students must make arrangements with companies individually and receive the consent of the Director of the Humanities Honors Program. Credit is awarded for submitting a paper after completing the internship, focused on a topic relevant to the student's studies.
3 units, Aut, Win, Spr, Sum (Robinson)

HUMNTIES 175. Individual Work
1-5 units, Aut, Win, Spr, Sum (Staff)

HUMNTIES 181. Introduction to Strategic Foresight—How the future can be imagined and communicated. Tools to design, ponder, and share the future including narratives, scenarios, cross-impact maps, video, and artifacts. Strategic foresight methods, their advantages and disadvantages, and how to apply them in research and business.
3 units, Aut (Cockayne)

HUMNTIES 182. Case Studies in Strategic Foresight—Case studies, successes and failures, of individuals and organizations attempting to develop knowledge of the future: how effective was the foresight in helping to envision the future? Models and underlying methodologies. How to embed strategic foresight in organizations.
3 units, Win (Cockayne)

HUMNTIES 183. Strategic Foresight and Innovation—How strategic foresight methods can be used to predict future ideas, inventions, and innovations; their effects upon society? Guest lectures from field experts, seminal papers, and multiple scenarios. How to understand, explore, and prepare for impending changes in emerging technologies, and how to embed the practice in organizations.
3 units, Spr (Cockayne)

HUMNTIES 191-198. Interdisciplinary Core Seminars in Humanities—Students in the Humanities honors program must complete two different seminars from different areas before the end of the tenth quarter of undergraduate study. Other students may enroll if space allows and with the instructor's consent.

HUMNTIES 193Q. The Art of the Movies: Story, Drama, and Image—(Same as PHIL 193Q.) A philosophical study of how movies coordinate and transform elements they borrow from older arts of literary narrative, live theater, and graphic illustration. Examples from the career of Alfred Hitchcock. GER:DB-Hum
4 units, Win (Hills)

HUMNTIES 194B. Text as Context—(Same as ENGLISH 184B.) Conditions that situate texts in their social, political, religious, and artistic dimensions, and that impact on conceptions of meaning. Changing views of relationships between text and their audience. Film adaptations. Texts include Rumi, Donne, Shakespeare, Joyce, Woolf, Stein, Beckett, Pound, and Picasso. GER:DB-Hum
5 units, Win (Brooks)

HUMNTIES 194S. Conflict and Resolution: The Artist as Witness—(Same as ENGLISH 182.) The social work of the novel. Its strategies for articulating difference and capacity to objectify points of view and posit resolutions to ideological disputes. The novel as artistic device, material history, narrative, and style of social consciousness. Its relationship to language and systems of representation that it shares with the wider culture. Its formal organization of choice, creation of misapprehension, and construction of deviation. Theorists include Bakhtin, Barthes, Brooks, and Jameson. Readings include Tolstoy, Kafka, Swift, Kundera, Morrison, Coetzee, and Hosseini. GER:DB-Hum
5 units, Spr (Shloss)

HUMNTIES 194Z. Truth, Fiction, and Interpretation—(Same as ENGLISH 180A.) What does it mean for something to be fictional? How the answer to this question dictates what can be said about fiction and limits interpretative methods. What kind of thing is a fiction? Is there a realm of wisdom from which the logician is banned? Readings include fiction, poems, and philosophy. GER:DB-Hum
5 units, Aut (Bourbon)

HUMNTIES 197B. Camera as Witness: International Human Rights Documentaries—(Same as INTNLREL 141B.) Rarely screened documentary films, focusing on global problems, human rights issues, and aesthetic challenges in making documentaries on international topics. Meetings with filmmakers. GER:DB-Hum
5 units, Aut (Bojic)

HUMNTIES 197C. Camera as Witness: A Forum for Global Dialogue—(Same as INTNLREL 141C, SLAVGEN 197C.) Challenges facing film makers documenting the struggle for human rights including communication of complex situations to an international audience, interpreting foreign cultures and politics, and film maker roles as artists, activists, and journalists. Meetings with filmmakers. GER:DB-Hum
5 units, Spr (Bojic)

HUMNTIES 198J. Digital Humanities: Literature and Technology—(Same as ENGLISH 153H.) How electronic texts, literary databases, computers, and digital corpora offer unique ways of reading, analyzing, and understanding literature. Intellectual and philosophical problems associated with an objective methodology within a traditionally subjective discipline. GER:DB-Hum
5 units, Aut (Jockers)

HUMNTIES 198S. Digital Humanities—(Same as CLASSART 198S.) How digital technologies are implicated in rethinking research and learning in the arts and humanities. Topics include: visualization, simulation and gaming, authoring, collaborative research, publication and dissemination, interactivity, and information management. Examples of cutting-edge research. Project-based.
4-5 units, Spr (Shanks)

HUMNTIES 200A,B,C. Senior Research—Limited to Humanities honors students. A critical essay of about 15,000 words. Students develop a proposal beginning in Winter Quarter of the junior year, and research a topic and write the essay during senior year with the guidance of a faculty member, taking a total of 5 units each of 200B and 200C, spread out during senior year as best suits their schedules. Deadline for submitting essays is the first working day on or after May 15.

HUMNTIES 200A. Research Proposal—Preliminary planning and study. Student drafts a proposal in Winter Quarter of the junior year to submit to the committee in charge for suggestions regarding focus and bibliography. After revisions, the student resubmits a fully developed proposal to the committee for final approval. 60 hours over two quarters are expected of students developing their essay proposals for 2 units, usually 1 unit each in Winter and Spring of the junior year. Students usually make revisions of some kind in either scope or formulation of the topic. Students overseas submit proposals and receive feedback by fax or email. WIM
1-2 units, Aut, Win, Spr (Robinson)

HUMNTIES 200B. Senior Research—Regular meetings with tutor (thesis adviser). Prerequisite: 200A, WIM
1-5 units, Aut, Win, Spr (Robinson)

HUMNTIES 200C. Senior Research—Regular meetings with tutor; submission of complete first draft at least two weeks before final deadline. Prerequisite: 200B, WIM
1-5 units, Aut, Win, Spr (Robinson)

HUMNTIES 201. Digital Humanities Practicum—For Humanities majors concentrating in digital humanities. Work related to the honors thesis under the supervision of a Stanford faculty or staff member usually affiliated with the Stanford Humanities Lab. Must be approved by the Director of Interdisciplinary Studies in Humanities.
2-5 units, Aut, Win, Spr (Staff)
Weber, Eliot, Woolf, Sartre, and Camus. Hauer, Coleridge, Kierkegaard, Marx, Baudelaire, Darwin, Nietzsche, religion in European society. Authors include Descartes, Pascal, Leibniz, of printing; the reappropriation of classical thought; the expansion of democratic, as INTNLREL 114D, ICA 114D. Democracy, Development, and the Rule of Law. how such institutions generated problems, crises, and reforms in China, S. Korea, and Japan. Institutional foundations of economic development; how such institutions generated problems, have undergone reform, and test the E. Asian model of development and reform. 5 units, Win, Spr (Jung) ICA 114D. Democracy, Development, and the Rule of Law.—(Same as INTNLREL 114D, POLISCI 114D.) Links among the establishment of democracy, economic growth, and the rule of law. How democratic, economically developed states arise. How the rule of law can be established where it has been historically absent. Variations in how such systems
function and the consequences of institutional forms and choices. How democratic systems have arisen in different parts of the world. Available policy instruments used in international democracy, rule of law, and development promotion efforts.

5 units, Aut (Stoner-Weiss)

ICA 114T. Major Issues in International Conflict Management—
(Enroll in POLISCI 114T.)

5 units, Spr (Stedman)

ICA 143. Nongovernmental Organizations and Development in Poor Countries—(Same as POLISCI 143, INTNLREL 143A.) How nongovernmental organizations affect economic growth, equity, political stability, and prospects for democracy in poor countries. Do NGOs contribute to these goals? What is reasonable to expect from the NGO sector? Interactions among NGOs from wealthy and poor countries, governments, international financial institutions, and multinational corporations. GER:DB-SocSci

5 units, Aut (Abernethy)

5 units, Win (M.W. Lewis)

ICA 161B. Global Human Geography: Europe and Americas—(Same as INTNLREL 161B, IPS 261B, HISTORY 106B.) Patterns of demography, economic and social development, geopolitics, and cultural differentiation. Use of maps to depict geographical patterns and processes.

5 units, Win (M.W. Lewis)

ICA 163. History and Geography of Contemporary Global Issues—
(Same as INTNLREL 163, IPS 263, HISTORY 206.) The historical background and geographical context of contemporary global issues and events. Topics vary according to what is happening in the world. Student presentations. GER:DB-SocSci, WIM

5 units, Spr (Abernethy)

ICA 200E. Globalization and the State in East Asia—(Same as EASTASN 200E.) Changes in state economic roles at different stages of development in China, S. Korea, and Japan. How globalization has affected the functions and institutions of the state. Roles of the state in the economic miracle, financial crisis, and the reform process. Changes in institutions, functions, and authorities. The impact of political context in reform outcomes.

5 units, Win (Jung)

ICA 201B. Applied Econometrics—(Same as IPS 201B.) Econometric modeling, techniques, and applications. Theory, including bivariate and multivariate regression analysis, inference and hypothesis testing, heteroscedasticity, autocorrelation, and simultaneous-equation models.

5 units, Win (Aturupane)

ICA 202. Topics in International Macroeconomics—(Same as IPS 202.) Topics: standard theories of open economy macroeconomics, exchange rate and stabilization policies, the economics of monetary unification and the European Monetary Union, and emerging markets financial and currency crises.

5 units, Win (Aturupane)

ICA 203. Issues in International Economics—(Same as IPS 203.) Topics in globalization, international trade and international trade policy, including trade and economic growth, regionalism, the World Trade Organization and the political economy of trade policy.

5 units, Spr (Aturupane)

ICA 204. Theories and Concepts in International Relations—(Same as IPS 204.) Seminar. Theoretical approaches and empirical issues in the study of world affairs. Applications to problems of cooperation and conflict. Issues include violent conflicts, trade and finance, and the environment and human rights, and normative theories of international relations surrounding these issues.

5 units, Aut (M. Kim)

ICA 205. Applied Game Theory for Political Economy—(Same as IPS 205.) Solution concepts from non-cooperative game theory with applications in economics and political science. Imperfect information and signaling, off equilibrium path beliefs, and mechanism design. Emphasis is on application over formal proof. Prerequisite: background in non-cooperative game theory.

5 units, Aut (Shelton)

ICA 211. Education for All? The Global and Local in Public Policy Making in Africa—(Same as IPS 211, INTNLREL 111.) Although international institutions, national governments, and non-governmental organizations agreed in 1990 to promote education for all within a decade, the goal has not been achieved. The need in Africa is great but education systems are underfunded and overstressed, schools are crowded and poorly equipped, and teachers are overburdened and underprepared. Focus is on policy making in Africa and the intersection of policy processes and their political and economic dimensions. Case studies.

5 units, Spr (Samoff)

5 units, Win (M. Kim)

ICA 233. Introduction to Comparative and International Political Economy—(Same as IPS 233, INTNLREL 133.) Major theoretical approaches and empirical issues in international economic policies and outcomes. Review of economic theories underlying political conflicts. Topics include trade, monetary relations, sovereign debt, investment, migration and development. Comparison of developed and developing countries.

5 units, Spr (M. Kim)

ICA 238. Growth and Development: Theory and Policy Implications—(Same as IPS 238, INTNLREL 138.) Models of endogenous growth and their implications for economic policy. Likely topics include the effects of fiscal policy on factor accumulation; connection among inequality, redistributive policy, and economic growth; and trade policy and dynamic sources of comparative advantage. Prerequisite: graduate course in applied game theory.

5 units, Spr (Shelton)

ICA 239. The Political Economy of Governance—(Same as IPS 239, INTNLREL 139.) Game theoretic models of political institutions. Emphasis is on performance of collective choice institutions in the presence of heterogeneous preferences, time-inconsistent preferences, asymmetric information, and uncertainty. Likely topics include collective action, free riding, and public goods; credibility, reputation, and transparency; corruption and lobbying; delegated authority; reform and fiscal adjustment; and elections and the volatility of economic policy. Prerequisite: graduate course in applied game theory.

5 units, Spr (Shelton)

ICA 299X. Design and Methodology for International Field Research—(Same as HISTORY 299X/399A.)

1 unit, Win (N. Kollmann, Roberts)

ICA 348T. AIDS, Literacy, and Land: Policy Challenges in Contemporary Africa—(Same as POLISCI 348T.) Public policy issues, their roots, and the conflicts they engender. The policy making process: who participates; how; why; and with what results? Innovative approaches to contested policy issues. Case studies such as: a neighborhood center and clinic in Uganda; strategies in Tanzania to increase girls’ schooling; and avoiding squatter occupations and allocating land to those who use it.

4.5 units, Win (Samoff)
INTERNATIONAL POLICY STUDIES

Directors: Coit D. Blacker (Stanford Institute for International Studies), Judith L. Goldstein (Political Science)
Associate Director: Martin W. Lewis (International Policy Studies)
Executive Faculty Committee: James Fearon (Political Science), Stephen H. Haber (Political Science), Timothy Josling (Institute for International Studies), Michael McFaul (Political Science), Ronald I. McKinnon (Economics), Michael Tomz (Political Science)
Lecturers: Chonira Aturupane, Gili Drori, John Dunlop, Keith Hansen, Joo-youn Jung, Moonhawk Kim, Pawel Lutomski, Bertrand Patenaude, Cameron Shelton
Affiliated Faculty: Jonathan Bendor (Business), Gordon Chang (History), Larry Diamond (Hoover Institution), Lynn Eden (Sociology), Walter P. Falcon (Stanford Institute for International Studies), Larry Goulder (Economics), David J. Holloway (History, Stanford Institute for International Studies, Political Science), Simon Jackman (Political Science), Terry Karl (Political Science), Stephen D. Krasner (Political Science), Gail Lapidus (Stanford Institute for International Studies), Beatriz Magaloni (Political Science), Isabela Mares (Political Science), Norman Naimark (History), Rosamond Naylor (Stanford Institute for International Studies), Roger G. Noll (Economics), Jean Oi (Political Science), Daniel Okimoto (Political Science), Robert A. Packenham (Political Science), William Perry (Stanford Institute for International Studies, Management Science and Engineering), Douglas Rivers (Political Science), Richard Roberts (History), Scott D. Sagan (Political Science), Thomas Simons (History), Stephen Stedman (Political Science, Stanford Institute for International Studies), Andrew Walder (Stanford Institute for International Studies, Sociology), Jeremy Weinstein (Political Science), Ann Wren (Political Science)
Other Affiliation: Christophe Crombez (Stanford Institute for International Studies), Donald Emmerson (Stanford Institute for International Studies), Jonathan Greenberg (Law), Katherine Jolluck (History), Kathryn Stoner-Weiss (Stanford Institute for International Studies)
Program Office: Encina Hall West, Room 216
Mail Code: 94305-6045
Phone: (650) 723-4547
Web Site: http://ips.stanford.edu

Courses given in International Policy Studies have the subject code IPS. For a complete list of subject codes, see Appendix.

GRADUATE PROGRAM
MASTER OF ARTS

University requirements for the M.A. degree are described in the "Graduate Degrees" section of this bulletin.

International Policy Studies (IPS) is a highly analytical interdisciplinary program focusing on international policy analysis. Its goal is to provide students with in-depth exposure to a range of issues that they will face in the 21st century in international business and public policy, and to develop a foundation of skills and knowledge to address those issues. The program allows students to focus on: the international economic system, developing and transition societies, security issues, or the world environment. More information on IPS can be found at http://ips.stanford.edu.

IPS requires completion of the core and cognate requirements listed below which normally amount to 48 units of credit. Additional units are required for students who have not fulfilled the prerequisites for these requirements.

ADMISSION

IPS is designed for students who have a strong undergraduate background in economics and political science. To enroll in the program, students must have taken at least one undergraduate course in international relations, as well as calculus-based undergraduate courses in statistics, microeconomics, and macroeconomics. Stanford courses satisfying these requirements are POLISCI 1 or IPS 204, and ECON 51, 52, and 102A. In addition, to fulfill the program requirements in one year, students must have completed one advanced undergraduate course in international economics, and one in either security studies or international political economy. Stanford courses that meet these requirements are ECON 165 and POLISCI 110A, B, C, or D.

Applicants from schools other than Stanford or applicants from Stanford who did not apply in their senior year should submit a Graduate Admission Application including a statement setting forth relevant personal, academic, and career plans and goals; official transcripts; three letters of recommendation; Graduate Record Examination (GRE) scores; and a writing sample of at least ten pages. TOEFL scores are required of applicants for whom English is not their first language or who did not attend an undergraduate institution where English is the language of instruction. To apply online or for information on graduate admission, go to http://gradadmissions.stanford.edu. Applicants are expected to have a B.A. or B.S. degree from an accredited school. Complete information on applying to IPS is found in the Guide to Graduate Admission. Applications for admission beginning Autumn Quarter must be filed together with supporting credentials by the preceding December 13.

Undergraduates at Stanford may apply for admission to the coterminal master’s program in IPS when they have earned a minimum of 120 units toward graduation, including AP and transfer credit, and no later than the quarter prior to the expected completion of their undergraduate degree. The coterminal application requires the following supporting materials: two letters of recommendation from University faculty, a writing sample of at least ten pages, and a statement of relevant personal, academic, and career plans and goals. Applications must be filed together with supporting materials by December 13. For University coterminal degree program rules and University application forms, see http://registrar.stanford.edu/publications/#Coterm.

DEGREE REQUIREMENTS

To receive the M.A. degree in International Policy Studies, students must complete the items below. These requirements entail 23 units of core courses and an additional 25 units from the cognate curriculum. These courses have the following prerequisites: ECON 51, 52, 102A or POLISCI 350A, and ECON 165; POLISCI 1 or IPS 204 and POLISCI 110A, B, C, or D.

Core—

1. Seminar Requirement: IPS 200, Issues in International Policies (3 units)
2. Skills Requirement: any three of the following courses (15 units)—ECON 102B, C, 150; IPS 201B, 205; POLISCI 350A, B, C; PUBLPOL 105
3. International Economics Requirement (5 units): IPS 202, Topics in International Macroeconomics; or IPS 203, Issues in International Economics

Cognate Curriculum—Students must take 25 units of other IPS approved courses for their cognate. All students must take IPS 204 as part of the cognate curriculum. At least 15 units must be in one of the following areas of specialization and 10 units must be in two other areas of specializations (a complete list of the courses in these areas is available in the IPS program office):

International Political Economy
Conflict/Security Studies
Political and Economic Development
Public Organizations and Policy Implementation
World Environmental Policy

Area Specialization—Students may earn an area specialization certificate by completing 15 additional units of coursework focusing on one region. Options include Asia, Eastern Europe/Russia, Latin America, and Western Europe. Area specialization units may not be counted toward the cognate curriculum requirement.
Master’s Thesis—Students are not required to write a master’s thesis; however, students may register for 10 units of thesis research under the guidance of a faculty member. Thesis proposals must be approved by the program director. Thesis units may not be counted toward the cognate curriculum requirement. Students should register for IPS 290.

In addition, students must meet the following deadlines:

1. Complete and file the IPS Program Proposal, available in the IPS office, no later than the second week of Autumn Quarter. Students should list all courses to be used to fulfill the IPS requirements, including the required IPS 200 course. Categorical students must list unduplicated courses, that is, courses not counted toward an undergraduate degree.
2. Use Axess to file an Application to Graduate by the appropriate deadline.

Grade Requirements—All courses to be counted toward the degree, except for the core seminar, must be taken for a letter grade and receive a grade of ‘B-’ or higher.

Financial Aid—Undergraduates may petition for a fifth year of financial aid as categorical students. Note that these petitions can only be made if the undergraduate degree has not been conferred. University-based financial aid is not normally available for graduate students entering the IPS program.

COURSES

See the IPS degree requirements in the IPS program office or at http://ips.stanford.edu for updated information on additional courses.

CORE

SEMINAR REQUIREMENT

IPS 200. Contemporary Issues in International Policies—For IPS students only. Lecture series. Scholars present their analysis of major international public policy issues. May be repeated for credit.
1 unit, Aut, Win, Spr (M.W. Lewis)

SKILLS REQUIREMENT

Any three of the following classes:

IPS 201B. Applied Econometrics—(Same as ICA 201B.) Econometric modeling, techniques, and applications. Theory, including bivariate and multivariate regression analysis, inference and hypothesis testing, heteroscedasticity, autocorrelation, and simultaneous-equation models.
5 units, Win (Aturupane)

IPS 205. Applied Game Theory for Political Economy—(Same as ICA 205.) Solution concepts from non-cooperative game theory with applications in economics and political science. Imperfect information and signaling, off equilibrium path beliefs, and mechanism design. Emphasis is on application over formal proof. Prerequisite: background in non-cooperative game theory.
5 units, Aut (Shelton)

ECONOMICS

ECON 102B. Introduction to Econometrics
5 units, Win (Ryal, Spr (Royalty))

ECON 102C. Advanced Topics in Econometrics
5 units (Pistaferri) not given 2005-06

ECON 150. Economic Policy Analysis
5 units, Win (Noll)

POLITICAL SCIENCE

POLISCI 350A. Political Methodology I
5 units, Aut (Rivers)

POLISCI 350B. Political Methodology II
5 units, Win (Jackman)

POLISCI 350C. Political Methodology III
3-5 units, Spr (Rivers, Wand)

PUBLIC POLICY

PUBLPOL 105. Quantitative Methods and Their Applications to Public Policy
5 units, Spr (Rothwell)

INTERNATIONAL ECONOMICS REQUIREMENT

IPS 202. Topics in International Macroeconomics—(Same as ICA 202.) Topics: standard theories of open economy macroeconomics, exchange rate and stabilization policies, the economics of monetary unification and the European Monetary Union, and emerging markets financial and currency crises.
5 units, Win (Aturupane)

IPS 203. Issues in International Economics—(Same as ICA 203.) Topics in globalization, international trade and international trade policy, including trade and economic growth, regionalism, the World Trade Organization and the political economy of trade policy.
5 units, Spr (Aturupane)

COGNATE

Students must take 25 units in the cognate curriculum; IPS 204 is required. At least 15 units must be in one area of specialization and 10 units must be in two other areas of specializations. There are five areas of specialization: International Political Economy, Conflict/Security Studies, World Environmental Policy, Political and Economic Development, and Public Organizations and Policy Implementation.

INTERNATIONAL POLITICAL ECONOMY

IPS 204. Theories and Concepts in International Relations—(Same as ICA 204.) Seminar. Theoretical approaches and empirical issues in the study of world affairs. Applications to problems of cooperation and conflict. Issues include violent conflicts, trade and finance, and the environment and human rights, and normative theories of international relations surrounding these issues.
5 units, Aut (Kim)

IPS 222A. The Political Economy of the European Union—(Same as INTNLREL 122A.) EU institutions, the legislative process, policies, relations with the U.S., enlargement and the future of the EU. History and theories of EU integration. Democratic accountability of the institutions, and the emerging party system. Principal policies in agriculture, regional development, the internal market, single currency, and competition. Emphasis is on policies that affect the relations with the U.S. including trade and security. Results of the EU’s constitutional convention.
5 units, Win (Crombez)

IPS 230. Science, Technology, and Development—(Same as INTNLREL 130.) The rates of global expansion of science, technology, and information technology, comparing nations and world religions. The social impact of these trends primarily concerning economic development and notions of progress (democratization, human rights, welfare of local populations, and national security). Globalization, science and technology policy, development, commodification of the public good, and social change. Implications of science and technology globalization, as they shape the diverging trajectory of nation states.
5 units, Aut (Drori)

IPS 233. Introduction to Comparative and International Political Economy—(Same as ICA 233, INTNLREL 133.) Major theoretical approaches and empirical issues in international economic policies and outcomes. Review of economic theories underlying political conflicts. Topics include trade, monetary relations, sovereign debt, investment, migration and development. Comparison of developed and developing countries.
5 units, Spr (M. Kim)
IPS 238. Growth and Development: Theory and Policy Implications—(Same as ICA 238, INTNLREL 138.) Models of endogenous growth and their implications for economic policy. Likely topics include the effects of fiscal policy on factor accumulation; connection among inequality, redistributive policy, and economic growth; and trade policy and dynamic sources of comparative advantage. Prerequisite: graduate course in applied game theory. 5 units, Spr (Shelton)

IPS 249. The Economics and Political Economy of the Multilateral Trade System—(Same as INTNLREL 149.) The historical development of the multilateral trade system, the current agenda of the World Trade Organization, and prospects for trade liberalization. Emphasis is on the economic rationale for multilateral trade rules, the political problems facing countries in supporting further liberalization, and the challenges to the legitimacy of WTO procedures and practices. Issues include the greater participation of developing countries, the impact of new members, and the relationship between the WTO and other multilateral bodies. Guest speakers; student research paper presentations. 5 units, Win (Jostling)

IPS 282. Southeast Asia: Issues and Perspectives—(Same as INTNLREL 182.) While long conventional to praise the Association of Southeast Asian Nations for its success, regional crises since 1997 have fostered a view of ASEAN as impotent, irrelevant, or both. It is said to have enlarged too fast to the detriment of its coherence and effectiveness, and to rely too much on national sovereignty viewed as an anachronism in a globalizing, borderless, and democratizing world. Emphasis is on Singapore and Indonesia. 5 units, Spr (Emmerson)

EAST ASIAN STUDIES
EASTASN 200E. Globalization and the State in East Asia 5 units, Win (Jung)

ECONOMICS
ECON 224. Science, Technology, and Economic Growth 2-5 units, Aut (David)
ECON 265. International Finance and Open Economy Macroeconomics 2-5 units, Aut (McKinnon)
ECON 266. International Trade 2-5 units, Spr (Srinivasan)
ECON 269. International Financial Markets and Monetary Institutions 5 units, Win (Taylor)

MANAGEMENT SCIENCE AND ENGINEERING
MS&E 271. Global Entrepreneurial Marketing 4 units, Win, Spr (Ramfjel, Smith, Kosnik)

POLITICAL SCIENCE
POLISCI 312. Japanese Foreign Policy 5 units, Aut (Okimoto)
POLISCI 340S. Political Economy of Post-Communism 5 units, Win (Stoner-Weiss)
POLISCI 345R. Political Economy of Japan 5 units, Aut (Okimoto)
POLISCI 347S. Comparative Political Economy of Developed Democracies 3-5 units, Spr (Wren)
POLISCI 348. Chinese Politics: The Transformation and the Era of Reform 5 units (Oi) not given 2005-06
POLISCI 348S. Contemporary Chinese Foreign Relations 5 units, Spr (Miller)

SOCIOLOGY
SOC 214. Economic Sociology 5 units (Granovetter) not given 2005-06
SOC 217A. China Under Mao 5 units (Walder) not given 2005-06

CONFLICT/SECURITY STUDIES
IPS 204. Theories and Concepts in International Relations—For description, see “International Political Economy” subsection above. 5 units, Aut (Kim)
IPS 219. The Role of Intelligence in U.S. Foreign Policy—(Same as INTNLREL 119.) How intelligence supports U.S. national security and foreign policies. How it has been used by U.S. presidents to become what it is today; organizational strengths and weaknesses; how it is monitored and held accountable to the goals of a democratic society; and successes and failures. Current intelligence analyses and national intelligence estimates are produced in support of simulated policy deliberations. 5 units, Win (Hansen)
IPS 240C. The U.S., U.N. Peacekeeping, and Humanitarian War—(Same as INTNLREL 140C.) The involvement of U.S. and the UN in major wars and international interventions since the 1991 Gulf War. The UN Charter’s provisions on the use of force, the origins and evolution of peacekeeping, the reasons for the breakthrough to peacemaking and peace enforcement in the 90s, and the ongoing debates over the legality and wisdom of humanitarian intervention. Case studies include Croatia and Bosnia, Somalia, Rwanda, Kosovo, East Timor, and Afghanistan. 5 units, Spr (Patenaude)
IPS 266. Russia and Islam—(Same as INTNLREL 166.) Seminar. Focus is on 1985 to the present. The policies of Gorbachev toward the Muslim populace of the Soviet Union; how post-communist Russia under Yeltsin and Putin has dealt with its Muslim minorities; and the relationship of Russia to the newly independent states of Central Asia and the South Caucasus after the breakup of the USSR in 1991. The two major wars which Russia has fought with the secessionist Russian autonomous republic of Chechnya. 5 units, Win (Dunlop)

HISTORY
HISTORY 328. Circles of Hell: Poland in World War II 5 units (Jolluck) not given 2005-06
HISTORY 356. U.S.-China Relations: From the Opium War to Tiananmen 5 units, Win (Chang)

MANAGEMENT SCIENCE AND ENGINEERING
MS&E 293. Technology and National Security 3 units, Aut (Perry, Paté-Cornell)

POLITICAL SCIENCE
POLISCI 114S. International Security in a Changing World 5 units, Win (Sagan, Blacker, Perry)
POLISCI 114T. Major Issues in International Conflict Management 5 units, Spr (Stedman)
POLISCI 312R. Domestic Politics and International Conflict 5 units (Schultz) not given 2005-06
POLISCI 318S. State Building 5 units (Krasner) not given 2005-06

POLITICAL AND ECONOMIC DEVELOPMENT
IPS 204. Theories and Concepts in International Relations—For description, see “International Political Economy” subsection above. 5 units, Aut (Kim)
IPS 230. Science, Technology, and Development—(Same as INTNLREL 130.) For description, see “International Political Economy” subsection above.
5 units, Aut (Drori)

IPS 238. Growth and Development: Theory and Policy Implications—(Same as INTNLREL 138.) For description, see “International Political Economy” subsection above.
5 units, Spr (Shelton)

ECONOMICS

ECON 106. World Food Economy
5 units, Win (Falcon, Naylor)

ECON 214. Development Economics: Microeconomic Issues
2-5 units, Win (Tarozzi)

ECON 216. Development Economics and Growth: Macroeconomics
2-5 units, Aut (Attanasio)

ECON 217. Development Economics: Money and Finance
2-5 units (McKinnon) not given 2005-06

HISTORY

HISTORY 347E. Health and Society in Africa
5 units, Spr (Roberts)

HISTORY 379. Latin American Development: Economy and Society, 1800-2000
5 units, Aut (Frank)

HISTORY 381. Economic and Social History of the Modern Middle East
5 units, Win (Beinin)

MANAGEMENT SCIENCE AND ENGINEERING

MS&E 249. Growth and Development
3 units, Sum (de La Grandville)

POLITICAL SCIENCE

POLISCI 141. The Global Politics of Human Rights
5 units, Win (Karl)

POLISCI 246R. Market-Oriented Reform and Development in Latin America
5 units, Spr (Packenham)

POLISCI 347S. Comparative Political Economy of Developed Democracies
3-5 units, Spr (Wren)

PUBLIC ORGANIZATIONS AND POLICY IMPLEMENTATION

IPS 204. Theories and Concepts in International Relations—For description, see “International Political Economy” subsection above.
5 units, Aut (Kim)

IPS 211. Education for All? The Global and Local in Public Policy Making in Africa—(Same as ICA 211, INTNLREL 111.) Although international institutions, national governments, and non-governmental organizations agreed in 1990 to promote education for all within a decade, the goal has not been achieved. The need in Africa is great but education systems are underfunded and overstressed, schools are crowded and poorly equipped, and teachers are overburdened and underprepared. Focus is on policy making in Africa and the intersection of policy processes and their political and economic dimensions. Case studies.
5 units, Spr (Samoff)

IPS 219. The Role of Intelligence in U.S. Foreign Policy—(Same as INTNLREL 119.) For description, see “Conflict/Security Studies” subsection above.
5 units, Win (Hansen)

IPS 231. Globalization and Organizations—(Same as INTNLREL 131.) How organizations act as the carriers of globalization processes by expanding worldwide, proliferating social procedures, establishing isomorphic structures, and diffusing cultural patterns. Political structures, international relations, commercial organizations, cultural institutions. Global organizational expansion, forms of organizational adaptation, notions of national sovereignty under global organizational expansion, and forms of national and international governance. Studies of global organizational fields including science, rights, environment, development, combining theoretical, comparative, and case study pieces. WIM
5 units, Win (Drori)

IPS 232. International Governance—(Same as ICA 232, INTNLREL 132.) Actors, issues, and problems. Role of states, international governmental organizations, nongovernmental organizations, and private entities in addressing global problems. Conflicts and intervention, trade and finance, development, the environment and health, and human rights. Problems in legitimacy, decision making, implementation, and effectiveness.
5 units, Win (M. Kim)

IPS 239. The Political Economy of Governance—(Same as ICA 239, INTNLREL 139.) Game theoretic models of political institutions. Emphasis is on performance of collective choice institutions in the presence of heterogeneous preferences, time-inconsistent preferences, asymmetric information, and uncertainty. Likely topics include collective action, free riding, and public goods; credibility, reputation, and transparency; corruption and lobbying; delegated authority; reform and fiscal adjustment; and elections and the volatility of economic policy. Prerequisite: graduate course in applied game theory.
5 units, Spr (Shelton)

IPS 240A. International Law and International Relations—(Same as INTNLREL 140A.) What is the character of international legal rules? Do they matter in international politics, and if so, to what degree? The foundational theories, principles, and sources of public international law. Prominent theories of international relations and how they address the role of law in international politics. Practical problems such as human rights, humanitarian intervention, and enforcement of criminal law. International law as a dynamic set of rules, at times influenced by power, at other times constraining it, but always essential to studying international relations.
5 units, Aut (Lutomski)

IPS 240C. The U.S., U.N. Peacekeeping, and Humanitarian War—(Same as INTNLREL 140C.) For description, see “Conflict/Security Studies” subsection above.
5 units, Spr (Patenaude)

IPS 314S. Decision Making in U.S. Foreign Policy—(Same as POLISCI 314S.) Priority given to students in International Policy Studies. The formal and informal processes involved in U.S. foreign policy decision making. The formation, conduct, and implementation of policy, emphasizing the role of the President and executive branch agencies. Theoretical and analytical perspectives are supplemented by case studies. Preparation of policy memorandum and substantial research paper or take-home final.
5 units, Spr (Blacker)

HISTORY

HISTORY 355. Decision Making in International Crises: The A-Bomb, the Korean War, and the Cuban Missile Crisis
5 units, Aut (Bernstein)

MANAGEMENT SCIENCE AND ENGINEERING

MS&E 234. Organizations and Information Systems
4 units, Win (Tabrizi)

MS&E 254. The Ethical Analyst
1-3 units, Spr (Howard)
POLITICAL SCIENCE
POLISCI 346S. The Logic of Authoritarian Government
5 units (Haber) not given 2005-06

POLISCI 348T. AIDS, Literacy, and Land: Policy Challenges in Contemporary Africa
4-5 units, Win (Samoff)

POLISCI 362. New Economics of Organization
5 units, Spr (Weingast)

POLISCI 364. Politics and Organization
5 units, Win (Bendor)

POLISCI 365. Organizational Decision Making
5 units (Bendor) not given 2005-06

SOCIOLOGY
SOC 214. Economic Sociology
5 units (Granovetter) not given 2005-06

WORLD ENVIRONMENTAL POLICY
IPS 204. Theories and Concepts in International Relations — For description, see “International Political Economy” subsection above.
5 units, Aut (Kim)

5 units, Aut (M.W. Lewis)

IPS 261B. Global Human Geography: Europe and Americas — (Same as ICA 261B, INTNLREL 161B, HISTORY 106B.) Patterns of demography, economic and social development, geopolitics, and cultural differentiation. Use of maps to depict geographical patterns and processes.
5 units, Win (M.W. Lewis)

IPS 263. History and Geography of Contemporary Global Issues — (Same as ICA 163, INTNLREL 163, HISTORY 206.) The historical background and geographical context of contemporary global issues and events. Texts are a world atlas and regular reading of The New York Times and The Economist. Topics vary according to what is happening in the world. Student presentations.
5 units, Spr (M.W. Lewis)

CIVIL AND ENVIRONMENTAL ENGINEERING
CEE 171. Environmental Planning Methods
3 units, Win (Ortolano)

ECONOMICS
ECON 155. Environmental Economics and Policy
5 units, Spr (Goulder)

ECON 243. Economics of Environment
2-5 units, Win (Goulder)

MANAGEMENT SCIENCE AND ENGINEERING
MS&E 248. Economics of Natural Resources
3-4 units, Aut (Sweeney)

MS&E 250A. Engineering Risk Analysis
2-3 units, Win (Paté-Cornell)

INDEPENDENT STUDY
IPS 290. Master’s Thesis — For IPS students only. May be repeated for credit.
1-10 units, Aut, Win, Spr, Sum (Staff)

IPS 299. Directed Reading — For IPS students only. May be repeated for credit.
1-5 units, Aut, Win, Spr, Sum (Staff)

INTERNATIONAL RELATIONS
Director: Kenneth Schultz (Political Science)
Interim Director: Martin W. Lewis (International Relations)
Faculty Committee: Coit D. Blacker (Stanford Institute for International Studies), James Fearon (Political Science), Judith L. Goldstein (Political Science), Stephen H. Haber (Political Science), Timothy J. Josling (Stanford Institute for International Studies), Michael McFaul (Political Science), Ronald L. McKinnon (Economics), Michael Tomz (Political Science)

Affiliated Faculty: Barton Bernstein (History), Gordon Chang (History), Larry J. Diamond (Hoover Institution), Peter Duus (History), Amir Eshel (German Studies), Walter P. Falcon (Stanford Institute for International Studies), Zephyr Frank (History), Lawrence H. Goulder (Economics), David J. Holloway (History, Political Science, IIS), Kennell Jackson, Jr. (History), Terry L. Karl (Political Science), David M. Kennedy (History), Stephen D. Krasner (Political Science), Gail Lapidus (Stanford Institute for International Studies), Beatriz Magaloni (Political Science), Mark I. Mancall (History), Isabela Mares (Political Science), Robert McGinn (Management Science and Engineering), Rosamond Naylor (Stanford Institute for International Studies), Roger Noll (Economics), Jean C. Oi (Political Science), Daniel I. Okimoto (Political Science), Robert Packenham (Political Science), William J. Perry (Stanford Institute for International Studies, Management Science and Engineering), Richard Roberts (History), Scott Sagan (Political Science), Debra M. Satz (Philosophy), James J. Sheehan (History), Andrew Walder (Stanford Institute for International Studies, Sociology), Amir Weiner (History), Jeremy Weinstein (Political Science), Ann Wren (Political Science)

Other Affiliation: Byron Bland (Stanford Institute for International Studies), Christophe Crombez (Stanford Institute for International Studies), Gerald A. Dorfman (Hoover Institution), Gili S. Drori (International Relations), John Dunlop (Hoover Institution), Donald Emmerson (Stanford Institute for International Studies), Keith Hansen (International Relations), Katherine Jollick (History), Joe-youn Jung (International, Comparative and Area Studies), Moonhawk Kim (International, Comparative and Area Studies), Pawel Lutowski (International Relations), H. Lyman Miller (Hoover Institution), Bertrand Patenaude (Hoover Institution), Armin Rosencranz (Human Biology), Joel Samoff (Center for African Studies), Cameron Shelton (International, Comparative and Area Studies), Stephen Sedman (Political Science)

Program Office: Encina Hall West, Room 216
Mail Code: 94305-6045
Phone: (650) 723-4547
Web Site: http://irweb.stanford.edu

Courses in International Relations have the subject code INTNLREL.
For a complete list of subject codes, see Appendix.

International Relations (IR) is an interdisciplinary undergraduate major focusing on the study of the changing political, economic, and cultural relations among nation states. Students pursue a course of study in world politics that includes classes in political science, economics, history, and languages, focusing on a range of issues including but not limited to international security, international political economy, political and economic development, and democratization. All International Relations majors must spend at least one quarter overseas and show two-year proficiency in a foreign language.

The International Relations program provides students with both the foundational skills and specific knowledge necessary to analyze the behavior of nations. The major prepares students for a variety of careers in government, non-governmental organizations, and business, both domestic and international. In addition, many IR students go on to graduate school in law, business, economics, or political science. More information on IR can be found at http://irweb.stanford.edu.
UNDERGRADUATE PROGRAMS

BACHELOR OF ARTS

Requirements for the major (65 units) are:

1. IR core courses (numbers 1-5):
 - POLISCI 1
 - POLISCI 110A or 110B or 110C or 110D or HISTORY 158
 - ECON 1 or 50 or 51 or 52
 - Two additional upper-division Economics courses from the IR approved course offerings lists

2. At least one of the following requirements (15 units):
 - At least one course designed as a writing intensive (WIM) for International Relations.
 - At least one course designated as writing intensive (WIM) for International Relations.
 - Completion of one quarter study overseas either through the Stanford Overseas Studies Program or an approved non-Stanford program.

3. Proficiency in a foreign language through two years of course work (second-year, third-quarter) or a proficiency exam.

FUNCTIONAL SPECIALIZATION

The three functional specializations are:

1. Comparative Political and Historical Analysis (CPHA)
2. Comparative Culture and Society (CCAS)
3. Comparative and International Political Economy (CIPE)

Students must complete a total of seven courses (35 units) for their functional specialization. Four courses must be from the student’s functional area (CPHA, CCAS, CIPE); two courses from a second track; and the final course from the third track (4-2-1). Consult the updated course offering lists available in the International Relations office or on the web at http://irweb.stanford.edu/ for IR approved courses in each track.

AREA SPECIALIZATION

The area specializations are: Africa, Europe, Latin America, and Russia/East Europe. Students must complete a total of seven courses (35 units) with five courses directly related to their area specialization. Three of these five courses must be in one of the three tracks (CPHA, CCAS, CIPE), one course in a second track, and the final course in the third track. The ten remaining units must be fulfilled by comparative or further area course work.

Students must also demonstrate proficiency in a language, other than English, commonly spoken in the area chosen by completing two years of language study or by passing a second-year, third-quarter proficiency exam. Students can fulfill the overseas studies requirement by participating in an IR-approved Overseas Studies Program in the area of specialization.

Check the IR office for updated information about the area specialization requirements.

DECLARING THE MAJOR

The International Relations major must be declared no earlier than the beginning of sophomore year and no later than the end of the second quarter of the junior year. Students must submit an acceptable proposal to the director of the program and declare IR on Axess. Students completing a double major, or fulfilling International Relations as a secondary major are also required to file a proposal by the end of the second quarter of the junior year.

MINORS

A minor in International Relations is intended to provide an interdisciplinary background allowing a deeper understanding of contemporary international issues. Declaration of the minor must take place no later than the end of the second quarter of the junior year. To declare, complete the application for a minor on Axess.

Students complete the minor by taking seven unduplicated courses (35 units) from the IR curriculum, including the following:

1. POLISCI 1
2. Two of these four courses: POLISCI 110A,B,C,D
3. Four courses from one of the three tracks (CPHA, CCAS, CIPE), or four courses relating to the same geographic region (Africa, Europe, Latin America, and Russia/East Europe). Consult the updated course offering lists available in the International Relations office or on the web site.

HONORS PROGRAM

The International Relations honors program offers qualified students the opportunity to conduct a major independent research project under faculty guidance. Such a project requires a high degree of initiative and dedication, significant amounts of time and energy, and demonstrated skills in research and writing.

In their junior year, students should consult with prospective honors advisers, choose the courses that provide academic background in their areas of inquiry, and demonstrate an ability to conduct independent research. Students must submit their honors thesis proposal in the Spring Quarter of their junior year; check with IR office for the exact deadline.

Prerequisites for participation include a 3.5 grade point average (GPA), a strong overall academic record, good academic standing, successful experience in writing a research paper, and submission of an acceptable thesis proposal. Students are required to enroll in INTNLREL 290. International Relations Honors Field Research, in Spring Quarter of their junior year and consider participating in Honors College. In their senior year, honors students enroll in research units each quarter with their faculty adviser, and present a formal defense of their thesis in mid-May. Students must receive at least a grade of ‘B+’ in order to graduate with honors in International Relations.

GRADUATE PROGRAM

MASTER OF ARTS

It is possible for students majoring in International Relations to work simultaneously for a coterminal master’s degree in a number of related fields. Coterminal students should consult advisers in both departments or programs to ensure that they fulfill the degree requirements in both fields. For information on the M.A. program in International Policy Studies, see the “International Policy Studies” section in this bulletin. For University coterminal degree program rules and University application forms, see http://registrar.stanford.edu/publications/#Coterm.

COURSES

WIM indicates that the course satisfies the Writing in the Major requirement for International Relations.

CORE

ECONOMICS

ECON 1. Elementary Economics
5 units, Aut (Clerici-Arias), Win (Rangel), Spr (Stinem), Sum (Staff)

ECON 50. Economic Analysis I
5 units, Aut (Tendall), Win (Abramitzky)

ECON 51. Economic Analysis II
5 units, Win (Tendall), Spr (Malker), Sum (Staff)

ECON 52. Economic Analysis III
5 units, Aut (Terlilt), Spr (Klenow), Sum (Staff)
ECON 102A. Introduction to Statistical Methods (Postcalculus) for Social Scientists
5 units, Aut, Win (Stimel)

HISTORY
HISTORY 158. The United States Since 1945
4-5 units, Win (Bernstein)

POLITICAL SCIENCE
POLISCI 1. Introduction to International Relations
5 units, Aut (Tonz)

POLISCI 110A. Sovereignty and Globalization
5 units (Krasner) not given 2005-06

POLISCI 110B. Strategy, War, and Politics
5 units, Spr (Kapur)

POLISCI 110C. America and the World Economy — WIM
5 units, Win (Goldstein)

POLISCI 110D. War and Peace in American Foreign Policy
5 units (Schultz) not given 2005-06

POLISCI 150A. Political Methodology I
5 units, Aut (Rivers)

STATISTICS
STATS 60/160. Introduction to Statistical Methods: Precalculus
5 units, Aut, Win, Spr, Sum (Staff)

ADDITIONAL OFFERINGS
The courses listed below fulfill the IR functional specialization track requirements in CPHA, CCAS, and CIPE, and can fulfill the area specialization option in Africa, Europe, Latin America, or Russia/East Europe. See http://irweb.stanford.edu or the IR program office for specific course designations. For course descriptions and General Education Requirement (GER) information, see the respective department listings. Additional relevant courses may be offered; for updated information, visit the office or the web site.

COMPARATIVE POLITICAL AND HISTORICAL ANALYSIS (CPHA)

INTNLREL 114D. Democracy, Development, and the Rule of Law — (Same as POLISCI 114D.)
Links among the establishment of democracy, economic growth, and the rule of law. How democratic, economically developed states arise. How the rule of law can be established where it has been historically absent. Variations in how such systems function and the consequences of institutional forms and choices. How democratic systems have arisen in different parts of the world. Policy instruments used in international democracy, rule of law, and development promotion efforts.
5 units, Aut (Stoner-Weiss)

INTNLREL 119. The Role of Intelligence in U.S. Foreign Policy — (Same as IPS 219.)
How intelligence supports U.S. national security and foreign policies. How it has been used by U.S. presidents to become what it is today; organizational strengths and weaknesses; how it is monitored and held accountable to the goals of a democratic society; and successes and failures. Current intelligence analyses and national intelligence estimates are produced in support of simulated policy deliberations.
5 units, Win (Hansen)

INTNLREL 131. Globalization and Organizations — (Same as IPS 231.)
How organizations act as the carriers of globalization processes by expanding worldwide, proliferating social procedures, establishing isomorphic structures, and diffusing cultural patterns. Political structures, international relations, commercial organizations, cultural institutions. Global organizational expansion, forms of organizational adaptation, notions of national sovereignty under global organizational expansion, and forms of national and international governance. Studies of global organizational fields including science, rights, environment, development, combining theoretical, comparative, and case study pieces. WIM
5 units, Win (Drori)

INTNLREL 132. International Governance — (Same as ICA 232, IPS 232.)
Actors, issues, and problems. Role of states, international governmental organizations, nongovernmental organizations, and private entities in addressing global problems. Conflicts and intervention, trade and finance, development, the environment and health, and human rights. Problems in legitimacy, decision making, implementation, and effectiveness.
5 units, Win (M. Kim)

INTNLREL 140A. International Law and International Relations — (Same as IPS 240A.)
What is the character of international legal rules? Do they matter in international politics, and if so, to what degree? The foundational theories, principles, and sources of public international law. Prominent theories of international relations and how they address the role of law in international politics. Practical problems such as human rights, humanitarian intervention, and enforcement of criminal law. International law as a dynamic set of rules, at times influenced by power, at other times constraining it, but always essential to studying international relations.
5 units, Aut (Lutomski)

INTNLREL 163. History and Geography of Contemporary Global Issues — (Same as ICA 163, IPS 263, HISTORY 206.)
The historical background and geographical context of contemporary global issues and events. Texts are a world atlas and regular reading of The New York Times and The Economist. Topics vary according to what is happening in the world. Student presentations. GER:DB-SocSci, WIM
5 units, Spr (M. W. Lewis)

INTNLREL 182. Southeast Asia: Issues and Perspectives — (Same as IPS 282.)
While long conventional to praise the Association of Southeast Asian Nations for its success, regional crises since 1997 have fostered a view of ASEAN as impotent, irrelevant, or both. It is said to have enlarged too fast to the detriment of its coherence and effectiveness, and to rely too much on national sovereignty viewed as an anachronism in a globalizing, borderless, and democratizing world. Emphasis is on Singapore and Indonesia.
5 units, Spr (Emmerson)

INTNLREL 205. Ethics, Technology, and International Relations — (Same as IPS 285.)
Applicability of ethical principles to the analysis of international affairs including border control, intervention, transborder diffusion of national cultural products, foreign aid, national and international cultural patrimony, and war and terrorism. The role of technology in challenging traditional thinking about ethical issues in international affairs. Emphasis is on the interplay of theory and practice. Case studies. Limited enrollment.
5 units, Spr (McGinn)

HISTORY
HISTORY 102. The History of the International System — WIM
5 units, Spr (Sheehan)

HISTORY 103E. History of Nuclear Weapons
5 units (Holloway) not given 2005-06

HISTORY 103G. The History of the Cold War
5 units (Naimark) not given 2005-06

HISTORY 120C. 20th-Century Russian and Soviet History
5 units (Staff) not given 2005-06

HISTORY 125. 20th-Century Eastern Europe
5 units, Win (Jolluck)

HISTORY 137. The Holocaust
5 units (Rodrigue) not given 2005-06

HISTORY 145B. Africa in the 20th Century
5 units (Roberts) not given 2005-06

HISTORY 150C. The United States in the Twentieth Century
5 units (Staff) not given 2005-06
POLISCI 240L. Politics of the Korean Peninsula
5 units, Aut (Kang)

POLISCI 241S. Regime Change: Comparative Theories
5 units (McFaul) not given 2005-06

POLISCI 245R. Politics in Modern Iran
5 units, Win (Milani)

COMPARATIVE CULTURE AND SOCIETY (CCAS)

INTNLREL 103. History, Memory, and Cultural Discourse in Germany, Austria and Israel—Comparative, theoretical, and interdisciplinary approach to literary, visual, and cinematic representations and appropriations of WW II, the Holocaust, and the founding of Israel. The relationships among representation, memorialization, and cultural and political discourses: what are the implications of different modes of historical representation? How can the memory boom of the 90s and the beginning of the 21st century be explained? How does this interest in history and memory relate to cultural globalization? In English.
5 units, Spr (Eshel)

INTNLREL 111. Education for All? The Global and Local in Public Policy Making in Africa—(Same as ICA 211, IPS 211.) Although international institutions, national governments, and nongovernmental organizations agreed in 1990 to promote education for all within a decade, the goal has not been achieved. The need in Africa is great but education systems are underfunded and overstressed, schools are crowded and poorly equipped, and teachers are overburdened and underprepared. Focus is on policy making in Africa and the intersection of policy processes and their political and economic dimensions. Case studies.
5 units, Spr (Samoff)

INTNLREL 114D. Democracy, Development, and the Rule of Law—(Same as POLISCI 114D.) For description, see “Comparative Political and Historical Analysis” subsection above.
5 units, Aut (Stoner-Weiss)

INTNLREL 140C. The U.S., U.N. Peacekeeping, and Humanitarian War—(Same as IPS 240C.) The involvement of U.S. and the UN in major wars and international interventions since the 1991 Gulf War. The UN Charter’s provisions on the use of force, the origins and evolution of peacekeeping, the reasons for the breakthrough to peacemaking and peace enforcement in the 90s, and the ongoing debates over the legality and wisdom of humanitarian intervention. Case studies include Croatia and Bosnia, Somalia, Rwanda, Kosovo, East Timor, and Afghanistan.
5 units, Spr (Patenaude)

INTNLREL 141B. Camera as Witness: International Human Rights Documentaries—(Same as HUMNTIES 197B, SLAVGEN 197B.) Rarely screened documentary films, focusing on global problems, human rights issues, and aesthetic challenges in making documentaries on international topics. Meetings with filmmakers. GER:DB-Hum
5 units, Aut (Bojic)

INTNLREL 141C. Camera as Witness: A Forum for Global Dialogue—(Same as HUMNTIES 197C, SLAVGEN 197C.) Challenges facing film makers documenting the struggle for human rights including communication of complex situations to an international audience, interpreting foreign cultures and politics, and film maker roles as artists, activists, and journalists. Meetings with filmmakers. GER:DB-Hum
5 units, Spr (Bojic)

5 units, Aut (M.W. Lewis)

POLISCI 218. U.S. Relations in Iran
5 units, Aut (Milani)

POLISCI 140L. China in World Politics
5 units, Win (Kang)

POLISCI 141R. Russian Politics
5 units, Aut (Dakir)

POLISCI 142R. Representative Government in Europe
5 units (Wren) not given 2005-06

POLISCI 147. Comparative Democratic Development
5 units, Win (Diamond)

POLISCI 148. Chinese Politics: The Transformation and the Era of Reform
5 units (Oi) not given 2005-06

POLISCI 148S. The U.S. and Asia During the Cold War
5 units, Win (Miller)

POLISCI 149S. Islam and the West
5 units, Spr (Milani)

POLISCI 221C. Historiography of the Soviet Union
5 units (Weiner) not given 2005-06

POLISCI 223S. Stalin and Europe; Europe and Stalin
5 units (Naimark) not given 2005-06

POLISCI 228. Circles of Hell: Poland in World War II
5 units (Jolluck) not given 2005-06

POLISCI 252. Decision Making in International Crises: The A-Bomb, the Korean War, and the Cuban Missile Crisis
5 units, Aut (Bernstein)

POLISCI 256. U.S.-China Relations: From the Opium War to Tiananmen
5 units, Win (Chang)
INTNLREL 161B. Global Human Geography: Europe and Americas—(Same as ICA 161B, IPS 261B, HISTORY 106B.) Patterns of demography, economic and social development, geopolitics, and cultural differentiation. Use of maps to depict geographical patterns and processes.
5 units, Win (M.W. Lewis)

INTNLREL 166. Russia and Islam—(Same as IPS 266.) Seminar. Focus is on 1985 to the present. The policies of Gorbachev toward the Muslim populace of the Soviet Union; how post-communist Russia under Yeltsin and Putin has dealt with its Muslim minorities; and the relationship of Russia to the newly independent states of Central Asia and the South Caucasus after the breakup of the USSR in 1991. The two major wars which Russia has fought with the secessionist Russian autonomous republic of Chechnya. GER::EC-GlobalCom
5 units, Win (Danlop)

INTNLREL 205. Ethics, Technology, and International Relations—For description, see “Comparative Political and Historical Analysis” subsection above.
5 units, Spr (McGinn)

CULTURAL AND SOCIAL ANTHROPOLOGY
CASA 77/277. Japanese Society and Culture
5 units, Win (Inoue)

ECONOMICS
ECON 143. Ethics in Economics Policy
5 units (Hammond) not given 2005-06

HISTORY
HISTORY 147G. African History in Novels and Film
5 units, Spr (Jackson)

HISTORY 185B. Jews in the Modern World
5 units, Spr (Zipperstein)

HISTORY 221B. The Woman Question in Modern Russia
5 units, Win (Jolluck)

HISTORY 227. East European Women and War in the 20th Century
5 units, Aut (Jolluck)

HISTORY 245E. Health and Society in Africa
5 units, Spr (Roberts)

HISTORY 246. Successful Futures for Africa: An Inventory of the 1970s-2000s
5 units, Aut (Jackson)

HISTORY 246S. Popular Culture in Africa
5 units (Jackson) not given 2005-06

HISTORY 248S. African Societies and Colonial States
5 units (Roberts) not given 2005-06

HISTORY 281. Economic and Social History of the Modern Middle East
4-5 units, Win (Beinin)

HISTORY 287S. Research Seminar on the Modern Middle East
3-5 units (Beinin) not given 2005-06

HISTORY 295J. Chinese Women’s History
5 units, Spr (Sommer)

HISTORY 424A.B. The Soviet Civilization
5 units (Weiner) not given 2005-06

JAPANESE GENERAL
JAPANGEN 51. Japanese Business Culture
1-5 units, Win (Dasher)

PHILOSOPHY
PHIL 171. Political Philosophy
4 units, Win (Satz)

POLITICAL SCIENCE
POLISCI 141. The Global Politics of Human Rights
5 units, Win (Karl)

POLISCI 215. Explaining Ethnic Violence—WIM
5 units, Spr (Fearon)

SCIENCE, TECHNOLOGY, AND SOCIETY
STS 110. Ethics and Public Policy
5 units, Win (McGinn)

SOCIOLOGY
SOC 110. Politics and Society
5 units (Meyer) not given 2005-06

SOC 111. State and Society in Korea
5 units (Shin) not given 2005-06

SOC 117A. China Under Mao
5 units (Walder) not given 2005-06

COMPARATIVE INTERNATIONAL POLITICAL ECONOMY (CIPE)
INTNLREL 114D. Democracy, Development, and the Rule of Law—(Same as ICA 114D, POLISCI 114D.) For description, see “Comparative Political and Historical Analysis” subsection above.
5 units, Aut (Stoner-Weiss)

INTNLREL 122A. The Political Economy of the European Union—(Same as IPS 222A.) EU institutions, the legislative process, policies, relations with the U.S., and enlargement and the future of the EU. History and theories of EU integration. Democratic accountability of the institutions, and the emerging party system. Principal policies in agriculture, regional development, the internal market, single currency, and competition. Emphasis is on policies that affect the relations with the U.S. including trade and security. Results of the EU’s constitutional convention.
5 units, Win (Crombez)

INTNLREL 130. Science, Technology, and Development—(Same as IPS 230.) The rates of global expansion of science, technology, and information technology, comparing nations and world religions. The social impact of these trends primarily concerning economic development and notions of progress (democratization, human rights, welfare of local populations, and national security). Globalization, science and technology policy, development, commodification of the public good, and social change. Implications of science and technology globalization, as they shape the diverging trajectory of nation states. WIM
5 units, Aut (Drori)

INTNLREL 133. Introduction to Comparative and International Political Economy—(Same as ICA 233, IPS 233.) Major theoretical approaches and empirical issues in international economic policies and outcomes. Economic theories underlying political conflicts. Topics include trade, monetary relations, sovereign debt, investment, migration and development. Comparison of developed and developing countries.
5 units, Spr (M. Kim)

INTNLREL 135 Environment and Growth in Developing Countries—Seminar. The environmental and development policies of eight developing countries as they cope with the pressures of economic growth, pollution, and resource depletion. Countries include China, India, Nigeria, and Brazil; class chooses four more. WIM
5 units, Aut (Rosencranz)
INTNLREL 138. Growth and Development: Theory and Policy Implications—(Same as ICA 238, IPS 238.) Models of endogenous growth and their implications for economic policy. Likely topics include the effects of fiscal policy on factor accumulation; connection among inequality, redistributive policy, and economic growth; and trade policy and dynamic sources of comparative advantage. Prerequisite: graduate course in applied game theory.
5 units, Spr (Shelton)

INTNLREL 139. The Political Economy of Governance—(Same as ICA 239, IPS 239.) Game theoretic models of political institutions. Emphasis is on performance of collective choice institutions in the presence of heterogeneous preferences, time-inconsistent preferences, asymmetric information, and uncertainty. Likely topics include collective action, free riding, and public goods; credibility, reputation, and transparency; corruption and lobbying; delegated authority; reform and fiscal adjustment; and elections and the volatility of economic policy. Prerequisite: graduate course in applied game theory.
5 units, Spr (Shelton)

INTNLREL 143A. Nongovernmental Organizations and Development in Poor Countries—(Same as ICA 143, POLISCI 143.) How nongovernmental organizations affect economic growth, equity, political stability, and prospects for democracy in poor countries. Do NGOs contribute to these goals? What is reasonable to expect from the NGO sector? Interactions among NGOs from wealthy and poor countries, governments, international financial institutions, and multinational corporations. GER:DB-SocSci
5 units, Win (Abernethy)

INTNLREL 149. The Economics and Political Economy of the Multilateral Trade System—(Same as IPS 249.) The historical development of the multilateral trade system, the current agenda of the World Trade Organization, and prospects for trade liberalization. Emphasis is on the economic rationale for multilateral trade rules, the political problems facing countries in supporting further liberalization, and the challenges to the legitimacy of WTO procedures and practices. Issues include the greater participation of developing countries, the impact of new members, and the relationship between the WTO and other multilateral bodies. Guest speakers; student research paper presentations.
5 units, Win (Josling)

EAST ASIAN STUDIES

EASTASN 100E. Political Economy of Development and Reform in East Asia
5 units, Spr (Jung)

EASTASN 185K. International Relations and Peace Building on the Korean Peninsula
3-5 units, Aut (Yoon)

EASTASN 200E. Globalization and the State in East Asia
5 units, Win (Jung)

ECONOMICS

ECON 106. World Food Economy
5 units, Win (Falcon, Naylor)

ECON 111. Money and Banking
5 units, Aut (Gould), Sum (Staff)

ECON 113. Technology and Economic Change
5 units, Win (Gambardella)

ECON 115. European Economic History
5 units, Grefi (not given 2005-06)

ECON 118. Development Economics
5 units, Aut (Staff)

ECON 120. Socialist Economies in Transition
5 units, Spr (Gathmann)

ECON 121. Development Economics with Special Reference to East Asia
5 units (Staff) not given 2005-06

ECON 124. Contemporary Japanese Economy
5 units, Win (Aoki)

ECON 126. Economics of Health and Medical Care
5 units, Aut (Bhattacharya)

ECON 150. Economic Policy Analysis
5 units, Win (Noll)

ECON 155. Environmental Economics and Policy
5 units, Spr (Goulder)

ECON 162. Monetary Economics
5 units (Staff) not given 2005-06

ECON 165. International Economics
5 units, Spr (Hale), Sum (Staff)

ECON 167. European Monetary and Economic Integration
5 units, Win (Schroeder)

ECON 169. International Financial Markets and Monetary Institutions
5 units, Win (Taylor)

HUMAN BIOLOGY

HUMBIO 135. Global Environmental Policy
5 units, Win (Rosencranz)

HUMBIO 143. Globalization, Labor, and the Environment
4 units, Spr (Rosencranz)

HUMBIO 167. International Health
4 units (Siegel) not given 2005-06

HUMBIO 169. Critical Issues in International Women’s Health
4 units, Win (Firth-Murray)

MANAGEMENT SCIENCE AND ENGINEERING

MS&E 298. Technology, Policy, and Management in Newly-Industrializing Countries
2-4 units, Aut (Forbes)

POLITICAL SCIENCE

POLISCI 110A. Sovereignty and Globalization
5 units (Krasner) not given 2005-06

POLISCI 110C. America and the World Economy — WIM
5 units, Win (Goldstein)

POLISCI 140. Political Economy of Development
5 units, Spr (Díaz-Cayeros)

POLISCI 142. Political Economy of Western Europe
5 units (Mares) not given 2005-06

POLISCI 145. Politics and Development in Latin America
5 units, Win (Packenham)

POLISCI 242T. Social Protection Around the World
5 units (Mares) not given 2005-06

POLISCI 242U. Varieties of Capitalism
5 units (Mares) not given 2005-06

POLISCI 246R. Market-Oriented Reform and Development in Latin America
5 units, Spr (Packenham)

POLISCI 247S. Politics and Economic Policy in Advanced Industrial Democracies
5 units, Spr (Wren)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
<th>Instructor(s)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLISCI 248</td>
<td>Mexican Politics</td>
<td>5</td>
<td>Díaz-Cayeros</td>
<td>Not given 2005-06</td>
</tr>
<tr>
<td>POLISCI 248T</td>
<td>Problems of Governance and Economic Growth in Mexico: From the Aztecs to NAFTA</td>
<td>5</td>
<td>Haber</td>
<td></td>
</tr>
<tr>
<td>POLISCI 346S</td>
<td>The Logic of Authoritarian Government</td>
<td>5</td>
<td>Haber</td>
<td>Not given 2005-06</td>
</tr>
<tr>
<td>STS 279</td>
<td>Technology, Policy, and Management in Newly-Industrializing Countries</td>
<td>2-4</td>
<td>Forbes</td>
<td>Alternate years, given 2006-07</td>
</tr>
<tr>
<td>INTNLREL 191</td>
<td>IR Journal</td>
<td>1</td>
<td>Staff</td>
<td></td>
</tr>
<tr>
<td>INTNLREL 197</td>
<td>Directed Reading in International Relations—Open only to declared International Relations majors</td>
<td>3-5</td>
<td>Staff</td>
<td></td>
</tr>
<tr>
<td>INTNLREL 198</td>
<td>Senior Thesis—Open only to declared International Relations majors with approved senior thesis proposals</td>
<td>2-5</td>
<td>Staff</td>
<td></td>
</tr>
<tr>
<td>INTNLREL 200</td>
<td>International Relations Honors Field Research—Preparations for theory-guided empirical research. How to develop testable hypotheses, organize research methodology, plan fieldwork, conceptualize research questions, delineate literature fields, and engage in preliminary writing.</td>
<td>3-5</td>
<td>Drori</td>
<td></td>
</tr>
<tr>
<td>OSPBEIJ 12</td>
<td>Environmental Challenges in China’s Development</td>
<td>4</td>
<td>Zhu, Zhang, Hu, Li</td>
<td></td>
</tr>
<tr>
<td>OSPBEIJ 14</td>
<td>Comparing the Chinese and American Legal Systems</td>
<td>4</td>
<td>Staff</td>
<td></td>
</tr>
<tr>
<td>OSPBER 15</td>
<td>Shifting Alliances? The European Union and the U.S.—Enroll in POLISCI 245P.</td>
<td>5</td>
<td>Braeckner</td>
<td></td>
</tr>
<tr>
<td>OSPBER 93</td>
<td>Globalization: International Challenges, Regional Responses—Enroll in POLISCI 110P.</td>
<td>4-5</td>
<td>Tempel</td>
<td></td>
</tr>
<tr>
<td>OSPBER 105V</td>
<td>Industry, Technology, and Culture, 1780-1945—Enroll in HISTORY 105V.</td>
<td>4</td>
<td>Neckenig</td>
<td></td>
</tr>
<tr>
<td>OSPBER 115X</td>
<td>The German Economy: Past and Present—Enroll in ECON 115X, POLISCI 111P.</td>
<td>4-5</td>
<td>Klein</td>
<td></td>
</tr>
<tr>
<td>OSPBER 126X</td>
<td>A People’s Union? Money, Markets, and Identity in the EU—Enroll in POLISCI 112P.</td>
<td>4-5</td>
<td>Brückner</td>
<td></td>
</tr>
<tr>
<td>OSPBER 161X</td>
<td>The German Economy in the Age of Globalization—Enroll in ECON 161X.</td>
<td>4-5</td>
<td>Klein</td>
<td></td>
</tr>
<tr>
<td>OSPBER 174</td>
<td>Sports, Culture, and Gender in Comparative Perspective—Enroll in GERGEN 174.</td>
<td>5</td>
<td>Junghanns</td>
<td></td>
</tr>
<tr>
<td>OSPBER 177A</td>
<td>Culture and Politics in Modern Germany—Enroll in GERGEN 177A.</td>
<td>4-5</td>
<td>Kramer</td>
<td></td>
</tr>
<tr>
<td>OSPFLOR 49</td>
<td>The Cinema Goes to War: Fascism and World War II as Represented in Italian and European Cinema—Enroll in ITALGEN 191F, ARTHIST 160Y, HISTORY 235V, COMM 53.</td>
<td>4</td>
<td>Campani</td>
<td></td>
</tr>
<tr>
<td>OSPFLOR 52</td>
<td>The Euro, the Dollar, and the Developing Countries in a World of Globalization—Enroll in ECON 126X.</td>
<td>4</td>
<td>Yotopoulos</td>
<td></td>
</tr>
<tr>
<td>OSPFLOR 78</td>
<td>An Extraordinary Experiment: Politics and Policies of the New European Union—Enroll in POLISCI 42P.</td>
<td>5</td>
<td>Morlino</td>
<td></td>
</tr>
<tr>
<td>OSPFLOR 79</td>
<td>Migrations and Migrants: The Sociology of a New Phenomenon—Enroll in SOC 114S.</td>
<td>5</td>
<td>Allam</td>
<td></td>
</tr>
<tr>
<td>OSPFLOR 106V</td>
<td>Italy: from an Agrarian to a Post-industrial Society—Enroll in HISTORY 106V, POLISCI 145P.</td>
<td>4</td>
<td>Cassese</td>
<td></td>
</tr>
<tr>
<td>OSPKYOTO 24</td>
<td>Japan in International Affairs—Enroll in POLISCI 240P.</td>
<td>4-5</td>
<td>Hayashi</td>
<td></td>
</tr>
<tr>
<td>OSPKYOTO 215X</td>
<td>The Political Economy of Japan—Enroll in POLISCI 210P.</td>
<td>4</td>
<td>Mammarella</td>
<td></td>
</tr>
<tr>
<td>OSPMOSC 60</td>
<td>Russian Politics and Institutions in a Comparative Perspective—Enroll in POLISCI 118P.</td>
<td>5</td>
<td>Melville</td>
<td></td>
</tr>
<tr>
<td>OSPMOSC 61</td>
<td>Problems and Prospects of Post-Soviet Eurasia—Enroll in POLISCI 143P.</td>
<td>5</td>
<td>Trenin</td>
<td></td>
</tr>
<tr>
<td>OSPMOSC 62</td>
<td>Economic Reform and Economic Policy in Modern Russia—Enroll in POLISCI 145P.</td>
<td>5</td>
<td>Mau</td>
<td></td>
</tr>
<tr>
<td>OSPOXFRD 24</td>
<td>British and American Constitutional Systems in Comparative Perspective—Enroll in POLISCI 244P.</td>
<td>5</td>
<td>McMahon</td>
<td></td>
</tr>
<tr>
<td>OSPOXFRD 35</td>
<td>Modern UK and European Government and Politics—Enroll in POLISCI 141P.</td>
<td>4</td>
<td>Capoccia</td>
<td></td>
</tr>
<tr>
<td>OSPOXFRD 42</td>
<td>Comparative Health Care Systems: UK and U.S.—Enroll in HUMBIO 122X.</td>
<td>4</td>
<td>Senior</td>
<td></td>
</tr>
</tbody>
</table>
OSPOXFRD 51. Britain in the Era of the Two World Wars — (Enroll in HIST 239V)
5 units, Win (Tyack)
OSPOXFRD 117W. Gender and Social Change in Modern Britain —
(Enroll in SOC 117W.)
4 units, Aut (Palmer)
OSPOXFRD 141V. European Imperialism and the Third World, 1870-1970 — (Enroll in HIST 141V, POLSCI 148P)
5 units, Spr (Darwin)
OSPOXFRD 166X. The Modern British Economy — (Enroll in ECON 166X.)
4 units, Win (Robinson)

PARIS
OSPPARIS 57. Human Rights in Comparative Perspective — (Enroll in POLSCI 143P)
4-5 units, Spr (Remy-Granger)
OSPPARIS 91. Globalization and Its Effect on France and the European Union — (Enroll in ECON 125X.)
5 units, Spr (Germanargue)
OSPPARIS 122X. Europe: Integration and Disintegration of States, Politics, and Civil Societies — (Enroll in POLSCI 149P)
4-5 units, Win (Staff)
5 units, Aut (Le Cacheux)
OSPPARIS 153X. Health Systems and Health Insurance: France and the U.S., a Comparison across Space and Time — (Enroll in HUMBIO 153X, PUBLPOL 111)
4-5 units, Win (Staff)
OSPPARIS 211X. Political Attitudes and Behavior in Contemporary France — (Enroll in POLSCI 241P.)
4-5 units, Aut (Mayer)

SANTIAGO
OSPSANTG 104X. Modernization and Culture in Latin America — (Enroll in ANTHSCI 104X, SPANLIT 290Z)
5 units, Aut (Subercaseaux)
OSPSANTG 111. Social Heterogeneity in Latin America — (Enroll in SPANLIT 164S, SOC 111S)
5 units, Aut (Valdés)
OSPSANTG 116X. Modernization and its Discontents: Chilean Politics at the Turn of the Century — (Enroll in POLSCI 242P)
5 units, Spr (Correa)
OSPSANTG 118X. Cultural Modernization: The Case of Chile — (Enroll in SPANLIT 166S)
5 units, Win (Micco)
OSPSANTG 119X. The Chilean Economy: History, International Relations, and Development Strategies — (Enroll in ECON 119X)
5 units, Spr (Mañoz)
OSPSANTG 129X. Latin America in the International System — (Enroll in POLSCI 117P)
4-5 units, Win (Fuentes)
OSPSANTG 130X. Latin American Economies in Transition — (Enroll in ECON 165X)
5 units, Aut (DiFilippo)

OSPSANTG 141X. Politics and Culture in Chile — (Enroll in LATIN-AM 141X)
5 units, Spr (Subercaseaux)
OSPSANTG 160X. Latin America in the International Economy — (Enroll in ECON 160X)
5 units, Win (DiFilippo)
OSPSANTG 221X. Political Transition and Democratic Consolidation: Chile in Comparative Perspective — (Enroll in POLSCI 243P, LATINAM 221X)
5 units, Aut (Micco)

INTRODUCTION TO THE HUMANITIES PROGRAM
Director: to be announced
Assistant Vice Provost and Associate Director: Ellen Woods
Department Offices: Building 250, Room 251G
Mail Code: 94305-2020
Department Phone: (650) 723-0944
Email: ihum@vpue.stanford.edu
Web Site: http://ihum.stanford.edu

Courses given in Introduction to the Humanities Program have the subject code IHUM. For a complete list of subject codes, see Appendix.

Introduction to the Humanities offers courses which satisfy a three quarter General Education Requirement (GER) for first-year students. The purpose of the Introduction to the Humanities (IHUM) requirement is to build an intellectual foundation in the study of human thought, values, beliefs, creativity, and culture. Introduction to the Humanities courses enhance skills in analysis, reasoning, argumentation, and oral and written expression, thus helping to prepare students for more advanced work in the humanities, and for work in other areas such as the sciences, social sciences, and engineering.

The IHUM requirement may be satisfied in two different ways:

Introduction to the Humanities courses (a one quarter, interdisciplinary course followed by a two quarter, course sequence), or

The Program in Structured Liberal Education (an intensive, three quarter, residence-based program satisfying the IHUM requirement, the University Writing and Rhetoric Requirement, and one additional General Education Disciplinary Breadth Requirement in the Humanities).

COURSES

INTRODUCTION TO THE HUMANITIES

Students enrolled in Introduction to the Humanities courses satisfy the first-year requirement by pairing a one quarter interdisciplinary course in Autumn Quarter with a two quarter sequence in Winter and Spring quarters. The Autumn Quarter courses hone skills in humanistic disciplines through close reading and critical investigation of a limited number of works as preparation for further work in the humanities and, specifically, for any one of the Winter-Spring sequences.

AUTUMN

IHUM 46. Visions of Mortality — Anyone reading this is alive, and so will someday die. Issues arising from these facts of life and death beginning with the most fundamental questions arising from first-person confrontation with thoughts of one’s own mortality. Is death bad for a person, and if so, why? What can the badness or the indifference of death tell us about what makes life good? If death is the permanent end of existence, does this make human choices arbitrary, and life meaningless? GER: IHUM-1
5 units, Aut (Barrett, Bobonich)
IHUM 51. Transformations: The Intersection of High Art and Contemporary Culture—Othello, Zarathustra, and enlightenment humanism from initial occurrences through moments of reemergence in the 20th-century Western imagination. Transformations across media and contributions to modern constructions of the self and the human condition. GER:IHUM-1
5 units, Aut (Hinton, Stephens)

IHUM 53. Representing Nature: The Boundaries of the Human—The place of human beings in the natural world as influenced by values, beliefs, and cultures, all of which change over time. How modern writers represent and conceptualize the natural world, and how human beings include themselves as part of the natural world or define themselves against it. GER:IHUM-1
5 units, Aut (Nightingale, White)

IHUM 55. The Literature of Crisis—Most human lives contain major turning points or crises that transform an individual’s development. Classical, medieval, and Renaissance texts illustrating crises in the lives of authors and characters, and cultural crises that have altered the course of human history. Emphasis is on the conceptual framework to understand and cope with crisis. GER:IHUM-1
5 units, Aut (Evans, McCall)

IHUM 56. Old World Encounters: Civilizations in Dialogue Before the Modern Age—Five moments of intellectual encounter among the far-flung civilizations of the eastern hemisphere in the premodern and early modern eras. Readings are landmark works of cultural translation and ethnographic analysis, penned by scholar travelers from across the old world, and associated with large-scale cultural movements that refashioned the human landscapes of the eastern hemisphere. GER:IHUM-1
5 units, Aut (Lewis, Wigen)

IHUM 57. The Human and The Machine—Shifting boundaries between the mechanical and the human: how humans connect and interact with machines, and how they may be conceived, designed, and manipulated as machines. This history of thinking about people, society, and machines from Plato and his antecedents to contemporary dilemmas over biotechnology. Paradigms include ethical issues concerning biological and social engineering and creationist arguments for intelligent design that reveal the work of God. GER:IHUM-1
5 units, Aut (Lowood, Schnapp, Shanks)

IHUM 61. Race, Gender, and the Arts of Survival—How do men and women survive physically, intellectually, creatively, and spiritually? Survival as represented in works that model strategies to overcome physical deprivation including enslavement, castration, religious persecution, and gender discrimination. How to survive the constraints of gender, race, nation, and history: for what purpose and at what cost does one survive? What are the possibilities for effecting social and personal change? Genres include drama, fiction, epistolaries, and a slave narrative. GER:IHUM-1
5 units, Aut (Elam, Elam)

IHUM 62. Conflict, Cooperation, and Human Nature—Forms of social interaction and their relationship with what makes people human. Focus is on the construction of family systems, warfare, and slavery as uniquely human activities. How people manipulate classifications such as the nonhuman in an effort to define a potential spouse, an opponent in war, or a slave. Sources include anthropology, history, and comparative perspectives. GER:IHUM-1
5 units, Aut (Hilde, Jones)

IHUM 63. Freedom, Equality, Difference—Which freedoms should a just society promote and which should be curtailed for the sake of justice? What equalities properly concern government and how can the achievement of equality be reconciled with respect for freedom? What roles should social and political institutions take in guaranteeing freedom and equality? Focus is on interdisciplinary inquiry including political philosophy, education, literature, history, and law. Abstract ideas and case histories, using one to shed light on the other. GER:IHUM-1
5 units, Aut (Callan, Palumbo-Liu, Satz)

IHUM 64. Journeys—Works spanning 2,300 years, diverse cultural and historical situations, and different forms and genres, and which present essential aspects of the journey from birth to death. These texts trace moral, spiritual, and emotional passages within that one great journey, passages that challenge and transform people as they advance toward what poet Thomas Gray called the inevitable hour. GER:IHUM-1
5 units, Aut (Woff, Yearley)

WINTER-SPRING SEQUENCES

IHUM 2. Epic Journeys, Modern Quests—Two quarter sequence. Great religious, philosophical, and literary texts that have addressed timeless questions about human identity and the meaning of human life. Focus is on the epic tradition in the ancient and classical worlds and its transformations or abandonment in modernity. Compares conceptions of the afterlife. How traditions about the afterlife are created and appropriated. The diminished importance of the dead and increased emphasis on the power of the living in literary genres. GER:IHUM-2,3
IHUM 3. 5 units, Win (Freccero, Harrison)
IHUM 3. 5 units, Spr (Edelstein, Landy)

IHUM 5A.B. Worlds of Islam: Global History and Muslim Societies—Two quarter sequence. Chronological and geographical overview of times and places in which Islam has been the dominant cultural framework. Elements of the Muslim faith and its related political, social, and cultural practices from the 7th-century rise of Islam to the recent past. Geographic range includes the historic Arab heartland of Islam, Africa, Persia, the Ottoman Empire, and Central Asia. GER:IHUM-2,3
IHUM 5A: 5 units, Win (Beinin, Crews, Hanretta, Rodrigue)
IHUM 5B: 5 units, Spr (Beinin, Crews, Hanretta, Rodrigue)

IHUM 8A,9A. Myth and Modernity: Culture in Germany—Two quarter sequence. The tension between tradition and progress through an examination of German cultural history. The experience of modernity typically involves overcoming or denying the past, but that same past can return to haunt the present in the form of myths. The interplay of myth and modernity, the irrationality of narrative, and the reason of progress, through the example of German culture, especially in literature, from the heroic epics of the medieval era through the catastrophes of the last century. GER:IHUM-2,3
IHUM 8A: 5 units, Win (Berman)
IHUM 9A: 5 units, Spr (Eshel, Strum)

IHUM 23A.B. The Fate of Reason—Two quarter sequence. The historical fate of Socrates’ proposal that only reason can provide answers to questions of what to believe and how to act. The fate of reason in cultural contexts including medieval Christian, Islamic, and Jewish. Themes include free will, personal identity, the authority of morality, and the tension between reason as power for improving life and as insufficient means for reaching important truths. GER:IHUM-2,3
IHUM 23A. 5 units, Win (Bobonich)
IHUM 23B. 5 units, Spr (Hussain)
IHUM 25A,B. Art and Ideas: Performance and Practice — Two quarter sequence. Issues in aesthetics and performance through examples from the classical age to the present. Concepts of art and practice intersecting with topics such as imitation, instruction through pleasure, the creative process, perception, social analysis, and embodiment as a form of knowledge. Texts and performances from drama, dance, music, visual arts, and performance art practices that reflect aesthetic ideas. GER:IHUM-2,3
 IHUM 25A. 5 units, Win (Rayner)
 IHUM 25B. 5 units, Spr (Ross)

IHUM 27A,B. Encounters and Identities — Two quarter sequence. The formation of ideas about individual and collective identities in S. Africa, W. Europe, and the U.S. Contemporary ideas about identity, including national, racial, ethnic, and gender identity; historical encounters and social transformations linking these areas. Challenging popular assumptions about the origins of identities through similarities and differences among ideas of individual and collective identity in different regions of the world. GER:IHUM-2,3
 IHUM 27A. 5 units, Win (Ferguson)
 IHUM 27B. 5 units, Spr (Collier)

IHUM 28A,B. Poetic Justice: Order and Imagination in Russia — Two quarter sequence. The difference between justice and law in 19th- and 20th-century Russian writers. Focus is on the notion of poetic justice: the artistic representation of order whether divine, natural, or human. Goal is to heighten awareness of familiar narratives, mythologies, ideas, and images, and to convey a sense of a long-established national culture with its own dynamic vision. GER:IHUM-2,3
 IHUM 28A. 5 units, Win (Safran)
 IHUM 28B. 5 units, Spr (Freidin)

IHUM 31A,B. Ancient Empires — Two quarter sequence. A decisive place and period in world history: the Mediterranean basin from 800 B.C. to 400 A.D. Great empires (Assyria, Persia, Macedonia, and Rome) were carved out in war and changed the course of human development. Why did these empires arise when and where they did, how did they work, and what is their legacy? Their economic, religious, and artistic achievements balanced against genocide, enslavement, and warfare using evidence from ancient literature and archaeology, and tracing the roles of religion, property, and freedom. What they mean for the world today. GER:IHUM-2,3
 IHUM 31A. 5 units, Win (Morris)
 IHUM 31B. 5 units, Spr (Trimble)

IHUM 37A,B. Literature into Life: Alternative Worlds — Two quarter sequence. The genres of poetry, drama, and fiction from the Renaissance to the present day, focusing on the relationship between art and life. How does literature come alive on the page? What goes into a vivid representation of lived social experience? How do writers respond to historical crises? Parallel cases from art and music. GER:IHUM-2,3
 IHUM 37A. 5 units, Win (Riggs)
 IHUM 37B. 5 units, Spr (Felshtiner)

IHUM 68A,B. Approaching Religion: Tradition, Transformation, and the Challenge of the Present — Two quarter sequence. Challenges facing the world’s religions in responding to issues such as globalization, feminism, science, pluralism, and individualism. How Judaism, Buddhism, and Islam changed or resisted change in their founding moments. Encounters between these religious traditions and the forces of contemporary social change. GER:IHUM-2,3
 IHUM 68A. 5 units, Win (Fonrobert, Zimermann)
 IHUM 68B. 5 units, Spr (Eisen)

PROGRAM IN STRUCTURED LIBERAL EDUCATION

Track Chair: Mark Mancall (History)

Structured Liberal Education (SLE) offers students an intensive, three-quarter, residence-based learning experience, which simultaneously satisfies the IHUM requirement, both of the University Writing and Rhetoric requirements, and the General Education Requirement in the humanities (GER:DB-Hum).

SLE encourages students to live a life of ideas in an atmosphere that stresses critical thinking and a tolerance for ambiguity. The residence hall is the informal setting for lectures and small-group discussions. SLE instructors work closely with students and participate in dorm life. SLE enhances the classroom experience with other residence-based educational activities: a weekly film series throughout the year and a student-produced play each quarter.

SLE students receive intensive and individualized writing instruction from a team of instructors and peer writing tutors. See the “Structured Liberal Education” section of this bulletin.

9 units, Aut, Win, 10 units, Spr (Mancall, Staff)

TAUBE CENTER FOR JEWISH STUDIES

Program Director: Steven Zipperstein
Associate Program Director: Vered Shemtov
Academic Advisory Committee: Zachary Baker (Stanford University Libraries), Joel Beinin (History), Arnold Eisen (Religious Studies), Amir Eshel (German Studies), John Felshtiner (English), Charlotte Fonrobert (Religious Studies), Adriane Leveen (Religious Studies), Mark Mancall (History), Norman Naimark (History), Jack Rakove (History), Aron Rodrigue (History), David Rosenhan (Law; emeritus), Gabriella Safran (Slavic Languages and Literatures), Vered Shemtov (Division of Language and Literature), Peter Stansky (History), Sam Wineburg (Education), Amir Weiner (History), Steven Zipperstein (History)

Center Offices: Building 240, Room 203
Mail Code: 94305-2190
Phone: (650) 723-7589
Email: jewish.studies@stanford.edu
Web Site: http://www.stanford.edu/dept/jewishstudies/

Courses in Jewish Studies have the subject code JEWISHST. For a complete list of subject codes, see Appendix.

The Taube Center for Jewish Studies investigates all aspects of Jewish life in history, literature, language, and culture from biblical times to the present. Courses are offered on the undergraduate and graduate levels in a program complemented by a full range of guest lectures, conferences, and symposia. The Center annually sponsors the Donald and Robin Kennedy Undergraduate Award for the best undergraduate essay on any theme in Jewish Studies, and it coordinates the annual Dorot Travel Grants for summer study in Israel.

Graduate students enroll in the program through the departments of English, History, or Religious Studies, and must meet the requirements of those departments.

UNDERGRADUATE PROGRAMS

INDIVIDUALLY DESIGNED MAJOR

The Individually Designed Major in Jewish Studies permits interested students to focus their attention on the broad field of Jewish Studies and, at the same time, to expand their knowledge of one or another related fields.

Each major should complete at least 75 units, all in courses at or above the 100 level (or their equivalent). A maximum of 15 of these 75 units may be taken on a credit/no credit basis. A maximum of 5 of these 75 units may...
be taken in individual study or directed reading. Students must present evidence that demonstrates their ability to do independent work and have at least three full quarters of undergraduate work remaining at Stanford after the date on which the proposal is approved by the committee. Each major must obtain sponsorship from three faculty members, one of whom is the student’s primary adviser, and from one of the Directors of the Taube Center for Jewish Studies. Details about the written procedures and documents necessary for application for an individually designed major can be obtained at the Undergraduate Advising Programs, Sweet Hall, first floor, (650) 723-2426.

REQUIREMENTS
The faculty members in Jewish Studies have designed the following structure for the major:

<table>
<thead>
<tr>
<th>Category</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>History and Society:</td>
<td></td>
</tr>
<tr>
<td>Students must take one course in each of the three periods:</td>
<td></td>
</tr>
<tr>
<td>biblical and ancient, medieval and modern, and contemporary</td>
<td>20</td>
</tr>
<tr>
<td>Religion:</td>
<td></td>
</tr>
<tr>
<td>Biblical, rabbinic, medieval, modern</td>
<td>20</td>
</tr>
<tr>
<td>Literature:</td>
<td></td>
</tr>
<tr>
<td>Hebrew, Holocaust, American Jewish</td>
<td>15</td>
</tr>
<tr>
<td>Hebrew Language (second year or beyond):</td>
<td></td>
</tr>
<tr>
<td>Students who demonstrate by examination that they have completed the equivalent of at least two years of university-level Modern Hebrew may apply the 12 units required in this category to more work in one or the other categories required by the major, with the approval of their primary adviser.</td>
<td>12</td>
</tr>
<tr>
<td>Ancillary Courses:</td>
<td></td>
</tr>
<tr>
<td>Ancient history, medieval history, modern European history, history of philosophy, Islam, Christianity</td>
<td>8-10</td>
</tr>
<tr>
<td>Total number of units required:</td>
<td>75-77</td>
</tr>
</tbody>
</table>

Students planning an Individually Designed Major in Jewish Studies are also strongly urged to write an honors thesis. Students interested in majoring in Jewish Studies should discuss this with their adviser(s) when discussing the major itself. Up to 10 honors thesis units may be included in the major.

No course proposed for the major may be counted as fulfilling more than one required category in the proposed major. Transfer credits from other universities must be approved by the appropriate Stanford authorities.

MINORS
The Jewish Studies minor is open to students in any department who wish to enrich their studies through an acquisition of knowledge in Jewish history, thought, religion, literature, and society. Students must complete their declaration of the minor no later than the last day of the quarter four quarters before degree conferral. For example, a student graduating in Spring Quarter must declare the minor no later than the last day of Spring quarter of the junior year.

Students must complete six courses for a maximum of 36 units toward the minor. All courses of study should be discussed and approved by a Jewish Studies faculty member in the departments of English, History, or Religious Studies, and by the program director. In addition to suggested introductory courses, students are also encouraged to take courses in Hebrew language as part of their Jewish studies minor, and are granted credit toward the minor for up to 5 units of language study. Any variations on the minor requirements must be approved in advance by the Director of the Program in Jewish Studies.

Courses credited toward the minor must be distributed as follows:
1. Three introductory courses at the 100 level or below in the fields of history, religious studies, literature, or Hebrew language (for a maximum of 5 units) or one of the designated introductory courses offered through the Program in Comparative Studies in Race and Ethnicity.
2. Two courses at the 100 level or above from two of three areas of concentration (history, religious studies, or literature).
3. One seminar or undergraduate colloquium at the 200 level or above in one area of concentration (history, religious studies, or literature.) No course credited toward the Jewish Studies minor may be double counted toward major requirements.

COURSES

HEBREW LANGUAGE COURSES
The following courses in Hebrew language instruction are offered by the Language Center. For descriptions, other information, and additional courses including special emphasis, intensive, and summer courses, see the “Language Center” section of this bulletin.

- **AMELANG 128A,B,C. Beginning Hebrew**
 4 units, A: Aut, B: Win, C: Spr (Shemtov)

- **AMELANG 129A,B,C. Intermediate Hebrew**
 2-4 units, A: Aut, B: Win, C: Spr (Porat)

- **AMELANG 130A,B,C. Advanced Hebrew**
 1-4 units, A: Aut, B: Win, C: Spr (Shemtov)

JEWSH STUDIES

- **JEWISHST 101A,B,C. Beginning Yiddish**
 — Reading, writing, and speaking.
 1-5 units, A: Aut, B: Win, C: Spr (Glaser)

- **JEWISHST 104. Resistance Writings in Nazi Germany**
 — Stanford Introductory Seminar. Preference to freshmen. The letters and diaries of individuals who resisted Nazi oppression and paid with their lives. Readings include the Scholl diaries, Bonhoeffer’s letters and his Ethics, and letter exchanges from other crucial figures. No knowledge of German required; students may read texts in original if able. GER:DB-Hum
 4 units, Aut (Bernhardt)

- **JEWISHST 199A,B,C/299A,B,C. Directed Reading in Yiddish**
 (Graduate students register for 299A,B,C.) For intermediate or advanced students. May be repeated for credit.
 1-5 units, A: Aut, B: Win, C: Spr (Staff)

- **JEWISHST 235C. Identity/Memory: The Jewish Image in German Cinema**
 — (Same as GERLIT 239.) Post-Cold War German cinema about Jewish contributions to German society, German resistance to the Nazis, and Jewish normalization in German. Perspectives on the sociopolitical position of Jews in German history. The emotional reality of the Jewish collective experience of assimilation, betrayal, displacement, and memory. Sources include dramatic, documentary, pre-WW II, and W. and E. German films. In English.
 4 units, Win (Plotkin)

- **JEWISHST 245A. Modern and Contemporary Hybrid Narratives**
 4 units, Aut (Bradford)

- **JEWISHST 247A. Translation and the Rise of Jewish Literatures in Modern Times**
 — Translation theory, the linguistic diversity faced by Jewish communities, and the role of translations and adaptations of foreign language texts in the development of modern Yiddish, Ladino, and Hebrew literatures.
 4 units, Spr (Borovaya)

- **JEWISHST 247B. Introduction to Ladino Literature**
 — Origins and evolution during the two centuries of its existence. Ladino texts in English translation. Spanish-speaking students read some texts in romanized Ladino transliteration.
 4 units, Win (Borovaya)

- **JEWISHST 253/353. Globalization, Middle East Regional Dilemmas, and Israel**
 — (Graduate students register for 353.) The impact of globalization on Middle Eastern issues, emphasizing Israel. How Israel is adapting to these changes; their effects on relationships with the UN, WTO, OECD, U.S., and EU, and on regional processes including the peace process, the disengagement plan, and strategies for a more secure Middle East.
 4 units, Aut (Matias)
INTERDEPARTMENTAL OFFERINGS
AFRICAN AND MIDDLE EASTERN LANGUAGES
AMELANG 126. Reflection on the Other: The Jew in Arabic Literature, the Arab in Hebrew Literature
4 units, Win (Barhoum, Shemtov)
AMELANG 172. From Agnon to Yehoshua and Oz
1-4 units, Aut (Shemtov)

FEMINIST STUDIES
FEMST 139. Rereading Judaism in Light of Feminism
4-5 units, Spr (Karlin-Neumann)

GERMAN LITERATURE
GERLIT 289. History, Memory, and Cultural Discourse in Germany, Austria, and Israel
5 units, Spr (Eshel)
GERLIT 299. Present Pasts: History, Fiction, Temporality
5 units, Win (Eshel, White)

HISTORY
HISTORY 137/337. The Holocaust
5 units (Rodrique) not given 2005-06
HISTORY 185B. Jews in the Modern World
5 units, Spr (Zipperstein)
HISTORY 216/316. Medieval Antisemitism
5 units (Buc) not given 2005-06
HISTORY 229/329. Poles and Jews
5 units, Spr (Jolluck)
HISTORY 286/386. Jews and Muslims
5 units (Rodrique) not given 2005-06
HISTORY 385A. Core in Jewish History, 17th-19th Centuries
4-5 units, Aut (Rodrique)
HISTORY 385B. Core in Jewish History, 20th Century
4-5 units, Win (Zipperstein)
HISTORY 387. Research Methods in Jewish Studies
4-5 units, Win (Z. Baker)
HISTORY 486A. Graduate Research Seminar in Jewish History
4-5 units, Spr (Rodrique)

RELIGIOUS STUDIES
RELIGST 2N. Prophecy and Politics in America: The Thought of Abraham Joshua Heschel and Martin Luther King, Jr.
3 units, Spr (Eisen)
RELIGST 5N. Three Sacred Stories of Judaism, Christianity, and Islam
3 units, Aut (Gregg)
RELIGST 15. Introduction to the World of the Hebrew Bible
4 units, Aut (Leveen)
RELIGST 23. Introduction to Judaism
4 units, Win (Leveen)
RELIGST 112. Handmaids and Harlots
4 units (Leveen, Pitkin) not given 2005-06
RELIGST 123. Judaism in Late Antiquity
4 units, Spr (Fonrobert)
RELIGST 133. Reading the Bible Today
4 units (Leveen) not given 2005-06
RELIGST 170C. Reading in Biblical Hebrew
4 units, Spr (Leveen)
RELIGST 185. Prophetic Voices of Social Critique
4 units (Leveen) not given 2005-06
RELIGST 221. Modern Judaism
5 units (Eisen) not given 2005-06
RELIGST 232. God: A Biography
4 units, Spr (Leveen)
RELIGST 321. Modern Judaism
5 units (Eisen) not given 2005-06

SLAVIC GENERAL
SLAVGEN 123/223. The Yiddish Novel
3-4 units, Spr (Glaser)
LANGUAGE CENTER

Director: Elizabeth Bernhardt
Associate Director: Joan Mollitoris
Assistant Director: Patricia de Castries

African and Middle Eastern Languages

Senior Lecturer, Coordinator, and Minor Adviser: Khalil Barhoum (Arabic Language and Literature)
Lecturers: Salem Aweiss, Gillian Jackden (Fulbright Scholar), Jacob Lubuva (Fulbright Scholar), Angaluki Muaka, Gallia Porat, Ramzi Salti, Vered Shemtov, Ahmed Tayel (Fulbright Scholar)
Chinese Language
Associate Professor and Coordinator: Chao Fen Sun (Asian Languages)
Lecturers: Marina Chung, Sik Lee Dennig, Nina Lin, Yu-hwa Liao Rozelle, Huazhi Wang, Hong Zeng, Youping Zhang, Qi Zhu
English for Foreign Students
Lecturers and Coordinator: Philip Hubbard (Linguistics)
Lecturers: Carole Mawson, Constance Rylance, Carol Shabrami, Keli Yerian
French Language
Senior Lecturer: Nelee Langmuir
Lecturers: Olubunni Ashaolu, Jane Dozer-Rabedee, Heather Howard, Beatrice Le Teuff, Sylvie Palumbo-Liu, Tanya Shashko, Kenric Tsethlikai (Coordinator)
German Language
Coordinator: Elizabeth Bernhardt (Director, Language Center)
Senior Lecturers: William E. Petig, Kathryn Strachota (on leave Spring)
Italian Language
Senior Lecturers: Maria Devine, Annamaria Napolitano (Coordinator; on leave Autumn)
Lecturers: Marta Baldocchi, Sara Gelmetti (Acting Coordinator), Giovanni Tempesta
Japanese Language
Associate Professor and Coordinator: Yoshiko Matsumoto (Asian Languages)
Senior Lecturer: Kazuko M. Busbin
Lecturers: Fumiko Aroa, Momoe Saito Fu, Hisayo O. Lipton (Deputy Coordinator), Momoyo K. Lowdermilk, Kiyomi Nakamura, Yoshiko Tomiyama
Korean Language
Lecturer and Coordinator: Hee-Sun Kim
Portuguese Language
Senior Lecturer: Ana Isabel Delgado
Slavic Language
Senior Lecturer: Rima Greenhill
Lecturer and Coordinator: Eugenia Khassina
Spanish Language
Senior Lecturer: Irene Corso
Lecturers: Amy Alexander, Vivian Brates, Anna Cellinese, Candy Guzmán, Caridad Kenna, Alice Miano (Coordinator), Joan Mollitoris (Associate Director, Language Center), Consuelo Perales, Ana M. Sierra, María Cristina Urruela, Celinés Villalba-Rosado, Hae-Joon Won, Ana Zaragoza
Special Language Program
Lecturer and Coordinator: Eva Prionas (Modern Greek Language and Literature)
Lecturer: Cathy Haas, Ony Jamhari (Fulbright Scholar)
Language Center Offices: Building 30
Mail Code: 94305-2015
Department Phone: (650) 725-9222
Email: patricia@stanford.edu
Web Site: http://language.stanford.edu

Courses given in the Language Center have one of the following subject codes: AMELANG, APPLLING, CHINLANG, EFSLANG, FRENLANG, GERLANG, ITALLANG, JAPANLNG, KORLANG, PORTLANG, SLAVLANG, SPANLANG, and SPECLANG. For a complete list of subject codes, see Appendix.

The Stanford Language Center was created to oversee all language instruction at Stanford. The Center’s charge is to guarantee that Stanford language programs are of the highest quality; to develop and administer achievement and proficiency tests needed to implement the language requirement; to provide technical assistance and support to the graduate students, lecturers, and faculty who deliver Stanford’s language instruction; and to take leadership in research and development efforts in language learning. The Language Center is a unit within the Division of Literatures, Cultures, and Languages.

UNDERGRADUATE PROGRAM

MINOR IN MIDDLE EASTERN LANGUAGES, LITERATURES, AND CULTURES

The undergraduate minor in Middle Eastern Languages, Literatures, and Cultures has been designed to give students majoring in other departments an opportunity to gain a substantial introduction to the Arabic and Hebrew languages, as well as an introduction to the cultures and civilizations of the Middle East. Contact the minors adviser before declaring at khalil@stanford.edu.

Students declaring a minor must do so no later than the last day of the fourth quarter before degree conferral. For example, students graduating in June (Spring Quarter) must declare the minor no later than the last day of Spring Quarter of their junior year. If a student is not able to meet this deadline, he or she may petition the Language Center director and request a revised declaration date, which may be granted at the director’s discretion.

The requirements for a minor in Middle Eastern Languages, Literatures, and Cultures are:

1. Completion of six courses in either Track A, Cultural Studies, or Track B, Language Studies.
2. Courses for the minor must be taken for a letter grade unless only offered for faculty-elected satisfactory/no credit.
3. All courses must be completed with a letter grade of ‘C’ or better.
4. Courses may not overlap with those taken for a major course of study.
5. Courses taken which also fulfill a GER count toward fulfilling both minor and GER requirements.
6. Students pursuing Track B, Cultural Studies, must complete the prerequisite of Beginning Arabic or Hebrew, or demonstrate equivalent competence.

CULTURAL STUDIES TRACK

Requirements are:

1. Successful completion of the prerequisite, Beginning Arabic or Hebrew, or a demonstrated equivalent competence.
2. Completion of three non-language AME program courses.
4. Course work from GER courses may be used to fulfill the unit requirements for the minor.

LANGUAGE TRACK

Requirements are:

1. Successful completion of the prerequisite, Beginning Arabic or Hebrew, or a demonstrated equivalent competence.
2. Completion of one year of language study at the intermediate level (AMELANG 121A,B,C for Arabic, or AMELANG 129A,B,C for Hebrew).
3. Completion of three non-language related courses. Consult the minor adviser for course options.
GRADUATE PROGRAM
Ph.D. MINOR IN APPLIED LINGUISTICS

The Ph.D. minor in Applied Linguistics has been designed to give students the opportunity to examine and explore language as it pertains to teaching, learning, translation, education, and language policies.

The Ph.D. minor requires the completion of no less than 30 units of unduplicated course work. Course work must include LINGUIST 201 (Foundations of Linguistic Analysis, 4 units). At least one additional Linguistics course must also be taken. Courses taken for the minor must be incremental units beyond those used to satisfy the major (with the exception of Linguistics 201 for Linguistics students). At least 20 of the 30 units must be at the 200 level or above. Students may also supplement their Applied Linguistics training with an array of courses from the departments of Cultural and Social Anthropology, Linguistics, and Spanish and Portuguese.

Overlapping applied linguistics concentrations are available in Learning, Teaching, and Translation of Second Languages; and in Educational and Policy Applications of Linguistics.

Some suggested courses relevant to each track are listed below the track description; a more complete listing of courses which are appropriate for the minor can be found on the Language Center’s web site at http://language.stanford.edu/.

Students in either track should develop a program of study in consultation with an academic adviser and submit the proposed program of study for approval by the Applied Linguistics Steering Committee.

THE LEARNING, TEACHING, AND TRANSLATION OF SECOND LANGUAGES TRACK

This overall program concentration requires general reading in second language acquisition (SLA) and/or translation while offering students course work in the following areas:

1. Second language acquisition in instructed contexts
2. Elements of curricular design for university and college settings
3. The acquisition of second language literacy
4. The use of technology to enhance student performance
5. Linguistics and the teaching of foreign languages
6. Theoretical foundations in the translation of various languages

Course No. and Subject Units
APPLLING 201. The Learning and Teaching of Second Languages 3
APPLLING 202. Workshop in Technology 3
APPLLING 203/SPANLIT 300. Issues and Methods in the Teaching of Heritage Languages 3.5
LINGUIST 189/289. Linguistics and the Teaching of English as a Foreign Language 4.5
LINGUIST 140/240. Language Acquisition I 4

EDUCATIONAL AND POLICY APPLICATIONS OF LINGUISTICS TRACK

This concentration is oriented toward a combination of conceptual and research foci regarding language minority populations and their educational welfare. The education of women, low-income, and language minority populations receive primary attention within this concentration.

Course No. and Subject Units
EDUC 249. Theory and Issues in the Study of Bilingualism 3-4
EDUC 275. African American English in Educational Context 3-4
EDUC 277. Education of Immigrant Students: Psychological Perspectives 4
EDUC 289. Introduction to Linguistics for Educational Researchers 4
EDUC 335X. Language Policy and Planning: National and International Perspectives 3
EDUC 435X. Research Seminar in Applied Linguistics 2-4
LINGUIST 73/273. African American Vernacular English 4
LINGUIST 150. Language in Society 4-5
LINGUIST 159. Language in the U.S. 3-5
LINGUIST 250. Sociolinguistic Theory and Analysis 4-6

COURSES

Offerings in this section are ordered as follows:

Applied Linguistics (APPLLING)
African and Middle Eastern Languages (AMELANG)
Chinese (CHINLANG)
English for Foreign Students (EFSLANG)
French (FRENLANG)
German (GERLANG)
Italian (ITALLANG)
Japanese (JAPANLNG)
Korean (KORLANG)
Portuguese (PORTLANG)
Russian (SLAVLANG)
Spanish (SPANLANG)
Special Languages (SPECLANG)

Students interested in general courses concerning languages, cultures, and literatures, or in advanced study of language and literature should consult the following departments and subject codes:

Asian Languages (CHINGEN, CHINLIT, JAPANGEN, JAPANLIT)
French and Italian (FRENGEN, FRENLIT, ITALGEN, ITALLIT)
German Studies (GERGEN, GERLIT)
Spanish and Portuguese (SPANLIT, PORTLIT)
Slavic Languages and Literatures (SLAVGEN, SLAVLIT)

APPLIED LINGUISTICS (APPLLING)

APPLLING 201. The Learning and Teaching of Second Languages — (Same as GERGEN 201.) Teaching second languages from a learning perspective rather than traditional teaching methods. Focus is on instructional decision making within the context of student intellectual and linguistic development in university settings to different populations.

Readings in second-language acquisition.

3 units, Spr (Bernhardt)

Hands-on, project-based.

3 units, Spr (Kautz)

APPLLING 203. Issues and Methods in the Teaching of Heritage Languages — (Same as SPANLIT 300.) Teaching Spanish to students raised in Spanish-speaking homes. Issues include language variation in the Spanish-speaking world, English/Spanish bilingualism in the U.S., and second dialect acquisition. Techniques for developing the academic Spanish language skills of heritage students.

3-5 units, Spr (Valdés)

APPLLING 297. Directed Reading — Search for instructor on Axess. May be repeated for credit. Prerequisite: consent of instructor.

1-4 units, Aut, Win, Spr (Staff)

AFRICAN AND MIDDLE EASTERN LANGUAGES AND LITERATURES (AMELANG)

The African and Middle Eastern Languages and Literatures Program offers a number of African languages not regularly taught at Stanford. Based on current funding and student requests, the courses planned for 2005-06 are listed below. Additional languages may still be offered upon request, provided funding is available. Requests for the 2006-07 academic year should be made by Spring Quarter of this year at the AME program office, Building 40, Room 42B.

All beginning-level, three-unit courses are offered on a S/NC basis only. Intermediate-level and four-unit courses are offered with a grading option. Beginning and intermediate each refer to an academic year’s sequence of language study. Most three-unit language courses are offered for a two-year, three quarter sequence:
AMELANG 100A,B,C. Beginning Amharic
3 units, A: Aut, B: Win, C: Spr (Staff)

AMELANG 101A,B,C. Intermediate Amharic
3 units, A: Aut, B: Win, C: Spr (Staff)

AMELANG 102A,B,C. Advanced Amharic
3 units, A: Aut, B: Win, C: Spr (Staff)

AMELANG 106A,B. Beginning Swahili
4 units, A: Aut, B: Win, C: Spr (Labuva, Muaka)

AMELANG 107A,B. Intermediate Swahili
2-4 units, A: Aut, B: Win, C: Spr (Staff)

AMELANG 108A,B,C. Advanced Swahili
2-4 units, A: Aut, B: Win, C: Spr (Muaka)

AMELANG 112A,B,C. Advanced Wolof
3 units, A: Aut, B: Win, C: Spr (Staff)

AMELANG 133A,B,C. The African Forum
1 unit A: Aut, B: Win, C: Spr (Muaka)

AMELANG 134A,B. Beginning Igbo
3 units, A: Aut, B: Win, C: Spr (Staff)

AMELANG 147A,B,C. Beginning Bambara
3 units, A: Aut, B: Win, C: Spr (Staff)

AMELANG 153A,B,C. Beginning Twi
3 units, A: Aut, B: Win, C: Spr (Staff)

AMELANG 156A,B,C. Beginning Zulu
3 units, A: Aut, B: Win, C: Spr (Staff)

AMELANG 182A,B,C. Intermediate Fulani
3 units, A: Aut, B: Win, C: Spr (Staff)

AMELANG 183A,B,C. Beginning Hausa
3 units, A: Aut, B: Win, C: Spr (Jackden)

AMELANG 186A,B,C. Beginning Yoruba
3 units, A: Aut, B: Win, C: Spr (Ashaolu)

MIDDLE EASTERN LANGUAGES COURSES

AMELANG 50A,B,C. Reading Hebrew — Introduction to Hebrew literature through short stories and poetry by notable Israeli writers. In Hebrew. Prerequisite: one year of Hebrew or equivalent.
2-4 units, A: (Staff) not given 2005-06, B: Win (Shemtov), C: (Shemtov) not given 2005-06

AMELANG 51A. Reading Biblical Hebrew
2 units, Win (Staff)

AMELANG 120A,B,C. Beginning Arabic — Emphasis is on reading and writing standard Arabic (fusha).
5 units, A: Aut, B: Win, C: Spr (Aweiss, Barhoum, Salti)

2-5 units, A: Aut, B: Win, C: Spr (Aweiss, Salti)

AMELANG 122A,B,C. Advanced Arabic — Grammar and syntax. Complex texts and articles from the Arabic press. Oral reports, written assignments, and audiovisual aids including the Arabic Internet. Films and cultural productions.
2-5 units, A: Aut, B: Win, C: Spr (Salti)

AMELANG 126. Reflection on the Other: The Jew in Arabic Literature, the Arab in Hebrew Literature — How literary works outside the realm of western culture struggle with questions such as identity, minority, and the issue of the other. How the Arab is viewed in Hebrew literature and how the Jew is viewed in Arabic literature. Historical, political, and sociological forces that have contributed to the shaping of the writer’s views. Arab and Jewish (Israeli) culture. GER: DB-Hum, EC-GlobalCom
4 units, Win (Barhoum, Shemtov)

AMELANG 127. Land and Literature — Israel has captured the imagination of writers throughout the generations. It has been portrayed as promised land, holy land, homeland, empty land, occupied land, and land of dreams. Ideological views and political events have shaped writers’ conception of Israel. Readings include poems and prose by Hebrew/Israeli authors in translation, and theoretical texts about place and literature. No knowledge of Hebrew required. GER:DB-Hum, EC-GlobalCom
4 units (Shemtov) not given 2005-06

AMELANG 128A,B,C. Beginning Hebrew
5 units, A: Aut, B: Win (Shemtov), C: Spr (Porat)

AMELANG 129A,B,C. Intermediate Hebrew
2-4 units, A: not given 2005-06, B: Win, C: Spr (Porat)

AMELANG 130A,B,C. Advanced Hebrew
1-4 units, A: not given 2005-06, B: Win, C: Spr (Porat)

2 units (Shemtov) not given 2005-06

AMELANG 161. The Contemporary Arab World and Culture through Literature — Readings from prominent authors dealing with cultural topics such as gender and women, kinship and social concepts, nationalism, and religion. Texts delineating the cultural uniqueness of the Arab world include works by Naguib Mahfouz, Nawal El-Saadawi, Ghassan Kanafani, Tayyeb Salih, Etel Adnan, and short stories and poetry. No knowledge of Arabic required; extra unit for readings in Arabic. Limited enrollment. GER:DB-Hum, EC-GlobalCom
4-5 units, (Barhoum)

AMELANG 162. Arab Women Writers and Issues — Fiction and non-fiction work. The major cultural factors shaping their feminist attitudes. Readings: Fatima Mernissi, Nawal El-Saadawi, Etel Adnan, Fadia Faqir, Alifa Rifaat, and Sahar Khalifeh. No knowledge of Arabic required; extra unit for readings in Arabic. Limited enrollment. GER: DB-Hum, EC-Gender
4-5 units, Win (Barhoum)

AMELANG 163. The Arab World through Travel Literature — Popular colonialist and postcolonialist portrayals of Arab culture and Islam. Recent Western depictions of Arabs and Muslims in travel literature. Readings include Flaubert in Egypt, Guests of the Sheik, Justine, Covering Islam, Nine Parts of Desire, and Motoring with Mohammed. No knowledge of Arabic required; extra unit for readings in Arabic. Limited enrollment. GER:DB-Hum, EC-GlobalCom
4-5 units, Spr (Barhoum)
CHINLANG 18,19,20. Intermediate Cantonese Conversation
2 units, 18: Aut, 19: Win, 20: Spr (Dennig)

CHINLANG 20A,B,C. Advanced Cantonese Conversation—Improving Cantonese through Hong Kong movies.
2 units, A: Aut, B: Win, C: Spr (Dennig)

CHINLANG 21,22,23. Second-Year Modern Chinese—Grammar, reading, conversation, composition. Daily sections set at the beginning of the quarter to suit schedule requirements. Prerequisite: 3 or equivalent.
5 units, 21: Aut, 22: Win, 23: Spr (Chung)

CHINLANG 21B,22B,23B. Second-Year Modern Chinese for Bilingual Students—For students with advanced comprehension and speaking skills, but lacking equivalent knowledge of grammar, reading, and writing Chinese characters. Equivalent to 21,22,23.
3 units, 21B: Aut, 22B: Win, 23B: Spr (Zhu)

CHINLANG 25. Intensive Second-Year Modern Chinese—(Graduate students register for 25A.) Equivalent to 21,22,23 combined. Five weeks at Stanford and four weeks at Peking University. Prerequisite: 3 or equivalent.
7 units, Sum (Staff)

CHINLANG 27,28,29. Intermediate Chinese Conversation—Prerequisite: 3 or consent of instructor.
2 units, 27: Aut, 28: Win, 29: Spr (Staff)

CHINLANG 99. Language Specials—Prerequisite: consent of instructor.
1-5 units, Aut, Win, Spr (Staff)

ADVANCED LANGUAGE

CHINLANG 101,102,103. Third-Year Modern Chinese—Written and spoken styles of modern Chinese. Reading and discussion of authentic writings on cultural topics; newspaper reports, radio, and TV broadcasts and films; online Chinese software and email network to facilitate study. Prerequisite: 23 or equivalent.
5 units, 101: Aut, 102: Win, 103: Spr (Wang)

CHINLANG 101B,102B,103B. Third-Year Modern Chinese for Bilingual Students—For students with advanced listening and speaking abilities, but lacking equivalent knowledge in reading and writing. Equivalent to 101,102,103.
3 units, 101B: Aut, 102B: Win, 103B: Spr (Wang)

CHINLANG 105. Intensive Third-Year Modern Chinese—(Graduate students register for 105A.) Equivalent to 101,102,103 combined. Five weeks at Stanford and four weeks at Peking University. Prerequisite: 23 or equivalent.
7 units, Sum (Staff)

CHINLANG 121,122,123. Advanced Chinese Conversation—Prerequisite: 23 or equivalent.
2 units, 121: Aut, 122: Win, 123: Spr (Chung)

CHINLANG 131,132,133. Business Chinese—Commercial, economic, and business-related vocabulary. Materials include formal business conversations, newspaper and journal articles, and TV news on trade and economic. Technical language and business etiquette. Student oral and written reports on their own research regarding recent economic developments, using sources in China. Prerequisite: 23 or equivalent.
3-4 units, 131: Aut, 132: Win, 133: Spr (Wang)

CHINLANG 200. Directed Reading—May be repeated for credit. Prerequisite: consent of instructor.
1-5 units, Aut, Win, Spr (Staff)

CHINLANG 211,212,213. Advanced Modern Chinese—Goal is to become functional speakers, readers, and writers of modern Chinese through articles and essays from newspapers, magazines, scholarly journals, and the Internet. Cultural and social science themes: students may take both themes for 5 units or one theme for reduced units. Prerequisite: three years of Chinese language.
2-5 units, 211: Aut, 212: Win, 213: Spr (Zhu)
ENGLISH FOR FOREIGN STUDENTS

These courses, numbered from 690-698, represent offerings for nonnative, English-speaking, graduate students in Autumn, Winter, and Spring quarters. Enrollment in one or more courses may be required of, or recommended to, current graduate students from other countries after they have taken the English placement examination. To enroll, students must go to http://www.stanford.edu/group/efs for directions on or before the first day of each quarter.

During the Summer Session, courses in spoken and written English are offered. Two six-week intensive courses are also offered during the summer. Summer visitors must apply directly to the EFS program.

EFSLANG 690A. Interacting in English — Strategies for communicating effectively in social and academic settings. Informal and formal language used in campus settings, including starting and maintaining conversations, asking questions, making complaints, and contributing ideas and opinions. Simulations and discussions, with feedback on pronunciation, grammar, and usage.
 1-3 units, Aut, Win (Elliott, Yerian)

EFSLANG 690B. Academic Discussion — Skills for effective participation in classroom settings, seminars, and research group meetings. Pronunciation, grammar, and appropriateness for specific tasks. Feedback on language and communication style. Prerequisite: 690A or consent of instructor.
 1-3 units, Aut, Win, Spr (Rylance, Staff)

EFSLANG 690C. Advanced Interacting in English — Communication skills for extended discourse such as storytelling and presenting supported arguments. Development of interactive listening facility and overall intelligibility and accuracy. Goal is advanced fluency in classroom, professional and social settings. Identification of and attention to individual patterned errors. Prerequisite: 690A or B or consent of instructor.
 1-3 units, Aut, Win (Yerian)

EFSLANG 691. Oral Presentation — For advanced graduate students. Practice in academic presentation skills; strategy, design, organization, and use of visual aids. Focus is on improving fluency and delivery style, with videotaping for feedback on language accuracy and usage. Prerequisite: 695A or consent of instructor.
 3 units, Aut, Win, Spr, Sum (Elliott, Yerian)

EFSLANG 692. Speaking and Teaching in English — For non-native speakers who must teach in English. Focus is on developing clarity, intelligibility, and effectiveness through weekly presentations simulating actual teaching assistant responsibilities.
 1-3 units, Aut, Win, Spr, Sum (Rylance, Yerian)

EFSLANG 693A. Listening Comprehension — Strategies for effective listening in an academic setting, focusing on identifying key ideas in lectures. Practice in understanding words and phrases commonly encountered in classroom settings. Computer-based exercises for comprehension of rapid, natural speech.
 1-3 units, Aut (Hubbard, Shabrami)

EFSLANG 693B. Listening and Communication — Listening strategies and vocabulary for understanding English in academic and non-academic contexts. Discussion and interpretation improve comprehension of communicative intent. Computer-based and video exercises; individual project. Prerequisite: 693A or consent of instructor.
 1-3 units, Aut, Win, Spr, Sum (Shabrami, Hubbard)

EFSLANG 694. Communication Strategies in Professional Life — For advanced graduate students. Task-based practice of language appropriate for professional settings in industry and related teamwork. Simulation of the roles of manager, applicant, subordinate, and coworker. Prerequisite: 693A, or consent of instructor.
 1-3 units, Win, Spr (Shabrami)

 1-3 units, Aut, Win, Spr, Sum (Mawson, Staff)

EFSLANG 695B. Advanced Pronunciation and Intonation — Continuation of 695A, focusing on American English sounds, stress, rhythm, and intonation patterns. Emphasis is on self-monitoring, integrated with short presentations. Biweekly tape assignments and tutorials. Prerequisite: 695A.
 1-3 units, Aut, Win, Spr (Elliott, Mawson)

EFSLANG 696. Understanding American Humor — Recognizing rhetorical devices, jokes, and character types common to spoken humor in the U.S. Listening practice with audio and video materials and colloquial spoken English, analysis of film and television transcripts, and crosscultural discussion. Prerequisites: 690B, 693B or consent of the instructor.
 1-3 units, Win, Spr (Rylance)

EFSLANG 698A. Writing Academic English — Preparation of graduate students to write academic papers; emphasis on fluency, organization, documentation, and appropriateness for specific writing tasks required in course work.
 1-3 units, Aut, Win, Spr, Sum (Elliott, Mawson, Rylance)

EFSLANG 698B. Advanced Graduate Writing — For graduate students experienced in English writing and currently required to write for courses and research. Class meetings and individual conferences. Prerequisite: 698A.
 1-3 units, Aut, Win, Spr, Sum (Hubbard, Shabrami, Yerian)

EFSLANG 698C. Writing and Presenting Research — For graduate students completing major research projects. Revising and editing strategies for preparing papers, conference abstracts, and poster presentations. Adapting content and style to different audiences. Students present their research with participant feedback. Prerequisites: 698B and 691 or consent of instructor.
 1-3 units, Win, Spr (Shabrami)

FRENCH LANGUAGE COURSES

FIRST- AND SECOND-YEAR FRENCH

Students registering for the first time in a first- or second-year course must take a placement test if they had any training in French before entering Stanford. All entering students must take Part I (written) of the placement test online during the summer, followed by Part II (oral), to be administered on campus September 21, 2005, in order to be placed in an appropriate course for Autumn Quarter. Consult the Language Center or http://language.stanford.edu/ for further information.

Basic French grammar and vocabulary are covered in FRENLANG 1, 2, 3. Upon completion of 3, students have acquired beginning-level functional proficiency in listening comprehension, speaking, reading, and writing in satisfaction of the University foreign language requirement. Students may continue with second-year French courses (22 or 23) or higher-level courses upon recommendation of the coordinator.
A grade of ‘C’ or better is required to enter the next course in a language sequence. Language courses may not be repeated for credit, and must be taken in sequence.

FRENLANG 1,2,3. First-Year French—Emphasis is on the development of authentic discourse appropriate to French and Francophone contexts.

5 units, Aut, Win, Spr (Ashaolu, Howard, Shashko, Tsethlikai, Staff)

FRENLANG 5A,B. Intensive First-Year French—Completes first-year language sequence in two rather than three quarters. Recommended for students with previous knowledge of French who place into 5A on the placement test. 5B fulfills the University foreign language requirement. Prerequisite: French placement test and consent of instructor.

5 units, A: Aut, Win, B: Win, Spr (Howard, Shashko)

FRENLANG 10. Beginning French Oral Communication—For students who have completed 2 or equivalent. Emphasis is on speaking skills, vocabulary, and pronunciation. May be repeated once for credit.

2 units, Aut, Win, Spr (Staff)

FRENLANG 15. Intermediate French Oral Communication—For students who have completed the first-year language requirement. May be repeated once for credit.

2 units, Aut, Win, Spr (Staff)

FRENLANG 15S. Intermediate Conversation: French in Everyday Life—Same content as 15. May be repeated once for credit. Prerequisite: one year of college French or equivalent.

2 units, Sum (Staff)

FRENLANG 20A. France and Francophonie—Second-year French conversation based on themes from the regions of France and the Francophone world. Topics include travel, food, and crosscultural comparisons. Students returning from study abroad programs are encouraged to enroll. May be repeated once for credit. Prerequisite: 3 or equivalent.

2 units, Aut, Win (Le Teuff)

FRENLANG 20B. French Cinema—Second-year French conversation based on films. Intermediate-level speaking skills and advanced-level functions. Themes include: French filmmakers, stars, and trends. Film viewing in and outside the class in French. May be repeated once for credit. Prerequisite: 3 or equivalent.

2 units, Aut, Win (Le Teuff, Staff)

FRENLANG 20C. Contemporary French Language—Second-year French conversation. Intermediate-level speaking skills and advanced-level functions for formal and informal situations. Useful for students planning to travel or study abroad. May be repeated once for credit. Prerequisite: 3 or equivalent.

2 units, Spr (Le Teuff)

FRENLANG 22. Second-Year French, Part A—Proficiency-based. Advanced-level skills including past, present, and future narration, description, and defending points of view on social and cultural issues. Topics from cultural comparisons with French and Francophone contexts. Satisfies the foreign language requirement for students majoring in English. Prerequisite: 3 or consent of coordinator.

4-5 units, Aut, Win, Spr (Dozer, Tsethlikai, Shashko, Staff)

FRENLANG 23. Second-Year French, Part B—Continuation of 22. Prerequisite: 22 or consent of coordinator.

4-5 units, Aut, Win, Spr (Dozer, Tsethlikai, Shashko, Staff)

3-4 units, Win (Howard)

FRENLANG 41A,B. Intensive First-Year French—Accelerated. Written exercises, compositions, conversational practice, and daily work. Stanford graduate students restricted to 9 units register for 241A,B.

5-10 units, Sum (Staff)

FRENLANG 50. Reading French—For seniors or graduate students seeking to meet the University reading requirement for advanced degrees. Reading strategies for comprehension of secondary literature for academic research. Recommended: one year or reading proficiency in another Romance language.

4 units, Aut (Tsethlikai)

FRENLANG 50S. Reading French—Same content as 50.

2-4 units, Sum (Staff)

ADVANCED FRENCH

FRENLANG 120. Advanced French Oral Communication—Third-year conversation. Current events and issues in France. May be repeated for credit after two quarters. Prerequisite: 23 or equivalent.

3 units, Aut, Win, Spr (Le Teuff)

FRENLANG 121. Introduction to French Texts—Advanced discussion and readings of major literary figures and themes from medieval times to the present. Prerequisite: 23 or equivalent, or consent of coordinator.

3-4 units (Palumbo-Liu) alternate years, given 2006-07

FRENLANG 122. Introduction to French Culture and Civilization—Advanced. Discussion of French art, geography, history, political change, and social institutions. Prerequisite: 23 or equivalent.

3-4 units, Win (Palumbo-Liu)

FRENLANG 123. French Creative Writing—Advanced. Model texts introduce students to genres and styles; review of grammar and vocabulary. Discussion of original writing by students. Prerequisite: 23 or equivalent.

3-4 units, Spr (Staff)

FRENLANG 124. Advanced French Grammar—Required for students majoring or minorning in French. Prerequisite: 23 or equivalent.

3-4 units, Aut, Win (Staff)

FRENLANG 125. French Phonetics—For majors and other students who plan to enroll in advanced courses. Study and practice of the French language sound system. Language lab, multimedia, and computer facilities. Prerequisite: 23 or equivalent.

3-4 units (Palumbo-Liu) alternate years, given 2006-07

FRENLANG 126. French Stylistics and Textual Analysis—For majors and minors. Writing-intensive. Control of grammar and syntax in research and argumentative papers.

3-4 units, Spr (Le Teuff)

FRENLANG 199. Language Specials—Prerequisite: consent of instructor.

1-5 units, Aut, Win, Spr, Sum (Staff)

FRENLANG 394. Graduate Studies in French Conversation—Prerequisite: consent of the instructor.

1-3 units, Aut, Win, Spr (Staff)

FRENLANG 395. Graduate Studies in French—Prerequisite: consent of instructor.

2-5 units, Aut, Win, Spr (Staff)

MAISON FRANÇAISE

Other in-house courses may be announced.

FRENLANG 60A. Beginning French Conversation—(AU)

1 unit, Aut, Win, Spr (Staff)

FRENLANG 60B. Intermediate French Conversation—(AU)

1 unit, Aut, Win, Spr (Staff)

FRENLANG 60C. Advanced French Conversation—(AU)

1 unit, Aut, Win, Spr (Staff)

FRENLANG 60D. French Viticulture—(AU)

1 unit, Aut, Win, Spr (Staff)
GERMAN LANGUAGE COURSES

Students registering for the first time in a first- or second-year course must take a placement test if they had any training in German before entering Stanford. All entering students must take Part I (written) of the placement test online during the summer, followed by Part II (oral), to be administered on campus September 21, 2005. Consult the Language Center or http://language.stanford.edu/ for further information.

FIRST-YEAR GERMAN

GERLANG 1,2,3. First-Year German—Speaking, reading, writing, and listening. Authentic materials. Interactive approach with emphasis on developing communicative expression. The cultural context in which German is spoken.

5 units, Aut, Win, Spr (Staff)

GERLANG 5A,B. Intensive First-Year German—Equivalent of 1,2,3 combined. Stanford graduate students restricted to 9 units register for 205A,B.

5 units, Sum (Staff)

GERLANG 10. Elementary German for Seniors and Graduate Students—Intensive. For students who need to acquire reading ability in German for the Ph.D. or for advanced research in their own field. 52 fulfills Ph.D. reading exam.

4 units (Petig)

GERLANG 11P. Individually Programmed Beginning German—For those who wish to complete more or fewer than 5 units a quarter, have scheduling conflicts, or prefer to work independently. Self-paced work with text and tapes; instructor available for consultation on a regular basis. 3-unit minimum for beginners. Conversational practice available for additional unit.

1-12 units, Aut, Win (Strachota), Spr (Petig)

INTERMEDIATE GERMAN

At this level, students have several options depending on their interests. After completing 3 or equivalent, students may enroll in 120-level courses which consider topics in German culture while encouraging additional language learning. Alternatively, 21,22 emphasize a systematic review of the language, 21W,22W study the language of business and international relations, and 100-level courses develop advanced language skills along with cultural awareness.

4 units, Aut (Petig)

GERLANG 21S. Intermediate German—Reading short stories, and review of German structure. Discussions in German, short compositions, videos. Prerequisite: one year of college German; or two years high school German; or equivalent of GERLANG 4; or AP German.

4 units, Sum (Petig)

GERLANG 21W. Intermediate German I: German for Business and International Relations—Equivalent to 21, but focus is on business and the political and economic geography of Germany. Audiotapes and videos. For students planning to do a business internship in a German-speaking country. Prerequisite: 3.

4 units, Aut (Petig)

GERLANG 22. Intermediate German II—Continuation of 21, with greater emphasis on reading and writing skills. Literary texts of major 20th-century writers in historical context.

4 units, Win (Petig)

GERLANG 22W. Intermediate German II: German for Business and International Relations—Equivalent to 22, but continuation of 21W. Recommended for students planning to do a business internship in a German-speaking country. Prerequisite: 21 or 21W.

4 units (Petig) not given 2005-06

GERLANG 52. Readings in Humanities—For undergraduates and graduate students with a knowledge of German who want to acquire reading proficiency. Readings from scholarly works and professional journals. Recommended for students who need to pass the Ph.D. reading exam. Prerequisite: one year of German, or 10, or equivalent.

4 units, Spr (Petig)

GERLANG 99. Language Specials—Prerequisite: consent of instructor.

1-12 units, Aut, Win, Spr, Sum (Staff)

ADVANCED GERMAN

GERLANG 100. Hundert Deutsche Jahre: One Hundred German Years—Hones German language skills while introducing the history and culture of Germany as experienced by ordinary people over the course of the 20th century. Themes include Germans and democracy, money, Hitler, books, the Wall, and food. Video series, parallel readings, discussion in German. Extra listening, reading, or speaking for fourth unit.

3-4 units, Spr (Staff)

GERLANG 101. Advanced Language Study I—Short fictional and expository readings, discussions, compositions. Review of grammatical structures. Vocabulary building with emphasis on common idiomatic expressions and troublesome lexical distinctions.

3-4 units, Aut (Staff)

GERLANG 102. Advanced Language Study II—Continuation of 101.

3-4 units (Staff) not given 2005-06

GERLANG 105. Advanced Business German—For students planning to work in a German-speaking country and for preparation of the International Business German exams. Case studies of typical business situations with accompanying videos, listening comprehension exercises, and class simulations. Business correspondence and reports in German. Prerequisite: 22 or equivalent.

4 units, Spr (Petig)

GERLANG 110. German Newspapers—For intermediate and advanced students. Read and discuss three articles a week from current newspapers and magazines, practice reading comprehension strategies with online news updates, and develop vocabulary. Writing practice if desired. May be repeated once for credit.

3-4 units, Win (Strachota)

GERLANG 111. Television News from Germany—For intermediate and advanced students. Current news reports and features for listening comprehension and vocabulary. Extra listening, speaking, or writing practice for fourth unit.

3-4 units, Aut (Strachota)

GERLANG 199. Individual Reading—Prerequisite: consent of instructor.

1-12 units, Aut, Win, Spr, Sum (Staff)

GERLANG 395. Graduate Studies in German—Prerequisite: consent of instructor.

2-5 units, Aut, Win, Spr (Staff)

GERLANG 399. Independent Study—Prerequisite: consent of instructor.

1-6 units, Aut, Win, Spr, Sum (Staff)
HAUS MITTELEUROPA

Other in-house courses may be announced.

GERLANG 20A. Beginning German Conversation—(AU)
1 unit, Aut, Win, Spr (Staff)

GERLANG 20B. Intermediate German Conversation—(AU)
1 unit, Aut, Win, Spr (Staff)

GERLANG 20C. Advanced German Conversation—(AU)
1 unit, Aut, Win, Spr (Staff)

GERLANG 20K. Küche Mitt (German Cooking Class)—(AU)
1 unit, Aut, Win, Spr (Staff)

GERLANG 20M. Mitt Movie Series—(AU)
1 unit, Aut, Win, Spr (Staff)

GERLANG 20T. Teaching German Conversation—(AU)
1 unit, Aut, Win, Spr (Staff)

ITALIAN LANGUAGE COURSES

FIRST- AND SECOND-YEAR ITALIAN

Students who have never studied Italian before should enroll in ITALLANG 1.

Students who have had some training in Italian before entering Stanford must take a placement test. Part I (written) of the placement test must be taken online during the summer, followed by Part II (oral), to be administered on campus in September. Consult the Language Center or http://language.stanford.edu/ for further information.

Completion of ITALLANG 3 or 2A satisfies the University foreign language requirement. Students may continue with second-year Italian courses upon recommendation of the coordinator.

A grade of ‘C’ or better is required to enter the next course in a language sequence. Language courses may not be repeated for credit, and must be taken in sequence and may not be skipped.

FIRST- AND SECOND-YEAR ITALIAN

ITALLANG 1, 2, 3. First-Year Italian—All-in-Italian, student-centered approach. Speaking and oral comprehension through authentic Italian materials. Cultural context. Language lab, multimedia, and computer facilities.
5 units, Aut, Win, Spr (Baldocchi, Devine, Gelmetti, Tempesta, Staff)

ITALLANG 1A, 2A. Accelerated First-Year Italian—Completes first-year sequence in two rather than three quarters. For students with previous knowledge of Italian or with a strong background in another Romance language. 2A fulfills the University language requirement.
Prerequisite: written and oral placement tests.
5 units, 1A: Aut, Win, 2A: Win, Spr (Gelmetti, Baldocchi)

ITALLANG 21, 22, 23. Second Year Italian—Reading, writing, and conversational competence through Italian culture. Review of language structures. Italian authentic materials such as literary texts, news clippings, film, video, music, and web sites. Global awareness and crosscultural understanding. Prerequisite: 3 or equivalent, or consent of coordinator.
21: 4-5 units, Aut, Win, Spr (Baldocchi, Devine, Gelmetti, Staff)
22: 4-5 units, Aut, Win, Spr (Baldocchi, Devine, Gelmetti)
23: 3-4 units, Aut (Baldocchi)

ITALLANG 24. Italian Language through Cinema—Use of film sequences to improve communication and review language structures. New Italian film directors such as Tornatore, Salvatores, and Soldini.
Prerequisite: 22 or equivalent, or consent of coordinator.
4-5 units, Spr (Gelmetti)

ITALLANG 30. Conversation: Italy Today—For students planning to go to Florence. Films, slide shows, and lectures on Italian culture including opera, modern music, wine, and food. Preview of the Florentine experience. Limited enrollment. Prerequisite: first-year Italian or consent of coordinator.
3 units, Aut (Tempesta)

ITALLANG 31. Conversation: Italy Today—Open only to students who have studied at the Florence program. Students share experiences from Florence concerning a favorite Italian novel, author, or movie director. Limited enrollment. Prerequisite: first-year Italian or consent of coordinator.
3 units, Win (Tempesta)

ITALLANG 32. Talking about Contemporary Italy through Moravia’s Short Stories—Short stories by Alberto Moravia, clips from Italian TV news, and current affairs. Limited enrollment. Prerequisite: first-year Italian or consent of coordinator.
3 units, Spr (Tempesta)

ITALLANG 41A,B,C. Intensive First-Year Italian—Covers 1-3 quarters of Italian. Conversational drills and daily work in language lab. All-in-Italian method. Listening, speaking, writing, and reading. Stanford graduate students restricted to 9 units register for 241A,B,C.
5 units, Sum (Staff)

ITALLANG 50. Reading Italian—Open to advanced undergraduates with consent of instructor; primarily for graduate students seeking to fulfill University foreign language requirements for advanced degrees. Accelerated acquisition of reading skills in Italian.
3 units, Win (Devine)

ITALLANG 60. Italian Opera from the Late 18th Century to the Early 20th Century: From Rossini to Puccini—Italian history through the operatic melodramas from the heroic epic of the Risorgimento to the social anguish of Verismo, which brings Italian opera to California as in the Girl of the Golden West by Puccini. Students view grand operas in class, and attend an opera performance. Prerequisite: 22 or consent of instructor.
3-4 units, Win (Napolitano)

ITALLANG 99. Language Specials—Prerequisite: consent of instructor.
1-5 units, Aut, Win, Spr, Sum (Staff)

ADVANCED ITALIAN

ITALLANG 114. Advanced Stylistics and Composition—Goal is a high level of proficiency in written and spoken Italian. Literary and non-literary texts with textual and grammatical analysis, oral reports, translations, and weekly writing assignments. Prerequisite: 22 or consent of instructor. WIM
3-4 units, Win (Baldocchi)

ITALLANG 115. Translation and Composition—Continuation of 114. Emphasis is on composition, writing of short essays, and short stories. Prerequisite: 114 or consent of instructor. WIM
3-4 units, Spr (Baldocchi)

ITALLANG 394. Graduate Studies in Italian Conversation—Prerequisite: consent of instructor.
1-3 units, Aut, Win, Spr (Staff)

ITALLANG 395. Graduate Studies in Italian—Prerequisite: consent of instructor.
2-5 units, Aut, Win, Spr (Staff)

CASA ITALIANA

ITALLANG 126. Italy and Italians Today—May be repeated for credit.
2 units, Aut, Win, Spr (Staff)
JAPANESE LANGUAGE COURSES

Students registering for the first time in a course must take a placement test if they have had any training in Japanese before entering Stanford. All entering students must take Part I (written and listening) of the placement test online during the summer, followed by Part II (oral and written), to be administered on campus September 21, 2005. Consult the Language Center or http://language.stanford.edu/ for further information.

FIRST- AND SECOND-YEAR JAPANESE

JAPANLNG 1,2,3, First-Year Modern Japanese—Foundation in grammar, reading, and composition. 150 Kanji characters introduced.

 5 units, 1: Aut, 2: Win, 3: Spr (Busbin)

 3 units, 7A: Aut, 8A: Win, 9A: Spr (Lowdermilk)

JAPANLNG 7B,8B,9B, First-Year Japanese Language, Culture, and Communication B—First-year sequence enables students to converse, write, and read essays on topics such as personal history, experiences, familiar people. 300 Kanji characters. See http://www.stanford.edu/group/ll/jlcc/1stB.htm.

 5 units, 7B: Aut, 8B: Win, 9B: Spr (Lipton, Staff)

JAPANLNG 7C, Individualized Kanji Tutoring—Corequisite: JAPANLNG 7B, 8B, or 9B.

 1-2 units, Aut, Win, Spr (Staff)

JAPANLNG 10, Intensive First-Year Japanese Language—(Stanford graduate students restricted to 9 units, register for 10G.) Equivalent to 7B,8B,9B combined.

 9-12 units (Lipton) not given 2005-06

 3 units, 17A: Aut, 18A: Win, 19A: Spr (Nakamura)

JAPANLNG 17B,18B,19B, Second-Year Japanese Language, Culture, and Communication B—Goal is to express in spoken and written Japanese advanced concepts such as comparisons and contrasts of the two cultures, descriptions of incidents, and social issues. 800 kanji, 1,400 new words, and higher-level grammatical constructions. Readings include newspapers, essays, and novels. Prerequisite: 9B. See http://www.stanford.edu/group/ll/jlcc/jlccb.htm.

 5 units, 17B: Aut, 18B: Win, 19B: Spr (Lowdermilk, Staff)

JAPANLNG 20, Intensive Second-Year Japanese—(Stanford graduate students restricted to 9 units, register for 20G.) Equivalent to 17B,18B,19B combined. Prerequisite 9B or equivalent.

 9-12 units (Staff)

JAPANLNG 21,22,23, Second-Year Modern Japanese—Continuation of 3. Expression of ideas, advanced grammatical patterns, 600 kanji characters, simple compositions, and enhanced understanding of Japanese culture. Goal is to read original source material.

 5 units, 21: Aut, 22: Win, 23: Spr (Arao)

JAPANLNG 27,28,29, Intermediate Japanese Conversation—Develops oral proficiency through simple sentence patterns, audio tapes, and oral presentations. For the practical use of Japanese. Prerequisite: 3, 9B, or consent of instructor.

 2 units, 27: Aut, 28: Win, 29: Spr (Busbin)

JAPANLNG 99, Language Specials—Prerequisite: consent of instructor.

 1-5 units, Aut, Win, Spr, Sum (Staff)

THIRD-YEAR ADVANCED JAPANESE

JAPANLNG 101,102,103, Third-Year Modern Japanese—Beyond fundamental grammatical forms to reading and discussion of more complex material. Emphasis is on Japanese sentence structure in newspaper and journal articles, and readings from fiction, poetry, and essays. Polite language (keigo) skills. Videos of everyday Japanese spoken at normal speed develop listening skills. Prerequisite: 23 or equivalent.

 5 units, 101: Aut, 102: Win, 103: Spr (Arao)

JAPANLNG 111,112,113, Business Japanese—Topics include cultural attitudes and approaches, work ethic, the stock market, import-export trade. Business letters, job interviews, and resume writing. May be repeated for credit. In Japanese. Prerequisite: 23, 29, or 19B, or consent of instructor.

 3 units, 111: Aut, 112: Win, 113: Spr (Fu)

JAPANLNG 121,122,123, Advanced Japanese Conversation—Focus is on fine tuning grammatical points, explaining things in Japanese, and fluency. Audiovisual material and oral presentations. Prerequisite: 23, 29, or consent of instructor.

 2 units, 121: Aut, 122: Win, 123: Spr (Lipton)

 3 units (Staff) not given 2005-06

 5 units, 127B: Aut, 128B: Win, 129B: Spr (Tomiyama)

JAPANLNG 130, Intensive Third-Year Japanese—(Stanford graduate students restricted to 9 units, register for 130G.) Equivalent to 127B,128B,129B combined. Prerequisite: 19B or equivalent.

 12 units, Sum (Staff)

JAPANLNG 200, Directed Reading—Prerequisite: consent of instructor.

 1-5 units, Aut, Win, Spr (Staff)

JAPANLNG 211,212,213, Advanced Japanese—Structure of Japanese, writings in different genres and styles, using such knowledge in writing, and expressing opinions on a variety of topics. Original writings, including fiction, essays, newspaper, and journal articles. Recommended taken in sequence. Prerequisite: 103, 129B, or equivalent.

 3-5 units, 211: Aut, 212: Win, 213: Spr (Nakamura)

JAPANLNG 394, Graduate Studies in Japanese Conversation—Prerequisite: consent of instructor.

 1-3 units, Aut, Win, Spr (Staff)

JAPANLNG 395, Graduate Studies in Japanese—Prerequisite: consent of instructor.

 2-5 units, Aut, Win, Spr (Staff)

KOREAN LANGUAGE COURSES

Students registering for the first time in a first- or second-year course must take a placement test if they had any training in Korean before entering Stanford. All entering students must take Part I (written) of the placement test online during the summer, followed by Part II (oral), to be administered on campus September 21, 2005. Consult the Language Center or http://language.stanford.edu/ for further information.

FIRST- AND SECOND-YEAR KOREAN

KORLANG 1,2,3, Beginning Korean—Communicative skills, vocabulary, and grammar patterns. Culturally appropriate conduct relevant to contexts such as greetings, gestures, and body language.

 5 units, 1: Aut, 2: Win, 3: Spr (Kim)
KORLANG 1H,2H,3H. Beginning Korean for Heritage Learners—For Korean background students. Focus is on reading, writing, and spelling rather than speaking and listening. Meetings and individual study. Sources include textbook, workbook, and digitized listening materials. Prerequisite: consent of instructor.

1-3 units (Kim) not given 2005-06

KORLANG 21,22,23. Intermediate Korean—More complex sentences and grammatical patterns. Conversation in daily situations such as making a polite request or suggestion, reading simple texts, and Korean culture. Prerequisite: 3 or consent of instructor.

3-5 units, 21: Aut, 22: Win, 23: Spr (Kim)

ADVANCED

KORLANG 101,102,103. Advanced Intermediate Korean—Materials about Korean culture and society. Proficiency in interpersonal, interpretive, and presentational communication. Vocabulary, reading, and aural/oral skills. Prerequisite: 23 or consent of instructor.

2-3 units (Kim) not given 2005-06

KORLANG 120A,B,C. Korean Culture—Examination of Korean culture and society to develop fluency and vocabulary. Prerequisites: KORLANG 3 and consent of instructor.

1-2 units, 120A: not given 2005-06, 120B: Win, 120C: Spr (Kim)

KORLANG 130K. Korean Pronunciation and Intonation—Goal is intelligibility and fluency. Lab assignments. Prerequisite: 3 or consent of instructor.

2-3 units, Win (Kim)

KORLANG 160K. Korean Drama—For intermediate and advanced students. Korean culture and society through contemporary Korean drama and films. Idioms, vocabulary, and advanced grammar. Prerequisite: 23 or consent of instructor.

2-3 units, Aut (Kim)

KORLANG 171. The Structure of Korean—Introduction to modern Korean linguistics, focusing on history, phonology and morphology, syntax and semantics, socio- and psycho-linguistics, pragmatics, and language acquisition and pedagogy. Prerequisite: 3 or equivalent, or consent of instructor.

2-3 units, Spr (Kim)

KORLANG 200. Directed Reading in Korean—Prerequisite: consent of instructor.

1-5 units, Aut, Win, Spr, Sum (Staff)

KORLANG 301,302,303. Advanced Korean—Advanced and intellectual speaking and writing skills. Vocabulary, discussion, and presentation based on readings on topics such as Korean culture, history, economy, politics, multimedia, newspaper articles, and magazines. Prerequisite: 103 or consent of instructor.

3-5 units (Staff) not given 2005-06

KORLANG 395. Graduate Studies in Korean—Prerequisite: consent of instructor.

1-5 units, Aut, Win, Spr (Staff)

PORTLANG 1A,2A. Accelerated First-Year Portuguese—For students with two years of formal study of a Romance language, preferably Spanish. Goal is to use socially and culturally appropriate forms in conversations, providing and obtaining information, and expressing feelings, emotions, and opinions. Students learn the language as they contrast Brazilian culture with their own. Lab. Completion of 2A fulfills the University’s foreign language requirement.

3-5 units, Aut, Win, Spr (Wiedemann, Delgado)

PORTLANG 11A,12A. Accelerated Second-Year Portuguese—12A fulfills the International Relations program language requirement. Goal is to use socially and culturally appropriate forms in narrations, descriptions, and expression of ideas and opinions. Prerequisite: first-year sequence, equivalent, or consent of instructor.

3-5 units, Aut, Win, Spr (Delgado, Wiedemann)

PORTLANG 50. Reading in Portuguese—For students with superior reading proficiency in Spanish or another Romance Language. Fulfills University reading requirement for advanced degrees. Reading competence for research and courses in Luso-Brazilian studies. Overview of grammar. Literary, journalistic, and academic readings.

3-4 units, Spr (Wiedemann)

PORTLANG 99. Language Specials—Prerequisite: consent of instructor.

1-5 units, Aut, Win, Spr (Staff)

ADVANCED PORTUGUESE

PORTLANG 297. Directed Reading—Prerequisite: consent of instructor.

1-4 units, Aut, Win, Spr (Staff)

PORTLANG 394. Graduate Studies in Portuguese Conversation—Prerequisite: consent of instructor.

1-3 units, Aut, Win, Spr (Staff)

PORTLANG 395. Graduate Studies in Portuguese—Prerequisite: consent of instructor.

2-5 units, Aut, Win, Spr (Staff)

SLAVIC LANGUAGE COURSES

Students registering for the first time in a first- or second-year course must take a placement test if they had any training in Russian before entering Stanford. All entering students must take Part I (written) of the placement test online during the summer, followed by Part II (oral), to be administered on campus September 21, 2005. Consult the Language Center or http://language.stanford.edu/ for further information.

FIRST- AND SECOND-YEAR RUSSIAN

SLA VLANG 1,2,3. First-Year Russian—Functionally-based communicative approach, including essential Russian grammar. Russian culture and the Russian view of reality.

5 units, 1: Aut, 2: Win, 3: Spr (Staff)

SLA VLANG 5,6,7. Russian for Native Speakers—Self-paced. Reading and writing skills and communicating in formal and informal settings. Does not fulfill the University foreign language requirement.

2 units, 5: Aut, 6: Win, 7: Spr (Khassina)

SLA VLANG 51,52,53. Second-Year Russian—More difficult areas of the grammar such as numbers, verb conjugation, and aspect. Vocabulary, speaking skills.

5 units, 51: Aut (Khassina), 52: Win (Staff), 53: Spr (Khassina)

SLA VLANG 55 Intermediate Russian Conversation—Prerequisite: first-year Russian or equivalent placement.

2 units, Aut, Win, Spr (Greenhill)

THIRD-YEAR AND ADVANCED RUSSIAN

4 units, 111: Aut, 112: Win, 113: Spr (Greenhill)
SLAVLANG 177,178,179. Fourth-Year Russian—Culture, history, and current events. Films, classical and contemporary writers, newspaper articles, documentaries, radio and TV programs, and music. Review and fine-tuning of grammar and idiomatic usage. Prerequisite: 113 or equivalent.

3 units, 177: Aut (Staff), 178: Win, 179: Spr (Greenhill)

SLAVLANG 181,182,183. Fifth-Year Russian—Language proficiency maintenance; appropriate for majors and non-majors with significant language experience overseas. Discussions, oral presentations, and writing essays on contemporary Russia.

3 units, 181: Aut (Greenhill), 182: Win (Staff), 183: Spr (Khassina)

SLAVLANG 199. Individual Work—Prerequisite: consent of instructor.

1-5 units, Aut, Win, Spr, Sum (Staff)

SLAVLANG 299. Independent Study—Prerequisite: consent of instructor.

1-5 units, Aut, Win, Spr, Sum (Staff)

SLAVLANG 395. Graduate Studies in Russian—Prerequisite: consent of instructor.

2-5 units, Aut, Win, Spr (Staff)

SLAVIANSKI DOM

Other in-house courses may be announced.

SLAVLANG 60A. Beginning Russian Conversation—(AU)

1 unit, Aut, Win, Spr (Staff)

SLAVLANG 60B. Intermediate Russian Conversation—(AU)

1 unit, Aut, Win, Spr (Staff)

SLAVLANG 60C. Advanced Russian Conversation—(AU)

1 unit, Aut, Win, Spr (Staff)

SLAVLANG 60D. East European Breweries and Brewing—(AU)

1 unit, Aut, Win, Spr (Staff)

SLAVLANG 60F. Slavic Films Series—(AU)

1 unit, Aut, Win, Spr (Staff)

SLAVLANG 60P. Theme Projects—(AU)

1 unit, Aut, Win, Spr (Staff)

SLAVLANG 60T. Teaching Slavic Conversation—(AU)

1 unit, Aut, Win, Spr (Staff)

SLAVLANG 99. Language Specials—Prerequisite: consent of instructor.

1-5 units, Aut, Win, Spr (Staff)

SPANISH LANGUAGE COURSES

Students who have never studied Spanish before should enroll in SPANLANG 1. Students registering for the first time in a first- or second-year course must take a placement test if they had any training in Spanish before entering Stanford. All entering students who have not taken the Spanish Language Advanced Placement (AP) Exam and received a score of 4 or 5, or who have not taken the SAT II with a score of 630 or above, must take Part I (written) of the placement test online during the summer at http://language.stanford.edu/SPANISH, followed by Part II (oral), to be administered on campus September 21, 2005. Students who have passed the language AP exam with a 4 or 5 or are exempted from the written test, but must take the oral on September 21, 2005 in order to determine their correct placement; these students are eligible for 10 units of credit in Spanish. Consult the Language Center or http://language.stanford.edu/ for further information.

Completion of SPANLANG 2A, 3, or 41C fulfills the University language requirement.

Students who grew up in homes where Spanish is spoken should take the placement test for the special series of courses (21B,22B,23B) designed for these speakers. The bilingual series fulfills the language requirement at Stanford. Potential home-background speakers should complete the questionnaire found at http://language.stanford.edu/HOME-BACKGROUND.

A grade of ‘C’ or better is required to enter the next course in a language sequence. Language courses may not be repeated for credit, and must be taken in sequence.

FIRST- AND SECOND-YEAR SPANISH

SPANLANG 1,2,3. First-Year Spanish—Emphasis is on developing socially and culturally appropriate proficiency in interpersonal, interpretive, and presentational spheres. Influences shaping the production of oral and written texts in the Spanish- and English-speaking world.

5 units, Aut, Win, Spr (Brates, Guzmán, Urruela, Won, Zaragoza, Staff)

SPANLANG 1A,2A. Accelerated First-Year Spanish—Completes first-year sequence in two rather than three quarters. For students with previous knowledge of Spanish, or those with a strong background in another Romance language. 2A fulfills the University language requirement. Prerequisite: written and oral placement tests.

5 units, 1A: Aut, Win, 2A: Win, Spr (Alexander, Guzmán, Miano, Villalba-Rosado)

SPANLANG 10. Beginning Oral Communication—For students who have completed or are currently taking 2 and who wish to devote additional time to giving pronunciation, usable vocabulary, and speaking skills. May be repeated once for credit.

2 units, Aut, Win, Spr (Corso)

SPANLANG 11C,12C,13C. Second-Year Spanish: Cultural Emphasis—Sequence integrating culture and language. Emphasis is on advanced proficiency in oral and written discourse including presentation of social and cultural discourse in both formal and informal contexts. Prerequisite: one year of college Spanish or equivalent.

4-5 units, Aut, Win, Spr (Kenna, Molitoris, Urruela, Won, Zaragoza)

SPANLANG 11R,12R,13R. Second-Year Spanish: Emphasis on International Relations—Sequence integrating geopolitics and language. Emphasis is on advanced proficiency in oral and written discourse including presentation of language, international relations, and socioeconomics of the Spanish-speaking world. Prerequisite: one year of college Spanish or equivalent.

4-5 units, 11R: Aut, 12R: Win, 13R: Spr (Perales, Sierra)

SPANLANG 15. Intermediate Oral Communication—Emphasis is on interaction in Spanish both locally and globally. Regional vocabularies and cultures at home and abroad. Interaction with local native Spanish speakers and communities globally via the Internet. May be repeated once for credit.

3 units, Aut, Win, Spr (Zaragoza)

SPANLANG 19M. Spanish for Heritage and Foreign Language Pre-Med and Public Health Students—For pre-med or public health students who grew up in homes where Spanish is spoken or for students who possess a considerable command of Spanish. Focus is on developing the ability to provide information on health-related topics to Spanish speakers in the U.S. Students participate in the organization and delivery of information on preventive health care in a workshop setting to a Spanish-speaking community.

3-4 units, Spr (Sierra)

SPANLANG 41A,B,C. Intensive First-Year Spanish—Goal is to engage in interactions with Spanish speakers in socially and culturally appropriate forms. Social and cultural influences shaping the production of oral and written texts in the Spanish- and English-speaking world. Stanford graduate students restricted to 9 units register for 241A,B,C.

5 units, Sum (Staff)

SPANLANG 50. Reading Spanish—For students who have already taken Spanish for at least one year or have superior reading proficiency in another Romance language. Emphasis is on academic texts. Fulfills University reading requirements for advanced degrees, if students earn a grade of ‘B’.

3 units, Spr (Sierra)
SECOND-YEAR COURSES FOR HERITAGE LANGUAGE STUDENTS

SPANLANG 21B, 22B, 23B. Second-Year Spanish for Heritage Language Students — Emphasis is on ability to communicate orally and in writing. Spelling and the written accent. Goal is to understand, interpret, and analyze texts, movies, radio, and television. Written language skills include rules for editing written language. Third quarter focus is on the development of written and oral styles and registers used in more formal settings.

3-5 units, 21B: Aut, Win, 22B: Win, 23B: Spr (Staff)

ADVANCED COURSES

SPANLANG 100. Advanced Oral Communication — For students who have completed second-year Spanish or who have oral skills above the intermediate level. Interactive activities require students to persuade, analyze, support opinions, and gather and interpret others’ points of view. Focus is on vocabulary enrichment and idiomatic expressions. Cultural, literary, political, and journalistic readings. May be repeated once for credit. Prerequisite: 13 or equivalent.

3 units, Win, Spr (Staff)

SPANLANG 101. The Structure of Spanish — Criteria and skills to analyze Spanish grammatical structure. Identification of word functions in sentences and texts, types of sentences, and terminology. Structure of nouns, adjectives, and verbs, and their relationship with meaning. The differences between Spanish grammar as a formal system and in everyday life. Prerequisite: 13C, 13R, 23B, or equivalent.

3-5 units, Win (Sierra)

SPANLANG 102. Composition and Writing Workshop — Individual development of the ability to write in Spanish. Emphasis is on style and diction, and on preparing and writing essays on literary topics. Non-Spanish majors or minors may choose topics more closely related to their studies for projects. Prerequisite: two years of college Spanish or equivalent. WIM

3-5 units, Win (Kenna)

SPANLANG 102B. Composition and Writing Workshop for Heritage Language Students — For students with a good understanding of written accents, spelling, and syntax. Focus is on the craft of writing with emphasis on brainstorming, planning, outlining, drafting, revising, style, diction, and editing. Writing essays on literary topics. Non-Spanish majors or minors may choose topics related to their studies. Prerequisite: 21B, 22B, and 23B or equivalent. WIM

3-5 units, Win (Miano)

SPANLANG 121M, 122M, 123M. Spanish for Medical Students — (Same as HRP 208, 209, 210.) Goal is a practical and rapid command of spoken Spanish. Topics: the human body, hospital procedures, diagnostics, food, and essential phrases for on-the-spot reference when dealing with Spanish-speaking patients. Series can be taken independently, depending on the level of prior knowledge.

3 units, 121M: Aut, 122M: Win, 123M: Spr (Corso)

SPANLANG 199. Individual Reading — May be repeated for credit. Prerequisite: consent of instructor.

1-5 units, Aut, Win, Spr, Sum (Staff)

SPANLANG 394. Graduate Studies in Spanish Conversation — Prerequisite: consent of instructor.

1-3 units, Aut, Win, Spr (Staff)

SPANLANG 395. Graduate Studies in Spanish — Prerequisite: consent of instructor.

2-5 units, Aut, Win, Spr (Staff)

YOST HOUSE

Other in-house courses may be announced.

SPANLANG 60A. Beginning Spanish Conversation — (AU)
1 unit, Aut, Win, Spr (Staff)

SPANLANG 60B. Intermediate Spanish Conversation — (AU)
1 unit, Aut, Win, Spr (Staff)

SPANLANG 60C. Advanced Spanish Conversation — (AU)
1 unit, Aut, Win, Spr (Staff)

SPANLANG 60K. Cooking Class — (AU)
1 unit, Aut, Win, Spr (Staff)

SPANLANG 60M. Movie Series — (AU)
1 unit, Aut, Win, Spr (Staff)

SPANLANG 60P. Yost Lecture Series — (AU)
1 unit, Win, Spr (Staff)

SPANLANG 60T. Teaching Spanish Conversation — (AU)
1 unit, Aut, Win, Spr (Staff)

SPANLANG 99. Language Specials — May be repeated for credit. Prerequisite: consent of instructor.

1-5 units, Aut, Win, Spr, Sum (Staff)

SPECIAL LANGUAGE PROGRAM

The Special Language Program (SLP) offers a number of foreign languages not otherwise taught at Stanford. Based on current funding and student requests, the courses for 2006-07 are listed below; however, not every course listed is taught. Additional languages may still be offered upon request, provided funding is available. Requests for the 2006-07 academic year should be made by Spring Quarter of this year at the Special Language Program office.

All beginning-level courses are offered on a satisfactory/no credit basis only. Intermediate-level and 4-unit courses are offered with a grading option. Beginning and intermediate each refer to an academic year’s sequence of language study. Most 3-unit language courses are offered for a two-year, three quarter sequence:

- All ‘A’ suffix courses are taught Autumn.
- All ‘B’ suffix courses are taught Winter.
- All ‘C’ suffix courses are taught Spring.

All beginning, intermediate, and advanced courses are 3 units except modern Greek and ASL. In some circumstances, a beginning or intermediate course may be offered in alternate years.

FULFILLING THE LANGUAGE REQUIREMENT

Students may fulfill the language requirement by taking a special language. At least 12 units are needed to complete the requirement. Students who have already taken courses in the relevant language at another institution, or who have previous knowledge of the language, can request to be tested. Tests are comprised of written and oral parts. A student must display first-year level proficiency in the requested language in order to fulfill the requirement. Testing is guaranteed only for these languages currently offered. Students planning to take a test must contact the Special Language Program no later than the Spring Quarter of sophomore year. To submit a request for language testing, or to request a language, apply via the web at http://www.stanford.edu/dept/SLP.

BEGINNING-LEVEL, FIRST-YEAR COURSES

Beginning-level, first-year language courses are required no previous knowledge of the language. The beginning-level sequence emphasizes development of the full range of language skills, reading, listening comprehension, the use of grammatical structures, and oral and written communication, through a variety of learning themes. Individual, small group, interactive work and multimedia-based activities reinforce language skills and provide the platform for adapting the curriculum to specific student learning goals. Cultural awareness is a strong component of the curriculum.

INTERMEDIATE-LEVEL, SECOND-YEAR COURSES

Intermediate-level, second-year language courses require completion of the beginning sequence, or consent of instructor. The intermediate-level sequence focuses on continuous mastery and development of learning skills that help students to converse accurately and more fluently, incor-
porate more advanced grammatical structures in their oral and written work, use idiomatic expressions in the right context, and write simple compositions.

Specific purpose curricular objectives and enhanced understanding of the culture are built in the courses through a multimodal approach.

ADVANCED-LEVEL, THIRD-YEAR COURSES

Advanced-level, third-year language courses require completion of the intermediate-year sequence and consent of the program coordinator. The advanced-level sequence focuses on accurate understanding and use of structures through authentic, print, and multimedia materials, and readings from various genres. Individual learning goals and student proficiency are taken into account to provide a learning environment that helps students become more autonomous learners.

For further information consult the Special Language Program, Building 40, Room 41B.

SPECLANG 75. Greek Culture, Ideals, and Themes, First Quarter
—Introduction to Greek culture and its global influence in a social historical context, through images from its past and institutions in contemporary Greek society. Limited enrollment. GER:DB-Hum, EC-GlobalCom 3 units, Spr (Prionas)

SPECLANG 115A,B,C. Beginning Uighur
3 units A: Aut, B: Win, C: Spr (Atteavala)

SPECLANG 116A,B,C. Intermediate Uighur
3 units A: Aut, B: Win, C: Spr (Staff)

SPECLANG 123A,B,C. Beginning Armenian
3 units (Staff) not given 2005-06

SPECLANG 126A,B,C. Beginning Turkish
3 units, A: Aut, B: Win, C: Spr (Staff)

SPECLANG 127A,B,C. Intermediate Turkish
3 units, A: Aut, B: Win, C: Spr (Staff)

SPECLANG 129A,B,C. Beginning Ukrainian
3 units, A: Aut, B: Win, C: Spr (Staff)

SPECLANG 132A,B,C. Beginning Tibetan
3 units, A: Aut, B: Win, C: Spr (Lama)

SPECLANG 138A,B,C. Beginning Navajo
3 units, A: Aut, B: Win, C: Spr (Staff)

SPECLANG 144A,B,C. Beginning Tagalog
3 units, A: Aut, B: Win, C: Spr (Staff)

SPECLANG 145A,B,C. Intermediate Tagalog
3 units, A: Aut, B: Win, C: Spr (Staff)

SPECLANG 146A,B,C. Beginning Persian
3 units, A: Aut, B: Win, C: Spr (Fahimi)

SPECLANG 150A,B,C. Beginning Vietnamese
3 units, A: Aut, B: Win, C: Spr (Ha)

SPECLANG 151A,B,C. Intermediate Vietnamese
3 units, A: Aut, B: Win, C: Spr (Ha)

SPECLANG 152A,B,C. Beginning Hindi
3 units, A: Aut, B: Win, C: Spr (Malhotra)

SPECLANG 153A,B,C. Intermediate Hindi
3 units, A: Aut, B: Win, C: Spr (Malhotra)

SPECLANG 156A,B,C. Beginning Indonesian
3 units, A: Aut, B: Win, C: Spr (Jamhari)

SPECLANG 159A,B,C. Beginning Punjabi
3 units, A: Aut, B: Win, C: Spr (Dhillon)

SPECLANG 160A,B,C. Intermediate Punjabi
3 units, A: Aut, B: Win, C: Spr (Dhillon)

SPECLANG 162A,B,C. Beginning Tamil
3 units, A: Aut, B: Win, C: Spr (Staff)

SPECLANG 164A,B,C. Beginning Czech
3 units, A: Aut, B: Win, C: Spr (Dusatko)

SPECLANG 165A,B,C. Intermediate Czech
3 units, A: Aut, B: Win, C: Spr (Dusatko)

SPECLANG 167A,B,C. Beginning Polish
3 units, A: Aut, B: Win, C: Spr (Kieturakis)

SPECLANG 168A,B,C. Intermediate Polish
3 units, A: Aut, B: Win, C: Spr (Kieturakis)

SPECLANG 170A,B,C. Beginning Modern Greek
2-4 units, A: Aut, B: Win, C: Spr (Prionas)

SPECLANG 171A,B,C. Intermediate Modern Greek
4 units, A: Aut, B: Win, C: Spr (Prionas)

SPECLANG 172A,B,C. Modern Greek Language and Culture through Literature and Film
—Accelerated acquisition of reading, writing, comprehension, and conversation skills through literary texts and films. Grammatical structures, idiomatic expression usage, and vocabulary enrichment through complementary, multimedia-based, online materials. Alternates with 171A,B,C.
4 units, A: Aut, B: Win, C: Spr (Prionas)

SPECLANG 173A,B,C. Beginning Hungarian
3 units, A: Aut, B: Win, C: Spr (Mihalik)

SPECLANG 174A,B,C. Beginning Quechua
3 units, A: Aut, B: Win, C: Spr (Fajardo)

SPECLANG 176A,B,C. Beginning Thai
3 units, A: Aut, B: Win, C: Spr (Moore)

SPECLANG 177A,B,C. Intermediate Thai
3 units, A: Aut, B: Win, C: Spr (Moore)

SPECLANG 178A,B,C. Beginning Sign Language
—Limited enrollment.
4 units, A: Aut, B: Win, C: Spr (Haas)

SPECLANG 179A,B,C. Intermediate Sign Language
—Limited enrollment.
4 units, A: Aut, B: Win, C: Spr (Haas)

SPECLANG 183A,B,C. Beginning Sanskrit
3 units, A: Aut, B: Win, C: Spr (Porta)

SPECLANG 186A,B,C. Beginning Serbo-Croatian
3 units, A: Aut, B: Win, C: Spr (Medic)

SPECLANG 198Q. Modern Greece in Film and Literature
—Stanford Introductory Seminar. Preference to sophomores. Cultural and literary highlights. Filmmakers include Krokiasmis, Dassan, Boulemitis, and Scorsese; readings from Kazantzakis, Samarakis, Seferis, and Elytis. GER:DB-Hum, EC-GlobalCom 3-5 units, Aut (Prionas)

SPECLANG 215A,B,C. Modern Greek for Heritage Language Learners
2-4 units, A: Aut, B: Win, C: Spr (Prionas)

SPECLANG 221A,B,C. Beginning Norwegian
3 units, A: Aut, B: Win, C: Spr (Staff)

SPECLANG 226 A,B,C. Beginning Khmer
3 units, A: Aut, B: Win, C: Spr (Meng)

SPECLANG 297. Directed Reading
—Prerequisite: consent of instructor.
1-4 units, Aut, Win, Spr, Sum (Staff)

SPECLANG 395. Graduate Studies in Special Language
—Prerequisite: consent of instructor.
1-4 units (Staff)
CENTER FOR LATIN AMERICAN STUDIES

Director of the Center: Herbert S. Klein
Associate Director: Molly Vitorte
Visiting Professors: Gustavo Buscaglia, Marcos Cueto, Margo Glantz, Ruy de Queiroz

Affiliated Faculty and Staff:
Anthropological Sciences: Clifford R. Barnett (emeritus), William H. Durham, James A. Fox, Dominique Irvine, John W. Rick, Ian Robertson
Art and Art History: Barbaro Martinez-Ruiz
Biological Sciences: Gretchen Daily, Rodolfo Dirzo, Harold Mooney, Peter Vitousek, Virginia Walbot
Cantor Arts Center: Manuel Jordán
Comparative Literature: Carolyn Duffey, Roland Greene, Hans U. Gumbrecht
Cultural and Social Anthropology: George Collier (emeritus)
Dance: Susan Cashion
Earth Sciences, School of: Pamela Matson, Suki Hoagland
Economics: David McKenzie, Roger Noll, Clark Reynolds (emeritus), Esteban Rossi-Hansberg
Education, School of: Martin Carnoy, Amado Padilla
Engineering, School of: Bruce Luiginan, Leonard Ortolano
English: Ramón Saldívar (also Comparative Literature)
History: Zephyr Frank, Tamar Herzog, Herbert S. Klein
Hoover Institute: William Ratliff
Human Biology: Anne Firth Murray
Language Center, Special Languages Program: José Carlos Fajardo
Law, School of: Jonathan Greenberg
Linguistics: John Rickford
Medicine, School of: Victor F. Froelicher, Evaleen K. Jones, Samuel LeBaron, Julie Parsonnet, Peter M. Small
Political Science: Alberto Díaz-Cayeros, Stephen Haber, Terry Karl, Beatriz Magaloni, Robert Packenham (emeritus), Michael Tomz
Religious Studies: Thomas Sheehan
Sociology: Alex Inkeles (emeritus), Michael Rosenfeld
Spanish and Portuguese: J. Gordon Brotherston, María-Paz Haro, Caridad Kenna, Alice Miano, Otilia Pérez, Michael P. Predmore, Jorge Ruffinelli, Lúcia de Sá, Ana Sierra, Guadalupe Valdés (also School of Education), Lyris Wiedemann, Yvonne Yarbro-Bejarano
Stanford Institute for International Studies: Rosamond Naylor, David Victor
Stanford University Libraries: Adan Griego, Robert Trujillo
Center Offices: Bolívar House, 582 Alvarado Row
Mail Code: 94305-8545
Department Phone: (650)723-4444
Web Site: http://las.stanford.edu/

The Center for Latin American Studies supports research and teaching on Latin America by the faculty and students of Stanford in all fields of study. Field research, language training, and interdisciplinary approaches are stressed in the Latin American Studies program, which draws on the strength and diversity of its nationally recognized faculty affiliates and substantial library holdings on Latin America. These resources are enhanced by the Tinker Visiting Professorship in Latin American Studies and the Nabuco Visiting Chair in Brazilian Studies, which bring distinguished Latin American scholars to teach at Stanford each year.

The center’s resources include funds used in support of student and faculty activities and classes in and about Latin America, visiting professors and scholars, and various forms of public outreach. CLAS also devotes resources to Iberian and Caribbean studies. The center offers an honors certificate program as well as a minor in Latin American Studies for undergraduates.

UNDERGRADUATE PROGRAMS

Although the University does not offer a B.A. in Latin American Studies, it does offer a minor and an honors program. Stanford also has departmental and interdisciplinary degree programs in which a student may concentrate on Latin America. These include Anthropological Sciences, Cultural and Social Anthropology, History, Political Science, Spanish and Portuguese, and International Relations. Contact the respective departments for further information.

MINORS

The minor in Latin American Studies is offered to students in any major who wish to develop a complementary concentration on the region. To pursue the minor, students must submit for approval an online proposal of course work no later than the second quarter of their junior year. The minor must be completed by the second quarter of the senior year. Requirements for the minor include:

1. Completion of 25 units as follows: a 5-unit course surveying Latin America such as HISTORY 70 or an approved substitute; 20 additional units at the 100 level or higher which together comprise a coherent focus on a theoretical problem or issue of the region such as culture and identity, political economy, or sustainable development. At least 10 of the 25 units must be completed at Stanford.

2. Demonstration of proficiency in either Spanish or Portuguese, equivalent to the requirement for the honors certificate.

3. Field experience in Latin America such as study abroad, summer research, or internship is recommended.

Units for a student’s major cannot be double-counted towards the minor.

Upon satisfactory completion of all requirements, the center’s subcommittee on undergraduate programs authorizes the designation of the Minor in Latin American Studies on the student’s transcript.

HONORS PROGRAM

The Honors Program in Latin American Studies is open to majors in any field. The aim of the honors program is to prepare students to pursue individualized research on Latin America, culminating in the preparation of an honors thesis written under the supervision of a faculty adviser. The honors program is particularly suited to the student who wishes to go on to graduate school or pursue employment in an institution emphasizing research and independent work. Although not required, students are encouraged to undertake independent field research in Latin America for their thesis. It is strongly recommended that students enroll in HISTORY 299X, Design and Methodology for International Field Research (1 unit), in the sophomore or junior year for an overview of research design and methods for international field research.

Admission to the honors program is by application by the end of the junior year. Applications are reviewed and approved by the CLAS director and associate director. Applicants must have a cumulative grade point average (GPA) of 3.3 (B+) or higher, and maintain this average in courses taken to satisfy the requirements. All courses must be taken for a letter grade where that option is available. Courses credited toward LAS honors and associate director. Applicants must have a cumulative grade point average (GPA) of 3.3 (B+) or higher, and maintain this average in courses taken to satisfy the requirements. All courses must be taken for a letter grade where that option is available. Courses credited toward LAS honors may be double-counted toward the student’s major requirements.

To graduate with interdisciplinary honors in Latin American Studies a student must:

1. Complete a total of 35 units in courses certified for honors by the Center for Latin American Studies, distributed as follows:
 a) A survey: HISTORY 70, Culture, Politics, and Society in Latin America, or an approved substitute. This is normally taken in the sophomore year.
 b) For breadth: two 4-5-unit courses at the 100 level or higher with a focus on the region. These courses are normally taken during the sophomore and junior years.
 c) For depth: one 4-5-unit course at the 100 level or higher with a focus on the region that explores an issue in depth of particular interest to the student, approved by the honors adviser.
 d) LATINAM 198, Honors Thesis (1-10 units), under the supervision of the student’s faculty honors adviser. Normally these units are
spread over two or three quarters of the senior year and are devoted to the completion of the honors thesis.

e) LATINAM 201 (same as HISTORY 275F), Social Change in Latin America: Social Policy and Demographic and Social Change Since 1900 (5 units). This Winter Quarter honors seminar must be taken in the senior year.

f) Enough additional courses focusing on Latin America to bring the total to 35 units. These must be at the 100-level or higher, except that up to 5 units may also come from study of Spanish or Portuguese beyond the seventh quarter, or of a second language of Latin America at any level, as outlined in the Foreign Language Requirement.

g) Of the courses applied to ‘b’ and ‘c’ above, 10 units may be completed in Overseas Studies and 5 units may be taken as directed individual study.

2. Fulfill the Foreign Language Requirement (see below).

3. Submit an honors thesis which meets standards of scholarly excellence and is approved by the thesis adviser. If graduating in June, participate in the LAS honors symposium at the end of May.

FOREIGN LANGUAGE REQUIREMENT

The minimum requirement for completion of either the minor or honors certificate is advanced proficiency in Spanish or Portuguese by any one of the following means:

1. Completion of seven quarters of college-level study of Spanish or Portuguese.

2. Completion of a course on Spanish or Portuguese language or literature, or on some other subject but taught in Spanish or Portuguese, at the 100-level or higher, with a letter grade of ‘B’ (3.0).

3. Achievement of the advanced proficiency level on the ACTFL scale in a test administered by the Department of Spanish and Portuguese.

HONORS COLLEGE

The LAS honors college, sponsored along with many other departmental and interdisciplinary honors colleges by the Vice Provost for Undergraduate Education, is an intensive three-week residential program offered directly preceding Autumn Quarter. It affords returning LAS honors students who have completed field work a debriefing and a focused series of presentations by a member of the CLAS-affiliated faculty and other Stanford instructors on adviser interaction, data preservation, bibliographic resources, writing strategies, statistical analysis, organizational techniques for completing the thesis process, and opportunities to socialize with other honors students in the college, all without cost to the students. Ample time is provided for library research, individual faculty consultations, and data analysis. Applications for honors colleges are available in Spring Quarter prior to the senior year.

SUMMER INTERNSHIP GRANT

Each summer, the center awards grants to a small number of undergraduates to undertake internships in Latin America. Applications include a proposal, academic transcript, and recommendations from a faculty sponsor and one other person knowledgeable about the applicant’s abilities. Students from all departments are eligible to apply.

GRADUATE DEGREE PROGRAMS

Although the University does not offer an M.A. or Ph.D. in Latin American Studies, Stanford has several departmental programs through which a student may concentrate on Latin America. These include Anthropological Sciences, Cultural and Social Anthropology, History, Political Science, and Spanish and Portuguese. Contact the respective departments for admission information.

COURSES

LATINAM 135. The Mexican Novel and the Cinema—(Same as SPANLIT 149.) Novels dealing with the Mexican Revolution from the revolutionary period to the 80s. Adaptations to film and television. Relationship among artistic languages. 5 units, Spr (Glantz)

LATINAM 136. Gender Violence in Latin American Literature—(Graduate students register for SPANLIT 355.) Women writers who dealt with gender-based social inequities and contradictions. Writers include Sor Juana Inés de la Cruz, María de Zayas, Nellie Campobello, and Elena Garro. 5 units, Aut (Glantz)

LATINAM 137/237. Health, Medicine, and Society in Latin American History—(Same as HISTORY 277G.) The role played by disease, public health and medicine in Latin American societies during the 19th and 20th centuries. How changing perceptions and definitions of health and disease, gender and the body, and race and ethnicity have shaped official and popular understandings of the health of individuals, populations, and societies. 5 units, Win (Cueto)

LATINAM 197. Directed Individual Research—For students engaged in special interdisciplinary work that cannot be arranged by department. 1-10 units, Aut, Win, Spr (Staff)

LATINAM 198. Honors Thesis—Restricted to those writing an honors thesis in Latin American Studies. 1-10 units, Aut, Win, Spr (Staff)

LATINAM 201/301, Social Change in Latin America Since 1900—(Same as HISTORY 275F.) Changes in the social and demographic characteristics of Latin American populations since 1900 and the response of national governments in terms of the evolution of social welfare, health, and educational systems. Fulfills requirement for Latin American Studies honors seminar. 5 units (Klein) not given 2005-06

INTERDEPARTMENTAL OFFERINGS

Since CLAS is an interdisciplinary program, many of its course requirements are offered through other departments. See http://las.stanford.edu/programs/courses.html for additional course listings.

CHICANA/O STUDIES

CHICANAST 181S. U.-Mexico Borderlands in Comparative Perspective 5 units, Spr (Palafox)

HISTORY

HISTORY 70. Culture, Politics, and Society in Latin America 5 units, Win (Frank)

POLITICAL SCIENCE

POLISCI 141. The Global Politics of Human Rights 5 units, Win (Karl)

OVERSEAS STUDIES

Courses taught overseas can be found in the “Overseas Studies” section of this bulletin, or in the Overseas Studies office, 126 Sweet Hall.

SANTIAGO

LATINAM 58X. Living Chile: A Land of Extremes—(Same as EARTHSYS 110X.) 5 units, Aut, Spr (Poblete, Ginocchio)

LATINAM 141X. Politics and Culture in Chile 5 units, Spr (Subercaseaux)

LATINAM221X. Political Transition and Democratic Consolidation: Chile in Comparative Perspective—(Same as POLISCI 243P.) 5 units, Aut (Micco)
LINGUISTICS

Chair: Beth Levin
Professors: Joan Bresnan, Eve V. Clark (on leave), Penelope Eckert, Martin Kay, Paul Kiparsky, Beth Levin, Stanley Peters, John R. Rickford (on leave), Ivan A. Sag, Peter Sells, Thomas A. Wasow (Winter)
Associate Professors: David Beaver (Autumn), Daniel Jurafsky (Autumn, Winter)
Assistant Professors: Arto Anttila, Christopher Manning
Senior Lecturers: Philip L. Hubbard, Beverley J. McChesney
Consulting Professors: Ronald Kaplan, Lauri Karttunen, Geoffrey Nunberg, Annie Zaenen
Consulting Associate Professors: Jared Bernstein, Cleo Condoravdi
Lecturers: Vivienne Fong, Brook Lillehaugen
Visiting Professor: Arnold Zwicky
Visiting Assistant Professor: Norma Mendoza-Denton
Affiliated Faculty: Herbert H. Clark (on leave), James A. Fox, Kenji Hakuta, Miyako Inoue, Yoshiko Matsumoto (on leave), Orrin W. Robinson III, Richard D. Schupbach, Chaofen Sun

* Recalled to active duty.

Department Offices: Margaret Jacks Hall, Building 460
Mail Code: 94305-2150
Phone: (650) 723-4284
Email: linguistics@csil.stanford.edu
Web site: http://www-linguistics.stanford.edu

Courses given in Linguistics have the subject code LINGUIST. For a complete list of subject codes, see Appendix.

Linguistics concerns itself with the fundamental questions of what language is and how it is related to the other human faculties. In answering these questions, linguists consider language as a cultural, social, and psychological phenomenon and seek to determine what is unique in languages, what is universal, how language is acquired, and how it changes. Linguistics is, therefore, one of the cognitive sciences; it provides a link between the humanities and the social sciences, as well as education, and hearing and speech sciences.

The department offers courses at the undergraduate and graduate levels in the areas central to linguistic theory and analysis. Many of them deal with the analysis of structural patterns in the different components that make up language, including sounds (phonetics and phonology), meanings (semantics), words (morphology), sentences (syntax), and the way they vary and change over time. Other courses integrate the analysis of linguistic structure with phenomena that directly concern other disciplines. These include courses in computational linguistics, language acquisition, the philosophy of language, and sociolinguistics.

A variety of open forums provide for the discussion of linguistic issues, including colloquia and regularly scheduled workshops in child language, computational linguistics, phonology, semantics, sociolinguistics, and syntax. Faculty and visiting scholars in the department and the Center for the Study of Language and Information, whose members are computer scientists, linguists, philosophers, and psychologists, participate extensively in the activities of the department.

UNDERGRADUATE PROGRAMS

BACHELOR OF ARTS

The undergraduate major stresses the study of language both as a fundamental human faculty and as a changing social institution. At the core of the program is a set of departmental courses on the nature of human language; the major also draws on courses offered by other departments and programs.

The Linguistics major cuts across the humanities and the social and physical sciences. It provides a solid general education as a background for advanced studies in such disciplines as Anthropology, Communication, Computer Science, Education (Language, Literacy, and Culture), hearing and speech sciences, languages, Law, Linguistics, Philosophy, and Psychology.

REQUIREMENTS

Requirements for the B.A. include at least 50 units of course work in Linguistics and approved courses in related fields. Of the 50 units required for the major, no more than 12 may be below 100 level. No more than two courses, neither of which can be a core course, may be taken on a credit/no credit basis.

Core Courses — The core courses are:

LINGUIST 1. Introduction to Linguistics
LINGUIST 110. Introduction to Phonetics and Phonology
LINGUIST 120. Introduction to Syntax
LINGUIST 130A. Introduction to Linguistic Meaning, or 130B. Introduction to Lexical Semantics
LINGUIST 150. Language in Society, which fulfills the Writing in the Major requirement (WIM)
LINGUIST 160. Introduction to Language Change, or, in advance consultation with the Linguistics undergraduate studies chair, a course in historical linguistics or the history of a language.

All majors must complete at least five core courses, including LINGUIST 150, Language and Society, which fulfills the Writing in the Major requirement (WIM).

Other Courses — Other courses counting toward the unit requirement should form a coherent program with emphases from among the areas of concentration listed below. Students should consult with the Linguistics undergraduate studies chair when declaring the major, and maintain regular contact during the remainder of their Stanford career. Each student’s major program must be approved by the Linguistics undergraduate studies chair, or approved department adviser.

Students in the major must also take:

1. At least two 200-level Linguistics courses, typically in their area of concentration.
2. LINGUIST 197, Undergraduate Research Seminar, in the junior year. (Special arrangements can be made for transfer students and others who start the major later.)

Other Requirements

1. Foreign Language: majors must have competence in at least one language other than English as part of their understanding of the field of linguistics and its study. This is usually demonstrated by the completion of six quarters of language study at Stanford or equivalent; level of proficiency is determined by the Language Center or the relevant language department.

Students may petition to be exempted from the Language Requirement if they have grown up speaking a language other than English and can use it for everyday purposes and for linguistic analysis.

2. Junior Research Paper: this requirement is typically fulfilled by providing an additional stage of revision on a research paper previously submitted in a Linguistics course. It must be approved by both the instructor of the course and the Linguistics undergraduate studies chair.

AREAS OF CONCENTRATION

Students select one of the following areas of concentration or develop one themselves in advance consultation with the Linguistics undergraduate studies chair.

General Linguistics — This program provides a broad education in Linguistics and is advisable for students interested in advanced degrees in Linguistics. All five core courses are required.

Language and Society — This concentration focuses on the social dimensions of language.

Language Structures — This concentration focuses on the cognitive aspects of language.

1. Specialization in Chinese: in addition to the core courses in Linguistics, and LINGUIST 197, Undergraduate Research Seminar, students must
have competence in Chinese at the level of six quarters of language study at Stanford, and complete at least two courses in Chinese linguistics, one of which must be at the 200 level. Courses include:

- CHINGEN 72. The Making of an Official Language
- CHINGEN 73/173. Chinese Language, Culture, and Society
- CHINLIT 191/291. The Structure of Modern Chinese
- CHINLIT 192/292. The History of Chinese
- CHINLIT 391. Seminar in Chinese Syntax

2. Specialization in Japanese: in addition to the core courses in Linguistics, and LINGUIST 197, Undergraduate Research Seminar, students must have competence in Japanese at the level of six quarters of language study at Stanford, and complete at least two courses in Japanese linguistics, one of which must be at the 200 level. Courses include:

- JAPANGEN 71N. Language and Gender in Japan
- JAPANLIT 157. Points in Japanese Grammar
- JAPANLIT 177/277. The Structure of Japanese
- JAPANLIT 188/288. Diversity in Japanese Language: Regional Dialects and their Images
- JAPANLIT 281. Japanese Pragmatics
- JAPANLIT 289. Topics in Japanese Linguistics: Implications of Diversity in Language
- JAPANLIT 291. Readings in Japanese Linguistics
- JAPANLIT 381. Topics in Pragmatics and Discourse Analysis

3. Specialization in Spanish: in addition to the core courses in Linguistics, and LINGUIST 197, Undergraduate Research Seminar, students must have competence in Spanish at the level of six quarters of language study at Stanford, and complete at least three courses in Spanish linguistics such as SPANLIT 207, Theory and Issues in the Study of Bilingualism

Other language concentrations can be arranged on an ad hoc basis if appropriate courses are available in the relevant departments.

MINORS

Requirements for the minor include at least 28 units of course work (typically 7 courses) in Linguistics and related fields, approved in advance by the Linguistics undergraduate studies chair. No more than two courses, neither of which can be a core course, may be taken on a credit/no credit basis. The courses counting towards the minor must be incremental units beyond those needed to satisfy the student’s major course of study. The minor consists of:

1. LINGUIST 1. Introduction to Linguistics
2. Two out of the following five Linguistics core courses:
 - LINGUIST 110. Introduction to Phonetics and Phonology
 - LINGUIST 120. Introduction Syntax
 - LINGUIST 130A. Introduction to Linguistic Meaning, or LINGUIST 130B. Introduction to Lexical Semantics
 - LINGUIST 160. Introduction to Language Change, or, in advance consultation with the Linguistics undergraduate studies chair, a course in historical linguistics or the history of a language.
3. At least four other courses determined in advance consultation with the Linguistics undergraduate studies chair. Students are encouraged to take at least one 200-level Linguistics course. Students may also choose to do independent work with a faculty member of their choice.

HONORS PROGRAM

Students who wish to undertake a more intensive program of study, including independent research, should seek departmental honors. An application to pursue honors work should be presented to a Linguistics undergraduate adviser before the end of the junior year. Approval is given only to students who have maintained a grade point average (GPA) of 3.3 (B+) or better in the courses required for the major.

Honors students take a total of 60 units. These must include the 50 units for the major, 10 additional units of independent study and Honors Research and an honors thesis based on research conducted with a principal adviser who must be a member of the Linguistics faculty, and a secondary faculty adviser who may, with the approval of the Undergraduate Studies Committee, be a member of another department. In the Autumn Quarter of the senior year, honors students enroll in LINGUIST 199. Independent Study, to work closely with one of the advisers on the research project. In Winter and Spring quarters, honors students register in LINGUIST 198, Honors Research, with the principal adviser for close supervision of the honors thesis. The thesis must be submitted in final, acceptable, form by May 15. The thesis topic is presented orally at a department Honors Colloquium late in Spring Quarter.

COTERMINAL PROGRAM

The Department of Linguistics admits a very limited number of undergraduates to work for their coterminal degree in Linguistics. Students are required to submit to the department a complete application, which includes a statement of purpose, a Stanford transcript, three letters of recommendation (at least one of which must be from a faculty member in Linguistics), and a proposed course of study (worked out in advance with a Linguistics adviser). Applicants for the coterminal degree may apply as early as their eighth quarter and no later than early in the eleventh quarter of undergraduate study. Decisions on admission to the coterminal degree rest with the Graduate Admissions Committee of the Department of Linguistics. For further application information, see the department’s web pages.

For University coterminal degree program rules and University application forms, see http://registrar.stanford.edu/publications/#Coterm.

GRADUATE PROGRAMS

MASTER OF ARTS

The University’s basic requirements for the master’s degree are discussed in the “Graduate Degrees” section of this bulletin. The following are additional departmental requirements. Candidates should review the department’s “Guidelines for the M.A. and Ph.D. Degrees” for further particulars concerning these requirements.

1. Courses: candidates must complete a minimum of 45 units of graduate work in linguistics, including at least four courses in the student’s area of specialization. No more than two courses should be at the 100 level.

Individual programs should be worked out in advance with an adviser who should ascertain that the necessary courses in the area of specialization are offered over the course of the year of anticipated enrollment. The overall grade point average (GPA) must be at least 3.0 (B) for all degree program coursework.

2. Language: reading knowledge of a non-native language in which a substantial linguistic literature is written, with sufficient facility to understand and interpret linguistic research published in that language, or in-depth research on the structure of a non-native language.

3. Thesis or Thesis Project: a research paper supervised by a committee of three faculty (normally fulfilled by up to 6 units of LINGUIST 398, Directed Research).

DOCTOR OF PHILOSOPHY

The following requirements are in addition to the basic University requirements for the degree sought; see the “Graduate Degrees” section of this bulletin. Candidates should review the department’s “Guidelines for the M.A. and Ph.D. Degrees” for further particulars concerning these requirements.

1. Language: candidates must demonstrate the ability to read at least one foreign language in which a substantial linguistic literature is written, with sufficient facility to understand and interpret linguistic research published in that language. (Particular areas of specialization may require additional research languages.)

In addition, each candidate must demonstrate an explicit in-depth knowledge of the structure of at least one language (normally neither the candidate’s native language nor the language used for the reading exam). This requirement is fulfilled by writing an original research paper on a language.

2. Courses: a minimum of 135 units of graduate work beyond the B.A. or B.S. exclusive of dissertation units or, beyond the M.A., 90 units exclusive of dissertation units. A basic course requirement detailed in
the Ph.D. guidelines guarantees that each student covers a sufficient set of subareas within the field. Candidates must maintain a satisfactory record in the number and distribution of units completed. The overall course work GPA must be at least 3.0 (B) and all of the basic courses should be completed with at least a ‘B.’

3. Research: the prospective Ph.D. candidate is expected to complete two substantial qualifying papers. The deadline for completion of the first qualifying paper is the end of the Autumn Quarter of the second year; the deadline for completion of the second qualifying paper is the end of Spring Quarter of the second year. The subject matter of the two papers, although it may be related (for example, same language), must be clearly distinct. The requirement is fulfilled by LINGUIST 395A, B, Research Workshop (1-2 units each), and by oral discussion with a committee of at least three faculty members selected by the student and the faculty.

4. Candidacy: students must complete a prescribed portion of the basic course requirement (see item 2 above), one foreign language requirement (see item 1 above), and one qualifying paper (see item 3 above) by the end of their second year.

5. Teaching: at least three quarters serving as teaching assistant in a linguistics course.

6. Colloquia: two oral presentations exclusive of the oral presentation of the dissertation proposal (see item 7b below). This requirement is satisfied by class presentations, conference papers, or colloquium talks. Normally, both should be given during the first four years of study.

7. Dissertation:
 a) A written dissertation proposal is required by the end of the third year.
 b) Oral presentation of the dissertation proposal, preferably as a colloquium.
 c) Approval of the dissertation topic and appointment of a dissertation committee.
 d) Successful passing of a University oral examination on the dissertation and related areas.
 e) Dissertation (up to 15 units of LINGUIST 399).

PH.D. MINOR

1. Courses: the candidate must complete 30 units of course work in linguistics at the 100 level or above, including LINGUIST 110, 120, and either 130A or 130B (100-level courses are waived if 200-level courses in the same area are taken), and at least three courses related to the area of specialization. Courses submitted for the minor must be incremental units beyond those used to satisfy the major. Individual programs should be worked out in advance with the student’s Ph.D. minor adviser in linguistics.

2. Research Project (optional): the candidate may elect to present a paper which integrates the subject matter of linguistics into the field of specialization of the candidate.

3. The linguistics adviser or designee serves on the candidate’s University oral examination committee and may request that up to one-third of the examination be devoted to the minor subject.

Ph.D. Minor in Applied Linguistics — The Department of Linguistics participates in the Applied Linguistics Minor. See the “Language Center” section of this bulletin for full details.

COGNITIVE SCIENCE

Linguistics is participating with the departments of Computer Science, Philosophy, and Psychology in an interdisciplinary program in Cognitive Science for doctoral students. The program is intended to provide an interdisciplinary education as well as a deeper concentration in linguistics. Students who complete the Linguistics and Cognitive Science requirements receive a special designation in Cognitive Science along with the Ph.D. in Linguistics. To receive this field designation, students must complete 30 units of approved courses, to be determined in consultation with the graduate studies adviser.

COURSES

WIM indicates that the course satisfies the Writing in the Major requirement.

LINGUISTICS

Courses numbered under 100 are designed primarily for pre-majors. Courses with 100-level numbers are designed for majors, minors, and M.A. and Ph.D. minor candidates in Linguistics. Those with numbers 200 and above are primarily for graduate students, but with consent of instructor some of them may be taken for credit by qualified undergraduates. At all levels, the course numberings indicate a special area, as follows:

- 01-04 General
- 05-09 Phonetics
- 10-14 Phonology
- 15-19 Morphology
- 20-29 Syntax
- 30-39 Semantics, Pragmatics, Discourse
- 40-49 Language Acquisition, Psycholinguistics
- 50-61 Sociolinguistics, Language Variation, Change
- 62-73 Language and Culture, Structure of a Language
- 74-79 Methods, Mathematical Linguistics, Statistics
- 80-89 Computational Linguistics
- 90-93 Applied Linguistics
- 94-99 Directed Work, Theses, Dissertations

LINGUISTICS

LINGUIST 1. Introduction to Linguistics — The cognitive organization of linguistic structure and the social nature of language use. Why language learning is difficult. Why computers have trouble understanding human languages. How languages differ from one another. How and why speakers of the same language speak differently. How language is used strategically. GER: DB-SocSci
 4 units, Aut (Eckert, Sag)

 3 units, Aut (Beaver)

LINGUIST 34N. The Language of Advertising — Stanford Introductory Seminar. Preference to sophomores. The use of language in and the structural organization of advertisements. What aspects of advertising are effective, and why? How are commercials structured? What is the relation between language and images? What kinds of language are used in what kinds of advertising?
 3 units, Win (Sells)

LINGUIST 47N. Languages, Dialects, Speakers — Stanford Introductory Seminar. Preference to freshmen. Variation and change in languages from around the world. The roots, historical development, and linguistic and social structures of variation. How languages differ from each other, and how issues in linguistics connect to other social and cultural issues. The systematic study of language. GER: DB-SocSci
 3 units, Aut (Anttila)

LINGUIST 65/265. African American Vernacular English — (Graduate students register for 265.) The English vernacular spoken by African Americans in big city settings, and its relation to Creole English dialects spoken on the S. Carolina Sea Islands (Gullah), in the Caribbean, and in W. Africa. The history of expressive uses of African American English (in soundin’ and rappin’); educational implications. GER: DB-SocSci
 3-5 units (Rickford) not given 2005-06

LINGUIST 70. Structure of English Words — Patterns of structure and meaning in English vocabulary. The processes that have led to meanings and shapes of established and recently coined words. Given that language is in constant flux, what constitutes correct usage, and who decides. Students taking optional practicum register for 5 units. GER: DB-SocSci
 4-5 units, Aut (Leben)

LINGUISTICS

LINGUISTICS 101. Comparative Linguistics — Comparative linguistics, including historical and typological studies of human languages. How and why languages differ from one another. How and why speakers of the same language speak differently. How language is used strategically. GER: DB-SocSci
 4 units, Win (Beaver, Eickhoff)

LINGUISTICS 110. Structure of English Words — Patterns of structure and meaning in English vocabulary. The processes that have led to meanings and shapes of established and recently coined words. Given that language is in constant flux, what constitutes correct usage, and who decides. Students taking optional practicum register for 5 units. GER: DB-SocSci
 4-5 units, Aut (Leben)

 4-5 units, Aut (Beaver, Eickhoff)

LINGUISTICS 201N. Phonetics — The nature of speech sounds, acoustic and physical properties of speech sounds, and their role in the perception and production of language. GER: DB-SocSci
 4 units, Win (Sells)
LINGUIST 90. Teaching Spoken English—Practical approach to teaching English to non-native speakers. Teaching principles and the features of English which present difficulties. Preparation of lessons, practice teaching in class, and tutoring of non-native speaker.
3-4 units, Spr (Yerian)

LINGUIST 105/205. Phonetics—(Graduate students register for 205.) The study of speech sounds: how to produce them, how to perceive them, and their acoustic properties. The influence of production and perception systems on sound change and phonological patterns. Acoustic analysis and experimental techniques. Lab exercises. Prerequisite: 110 or equivalent, or consent of instructor.
4 units, Aut (Scarborough)

LINGUIST 107/207. Seminar in Phonetics: Clear Speech—(Graduate students register for 207.) The phonetics and phonology of clear speech styles, including explicitly clear speech, lab speech, speech to the hard-of-hearing, and child-directed speech. Frequency, predictability, and confusability effects. The relation of these listener-directed speech effects to one another and to other hyperarticulation phenomena such as lexical and phrasal stress and prosodic strengthening. May be repeated for credit.
2-4 units, Spr (Scarborough)

LINGUIST 110. Introduction to Phonetics and Phonology—Differences in the sounds of the world’s languages and how these sounds are made by the human vocal tract. Theories that account for cross-linguistic similarities in the face of differences. GER:DB-SocSci
4 units, Spr (Anttila)

LINGUIST 120. Introduction to Syntax—Grammatical constructions, primarily English, and their consequences for a general theory of language. Practical experience in forming and testing linguistic hypotheses, reading, and constructing rules. GER:DB-SocSci
4 units, Aut (Sag)

LINGUIST 124A/224A. Introduction to Formal Universal Grammar—(Graduate students register for 224A.) A formal model of universal grammar to explain crosslinguistic variation in syntactic structure: nonconfigurationality in Australian aboriginal languages, incorporation in native American languages and the Bantu languages of Africa, scrambling and head movement in European languages. Issues such as universal grammar design, and analytic problems from a variety of natural languages. Prerequisites: introduction to syntax and familiarity with logic or other symbolic systems, or consent of instructor. GER:DB-SocSci
4 units, Aut (Sells)

LINGUIST 128/228. Real English: The Syntax of Language Use—(Graduate students register for 228.) Hands-on experience with modern corpus methods, and natural spoken and written syntactic data. Syntactic analysis of spontaneous spoken conversations and newspaper reportage, using tagged and parsed corpora such as the Penn Treebank. Topics include standard subject matter suitable for a syntax introduction, but each of the core topics is investigated empirically in natural English. GER:DB-SocSci
4 units (Bresnan) not given 2005-06

LINGUIST 130A. Introduction to Linguistic Meaning—Linguistic meaning and its role in communication. How diagnostic tests can be used to categorize and separate semantic phenomena such as ambiguity and vagueness, entailment, and presupposition. How basic set theory and logic can be used to specify meanings and explain semantic phenomena. Pragmatic complications involving the assumptions and intentions of language users. Those who have not taken logic, such as PHIL 150 or 151, should also enroll in 130C. Pre- or corequisite: 120, or consent of instructor. GER:DB-SocSci
4 units, Aut (Peters)

LINGUIST 130B. Introduction to Lexical Semantics—Issues in the study of word meaning. Focus is on the core semantic properties and internal organization of the four major word categories in natural languages: nouns, verbs, adjectives, and prepositions. GER:DB-SocSci
4 units, Win (Fong)

LINGUIST 130C. Logic Laboratory—Typically taken in conjunction with 130A/230A.
1 unit, Aut (Peters)

LINGUIST 133/233. Semantics Seminar: Tense and Aspect—(Graduate students register for 233.) The temporal structure of languages. Topics include the logic of time, presentation of situations, and semantics of tense and aspect in narrative discourse.
1-4 units, Aut (Fong)

LINGUIST 140. Language Acquisition I—Processes of language acquisition in early childhood; research questions and methods.
4 units, Spr (Estigarribia)

LINGUIST 144. Introduction to Cognitive Science—(Same as SYMBYSYS 100, PSYCH 130, PHIL 190.) The history, foundations, and accomplishments of the cognitive sciences, including presentations by leading Stanford researchers in artificial intelligence, linguistics, philosophy, and psychology. Overview of the issues addressed in the Symbolic Systems major. GER:DB-SocSci
4 units, Spr (Bresnan, van Benthem)

LINGUIST 145. Language and Thought—(Enroll in PSYCH 131/262.)
4 units (H. Clark) not given 2005-06

LINGUIST 150. Language in Society—How language and society affect each other. Social dialects, and class, ethnic, and gender differences in speech. Prestige and stigma associated with different ways of speaking and the politics of language. Stylistic practice; how speakers use language to construct styles and adapt their language to different audiences and social contexts. WIM
4 units, Spr (Mendoza-Denton)

LINGUIST 152/252. Pidgin and Creole Sociolinguistics—(Graduate students register for 252.) Introduction to pidgins and creoles, organized around the main stages in the pidgin-creole life cycle: pidginization, creolization, and decreolization. Focus is on transformations in the English language as it was transported from Britain to Africa, Asia, the Caribbean, and the Pacific. Resultant pidginized and creolized varieties such as Nigerian Pidgin English, Chinese Pidgin English, New Guinea Tok Pisin, Suriname Sranan, and the creole continua of Guyana, Jamaica, and Hawaii. Also French, Dutch, Portuguese, Chinook, Motu, and Sango.
2-4 units (Rickford) not given 2005-06

LINGUIST 153/253. Sociophonetics—(Graduate students register for 253.) Phonetic aspects of sociolinguistic variation and the social significance of phonetic variation. Focus is on group and individual research and phonetic theory. Topics include methods of collecting data, conducting phonetic analyses, interpreting results, and how phonetic theory informs these practices. All domains of sound, including vowels, consonants, intonation, and voice quality. May be repeated for credit. Prerequisite: 110 or equivalent or consent of instructor.
2-4 units, Win (Podesva)

LINGUIST 156. Language and Gender—The role of language in the construction of gender, the maintenance of the gender order, and social change. Field projects explore hypotheses about the interaction of language and gender. No knowledge of linguistics required. GER:DB-SocSci, EC-Gender
4 units, Win (Eckert)

LINGUIST 159/259. Language in the U.S.—(Graduate students register for 259.) The multifaceted nature of language in the U.S. Social, regional, and ethnic varieties such as African American vernacular English and Appalachian English; other languages including Spanish, Native American languages, Asian American voices, and American Sign Language; and the sociolinguistic situation including language attitudes and prejudices, rap and hip hop, the language of doctors and patients, and the English only and Ebonics controversies. GER:DB-SocSci
3-5 units (Rickford) not given 2005-06
LINGUIST 160. Introduction to Language Change.—(Same as ANTHSCI 110.) Variation and change as the natural state of language. Differentiation of dialects and languages over time. Determination and classification of historical relationships among languages, and reconstruction of ancestral stages. Types, rates, and explanations of change. Parallels with cultural and genetic evolutionary theory. Implications for the description and explanation of language in general. GER:DB-SocSci
4-5 units, Win (Kiparsky)

LINGUIST 164. English Transplanted and Transformed.—English varieties around the world, including white vernacular dialects and creole, pidgin, and indigenized Englishes. Emphasis is on the historical circumstances of origin, linguistic characteristics, and social setting in colonial and postcolonial societies. Theoretical issues pertaining to language contact, language shift, and pidgin and creole formation.
2-4 units, Aut (Roberts)

LINGUIST 166. Ebonics and Other Vernaculars in Schools and Society.—The role that Ebonics and other vernaculars such as Gullah, Appalachian English, Hawaiian Pidgin, and the Caribbean Creole varieties play in schools and societies. Such vernaculars are often blamed for their speakers’ difficulties with literacy and job mobility. The roles of vernaculars in the expressive fabric and social relationships of their speakers. Evidence that their potential usefulness in educational reform has been underestimated. GER:DB-SocSci
4 units (Rickford) not given 2005-06

LINGUIST 169. Linguistic Perspectives on American Indian Languages.—Genetic, area, and linguistic classifications of American Indian languages in social and historical context; their spoken forms and writing systems; language endangerment, preservation, and loss. Recommended: LINGUIST 1 for those enrolling for 4 units.
3-4 units, Spr (Lillehaugen)

2-4 units, Spr (Sells)

LINGUIST 174/274. Field Methods.—(Graduate students register for 274.) Hands-on. The methods by which linguists gather raw linguistic data about a language and begin analyzing its structure. Working with a speaker of a language not previously studied by class participants, students develop a description of key aspects of its grammar and examine methodologies for obtaining, storing, and manipulating data.
2-4 units, Spr (Lillehaugen)

LINGUIST 180. Introduction to Computer Speech and Language Processing.—Spoken language dialogue systems, speech recognition and synthesis, web-based question answering, and the ideas of parsing, grammars, semantic interpretation, and discourse processing. Focus is on writing scripts to use available online implementations of these applications, rather than on implementing the applications themselves. Prerequisite: CS 106B or X. GER:DB-EngrAppSci
4 units, Aut (Jurafsky)

LINGUIST 182/282. Human and Machine Translation.—(Graduate students register for 282.) The process of translation by professional and amateur translators, and by existing and proposed machine-translation systems; what each might learn from the others. Prerequisite: advanced knowledge of a foreign language. GER:DB-EngrAppSci
4 units, Aut (Kay)

LINGUIST 183/283. Programming and Algorithms for Natural Language Processing.—(Graduate students register for 283.) Construction of computer programs for linguistic processes such as string search, morphological, syntactic, and semantic analysis and generation, and simple machine translation. Emphasis is on the algorithms that have proved most useful for solving such problems. GER:DB-EngrAppSci
3-4 units, Win (Kay)

LINGUIST 187/287. Grammar Engineering.—(Graduate students register for 287.) Hands-on. Techniques for implementation of linguistic grammars, drawing on grammatical theory and engineering skills. Implementation of constraints in morphology, syntax, and semantics, working within a unification-based lexicalist framework. Focus is on developing small grammars for English and at least one other language. Prerequisite: basic syntactic theory or 120. No programming skills required.
1-4 units, Spr (King, Kaplan)

LINGUIST 188/288. Natural Language Understanding.—(Graduate students register for 288; same as CS 224U.) Machine understanding of natural language. Computational semantics (determination of sense, event structure, thematic role, time, aspect, synonymy/meronymy, causation), and computational pragmatics and discourse (coherence relations, anaphora resolution, information packaging, generation). Theoretical issues, online resources, and relevance to question answering, summarization, and inference. Prerequisites: one of LINGUIST 180, CS 224N, S; and LINGUIST 130A or B, or knowledge of logic.
2-4 units, Win (Jurafsky, Peters)

LINGUIST 191/291. Linguistics and the Teaching of English as a Second/Foreign Language.—(Graduate students register for 291.) Methods and techniques for teaching languages, using ideas from modern linguistics, and language acquisition theory. Focus is on teaching English, but the principles, methods, and techniques are applicable to any language. GER:DB-SocSci
4-5 units, Win (Hubbard)

LINGUIST 197. Undergraduate Research Seminar.—Research goals and methods in linguistics and related disciplines. Students work on a small project to define a focus for their linguistic studies and prepare for honors research. Presentations; final paper.
2 units, Win (Levin)

LINGUIST 198. Honors Research
1-15 units, Win, Spr (Staff)

LINGUIST 199. Independent Study
1-15 units, Aut, Win, Spr, Sum (Staff)

LINGUIST 200. Foundations of Linguistic Theory.—Theories that have shaped 20th-century linguistics; recurrent themes and descriptive practice.
4 units (Kiparsky) not given 2005-06

LINGUIST 201. Advanced Introduction to Linguistics.—Primarily for graduate students. The leading ideas of linguistic description and linguistic argumentation. The fundamental representational notions in phonology, syntax, and semantics, and the place of these notions in wider linguistic analysis.
4 units (Zwicky) not given 2005-06

LINGUIST 210. Phonology.—Introduction to phonological theory and analysis based on cross-linguistic evidence. Topics: phonological representations including features, syllables, metrical structure; phonological processes including assimilation and dissimilation; and phonological typology and universals.
4 units (Anttila) not given 2005-06

LINGUIST 211. Seminar in Phonology: Stratal Optimality Theory.—May be repeated for credit.
1-4 units, Aut (Kiparsky)

LINGUIST 212. Seminar in Phonology: Stress.—May be repeated for credit.
1-4 units, Win (Anttila)

LINGUIST 213. Seminar in Phonology: Tone.—Current issues and theoretical. Focus is on language groups of Africa, Asia, and the Americas to develop a working typology of tonal systems. May be repeated for credit.
1-4 units, Spr (Leben)

LINGUIST 214. Phonology Workshop.—May be repeated for credit.
1-2 units, Aut (Kiparsky), Win (Anttila), Spr (Kiparsky)

2-4 units (Staff) not given 2005-06

LINGUIST 217. Morphosyntax — The role of morphology in grammar: how word structure serves syntax in the expression of meaning. Universal properties and typology of morphological categories; proposals towards their principled explanation in a restrictive theory of language.

2-4 units, Win (Kiparsky)

LINGUIST 218. Seminar in Morphosyntax: A Cabinet of Curiosities — The morphology-syntax interface, focusing on problematic phenomena such as: inflectional categories that are multifunctional, syncretic even to the point of being barely discernible, defective, or suppletive; edge inflection; periphrasis; marker words; and distinct morphological and syntactic parses. May be repeated for credit.

2-4 units, Aut (Zwicky)

LINGUIST 221A. Foundations of English Grammar — A systematic introduction to the formal analysis of English grammar using the framework of Head-Driven Phrase Structure Grammar (HPSG). Topics: feature structure modeling, lexical and phrasal organization in terms of type hierarchies and constraint inheritance, clausal types, patterns of complementation, the auxiliary system, extraction dependencies, wh-constructions, and the syntax-semantics interface.

1-4 units (Sag) not given 2005-06

LINGUIST 221B. Studies in Universal Grammar — Focus is on grammatical analysis of individual languages. Builds directly on the theoretical foundations presented in 221A. Topics vary each year.

1-4 units (Sag) not given 2005-06

LINGUIST 222A. Lexical Foundations of Syntax — Introductory syntax focusing on the role of the verb and the lexicon in the determination of sentence syntax. Topics: the argument/adjunct distinction, subcategorization and argument structure, motivation for a lexicalist approach, principles governing argument expression, operations on argument structure and grammatical function changing rules, unbounded dependencies, and the approach to unbounded dependencies rooted in principles of lexical expression and subcategorization satisfaction.

2-4 units (Sells) not given 2005-06

LINGUIST 222B. Advanced Topics in Lexical Functional Grammar: Control — Theoretical perspectives on control phenomena across different languages. May be repeated for credit.

1-4 units, Win (Bresnan)

LINGUIST 229A, B, C. Laboratory Syntax I, II, III — Hands-on use of methods of handling syntactic data, including corpus work on ecologically natural data and controlled experimental paradigms. Explanatory models of syntactic processing and their relation to theories of grammar. Offered jointly by the syntax faculty. May be repeated for credit.

1-4 units, A: Aut (Bresnan), B: Win (Sag), C: Spr (Bresnan, Zaenen)

2-4 units, Aut (Beaver)

LINGUIST 230B. Semantics and Pragmatics — Expands on 230A. Standard approaches to formal semantics (Montague grammar, DRT, and basic dynamic semantics). Analyses of semantic phenomena in these frameworks. Prerequisites: 230A; or combination of 130 and PHIL 150 and 160.

2-4 units, Spr (Peters)

LINGUIST 232A. Lexical Semantics — Introduction to issues in word meaning, focused primarily around verbs. Overview of the core semantic properties of verbs and the organization of the verb lexicon. Approaches to lexical semantic representation, including semantic role lists, prototypes, and causal and aspectual theories of event conceptualization.

2-4 units, Win (Levin)

LINGUIST 232B. Seminar in Lexical Semantics: Unaccusativity — Emphasis is on recent work. Topics: proposed semantic determinants of unaccusativity; the status of Burzio’s generalization; the crosslinguistic manifestations of unaccusativity; and case studies of unaccusative phenomena such as auxiliary selection or the causative alternation. May be repeated for credit.

1-4 units, Spr (Levin)

LINGUIST 232C. Lexical Semantics Research Seminar — May be repeated for credit. By arrangement.

1-2 units, Aut, Win, Spr (Levin)

LINGUIST 234. Discourse Analysis — The organization of language above the sentence level, and the manifestation of language in context. Practical experience in working with discourse data.

4 units (Staff) not given 2005-06

LINGUIST 237. Seminar in Semantics: Situation Semantics — (Same as PHIL 182.) Theory and applications of situation semantics to natural languages and the flow of information. May be repeated for credit.

1-4 units, Spr (Perry, Peters)

LINGUIST 241. Language Acquisition II: Advanced Topics in Language Acquisition — May be repeated for credit.

1-4 units (E. Clark) not given 2005-06

LINGUIST 246. Psycholinguistics — (Enroll in PSYCH 214.)

1-3 units (H. Clark) not given 2005-06

LINGUIST 247. Seminar in Psycholinguistics — (Same as PSYCH 227.)

2-4 units (Staff) not given 2005-06

LINGUIST 250. Sociolinguistic Theory and Analysis — Methods of modeling the patterned variation of language in society. Emphasis is on variation, its relation to social structure and practice, and its role in linguistic change. Intersection between quantitative and qualitative analysis, combining insights of sociology and linguistic anthropology with quantitative linguistic data. Prerequisite: graduate standing in Linguistics or consent of instructor.

4 units, Aut (Eckert)

LINGUIST 255. Seminar in Sociolinguistics: Language Ideology — Recent developments in cultural and anthropological theory have led to the reconceptualization of topics in sociolinguistics such as language attitudes. Differences and complementarities between the individual, psychology-oriented language attitudes approach and the macro-social, theory-based language ideologies approach. Emerging schools of language ideology, and how they can be integrated with the study of variation. May be repeated for credit.

2-4 units, Spr (Mendoza-Denton)

LINGUIST 258. Analysis of Variation — The quantitative study of linguistic variability in time, space, and society emphasizing social constraints in variation. Hands-on work with variable data. Prerequisites: 105/205 and 250, or consent of instructor.

4 units, Spr (Eckert)

LINGUIST 260A. Historical Morphology and Phonology — Sound change and analogical change in the perspective of linguistic theory. Internal and comparative reconstruction.

4 units, Spr (Kiparsky)

LINGUIST 260B. Historical Morphosyntax — Morphological and syntactic variation and change. Reanalysis, grammaticalization. The use of corpora and quantitative evidence.

2-4 units (Kiparsky) not given 2005-06
LINGUIST 279. Quantitative and Probabilistic Explanation in Linguistics—Capturing the soft constraints inherent in linguistic systems, based on quantitative evidence obtained from linguistic corpora. Computer tools for collecting and modeling data. Emphasis is on syntax.
3-4 units (Manning) not given 2005-06

LINGUIST 280. Natural Language Processing—(Same as CS 224N.) Methods for processing linguistic information and the underlying computational properties of natural languages. Syntactic and semantic processing from a linguistic and an algorithmic perspective. Focus is on modern quantitative techniques in NLP: using large corpora, statistical models for acquisition and interpretation, and representational systems. Prerequisites: CS 121/221 or LINGUIST 180, programming experience, familiarity with logic and probability.
3-4 units, Spr (Manning)

LINGUIST 281. Speech Recognition and Synthesis—(Same as CS 224S) Introduction to automatic speech recognition and speech synthesis/text-to-speech. Focus is on key algorithms including noisy channel model, hidden Markov models (HMMs), Viterbi decoding, N-gram language modeling, unit selection synthesis, and roles of linguistic knowledge. Prerequisite: programming experience. Recommended: familiarity with probability.
2-4 units, Win (Jurafsky)

LINGUIST 285. Finite State Methods in Natural Language Processing—Theory and available technology for finite state language processing. Applications include tokenization, phonological and morphological analysis, disambiguation, and shallow parsing.
3-4 units, Spr (Karttunen)

LINGUIST 286. Text Retrieval and Web Search—(Enroll in CS 276.)
3 units, Aut (Manning, Raghavan)

LINGUIST 292. The History of Chinese—(Enroll in CHINLIT 192/292.)
4 units (Sun) not given 2005-06

LINGUIST 293. Research Seminar in Applied Linguistics—(Enroll in EDUC 435X.) For graduate students in the schools of Education and Humanities and Sciences who are engaged in research pertaining to applied linguistic topics in original research. Topics: language policies and planning, language and gender, writing and critical thinking, foreign language education, and social applications of linguistic science. (SSPEP)
1-4 units (Baugh) not given 2005-06

LINGUIST 309. M.A. Project
1-3 units, Aut, Win, Spr, Sum (Staff)

LINGUIST 390. TA Training Workshop—For second year graduate students in linguistics.
1 unit, Aut (Sells)

LINGUIST 395A, B, C. Research Workshop I, II, III—Restricted to students in the doctoral program. Student presentations of research toward qualifying papers.
1-2 units, A: Spr (Anttila), B: Spr (Levin), C: Sum (Staff)

LINGUIST 396. Research Projects in Linguistics—Mentored research project for first-year graduate students in linguistics.
2-3 units, Win (Staff)

LINGUIST 397. Directed Reading
1-15 units, Aut, Win, Spr, Sum (Staff)

LINGUIST 398. Directed Research
1-15 units, Aut, Win, Spr, Sum (Staff)

LINGUIST 399. Dissertation Research
1-15 units, Aut, Win, Spr, Sum (Staff)

DIVISION OF LITERATURES, CULTURES, AND LANGUAGES

Acting Division Head: Gregory Freidin
Division Offices: Building 260, Rooms 114-119
Mail Code: 94305-2005
Phone: (650) 724-1333; Fax: (650) 725-9306
Email: dcll@stanford.edu
Web Site: http://dlcl.stanford.edu

The Division of Literatures, Cultures, and Languages consists of six academic departments (Asian Languages, Comparative Literature, French and Italian, German Studies, Slavic Languages and Literatures, and Spanish and Portuguese) as well as the Language Center, which oversees language instruction at Stanford. All the departments of the division offer academic programs leading to B.A., M.A., and Ph.D. degrees. The division brings together scholars and teachers dedicated to the study of literatures, cultures, and languages from humanistic and interdisciplinary perspectives. The departments in the division are distinguished by the quality and versatility of their faculty, a wide variety of approaches to cultural tradition and expression, and the intense focus on the mastery of languages. This wealth of academic resources, together with small classes and the emphasis on individual advising, creates a superior opportunity for students who wish to be introduced to or develop a deeper understanding of non-English speaking cultures.

The division’s departments and the Language Center offer instruction at all levels, including introductory and general courses that do not require knowledge of a language other than English. These courses satisfy a variety of undergraduate requirements and can serve as a basis for developing a minor or a major program in the member departments. The more advanced and specialized courses requiring skills in a particular language are listed under the relevant departments, as are descriptions of the minor and major programs.

COURSES

DLCL 189. Honors Thesis Seminar—Prepares undergraduate majors within the division’s constituent departments for planning, researching, and writing an honors thesis. Oral presentations and peer workshops. Research and writing methodologies, and larger critical issues in literary studies.
5 units, Aut (Wittman)

DLCL 308. Comparative Literature Colloquium—Participants discuss and critique work presented by graduate students and faculty in the DLCL. Work may include conference or seminar papers, thesis chapters, or works-in-progress. Feedback focuses on writing and argumentation, and more general responses to the subject matter. Meetings open to the public. May be repeated for credit.
2 units, Aut, Win, Spr (Berman)

DLCL 309. The Teaching of Literature—Prepares graduate students in DLCL departments to teach literature at the undergraduate level. Topics include: the opportunities and problems of transposing a research project into a feasible course; the logic of syllabi and reading lists; the structuring of a course from week to week; and other matters relevant to first-time teachers of literature. Supervised by the Graduate Affairs Committee of the DLCL.
2 units, Aut, Win, Spr (Levy, Sá)

DLCL 310. The Development of a Dissertation from Prospectus to Defense—Meets regularly throughout the year to advise and support dissertation-level students as they prepare a prospectus, begin writing, submit chapters, and complete their projects. Focus of the workshop shifts from term to term as appropriate to the participants. Supervised by the Graduate Affairs Committee of the DLCL.
2 units, Aut, Win, Spr (Safraan, Edelstein)
DLCL 311. Professional Workshop—Meets regularly throughout the year to discuss issues in the professional study of literature. Topics include the academic job market and the challenges of research and teaching at different types of institutions. Autumn Quarter focus is on the publication and place of the journal in the academic context and includes directed editorial work on Stanford’s poetry journal, Mantis. Supervised by the Graduate Affairs Committee of the DLCL.

2 units, Aut, Win, Spr (Kelly, Staff)

MATHEMATICAL AND COMPUTATIONAL SCIENCE

Director: Bradley Efron
Associate Director: Susan Holmes

Committee in Charge: Takeshi Amemiya (Economics), Gunnar Carlsson (Mathematics), Richard Cottle (Management Science and Engineering), Thomas M. Cover (Electrical Engineering, Statistics), Bradley Efron (Statistics), Gene Golub (Computer Science), J. Michael Harrison (Graduate School of Business), Susan Holmes (Statistics), Doron Levy (Mathematics), Parviz Moin (Engineering), Art Owen (Statistics), George Papanicolaou (Mathematics), Eric Roberts (Computer Science), David Rosoga (Education), David Siegmund (Statistics), Arthur F. Veinott Jr. (Management Science and Engineering), Julie Zelenski (Computer Science)

Program Administrator: Helen Tombrupoulos
Program Offices: Sequoia Hall, 390 Serra Mall
Mail Code: 94305-4065
Phone: (650) 723-2620
Email: helen@stat.stanford.edu
Web Site: http://www.stat.stanford.edu

Courses given in Mathematical and Computational Science have the subject code MCS. For a complete list of subject codes, see Appendix.

This interdepartmental, interschool, undergraduate program provides a major for students interested in the mathematical and computational sciences, or in the use of mathematical ideas and analysis in problems in the social or management sciences. It provides a core of mathematics basic to all the mathematical sciences and an introduction to concepts and techniques of automatic computation, optimal decision making, probabilistic modeling, and statistical inference. It also provides an opportunity for elective work in any of Stanford’s mathematical science disciplines.

The program uses the faculty and courses of the departments of Computer Science, Management Science and Engineering, Mathematics, and Statistics. It prepares students for graduate study or employment in the mathematical and computational sciences or in those areas of applied mathematics which center around the use of computers and are concerned with the problems of the social and management sciences.

A biology option is offered for students interested in applications of mathematics, statistics, and computer science to the biological sciences (bioinformatics, computational biology, statistical genetics, neurosciences); and in a similar spirit, an engineering option.

UNDERGRADUATE PROGRAMS

BACHELOR OF SCIENCE

The requirement for the bachelor’s degree, beyond the University’s basic requirements, is an approved course program of 72-77 units, distributed as follows:

<table>
<thead>
<tr>
<th>Mathematics (MATH): 29-31 units</th>
<th>Qtr. and Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>41. Calculus</td>
<td>A, W 5</td>
</tr>
<tr>
<td>and 42. Calculus</td>
<td>A, W, S 5</td>
</tr>
<tr>
<td>51. Linear Algebra & Differential Calculus of Several Variables</td>
<td>A, W, S 5</td>
</tr>
<tr>
<td>or 5 1H. Honors Advanced Calculus</td>
<td>A 5</td>
</tr>
<tr>
<td>52. Integral Calculus of Several Variables</td>
<td>A, W, S 5</td>
</tr>
<tr>
<td>or 5 2H. Honors Advanced Calculus</td>
<td>W 5</td>
</tr>
</tbody>
</table>

5 9 5. Honors Advanced Calculus	A 5
109. Applied Group Theory (WIM)	A 3
or 110. Applied Number Theory and Field Theory (WIM)	A 3
or 120. Modern Algebra (WIM)	A, S 3
113. Linear Algebra and Matrix Theory	A, W 3

COMPUTER SCIENCE (CS): 16-18 units

103X. Discrete Structures (Accelerated)	W 3-4
or 103A. Discrete Mathematics for Computer Science	A, W 3
and 103B. Discrete Structures	W, S 3
106X. Programming Methodology and Abstractions (Accel.)	A 3-5
or 106A. Programming Methodology	A, W, S 3-5
and 106B. Programming Abstractions	W, S 3-5

And two of the following (CS):

107. Programming Paradigms	A 3-5
137. Introduction to Scientific Computing (enroll in CME 108)	W 3-4
154. Introduction to Automata and Complexity Theory	A, S 3-4
161. Design and Analysis of Algorithms	A, W 3-4

MANAGEMENT SCIENCE AND ENGINEERING (MS&E): 8-9 units

Both:

| 111. Introduction to Optimization (enroll in ENGR 62) | A, S 3-4 |
| 121. Introduction to Stochastic Modeling | W 4 |
| or three of the following: |
211. Linear and Nonlinear Optimization	A 3-4
212. Mathematical Programming and Combinatorial Optimization	S 3
221. Stochastic Modeling	W 3
251. Stochastic Decision Models	W 3

Statistics (STATS): (11 units)

116. Theory of Probability	A, S 3-5
191. Introduction to Applied Statistics	W 3-4
or 203. Intro. to Regression Models and Analysis of Variance	S 3
200. Introduction to Statistical Inference	W 3

ELECTIVES (9 UNITS)

Three courses in mathematical and computational science, 100-level or above, and at least 3 units each. At least one must be chosen from the following:

<table>
<thead>
<tr>
<th>Qtr. and Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 102C. Advanced Topics in Econometrics (not given 2005-06)</td>
</tr>
<tr>
<td>ECON 140. Introduction to Financial Economics</td>
</tr>
<tr>
<td>ECON 160. Game Theory and Economic Applications (prerequisite ECON 51)</td>
</tr>
<tr>
<td>ECON 179. Experimental Economics (not given 2005-06)</td>
</tr>
<tr>
<td>EE 261. The Fourier Transform and its Applications</td>
</tr>
<tr>
<td>MS&E 211. Linear and Nonlinear Optimization</td>
</tr>
<tr>
<td>MS&E 212. Mathematical Programming and Combinatorial Optimization</td>
</tr>
<tr>
<td>MS&E 221. Stochastic Modeling</td>
</tr>
<tr>
<td>MS&E 251. Stochastic Decision Models</td>
</tr>
<tr>
<td>MCS 100. Mathematics of Sports (same as STATS 50) (not given 2005-06)</td>
</tr>
</tbody>
</table>

MATH 106. Functions of a Complex Variable	A 3
MATH 108. Introduction to Combinatorics and its Applications	A 3
MATH 111. Computational Commutative Algebra	W 3
MATH 115. Functions of a Real Variable	A, W 3
MATH 116. Complex Analysis	S 3
MATH 118. Numerical Analysis	A 3
MATH 131. Partial Differential Equations	A, W 3
MATH 132. Partial Differential Equations II	S 3
MATH 135. Nonlinear Dynamics and Chaos	S 3
MATH 136. Stochastic Processes	A 3
PHIL 151. First-Order Logic	W 4
STATS 202. Data Analysis	A 3
STATS 217. Introduction to Stochastic Processes	W 3

For Computer Science (CS), electives can include courses not taken as units under the CS list above and the following:

<table>
<thead>
<tr>
<th>Qtr. and Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 108. Object-Oriented Systems Design</td>
</tr>
<tr>
<td>CS 140. Operating Systems and Programming</td>
</tr>
<tr>
<td>CS 143. Compilers</td>
</tr>
<tr>
<td>CS 157. Logic and Automated Reasoning</td>
</tr>
<tr>
<td>CS 161. Design and Analysis of Algorithms</td>
</tr>
<tr>
<td>CS 194. Software Project (prerequisite CS 108)</td>
</tr>
<tr>
<td>CS 221. Artificial Intelligence: Principles and Techniques</td>
</tr>
<tr>
<td>CS 223A. Introduction to Robotics</td>
</tr>
<tr>
<td>CS 223B. Introduction to Computer Vision</td>
</tr>
<tr>
<td>CS 225A. Experimental Robotics</td>
</tr>
<tr>
<td>CS 228. Probabilistic Models in Artificial Intelligence</td>
</tr>
</tbody>
</table>
CS 229. Machine Learning A 3
CS 237A. Numerical Linear Algebra A 3
CS 243. Advanced Compiling Techniques W 3-4
EE 275. Logic Design (not given 2005-06) 3

With the adviser's approval, courses other than those offered by the sponsoring departments may be used to fulfill part of the elective requirement. These may be in fields such as biology, economics, electrical engineering, industrial engineering, and medicine, that might be relevant to a mathematical sciences major, depending on a student's interests.

1. At least three quarters before graduation, majors must file with their advisers a plan for completing degree requirements.
2. All courses used to fulfill major requirements must be taken for a letter grade with the exception of courses offered satisfactory/no credit only.
3. A course used to fulfill the requirements of one section of the program may not be applied toward the fulfillment of the requirements of another section.
4. The student must have a grade point average (GPA) of 2.0 or better in all work course used to fulfill the major requirement.

MATHEMATICAL AND COMPUTATIONAL BIOLOGY OPTION

Replace MATH 109/110 with either:

<table>
<thead>
<tr>
<th>Qtr. and Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOSCI 221. Methods of Theoretical Population Biology A 3</td>
</tr>
<tr>
<td>or MATH 135. Nonlinear Dynamic Systems W 3</td>
</tr>
<tr>
<td>Replace STATS 191/203 by</td>
</tr>
<tr>
<td>STATS/BIOSCI 141. Biostatistics A 3-5</td>
</tr>
</tbody>
</table>

Take at least 2 courses from the Biological Sciences core:

<table>
<thead>
<tr>
<th>Qtr. and Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOSCI 41. Genetics and Biochemistry A 5</td>
</tr>
<tr>
<td>BIOSCI 42. Cell Biology and Animal Physiology W 5</td>
</tr>
<tr>
<td>BIOSCI 43. Plant Biology, Evolution, and Ecology S 5</td>
</tr>
</tbody>
</table>

Take a third course either from the core or STATS 166. Statistical Methods in Computational Genetics (WIM) A 3

<table>
<thead>
<tr>
<th>Qtr. and Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOSCI 133. Genetics of Prokaryotes A 3</td>
</tr>
<tr>
<td>BIOSCI 134. Replication of DNA W 3</td>
</tr>
<tr>
<td>BIOSCI 136. Evolutionary Paleobiology or BIOSCI 203. Advanced Genetics W 4</td>
</tr>
</tbody>
</table>

Honors students should take 3 of the following:

<table>
<thead>
<tr>
<th>Qtr. and Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATS 166. Statistical Methods in Computational Genetics (WIM) A 3</td>
</tr>
<tr>
<td>ANTHSCI 180. Intro. to Anthropological Genetics (not given 2005-06) 5</td>
</tr>
<tr>
<td>ANTHSCI 187. The Genetic Structure of Populations (not given 2005-06) A 5</td>
</tr>
<tr>
<td>ANTHSCI 188. Research in Anthropological Genetics W 5</td>
</tr>
<tr>
<td>BIOSCI 113. Fundamentals of Molecular Evolution W 4</td>
</tr>
<tr>
<td>BIOSCI 146. Population Studies W 4</td>
</tr>
<tr>
<td>BIOSCI 221. Methods of Theoretical Population Biology S 4</td>
</tr>
<tr>
<td>BIOSCI 183A/283A. Population Genetic Theory and Evolution I W 4</td>
</tr>
<tr>
<td>BIOSCI 183B/283B. Population Genetic Theory and Evolution II S 4</td>
</tr>
</tbody>
</table>

MATHEMATICAL AND COMPUTATIONAL SCIENCE AND ENGINEERING OPTION

Students in the Engineering option take the introductory courses for the Mathematics and Computational Sciences major with the following allowable substitutions.

The MATH 51-53 series may be replaced by:

<table>
<thead>
<tr>
<th>Qtr. and Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CME 100. Vector Calculus for Engineers A 5</td>
</tr>
<tr>
<td>CME 102. Ordinary Differential Equations for Engineers W 5</td>
</tr>
<tr>
<td>CME 104. Linear Algebra and Partial Differential Equations for Engineers S 5</td>
</tr>
<tr>
<td>MATH 115. Functions of a Real Variable A,W 3</td>
</tr>
<tr>
<td>STATS 116 may be replaced by either one of the following:</td>
</tr>
<tr>
<td>or CME 106. Intro to Probability & Statistics for Eng. W 4</td>
</tr>
<tr>
<td>STATS 191/STATS 203 may be replaced by:</td>
</tr>
<tr>
<td>STATS 202. Data Analysis A 3</td>
</tr>
<tr>
<td>Electives; take at least one course from the following list:</td>
</tr>
<tr>
<td>MATH 106. Intro to Theory of Functions of a Complex Variable A 3</td>
</tr>
<tr>
<td>MATH 108. Intro to Combinatorics Applications A 3</td>
</tr>
<tr>
<td>MATH 116. Complex Analysis S 3</td>
</tr>
<tr>
<td>MATH 118. Numerical Analysis A 3</td>
</tr>
<tr>
<td>MATH 132. Partial Differential Equations II S 3</td>
</tr>
<tr>
<td>MATH 135. Nonlinear Dynamics and Chaos S 3</td>
</tr>
<tr>
<td>MATH 139. Intro to the Mathematics of Medical Imaging (not given 2005-06) 3</td>
</tr>
<tr>
<td>PHIL 151. First-Order Logic A,W 4</td>
</tr>
<tr>
<td>Take at least two courses from the following list:</td>
</tr>
<tr>
<td>ENGR 15. Dynamics A,S 3</td>
</tr>
<tr>
<td>ENGR 20. Introduction to Chemical Engineering S 3</td>
</tr>
<tr>
<td>ENGR 25. Biotechnology S 3</td>
</tr>
<tr>
<td>ENGR 30. Engineering Thermodynamics A,W 3</td>
</tr>
<tr>
<td>ENGR 40. Introductory Electronics A,S 5</td>
</tr>
<tr>
<td>ENGR 50. Introductory Science Materials W,S 4</td>
</tr>
<tr>
<td>ENGR 105. Feedback Control Design W 3</td>
</tr>
</tbody>
</table>

Take three additional courses from a single engineering department, and two additional courses from any engineering department(s).

MINORS

The minor in Mathematical and Computational Science is intended to provide an experience of the four constituent areas: Computer Science, Mathematics, Management Science and Engineering, and Statistics. Four basic courses are required:

<table>
<thead>
<tr>
<th>Qtr. and Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 106X. Programming Methodology and Abstractions (Accelerated) or CS 106A,B. Programming Methodology</td>
</tr>
<tr>
<td>MATH 51. Linear Algebra and Differential Calculus of Several Variables or MATH 103. Matrix Theory and its Applications</td>
</tr>
<tr>
<td>ENGR 62. Introduction to Optimization or MS&E 121. Introduction to Stochastic Modeling</td>
</tr>
</tbody>
</table>

In addition to the above, the minor requires three courses from the following, two of which must be in different departments:

<table>
<thead>
<tr>
<th>Qtr. and Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CME 108. Introduction to Scientific Computing</td>
</tr>
<tr>
<td>CS 107. Programming Paradigms</td>
</tr>
<tr>
<td>CS 138. MATLAB and MAPLE for Science and Engineering Applications</td>
</tr>
<tr>
<td>CS 154. Introduction to Automata and Complexity Theory</td>
</tr>
<tr>
<td>EE 261. The Fourier Transform and its Applications</td>
</tr>
<tr>
<td>ECON 102C. Advanced Topics in Econometrics</td>
</tr>
<tr>
<td>ECON 160. Game Theory and Economic Applications (prerequisite ECON 51)</td>
</tr>
<tr>
<td>MS&E 211. Linear and Nonlinear Optimization</td>
</tr>
<tr>
<td>MS&E 212. Mathematical Programming and Combinatorial Optimization</td>
</tr>
<tr>
<td>MS&E 221. Stochastic Modeling</td>
</tr>
<tr>
<td>MS&E 251. Stochastic Decision Models</td>
</tr>
<tr>
<td>MATH 103. Matrix Theory and Its Applications</td>
</tr>
<tr>
<td>MATH 106. Functions of a Complex Variable</td>
</tr>
<tr>
<td>MATH 108. Introduction to Combinatorics and its Applications</td>
</tr>
<tr>
<td>MATH 109. Applied Group Theory</td>
</tr>
<tr>
<td>MATH 110. Applied Number Theory and Field Theory</td>
</tr>
<tr>
<td>MATH 115. Functions of a Real Variable or MATH 171. Fundamental Concepts of Analysis</td>
</tr>
<tr>
<td>MATH 131. Partial Differential Equations I</td>
</tr>
<tr>
<td>MATH 132. Partial Differential Equations II</td>
</tr>
<tr>
<td>MATH 135. Nonlinear Dynamics and Chaos</td>
</tr>
<tr>
<td>PHIL 151. First-Order Logic</td>
</tr>
<tr>
<td>STATS 200. Introduction to Statistical Inference</td>
</tr>
<tr>
<td>STATS 202. Data Analysis</td>
</tr>
<tr>
<td>STATS 203. Introduction to Regression Models and Analysis of Variance</td>
</tr>
<tr>
<td>STATS 217. Introduction to Stochastic Processes</td>
</tr>
</tbody>
</table>

Other upper-division courses appropriate to the program major may be substituted with consent of the program director. Undergraduate majors in the constituent programs may not count courses in their own departments.

HONORS PROGRAM

The honors program is designed to encourage a more intensive study of mathematical sciences than the B.S. program. In addition to meeting all requirements for the B.S., the student must:

1. Maintain an average letter grade equivalent in mathematical sciences courses of at least 3.4.
2. Complete at least 15 units in mathematical sciences in addition to the requirements for the major listed above. These courses should form a sustained effort in one area and constitute a program approved by the committee in charge of the Mathematical and Computational Science Program.
3. Include in the above 15 units at least one of the following:
Students interested in doing honors work should consult with their advisers by the last quarter of the junior year to prepare a program of study for submission to the committee in charge for approval. Honors work may be concentrated in fields outside the Mathematical and Computational Science programs such as, biological sciences, medicine, physics.

COURSES

3 units (Cover) not given 2005-06

MATHEMATICS

Emeriti: (Professors) Kai Lai Chung, Paul Cohen, Solomon Feferman, Robert Finn, Samuel Karlin, Joseph Keller, George Kreisel, Harold Levine, Donald Ornstein, Robert Osserman, Hans Samelson
Chair: Yakov Eliashberg
Associate Professors: Eleny Ionel, Ravi Vakil, Andras Vasy
Assistant Professors: Simon Brendle, Doron Levy
Szegö Assistant Professors: Benjamin Brubaker, Adrian Clingher, Valdo Durrelman, Razvan Fetcuau, Soren Galatius, Tianhong Li, Brian Munson, Mihrun Papikian, Peter Storm, Nathaniel Thiem
Lecturers: Andrew Blumberg, Joseph Coffey, Alexander Elgart, Sharad Goel, Christian Gromoll, Marcus Khuri, Young-Hoon Kim, Mark Lucianovic, Liping Ma, Mark Meckes, Nadya Shirokova, Wojciech Wieczorek, Matthew Young
Acting Assistant Professors: Larry Guth, Todor Milanov, Dragos Oprea
Courtesy Professors: Renata Kallosh, Grigori Mints
Consulting Professors: Keith Devlin, David Hoffman, Wu-chung Hsiang
Web site: http://math.stanford.edu

Courses given in Mathematics have the subject code MATH. For a complete list of subject codes, see Appendix.

The Department of Mathematics offers programs leading to the degrees of Bachelor of Science, Master of Science, and Doctor of Philosophy in Mathematics, and participates in the program leading to the B.S. in Mathematical and Computational Science. The department also participates in the M.S. and Ph.D. degree programs in Scientific Computing and Computational Mathematics and the M.S. degree program in Financial Mathematics.

ADVANCED PLACEMENT FOR FRESHMEN

Students of unusual ability in mathematics often take one or more semesters of college-equivalent courses in mathematics while they are still in high school. Under certain circumstances, it is possible for such students to secure both advanced placement and credit toward the bachelor’s degree. A decision as to placement and credit is made by the department after consideration of the student’s performance on the Advanced Placement Examination in Mathematics (forms AB or BC) of the College Entrance Examination Board, and also after consideration of transfer credit in mathematics from other colleges and universities.

The department does not give its own advanced placement examination. Students can receive either 5 or 10 units of advanced placement credit, depending on their scores on the CEEB Advanced Placement Examination. Entering students who have credit for two quarters of single variable calculus (10 units) are encouraged to enroll in MATH 51-53 in multivariable mathematics, or the honors version 51H-53H. These three-course sequences, which can be completed during the freshman year, supply the necessary mathematics background for most majors in science and engineering. They also serve as excellent background for the major or minor in Mathematics, or in Mathematical and Computational Science. Students who have credit for one quarter of single variable calculus (5 units) should take MATH 42 in the Autumn Quarter and 51 in Winter Quarter. Options available in the Spring Quarter include MATH 52, 53, or 103. For proper placement, contact the Department of Mathematics.

UNDERGRADUATE PROGRAMS

BACHELOR OF SCIENCE

The following department requirements are in addition to the University’s basic requirements for the bachelor’s degree:

MAJORS

Students wishing to major in Mathematics must satisfy the following requirements:

1. Department of Mathematics courses (other than MATH 100) totaling at least 49 units credit; such courses must be taken for a letter grade. For the purposes of this requirement, courses crosslisted with another department, such as MATH 105 (STATS 116) and MATH 160A and 160B (PHIL 151 and 152), count as Department of Mathematics courses.

2. Additional courses taken from Department of Mathematics courses numbered 101 and above or from approved courses in other disciplines with significant mathematical content, totaling at least 15 units credit. At least 9 of these units must be taken for a letter grade.

3. A Department of Mathematics adviser must be selected, and the courses selected under items ‘1’ and ‘2’ above must be approved by the department’s director of undergraduate study, acting under guidelines laid down by the department’s Committee for Undergraduate Affairs. The Department of Mathematics adviser can be any member of the department’s faculty.

4. To receive the department’s recommendation for graduation, a student must have been enrolled as a major in the Department of Mathematics for a minimum of two full quarters, including the quarter immediately before graduation. In any case, students are strongly encouraged to declare as early as possible, preferably by the end of the sophomore year.

Students are normally expected to complete either the sequence 19, 20, 21 or the sequence 41, 42 (but not both). Students with an Advanced Placement score of at least 4 in BC math or 5 in AB math may receive 10 units credit and fulfill requirement ‘1’ by taking at least 39 units of Department of Mathematics courses numbered 51 and above. Students with an Advanced Placement score of at least 3 in BC math or at least 4 in AB math may receive 5 units credit and fulfill requirement ‘1’ by taking at least 44 units of Department of Mathematics courses numbered 42 and above.

Sophomore seminar courses may be counted among the choice of courses under item ‘1’. Other variations of the course requirements laid down above (under items ‘1’ and ‘2’) may, in some circumstances, be allowed. For example, students transferring from other universities may be allowed credit for some courses completed before their arrival at Stanford. However, at least 24 units of the 49 units under item ‘1’ above and 9 of the units under item ‘2’ above must be taken at Stanford. In all cases, approval for variations in the degree requirements must be obtained from the department’s Committee for Undergraduate Affairs. Application for such approval should be made through the department’s director of undergraduate study.

It is to be emphasized that the above regulations are minimum requirements for the major; students contemplating graduate work in mathematics are strongly encouraged to include the courses 116, 120, 121, 147 or
148, and 171 in their selection of courses, and in addition, take at least three Department of Mathematics courses over and above the minimum requirements laid out under items ‘1’ and ‘2’ above, including at least one 200-level course. Such students are also encouraged to consider the possibility of taking the honors program, discussed below.

To help develop a sense of the type of course selection (under items ‘1’ and ‘2’ above) which would be recommended for math majors with various backgrounds and interests, see the following examples. These represent only a very large number of possible combinations of courses that could be taken in fulfillment of the Mathematics major requirements:

Example 1 — A general program (a balanced program of both pure and applied components, without any particular emphasis on any one field of mathematics or applications) as follows:

1. the selection of at least eight of the following courses, including three Department of Mathematics courses: MATH 105 (STATS 116), 108, 131, 132, 143, 145, 146, 147, 148, 152, 161; PHYSICS 41, 43, 45; CS 137; ECON 50. (These specific courses from other departments are only meant as an example. There are many suitable courses in several departments which can be taken to fulfill part or all of requirement 2.)

2. An applied program (recommended for those contemplating possible later graduate work (see, also, the discussion of the honors program below), providing an introduction to the main areas of mathematics both broader and deeper than the general program outlined above):

 - either MATH 19, 20, and 21, or 41 and 42 (or satisfactory Advanced Placement credit); 51, 52, 53; 103; 106; 109; 110; 111; 115
 - plus nine or more of the following courses, including at least one from each group: algebra sequence 114, 121, 152, 156; analysis sequence 131, 132, 135, 151, 174A,B; 175; geometry/topology sequence 143, 145, 146, 147; 146; logic and set theory sequence 160A,B, 161.

 - In addition, those contemplating eventual graduate work in Mathematics should seriously consider including at least one graduate-level math course such as MATH 205A, 210A, or 215A or B. Such students should also consider the possibility of entering the honors program. (Students taking 51, 52, 53 rather than 51H, 52H, 53H should consider taking 113 before attempting 114.)

 - **Example 3** — An Applied Mathematics program:

 1. either MATH 19, 20, and 21; or 41 and 42 (or satisfactory Advanced Placement credit); 51, 52, 53; 103; 105 (Statistics 116); 106; 108; 109; 110; 111; 113
 2. plus at least 15 units of additional courses in Applied Mathematics, including, for example, suitable courses from the departments of Physics, Computer Science, Economics, Engineering, and Statistics.

* Students with interests in applied mathematics, but desiring a broader-based program than the type of program suggested in Example 3, including significant computational and/or financial and/or statistical components, are encouraged to also consider the Mathematics and Computational Science program.

MINORS

To qualify for the minor in Mathematics, a student should successfully complete, for a letter grade, at least six Department of Mathematics courses (other than MATH 100) numbered 51 or higher, totaling a minimum of 24 units. It is recommended that these courses include either the sequence 51, 52, 53 or the sequence 51H, 52H, 53H. At least 12 of the units applied toward the minor in Mathematics must be taken at Stanford. The policy of the Mathematics Department is that no courses other than the MATH 50 series and below may be double-counted toward any other University major or minor.

HONORS PROGRAM

The honors program is intended for students who have strong theoretical interests and abilities in mathematics. The goal of the program is to give students a thorough introduction to the main branches of mathematics, especially analysis, algebra, and geometry. Through the honors thesis, students may be introduced to a current or recent research topic, although occasionally more classical projects are encouraged. The program provides an excellent background with which to enter a master’s or Ph.D. program in Mathematics. Students successfully completing the program are awarded a B.S. in Mathematics with Honors.

It is recommended that the sequence 51H, 52H, 53H be taken in the freshman year. Students who have instead taken the sequence 51, 52, 53 in their freshman year may be permitted to enter the honors program, but such entry must be approved by the Department of Mathematics Committee for Undergraduate Affairs.

To graduate with a B.S. in Mathematics with Honors, the following conditions apply in addition to the usual requirements for math majors:

1. The selection of courses under items ‘1’ and ‘2’ above must include all the math courses 106 or 116, 120, 171 and also must include seven or more additional courses, with at least one from each of the groups: algebra sequence 114, 121, 152, 156; analysis sequence 131, 132, 135, 136, 151, 174A, 174B, 175, 176; geometry/topology sequence 143, 145, 146, 147; 148; logic and set theory sequence 160A, 160B, 161.

2. Students in the honors program must write a senior thesis. In order to facilitate this, the student must, by the end of the junior year, choose an undergraduate thesis adviser from the Department of Mathematics faculty, and map out a concentrated reading program under the direction and guidance of the adviser. During the senior year, the student must enroll in MATH 197 for a total of 6 units (typically spread over two quarters), and work toward completion of the thesis under the direction and guidance of the thesis adviser. The thesis may contain original material, or be a synthesis of work in current or recent research literature. The 6 units of credit for MATH 197 are required in addition to the course requirements laid out under items ‘1’ and ‘2’ above and in addition to all other requirements for math majors.

In addition to the minimum requirements laid out above, it is strongly recommended that students take at least one graduate-level course (that is, at least one course in the 200 plus range). MATH 205A, 210A, and 215A or B are especially recommended in this context.

Students with questions about the honors program should see the Director of Undergraduate Advising.

BACHELOR OF SCIENCE IN MATHEMATICAL AND COMPUTATIONAL SCIENCE

The Department of Mathematics participates with the departments of Computer Science, Management Science and Engineering, and Statistics in a program leading to a B.S. in Mathematical and Computational Science. See the “Mathematical and Computational Science” section of this bulletin.

GRADUATE PROGRAMS

MASTER OF SCIENCE

The University’s basic requirements for the master’s degree are discussed in the “Graduate Degrees” section of this bulletin. Students entering Stanford in 2001 or later should pay particular attention to the University’s course requirements for graduate degrees. The following are specific departmental requirements:

Candidates must complete an approved course program of 45 units of courses beyond the department requirements for the B.S. degree, of which at least 36 units must be Mathematics Department courses, taken for a letter grade. The Mathematics courses must include at least 18 units numbered 200 or above. The candidate must have a grade point average (GPA) of 3.0 (B) over all course work taken in Mathematics, and a GPA of 3.0 (B) in the 200-level courses considered separately. Course work for the M.S. degree must be approved during the first quarter of enrollment in the program by the department’s Director of Graduate Studies.
For the M.S. degree in Financial Mathematics, see the “Financial Mathematics” section of this bulletin.

TEACHING CREDENTIALS

For information concerning the requirements for teaching credentials, see the “School of Education” section of this bulletin or address inquiries to Credential Secretary, School of Education.

DOCTOR OF PHILOSOPHY

The University’s basic requirements for the doctorate (residence, dissertation, examinations, etc.) are discussed in the “Graduate Degrees” section of this bulletin. The following are specific departmental requirements.

To be admitted to candidacy, the student must have successfully completed 27 units of graduate courses (that is, courses numbered 200 and above). In addition, the student must pass qualifying examinations given by the department.

Beyond the requirements for candidacy, the student must complete a course of study approved by the Graduate Affairs Committee of the Department of Mathematics and submit an acceptable dissertation. In accordance with University requirements, Ph.D. students must complete a total of 135 course units beyond the bachelor’s degree. These courses should be Department of Mathematics courses or approved courses from other departments. The course program should display substantial breadth in mathematics outside the student’s field of application. The student must receive a grade point average (GPA) of 3.0 (B) or better in courses used to satisfy the Ph.D. requirement. In addition, the student must pass the Department area examination and the University oral examination and pass a reading examination in one foreign language, chosen from French, German, or Russian.

Experience in teaching is emphasized in the Ph.D. program. Each student is required to complete nine quarters of such experience. The nature of the teaching assignment for each of those quarters is determined by the department in consultation with the student. Typical assignments include teaching or assisting in teaching an undergraduate course or lecturing in an advanced seminar.

For further information concerning degree programs, fellowships, and assistantships, inquire of the academic associate of the department.

PH.D. MINOR

The student should complete both of the following:*
1. MATH 106 or 116, 131, 132
2. MATH 113, 114, 120 or 152

These courses may have been completed during undergraduate study, and their equivalents from other universities are acceptable.

In addition, the student should complete 21 units of 200-level courses in Mathematics. These must be taken at Stanford and approved by the Department of Mathematics’ Ph.D. minor advisor.

* A third coherent sequence designed by the student, subject to the approval of the graduate committee, may be considered as a substitute for items ‘1’ or ‘2’.

COURSES

WIM indicates that the course satisfies the Writing in the Major requirements.

INTRODUCTORY AND UNDERGRADUATE

The department offers two sequences of introductory courses in single variable calculus.

1. MATH 41, 42 present single variable calculus. Differential calculus is covered in the first quarter, integral calculus in the second.

2. MATH 19, 20, 21 cover the material in 41, 42 in three quarters instead of two.

There are options for studying multivariable mathematics:

1. MATH 51, 52, 53 cover differential and integral calculus in several variables, linear algebra, and ordinary differential equations. These topics are taught in an integrated fashion and emphasize application.

MATH 51 covers differential calculus in several variables and introduces matrix theory and linear algebra, 52 covers integral calculus in several variables and vector analysis, 53 studies further topics in linear algebra and applies them to the study of ordinary differential equations. This sequence is strongly recommended for incoming freshmen with 10 units of advanced placement credit.

2. MATH 51H, 52H, 53H cover the same material as 51, 52, 53, but with more emphasis on theory and rigor.

The introductory course in modern algebra is Linear Algebra (103 or 113). There are no formal prerequisites for these courses, but appropriate mathematical maturity is expected. Much of the material in 103 is covered in the sequence 51, 52, 53.

MATH 19. Calculus — The content of MATH 19, 20, 21 is the same as the sequence MATH 41, 42 described below, but covered in three quarters, rather than two. GER:DB-Math
3 units, Aut (Lucianovic), Win (Staff), Sum (Staff)

3 units, Win (Lucianovic), Spr (Staff)

4 units, Spr (Lucianovic)

MATH 41. Calculus — Introduction to differential and integral calculus of functions of one variable. Topics: review of elementary functions, including exponentials and logarithms, rates of change, and the derivative. Introduction to the definite integral and integration. Prerequisites: algebra, trigonometry. GER:DB-Math
5 units, Aut (Meckes)

MATH 42. Calculus — Continuation of 41. Methods of symbolic and numerical integration, applications of the definite integral, introduction to differential equations. Infinite series. Prerequisite: 41 or equivalent. GER:DB-Math
5 units, Aut (Gromoll), Win (Meckes)

MATH 51. Linear Algebra and Differential Calculus of Several Variables — Geometry and algebra of vectors, systems of linear equations, matrices, vector valued functions and functions of several variables, partial derivatives, gradients, chain rule in several variables, vector fields, optimization. Prerequisite: 21, 42, or a score of 4 on the BC Advanced Placement exam or 5 on the AB Advanced Placement exam, or consent of instructor. GER:DB-Math
5 units, Aut (Brubaker, Blumberg, Clingher, Milanov, Opredel), Win (Thiem, White, Young), Spr (Meckes), Sum (Staff)

MATH 51A. Linear Algebra and Differential Calculus of Several Variables, ACE — GER:DB-Math
5-6 units, Aut, Win, Spr (Staff)

MATH 51H. Honors Multivariable Mathematics — For prospective Mathematics majors in the honors program and students from other areas of science or engineering who have a strong mathematics background. Three quarter sequence covers the material of 51, 52, 53, and additional advanced calculus and ordinary and partial differential equations. Unified treatment of multivariable calculus, linear algebra, and differential equations with a different order of topics and emphasis from standard courses. Students should know one-variable calculus and have an interest in a theoretical approach to the subject. Prerequisite: score of 5 on BC Advanced Placement exam, or consent of instructor. GER:DB-Math
5 units, Aut (Kerckhoff)

MATH 52. Integral Calculus of Several Variables — Iterated integrals, line and surface integrals, vector analysis with applications to vector potentials and conservative vector fields, physical interpretations. Divergence theorem and the theorems of Green, Gauss, and Stokes. Prerequisite: 51.
5 units, Aut (Wieczorek), Win (Papikian, Wieczorek), Spr (Papikian)
MATH 52H. Honors Multivariable Mathematics — Continuation of 51H. Prerequisite: 51H.
3 units, Win (Simon)

5 units, Aut (Simon), Win (T. Li), Spr (Ionel, Shirokova), Sum (Staff)

MATH 53H. Honors Multivariable Mathematics — Continuation of 52H. Prerequisite: 52H.
5 units, Spr (Brendle)

MATH 80Q. Capillary Surfaces: Explored and Unexplored Territory — Stanford Introductory Seminar. Preference to sophomores. Capillary surfaces: the interfaces between fluids that are adjacent to each other and do not mix. Recently discovered phenomena, predicted mathematically and subsequently confirmed by experiments, some done in space shuttles. Interested students may participate in ongoing investigations with affinity between mathematics and physics.
3-5 units, Win (Finn)

MATH 87Q. Mathematics of Knots, Braids, Links, and Tangles — Stanford Introductory Seminar. Preference to sophomores. Types of knots and how knots can be distinguished from one another by means of numerical or polynomial invariants. The geometry and algebra of braids, including their relationships to knots. Topology of surfaces. Brief summary of applications to biology, chemistry, and physics.
3 units, Spr (Brumleve)

MATH 88N. Mathematics and Magic Tricks — Stanford Introductory Seminar. How a magic trick works is more amazing than the trick itself. Tricks that use mathematics in a hidden way: permutations, parity, finite fields, and graphs. History of magic; performance and invention of magic and new theorems.
3 units, Win (Diaconis)

3 units, Win (Bump)

UNDERGRADUATE AND GRADUATE

Unless stated, there are no prerequisites for the courses listed below. Where a prerequisite is stated, it may be waived by the instructor.

MATH 100. Mathematics for Elementary School Teachers — Mathematics and pedagogical strategies. Core mathematical content in grades K-6, classroom presentation, how to handle student errors, and mathematical issues that come up during instruction.
4 units, Spr (Ma, Milgram)

3 units, Aut (Dembo, Khuri), Win (Goel, Shirokova), Spr (T. Li), Sum (Staff)

MATH 105. Theory of Probability — (Enroll in STATS 116.)
3-5 units (Staff)

MATH 106. Functions of a Complex Variable — Complex numbers, analytic functions, Cauchy-Riemann equations, complex integration, Cauchy integral formula, residues, elementary conformal mappings. Prerequisite: 52.
3 units, Aut (Galatius), Sum (Staff)

MATH 108. Introduction to Combinatorics and its Applications — Topics: graphs, trees (Cayley’s Theorem, application to phylogony), eigenvalues, basic enumeration (permutations, Stirling and Bell numbers), recurrences, generating functions, basic asymptotics. Prerequisites: 51 or 103 or equivalent.
3 units, Aut (Thiem)

MATH 109. Applied Group Theory — Applications of the theory of groups. Topics: elements of group theory, groups of symmetries, matrix groups, group actions, and applications to combinatorics and computing. Applications: rotational symmetry groups, the study of the Platonic solids, crystallographic groups and their applications in chemistry and physics. WIM
3 units, Aut (Carlsson)

MATH 110. Applied Number Theory and Field Theory — Number theory and its applications to modern cryptography. Topics: congruences, finite fields, primality testing and factorization, public key cryptography, error correcting codes, and elliptic curves, emphasizing algorithms. WIM
3 units, Spr (Brumleve)

MATH 111. Computational Commutative Algebra — Introduction to the theory of commutative rings, ideals, and modules. Systems of polynomial equations in several variables from the algorithmic viewpoint. Groebner bases, Buchberger’s algorithm, elimination theory. Applications to algebraic geometry and to geometric problems.
3 units, Win (Lucianovic)

MATH 113. Linear Algebra and Matrix Theory — Algebraic properties of matrices and their interpretation in geometric terms. The relationship between the algebraic and geometric points of view and matters fundamental to the study and solution of linear equations. Topics: linear equations, vector spaces, linear dependence, bases and coordinate systems; linear transformations and matrices; similarity; eigenvectors and eigenvalues; diagonalization.
3 units, Aut (Katznelson), Win (Vakil)

MATH 114. Linear Algebra and Matrix Theory II — Continuation of 113. Deeper study of 113 topics plus additional topics from invariant subspaces, canonical forms of matrices; minimal polynomials and elementary divisors; vector spaces over arbitrary fields; inner products; Jordan normal forms; Hermitian and unitary matrices; multilinear algebra; applications.
3 units, Win (Katznelson), Spr (Milgram)

MATH 115. Functions of a Real Variable — The development of real analysis in Euclidean space: sequences and series, limits, continuous functions, derivatives, integrals. Basic point set topology. Honors math majors and students who intend to do graduate work in mathematics should take 171. Prerequisite: 51.
3 units, Aut (Liu), Win (Brumleve), Sum (Staff)

3 units, Spr (Clingher)

3 units, Aut (Fetecau)

MATH 120. Modern Algebra — Basic structures in algebra: groups, rings, and fields. Elements of group theory: permutation groups, finite Abelian groups, p-groups, Sylow theorems. Polynomial rings, principal ideal domains, unique factorization domains. WIM
3 units, Aut (Shirokova), Spr (Clingher)
MATH 121. Modern Algebra II — Continuation of 120. Fields of fractions. Solvable and simple groups. Elements of field theory and Galois theory. Prerequisite: 120.
3 units, Win (J. Li)

3 units, Aut (Elgart), Win (Schoen)

3 units, Spr (Schoen)

MATH 135. Nonlinear Dynamics and Chaos — Topics: one- and two-dimensional flows, bifurcations, phase plane analysis, limit cycles and their bifurcations. Lorenz equations, fractals and strange attractors. Prerequisite: 51 and 53 or equivalent.
3 units, Spr (Fetecau)

3 units, Aut (Dembo)

3 units, Win (P. Cohen)

MATH 145. Algebraic Geometry — Real algebraic curves, Hilbert’s nullstellensatz, complex affine and projective curves, Bezout’s theorem, the degree/genus formula, Riemann surfaces, Riemann-Roch theorem. Prerequisites: 106 or 116, and 109 or 120. Recommended: familiarity with surfaces equivalent to 143, 146, 147, or 148.
3 units (Staff) not given 2005-06

MATH 146. Analysis on Manifolds — (Formerly 173.) Differentiable manifolds, tangent space, submanifolds, implicit function theorem, differential forms, vector and tensor fields. Frobenius’ theorem, DeRham theory. Prerequisite: 52 or 52H.
3 units, Aut (Galais)

MATH 147. Differential Topology — Smooth manifolds, transversality, Sard’s theorem, embeddings, degree of a map, Borsuk-Ulam theorem, Hopf degree theorem, Jordan curve theorem. Prerequisite: 115 or 171.
3 units, Spr (Manson) alternate years, not given 2006-07

MATH 148. Algebraic Topology — Fundamental group, covering spaces, Euler characteristic, homology, classification of surfaces, knots. Prerequisite: 109 or 120.
3 units (Staff) alternate years, given 2006-07

MATH 151. Introduction to Probability Theory — Counting; axioms of probability; conditioning and independence; expectation and variance; discrete and continuous random variables and distributions; joint distributions and dependence; central limit theorem and laws of large numbers. Prerequisite: 52 or consent of instructor.
3 units, Win (Liu)

MATH 152. Elementary Theory of Numbers — Euclid’s algorithm, fundamental theorems on divisibility; prime numbers, congruence of numbers; theorems of Fermat, Euler, Wilson; congruences of first and higher degrees; Lagrange’s theorem and its applications; quadratic residues; introduction to the theory of binary quadratic forms.
3 units, Spr (Brubaker)

MATH 156. Group Representations — Experimental, primarily examining symmetries on objects such as vector spaces (group representations), geometric objects (geometric group actions), and discrete sets (combinatorics). Topics: group representations and their characters, classification of permutation group representations using partitions and Young tableaux, group actions on sets and the Burnside ring, and spherical space forms. Prerequisites: linear algebra (51 and 53, or 103 or 113) and group theory (109 or 120).
3 units, Aut (Thiem)

MATH 160A. First-Order Logic — (Enroll in PHIL 151/251.)
4 units, Win (Pauly)

MATH 160B. Computability and Logic — (Enroll in PHIL 152/252.)
4 units, Spr (Pauly)

MATH 161. Set Theory — Informal and axiomatic set theory: sets, relations, functions, and set-theoretical operations. The Zermelo-Fraenkel axiom system and the special role of the axiom of choice and its various equivalents. Well-orderings and ordinal numbers; transfinite induction and transfinite recursion. Equinumerosity and cardinal numbers; Cantor’s Alephs and cardinal arithmetic. Open problems in set theory.
3 units, Win (de Queiroz)

MATH 162. Philosophy of Mathematics — (Enroll in PHIL 162/262.)
4 units (Staff) not given 2005-06

MATH 171. Fundamental Concepts of Analysis — Recommended for math majors and required of honors math majors. Similar to 115 but altered content and more theoretical orientation. Properties of Riemann integrals, continuous functions and convergence in metric spaces; compact metric spaces, basic point set topology. Prerequisites: 51 and 52, or 51H and 52H. WIM
3 units, Aut, Spr (Fetecau)

MATH 174A. Topics in Analysis and Differential Equations with Applications — For students planning graduate work in mathematics or physics, and for honors math majors and other students at ease with rigorous proofs and qualitative discussion. 174A topics may include: geometric theory of ODE’s with applications to dynamics; mathematical foundations of classical mechanics including variational principles, Lagrangian and Hamiltonian formalisms, theory of integrable systems; theories of existence and uniqueness; Sturm-Liouville theory. 174B topics may include: introduction to PDEs including transport equations, Laplace, wave, and heat equations; techniques of solution including separation of variables and Green’s functions; Fourier series and integrals; introduction to the theory of distributions; mathematical foundations of quantum mechanics. Prerequisite: 53H or 171, or consent of instructor.
3 units, Win (Guth)

MATH 174B. Honors Analysis — Continuation of 174A. Prerequisite: 174A.
3 units, Spr (Guth)

MATH 175. Elementary Functional Analysis — Linear operators on Hilbert space. Spectral theory of compact operators; applications to integral equations. Elements of Banach space theory. Prerequisite: 115 or 171.
3 units, Spr (Simon)

3 units, Aut (Durrleman)

MATH 197. Senior Honors Thesis
1-6 units, Aut, Win, Spr (Staff)
MATH 199. Independent Work — Undergraduates pursue a reading program; topics limited to those not in regular department course offerings. Credit can fulfill the elective requirement for math majors. Approval of Undergraduate Affairs Committee is required to use credit for honors majors area requirement.

1-3 units, Aut, Win, Spr (Staff)

PRIMARILY FOR GRADUATE STUDENTS

MATH 202A. Advising and Mentoring in Financial Mathematics — Students advise and mentor those enrolled in 236 or 238 to enhance professional experience consistent with the M.S. in Financial Mathematics program. May be repeated for credit. Prerequisite: 236 or 238, stochastic calculus and mathematical finance, and consent of instructor.

1-3 units, Win (Papanicolaou)

MATH 202B. Advising and Mentoring in Financial Mathematics — Students advise and mentor those enrolled in 239 or 240. Goal is to enhance professional experience consistent with the Financial Mathematics master’s program. Prerequisites: 239 or 240, computation and simulation in finance or fixed income modeling, and consent of instructor.

1-3 units, Spr (Durrleman)

MATH 205A. Real Analysis — Basic measure theory and the theory of Lebesgue integration. Prerequisite: 171 or equivalent.

3 units, Win (White)

MATH 205B. Real Analysis — Point set topology, basic functional analysis, Fourier series, and Fourier transform. Prerequisites: 171 and 205A or equivalent.

3 units, Win (Mazzeo)

MATH 205C. Real Analysis — Continuation of 205B.

3 units, Spr (Katznelson)

MATH 210A. Modern Algebra — Groups, rings, and fields; introduction to Galois theory. Prerequisite: 120 or equivalent.

3 units, Aut (Milgram)

MATH 210B. Modern Algebra — Galois theory. Ideal theory, introduction to algebraic geometry and algebraic number theory. Prerequisite: 210A.

3 units, Win (Bramfiel)

MATH 210C. Modern Algebra — Continuation of 210B. Representations of groups and noncommutative algebras, multilinear algebra.

3 units, Spr (Bump)

3 units, Aut (Coffee)

MATH 215B. Complex Analysis, Geometry, and Topology — (Math 215A is not a prerequisite for 215B.) Topics: fundamental group and covering spaces, homology, cohomology, products, basic homotopy theory, and applications. Prerequisites: 113, 120, and 171, or equivalent.

3 units, Win (Kerckhoff)

3 units, Spr (R. Cohen)

MATH 216A. Introduction to Algebraic Geometry — Algebraic curves, algebraic varieties, sheaves, cohomology, Riemann-Roch theorem. Classification of algebraic surfaces, moduli spaces, deformation theory and obstruction theory, the notion of schemes. May be repeated for credit.

3 units, Aut (Vakil)

MATH 216B. Introduction to Algebraic Geometry — Continuation of 216A. May be repeated for credit.

3 units, Win (Vakil)

MATH 216C. Introduction to Algebraic Geometry — Continuation of 216B. May be repeated for credit.

3 units, Spr (Vakil)

MATH 217A. Differential Geometry — Smooth manifolds and submanifolds, tensors and forms, Lie and exterior derivative, DeRham cohomology, distributions and the Frobenius theorem, vector bundles, connection theory, parallel transport and curvature, affine connections, geodesics and the exponential map, connections on the principal frame bundle. Prerequisite: 173 or equivalent.

3 units, Aut (Khuri)

MATH 217B. Differential Geometry — Riemannian manifolds, Levi-Civita connection, Riemann curvature tensor, Riemannian exponential map and geodesic normal coordinates, Jacobi fields, completeness, spaces of constant curvature, bi-invariant metrics on compact Lie groups, symmetric and locally symmetric spaces, equations for Riemannian submanifolds and Riemannian submersions. Prerequisite: 217A.

3 units, Win (Brendle)

MATH 217C. Differential Geometry — First and second variation of arc length, index form and variational theory of geodesics, comparison theorems and consequences for manifolds of positive and negative curvature, almost complex manifolds and integrability, Hermitian and Kaehler metrics, connections on complex vector bundles and Chern classes, Hodge theory, vanishing theorems in the Riemannian and Kaehler settings.

3 units, Spr (Schoen)

3 units, Aut (Liu)

3 units, Win (Liu)

MATH 220C. Partial Differential Equations of Applied Mathematics — Mathematical methods of imaging: array imaging using Kirchhoff migration and beamforming, resolution theory for broad and narrow band array imaging in homogeneous media, topics in high-frequency, variable background imaging with velocity estimation, interferometric imaging methods, the role of noise and inhomogeneities, and variational problems that arise in optimizing the performance of imaging algorithms and the deblurring of images. Prerequisites: 220A and B.

3 units, Spr (Papanicolaou)

3 units (Staff) not given 2005-06

3 units (Staff) not given 2005-06

MATH 224. Topics in Mathematical Biology — Mathematical models for biological processes based on ordinary and partial differential equations. Topics: population and infectious diseases dynamics, biological oscillators, reaction diffusion models, biological waves, and pattern formation. Prerequisites: 53 and 131, or equivalents.

3 units (Staff) not given 2005-06
MATH 228A. Ergodic Theory — Measure preserving transformations and flows, ergodic theorems, mixing properties, spectrum, Kolmogorov automorphisms, entropy theory. Examples, Classical dynamical systems, mostly geodesic and horocycle forms on homogeneous spaces of SL(2, R). Prerequisites: 205A, B.
3 units, Spr (Ornstein)

MATH 228B. Ergodic Theory — Continuation of 228A.
3 units (Staff) not given 2005-06

MATH 230A. Theory of Probability — (Enroll in STATS 310A.)
2-4 units, Aut (Dembo)

MATH 230B. Theory of Probability — (Enroll in STATS 310B.)
2-4 units, Win (Dembo)

MATH 230C. Theory of Probability — (Enroll in STATS 310C.)
2-4 units, Spr (Lai)

MATH 232. Topics in Probability: Geometry and Markov Chains — Dirichlet forms; Nash, Sobolev, and log-Sobolev inequalities; and applications to card shuffling and random walk on graphs. May be repeated for credit.
3 units, Win (Diaconis)

MATH 234. Large Deviations — (Same as STATS 374.) Combinatorial estimates and the method of types. Large deviation probabilities for partial sums and for empirical distributions, Cramer’s and Sanov’s theorems and their Markov extensions. Applications in statistics, information theory, and statistical mechanics. Prerequisite: MATH 230A or STATS 310.
3 units (Staff) not given 2005-06

MATH 235. Topics in Ergodic Theory — May be repeated for credit.
3 units, Win (Ornstein)

3 units, Win (Papanicolaou)

MATH 237. Topics in Stochastic Analysis: Credit Risk — The analysis of structural models for credit default starting from the Black-Scholes-Merton theory and continuing with stochastic volatility models. The theory of reduced models of default risk and doubly stochastic, intensity-based, default models. Connections with actuarial insurance problems. Hybrid structural and intensity based models for the pricing of defaultable bonds and credit default swaps. Extensions to multi-asset models with correlated defaults. Prerequisites: 236 and 238, or equivalents.
3 units, Spr (Papanicolaou)

3 units, Win (Papanicolaou)

MATH 239. Computation and Simulation in Finance — (Formerly 240.) Monte Carlo, finite difference, tree, and transform methods for the numerical solution of partial differential equations in finance. Emphasis is on derivative security pricing. Prerequisite: 238 or equivalent.
3 units, Spr (Durrleman)

3 units, Aut, Spr (Durrleman)

MATH 244. Riemann Surfaces — Compact Riemann surfaces: topological classifications, Hurwitz’ formula, Riemann-Roch formula, uniformization theorem. Abel’s theorem, Jacobian varieties. Some elements of harmonic analysis are developed with applications. Emphasis is on methods generally applicable to algebraic curves.
3 units, Win (Eliashberg)

MATH 245. Topics in Algebraic Geometry — Derived categories and derived functors, triangulated categories and intersection cohomology, and perverse sheaves. May be repeated for credit.
3 units, Spr (Kiem)

MATH 246. Symmetric Functions and Algebraic Combinatorics — Unified treatment of topics in classical enumeration via the study of symmetric polynomials. Classical symmetric functions, Schur functions, Young tableaux, Schensted correspondence, character theory of the symmetric group, introduction to random matrix theory. Prerequisite: 210 or equivalent.
3 units (Staff) not given 2005-06

MATH 247. Topics in Group Theory — Topics include the Burnside basis theorem, classification of p-groups, regular and powerful groups, Sylow theorems, the Frattini argument, nilpotent groups, solvable groups, theorems of P. Hall, group cohomology, and the Schur-Zassenhaus theorem. The classical groups and introduction to the classification of finite simple groups and its applications. May be repeated for credit.
3 units (Staff) not given 2005-06

MATH 248. Algebraic Number Theory — Introduction to modular forms and L-functions. May be repeated for credit.
1-3 units, Aut (Brubaker, Bump)

MATH 249A. Topics in Representation Theory and Number Theory — Spectral theory of automorphic forms: representation theory of SL(2, R), analytic continuation of Eisenstein series using integral operators, spectral decomposition of Gamma\SL(2, R) and the Selberg trace formula. May be repeated for credit.
3 units, Win (Bump)

MATH 249B. Topics in Representation Theory and Number Theory — 249A and B cover the essential tools in the theory of automorphic forms. Representation theory of GL(2) over a p-adic field.
3 units, Spr (Brubaker)

3 units (Staff) not given 2005-06

MATH 256A. Partial Differential Equations — Introduction to the theory of linear and non-linear partial differential equations, beginning with linear theory involving use of Fourier transform and Sobolev spaces. Topics: Schauder and L2 estimates for elliptic and parabolic equations; De Giorgi-Nash-Moser theory for elliptic equations; non-linear equations such as the minimal surface equation, geometric flow problems, and non-linear hyperbolic equations.
3 units, Aut (Brendle)

MATH 256B. Partial Differential Equations — Continuation of 256A.
3 units, Win (Mazzeo)

MATH 257A. Symplectic Geometry and Topology — Linear symplectic geometry and linear Hamiltonian systems. Symplectic manifolds and their Lagrangian submanifolds, local properties. Symplectic geometry and mechanics. Contact geometry and contact manifolds. Relations between symplectic and contact manifolds. Hamiltonian systems with symmetries. Momentum map and its properties. May be repeated for credit.
3 units (Staff) not given 2005-06
MATH 257B. Symplectic Geometry and Topology — Continuation of 257A. May be repeated for credit.
3 units (Eliashberg) not given 2005-06

3 units, Aut (Katznelson)

MATH 261B. Functional Analysis — Continuation of 261A.
3 units (Staff) not given 2005-06

3 units (Staff) not given 2005-06

MATH 263B. Lie Groups and Lie Algebras — Continuation of 263A. May be repeated for credit.
3 units (Staff) not given 2005-06

MATH 266. Computational Signal Processing and Wavelets — Theoretical and computational aspects of signal processing. Topics: time-frequency transforms; wavelet bases and wavelet packets; linear and nonlinear multiresolution approximations; estimation and restoration of signals; signal compression. May be repeated for credit.
3 units (Staff) not given 2005-06

MATH 270. Geometry and Topology of Complex Manifolds — Complex manifolds, Kahler manifolds, curvature, Hodge theory, Lefschetz theorem, Kahler-Einstein equation, Hermitian-Einstein equations, deformation of complex structures. May be repeated for credit.
3 units, Win (J. Li)

MATH 275. Topics in Singularity Theory — Topics may include: Jet spaces; Thom transversality theorem; h-principle type results in singularity theory with applications to topology; Thom-Boardman singularities; local classification problems and results in singularity theory; Picard-Lefschetz theory; theory of oscillating integrals; Frobenius manifolds.
3 units (Staff) not given 2005-06

MATH 282A. Low Dimensional Topology — The theory of surfaces and 3-manifolds. Curves on surfaces, the classification of diffeomorphisms of surfaces, and Teichmüller space. The mapping class group and the braid group. Knot theory, including knot invariants. Decomposition of 3-manifolds: triangulations, Heegaard splittings, Dehn surgery. Loop theorem, sphere theorem, incompressible surfaces. Geometric structures, particularly hyperbolic structures on surfaces and 3-manifolds.
3 units, Aut (Kerckhoff)

MATH 282B. Homotopy Theory — Homotopy groups, fibrations, spectral sequences, simplicial methods, Dold-Thom theorem, models for loop spaces, homotopy limits and colimits, stable homotopy theory.
3 units, Win (Carlsson)

3 units, Spr (R. Cohen)

MATH 283. Topics in Algebraic and Geometric Topology — May be repeated for credit.
3 units, Aut (Manson), Win (R. Cohen)

MATH 285. Geometric Measure Theory — Hausdorff measures and dimensions, area and co-area formulas for Lipschitz maps, integral currents and flat chains, minimal surfaces and their singular sets.
3 units (Staff) not given 2005-06

MATH 286. Topics in Differential Geometry — May be repeated for credit.
3 units, Win (Schoen)

MATH 290A. Model Theory — (Enroll in PHIL 350A.)
3 units, Win (Mints)

MATH 290B. Model Theory — (Enroll in PHIL 350B.)
3 units (Staff) not given 2005-06

MATH 291A. Recursion Theory — (Enroll in PHIL 351A.)
3 units, Win (Feferman)

MATH 291B. Recursion Theory — (Enroll in PHIL 351B.)
3 units (Staff) not given 2005-06

MATH 292A,B. Set Theory — (Same as PHIL 352A,B.) The basics of axiomatic set theory; the systems of Zermelo-Fraenkel and Bernays-Gödel. Topics: cardinal and ordinal numbers, the cumulative hierarchy and the role of the axiom of choice. Models of set theory, including the constructible sets and models constructed by the method of forcing. Consistency and independence results for the axiom of choice, the continuum hypothesis and other unsettled mathematical and set-theoretical problems. Prerequisites: PHIL 160A,B, and MATH 161, or equivalents.
3 units, A: Win, B: Spr (P. Cohen)

MATH 293A. Proof Theory — (Enroll in PHIL 353A.)
3 units, Win (Feferman)

MATH 293B. Proof Theory — (Enroll in PHIL 353B.)
3 units, Aut (Mints)

MATH 294. Topics in Logic — (Enroll in PHIL 354.)
3 units, Spr (Mints)

MATH 297. Algebraic Logic — (Enroll in CS 353.)
3 units, Win (Feferman)

MATH 299. Seminar in Logic and the Foundations of Mathematics — (Enroll in PHIL 350A.)
1-3 units, Aut, Win, Spr, Sum (Staff)

MATH 350. Seminar in Applied Mathematics — By arrangement. May be repeated for credit.
1-3 units, Aut, Win, Spr, Sum (Staff)

MATH 355. Graduate Teaching Seminar — Required of and limited to first-year Mathematics graduate students.
1 unit, Win (Staff)

MATH 356. Advanced Reading and Research
1-9 units, Aut, Win, Spr, Sum (Staff)

MATH 361. Research Seminar Participation — Participation in a faculty-led seminar which has no specific course number.
1-3 units, Aut, Win, Spr, Sum (Staff)

MATH 380-391. Graduate Seminars — By arrangement. May be repeated for credit.
1-3 units, Aut, Win, Spr, Sum (Staff)
MEDIEVAL STUDIES

Director: Philippe Buc
Committee in Charge: Philippe Buc, Hester Gelber, Nancy S. Kollmann, William Mahrt, Jennifer Summit, Rega Wood
Affiliated Faculty: George H. Brown (English), Philippe Buc (History), Charlotte Fonrobert (Religious Studies), Hester Gelber (Religious Studies), Nancy S. Kollmann (History), Seth Lerer (English), Mark E. Lewis (History), William Mahrt (Music), Kathryn Miller (History, on leave), Bissera Pentcheva (Art and Art History), Orrin W. Robinson (German Studies), Jeffrey Schnapp (French and Italian), Jennifer Summit (English), Rega Wood (Philosophy)
Program Offices: Building 250, Room 251F
Mail Code: 94305-2020
Department Phone: (650) 723-3413
Email: idstudies.moore@stanford.edu
Web Site: http://www.stanford.edu/dept/medieval/

Courses given in Medieval Studies have the subject code MEDVLST. For a complete list of subject codes, see Appendix.

The Medieval Studies Program is administered through Interdisciplinary Studies in Humanities, but the degree is conferred by the Dean of Undergraduate Studies Advisory Committee on Individually Designed Majors. The committee has approved the program as listed below. Students interested in pursuing the Medieval Studies major or minor should consult the Director of Medieval Studies. Students who are members of the Humanities Honors Program may petition to major in Medieval Studies; see the “Interdisciplinary Studies in Humanities” section of this bulletin. The major is normally declared by the beginning of the student’s third year.

The major combines interdisciplinary breadth with a disciplinary focus. The interdisciplinary emphasis is provided by MEDVLST 165, Introduction to Medieval Culture (not given 2005-06), by upper-division interdisciplinary colloquia, and by the requirement that students take courses in three different areas. Depth is ensured by the requirement that students take at least four courses in one area. A faculty adviser helps each student choose courses that integrate the requirements of breadth and depth. To that end, the following guidelines are provided.

The student should take a minimum of 60 units of course work from the list of Medieval Studies courses or appropriate alternatives approved by the director, including ten courses as follows:

1. The introductory course, MEDVLST 165, Introduction to Medieval Culture. Because 165 is not given in 2005-06, students may petition to take a substitute course. For 2005-06, HISTORY 115, Medieval Europe, fulfills this requirement. Petitions should be directed to the Director of Medieval Studies, Philippe Buc, at igorbuc@stanford.edu.

2. Two upper-division courses, ideally with an interdisciplinary component, in any field dealing with the Middle Ages.

3. Four courses in one of the following categories:
 a) Literature: English, French, German and Scandinavian, Italian, Latin, Slavic, Spanish
 b) History
 c) Art History, Drama, Music
 d) Humanities, Philosophy, Religious Studies (certain Humanities courses may fulfill requirements within other categories)

4. Two courses in a second category from the above list.

5. One course in a third category from the above list.

Students doing the Medieval Studies concentration for the Humanities major should use these requirements as guidelines for developing their programs of study.

In addition to the ten courses, a language proficiency equal to two years of college-level study is suggested in Latin or one of the following: French, German, Italian, or Spanish.

Medieval Studies has a Writing in the Major (WIM) requirement. It can be fulfilled in one of three ways:

1. Through a course designated as WIM by a department contributing to the Medieval Studies major.
2. Through a paper in a Medieval Studies course.
3. Through an independent paper with a member of the Medieval Studies faculty.

Check with the program office regarding specific requirements for each of these options.

MINORS

An undergraduate minor in Medieval Studies is available through the program. Students interested in completing the minor should inquire about enrollment procedures at the office of Interdisciplinary Studies in Humanities.

Requirements are as follows:

1. **Language:** in addition to the University foreign language requirement, at least a one quarter course in a classical and/or medieval vernacular language is recommended, which may count as one of the five required courses for the minor listed under item 2b.

2. The minor consists of six courses, which include:
 a) Medieval Studies 165, Introduction to Medieval Culture (core course). If 165 is not offered in a given year, students may petition to take a substitute course if necessary. Petitions should be directed to the Director of Medieval Studies.
 b) an additional five courses dealing directly with the Middle Ages. If the student’s major department or program offers medieval courses, he/she should take two of them for the Medieval Studies minor, but those courses may not also count for the major. At least three courses must be taken outside the student’s major, selected from two or more of the following categories:
 1) Language and Literature
 2) History
 3) Art History, Drama, Music
 4) Humanities, Philosophy, Religious Studies
 5) From among the Medieval Studies faculty listed above, the student chooses an adviser, who assists in the selection of courses and the design of the program.

Courses applied to the minor in Medieval Studies must be taken for a letter grade. Courses applied to the minor cannot also be applied to a student’s major or another minor.

COURSES

MEDVLST 210F. Power, Legend, and Love in the 12th Century

(Same as HISTORY 210F.) The 12th-century emergence of courtly literature focusing on the love between a man and a woman that revealed and shaped a new chivalric ethos. Literature devoted to the matter of Britain associated with the Celtic king Arthur.

2-3 units (Buc) not given 2005-06

MEDVLST 322. Medieval Seminar

(Same as HUMNTIES 322, RELIGST 338.) Medieval culture and ethical ideals extolled by medieval authors explicitly in philosophical and theological texts and implicitly in literary ones. Connections among ethics, cosmology, sacred history, anthropology, and soteriology in the medieval worldview. Medieval ethical beliefs as a window on medieval intellectual culture.

3-5 units, Win (Gelber)

INTERDEPARTMENTAL OFFERINGS

Courses suitable for self-designed majors in Medieval Studies are listed below. More detailed course descriptions are found under the various department headings. See quarterly *Time Schedule* for changes in listings.

ART HISTORY

ARTHIST 105/305. Introduction to Medieval Art

4 units (Pentcheva) not given 2005-06
ARTHIST 106/306. Byzantine Art and Architecture, 300-1453 C.E.
4 units (Pentcheva) not given 2005-06

ARTHIST 107/307. Age of Cathedrals
4 units (Pentcheva) not given 2005-06

ARTHIST 108/308. Virginity and Power: Mary in the Middle Ages
4 units, Spr (Pentcheva)

ARTHIST 187/387. Arts of War and Peace: Late Medieval and Early Modern Japan, 1500-1868
4 units (Takeuchi) not given 2005-06

ARTHIST 207. Light and Power: Mosaics and Stained-Glass Windows
5 units (Pentcheva) not given 2005-06

COMPARATIVE LITERATURE
COMPLIT 129. Lovers at Dawn
3-5 units, Aut (Galvez)

ENGLISH
ENGLISH 102. Chaucer
5 units, Win (Lerer)

ENGLISH 271B. Chaucer: Early Works
5 units, Win (Summit)

FRENCH LITERATURE
FREN Lit 130. Authorship, Book Culture, and National Identity in Medieval and Renaissance France
4 units, Spr (Alday)

HISTORY
HISTORY 110A. Europe from Late Antiquity to 1500
5 units (Buc) not given 2005-06

HISTORY 115. Medieval Europe
5 units, Aut (Goldberg)

HISTORY 216/316. Medieval Antisemitism
5 units (Buc) not given 2005-06

HISTORY 218/318. The Medieval Mediterranean: Power and Commerce
5 units, Spr (Goldberg)

MUSIC
MUSIC 40. Music History to 1600
4 units, Aut (Sargent)

MUSIC 140/240. Studies in Medieval Music
3-4 units, Win (Genensky) alternate years, not given 2006-07

MUSIC 141/241. Studies in Renaissance Music
3-4 units (Staff) alternate years, given 2006-07

MUSIC 221A. History of Music Theory: Ancient Through Baroque
4 units, Aut (Hinton) alternate years, not given 2006-07

MUSIC 301A. Analysis of Music: Modal
4 units, Win (Mahrt)

PHILOSOPHY
PHIL 115/215. Problems in Medieval Philosophy: Western Medieval Science
3-5 units, Win (R. Wood)

PHIL 248. Medieval Latin Paleography
3-5 units, Spr (R. Wood)

RELIGIOUS STUDIES
RELIGST 172. Sex, Body, and Gender in Medieval Religion
4 units, Spr (Gelber)

RELIGST 308. Medieval Japanese Buddhism
3-5 units, Aut (Faure)
MODERN THOUGHT AND LITERATURE

Director: Elisabeth Mudimbe-Boyi
Committee in Charge: Lanier Anderson, Gordon Brotherston, Jean-Pierre Dupuy, Dan Edelstein, Shelley Fisher Fishkin, Sherman Jackson, Andrea A. Lunsford, Barbara Martinez-Ruiz, Paula Moya, Elisabeth Mudimbe-Boyi, Richard White
Affiliated Faculty: Lanier Anderson (Philosophy), Eamonn Callan (Education), Jean-Pierre Dupuy (French and Italian), Paul Ebron (Cultural and Social Anthropology), Dan Edelstein (French and Italian), Amir Ezehl (German Studies), Shelley Fisher Fishkin (English), Estelle Freedman (History), James Ferguson (Cultural and Social Anthropology), Theodore Glasser (Communication), Roland Greene (English, Comparative Literature), Hans U. Gumbrecht (French and Italian, on leave), Akhil Gupta (Cultural and Social Anthropology), Sean Hanretta (History), Robert Kaufman (English), Matthew Kohrman (Cultural and Social Anthropology), Joshua Landy (French and Italian), Andrea A. Lunsford (English), Liisa Malikki (Cultural and Social Anthropology), Purimina Mankekar (Cultural and Social Anthropology, on leave), Barbara Martinez-Ruiz (Art and Art History), Franco Moretti (Comparative Literature), Paula Moya (English), Elisabeth Mudimbe-Boyi (French and Italian), David Palumbo-Liu (Comparative Literature), Patricia Parker (English, Comparative Literature), Arnold Rampersad (English), Ramón Saldívar (Comparative Literature), Debra Satz (Philosophy), Richard White (History), Bryan Wolf (Art and Art History, on leave), Alex Woloch (English), Sylvia Yanagisako (Cultural and Social Anthropology), Yvonne Yarbro-Bejarano (Spanish and Portuguese), Steven Zipperstein (History)

Program Offices: Building 250, Room 251F
Mail Code: 94305-2020
Phone: (650) 723-3413
Email: idstudies.moore@stanford.edu
Web Site: http://www.stanford.edu/dept/MTL

Courses given in Modern Thought and Literature have the subject code MTL. For a complete list of subject codes, see Appendix.

The Program in Modern Thought and Literature is administered through the office of Interdisciplinary Studies in Humanities. The program admits students for the Ph.D. and a very limited number for a coterminal M.A. degree. Admission to this program is granted only on condition that in the course of working on their master’s degree they do not apply to enter the Ph.D. program in Modern Thought and Literature. The deadline for application is early February.

To apply, applicants submit:
1. An unofficial grade transcript from Axess.
2. A “Petition for Admission to the Coterminal Program” from Degree Progress in the Registrar’s Office.
3. A statement giving the reasons the student wishes to pursue this program and its place in his or her future plans. This statement should pay particular attention to the reasons why the student could not pursue the studies he or she desires in some other way.
4. A plan of study listing, quarter by quarter, each course by name, units, and instructor, to be taken in order to fulfill the requirements for the degree for a total of 45 units, including at least 20 units of advanced work in one literature, and at least 20 units in a coherent interdisciplinary program of courses taken in non-literature departments.
5. A writing sample of critical or analytical prose.
6. Two letters of recommendation from members of the faculty who know the applicant well and who can speak directly to the question of his or her ability to do graduate-level work.

For University coterminal degree program rules and University application forms, see http://registrar.stanford.edu/publications/#Coterm.

REQUIREMENTS

The candidate for the M.A. must complete at least 45 units of graduate work, to be divided in the following manner:
1. The introductory seminar, MTL 334A, 5 units, or another graduate-level seminar offered by a member of the Committee in Charge and approved by the student’s graduate program adviser.
2. At least 20 units of advanced course work in literature, to be approved by the director.
3. At least 20 units of course work in a coherent and individually arranged interdisciplinary program, to be approved by the director.

By the end of the course of study, each candidate must also demonstrate a reading knowledge of at least one foreign language.

GRADUATE PROGRAMS

The Ph.D. in Modern Thought and Literature is an interdisciplinary program combining work in modern literary/cultural studies with work in one or more other modern disciplines.

The Ph.D. program is designed specifically for students who have a strong interest in literature or culture, but whose approach or focus requires an interdisciplinary program; for example, students interested in anthropological or philosophical approaches to literature and culture; gender studies; ethnic studies; or in topics such as legal humanities, popular culture, and social or cultural theory.

Modern Thought and Literature is intended for students who plan to teach and write in literature departments or in interdisciplinary programs in the humanities, cultural studies, or humanistic social sciences, or for students intending to formulate cultural policy.

Course work in the program is divided about evenly between advanced courses in literature departments and advanced courses in non-literature departments.

MASTER OF ARTS

The Master of Arts is available to students who are admitted to the doctoral program. Students are not admitted into the program for the purpose of earning a terminal Master of Arts degree. Candidates for the Ph.D. who satisfy the committee of their progress and satisfactorily complete 45 units of course work forming a coherent program of study, may apply for an M.A. in Modern Thought and Literature.
University requirements for the Ph.D. are discussed in the “Graduate Degrees” section of this bulletin.

A candidate for the Ph.D. degree in Modern Thought and Literature must complete three years (nine quarters) of full-time work, or the equivalent, in graduate study beyond the B.A. degree. He or she is expected to complete at least 18 courses of graduate work in addition to the dissertation. Students may spend one year of graduate study abroad.

Requirements for the Ph.D. in Modern Thought and Literature are:

2. A coherent program of eight courses of advanced work in literary studies to be worked out with the adviser, of which at least six must be regularly scheduled courses in literature. Courses in the teaching of composition (ENGLISH 396, 397), ad hoc graduate seminars (MTL 395), research courses (MTL 398), and thesis registration (MTL 802) may not be counted among these six courses; MTL 396L, 397, 399, 802 may not be counted toward these requirements under any circumstances.

3. Eight courses of advanced work in non-literature departments, the core of which is completion of either a departmental minor or an interdisciplinary concentration, typically consisting of six courses. Departmental minors are available from the departments of Cultural and Social Anthropology, Art and Art History, Communication, History, Philosophy, Political Science, Religious Studies, and Sociology (see the relevant information in those sections of this bulletin). Approved interdisciplinary concentrations have been established in popular culture, ethnic studies, feminist and gender studies, and science and technology studies (specific course requirements are available from the program office). Individually designed concentrations may be approved by petition to the director. In addition to the required six courses in a minor or a concentration, two additional courses from non-literature departments are chosen in consultation with each student’s academic adviser. Course restrictions noted above in item 2 also apply.

4. Qualifying Paper: this certifies that students are likely to be able to undertake the quality of research, sustained argumentation, and cogent writing demanded in a doctoral dissertation. The qualifying paper must be a substantial revision of a seminar paper written at Stanford during the first year and should embody a substantial amount of independent research, develop an intellectual argument with significant elements of original thinking, and demonstrate the ability to do interdisciplinary work. Each paper is evaluated by two or three readers (designated before the end of the first year of graduate study), one of whom must be a member of the Committee in Charge. Qualifying papers must be submitted to the program office no later than the end of the third week of the fifth quarter of enrollment, normally, winter of the second year.

5. Teaching, an essential part of the program, is normally undertaken in conjunction with the Department of English. Candidates are required to demonstrate competence in teaching.

6. Students must demonstrate, by the end of the third quarter of the first year, a reading knowledge of one foreign language and, by the beginning of the first quarter of the third year, a reading knowledge of one other foreign language. Reading knowledge means the ability to make a genuine scholarly use of the language: that is, to read prose of ordinary difficulty. Students may not take the University oral examination before completion of the foreign language requirement.

7. Candidacy: at the end of the second year, students apply for candidacy. The following qualifications are required before candidacy can be certified: the earlier submission of a satisfactory qualifying paper, demonstration of a reading knowledge of one foreign language; satisfactory progress in course work; a list of courses applicable to the degree, distinguishing between courses appropriate to the literary component and courses appropriate to the interdisciplinary component; designation of a departmental minor or an interdisciplinary concentration; and the submission of a statement outlining the scope and coherence of the interdisciplinary component of the program in relation to the literary component and noting the relevance of the course work to that program.

8. Annual Review: the program and progress of each student must be approved by the Committee in Charge at the end of each academic year.

9. University Oral Examination: this examination, covering the student’s areas of concentration, normally is taken in the third year of graduate study. It is a two-hour oral examination administered by four faculty members specializing in the student’s areas of concentration, and a chair from another department. The exam is based on a substantial reading list prepared by the student in conjunction with the faculty committee and designed to cover the areas of expertise pertinent to the student’s dissertation project.

10. Colloquium on the Dissertation Proposal: sometime after the University oral examination, or in conjunction with that examination, the dissertation committee assembles for up to one hour to discuss the dissertation proposal with the student. Prior to this meeting, the student should have consulted each member of the committee to discuss the proposal and compile a bibliography.

11. Dissertation: the fourth and fifth years are devoted to the dissertation, which should be a substantial and original contribution acceptable to the Committee on Modern Thought and Literature. The subject is drawn from the literature of specialization and the area of nonliterary studies.

HUMANITIES

The program participates in the Graduate Program in Humanities leading to a joint Ph.D. degree in Modern Thought and Literature and Humanities. For a description of the Humanities program, see the “Interdisciplinary Studies in Humanities” section of this bulletin.

COURSES

Students interested in literature and literary studies should also consult course listings in the departments of Asian Languages, Classics, Comparative Literature, English, French and Italian, German Studies, Slavic Languages and Literatures, and Spanish and Portuguese, and in the Division of Literatures, Cultures, and Languages. For other offerings, students should consult listings in the individual departments of interest. Consent of instructor is often required.

Students in the doctoral program in Modern Thought and Literature are advised to read through the offerings in English as well as offerings of the non-literature departments in which they wish to concentrate: for example, courses dealing with culture listed under Cultural and Social Anthropology, courses dealing with film under Communication or Art and Art History, courses in intellectual and cultural history under History. If the area of nonliterary interest is thematic rather than disciplinary, doctoral students should look under program listings such as Feminist Studies, African and African American Studies, or Comparative Studies in Race and Ethnicity.

MTL 111. A Short History of Stanford Student Life: Wilbur Remembers Five Decades of Campus Culture —How students have communicated, studied, interacted with one another, and related to the University and the world outside over five decades of change from the 60s to the present. Hands-on research in the University archives. GER:DB-Hum 3 units, Aut (Mesa)

MTL 175. Individual Work — For undergraduates only. 2-5 units, Aut, Win, Spr, Sum (Staff)

MTL 300. Modern Thought and Literature Colloquium — Required of first-year graduate students in the program; open to all students in the program and to others by consent of instructor. Weekly meeting of students in the program to discuss interdisciplinary scholarship, writing, and issues pertaining to the requirements for the Ph.D. Presentations by affiliated faculty and by student panels. 1-3 units, Spr (Mudimbe-Boyti)
MTL 334A. The Modern Tradition I—(Same as ENGLISH 334A.) Preference to first-year students in Modern Thought and Literature and English. Texts that have formed the foundation for contemporary cultural and social theory including Kant, Hegel, Marx, Weber, Lukács, Nietzsche, Freud, and Heidegger.

3 units, Aut (Moya)

MTL 334B. The Modern Tradition II—(Same as COMPLIT 354B.) Responses, refutations, elaborations, modifications to texts in critical theory such as Gramsci, Lacan, and Derrida, and postcolonial, postmodern, and feminist theory. Prerequisite: 334A.

3 units, Win, Spr (Mudimbe-Boyi)

MTL 390. Qualifying Paper—Preparation and writing of the qualifying paper for the Ph.D. in Modern Thought and Literature.

1-5 units, Aut, Win, Spr, Sum (Staff)

MTL 395. Ad Hoc Graduate Seminar—Graduate students (three or more) who wish to study a subject or an area not covered by regular courses and seminars may plan an informal seminar and approach a suitable member of the faculty to supervise it.

1-5 units, Aut, Win, Spr, Sum (Staff)

MTL 396L. Pedagogy Seminar I—(Enroll in ENGLISH 396L.)

2 units, Aut (Lerer)

MTL 397. Teaching Praxis—For Modern Thought and Literature doctoral students only. Teaching experience. Consent of program director required.

1-5 units, Aut, Win, Spr, Sum (Staff)

MTL 398. Research—Students pursue a special subject of investigation under supervision of a member of the committee or another faculty member. Thesis work is not to be registered under this number.

1-15 units, Aut, Win, Spr, Sum (Staff)

MTL 399. Reading for Orals—Reading in preparation for the University Oral Examination.

1-15 units, Aut, Win, Spr, Sum (Staff)

MTL 400. Symposium—Preparation for and participation in the annual student symposium.

1-5 units, Win, Spr (Mudimbe-Boyi)
Varied opportunities for instrumental and vocal study and performance are available to majors and nonmajors alike. Students wishing to obtain individual instruction, to participate in chamber music, or to play in department ensembles should note that auditions are held during registration week in Autumn Quarter. While there may be openings in some private studios for qualified students during other quarters, it is to the student's advantage to audition in autumn, as most slots are filled for the entire year.

The department is housed in Braun Music Center, Dinkelspiel Auditorium, and The Knoll, including three concert halls for concert and recital productions, two rehearsal halls, a small chamber hall, and a state-of-the-art, hexagonal listening/research room. Pianos, organs, harpsichords, and a variety of early stringed and wind instruments are available for student use. In addition, advanced students may use fine old stringed instruments and bows from the Harry R. Lange Historical Collection (http://music.stanford.edu/DeptInfo/Langcol.html).

The Music Library (http://www-sul.stanford.edu/depts/music/index.html) contains a comprehensive collection of scores, books, and recordings with an emphasis on Western art music. In addition, the Department of Special Collections holds an invaluable collection of musical manuscripts and first and early editions, and the Archive of Recorded Sound has a superb collection of historical recordings of all types.

For more information on the Department of Music, see http://music.stanford.edu/.

The Stanford Center for Computer Research in Music and Acoustics (CCRMA) is a multidisciplinary facility where composers and researchers work together using computer-based technology both as an artistic medium and as a research tool. Areas of ongoing interest at CCRMA include: composition, applications hardware, applications software, synthesis techniques and algorithms, physical modeling, real-time controllers, signal processing, digital recording and editing, psychoacoustics and musical acoustics, music manuscripting by computer, and real-time applications.

The CCRM community consists of administrative and technical staff, faculty, research associates, graduate research assistants, graduate and undergraduate students, visiting scholars, visiting researchers and composers, and industrial affiliates. Center activities include academic courses, seminars, small interest-group meetings, summer workshops, and colloquia. Concerts of computer music are presented several times each year with an annual outdoor computer-music festival in July.

CCRMA houses studios, computing facilities, and a networked system of software that includes programs and tools for editing, viewing, synthesizing, and analyzing sound. For a detailed and up-to-date description of facilities available, see the CCRMA home page at http://ccrma.stanford.edu/.

The Center for Computer-Assisted Research in the Humanities (CCARH), located in Braun Music Center, conducts research focused on constructing computer databases for music and on creating programs that allow student and staff researchers to access, analyze, print, and electronically perform the music. For more information, see the CCARH home page at http://www.ccarh.org/.

UNDERGRADUATE PROGRAMS

BACHELOR OF ARTS

The undergraduate major in Music is built around a series of foundation courses in theory, musicianship, and music history, in addition to performance and the proficiency requirements outlined below. Because of the sequence of courses, it takes more than two years to complete the requirements for the major. Prospective majors are urged to consult the undergraduate student services officer in the department as early as possible in order to plan a program that allows sufficient time for major course work, practice, and University requirements outside the major. Early planning is especially important for students wishing to double-major, for those contemplating overseas study during their undergraduate years, for those wishing to do an in-depth concentration in the music major, and for those with particular musical talents and interests. All required courses for the B.A. in Music and in the Music, Science, and Technology specialization must be taken for a letter grade. Electives may be taken credit/no credit, but any courses taken towards concentration requirements must also carry a letter grade.

1. Students are required to include the following foundation courses in their programs:
 a) Theory: MUSIC 21, 22, 23
 b) History: MUSIC 40, 41, 42, and three from the series 140-148
 c) Composition: MUSIC 121 and two from 122A, B, or C

2. Additionally, Music majors must fulfill the following two performance requirements:
 a) Instruction in instrumental and/or vocal performance: minimum of five quarters, comprising a minimum of 15 units.
 b) Ensemble: five quarters (5 units minimum) of work in one or more of the department’s organizations or chamber groups. MUSIC 156, “sic”; Improvisation Collective, and MUSIC 157, Mariachi Band, do not satisfy this requirement. MUSIC 181 may count for up to two of the ensemble-unit requirements for the music major. To fulfill the ensemble requirement, music majors need to participate at least three quarters in the department’s traditional large ensembles (MUSIC 159–167), with the exception of students whose primary instrument is harp, keyboard, or guitar, who need to participate at least one quarter in the ensembles above, but who may fulfill the rest of the requirement with chamber music (171).

3. Majors are required to pass a Piano Proficiency examination as a part of the requirements to complete MUSIC 23. Offered separately from the course at the end of the Autumn and Spring quarters or at other times by appointment, it consists of scales and arpeggios, performance of a simple tune (to be set by the examiner), sight reading, and the performance of prepared pieces (consult the department undergraduate adviser for details). Remedial skills are taught in MUSIC 12A,B,C.

4. Majors must also pass an Ear-Training Proficiency examination, which is part of the requirements to complete MUSIC 23. It may be taken by arrangement, demonstrating a student’s ability to hear music accurately and to perform it at sight.

RECOMMENDED SCHEDULE FOR THE MUSIC MAJOR

The following sample schedule shows how a student may include substantial work on a major in music while also fulfilling the University General Education Requirements during the freshman and sophomore years. The schedule also includes foreign language study, which is strongly recommended for all music majors and especially for those expecting to continue into graduate work in any area of music.

FIRST YEAR

<table>
<thead>
<tr>
<th>Course No. and Subject</th>
<th>Quarter and Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWR as assigned</td>
<td>A 5</td>
</tr>
<tr>
<td>MUSIC 19 (if needed), 21, 22</td>
<td>3 3</td>
</tr>
<tr>
<td>Individual Instruction and/or Ensemble</td>
<td>(3) 4 4</td>
</tr>
<tr>
<td>Introduction to the Humanities</td>
<td>1-4 1-4 1-4</td>
</tr>
<tr>
<td>Choice of Foreign Language, General Education Requirement, or Stanford Introductory Seminar</td>
<td>3-5 3-5 3-5</td>
</tr>
</tbody>
</table>

SECOND YEAR

<table>
<thead>
<tr>
<th>Course No. and Subject</th>
<th>Quarter and Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUSIC 23, 40, 41, 42</td>
<td>8 4 4</td>
</tr>
<tr>
<td>Individual Instruction and/or Ensemble</td>
<td>1-4 1-4 1-4</td>
</tr>
<tr>
<td>General Education Requirement, or Stanford Introductory Seminar</td>
<td>3-5 3-5 3-5</td>
</tr>
<tr>
<td>Elective</td>
<td>(3) (3)</td>
</tr>
</tbody>
</table>

THIRD AND FOURTH YEARS

<table>
<thead>
<tr>
<th>Course No. and Subject</th>
<th>Quarter and Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUSIC 121 and two from 122A, B, or C</td>
<td>4 4 4</td>
</tr>
<tr>
<td>Three from MUSIC 140-148</td>
<td>4-8 4-8 4-8</td>
</tr>
<tr>
<td>Elective</td>
<td>(4) (4) (4)</td>
</tr>
<tr>
<td>Senior Year: Concentration Project (if selected)</td>
<td>(4)</td>
</tr>
</tbody>
</table>
MUSIC, SCIENCE, AND TECHNOLOGY

The specialization in Music, Science, and Technology is designed for those students with a strong interest in the musical ramifications of rapidly evolving computer technology and digital audio, and in the acoustic and psychoacoustic foundations of music. The program entails a research project under faculty guidance and makes use of the highly multidisciplinary environment at CCRMA. This program can serve as a complementary major to students in the sciences and engineering.

1. Students in the program are required to include the following courses in their studies:
 a) Theory: 21, 22, 23, 121, 151 (WIM) (4 units each); 150 (3 units); 220A,B,C (4 units each); 250A (4 units)
 b) History: two from 40, 41, 42
 c) Applied: individual studies in performance (6 units) or 192A,B; and Ensemble or 192C (5 units)
 d) Research project: 220D (4 units)

2. Students in Music, Science, and Technology must also pass the Piano and Ear-Training Proficiency examinations required of all Music majors.

MINORS

Minors in Music and in the Music, Science, and Technology specialization provide the student with a core of essential Music courses in the disciplines that establish both a foundation for informed appreciation of music and a basis for more advanced study, should the student wish to pursue it.

MUSIC

<table>
<thead>
<tr>
<th>Course No. and Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUSIC 21, 22, 23. Elements of Music</td>
<td>12</td>
</tr>
<tr>
<td>MUSIC 40, 41, 42. Music-History Survey</td>
<td>12</td>
</tr>
<tr>
<td>Choice of one (WIM):</td>
<td></td>
</tr>
<tr>
<td>MUSIC 140-148. Studies in Music History</td>
<td>4</td>
</tr>
</tbody>
</table>

Two quarters:
- MUSIC 159-171. Ensemble 2
- MUSIC 172-177. Individual Instruction 6
- Academic Elective in Music 4

Total 40

MUSIC, SCIENCE, AND TECHNOLOGY

<table>
<thead>
<tr>
<th>Course No. and Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUSIC 21, 22, 23. Elements of Music</td>
<td>12</td>
</tr>
<tr>
<td>MUSIC 150. Musical Acoustics</td>
<td>3</td>
</tr>
<tr>
<td>MUSIC 151. Psychophysics and Cognitive Psychology for Musicians (WIM)</td>
<td>4</td>
</tr>
<tr>
<td>MUSIC 220A,B. Fundamentals of Computer-Generated Sound</td>
<td>8</td>
</tr>
<tr>
<td>MUSIC 192A,B. Theory and Practice of Audio Recording</td>
<td>6</td>
</tr>
<tr>
<td>MUSIC 192C. Session Recording (two quarters, 1 or 2 units/qr.)</td>
<td>3</td>
</tr>
<tr>
<td>Academic Elective in Computer Music</td>
<td>4</td>
</tr>
</tbody>
</table>

Total 40

CONCENTRATIONS

Concentrations are offered in performance, conducting, composition, or history and theory. In each concentration, 6 additional course units in the area of concentration beyond the basic requirements for the major are required. In addition, each concentrator registers for an independent project (198, 4 units) in the senior year under faculty supervision, leading to a senior recital, a composition, a conducting project, or a senior research paper. Students wishing to pursue the concentration in performance must demonstrate private-lesson-level proficiency on their instrument. Specific guidelines and information on the concentration tracks are available from the Department of Music office.

HONORS PROGRAM

Honors in Music is awarded by the faculty to concentrators who have produced an independent project of exceptional quality and meet certain department standards in musicianship, scholarship, and academic standing. The conferral of honors is done solely through faculty consultation. Students do not petition for honors.

OVERSEAS STUDIES

Courses in Music are often available at Stanford overseas programs, especially in Berlin, Paris, and Oxford. See the Overseas Studies Program section of this bulletin immediately following this section for this year’s listings. Music majors and minors should talk to the Department of Music undergraduate administrator prior to going overseas.

GRADUATE PROGRAMS

University requirements for the M.A., D.M.A., and Ph.D. degrees are described in the “Graduate Degrees” section of this bulletin. The following statements apply to all the graduate degrees described below, unless otherwise indicated.

Admission—Applicants are required to submit evidence of accomplishment (scores, recordings, and/or research papers, according to the proposed field of concentration) when they return the application form. Applicants should arrange to take the Graduate Record Examination (GRE) well in advance of the December 13 application deadline. All applicants, except those applying for the M.A. in Music, Science, and Technology (M.A./MST), are also required to submit a departmental entrance test in theory and musicianship, which is available from the Music Department. All components of the application are due by December 13. International students whose first language is not English are required to take the TOEFL exam (with certain exceptions: see the University Registrar’s web site at http://gradadmissions.stanford.edu/).

Department Examinations—All entering graduate students except those in the M.A./MST program are required to take: (1) a diagnostic examination testing the student in theory (counterpoint, harmony, and analysis) and (for musicologists only) the history of Western art music, and (2) a proficiency examination in sight-singing and piano sight-reading. These exams are given at the beginning of study in the department (usually the week before school begins).

None of Stanford’s required undergraduate courses may be credited toward an advanced degree unless specifically required for both degrees. Only work that receives a grade of “A,” “B,” or “Satisfactory” (a passing grade in an instructor-mandated credit/no credit course) in music courses taken as a graduate student is recognized as fulfilling the advanced-degree requirements. Students may need to devote more than the minimum time in residence if preparation for graduate study is inadequate.

MASTER OF ARTS

Residence—A minimum of 45 academic units is required for the master’s degree in Music.

MUSIC

Students in the doctoral programs who enter directly from the bachelor’s level may, upon completing 45 units and advancing to candidacy, be recommended for the M.A. degree. The Department of Music does not accept students for study only towards the M.A. degree except in the Music, Science, and Technology program, described below.

MUSIC, SCIENCE, AND TECHNOLOGY

This is a one-year program of 45 units focusing on the integration of music perception, music-related signal processing and controllers, and synthesis. The program is designed for students having an undergraduate engineering or science degree, or a degree that includes course work in engineering mathematics.

Required are:
- MUSIC 151. Psychophysics and Cognitive Psychology for Musicians 4
- MUSIC 154. Composition and Performance of Instrumental Music with Electronics 3
- MUSIC 192A. Foundations of Sound-Recording Technology 3
- MUSIC 192B. Advanced Sound-Recording Technology 3
- MUSIC 220A. Fundamentals of Computer-Generated Sound 4
- MUSIC 220B. Compositional Algorithms, Psychoacoustics, and Spatial Processing 4
- MUSIC 220C. Research Seminar in Computer-Generated Music 4
- MUSIC 250A. HCT Theory and Practice 4
- MUSIC 320. Introduction to Digital Audio Signal Processing 4
DOCTORAL PROGRAMS

Residence — The candidate must complete a minimum of 135 academic units (see Residency under the “Graduate Degrees” section of this bulletin). Doctoral candidates working on Ph.D. dissertations or Doctor of Musical Arts (D.M.A.) final projects that require consultation with faculty members continue enrollment in the University under Terminal Graduate Registration (TGR), after they have reached the required 135 academic units and have completed their Special Area examinations.

Foreign Language Requirement — At the time of advancement to candidacy, all D.M.A. students, and Ph.D. students in the Computer-Based Theory and Acoustics program, are required to have demonstrated a reading knowledge of one language other than English and the ability to translate into idiomatic English. Ph.D. students in Musicology are required to demonstrate proficiency in German and a similar competence in a second language, chosen from French, Italian, or Latin (or, on a case-by-case basis, another language, if it has significant bearing on the candidate’s field of study).

Qualifying Examination — A written and oral examination for admission to candidacy is given just prior to the fourth quarter of residence for D.M.A. students, and Ph.D. students in the Computer-Based Music Theory and Acoustics programs; for Ph.D. students in Musicology, the exams are given just prior to the eighth quarter of residence. This exam tests knowledge of history, theory, repertory, and analysis.

Teaching — All students in the Ph.D. or D.M.A. degree programs, regardless of sources of financial support, are required to complete six quarters of their supervised teaching at half time. Music 280 (given in Spring Quarter) is a required course for Teaching Assistants. Additional quarters of teaching may be required.

Basic Requirements — Doctoral programs in the Department of Music do not require a master’s degree as a prerequisite. All students entering directly from the bachelor’s degree level are required to take the following course (which is, however, required of all students in musicology, regardless of entering degree level):

Course No. and Subject Units
200. Graduate Proseminar 4

All doctoral candidates must take:
301A,B,C. Music Analysis: Modal, Tonal, and Post-Tonal 12

DOCTOR OF MUSICAL ARTS IN COMPOSITION

The Doctor of Musical Arts (D.M.A.) degree in Composition is given breadth through collateral studies in other branches of music and in relevant studies outside music as seems desirable.

Examinations — A written Special Area examination in the candidate’s field of concentration, including a final project proposal, is required to be completed during the fourth year of study, no later than the last day of classes in Autumn Quarter of that year. A public lecture/demonstration is also required during the last quarter of residence. It should be one hour in length, treating aspects of the final project.

Requirements — Besides those requirements listed above, candidates are expected to produce a number of works demonstrating their ability to compose in a variety of forms and for the common media: vocal, instrumental, and electronic music. If possible, the works submitted are presented in public performance prepared by the composer. Annual progress is reviewed by the composition faculty. The final project in composition is an extended work for instruments, voices, electronic media, or a combination of these. MUSIC 323, Doctoral Seminar in Composition (16 units), is a required course.

DOCTOR OF PHILOSOPHY

The Ph.D. in Music can be pursued in two concentrations: Musicology or Computer-Based Music Theory and Acoustics.

Examinations —
1. Special Areas: a written and oral examination testing the student’s knowledge of music and research in the student’s field of concentration is completed during the fourth year of study, no later than the last day of classes in Autumn Quarter of that year. This includes an oral defense of the dissertation proposal. The examining committee comprises prospective readers of the dissertation.
2. Ph.D. Orals: the University oral examination, taken once the dissertation is substantially underway, is an oral presentation and defense of dissertation research methods and results.

Requirements — Besides those requirements listed above, other requirements by concentration are:

MUSICOLGY

Course No. and Subject Units
221A. History of Music Theory: Ancient Through Baroque 4
221B. History of Music Theory: Classical Through Modern 4
269A. Seminar in Performance Practices 4
300A,B. Seminar in Notation 8
310. Research Seminars in Musicology* 24-40
312A,B. Aesthetics and Criticism of Music 8

* The requirement is for eight seminars of 3-5 units each. Students may petition to take up to two graduate seminars in other departments, in consultation with their advisor.

COMPUTER-BASED MUSIC THEORY AND ACOUSTICS

220A,B,C. Computer-Generated Music Seminars 12
220D. Research in Computer Music 12
221A. History of Music Theory: Ancient Through Baroque 4
221B. History of Music Theory: Classical Through Modern 4
320. Introduction to Digital Audio Signal Processing 4

JOIN PH.D. IN MUSIC AND HUMANITIES

The department participates in the Graduate Program in Humanities leading to a joint Ph.D. degree in Music and Humanities. For a description of the program, see the “Interdisciplinary Studies in Humanities” section of this bulletin.

COURSES

WIM indicates that the course satisfies the Writing in the Major requirement. (AU) indicates that the course is subject to the University Activity limitations (8 units maximum).

Many Department of Music courses have pages on the web which are linked to the Music home page. Courses with web sites at press time are noted in their entries below.

GENERAL

MUSIC 8A. Rock, Sex, and Rebellion — Development of critical listening skills and musical parameters through genres in the history of rock music. Focus is on competing aesthetic tendencies and subcultural forces that shaped the music. Rock’s significance in American culture, and the minority communities that have enriched rock’s legacy as an expressively diverse form. Lectures, readings, listening, and video screenings. GER: DB-Hum, EC-AmerCul

3 units (Applebaum) not given 2005-06

MUSIC 9A. Tchaikovsky, Stravinsky, Shostakovich, and Beyond: A History of Russian Music — Introduction to Russian culture through classical music and folklore, including sacred, secular, oral, and written music. The variety of Russian sung folklore in its traditional context, and how it is reflected in the music of Russian composers including Glina, Mussorgsky, Rimsky-Korsakov, Tchaikovsky, Skryabin, Stravinsky, Prokofiev, and Shostakovich. Listening assignments include fieldwork data and video recordings. GER:DB-Hum, EC-GlobalCom

3 units, Spr (Zemtsovsky)
MUSIC 11N-32N. Stanford Introductory Seminars

MUSIC 11N. A View from the Podium: The Art of Conducting — Stanford Introductory Seminar. How a conductor interprets music, realizes a personal vision through the rehearsal process, and communicates with orchestra and audience. Conducting as based on human communication skills. How to apply these lessons to other fields of endeavor. GER:DB-Hum
3 units, Aut (Cai)

MUSIC 13Q. Classical Music and Politics: Western Music in Modern China — Stanford Introductory Seminar. For students interested in social history, cultural studies, China studies, international relations, and music. From the Italian Jesuit, Matteo Ricci, who presented a clavicord to the Chinese emperor to the emergence of a modern generation of Chinese musicians. GER:DB-Hum, EC-GlobalCom
3 units, Spr (Cai)

MUSIC 15Q. Topos in American Music — Stanford Introductory Seminar. Preference to sophomores. American music as a central element in the quest for a national artistic expression that reflects the social order that forms it: pluralistic, multicultural, largely immigrant, democratic, and combining elements of its cultivated and vernacular traditions. Ballads, blues, band music, musical comedy, minstrel, missions music, American Indian music, country music, rags, rock, rhythm-and-blues, jazz, spirituals, swing, shape-notes. GER:DB-Hum, EC-AmerCul
3 units, Win (A.Cohen)

MUSIC 16Q. *Ki ho'alu*: The New Renaissance of a Hawaiian Musical Tradition — Stanford Introductory Seminar. Preference to sophomores. Developed in the Hawaiian Islands during the 1830s, *ki ho'alu*, or Hawaiian slack key guitar, is an art form experiencing newfound popularity coinciding with the growth of political activism in Hawaiian culture. The musical, cultural, historical, and political perspectives of Hawaiian music and *ki ho'alu*, through hands-on experience, readings, discussion, and workshops. Hawaiian music and history and relationships among performance, cultural expression, community, and identity. GER:DB-Hum, EC-AmerCul
3 units, Aut (Sano)

4 units, Spr (Sano, Uyechi)

MUSIC 36Q. Shakespeare’s Songbook to Purcell’s Musical Theater — Preference to sophomores. Courtly music, tavern tunes, and the life and theater of Elizabethan England with consideration of John Dowland, John Wilbye, William Lawes, Henry Purcell, and other musicians of the time. The span, interrelations, and genesis of music, poetry, dance, and theater in 17th-century England. GER:DB-Hum
3 units, Aut (Houle)

MUSIC 18A. Jazz History: Ragtime to Bebop, 1900-1940 — From the beginning of jazz to the war years. GER:DB-Hum
3 units, Win (Berry)

MUSIC 18B. Jazz History: Bebop to Present, 1940-Present — Modern jazz styles from Bebop to the current scene. Emphasis is on the significant artists of each style. GER:DB-Hum
3 units, Spr (Berry)

MUSIC 20A. Jazz Theory — Introduces the language and sounds of jazz through listening, analysis, and compositional exercises. Students apply the fundamentals of music theory to the study of jazz. Prerequisite: 19 or consent of instructor. GER:DB-Hum
3 units, Aut (Nadel)

MUSIC 20B. Advanced Jazz Theory — Approaches to improvisation through listening and transcribing, and developing familiarity with important contributors to this music. Topics: scale theory, altered dominants, and substitute harmony. Prerequisite: 20A or consent of instructor. GER:DB-Hum
3 units (Nadel) alternate years, given 2006-07

MUSIC 20C. Jazz Arranging and Composition — Jazz arranging and composition for small ensembles. Foundation for writing for big band. Prerequisite: 20A or consent of instructor.
3 units, Win (Nadel) alternate years, not given 2006-07

MUSIC 127. Instrumentation and Orchestration — Individual instruments, instrumental groups within the orchestra, and combinations of groups. Arrangements from piano to orchestral music. Score analysis with respect to orchestration. Practical exercises using chamber ensembles and school orchestra. Prerequisite: 23, GER:DB-Hum
3 units (Staff) not given 2006-07

MUSIC 159X. Music and Religion in South Asia — (Enroll in RE-LIGST 159/359.)
4-5 units, Win (Hess)

FOUNDATIONS FOR B.A. MAJOR

Students with training in theory should take a placement exam given at the beginning of each quarter for admission to more advanced courses. Students must not assume that they may begin study in MUSIC 21.

MUSIC 19. Introduction to Music Theory — For non-music majors and music majors or minors unable to pass the proficiency test for entry to 21. The fundamentals of music theory and notation, basic sight reading, sight singing, ear training, keyboard harmony; melodic, rhythmic, and harmonic dictation. Skill oriented, using piano and voice as basic tools to develop listening and reading skills. GER:DB-Hum
3 units, Aut, Spr (T. Berger)

MUSIC 21,22,23. Elements of Music — Melody, harmony, counterpoint, and rhythm are studied through analysis, composition, and exercises in practical musicianship. Emphasis is on tonal theory with components in melody, counterpoint, and harmony. Analytical and practical musicianship skills are taught, with analysis and compositional projects in historical styles. Students with previous training in theory should take a placement exam given at the beginning of each quarter for admission to more advanced courses. Students must not assume that they may begin study in MUSIC 21.

MUSIC 21. Elements of Music I — Preference to majors. Introduction to tonal theory. Practice and analysis. Diatonic harmony focusing on melodic and harmonic organization, functional relationships, voice-leading, and tonal structures. Ear-training and keyboard-harmony skills; analytical methods and listening strategies. Students intending to continue with 22-23 who do not have piano proficiency should begin 12 (class piano) concurrently. Enrollment limited to 40. Prerequisite: pass proficiency examination in basic musical skills on first day of class; students who do not pass may take 19. GER:DB-Hum
4 units, Aut (Aquilanti), Win (T. Berger)

MUSIC 22. Elements of Music II — Preference to majors. Introduction to chromatic harmony focusing on secondary functions, modulations, harmonic sequences, mode mixture, and the Neapolitan, and augmented sixth chords. Analysis of musical forms and harmonizations complemented by harmonic and melodic dictation, sight singing, and other practical skills. Prerequisite: 21 or consent of instructor. GER:DB-Hum
4 units, Win (Aquilanti), Spr (Thomalla)

MUSIC 23. Elements of Music III — Preference to majors. Continuation of chromatic harmony, complex forms, and introduction to early 20th-century techniques. Satisfactory passage of ear-training proficiency exam, part of the course’s final, is a requirement for course completion and for continuation in the major sequence. Passage of departmental piano-proficiency exam is also required to pass this course. Prerequisite: 22 or consent of instructor. GER:DB-Hum
4 units, Aut (Jones), Spr (Aquilanti)
MUSIC 40, 41, 42. Music History — The history of Western art music from Gregorian chant to the present, stressing major styles and genres in their intellectual and institutional settings.

MUSIC 40. Music History to 1600 — Pre- or corequisite: 23. GER: DB-Hum
4 units, Aut (Sargent)

MUSIC 41. Music History 1600-1830 — Pre- or corequisite: 23. GER:DB-Hum
4 units, Win (Hadlock)

MUSIC 42. Music History Since 1830 — Pre- or corequisite: 23. GER:DB-Hum
4 units, Spr (Hinton)

MUSIC 121. Analysis of Tonal Music — Complete movements, or entire shorter works of the 18th and 19th centuries, are analyzed in a variety of theoretical approaches. Prerequisites: 23, or consent of instructor; and successful completion of the ear-training and piano-proficiency examinations. GER:DB-Hum
4 units, Win (Barth)

MUSIC 122A. Eighteenth-Century Counterpoint — Analysis and composition of two- and three-part inventions and three- and four-voice fugues. Use of keyboard, ear training, and sight singing. Prerequisites: 23 or consent of instructor; and pass the ear-training and piano-proficiency examinations. GER:DB-Hum
4 units (Staff) not given 2005-06

MUSIC 122B. Harmonic Materials of 19th Century — Analysis of 19th-century music, with compositional exercises based on 19th-century models. Prerequisites: 23 or consent of instructor; and pass the ear-training and piano-proficiency examinations. GER:DB-Hum
4 units, Spr (Ulman)

MUSIC 122C. Introduction to 20th-Century Composition — Contemporary works, with emphasis on music since 1945. Projects in free composition based on 20th-century models. Prerequisites: 23, or consent of instructor; and successful completion of the ear-training and piano-proficiency examinations. GER:DB-Hum
4 units, Aut (Ferneyhough)

COMPOSITION

MUSIC 123. Undergraduate Seminar in Composition — Current trends in composition. May be repeated for credit. Prerequisite: music major, and 23 or consent of instructor. GER:DB-Hum
3 units, Aut (Jones), Win (Ulman)

MUSIC 125. Individual Undergraduate Projects in Composition — May be repeated for credit. Prerequisites: music major and one quarter of 123.
1-3 units, Aut, Win, Spr (Staff)

MUSIC 323. Doctoral Seminar in Composition — Illustrated discussions of compositional issues and techniques. Students present their own work to the class, and individually to the instructor.
4 units, Aut (Ulman), Win (Ferneyhough)

MUSIC 325. Individual Graduate Projects in Composition
1-5 units, Aut, Win, Spr, Sum (Staff)

HISTORY AND LITERATURE

MUSIC 140-148. Seminars in Music History — Specialized topics in music history are each offered at least once within any two-year period. Topics vary each year. May be repeated for credit. Music majors may repeat the same seminar in music history only once for credit toward the major and must turn in different papers the second time. GER:DB-Hum, WIM

MUSIC 140. Studies in Medieval Music — Pre- or corequisite: 23 (WIM at 4-unit level only.)
3-4 units, Win (Genensky) alternate years, not given 2006-07

MUSIC 141. Studies in Renaissance Music — Pre- or corequisite: 23. (WIM at 4-unit level only.)
3-4 units (Staff) alternate years, given 2006-07

MUSIC 142. Studies in Baroque Music — Pre- or corequisite: 23. (WIM at 4-unit level only.)
3-4 units (Staff) not given 2005-06

MUSIC 143. Studies in Classic Music — Pre- or corequisite: 23. (WIM at 4-unit level only.)
3-4 units, Spr (Hadlock) alternate years, not given 2006-07

MUSIC 144. Studies in Romantic Music — Pre or corequisite: 23. (WIM at 4-unit level only.)
3-4 units (Staff) alternate years, given 2006-07

MUSIC 145. Studies in Modern Music — Pre- or corequisite: 23. (WIM at 4-unit level only)
3-4 units, Aut (Barth) alternate years, not given 2006-07

MUSIC 148. Musical Shakespeare: Theater, Song, Opera, and Film — (Same as HUMNTIES 192G.) The role of music in productions, adaptations, and interpretations of Shakespeare’s plays as theater, opera, and film from the Elizabethan era through the present. Emphasis is on the role of songs, stage music, and music in operatic and film adaptations. Incidental music, orchestral tone poems, and art-song settings of lyrics from the plays. Plays include Romeo and Juliet, Othello, Macbeth, Hamlet, The Tempest, Midsummer Night’s Dream, and Twelfth Night. Pre- or corequisite: 23. GER:DB-Hum, WIM at 4- or 5-unit level only
3-5 units (Grey) not given 2005-06

MUSIC 164/264. Ritual Musics of the World — (Same as CASA 164/264.) The roles that music plays in human ritual life: physical effects of music, shamanic healing, spirit possession, and rites of worship. Gender issues in ritual music. The power of music to create and affirm communities, and as a medium for spiritual knowledge. What can be known about people, places, and cultures through sound? How does music express and shape social identity? How are belief systems and patterns of social interaction manifested in musical practices? Sources include readings and guided listening to recorded music from cultural and religious traditions around the world. GER:DB-Hum, EC-GlobalCom
4 units (Diehl) not given 2005-06

4 units, A: Aut (Plebuch), B: Spr (Hinton) alternate years, not given 2006-07

MUSIC 240-248. Seminars in Music History — For graduate students; topics as in 140-148. Participation in upper-class seminars, with additional in-depth research. Specialized topics in music history are each offered at least once within any two-year period. Topics vary each year.

MUSIC 240. Studies in Medieval Music
3-4 units, Win (Genensky) alternate years, not given 2006-07

MUSIC 241. Studies in Renaissance Music
3-4 units (Staff) alternate years, given 2006-07

MUSIC 242. Studies in Baroque Music
3-4 units (Staff) not given 2005-06

MUSIC 243. Studies in Classic Music
3-4 units, Spr (Hadlock) alternate years, not given 2006-07

MUSIC 244. Studies in Romantic Music
3-4 units (Staff) alternate years, given 2006-07

MUSIC 245. Studies in Modern Music
3-4 units, Aut (Barth) alternate years, not given 2006-07

MUSIC 248. Musical Shakespeare: Theater, Song, Opera, and Film — (Graduate section; see 148; same as HUMNTIES 192G.)
3-5 units (Grey) not given 2005-06

MUSIC 310. Research Seminar in Musicology — For graduate students. Topics vary each quarter. May be repeated for credit.
3-5 units, Aut (Hinton), Win (Hadlock), Spr (Reynolds)
MUSIC 192A. Foundations of Sound-Recording Technology — For upperclass undergraduate and graduate students; preference given to music majors with MST specialization. Topics: electronic devices, the physics of sound transduction and microphone operation, selection and placement; mixing consoles; connectors and device interconnection; grounding and shielding; the principles of analog magnetic recording; operation maintenance of recording equipment; the basic principles of recording engineering. Enrollment limited. Prerequisites: 151; algebra, physics basics, and consent of instructor. GER:DB-EngrAppSci
3 units, Aut (Kadis)

MUSIC 192B. Advanced Sound Recording Technology — Topics: noise reduction techniques; dynamics and time-delay audio effects; the principles of digital audio; disk- and tape-based digital recorders; digital audio workstations and editing; advanced multitrack techniques; SMPTE and MIDI time code and device synchronization; MIDI sequencing and synchronization. See http://ccrma.stanford.edu/courses/. Prerequisite: 192A. GER:DB-EngrAppSci
3 units, Win (Kadis)

MUSIC 192C. Session Recording — Independent engineering of recording sessions. May be repeated for credit. Prerequisites: 192A, B. 1-2 units, Aut, Win, Spr (Kadis)

MUSIC 220A. Fundamentals of Computer-Generated Sound — Techniques for digital sound synthesis, effects, and reverberation. Topics: summary of digital synthesis techniques (additive, subtractive, nonlinear, wavetable, spectral-modeling, and physical-modeling); digital effects algorithms (phasing, flanging, chorus, pitch-shifting, and vocoding); and techniques for digital reverberation. Majors (undergraduate or graduate) must take for 4 units. See http://ccrma.stanford.edu/courses/.
2-4 units, Aut (Chafe)

MUSIC 220B. Compositional Algorithms, Psychoacoustics, and Spatial Processing — The use of high-level programming language as a compositional aid in creating musical structures. Advanced study of sound synthesis techniques. Simulation of a reverberant space and control of the position of sound within the space. See http://ccrma.stanford.edu/courses/.
2-4 units, Win (Lopez-Lezcano)

MUSIC 220C. Research Seminar in Computer-Generated Music — Individual projects in composition, psychoacoustics, or signal processing. See web site. Prerequisite: 220B.
2-4 units, Spr (Chafe)

MUSIC 220D. Research in Computer-Generated Music — Independent research projects in composition, psychoacoustics, or signal processing. May be repeated for credit. Prerequisite: 220C. See http://ccrma.stanford.edu/courses/.
1-4 units, Aut, Win, Spr, Sum (Staff)

MUSIC 250A. HCI Theory and Practice — HCI issues as they relate to music applications in composition and performance. Project-oriented, examining issues from the technical and theoretical perspectives of computer science, haptics, and music theory. See http://ccrma.stanford.edu/courses/.
3-4 units, Aut, Win (Verplank)

MUSIC 253. Musical Information: An Introduction — The kinds of musical information used in sound, graphical, and analytical applications. Emphasis is on independent concepts and principles in musical representation and research objectives (repertory analysis, performance analysis, theoretical models, similarity, and stylistic simulation). Examples from Western art music. Prerequisites: one year of music theory or equivalent; methods courses in fields such as musical analysis, symbolic systems, information processing, sound engineering, or intellectual property issues.
1-4 units, Win (Selfridge-Field)

MUSIC 254. Applications of Musical Information: Query, Analysis, and Style Simulation — Participants explore the issues introduced in 253 in greater depth and take initiative for research projects related to a theoretical or methodological issue, a software project, or a significant analytical result. Prerequisite: 253 or consent of instructor.
1-4 units, Spr (Selfridge-Field)

MUSIC 255. Orchestration and Timbral Analysis — Introduction to the art and craft of orchestration and timbral analysis. Combines a hands-on approach to orchestration with applied computational timbral analysis. Geared for music majors with a concentration or interest in composition or MST. Weekly assignments in orchestration and timbral analysis, along with computer-based timbral analysis. Final project involving either computer-based analysis or an advanced orchestration assignment. See http://ccrma.stanford.edu/courses/255/.
1-4 units (J. Berger) not given 2005-06
MUSIC 319. Research Seminar on Computational Models of Sound Perception — All aspects of auditory perception, often with emphasis on computational models. Topics: music perception, signal processing, auditory models, pitch perception, speech, binaural hearing, auditory scene analysis, basic psychoacoustics, and neurophysiology. See http://ccrma.stanford.edu/courses/.

I-3 units, Aut, Win, Spr (Slaney)

3-4 units, Aut (J. Smith)

MUSIC 420. Signal Processing Methods in Musical Acoustics — Computational methods in musical sound synthesis and digital audio effects based on acoustic physical models. Topics: acoustic simulation with delay lines, digital filters, and nonlinear elements; comb filters; allpass filters; artificial reverberation; delay-line interpolation and sampling-rate conversion; phasing, flanging, and chorus effects; efficient computational models of strings, woodwinds, brasses, and other musical instruments. See http://ccrma.stanford.edu/courses/420/. Prerequisite: 320 or equivalent, PHYSICS 21 or equivalent course applying Newton’s laws of motion. Recommended: EE 264, PHY 113.

3-4 units, Win (J. Smith)

MUSIC 421. Audio Applications of the Fast Fourier Transform (FFT) — Spectrum analysis and signal processing using the FFT with emphasis on audio applications. Topics: Fourier theorems; FFT windows; spectrum analysis; spectrograms; sinusoidal modeling; spectral modeling synthesis; FFT convolution; FIR filter design and system identification; overlap-add and filter-bank-summation methods for short-time Fourier analysis, modification, and resynthesis. See http://ccrma.stanford.edu/courses/421/. Prerequisites: 420 or consent of instructor.

3-4 units, Spr (J. Smith)

MUSIC 422. Perceptual Audio Coding — History and basic principles: development of psychoacoustics-based data-compression techniques; perceptual-audio-coder applications (radio, television, film, multimedia/internet audio, DVD, EMD). In-class demonstrations: state-of-the-art audio coder implementations (such as AC-3, MPEG) at varying data rates; programming simple coders. Topics: audio signals representation; quantization; bit rate to frequency mapping; introduction to psychoacoustics; bit allocation and basic building blocks of an audio codec; perceptual audio codes evaluation; overview of MPEG-1, 2, 4 audio coding and other coding standards (such as AC-3). Prerequisites: knowledge of digital audio principles, familiarity with C programming. Recommended: 320, EE 261. See web site.

3 units, Win (Bosi)

1-4 units, Aut, Win, Spr (J. Smith)

MUSIC 424. Signal Processing Techniques for Digital Audio Effects — Techniques for dynamic range compression, reverberation, equalization and filtering, panning and spatialization, digital emulation of analog processors, and implementation of time-varying effects. Single-band and multiband compressors, limiters, noise gates, de-essers, convolutional reverberators, parametric and linear-phase equalizers, wah-wah and envelope-following filters, and the Leslie. Students develop effects algorithms of their own design in labs. Prerequisites: digital signal processing, sampling theorem, digital filtering, and the Fourier transform at the level of MUSIC 320 or EE 261; Matlab and modest C programming experience. Recommended: MUSIC 420 or EE 264; audio effects in mixing and mastering at the level of MUSIC 192.

3-4 units, Spr (Berners, Abel)

MUSIC 424. Signal Processing Techniques for Digital Audio Effects — Techniques for dynamic range compression, reverberation, equalization and filtering, panning and spatialization, digital emulation of analog processors, and implementation of time-varying effects. Single-band and multiband compressors, limiters, noise gates, de-essers, convolutional reverberators, parametric and linear-phase equalizers, wah-wah and envelope-following filters, and the Leslie. Students develop effects algorithms of their own design in labs. Prerequisites: digital signal processing, sampling theorem, digital filtering, and the Fourier transform at the level of MUSIC 320 or EE 261; Matlab and modest C programming experience. Recommended: MUSIC 420 or EE 264; audio effects in mixing and mastering at the level of MUSIC 192.

3-4 units, Spr (Berners, Abel)

MUSIC 425. Audio Applications of the Fast Fourier Transform (FFT) — Spectrum analysis and signal processing using the FFT with emphasis on audio applications. Topics: Fourier theorems; FFT windows; spectrum analysis; spectrograms; sinusoidal modeling; spectral modeling synthesis; FFT convolution; FIR filter design and system identification; overlap-add and filter-bank-summation methods for short-time Fourier analysis, modification, and resynthesis. See http://ccrma.stanford.edu/courses/421/. Prerequisites: 420 or consent of instructor.

3-4 units, Spr (J. Smith)

MUSIC 426. Perceptual Audio Coding — History and basic principles: development of psychoacoustics-based data-compression techniques; perceptual-audio-coder applications (radio, television, film, multimedia/internet audio, DVD, EMD). In-class demonstrations: state-of-the-art audio coder implementations (such as AC-3, MPEG) at varying data rates; programming simple coders. Topics: audio signals representation; quantization; bit rate to frequency mapping; introduction to psychoacoustics; bit allocation and basic building blocks of an audiocodec; perceptual audio codes evaluation; overview of MPEG-1, 2, 4 audio coding and other coding standards (such as AC-3). Prerequisites: knowledge of digital audio principles, familiarity with C programming. Recommended: 320, EE 261. See web site.

3 units, Win (Bosi)

1-4 units, Aut, Win, Spr (J. Smith)

MUSIC 428. Signal Processing Techniques for Digital Audio Effects — Techniques for dynamic range compression, reverberation, equalization and filtering, panning and spatialization, digital emulation of analog processors, and implementation of time-varying effects. Single-band and multiband compressors, limiters, noise gates, de-essers, convolutional reverberators, parametric and linear-phase equalizers, wah-wah and envelope-following filters, and the Leslie. Students develop effects algorithms of their own design in labs. Prerequisites: digital signal processing, sampling theorem, digital filtering, and the Fourier transform at the level of MUSIC 320 or EE 261; Matlab and modest C programming experience. Recommended: MUSIC 420 or EE 264; audio effects in mixing and mastering at the level of MUSIC 192.

3-4 units, Spr (Berners, Abel)

MUSIC 521. Audio Applications of the Fast Fourier Transform (FFT) — Spectrum analysis and signal processing using the FFT with emphasis on audio applications. Topics: Fourier theorems; FFT windows; spectrum analysis; spectrograms; sinusoidal modeling; spectral modeling synthesis; FFT convolution; FIR filter design and system identification; overlap-add and filter-bank-summation methods for short-time Fourier analysis, modification, and resynthesis. See http://ccrma.stanford.edu/courses/421/. Prerequisites: 420 or consent of instructor.

3-4 units, Spr (J. Smith)

MUSIC 522. Perceptual Audio Coding — History and basic principles: development of psychoacoustics-based data-compression techniques; perceptual-audio-coder applications (radio, television, film, multimedia/internet audio, DVD, EMD). In-class demonstrations: state-of-the-art audio coder implementations (such as AC-3, MPEG) at varying data rates; programming simple coders. Topics: audio signals representation; quantization; bit rate to frequency mapping; introduction to psychoacoustics; bit allocation and basic building blocks of an audio codec; perceptual audio codes evaluation; overview of MPEG-1, 2, 4 audio coding and other coding standards (such as AC-3). Prerequisites: knowledge of digital audio principles, familiarity with C programming. Recommended: 320, EE 261. See web site.

3 units, Win (Bosi)

1-4 units, Aut, Win, Spr (J. Smith)

MUSIC 524. Signal Processing Techniques for Digital Audio Effects — Techniques for dynamic range compression, reverberation, equalization and filtering, panning and spatialization, digital emulation of analog processors, and implementation of time-varying effects. Single-band and multiband compressors, limiters, noise gates, de-essers, convolutional reverberators, parametric and linear-phase equalizers, wah-wah and envelope-following filters, and the Leslie. Students develop effects algorithms of their own design in labs. Prerequisites: digital signal processing, sampling theorem, digital filtering, and the Fourier transform at the level of MUSIC 320 or EE 261; Matlab and modest C programming experience. Recommended: MUSIC 420 or EE 264; audio effects in mixing and mastering at the level of MUSIC 192.

3-4 units, Spr (Berners, Abel)

MUSIC 625. Audio Applications of the Fast Fourier Transform (FFT) — Spectrum analysis and signal processing using the FFT with emphasis on audio applications. Topics: Fourier theorems; FFT windows; spectrum analysis; spectrograms; sinusoidal modeling; spectral modeling synthesis; FFT convolution; FIR filter design and system identification; overlap-add and filter-bank-summation methods for short-time Fourier analysis, modification, and resynthesis. See http://ccrma.stanford.edu/courses/421/. Prerequisites: 420 or consent of instructor.

3-4 units, Spr (J. Smith)

MUSIC 626. Perceptual Audio Coding — History and basic principles: development of psychoacoustics-based data-compression techniques; perceptual-audio-coder applications (radio, television, film, multimedia/internet audio, DVD, EMD). In-class demonstrations: state-of-the-art audio coder implementations (such as AC-3, MPEG) at varying data rates; programming simple coders. Topics: audio signals representation; quantization; bit rate to frequency mapping; introduction to psychoacoustics; bit allocation and basic building blocks of an audio codec; perceptual audio codes evaluation; overview of MPEG-1, 2, 4 audio coding and other coding standards (such as AC-3). Prerequisites: knowledge of digital audio principles, familiarity with C programming. Recommended: 320, EE 261. See web site.

3 units, Win (Bosi)

1-4 units, Aut, Win, Spr (J. Smith)

MUSIC 628. Signal Processing Techniques for Digital Audio Effects — Techniques for dynamic range compression, reverberation, equalization and filtering, panning and spatialization, digital emulation of analog processors, and implementation of time-varying effects. Single-band and multiband compressors, limiters, noise gates, de-essers, convolutional reverberators, parametric and linear-phase equalizers, wah-wah and envelope-following filters, and the Leslie. Students develop effects algorithms of their own design in labs. Prerequisites: digital signal processing, sampling theorem, digital filtering, and the Fourier transform at the level of MUSIC 320 or EE 261; Matlab and modest C programming experience. Recommended: MUSIC 420 or EE 264; audio effects in mixing and mastering at the level of MUSIC 192.

3-4 units, Spr (Berners, Abel)
MUSIC 173/273. Voice
1-3 units, Aut, Win, Spr (Giovannetti, Wait)

MUSIC 174/274. Stringed Instruments
MUSIC 174A/274A. Violin
1-3 units, Aut, Win, Spr (Kleyman, Harms, Nuttall, Shiffman)
MUSIC 174B/274B. Viola
1-3 units, Aut, Win, Spr (Kleyman, Robertson)
MUSIC 174C/274C. Violoncello
1-3 units, Aut, Win, Spr (S. Harrison, Costanza)
MUSIC 174D/274D. Contrabass
1-3 units, Aut, Win, Spr (Moyer)
MUSIC 174E/274E. Viola Da Gamba
1-3 units, Aut, Win, Spr (Dornenburg)
MUSIC 174F/274F. Classical Guitar
1-3 units, Aut, Win, Spr (Ferguson)
MUSIC 174G/274G. Harp
1-3 units, Aut, Win, Spr (Chauvel)
MUSIC 174H/274H. Baroque Violin
1-3 units, Aut, Win, Spr (Martin)
MUSIC 174I/274I. Early Plucked Strings
1-3 units, Aut, Win, Spr (Staff)
MUSIC 175/275. Woodwind Instruments
MUSIC 175A/275A. Flute
1-3 units, Aut, Win, Spr (Blaisdell, Hawley, Holmes-Schaefle, Maestre)
MUSIC 175B/275B. Oboe
1-3 units, Aut (Hubbard), Win, Spr (Matheson)
MUSIC 175C/275C. Clarinet
1-3 units, Aut, Win, Spr (Bell, Brandenburg)
MUSIC 175D/275D. Bassoon
1-3 units, Aut, Win, Spr (Olivier)
MUSIC 175E/275E. Recorder/Renaissance Wind Instruments
1-3 units, Aut, Win, Spr (Myers)
MUSIC 175F/275F. Saxophone
1-3 units, Aut, Win, Spr (Stein)
MUSIC 175G/275G. Baroque Flute
1-3 units, Aut, Win, Spr (Staff)
MUSIC 176/276. Brass Instruments
MUSIC 176A/276A. French Horn
1-3 units, Aut, Win, Spr (Ragent)
MUSIC 176B/276B. Trumpet
1-3 units, Aut, Win, Spr (Johnson-Hamilton)
MUSIC 176C/276C. Trombone
1-3 units, Aut, Win, Spr (Kenley)
MUSIC 176D/276D. Tuba
1-3 units, Aut, Win, Spr (Clements)
MUSIC 177/277. Percussion
1-3 units, Aut, Win, Spr (Veregge)

PERFORMANCE PRACTICES
MUSIC 126. Introduction to Thoroughbass — The development of continuous techniques and skills for figured-bass realization. Performance and analysis of selected repertoire, using thoroughbass principles and exercises based on historical theoretical treatises. Prerequisite: 21.
1-3 units, Win (T. Berger)

MUSIC 130. Elementary Conducting
MUSIC 130A. Introduction to Conducting — Baton techniques and rehearsal procedures. The development of coordination of the members of the body involved in conducting; fluency in beat patterns and meters; dynamics, tempi, cueing, and use of the left hand in conducting. Prerequisites: 121 and diagnostic musicianship exam given first day of class; preference to students who have completed 122B.
3 units (Staff) alternate years, given 2006-07

MUSIC 130B. Elementary Orchestral Conducting — Prerequisites: 127 or previous orchestral performance experience, 130A.
3 units (Cai) alternate years, given 2006-07

MUSIC 130C. Elementary Choral Conducting — Techniques specific to the conducting of choral ensembles: warm-ups, breathing, balance, blend, choral tone, isolation principles, recitative conducting, preparation, and conducting of choral/orchestral works. Prerequisite: 130A.
3 units (Sano) alternate years, given 2006-07

MUSIC 131. Intermediate Orchestral Conducting — Prerequisite: 130A, B, or C, or orchestral conducting experience.
3 units, Win (Cai)

MUSIC 169A/269A. Seminar in Performance Practices — Performance techniques, theoretical principles, aesthetics, and musical resources of various historical periods. GER.DB-Hum
4 units, Spr (T. Berger, Myers)

MUSIC 181. Solo Vocal Repertoire — Solo vocal repertoire for advanced vocal students. Song and operatic literature is studied and performed by class participants. Repertoire varies and/or spans more than one quarter, allowing students to repeat the course for credit.
1 unit, Aut, Win, Spr (Genensky)

MUSIC 182. Diction for Singers — The international phonetic alphabet and its application to German, French, and Italian vocal literature. Open also to pianists interested in vocal coaching and choral conducting.
1 unit, Win (Dahl)

MUSIC 183. Art Song Interpretation — For advanced singers and pianists as partners. Performance class in workshop setting. Prerequisite: consent of instructor. Recommended: 170 for pianists or 182 for singers.
MUSIC 183A. German Art Song Interpretation — Composers from Beethoven and Schubert to Wolf and Strauss.
1 unit, Spr (Dahl) alternate years, not given 2006-07
MUSIC 183B. French Art Song Interpretation — Composers include Fauré, Debussy, Ravel, and Poulenc.
1 unit (Dahl) alternate years, given 2006-07

MUSIC 184. Schumann Song Cycles — For advanced singers and pianists as partners. Focus is on Dichterliebe, and Frauenliebe und Leben. Performance class in workshop setting. Prerequisite: consent of instructor. Recommended: 170 or 182.
1 unit (Dahl) alternate years, given 2006-07

MUSIC 230. Advanced Orchestral Conducting — May be repeated for credit. Prerequisite: 130B.
2-4 units, Aut, Win, Spr (Cai)

MUSIC 231. Advanced Choral Conducting — May be repeated for credit. Prerequisite: 130C.
2-4 units, Aut, Win, Spr (Sano)

ENSEMBLE
An audition is required for admission to any University musical ensemble; audition schedules are posted during the registration period in Autumn Quarter. Audition is by appointment in Winter and Spring quarters: contact the ensemble director. Membership is open to all students including those who do not register for credit, although these courses may be repeated for credit. Many Department of Music ensembles tour on a regular basis, usually after commencement in June.

MUSIC 156. “sic”: Improvisation Collective — Small ensemble devoted to learning trans-idiomatic improvisation techniques and composing inde-terminate pieces in a workshop setting. One major concert. Prerequisite: access to an instrument. Improvisational experience and conventional instrumental virtuosity not required.
1 unit, Win (Staff)
MUSIC 157. Introduction to Mariachi Ensemble — Introduction to the practice of mariachi music, tradition, and history. Focus is on learning traditional sones, rancheras, huapangos, and boleros. Requirements: ability to play and access to instruments (violin, trumpet, guitar, vihuela, and guitarrón).

1 unit, Aut, Win, Spr (Lucero)

MUSIC 159. Early Music Singers — Small choir specializing in Medieval, Renaissance, and early Baroque vocal music. One major concert per quarter.

1 unit, Aut (Sargent), Win, Spr (Mahrt)

MUSIC 160. University Orchestra — 70- to 100-member ensemble performing major orchestral works; minimum one concert per quarter.

1 unit, Aut, Win, Spr (Cai)

MUSIC 161. University Bands

MUSIC 161A. Stanford Wind Ensemble — 40- to 50-member ensemble performing transcriptions of symphonic music, brass band music, and repertoire composed specifically for symphonic band. One concert per quarter.

1 unit, Aut, Win, Spr (Aquilanti)

MUSIC 161B. Jazz Orchestra — Big band format. Repertoire drawn primarily from the contemporary jazz-ensemble literature. One formal concert per quarter.

1 unit, Aut, Win, Spr (Berry)

MUSIC 161C. Red Vest Band — A small ensemble of the Leland Stanford Junior University Marching Band open to members of the LSJUMB by audition and consent of instructor. Members perform at all men’s and women’s home basketball games and travel to some away and post-season games. Twice-weekly rehearsals focus on introduction of new student arrangements and the LSJUMB’s repertoire of rock, funk, and traditional styles.

1 unit, Win (Aquilanti)

MUSIC 162. Symphonic Chorus — 100- to 150-voice ensemble, performing major choral masterworks with orchestra. One concert per quarter.

1 unit, Aut, Win, Spr (Sano)

MUSIC 163. Memorial Church Choir — Official choir of Memorial Church, furnishing music for Sunday services and special occasions in the church calendar.

2 units, Aut, Win, Spr (Wait)

MUSIC 165. Chamber Chorale — Select 24-voice chamber ensemble, specializing in virtuoso choral repertoire from all periods of Western art music.

1 unit, Aut, Win, Spr (Sano)

MUSIC 167. University Singers — Mixed-repertoire chorus, performing choral repertoire from all periods of Western art music and other world cultures.

1 unit, Aut, Win, Spr (Morgan)

MUSIC 169. Stanford Taiko — Select North American taiko ensemble, performing traditional and contemporary repertoire for Japanese drums. Multiple performances in Winter and Spring quarters, also touring; instrument construction and maintenance. Admission by audition in Autumn Quarter only.

1 unit, Aut, Win, Spr (Sano, Uyechi)

MUSIC 170. Collaborative Piano — Performance class in a workshop setting. Techniques of collaboration with vocalists and instrumentalists in repertoire ranging from songs and arias to sonatas and concertos. Prerequisite: private-lesson proficiency level in piano, or consent of instructor.

1 unit, Aut (Dahl)

MUSIC 171. Chamber Music — Small combinations for strings, winds, and keyboard instruments. Open to students at the private-lesson-proficiency level to hone ensemble skills, preferably while taking private lessons. Selected string instrument participants are invited to participate in a chamber orchestra, led by members of the St. Lawrence String Quartet, without conductor. Winter Quarter: chamber orchestra in conjunction with chamber chorale performing choral sacred music of the Baroque period, led by members of the St. Lawrence. All new and returning students are required to audition.

1 unit, Aut, Win, Spr (Staff)

UNDERGRADUATE DIRECTED READING AND RESEARCH

MUSIC 197. Undergraduate Teaching Apprenticeship — Work in an apprentice-like relationship with faculty teaching a student-initiated course. Prerequisite: consent of instructor.

1-2 units, Aut, Win, Spr (Staff)

MUSIC 198. Concentrations Project — For concentration program participants only. Must be taken in senior year.

4 units, Aut, Win, Spr (Staff)

MUSIC 199. Independent Study — For advanced undergraduates and graduate students who wish to do work outside the regular curriculum. Before registering, student must present specific project and enlist a faculty sponsor.

1-5 units, Aut, Win, Spr, Sum (Staff)

GRADUATE RESEARCH AND SPECIAL STUDIES

MUSIC 200. Graduate Proseminar — Required of first-year graduate students in music. Introduction to research in music, bibliographical materials, major issues in the field, philosophy, and methods in music history. Guest lecturers and individual research topics.

4 units, Aut (Hadlock, McBride)

MUSIC 269B. Research in Performance Practices — Directed reading and research.

1-5 units, Aut, Win, Spr, Sum (Staff)

MUSIC 280. TA Training Course — Required for doctoral students serving as teaching assistants. Orientation to resources at Stanford, guest presentations on the principles of common teaching activities, supervised teaching experience. Students who entered in the Autumn should take 280 in the Spring prior to the Autumn they begin teaching.

1 unit, Spr (H. Lee)

MUSIC 300. Seminar in Notation — Western notation of the Middle Ages and Renaissance: principles, purposes, and transcription.

MUSIC 300A. Medieval Notation

4 units, Spr (Mahrt)

MUSIC 300B. Renaissance Notation

4 units (Staff) not given 2005-06

MUSIC 301A. Analysis of Music: Modal

4 units, Win (Mahrt)

MUSIC 301B. Analysis of Music: Tonal

4 units, Aut (J. Berger)

MUSIC 301C. Analysis of Music: Post-Tonal

4 units, Spr (Ferneyhough)

MUSIC 302. Research in Musicology — Directed reading and research.

1-5 units, Aut, Win, Spr, Sum (Staff)

1-5 units, Aut, Win, Spr, Sum (Staff)

MUSIC 341. Ph.D Dissertation

1-9 units, Aut, Win, Spr, Sum (Staff)

MUSIC 399. D.M.A. Final Project

1-9 units, Aut, Win, Spr, Sum (Staff)
OVERSEAS STUDIES PROGRAM

Program Director: Norman Naimark
Stanford Program in Australia
Director, Centre for Marine Studies, University of Queensland: Ove Hoegh-Guldberg
Faculty: Kevin Arrigo, Tony Chifflings, Sophie Dove, Norman Duke, Maoz Fine, Ron Johnston, Michael Pole, Roger Shore, Selina Ward
Stanford Program in Beijing
Director: Jason D. Patent
Faculty: Mark E. Lewis, Wenjun Li, Dingcheng Ren, Xiaochun Sun, John C. Y. Wang, Daqing Zhang, Pei Zhang, Qi Zhang, Dunhua Zhao
Stanford Program in Berlin
Director: Karen Kramer
Stanford Program in Florence
Director: Ermelinda Campani
Faculty: Khaled Fouad Allam, Gerhard Casper, Regina Casper, Antonio Cassese, Pamela Grossman, Charles Lomerve, Giuseppe Mammarella, Leonardo Morlino, Stefano Pallanti, Fiorenza Quercioli, Filippo Rossi, Timothy Verdon, Pan Yotopoulos
Stanford Center for Technology and Innovation (SCTI)—Kyoto
Kyoto Center for Japanese Studies (KCJS)
Director: Terry MacDougall
Faculty: Monica Bethe, Toshiko Fujiwara, Toshikiko Hayashi, Takashi Hikino, Rebecca Jennison, Bettina Langer-Teramoto, Catherine Ludvik, Junko Minamoto, Shigemi Nakagawa, Leslie Pincus, Clyde Tatum, Haruka Ueda, Mariko Uemiyi, Chihiro Yamaoka, Emiko Yasumoto
Stanford Program in Moscow
Program Manager: Alexander Abashkin
Faculty: Vladimir Mau, Andrei Melville, Richard Schupbach, Dmitri Trenin
Stanford Program in Oxford
Director: Geoffrey Tyack
Faculty: Sarah Billington, Paddy Bullard, Giovanni Capoccia, Helena Chance, John Darwin, Rona Giffard, Beatrice Groves, Helen Kidd, Robert McMahon, Amanda Palmer, Emma Plaskitt, Derek Robinson, John Senior, Bart van Es, Thomas Wasow
Stanford Program in Paris
Director: Estelle Halevi
Faculty: Cécile Alduy, Viviane Azarian, Jean-Marie Apostolidès, Colette Deremble, Jean Paul Deremble, Benjamin Dupas, Jean-Marie Fessler, Marc Germanangue, Patrick Guedon, Jacques Le Cacheux, Fabienne Maitre, Sophie Maurer, Nonna Mayer, Florence Mercier, Marie-Madeleine Mervant-Roux, Elizabeth Molkou, Anne Muxel, Dominique Remy-Granger, Pauline Reychman, Marie-Christine Ricci, Ramón Saldivar
Stanford Program in Santiago
Director: Edmundo Fuenzalida (through 2005); Iván Jaksic (beginning in 2006)
Faculty: Germán Correa, Armando DiFilippo, Claudio Fuentes, Rosanna Ginocchio, María Paz Haro, Sergio Micco, Rosanna Ginocchio, Oscar Muñoz, Veronica Poblete, Hernán Pons, Jorge Ruffinelli, Robert Siegel, Bernardo Subercaseaux, Teresa Valdés
Program Offices: First Floor, Sweet Hall
Mail Code: 94305-3089
Phone: (650) 723-3558
Email: study@osp.stanford.edu
Web Site: http://osp.stanford.edu

Courses given in Overseas Studies Program have subject codes beginning with OSP. For a complete list of subject codes, see Appendix.

Stanford University encourages students to explore the opportunities of study abroad through regular programs in Australia, Beijing, Berlin, Florence, Kyoto, Moscow, Oxford, Paris, and Santiago. Students may enroll for one or more quarters at most centers. Course offerings in engineering, humanities, sciences, and social sciences provide full Stanford credit. Many courses also count toward major requirements and/or fulfill General Education Requirements. Academic or paid internships are available at the Berlin, Florence, Kyoto-SCTI, Paris, and Santiago programs. Research opportunities are available in various formats at different centers. Minimum academic and language prerequisites are specific to each program. See http://osp.stanford.edu for information on these requirements.

While studying overseas through OSP, students remain registered at Stanford and pay regular tuition, along with the Overseas Studies fee which is based on Stanford room and board rates. Regular financial aid applies, and may be increased to cover additional costs. At most centers, students live in a homestay or with local students.

Overseas Studies also offers a limited number of special programs including, in 2005-06, nine three-week faculty-led seminars at overseas locations and a quarter-long program in Cape Town, South Africa.

Overseas Studies, located on the first floor of Sweet Hall, has full-time staff members and student advisers to assist in planning for overseas study. The following information, while accurate at the time of printing, is subject to change. See http://osp.stanford.edu/ for updated information.

COURSES

(AU) indicates that the course is subject to the University Activity Unit limitations (8 units maximum).

International Relations has approved a number of Overseas Studies courses for major credit; these are listed in the “International Relations” section of this bulletin.

AUSTRALIA

OSPAUSTL 10. Coral Reef Ecosystems—(Enroll in BIOSCI 109Z, EARTSYS 120X, HUMBIO 61X.) Key organisms and processes, and the complexity of coral reef ecosystems. Students explore the Great Barrier Reef from the southern end which demonstrates the physical factors that limit coral reefs, to the northern reef systems which demonstrate key aspects of these high biodiversity ecosystems. Human-related changes. Emphasis is on research experiences and development of analytical skills. Two units only counted for Biological Sciences major. GER:DB-EngrAppSci
3 units, Win (Arrigo, Dove, Hoegh-Guldberg)

OSPAUSTL 20. Coastal Resource Management—(Enroll in BIOSCI 110Z, EARTSYS 121X, HUMBIO 62X.) Problem solving, research, communication, teamwork, and social assessment skills in sustainable coastal zone management. Issues include: ecosystem functions and values at risk under the proposed development in case study; environmental outcomes most desirable for the local stakeholders and how those are defined; features of the human communities and their function as they relate to the management options; tools or mechanisms for a sustainable management outcome. Taught by multidisciplinary team that includes Australian and developing country experts. Two units only counted for Biological Sciences major. GER:DB-EngrAppSci
3 units, Win (Johnstone)

SCHOOL OF HUMANITIES AND SCIENCES
techniques, pollution and eutrophication, and environmental control of marine plant distribution and productivity. Two units only counted for Biological Sciences major. GER:DB-EngrAppSci
3 units, Win (Duke, Pole)

OSPBEIJ 40. Australian Studies — Introduction to Australian society, history, culture, politics, and identity. Field trips. Two sections: one draws on social science framework and methodology; the other on literature, visual art, and popular culture.
3 units, Win (Staff)

OSPBEIJ 50. Targeted Research Project — Prior to arriving in Australia, students establish a link with University of Queensland faculty to develop project ideas that combine personal interests and career goals with opportunities presented by the Australian Coastal Studies program, such as how mangrove roots find sediment rich zones of the shore, or the dynamics of ecotourism in southern and northern coastal Queensland. Project report and presentation in Australia.
4 units, Win (Hoegh-Guldberg)

BEIJING

OSPBEIJ 12. Environmental Challenges in China’s Development — (Enroll in EARTHSYS 105X.) Pressures on China’s environment and natural resources resulting from its transition from a planned economy to a market economy. Social, economic, and environmental issues; health effects of environmental pollution; limitations on resources for development. Social responses to environmental challenges; and strategies for sustainable development. GER:DB-SocSci
4 units, Aut (Li)

5 units, Aut, Spr (Q. Zhang)

OSPBEIJ 16. Philosophy and Religion, East and West — (Enroll in RELIGST 19B.) Sacred, secular, intellectual, practical, indigenous, and introduced elements in Chinese culture. Chinese religion, ethics, and philosophy through comparisons with Western counterparts: Confucianism, Taoism, and Zen Buddhism; Greek philosophy, Christianity, and modernity. Comparisons include: cosmology and moral metaphysics; human nature and original sin; Confucian humanity and Christian love; individualism and collectivism; shame culture and guilt culture; and Asian values and modernization. GER:DB-Hum
4 units, Aut (Zhao)

OSPBEIJ 17. Doing Business in China: Local Careers and Expanding with International Business — Career options involving China. Invited speakers talk about their work experiences in China. This year’s focus is on entrepreneurship, business, and information technology.
1 unit, Aut, Spr (Koontz)

OSPBEIJ 18. Chinese Literature in Translation — Focus is on classical literature. Literary history of Chinese culture, most important authors, characteristics of the Chinese literary tradition. Comparative method applied to universal literary phenomena such as motif and genre. Recommended: ability to read Chinese. GER:DB-Hum
4 units, Spr (P. Zhang)

4 units, Spr (Ren)

OSPBEIJ 22. Language, Culture, and Meaning: Understanding Human Cognition in a Crosscultural Context — (Enroll in LINGUIST 165.) Introduction to cognitive linguistics including conceptual metaphor, metonymy, image schemas, frame semantics, and mental spaces. Theorists and empirical investigations. Using Beijing as an example, how cognition and culture interact, how all human beings are cultural, and how culture and language influence behaviors and expectations. GER:DB-SocSci
4 units, Aut, Spr (Patent)

4 units, Aut (Wang)

OSPBEIJ 27. The City in Imperial China — (Enroll in HISTORY 191V.) Physical and social aspects of cities in China, and their evolution. Topics include city walls, streets and markets, gardens, temples, pleasure quarters, policing, and the unique nature of the imperial capital. Early versus late imperial China. Beijing as the last imperial capital. Primary and secondary sources in translation. Field trips. GER:DB-Hum, EC-GlobalCom
5 units, Spr (Lewis)

CHINESE LANGUAGE PROGRAM

OSPBEIJ 2,3. Second-Year Modern Chinese — (Enroll in CHINLANG 21C,23C.)
5 units, 2: Aut, 3: Spr (Staff)

OSPBEIJ 4,5. Third-Year Modern Chinese — (Enroll in CHINLANG 101C,103C.)
5 units, 4: Aut, 5: Spr (Staff)

OSPBEIJ 6. Advanced Modern Chinese — (Enroll in CHINLANG 211C.)
5 units, Aut (Staff)

OSPBEIJ 8. First-Year Modern Chinese — (Enroll in CHINLANG 3C.)
5 units, Spr (Staff)

OSPBEIJ 9. Chinese Language Tutorial
2 units, Spr (Staff)

BERLIN

OSPBER 10. Inventing the Modern City: Berlin in the Twenties and the Nineties — (Enroll in URBANST 155V.) Berlin’s reinvention in the 20s as a modern city and site for new art, radical politics, and a modern urban lifestyle; and in the 90s as national and international capital within a transforming Europe. Art movements that shaped the urban Weimar scene compared to projects in the new Berlin. Students create multimedia presentations. GER:DB-SocSci
4 units, Spr (Friedlander)

OSPBER 11. Jewish Berlin: The Metropolis in the Imagination of a Minority — (Enroll in RELIGST 21F.) History of Jewish life in Berlin from the 19th century to WW II. Focus is on moments of literary and cultural creativity: Jewish Enlightenment at beginning of 19th century and role of Jewish women; protest against bourgeois German-Jewish culture at beginning of 20th century; literary, artistic and political productivity of the interwar years. Relationship between German and Jewish cultures. Revival of Jewish life in current city life. GER:DB-Hum
4 units, Aut (Fonrobert)
OSPBER 12. The Politics of Memory — (Enroll in RELIGST 22F.) Politics of memorializing WW II focusing on Berlin. How the memory of WW II and its representation became constitutive to the self-consciousness of democratic culture in Germany. What constitutes the nature of collective memory; who has the authority to represent the war; the function of the memorial in public consciousness; and limits of representation of terror or genocide. Theoretical literature on politics of memory. Field trips to memorials. GER:DB-SocSci
3 units, Aut (Fonrobert)

OSPBER 14. Exploration in Crosscultural Theater — (Enroll in DRAMA 153F.) Two classic plays, German and American, from cross-cultural perspectives. Stanford and German students studying American culture at the Free University share linguistic and social expertise. Two weekend meetings; scene work; dramatic exploration. No theatrical experience required.
3 units, Spr (Friedlander)

5 units, Win (Brückner)

4-5 units, Win (Kramer)

OSPBER 19. Mechanical Engineering Design — (Enroll in ME 112X.) Transmission of motion or power with devices incorporating mechanisms such as gears, linkages, and cams. System-level objectives involving power transmission, efficiency, and prescribed motion; design goals include reliability, strength, and ease of fabrication. Focus is on representative component types with information applicable to other elements. Brainstorming, benchmarking, prototyping, and testing. GER: DB-EngrAppSci
4 units, Win (Gerdes)

OSPBER 20. Why Do We Drive What We Drive? — (Enroll in ME 114X.) Cars as a metaphor for cultural differences. With technological resources similar for most countries, design and engineering choices reflect social, political, legal, and historical factors. Insights into the values held by cultures through vehicle design. Focus is on the U.S. and Germany.
3 units, Win (Gerdes)

OSPBER 30. Berlin vor Ort: A Field Trip Module — The cultures of Berlin as preserved in museums, monuments, and architecture. Berlin’s cityscape as a narrative of its history from baroque palaces to vestiges of E. German communism, from 19th-century industrialism to grim edifices of the Sachsenhausen concentration camp. Competing political agendas and the criteria of historical selection in monument-alteration and removal, renaming streets, and structuring the capital city. Focus is on the interface between sociopolitical life and artistic expression. In German. (AU)
1 unit, Aut, Win, Spr (Neckenig)

OSPBER 37. Web Projects — Plan and develop a multimedia web project based on academic work associated with a concurrent course. Prerequisite: knowledge of web design or preparation on home campus.
1 unit, Aut, Win, Spr (Kramer)

OSPBER 38. Research Module — For continuing students. Research under the guidance of a local specialist in libraries, archives, research institutes, and/or in the field. Prerequisite: GERGEN 177A.
3-4 units, Win, Spr (Kramer)

OSPBER 64. Film and Writing — (Enroll in ARTHIST 162Y.) German culture through film. Sensitivity for film structure through creative writing tutorials and screening workshops. Composition and narrative structure (storyline, suspense, character development). Screen-writing exercises.
3-4 units, Spr (Maerker)

OSPBER 66. Theory from the Bleachers: Reading German Sports and Culture — (Enroll in SOC 158S.) German culture past and present through the lens of sports. Intellectual, societal, and historical-political contexts. Comparisons to Britain, France, and the U.S. The concepts of Körperkultur, Leistung, Show, Verein, and Haltung. Fair play, the relation of team and individual, production and deconstruction of sports heroes and heroines, and sports nationalism. Sources include sports narrations and images, attendance at sports events, and English and German texts.
3 units, Win (Junghans)

OSPBER 93. Globalization: International Challenges, Regional Responses — (Enroll in POLISCI 110P.) The rigid system of the Cold War was replaced by the flexible, almost anarchic system of globalization. Post-cold war political and economical upheaval triggered large migrations. In the age of multinational corporations, many predict the end of the national state in the context of a single superpower without adequately powerful, independent, and compensating institutions. Negative consequences of the dynamic process of globalization are often accredited to the superpower. GER:DB-SocSci
4-5 units, Spr (Tempel)

OSPBER 101A. Contemporary Theater — (Enroll in GERLIT 195, DRAMA 101A.) Texts of plays are supplemented by the theoretical writings of the respective playwrights and background reading in theater history and theory. Weekly theater trips, a tour of backstage facilities, attendance at a rehearsal, and discussions with actors, directors, or other theater professionals. In German. GER:DB-Hum
5 units, Spr (Kramer)

OSPBER 105V. Industry, Technology, and Culture, 1780-1945 — (Enroll in HISTORY 105V, STS 120V.) From the steam engine to the modern factory, the engineer emerges as the hero of the innovative and the new in the modern world. The dialectical relationships among material, intellectual, and social culture using the example of modern materials, transport, and communications systems, the micro- and macrocosms discovered in physics, chemistry, and astronomy, and the revolutionizing influence of photography, film, and TV. GER:DB-Hum
4 units, Win (Neckenig)

4 units, Spr (Neckenig)

OSPBER 115X. The German Economy: Past and Present — (Enroll in ECON 115X, POLISCI 111P.) The history of the German economy in: the Wilhelmine Empire, the Weimar Republic, the Third Reich, the postwar real socialism of the GDR, and the free market economy of the FRG. The processes of economic transition since unification and the current challenges faced by united Germany as Europe’s first economic power and the world’s second largest export nation. GER:DB-SocSci
4-5 units, Aut (Klein)

OSPBER 117V. The Industrial Revolution and its Impact on Art, Architecture, and Theory — (Enroll in STS 117V, ARTHIST 141Y.) The interlinking of architecture and painting with technological and scientific development. In a period of industrial revolution, the dominance of positivist thinking and empirical methods promotes in the cultural and artistic realm a response of euphoric acceptance or emphatic rejection. Artwork as a social, cultural, and spiritual symbol is a response to scientific and
technological development, yet claims timeless validity. Topics: frictions between idealism and realism, photography and painting, historicism and functionalism, expression and dadaism, futurism and new sobriety, functionalism and Nazi classicism. GER:DB-Hum
5 units, Aut (Neckenig)

4-5 units, Aut (Brückner)

OSPBER 161X. The German Economy in the Age of Globalization — (Enroll in ECON 161X) Germany’s role in the world economy: trade, international financial markets, position within the European Union; economic relations with Eastern Europe, Russia, the Third World, and the U.S. International aspects of the economic and environmental policies of the Red-Green Coalition Government. The globalization of the world’s economy and Germany’s competitiveness as a location for production, services, and R&D, focusing on the German car industry. GER:DB-SocSci
4-5 units, Win (Klein)

OSPBER 174. Sports, Culture, and Gender in Comparative Perspective — (Enroll in GERGEN 174) Theory and history of mass spectator sports and their role in modern societies. Comparisons with U.S., Britain, and France; the peculiarities of sports in German culture. Body and competition cultures, with emphasis on the entry of women into sports, the modification of body ideals, and the formation and negotiation of gender identities in and through sports. The relationship between sports and politics, including the 1936 Berlin Olympic Games. GER:DB-SocSci, EC-Gender
5 units, Spr (Junghanns)

OSPBER 177A. Culture and Politics in Modern Germany — (Enroll in GERGEN 177A) Key paradigms of modern Germany: German romanticism, the belated state and national identity, National Socialism and the Holocaust, Germany divided and unified. Literary, analytical, and theoretical texts; newspaper articles; film and TV; oral history. GER:DB-SocSci, EC-Gender
4-5 units, Aut (Kramer)

GERMAN LANGUAGE PROGRAM

OSPFLOR 1Z. Accelerated German: First and Second Quarters — (Enroll in GERLANG 1Z) A jump start to the German language, enabling students with no prior German to study at the Berlin Center. Covers GERLANG 1 and 2 in one quarter.
8 units, Aut (Siegt, Wohlfeil), Win (Urlaub, Wohlfeil)

OSPBER 3B. German Language and Culture — (Enroll in GERLANG 3B) Grammar, composition, and conversation. Increases fluency in German as rapidly as possible to help students take advantage of the many opportunities in Berlin. Corequisite: GERLANG 100B.
5 units, Aut, Win, Spr (Biege)

OSPBER 22B. Berliner Geschichte(n): Second-Year German — (Enroll in GERLANG 22B) Readings in history, literature, politics, and economics.
5 units, Aut, Win, Spr (Friesel-Kopecki)

OSPBER 100B. Aktives Deutsch — (Enroll in GERLANG 100B) Required for students enrolled in GERLANG 3B; open to students in other German language classes. Active use of German, including vocabulary from a variety of fields and disciplines, and discussion of current issues.
2 units, Aut, Win, Spr (Keller)

ON VIDEOTAPE
See the “School of Engineering” section of this bulletin for course descriptions.

OSPFLOR 40B. Introductory Electronics — (Enroll in ENGR 40B) GER:DB-EngrAppSci
5 units, Aut, Win, Spr (Khuri-Yakub)

4 units, Aut, Win (Staff)

FLORENCE

OSPFLOR 41. The Contemporary Art Scene in Tuscany: Theory and Practice — (Enroll in ARTSTUDI 147Y) The ever-changing and multifaceted scene of contemporary art through visual and sensorial stimulation. How art is thought of and produced in Italy today. Hands-on experience. Sketching and exercises on-site at museums and exhibits, plus workshops on techniques. GER:DB-Hum
3-5 units, Aut (Rossi)

OSPFLOR 42. Academic Internship — Mentored internships in banking, education, the fine arts, health, media, not-for-profit organizations, publishing, and retail. May be repeated for credit.
1-5 units, Win, Spr (Campani)

4 units, Spr (R. Casper)

OSPFLOR 44. Medicine and Art in the Renaissance — (Enroll in HPS 44V) Relationships among medicine, illness, and art in the Italian Renaissance. Greek and Roman medicine; writings of Arab physicians such as Ibn Sina. The establishment of medicine as a discipline at 12th-century universities in Salerno, Bologna, Padua, and Paris. The Black Death; etiology; social and economic impact on government, community, and church; and associated changes in Sienese and Florentine art. How anatomical knowledge was used in expressing emotions such as strength, courage, pain, or sacrifice; how it shaped the works of Donatello, da Vinci, Michelangelo, and Sanzio. GER:DB-Hum
4 units, Win (R. Casper)

OSPFLOR 45. Qualities of Democracy in the Nation State — Theoretical issues with respect to the quality of democracy: electoral arrangements, responsiveness, accountability, rule of law, and the substance of freedom and equality. Tools of subversion: how political elites develop different ways to avoid responsibility in actual everyday political activities. The democracy deficit of the EU: the institutions and practices of EU governance and the constitutional treaty. Case studies. Stanford students join Italian students from the Istituto Italiano di Scienze Umane. GER:DB-SocSci
5 units, Win (G. Casper, Morlino)

OSPFLOR 46. Doing School: A Comparative Study of American and European High Schools — (Enroll in EDUC 91Z) Comparison of how American and European high schools are organized and the consequences for student academic and social experience. Readings on high school include Pope’s Doing School, sections of Ball’s work on Beachside Comprehensive, and Sizer’s study of high school. Field trips to high schools to interview students. GER:DB-SocSci
3 units, Aut (Grossman)
OSPFLOR 47. Learning to Learn: Italian Theories of Early Childhood Education—(Enroll in EDUC 90Z.) The influence of the Reggio Emilia schools and the works of Maria Montessori. Field trips to local preschools. How these approaches have been taken up in America, and how they have been shaped by the American context. GER:DB-SocSci 3 units, Aut (Grossman)

OSPFLOR 48. Sharing Beauty: Florence and the Western Museum Tradition—(Enroll in ARTSTUDI 113Y.) The city’s art and theories of how art should be presented. The history and typology of world-class collections. Social, economic, political, and aesthetic issues in museum planning and management. Collections include the Medici, English and American collectors of the Victorian era, and modern corporate and public patrons. GER:DB-Hum 4 units, Win (Rossi, Verdon)

OSPFLOR 49. The Cinema Goes to War: Fascism and World War II as Represented in Italian and European Cinema—(Enroll in ITAL-GEN 191F, ARTHIST 160Y, HISTORY 235V, COMM 53.) Structural and ideological attributes of narrative cinema, and theories of visual and cinematic representation. How film directors have translated history into stories, and war journals into visual images. Topics: the role of fascism in the development of Italian cinema and its phenomenology in film texts; cinema as a way of producing and reproducing constructions of history; film narratives as fictive metaphors of Italian cultural identity; film image, ideology, and politics of style. GER:DB-Hum 5 units, Win (Campani)

OSPFLOR 52. The Euro, the Dollar, and the Developing Countries in a World of Globalization—(Enroll in ECON 126X.) Operation of exchange networks that link countries and deliver outcomes, positive or negative. Free-market, free-trade, laissez-faire framework: the case of globalization with the dollar as the main instrument of financial intermediation; and the case of the EU or regionalization with the euro as the main instrument. Operational approach to the economic outcomes of these forms of globalization. GER:DB-SocSci, EC-GlobalCom 4 units, Spr (Totopoulou)

OSPFLOR 54. High Renaissance and Maniera—(Enroll in ITALGEN 150F, ARTHIST 112Y.) The development of 15th- and early 16th-century art in Florence and Rome. Epochal changes in the art of Michelangelo and Raphael in the service of Pope Julius II. The impact of Roman High Renaissance art on masters such as Fra’ Bartolomeo and Andrea del Sarto. The tragic circumstances surrounding the early manners: Pontormo and Rosso Fiorentino and the transformation of early Mannerism into the elegant style of the Medicean court. Contemporary developments in Venice. GER:DB-Hum 5 units, Spr (Verdon)

OSPFLOR 55. Academy of Fine Arts: Studio Art—(Enroll in ARTSTUDI 198F.) Courses through the Accademia delle Belle Arti. Course details upon arrival. Minimum Autumn and Winter Quarter enrollment required: 1-3 units in Autumn. May be repeated for credit. 1-5 units, Aut, Win, Spr (Staff)

OSPFLOR 65. Qualities of Democracy in a Supranational Perspective—Theoretical issues with respect to the quality of democracy: electoral arrangements, responsiveness, accountability, rule of law, and the substance of freedom and equality. Tools of subversion: how political elites develop different ways to avoid responsibility in actual everyday political activities. The democracy deficit of the EU: the institutions and practices of EU governance and the constitutional treaty. Case studies. Stanford students join Italian students from the Istituto Italiano di Scienze Umane. GER:DB-SocSci 5 units, Spr (G. Casper, Morlino)

OSPFLOR 67. Women in Italian Cinema: Maternity, Sexuality, and the Image—(Enroll in ITALGEN 135F, FEMST 135F.) Film in the social construction of gender through the representation of the feminine, the female, and women. Female subjects, gaze, and identity through a historical, technical, and narrative frame. Emphasis is on gender, identity, and sexuality with references to feminist film theory from the early 70s to current methodologies based on semiotics, psychoanalysis, and cultural studies. Advantages and limitations of methods for textual analysis and the theories which inform them. Primarily in Italian. GER:DB-Hum, EC-Gender 4 units, Win (Cassese)

OSPFLOR 71. Becoming an Artist in Florence: Contemporary Art in Tuscany and New Tendencies in the Visual Future—(Enroll in ARTSTUDI 141Y.) Recent trends in art, current Italian artistic production, differences and the dialogue among visual arts. Events, schools, and movements of the 20th century. Theoretical background and practical training in various media. Work at the Stanford Center and on-site at museums, exhibits, and out in the city armed with a sketchbook and camera. Emphasis is on the importance of drawing as the key to the visual arts. Three workshops enable students to master the techniques introduced. GER:DB-Hum 3-5 units, Spr (Rossi)

OSPFLOR 75. Contributions to Art, Culture, and Society in Tuscany—(Enroll in ITALGEN 130F, ITALRO 132Y.) The role of art and culture in the history of Tuscany, including the city’s influence on the arts, as well as in the development of scientific, medical, and cultural institutions. GER:DB-Hum, EC-GlobalCom 4 units, Spr (Cassese)

OSPFLOR 76. In Italy: Contemporary Art—(Enroll in ITALGEN 136F) Recent trends in art, current Italian artistic production, differences and the dialogue among visual arts. Events, schools, and movements of the 20th century. Theoretical background and practical training in various media. Work at the Stanford Center and on-site at museums, exhibits, and out in the city armed with a sketchbook and camera. Emphasis is on the importance of drawing as the key to the visual arts. Three workshops enable students to master the techniques introduced. GER:DB-Hum 3-5 units, Spr (Rossi)

OSPFLOR 79. Migrations and Migrants: The Sociology of a New Phenomenon—(Enroll in SOC 114S.) Interdisciplinary approach to the study of immigration. Typology of forms of migration through politics put into action by the EU and within single nations. Related cultural and religious questions which elicit symbolic borders, territorialization of cultural identities, and the often spatial differentiation of immigrants and locals. The politics of integration and the instruments necessary to manage it. GER:DB-SocSci, EC-GlobalCom 5 units, Spr (Allam)

OSPFLOR 81. In the Footsteps of Freud in Florence—(Enroll in HPS 104Y.) Freud’s encounter with Florence, and its lasting effects on his writings, theories, and psychoanalysis. Reconstruction through documentary materials of his concrete and symbolic Florentine itinerary, including the staircase to Mons Florentinus, the walls of San Miniato a Monte, and the Torre del Gallo. GER:DB-SocSci 4 units, Aut (Pallanti)

OSPFLOR 94. Photography in Florence—(Enroll in ARTSTUDI 70Y.) Introduction to the functioning of the camera, exposure, and b/w film processing and printing. Emphasis is on perceptive imagery and the development of technical proficiency. 35mm camera required. Limited enrollment. 4 units, Win (Loverme)

OSPFLOR 106V. Italy: from an Agrarian to a Post-industrial Society—(Enroll in HISTORY 106V, POLISCI 145P.) Italian history from the Risorgimento to the present. Italian society, crises, evolution, values, and the relation to the political institutions existing in different periods. The ideologies, political doctrines, and historical events which contributed to the formation of modern Italy’s predominant subcultures, Catholic and Socialist. In Italian. GER:DB-SocSci
4 units, Aut (Mammarella)

OSPFLOR 111Y. From Giotto to Michelangelo: Introduction to the Renaissance in Florence—(Enroll in ARTHIST 111Y.) Lectures, site visits, and readings reconstruct the circumstances that favored the flowering of architecture, sculpture, and painting in Florence and Italy, late 13th to early 16th century. Emphasis is on the classical roots; the particular relationship with nature; the commitment to human expressiveness; and rootedness in the real-world experience, translated in sculpture and painting as powerful plasticity, perspective space, and interest in movement and emotion. GER:DB-Hum
4 units, Win (Verdon)

4 units, Aut (Campani)

ITALIAN LANGUAGE PROGRAM

OSPFLOR 35. Second-Year Italian, First Quarter—(Enroll in ITALLANG 21F.) Review of grammatical structures; grammar in its communicative context. Listening, speaking, reading, and writing skills practiced and developed through authentic material such as songs, newspaper articles, video clips, and literature. Insight into the Italian culture and crosscultural understanding.
4 units, Aut, Win, Spr (Quercioli)

OSPFLOR 37. Second-Year Italian, Second Quarter—(Enroll in ITALLANG 22F.) Grammatical structures, listening, reading, writing, speaking skills, and insight into the Italian culture through authentic materials. Intermediate to advanced grammar. Content-based course, using songs, video, and literature, to provide cultural background for academic courses.
4 units, Win (Quercioli)

OSPFLOR 66. Advanced Italian Conversation—(Enroll in ITALLANG 31F.) Refine language skills and develop insight into Italian culture using authentic materials. Group work and individual meetings with instructor.
4 units, Aut, Win, Spr (Quercioli)

ON VIDEOTAPE
See the “School of Engineering” section of this bulletin for course descriptions.

4 units, Aut (Staff)
OSMOSC 215X. The Political Economy of Japan—(Enroll in POLISCI 240P.) Institutions and processes in the political organization of economic activity in modern Japan. The interaction of public and private sector institutions in the growth of Japan’s postwar economy. The organization and workings of key economic ministries and agencies of the government, private sector business groupings, government interaction, and public policy making. The transformation of Japanese industrial policy from the rapid growth of heavy and chemical industries to the promotion of high technology and communications industries. The international, political, and economic ramifications of the structure and importance of Japanese capitalism. GER:DB-SocSci
5 units, Aut (Mau)

JAPANESE LANGUAGE PROGRAM

OSMOSC 9K. First-Year Japanese Language, Culture, and Communication B—(Enroll in JAPANLNG 9K.)
5 units, Spr (Yasamato)

OSMOSC 19K. Second-Year Japanese Language, Culture, and Communication B—(Enroll in JAPANLNG 19K.)
5 units, Spr (Yamaoka)

OSMOSC 103K. Upper Advanced Japanese—(Enroll in JAPANLNG 211K.)
5 units, Spr (Uemiya)

OSMOSC 129K. Third-Year Japanese Language, Culture, and Communication B—(Enroll in JAPANLNG 129K.)
5 units, Spr (Fujitani)

ON VIDEOTAPE

See the “School of Engineering” section of this bulletin for course descriptions.

OSMOSC 40K. Introductory Electronics—(Enroll in ENGR 40K.)
GER:DB-EngrAppSci
5 units, Spr (Khuri-Yakub)

MOSCOW

OSMOSC 60. Russian Politics and Institutions in a Comparative Perspective—(Enroll in POLISCI 118P.) Historical developments from early periods through the Soviet era. Evolution of the political regime in Russia from Yeltsin to Putin; transformation of political institutions and processes, political culture, and public attitudes. GER:DB-SocSci
5 units, Aut (Melville)

OSMOSC 61. Problems and Prospects of Post-Soviet Eurasia—(Enroll in POLISCI 143P.) Processes shaping the former Soviet Union or the Commonwealth of Independent States, including Russia and the newly independent states of Eastern Europe, the South Caucasus, and Central Asia. Economic and political models since the break-up of the USSR. Changing geopolitics of post-Soviet Eurasia: political regimes, economic development, security, energy relationships, post-Soviet societies, religion, and globalization. GER:DB-SocSci
5 units, Aut (Trenin)

5 units, Aut (Mau)

OSMOSC 64. The Master and Margarita and its Moscow Setting—(Enroll in SLAVGEN 112.) Historical background. The language of the narrator and the more Gogolian aspects of Bulgakov’s writing. Field trips to locations important in the novel and Bulgakov’s life including Patriarchs’ Ponds, Bulgakov’s apartment, and the statue of Gogol. GER:DB-Hum
3-4 units, Aut (Schupbach)

RUSSIAN LANGUAGE PROGRAM

OSMOSC 10M. Intensive First-Year Russians—(Enroll in SLAVLANG 10M.)
9 units, Aut (Kurganoza)

OSMOSC 51M. Second-Year Russian—(Enroll in SLAVLANG 51M.)
5 units, Aut (Boldyreva)

OSMOSC 111M. Third-Year Russian—(Enroll in SLAVLANG 111M.)
5 units, Aut (Staff)

OXFORD

OSPOXFRD 24. British and American Constitutional Systems in Comparative Perspective—(Enroll in POLISCI 244P.) Introduction to the study of constitutions and constitutional systems of government. Analysis of the detailed workings of the British and American systems of government. Comparative study of the most important constitutional issues facing Britain and the United States such as how suspected terrorists should be treated in a time of war. How we think about fundamental constitutional questions. GER:DB-SocSci
5 units, Spr (McMahon)

OSPOXFRD 35. Modern UK and European Government and Politics—(Enroll in POLISCI 141P.) Background of main political systems in Europe and recent developments in European politics. Topics: Blair’s constitutional reforms; the consequences of the German reunification; Berlusconi’s rise to power in Italy; the extreme right in France and elsewhere; the single currency; the enlargement of the EU; and proposals for a constitution and their recent rejection by the French and Dutch electorates. GER:DB-SocSci
4 units, Aut (Capoccia)

OSPOXFRD 42. Comparative Health Care Systems: UK and U.S.—(Enroll in HUMBIO 122X.) Differences between UK and U.S. health care systems from modern and historical perspectives. Evolution, current problems, future developments. Case of Canada as point of comparison. Attempts to maximize health gains while controlling costs, one system on the public service ideal, the other on market principles. Social, cultural, and ethical issues related to the development of health care systems; opportunities to interact with NHS doctors, nurses, and administrators. GER:DB-SocSci, EC-GlobalCom
4 units, Win (Senior)

OSPOXFRD 44. The Rise of the Novel—(Enroll in ENGLISH 174X.) The many novels that flooded the literary market throughout the 18th century. Male canonical writers such as Richardson and Fielding, and novels written by women. Topics include satire, sensibility, and the contemporary suspicion of the novel form as morally pernicious. GER: DB-Hum
5 units, Spr (Plaskitt)

OSPOXFRD 51. Britain in the Era of the Two World Wars—(Enroll in HISTORY 239V.) Causes of Britain’s involvement, her role in the final outcome, and their impact on Britain’s role as a world power. The effects of the wars on British politics, culture, and the everyday lives of combatants and non-combatants. Films, literature, reminiscences, and historical sources. GER:DB-Hum
5 units, Win (Tyack)
4 units, Aut (Billington)

OSPOXFRD 62. Nature versus Nurture.—(Enroll in LINGUIST 40Z.) To what extent is human behavior determined by genetic endowment and/or on upbringing and experiences? Recent research in cognitive science, and classic readings including Pinker’s The Blank Slate. Why the controversy remains. GER:DB-SocSci
3 units, Win (Wasow)

OSPOXFRD 63. Varieties of English.—(Enroll in LINGUIST 57Z.) Shaw’s observation that England and the U.S. are divided by a common language is salient to any American visiting Britain. Major dialect differences between British and American English including pronunciation, vocabulary, and grammar; why these differences evolved. Students collect primary data through conversations and online searches. GER: DB-SocSci
3 units, Win (Wasow)

OSPOXFRD 65. Oxford: The City as a Work of Art.—Oxford’s role as patron of British art, architecture, and design from the 13th century to the present. Themes in the history of art, architecture, and design: medieval and gothic, renaissance, classical, modern and postmodern. Resources such as university and college buildings, museums, galleries, and private collections. The roles of patronage and collecting; the functioning of the arts.
2 units, Aut, Win (Chance)

3 units, Spr (Giffard)

OSPOXFRD 68. Medical Ethics through Literature, Film, and Theater.—(Enroll in HUMBIO 175X.) Sources include poems, short stories, and novels by American, German, and English authors including Rilke, Mann, Lewis, Kafka, Dickens, John Keats, Virginia Woolf, and William Carlos Williams. Topics: suffering, death and dying, disability, the doctor/patient relationship. Field trips to the theatre, local physician, and local medical humanities program. GER:DB-Hum
4 units, Spr (Giffard)

OSPOXFRD 70. The European City.—(Enroll in HISTORY 138V.) Population growth, technological change, and revolutionary social and architectural ideologies have transformed European cities. How and why the transformation occurred through key texts and the physical fabric of the cities. Topics: effects of Baroque patronage in the 17th and 18th centuries; rebuilding the city centers in the 19th century, the growth of suburbs; the impact of mass transportation; the influence of modernist doctrines in the 20th century; ongoing attempts by governments to tackle endemic problems of slums, poverty. Comparisons with U.S. cities. GER:DB-SocSci
5 units, Spr (Tyack)

OSPOXFRD 98. Creative Writing Workshop.—Topics: selection and combination; poetic language; metaphor and cohesion; setting and the pathetic fallacy; sentence variety; genres; dialogue; point of view; narrative positions; colors and senses; time management; plotting. Enrollment limited with enrollment based on writing sample.
3 units, Aut, Win, Spr (Kidd)

OSPOXFRD 114Z. English Literature, 1509-1642.—(Enroll in ENGLISH 114Z.) From the beginning of Henry VIII’s reign to the onset of the Civil War, excluding Shakespeare. The poetry, prose, and drama of the period in their literary, cultural, and historical contexts. Open only to students majoring in English and related subjects. Taught jointly for Stanford students and second-year St. Catherine’s undergraduates. GER:DB-Hum
5 units, Aut (van Es)

OSPOXFRD 116Z. English Literature, 1642-1740.—(Enroll in ENGLISH 116Z.) From the Civil War to the middle of the 18th century. The poetry, prose, and drama of the period in their literary, cultural, and historical contexts, and key texts. Open only to students majoring in English and related subjects. Taught jointly for Stanford students and second-year St. Catherine’s undergraduates. GER:DB-Hum
5 units, Win (Bullard)

OSPOXFRD 117W. Gender and Social Change in Modern Britain.—(Enroll in SOC 117W.) Changes in the social institutions, attitudes, and values in Britain over the past 20 years. Social changes occurring as a consequence of the Thatcher years of government. Changes to the British economy, the welfare state, National Health Service, the education system, the criminal justice system, gender relations, marriage, divorce, reproduction, and the family. The consequences in terms of British competitiveness, income distribution, wealth and poverty, social class, health and illness, educational attainment and skills development, crime, and family life. GER:DB-SocSci, EC-Gender
4 units, Aut (Palmer)

OSPOXFRD 141V. European Imperialism and the Third World, 1870-1970.—(Enroll in HISTORY 141V, POLISCI 148P.) European imperialism from its zenith in the late 19th century to the era of decolonization after WWII. The effects of Western imperialism in the Third World. The legacy of imperialism and decolonization to the modern world. GER:DB-SocSci, EC-GlobalCom
5 units, Spr (Darwin)

5 units, Spr (Plaskitt)

OSPOXFRD 163X. Shakespeare.—(Enroll in ENGLISH 163X.) For English majors or minors only. Topics include the use of soliloquy, epilogues, alternation of prose and verse, rhetoric, meta-theatricality. Close reading technique. Taught jointly with students from St. Catherine’s College. GER:DB-Hum
5 units, Aut (Garver)

OSPOXFRD 166X. The Modern British Economy.—(Enroll in ECON 166X.) The nature of the modern British economy. Recent developments in the main areas of the British economy, emphasizing the changes over the past 10 to 20 years. Sufficient economic concepts are introduced to allow students with basic economic knowledge to take part in the analysis of recent trends. Comparisons with other European countries and the U.S. Prerequisite: ECON 1. GER:DB-SocSci
4 units, Win (Robinson)

OSPOXFRD 221Y. Art and Society in Britain.—(Enroll in ARTHIST 221Y, HISTORY 244V.) Themes in 18th-, 19th-, and 20th-century British art. Painting, sculpture, and design. Comparisons between the British experience and that of continental Europe and the U.S. Readings address problems related to the role of art in modern society. GER: DB-Hum
5 units, Aut (Tyack)
PARIS

4 units, Spr (Maurer)

OSPPARIS 25. Literature and the City — (Enroll in FREN Lit 178F.) Subtle and hidden aspects of Paris through the eyes of France’s greatest writers, poets, and philosophers including Balzac, Baudelaire, Zola, and Aragon. Essays, poems, and novels that portray the historical, social, and political reality of the city better than textbooks or guides. GER: DB-Hum
4 units, Aut (Maurer)

OSPPARIS 31. American Writers in Paris: Twentieth-Century Expatriate Writers in Paris — (Enroll in FRENGEN 156P.) Paris as inspiration and refuge for writers and artists; the urge to go to Paris. Field trips trace their steps and intellectual and artistic development. Role of cultural institutions such as the cafés and salons in the life and creativity of the expatriate. Paris as a part of American culture, myth, longing, and source of inspiration and influence. GER:DB-Hum
4 units, Aut (Allday)

OSPPARIS 33. Gardens of Earthly Delight: Landscape, Culture, and Social Spaces in France — (Enroll in ENGLISH 150X, COMPLIT 150X.) Cultural geography of French social spaces as sites for the development of personal, social, and political experiences of national identity. Roles of literary and architectural art and how they represented cultural and social ideology. The artistry of gardens through metaphysics, aesthetics, and theology. GER:DB-Hum
4 units, Spr (Saldivar)

OSPPARIS 34. Women in French Cinema — (Enroll in FEMST 192E, FREN Lit 191P.) Social tensions, political issues, gender politics, and psychological problems as seen through French films on and by women. Contemporary French culture and its relations to moral, social, and political issues such as immigration, sexuality, gender relations, poverty, modernity, and tradition. Guest women film writers, directors, and critics. Field trip to Cinémathèque française. GER:DB-Hum, EC-Gender
4 units, Aut (Allday)

OSPPARIS 35. Making Films in France: An Insider’s View — (Enroll in FREN Lit 182P.) Contemporary French culture through film in the context of political economy, history, sociology, art, psychology, and literature. Guest speakers including director, sound technician, editor, and actor. GER:DB-Hum
4 units, Win (Apostolidès)

OSPPARIS 36. French Avant Garde Movements in the Twentieth Century — (Enroll in FREN Lit 194P) Artistic and political perspectives. Relations to global and official French culture, and their intellectual heritage. GER:DB-Hum
3 units, Win (Apostolidès)

OSPPARIS 41. EAP: Perspective, Interior Decorating, Volume, and Design — (Enroll in ARTSTUDI 61Y.) May be repeated for credit.
2 units, Aut, Win, Spr (Staff)

OSPPARIS 42. EAP: Drawing with Live Models — (Enroll in ARTSTUDI 140Y.) May be repeated for credit.
2 units, Aut, Win, Spr (Staff)

OSPPARIS 43. EAP: Painting and Use of Color — (Enroll in ARTSTUDI 144Y.) May be repeated for credit.
2 units, Aut, Win, Spr (Staff)

OSPPARIS 44. EAP: Graphic Art — (Enroll in ARTSTUDI 60Y.) May be repeated for credit.
2 units, Aut, Win, Spr (Staff)

OSPPARIS 56. Theater in Transition: Stage and Audience in France Today — (Enroll in FREN Lit 143P.) The static and silent spectator as first partner of the stage and sometimes co-creator of the theatrical event. Audience; new forms of performance; how space is reinvented; new light and sound effects; how texts are re-interpreted; and the changing role of the actor on the stage. GER:DB-Hum
4 units, Spr (Mervant-Roux)

OSPPARIS 57. Human Rights in Comparative Perspective — (Enroll in POL Sc 143P.) Human rights spring from Enlightenment principles but their status in the American and French constitutions differ. Have European court decisions created a transatlantic human rights model giving more weight to Anglo-Saxon legal tradition? Philosophical, historical, and legal resources; recent case studies from both sides of the Atlantic. GER:DB-SocSci, EC-GlobalCom
4-5 units, Spr (Remy-Granger)

5 units, Spr (Germanagne)

4 units, Spr (Halevi)

OSPPARIS 107Y. The Age of Cathedrals: Religious Art and Architecture in Medieval France — (Enroll in ARTHIST 107Y.) The major artistic and cultural movements that changed the face of France from the period of Suger in the 12th century through the reign of St. Louis in the 13th century. Monastic spirituality progressively gave way to an urban culture focused on man and secular knowledge, which developed daring and sophisticated building techniques. The years 1150-1250 represented a period of architectural renaissance and l’Ile-de-France was its birthplace. GER:DB-Hum
4 units, Aut (Deremble)

OSPPARIS 120X. French Painting — (Enroll in ARTHIST 123Y.) Changes in artistic aims and the interaction between artist and society throughout the period. Weekly field trips to Paris museums holding paintings of David, Ingres, Delacroix, Courbet, Daumier, Manet, Renoir, Monet, Degas, and others. GER:DB-Hum
4 units, Win (Halevi)

OSPPARIS 122X. Europe: Integration and Disintegration of States, Politics, and Civil Societies — (Enroll in POL Sc 149P.) European integration is now an economic, social, and political reality. This integration has a history of mutation and a transformation of its very foundation. Topics: the evolution of welfare states, elites, political parties, and systems in Europe; lobbies, trade unions, voluntary associations, social movements, popular protest, citizenship, democracy. GER:DB-SocSci
4-5 units, Win (Strudel)

OSPPARIS 124X. Building the European Economy: Economic Policies and Challenges Ahead — (Enroll in ECON 124X.) The main issues and challenges of European economic construction. The European Economic Union at the end of 50s; European industrial, agricultural, social, and monetary economic policies. Topics: wider definitions of Europe, Europe’s relations with industrial and developing countries, Europe’s challenge in confronting global economic crises. GER:DB-SocSci
5 units, Aut (Le Cacheux)
OSPPARIS 153X. Health Systems and Health Insurance: France and the U.S., a Comparison across Space and Time—(Enroll in HUMBIO 153X, PUBLPOL 111P.) Health systems respond to the health needs of a given population. Must they be organized, or left to the free play of the market? What is the role of the state in the delivery of health care? Focus is on the evolution of the health profession in France and the U.S.; developments in health policy and reforms; measures restraining professional autonomy such as prescription guidelines in the French Medical Convention between doctors and the state. Is the solution to the growth of health expenditures and reduced access to health care the end of autonomy for the medical profession? GER:DB-SocSci
4-5 units, Win (Fessler)

OSPPARIS 186F. Contemporary African Literature in French—(Enroll in AFRICAAM 186F, FRENLANG 186F.) Focus is on African writers and those of the Diaspora, bound together by a common history of slave trade, bondage, colonization, and racism. Their works belong to the past, seeking to save an oral heritage of proverbs, story tales, and epics, but they are also contemporary. GER:DB-Hum, EC-GlobalCom
4 units, Win (Azarian)

OSPPARIS 211X. Political Attitudes and Behavior in Contemporary France—(Enroll in POLISCI2141P) The institutions of the Fifth Republic, the main political forces, and their evolution. Electoral behavior, taking into account other forms of political action such as the demonstrations for the defense of schools (1984) and the lycée students (1990), or the protest that followed the desecration of the Jewish cemetery in Carpentras. Attitudes and values are linked to voting choice. (In French and English.) GER:DB-SocSci
4-5 units, Aut (Mayer, Muxel)

FRENCH LANGUAGE PROGRAM

OSPPARIS 22P. Intermediate French I—(Enroll in FRENLANG 22P)
4 units, Aut, Win, Spr (Staff)

OSPPARIS 23P. Intermediate French II—(Enroll in FRENLANG 23P)
4 units, Aut, Win, Spr (Staff)

OSPPARIS 124P. Advanced French I—(Enroll in FRENLANG 124P)
4 units, Aut (Staff)

OSPPARIS 125P. Advanced French II—(Enroll in FRENLANG 125P)
4 units, Win, Spr (Staff)

ON VIDEOTAPE

See the “School of Engineering” section of this bulletin for course descriptions.

OSPPARIS 40P. Introductory Electronics—(Enroll in ENGR 40P)
GER:DB-EngrAppSci
5 units, Aut, Spr (Khuri-Yakub)

OSPPARIS 50P. Introductory Science of Materials—(Enroll in ENGR 50P)
GER:DB-EngrAppSci
4 units, Aut, Win (Staff)

SANTIAGO

OSPSANTG 5. Director’s Seminar—Current issues and events in Chilean political and cultural life. May be repeated for credit.
2 units, Aut (Fuenzalida)

OSPSANTG 34. Traces of Authority: The City of Santiago de Chile—(Enroll in URBANST 157V.) Relationships between acquisition, maintenance, and transmission of power in society, and the organization of public space in the city using Santiago as example. Sources include downtown buildings, maps of the city, and pictures of older buildings. Comparison with American and European cities. GER:DB-SocSci
5 units, Aut (Fuenzalida)

OSPSANTG 36. Darwin’s South America—The route of the HMS Beagle. How Darwin’s ideas proved to be insightful or incorrect. Origin of Species as a window into the evolution of Darwin’s thinking. Field trips to related areas, possibly the Atacama Desert.
5 units, Spr (Siegel)

OSPSANTG 56. Contemporary Chilean Women Writers—(Enroll in SPANLIT 155X.) Poems by Nobel Prize Winner Gabriela Mistral. Novels by María Luisa Bombal (La última niebla), Carolina Geel (Cárcel de mujeres), Marta Brunet (María Nadie), Isabel Allende (La casa de los espíritus), Pía Barros (A horcajadas), and Marcela Serrano (Para que no me olvides). How these authors have articulated women’s consciousness and experiences and questioned their own world’s values from a feminist perspective. GER:DB-Hum, EC-Gender
3-5 units, Win (Haro)

3-5 units, Win (Spiller)

OSPSANTG 104X. Modernization and Culture in Latin America—(Enroll in ANTHSCI 104X, SPANLIT 212X.) Intellectual and cultural expressions of Latin America against the background of modernization viewed as a constant tension between rationalization and subjectification, change and identity preservation, and the logic of development or economic expansion and the logic of the culture. Readings include Morande, Cultura y modernización en América Latina and Sarlo, Una modernidad periférica. GER:DB-Hum, EC-GlobalCom
5 units, Aut (Subercaseaux)

OSPSANTG 111. Social Heterogeneity in Latin America—(Enroll in SPANLIT 155S, SOC 111S.) Latin America is characterized by social heterogeneity and inequality. An interpretation of these phenomena, focusing on the social, ethnic, gender, political, and economic dimensions. Their historical roots and unfolding during the periods of industrialization, the 60s, 70s, and 80s, and the contemporary situation. GER:DB-SocSci
5 units, Aut (Valdés)

OSPSANTG 116X. Modernization and its Discontents: Chilean Politics at the Turn of the Century—(Enroll in POLISCI 242P) Chile’s strides towards becoming a developed country have engendered high levels of alienation and dissatisfaction among significant sectors of the population. The roots of this apparent paradox of modernization, focusing on newly emerging actors in the Chilean political scene: Mapuche organizations, women’s groups, the environmental movement, and new features of the established ones like trade unions and human rights activists. GER:DB-SocSci
5 units, Spr (Correa)
OSPANTG 118X. Cultural Modernization: The Case of Chile — (Enroll in SPANLIT 166S.) Elite, mass-media, and popular cultural changes in Chile under conditions of economic liberalization and political. The reception of cultural meanings from the center of the world social system (U.S., EU and Japan), reformulation to respond to local conditions, and export in the shape of cultural artifacts. Innovative elements rooted in the regional and local culture. GER:DB-SocSci
5 units, Win (Micco)

OSPANTG 119X. The Chilean Economy: History, International Relations, and Development Strategies — (Enroll in ECON 119X.) The Chilean economy in five stages, taking into account: the international economic position of Chile; internal economic structures closely related to the inherited historical conditions and to the changing international economic position of the country; and the economic strategies prevalent during the period and the concrete development policies conducted by government authorities. GER:DB-SocSci
5 units, Spr (Mañez)

OSPANTG 129X. Latin America in the International System — (Enroll in POLISCI 117P.) Latin America’s role in world politics, with emphasis on the history and models for explaining U.S.-Latin American relations. Latin America’s evolving relationship in the international system. GER:DB-SocSci
4-5 units, Win (Fuentes)

OSPANTG 130X. Latin American Economies in Transition — (Enroll in ECON 165X.) Introduction to the main debates and approaches developed to understand and analyze the economies of Latin America. Recent processes of transition to market economies. Common characteristics among countries of the region; the differences and special traits of individual countries. Historical, analytical, and empirical perspectives on topics at the center of controversies and specific policy problems over several decades. Recommended: ECON 1, 51, and 52. GER:DB-SocSci
5 units, Aut (DiFilippo)

OSPANTG 141X. Politics and Culture in Chile — (Enroll in LATINAM 141X.) The relationship between politics and culture in Chile during the 20th century, reflecting on the effects of such relationships on esthetics and identity. The possibility that, in Chile, culture has been pulled by politics and social praxis, a condition that has created a deficit in cultural thickness. The oligarchic regime around 1920, the welfare state around 1940, projects of social transformation around 1970, dictatorship around 1980, women writers and Mapuche poetry in contemporary Chile. GER:DB-Hum, EC-GlobalCom
5 units, Spr (Subercaseaux)

5 units, Win (DiFilippo)

OSPANTG 221X. Political Transition and Democratic Consolidation: Chile in Comparative Perspective — (Enroll in POLISCI 243P, LATINAM 221X.) The dynamics of the Chilean transition. Topics: challenges faced by democratic governments in 90s framed by the legacy of military rule, 1973-90; political culture; institutional traditions of democracy; and the Chilean process within the broader context of Latin American political development. GER:DB-SocSci
5 units, Aut (Micco)

SPANISH LANGUAGE PROGRAM
OSPANTG 12S,13S. Accelerated Second-Year Spanish: Chilean Emphasis — (Enroll in SPANLANG 12S,13S.) Intensive sequence integrating language, culture, and sociopolitics of Chile. Emphasis is on achieving advanced proficiency in oral and written discourse including formal and informal situations, presentational language, and appropriate forms in academic and professional contexts. Prerequisites for 12S: one year of college Spanish, or 11 or 21B more than two quarters prior to arriving in Santiago. Prerequisites for 13S: 11 or 21B within two quarters of arriving in Santiago, or 12 or 22B.
5 units, Aut, Win, Spr (Abad, Bobbert, Pons, Toledo)

OSPANTG 33. Spanish Language Tutorial — Prerequisite: two years of college Spanish or equivalent placement. 2 units, Aut, Win, Spr (Pons)

SPECIAL PROGRAMS
In addition to courses at its established centers, the Overseas Studies Program offers courses in other locations around the world. Additional details can be found at http://osp.stanford.edu.

4 units, Win (Stanton)

OSPGEN 22. Community Reconstruction and Development in Post-Apartheid South Africa — (Enroll in AFRICAAM 121, SOC 107S.) Emphasis is on theory and practice of community reconstruction and development using the Western Cape region as a case study. How S. African communities redress economic injustice and stagnation in partnership with nongovernmental organizations, metropolitan government agencies, and higher education institutions. Innovative processes of community development and local policies and contexts that support or inhibit these approaches. Service-learning component. Location: Cape Town, South Africa. GER:DB-SocSci
4 units, Win (Stanton)

OSPGEN 23. History and Politics of South Africa in Transition — (Enroll in AFRICAAM 124.) S. Africa’s unfolding democratic era: its achievements in development and reconciliation; and challenges related to continuing poverty, a stagnant economy and high unemployment, and HIV and other health challenges. Topics: modern South African politics; affirmative action and employment equity; the Truth and Reconciliation Commission; violence and ethnicity; racial identity and racism; S. Africa and the African Renaissance; and land distribution and restoration. Location: Cape Town, South Africa. GER:DB-SocSci
4 units, Win (Simons)

OSPGEN 24. Targeted Research Project — Research that responds to needs of Western Cape communities or health service providers, and ties in to disciplinary course work. Location: Cape Town, South Africa. 4 units, Win (Stanton)

OSPGEN 51. Ecology, Evolution, and the Natural History of Baja California — (Enroll in BIOSCI 100.) The ecosystem of the Midriff Island Area in the Gulf of California from several disciplinary perspectives. Tools for ecology and evolutionary biology. Daily fieldwork. Bahía de Los Angeles as case study to examine effects of human impact and challenges in developing a sustainable relationship with marine ecosystems. Location: Baja California, Mexico. 3 units, Aut (Petrov, Volny)
OSPGEN 52. The Political Economy of the European Union — (Enroll in POLISCI 44P, ECON 14X.) EU and NATO institutions, their challenges and impact on relations with the U.S. The Euro and monetary policy, economic aspects of European integration, the EU judicial system, and foreign and security policy. Students meet with politicians, diplomats, and business leaders. Field trips to the European Parliament, the European Commission and NATO headquarters in Brussels, and the European Court of Justice in Luxembourg. Location: Leuven, Belgium.

2 units, Aut (Crombez)

OSPGEN 54. Energy and Development in the Brazilian Amazon — (Enroll in EARTHSYS 30X, PUBLPOL 30P.) The poverty of the Brazilian Amazon in the face of its rich natural resources. Pressure on government to preserve the natural environment and develop its economic potential; trade-offs facing policy makers when crafting economic development and energy policy. Discussions with government officials, energy industry executives, and NGOs in Rio de Janeiro. Focus is on case studies in Manaus; site visits, theory and analytical tools, and discussions with stakeholders. Locations: Rio de Janeiro and Manaus, Brazil.

2 units, Aut (Victor)

2 units, Aut (Sun)

2 units, Aut (Seto)

OSPGEN 57. Tokyo Since 1945: Rising from the Ruins — (Enroll in HISTORY 96V.) Tokyo’s postwar history, its prosperity, and the problems that prosperity created. How Tokyo was transformed after its destruction in WW II into a global metropolis at the hub of international trade, and financial, technological, and cultural networks. Tokyo as metaphor for the postwar recovery of Japan as economic superpower: affluence, consumerism, popular urban culture, and the social costs of the accompanying population influx. Location: Tokyo, Japan.

2 units, Aut (Duus)

OSPGEN 58. The New Global Economy, Democratic Development, and Islam in Morocco — (Enroll in HISTORY 83V.) Muslim faith, colonial rule, nation and state building, and challenges and disappointments of economic and political developments common across the Arab-Muslim world, using the Moroccan experience as a prism. History of Morocco from French colonial rule to independence. Moroccan economic and political development issues of the last twenty years. Location: Rabat, Morocco.

2 units, Aut (Beinin)

2 units, Aut (Katzenstein)
PHILOSOPHY

Emeriti (Professors): Fred Dretske, Solomon Feferman, Georg Kreisel, David S. Nivison, Patrick Suppes, James O. Urmson
Honorary Emeritus (Professor): Richard Rorty
Chair: Kenneth Taylor
Director of Graduate Study: Michael Bratman
Director of Undergraduate Study: Chris Bobonich
Professors: Michael Bratman, John Etchemendy, Dagfinn Føllesdal (Autumn), Michael Friedman (on leave Spring), Helen Longino, Grigori Mints, Julius Moravcsik, John Perry, Kenneth Taylor, Johan vanBenthem (Spring), Thomas Wasow (on leave), Allen Wood (on leave Autumn)
Associate Professors: Lanier Anderson, Chris Bobonich, Mark Crimmins, Graciela De Pierris, Debra Satz
Assistant Professors: Nadeem Hussain, Agnieszka Jaworska (on leave Autumn), Krista Lawlor (on leave), Marc Pauly, Tamar Schapiro (on leave Autumn)
Professor (Research): Rega Wood
Lecturer: Katherine Dunlop
Acting Assistant Professors: David Hills, Thomas Ryckman
Courtesy Professors: Reviel Netz, Denis Phillips
Visiting Associate Professor: Ruy de Queiroz (Winter, Spring)
Visiting Assistant Professor: Luca Ferrero
Department Offices: Building 90
Mail Code: 94305-2155
Department Phone: (650)723-2547
Email: philosophy@csli.stanford.edu
Web Site: http://www-philosophy.stanford.edu

Courses given in Philosophy have the subject code PHIL. For a complete list of subject codes, see Appendix.

Philosophy concerns itself with fundamental problems. Some are abstract and deal with the nature of truth, justice, value, and knowledge; others are more concrete, and their study may help guide conduct or enhance understanding of other subjects. Philosophy also examines the efforts of past thinkers to understand the world and people’s experience of it.

Although it may appear to be an assortment of different disciplines, there are features common to all philosophical enquiry. These include an emphasis on methods of reasoning and the way in which judgments are formed, on criticizing and organizing beliefs, and on the nature and role of fundamental concepts.

Students of almost any discipline can find something in philosophy which is relevant to their own specialties. In the sciences, it provides a framework within which the foundations and scope of a scientific theory can be studied, and it may even suggest directions for future development. Since philosophical ideas have had an important influence on human endeavors of all kinds, including artistic, political, and economic, students of the humanities should find their understanding deepened by acquaintance with philosophy.

Philosophy is an excellent major for those planning a career in law, medicine, or business. It provides analytical skills and a breadth of perspective helpful to those called upon to make decisions about their own conduct and the welfare of others. Philosophy majors who have carefully planned their undergraduate program have an excellent record of admission to professional and graduate schools.

The Special Program in the History and Philosophy of Science enables students to combine interests in science, history, and philosophy. Students interested in this program should see the special adviser.

The joint major in Philosophy and Religious Studies combines courses from both departments into a coherent theoretical pattern.

Graduate students and undergraduate majors in philosophy have formed associations for discussion of philosophical issues and the reading of papers by students, faculty, and visitors. These associations elect student representatives to department meetings.

UNDERGRADUATE PROGRAMS

BACHELOR OF ARTS

There are two ways of majoring in philosophy: the General Program and the Special Program in the History and Philosophy of Science. A student completing either of these receives a B.A. degree in Philosophy. There is also a major program offered jointly with the Department of Religious Studies. To declare a major, a student should consult with the Director of Undergraduate Study and see the undergraduate student services administrator to be assigned an adviser and work out a coherent plan. The department strongly urges proficiency in at least one foreign language.

GENERAL PROGRAM

1. Course requirements, minimum 55 units:
 a) preparation for the major: an introductory course (under 100) and 80. (PHIL 80 should normally be taken no later than the first quarter after declaring the major.) Students taking both quarters of the Winter/Spring Philosophy Introduction to the Humanities (IHUM) track can count 5 units toward the introductory Philosophy requirement.
 b) the core, 24 additional Philosophy units, as follows:
 1) Logic: one from 50 (formerly 57), 150 (formerly 159), 151 (formerly 160A), 154 (formerly 169)
 2) Philosophy of science: any course from 60, 61, 156, 163-168
 3) Moral and political philosophy: one from 170-173
 4) Metaphysics and epistemology: one from 180-189
 5) History of philosophy: 100 and 102 are required of each major
 c) one undergraduate philosophy seminar from the 194 series.
 d) electives: courses numbered 10 or above, at least 13 units of which must be in courses numbered above 99.

2. Units for Tutorial, Directed Reading (PHIL 196, 197, 198), The Dualist (PHIL 198), Honors Seminar (PHIL 199), or affiliated courses may not be counted in the 55-unit requirement. No more than 10 units completed with grades of “satisfactory” and/or “credit” may be counted in the 55-unit requirement.

A maximum of 10 transfer units or two courses can be used for the departmental major. In general, transfer courses cannot be used to satisfy the five area requirements or the undergraduate seminar requirement. Students may not substitute transfer units for the PHIL 80 requirement.

SPECIAL PROGRAM IN HISTORY AND PHILOSOPHY OF SCIENCE

Undergraduates may major in Philosophy with a degree field in History and Philosophy of Science under the Department of Philosophy. Each participating student is assigned an adviser who approves the course of study. A total of 61 units are required for the sub-major, to be taken according to requirements 1 through 5 below. Substitutions for the listed courses are allowed only by written consent of the undergraduate adviser for History and Philosophy of Science. Students are encouraged to consider doing honors work with an emphasis on the history and philosophy of science. Interested students should see the description of the honors thesis in Philosophy and consult their advisers for further information.

1. Three science courses (for example, biology, chemistry, physics) for 12 units.

2. The following Philosophy (PHIL) core courses must be completed with a letter grade by the end of the junior year:
 a) one from 50 (formerly 57), 150 (formerly 159), 151 (formerly 160A), 154 (formerly 169)
 b) 60 or 61
 c) 80

3. Three history of science courses.

4. Three philosophy of science courses, of which one must be PHIL 164.

5. Three additional courses related to the major, in philosophy or history, to be agreed on by the adviser.
6. At least six courses in the major must be completed at Stanford with a letter grade. Units for Tutorial, Directed Reading, or The Dualist (196, 197, 198) may not be counted in the requirement. No more than 10 units completed with grades of “satisfactory” and/or “credit” may be counted in the requirement.

7. Transfer units must be approved in writing by the Director of Undergraduate Study at the time of declaring a major. Transfer courses are strictly limited when used to satisfy major requirements.

SPECIAL TRACK IN PHILOSOPHICAL AND LITERARY THOUGHT

Undergraduates may major in Philosophy with a special degree field in philosophy and literature. Students in this track take courses alongside students from other major departments which also have specialized tracks associated with the program for the study of philosophical and literary thought, with administrative staff in the DLCL. Each student in this track is assigned an adviser in Philosophy, and students’ schedules and overall course of study must be approved in writing by the adviser, and the Director of Undergraduate Studies in Philosophy and of the program.

A total of 65 units must be completed for this track, including the following requirements:

1. Core requirements for the major in Philosophy, including:
 a) an introductory course
 b) PHIL 80
 c) the core distribution requirements listed in section 1b of the general program above

2. Gateway course in philosophy and literature (PHIL 81). This course should be taken as early as possible in the student’s career, normally in the sophomore year.

3. Three courses in a single national literature, chosen by the student in consultation with the adviser and the program director of undergraduate studies. This normally involves meeting the language proficiency requirements of the relevant literature department.

4. Electives within Philosophy beyond the core requirements totaling at least 5 units, and drawn from courses numbered 100 or higher.

5. Two upper division courses of special relevance to the study of philosophy and literature, as identified by the committee in charge of the program. A list of approved courses is available from the program director of undergraduate studies.

6. Capstone seminar in the PHIL 194 series.

7. Capstone seminar of relevance to the study of philosophy and literature, as approved by the program committee. In some cases, with approval of the Philosophy Director of Undergraduate Study and the program director of undergraduate studies, the same course may be used to meet requirements 6 and 7 simultaneously. In any case, the student’s choice of a capstone seminar must be approved in writing by the Philosophy Director of Undergraduate Study and the program director of undergraduate studies.

Students are encouraged to consider doing honors work in a topic related to philosophy and literature, either through the Philosophy honors program, or through Interdisciplinary Studies in the Humanities.

The following rules also apply to the special track:

1. Units for Honors Tutorial, Directed Reading (PHIL 196, 197, 198), The Dualist (PHIL 198), Honors Seminar (PHIL 199) may not be counted toward the 65-unit requirement. No more than 10 units with a grade of “satisfactory” or “credit” may be counted toward the unit requirement.

2. A maximum of 15 transfer units may be counted toward the major, at most 10 of which may substitute for courses within Philosophy. Transfer credits may not substitute for PHIL 80 or 81, and are approved as substitutes for the five area requirements or PHIL 194 only in exceptional cases.

3. Courses offered in other departments may be counted toward requirements 3, 5, and 7, but such courses, including affiliated courses, do not generally count toward the other requirements. In particular, such courses may not satisfy requirement 4.

4. Units devoted to meeting the language requirement are not counted toward the 65-unit requirement.

MINORS

A minor in Philosophy consists of at least 30 units of Philosophy courses satisfying the following conditions:

1. IHUM 23A and B (The Fate of Reason) may be counted for a maximum of 5 units.

2. At least 10 units must be from courses numbered 100 or above.

3. The 30 units must include one of:
 a) a history of philosophy course numbered 100 or above
 b) two quarters of Area 1 (only 5 of the 10 units can count towards 30-unit requirement)

4. One course from any two of the following three areas (PHIL):
 a) Philosophy of science and logic: 60, 61, 156, 163-168; 50 (formerly 57), 150 (formerly 159), 151 (formerly 160A), 154 (formerly 169)
 b) Moral and political philosophy: 20, 30, 170-172
 c) Metaphysics and epistemology: 10, 80, 180-189

5. Units for tutorials, directed reading, and affiliated courses may not be counted.

6. Transfer units must be approved in writing by the Director of Undergraduate Study at the time of declaring. The number of transfer units is generally limited to a maximum of 10.

7. No more than 6 units completed with grades of “satisfactory” and/or “credit” count towards the 30-unit requirement.

Students must declare their intention to minor in Philosophy in a meeting with the Director of Undergraduate Study. This formal declaration must be made no later than the last day of the quarter two quarters before degree conferral. The Permission to Declare a Philosophy Minor (signed by the Director of Undergraduate Study) lists courses taken and to be taken to fulfill minor requirements. This permission is on file in the department office. Before graduation, a student’s record is checked to see that requirements have been fulfilled, and the results are reported to the University Registrar.

HONORS PROGRAM

Students who wish to undertake a more intensive and extensive program of study, including seminars and independent work, are invited to apply for the honors program during Winter Quarter of the junior year. Admission is selective on the basis of demonstrated ability in philosophy, including an average grade of at least ‘A-’ in a substantial number of philosophy courses and progress towards satisfying the requirements of the major.

With their application, candidates should submit an intended plan of study for the remainder of the junior and the senior years. It should include at least 5 units of Senior Tutorial (196) during Autumn and/or Winter Quarter(s) of the senior year. Students who are applying to Honors College may use the same application for philosophy honors. In the quarter preceding the tutorial, students should submit an essay proposal to the Philosophy undergraduate director and determine an adviser.

Students applying for honors should enroll in Junior Honors Seminar (199) during the Spring Quarter of the junior year.

The length of this essay may vary considerably depending on the problem and the approach; usually it falls somewhere between 7,500 and 12,500 words. The honors essay may use work in previous seminars and courses as a starting point, but it cannot be the same essay that has been used, or is being used, in some other class or seminar. It must be a substantially new and different piece of work reflecting work in the tutorials.

A completed draft of the essay is submitted to the adviser at the end of the Winter Quarter of the senior year. Any further revisions must be finished by the fifth full week of the Spring Quarter, when three copies of the essay are to be given to the undergraduate secretary. The honors essay is graded by the adviser together with a second reader, chosen by the adviser in consultation with the student. The student also provides an oral defense of the thesis at a meeting with the adviser and second reader. The essay must receive a grade of ‘A-’ or better for the student to receive honors.
The honors tutorials represent units in addition to the 55-unit requirement.
The Department of Philosophy cooperates with the honors component of the “Interdisciplinary Studies in Humanities” as described in that section of this bulletin.

JOINT MAJOR IN PHILOSOPHY AND RELIGIOUS STUDIES

The joint major in Philosophy and Religious Studies consists of 60 units of course work with approximately one third each in the philosophy core, the religious studies core, and either the general major or the special concentration. Affiliated courses cannot be used to satisfy this requirement.

No courses in either the philosophy or religious studies core may be taken satisfactory/no credit or credit/no credit.

In general, transfer units cannot be used to satisfy the core requirements. Transfer units and substitutions must be approved by the director of undergraduate studies in the appropriate department.

CORE REQUIREMENTS

1. Philosophy (PHIL) courses:
 a) 80
 b) 16 units, including at least one Philosophy course from each of the following areas:
 1) Logic and philosophy of science: 50 (formerly 57), 60, 61, 150 (formerly 159), 151 (formerly 160A), 154 (formerly 169), 156, 162-168
 2) Ethics and value theory: 170-173
 3) Epistemology, metaphysics, and philosophy of language: 180-189
 4) History of philosophy: 100-103

2. Religious Studies courses: 20 units, including at least two courses in diverse religious traditions (for example, an Eastern and a Western or a literate and a preliterate tradition) and including at least one seminar.

General Major Requirements — Five additional courses (approximately 20 units) divided between the two departments. No more than 5 of these units may come from courses numbered under 99 in either department. Each student must also take at least one undergraduate seminar in religious studies and one undergraduate seminar in philosophy.

Special Concentration — With the aid of an adviser, students pursue a specialized form of inquiry in which the combined departments have strength; for example, American philosophy and religious thought, philosophical and religious theories of human nature and action, philosophy of religion. Courses for this concentration must be approved in writing by the adviser.

Directed Reading and Satisfactory/No Credit Units — Units of directed reading for fulfilling requirements of the joint major are allowed only with special permission. No more than 10 units of work with a grade of ‘satisfactory’ count toward the joint major.

HONORS PROGRAM

Students pursuing a joint major in Philosophy and Religious Studies may also apply for honors by following the procedure for honors in either of the departments.

COTERMINAL BACHELOR’S AND MASTER’S DEGREES

It is possible to earn an M.A. in Philosophy while earning a B.A. or B.S. This can usually be done by the end of the fifth undergraduate year, although a student whose degree is not in philosophy may require an additional year. Standards for admission to, and completion of, this program are the same as for M.A. applicants who already have the bachelor’s degree when matriculating. Applicants for the coterminal program are not, however, required to take the Graduate Record Exam. Information about applying is available from Graduate Admissions in the Registrar’s Office. The application deadline for Philosophy is January 10.

For University coterminal degree program rules and University application forms, see http://registrar.stanford.edu/publications/#Coterm.

GRADUATE PROGRAMS

The department is prepared to direct and supervise individual study and research to supplement instruction offered in the courses listed below. In addition, advanced seminars not listed in the catalog are frequently organized in response to student interest. Candidates for advanced degrees are urged to discuss their entire program of study with their department advisers as early as possible.

Applications to graduate programs in the Department of Philosophy can be obtained from Graduate Admissions, the Registrar’s Office. Applicants should take the Graduate Record Examination by October of the year the application is submitted.

MASTER OF ARTS

University requirements for the M.A. are discussed in the “Graduate Degrees” section of this bulletin.

Four programs lead to the M.A. in Philosophy. One is a general program providing a grounding in all branches of the subject. The others provide special training in one branch.

Admissions — All prospective master’s students, including those currently enrolled in other Stanford programs, must apply for admission to the program. The application deadline is March 28 of the academic year preceding entry into the program. In exceptional circumstances, consideration may be given to applications received after the March 28 deadline but before April 30. No fellowships are available. Entering students must meet with the director of the master’s program and have their advisers’ approval, in writing, of program proposals. The master’s program should not be considered a stepping stone to the doctoral program; these two programs are separate and distinct.

Unit Requirements — Each program requires a minimum of 45 units in philosophy. Students in a special program may be allowed or required to replace up to 9 units of philosophy by 9 units in the field of specialization. Although the requirements for the M.A. are designed so that a student with the equivalent of a strong undergraduate philosophy major at Stanford might complete them in one year, most students need longer. Students should also keep in mind that although 45 units is the minimum required by the University, quite often more units are necessary to complete department requirements. Up to 6 units of directed reading in philosophy may be allowed. There is no thesis requirement, but an optional master’s thesis or project, upon faculty approval, may count as the equivalent of up to 8 units. A special program may require knowledge of a foreign language.

At least 45 units in courses numbered 100 or above must be completed with a grade of ‘B-’ or better at Stanford. Students are reminded of the University requirements for advanced degrees, and particularly of the fact that for the M.A., students must complete three full quarters as measured by tuition payment.

GENERAL PROGRAM

The General Program requires a minimum of 45 units in Philosophy courses numbered above 99. These courses must be taken for a letter grade and the student must receive at least a ‘B-’ in the course. Courses taken to satisfy the undergraduate core or affiliated courses may not be counted in the 45 units. The requirement has three parts:

1. **Undergraduate Core:** students must have when they enter, or complete early in their program, the following undergraduate courses (students entering from other institutions should establish equivalent requirements with a master’s adviser upon arrival or earlier):
 a) Logic: 50 (formerly 57), 150 (formerly 159), or 151 (formerly 160A)
 b) Philosophy of science: any course from 60, 61, 163-167
 c) Moral and political philosophy: one from 170-173
 d) Metaphysics and epistemology: one from 80, 180-189
 e) History of philosophy: two history of philosophy courses numbered 100 or above

2. **Graduate Core:** students must take at least one course numbered over 105 from three of the following five areas (courses used to satisfy the undergraduate core cannot also be counted toward satisfaction of the graduate core). Crosslisted and other courses taught outside the Department of Philosophy do not count towards satisfaction of the core.
a) Logic and semantics
b) Philosophy of science and history of science
c) Ethics, value theory, and moral and political philosophy
d) Metaphysics, epistemology, and philosophy of language
e) History of philosophy

Each master’s candidate must take at least two courses numbered above 200 (these cannot be graduate sections of undergraduate courses). One may be a graduate core seminar (360, 370, 380, 381), but no student is admitted to a core seminar before completing undergraduate requirements in the area of the seminar and securing the approval of the instructor.

3. Specialization: students must take at least three courses numbered over 105 in one of the five areas.

SPECIAL PROGRAM IN SYMBOLIC SYSTEMS

Students should have the equivalent of the Stanford undergraduate major in Symbolic Systems. Students who have a strong major in one of the basic SSP disciplines (philosophy, psychology, linguistics, computer science) may be admitted, but are required to do a substantial part of the undergraduate SSP core in each of the other basic SSP fields. This must include the following three philosophy courses or their equivalents: 80; 151 (formerly 160A); and one from 181, 183, 184, 186. This work does not count towards the 45-unit requirement.

COURSE REQUIREMENTS

1. Four courses in philosophy at the graduate level (numbered 200 or above), including courses from three of the following five areas:
 a) Philosophy of language
b) Logic
c) Philosophy of mind
d) Metaphysics and epistemology
e) Philosophy of science

 At most two of the four courses may be graduate sections of undergraduate courses numbered 100 or higher.

2. Three courses numbered 100 or higher from outside Philosophy, chosen in consultation with an adviser. These courses should be from two of the following four areas:
 a) Psychology
b) Linguistics
c) Computer Science
d) Education

 Remaining courses are chosen in consultation with and approved by an adviser.

SPECIAL PROGRAM IN THE PHILOSOPHY OF LANGUAGE

Admission is limited to students with substantial preparation in philosophy or linguistics. Those whose primary preparation has been in linguistics may be required to satisfy all or part of the undergraduate core requirements as described in the “General Program” subsection above. Those whose preparation is primarily in philosophy may be required to take additional courses in linguistics.

COURSE REQUIREMENTS

1. Philosophy of language: two approved courses in the philosophy of language numbered 180 or higher.

2. Syntactic theory and generative grammar: 384 and LINGUIST 231.

3. Logic: at least two approved courses numbered 151 (formerly 160A) or higher.

4. An approved graduate-level course in mathematical linguistics or automata theory.

DOCTOR OF PHILOSOPHY

The University’s basic requirements for the Ph.D. degree (residence, dissertation, examination, and so on) are discussed in the “Graduate Degrees” section of this bulletin. The requirements detailed here are department requirements.

All courses used to satisfy proficiency requirements must be passed with a letter grade of ‘B-’ or better (no satisfactory/no credit).

At the end of each year, the department reviews the progress of each student to determine whether the student is making satisfactory progress, and on that basis to make decisions about probationary status and termination from the program where appropriate.

Any student in one of the Ph.D. programs may apply for the M.A. when all University and department requirements have been met.

PROFICIENCY REQUIREMENTS

1. Course requirements, to be completed during the first two years:
 a) four core graduate courses and seminars in philosophy of language (381); philosophy of mind, metaphysics, and epistemology (380); value theory (370); and philosophy of science (360)
 b) three of the four items listed below:
 1) three history courses, each consisting of an approved graduate-level course in the history of philosophy. Courses satisfying this seven-out-of-eight requirement must include at least one history course in ancient philosophy, one in modern.
 2) PHIL 151 (formerly 160A)
 3) PHIL 150 (formerly 159) or the equivalent
 d) A total of at least 49 units of course work in the Department of Philosophy numbered above 110, but not including Teaching Methods (PHIL 239) or affiliated courses. Units of Individual Directed Reading (PHIL 240) may be included only with the approval of the Director of Graduate Study.

2. Teaching Assistance: a minimum of five quarters of teaching assistance, usually during the second and third years. As part of the training for being a teaching assistant, Ph.D. students are required to take PHIL 239 during Spring Quarter of their first and second years.

3. Candidacy: to continue in the Ph.D. program, each student must be approved for candidacy during the sixth academic quarter (normally the Spring Quarter of the student’s second year). Students may be approved for candidacy on a conditional basis if they have only one or two outstanding deficiencies, but are not officially advanced to candidacy until these deficiencies have been removed. Approval for candidacy indicates that, in the department’s judgment, the student can successfully complete the Ph.D. In reaching this judgment, the department considers the overall quality of the student’s work during the first six quarters and the student’s success in fulfilling course requirements.

4. During the third year of graduate study, and after advancement to candidacy, a Ph.D. student should successfully complete at least three graduate-level courses/seminars, at least two of which must be in philosophy. Courses required for candidacy are not counted toward satisfaction of this requirement. Choice of courses/seminars outside philosophy is determined in consultation with a student’s adviser.

5. During the summer of their second year, students are required to attend a dissertation development seminar given by the department.

6. Dissertation work and defense: the third and fourth (and sometimes fifth) years are devoted to dissertation work.
 a) Dissertation Proposal: by Spring Quarter of the third year, students select a dissertation topic, a reading committee, and some possible thesis relative to that topic. The topic and thesis should be sketched in a proposal of three to five pages, plus a detailed, annotated bibliography indicating familiarity with the relevant literature. The proposal should be approved by the reading committee before the meeting on graduate student progress late in Spring Quarter.
 b) Departmental Oral: during Autumn Quarter of the fourth year, students take an oral examination, called the “Departmental Oral,” based on at least 30 pages of written work, in addition to the proposal. The aim of the exam is to help the student arrive at an acceptable plan for the dissertation and to make sure that the student, thesis, topic, and adviser make a reasonable fit. In cases where such an exam is deemed inappropiate by the reading committee, the student may be exempted by filing a petition with the Director of Graduate Study, signed by the student and the members of the reading committee.
 c) Fourth-Year Colloquium: no later than the Spring Quarter of the fourth year, students present a research paper in a seminar open to the entire department. This paper should be on an aspect of the student’s dissertation research.
SPECIAL GRADUATE PROGRAMS

The department recognizes that some students may need to spend a large amount of time preparing themselves in some other discipline related to their philosophical goals, or in advanced preparation in the area within philosophy. In such circumstances, the department may be willing to waive some of the Ph.D. requirements. Such an exemption is not automatic; a program must be worked out with an adviser and submitted to the department some time in the student’s first year. This proposal must be in writing and must include:

1. The areas to be exempted (see below).
2. A program of additional courses and seminars in the special area (usually at least 12 units).
3. A justification of the program that considers both intellectual coherence and the student’s goals.

The department believes there is plenty of room for normal specialization within the program as it stands, and that all students specialize to some extent. Thus, the intent is not to exempt courses on a one-to-one basis, but only to grant exemptions when a student plans an extensive and intensive study of some relevant area.

Special program students may be exempted from the following:

1. One additional item from the items listed above in requirement 1(a).
2. PHIL 150 (formerly 159); but in this case, a student must take PHIL 50 (formerly 57)

If a student’s special program involves substantial course work outside of philosophy, the student may, with the approval of the adviser, petition the department to reduce requirement 1(d) (the Philosophy unit requirement for the first two years). Normally this requirement is not reduced below 32 units.

PH.D. MINOR

To obtain a Ph.D. minor in Philosophy, students must follow these procedures:

1. Consult with the Director of Graduate Study to establish eligibility, and select a suitable adviser.
2. Give to the department academic assistant a signed copy of the program of study (designed with the adviser) which offers:
 a) 30 units of courses in the Department of Philosophy with a letter grade of ‘B+’ or better in each course. No more than 3 units of directed reading may be counted in the 30-unit requirement.
 b) At least one course or seminar numbered over 99 to be taken in each of these five areas:
 1) Logic
 2) Philosophy of science
 3) Ethics, value, theory, and moral and political philosophy
 4) Metaphysics, epistemology, and philosophy of language
 5) History of philosophy
 c) Two additional courses numbered over 199 to be taken in one of those (b) five areas.
3. A faculty member from the Department of Philosophy (usually the student’s adviser) serves on the student’s doctoral oral examination committee and may request that up to one third of this examination be devoted to the minor subject.
4. Paperwork for the minor must be submitted to the department office before beginning the program.

INTERDEPARTMENTAL PROGRAMS

GRADUATE PROGRAM IN HUMANITIES

The Department of Philosophy also participates in the Graduate Program in Humanities leading to the joint Ph.D. degree in Philosophy and Humanities. It is described in the “Interdisciplinary Studies in Humanities” section of this bulletin.

GRADUATE PROGRAM IN COGNITIVE SCIENCE

Philosophy participates with the departments of Computer Science, Linguistics, and Psychology in an interdisciplinary program in Cognitive Science. It is intended to provide an interdisciplinary education, as well as a deeper concentration in philosophy, and is open to doctoral students. Students who complete the requirements within Philosophy and the Cognitive Science requirements receive a special designation in Cognitive Science along with the Ph.D. in Philosophy. To receive this field designation, students must complete 30 units of approved courses, 18 of which must be taken in two disciplines outside of philosophy. The list of approved courses can be obtained from the Cognitive Science program located in the Department of Psychology.

SPECIAL TRACK IN PHILOSOPHY AND SYMBOLIC SYSTEMS

Students interested in interdisciplinary work relating to artificial intelligence, cognitive science, computer science, linguistics, or logic may pursue a degree in this program.

Prerequisites—Ideally, admitted students have covered the equivalent of the core of the undergraduate Symbolic Systems Program requirements as described in that section of this bulletin, including courses in artificial intelligence (AI), cognitive science, linguistics, logic, and philosophy. The graduate program is designed with this background in mind. Students missing part of this background may need additional course work. Aside from the required course work below, the Ph.D. requirements are the same as for the regular program.

Courses of Study—The program consists of two years of courses and two years of dissertation work. Students are required to take the following courses in the first two years:

1. Six Philosophy courses:
 a) two of the following: 360, 370, 380, 381
 b) one course in the history of modern philosophy
 c) two quarters of graduate logic courses from among 350A, 351A, 352A, 353A
 d) at least one additional seminar in the general area of symbolic systems: e.g., 354, 358
2. Five cognitive science and computer science courses:
 a) at least two courses in cognitive psychology
 b) two or three graduate courses in computer science, at least one in AI and one in theory
3. Three linguistics and computational linguistics courses:
 a) graduate courses on natural language that focus on two of the following areas: phonetics and phonology, syntax, semantics, or pragmatics
 b) one graduate course in computational linguistics, typically LINGUIST 239
4. At least two additional graduate seminars at a more advanced level, in the general area of the program, independent of department. These would typically be in the area of the student’s proposed dissertation project.

The requirements for the third year are the same as for other third-year graduate students in philosophy: a dissertation proposal, creation of a dissertation committee, and at least three approved graduate courses and seminars. The dissertation committee must include at least one member of the Department of Philosophy and one member of the Program in Symbolic Systems outside the Department of Philosophy.

The requirement for the fourth year is the same as for the other graduate students in philosophy: a department oral on an initial draft of part of the dissertation, a fourth year colloquium, and a University oral exam when the dissertation is essentially complete.
5JOINT PROGRAM IN ANCIENT PHILOSOPHY

This program is jointly administered by the Departments of Classics and Philosophy and is overseen by a joint committee composed of members of both departments. It provides students with the training, specialist skills, and knowledge needed for research and teaching in ancient philosophy while producing scholars who are fully trained as either philosophers (with a strong specialization in ancient languages and philology) or classicists (with a concentration in philosophy).

Students are admitted to the program by either department. Graduate students admitted by the Philosophy department receive their Ph.D. from the Philosophy department; those admitted by the Classics department receive their Ph.D. from the Classics department. For Philosophy graduate students, this program provides training in classical languages, literature, culture, and history. For Classics graduate students, this program provides training in the history of philosophy and in contemporary philosophy.

Each student in the program is advised by a committee consisting of one professor in each department.

Requirements for Philosophy Graduate Students:

These are the same as the proficiency requirements for the Ph.D. in Philosophy with the following exception: if the student has already taken two courses in modern philosophy, there is no need to take a course in modern philosophy to satisfy proficiency requirement 1.a.2.

One year of Greek is a requirement for admission to the program. If students have had a year of Latin, they are required to take 3 courses in second- or third-year Greek or Latin, at least one of which must be in Latin. If they have not had a year of Latin, they are then required to complete a year of Latin, and take two courses in second- or third-year Greek or Latin.

Students are also required to take at least three courses in ancient philosophy at the 200 level or above, one of which must be in the Classics department and two of which must be in the Philosophy department.

GRADUATE DEGREES IN HISTORY AND PHILOSOPHY OF SCIENCE AND TECHNOLOGY

See the description in the “History and Philosophy of Science and Technology” section of this bulletin.

GRADUATE FELLOWSHIPS AND ASSISTANTSHIPS

A limited amount of fellowship support is available for Ph.D. students in philosophy. Students request aid by checking the appropriate box on the application form. Details of this program may be obtained from the department. Note that a condition of financial aid may be teaching assistance that goes beyond the Ph.D. requirement.

COURSES

WIM indicates that the course satisfies the Writing in the Major requirements. See the quarterly Time Schedule for revised listings.

INTRODUCTORY

These courses acquaint the student with some of the most important problems, positions, and methods in Philosophy. Some are designed to give general preparation for further work in Philosophy. Some apply the philosopher’s approach to particular problems and subjects encountered in other areas of study.

PHIL 10. God, Self, and World: An Introduction to Philosophy — Traditional philosophical problems including the existence of God, how and what one can know about the world, how to understand the nature of the mind and its relation to the body, and whether people have free will. Paradoxes. Readings include classical and contemporary texts. GER: DB-Hum

5 units, Aut (Perry)

PHIL 12N. Being at Home as an Ethical Concept — Stanford Introductory Seminar. Preference to freshmen. The ethical significance of the home in literature and philosophy. How people build, leave, return to, or give up on homes. How a stance towards the home shapes ideas of self and society. Case studies may include other cultures such as China. GER: DB-Hum

3 units, Aut (Moravcsik)

PHIL 13N. What is the Truth? — Stanford Introductory Seminar. Preference to freshmen. This question can be answered precisely in some important cases. In some of those cases, truth can be established through proof. Successes in this quest for certified truth are closely connected to successes of automation of reasoning. Recommended: 5 units AP in Mathematics, or 5 units in Stanford Mathematics courses with a grade of A. GER: DB-Hum

3 units, Spr (Mints)

PHIL 15N. Freedom, Community, and Morality — Stanford Introductory Seminar. Preference to freshmen. Does the freedom of the individual conflict with the demands of human community and morality? Or, as some philosophers have maintained, does the freedom of the individual find its highest expression in a moral community of other human beings? Readings include Camus, Mill, Rousseau, and Kant. GER: DB-Hum

3 units, Win (Friedman)

PHIL 16N. Values and Objectivity — Stanford Introductory Seminar. Preference to freshmen. What is meant by the objectivity of beliefs and attitudes? Can the commitment of science to truthfulness be free of particular perspectives and subjective influence? Is objectivity a matter of degree relative to the kind of inquiry undertaken? Readings from philosophy of science, moral philosophy, and philosophy of mind. GER: DB-Hum

3 units, Win (Friedman)

PHIL 20. Introduction to Moral Philosophy — (Same as ETHICSOC 20.) What is the basis of moral judgment? What makes right actions right and wrong actions wrong? What makes a state of affairs good or worth promoting? What is it to have a good or virtuous character? Answers to classic questions in ethics through the works of traditional and contemporary authors. GER: DB-Hum, EC-EthicReas

5 units, Win (Schapiro)

PHIL 30. Introduction to Political Philosophy — (Same as ETHICSOC 30.) State authority, justice, liberty, and equality through major works in political philosophy. Topics include human nature and citizenship, the obligation to obey the law, democracy and economic inequality, equality of opportunity and affirmative action, religion, and politics. GER: DB-Hum, EC-EthicReas

5 units, Aut (Hussain)

PHIL 50. Introductory Logic — (Formerly 57.) Propositional and predicate logic; emphasis is on translating English sentences into logical symbols and constructing derivations of valid arguments. GER: DB-Math

4 units, Aut, Spr (Lafave)

PHIL 60. Introduction to Philosophy of Science — (Same as HPS 60.) 20th-century views on the nature of scientific knowledge. Logical positivism and Popper; the problem of induction; Kuhn, Feyerabend, and radical philosophies of science; subsequent attempts to rebuild moderate empiricist and realist positions. GER: DB-Hum

5 units, Spr (Longino)

PHIL 61. Philosophy and the Scientific Revolution — (Same as HPS 61.) The relationship between the scientific revolution of the 17th century that resulted in the birth of modern science and the contemporaneous intellectual developments constituting the birth of modern philosophy. Readings focus on Galileo and Descartes. GER: DB-Hum

5 units, Aut (Friedman)

PHIL 77. Methodology in Ethics: Translating Theory into Practice — (Same as ETHICSOC 77.) Ideally, social policies are informed by ethical thought and reflection, but doing good in the world requires the active translation of moral theory and political philosophy into action. What kinds of empirical data are relevant to social decision making, and how should they be collected, evaluated, and integrated into normative analysis? What assumptions about human nature are in play? How should diverse cultural values be addressed? Case studies from biomedical science, business, and government.

4 units, Spr (Jones)

PHIL 80. Philosophy and Technology — Stanford Introductory Seminar. Preference to freshmen. How should technological changes be evaluated and integrated into ethical thinking? This question can be answered precisely in some important cases. In some of those cases, technology can be established through proof. Successes in this quest for certified technology are closely connected to successes of automation of reasoning. Recommended: 5 units AP in Computer Science, or 5 units in Stanford Computer Science courses with a grade of A. GER: DB-Hum

3 units, Win (Lalezari)
PHIL 78. Medical Ethics—(Same as ETHICSOC 78.) Introduction to moral reasoning and its application to problems in medicine: informed consent, the requirements and limits of respect for patients’ autonomy, surrogate decision making, euthanasia and physician-assisted suicide, and abortion. GER:DB-Hum, EC-Gender
4 units, Spr (Jaworska)

PHIL 80. Mind, Matter, and Meaning—Central topics in philosophy: free will and determinism, the relation of mind and body, and whether machines can think. Emphasis is on analytical writing skills. Prerequisite: introductory philosophy course. GER:DB-Hum, WIM
5 units, Win (Crimmins), Spr (Taylor)

PHIL 81. Philosophy and Literature—(Same as FRENG 181, ITALGEN 181.) Required gateway course for Philosophical and Literary Thought track offered through Philosophy and DLCL. Introduction to major problems at the intersection of philosophy and literature. Issues may include authorship, selfhood, truth and fiction, the importance of literary form to philosophical works, and the ethical significance of literary works. Texts include philosophical analyses of literature, works of imaginative literature, and works of both philosophical and literary significance. Authors may include Plato, Montaigne, Nietzsche, Borges, Beckett, Barthes, Foucault, Nussbaum, Walton, Nehamas, Pavel, and Pippin. GER:DB-Hum
4 units, Aut (Landy, Anderson)

HISTORY OF PHILOSOPHY

100-103 are surveys of important figures and movements in Western philosophy. Other courses cover particular periods, movements, and figures in the history of philosophy. Prospective Philosophy majors should take as many as possible during the sophomore year.

PHIL 100. Greek Philosophy—Greek philosophical thought, covering Socrates, Plato, Aristotle, and the Hellenistic schools (the Epicureans, the Stoics, and the Skeptics). Topics: the nature of the soul, virtue and happiness, knowledge, and reality. GER:DB-Hum
4 units, Aut (Bobonich)

PHIL 102. Modern Philosophy, Descartes to Kant—Major figures in early modern philosophy in epistemology, metaphysics, and philosophy of mind. Writings by Descartes, Locke, Leibniz, Berkeley, Hume, and Kant. GER:DB-Hum
4 units, Spr (De Pierris)

PHIL 103. 19th-Century Philosophy—Focus is on ethics and the philosophy of history. Works include Mill’s Utilitarianism, Hegel’s The Philosophy of World History, Marx’s Economic and Philosophical Manuscripts, Kierkegaard’s The Sickness Unto Death, and Nietzsche’s On the Genealogy of Morals. GER:DB-Hum
4 units, Win (A. Wood)

PHIL 107/207. Plato’s Ontology and Mathematics—(Graduate students register for 207.) Plato’s theories on parts of reality.
3 units (Moravcsik) not given 2005-06

PHIL 115/215. Problems in Medieval Philosophy: Western Medieval Science—(Graduate students register for 215.) Aristotle, Avicenna, Rufus, Aquinas, and Ockham on atomism, creationism, and substantial change. Encountering the competing claims of Aristotelian philosophy and revealed religion, medieval natural philosophers asked whether the world always existed, whether the past was finite, whether the world will end, what elements comprise the world, whether it is made of indivisible atoms or continuous substances, whether each substance or individual has a single or multiple natures, and whether elements change into another. May be repeated for credit. GER:DB-Hum
3-5 units, Win (R. Wood)

PHIL 117/217. Aristotle on Substance—(Graduate students register for 217.) Did Aristotle have a coherent notion of substantiality, and if so, what key properties must substances have? The implications of Aristotle’s theory of categories for his theories of substance.
4 units, Spr (Moravcsik)

PHIL 120/220. Hume—(Graduate students register for 220.) Hume’s theoretical philosophy, in particular, skepticism and naturalism, the theory of ideas and belief, space and time, causation and necessity, induction and laws of nature, miracles, a priori reasoning, the external world, and the identity of the self. GER:DB-Hum
4 units, Spr (De Pierris)

PHIL 121/221. Descartes—(Graduate students register for 221.) Descartes’s philosophical writings on rules for the direction of the mind, method, innate ideas and ideas of the senses, mind, God, eternal truths, and the material world. GER:DB-Hum
4 units (De Pierris) not given 2005-06

PHIL 122/222. Hegel’s Phenomenology of Spirit—(Graduate students register for 222.) The aims and parts of the execution of the philosophical project of Hegel’s first major work. Issues in epistemology, metaphysics, and ethics; and the relationship between the systematic and historical aspects of Hegel’s project. May be repeated for credit. Prerequisite: course in the history of modern philosophy. GER:DB-Hum
4 units, Spr (A. Wood)

PHIL 125/225. Kant’s First Critique—(Graduate students register for 225.) The founding work of Kant’s critical philosophy emphasizing his contributions to metaphysics and epistemology. His attempts to limit metaphysics to the objects of experience. Prerequisite: course dealing with systematic issues in metaphysics or epistemology, or with the history of modern philosophy. GER:DB-Hum
4 units, Win (A. Wood)

4 units, Spr (Schapiro)

PHIL 127/227. Kant’s Critique of the Power of Judgment—(Graduate students register for 227.) Kant’s third and final critique investigates the transcendental grounds of aesthetic taste and the use of teleology in the study of nature, with the aim of unifying theoretical and practical reason in the critical system. The analytic of the beautiful, the role of taste and artworks in human life, and the methodology of teleological judgment which is to unite the teleology of nature and morals into a single system of practical reason. GER:DB-Hum
4 units (A. Wood) not given 2005-06

PHIL 132/232. Existentialism—(Graduate students register for 232.) Focus is on the existentialist preoccupation with human freedom. What constitutes authentic individuality? What is one’s relation to the divine? How can one live a meaningful life? What is the significance of death? A rethinking of the traditional problem of freedom and determinism in readings from Rousseau, Kierkegaard, and Nietzsche, and the extension of these ideas by Sartre, Beauvoir, and Camus, including their social and political consequences in light of 20th-century fascism and feminism. GER:DB-Hum
4 units, Aut (Anderson)

PHIL 133/233. Major Figures in 20th-Century Philosophy—(Graduate students register for 233.) Husserl, Heidegger, Sartre, Gadamer, Wittgenstein, Quine, Davidson, and Rawls. Readings from their central writings. GER:DB-Hum
4 units (Føllesdal) not given 2005-06

PHIL 134/234. Phenomenology, Existentialism, and Hermeneutics—(Graduate students register for 234.) Husserl’s phenomenology as a key to understanding contemporary continental philosophy, notably Heidegger’s and Sartre’s existentialisms, Gadamer’s hermeneutics, and recent trends in contemporary German and French philosophy. The role of intentionality in contemporary debates in cognitive science. Husserl’s Ideas and Cartesian Meditations read in full; selections from Heidegger, Sartre, and Gadamer. GER:DB-Hum
4 units (Føllesdal) not given 2005-06
PHIL 135/235. Wittgenstein — (Graduate students register for 235.) The main themes and claims in Wittgenstein’s later work concentrating on his views about meaning, mind, knowledge, the nature of philosophical perplexity, and the nature of philosophical progress in his Philosophical Investigations. Emphasis is on the relationship between the novel arguments of the Investigations and its ways of writing up the results of philosophical questioning. GER:DB-Hum
4 units (Hills) not given 2005-06

PHIL 138/238. Recent European Philosophy: Between Nature and History — (Graduate students register for 238.) Themes and thinkers in 20th-century continental philosophy. Emphasis is on novel understandings of time, language, and cultural power. Thinkers include Heidegger, Benjamin, Saussure, and Foucault, together with precursors and contemporary admirers and critics. GER:DB-Hum
4 units (Hills) not given 2005-06

PHIL 143/243. Rationalists — (Graduate students register for 243.) Developments in 17th-century continental philosophy. Descartes’s views on mind, necessity, and knowledge, Spinoza and Leibniz with attention to their own doctrines and their criticism of their predecessors. Prerequisite: 102. GER:DB-Hum
4 units, Aut (Dunlop)

PHIL 147/247. History of Analytic Philosophy — (Graduate students register for 247.) Theories of knowledge in Frege, Carnap, and Quine. Emphasis is on conceptions of analyticity and treatment of logic and mathematics. Prerequisite: 50 and one course numbered 150-165 or 181-190. GER:DB-Hum
4 units, Win (Dunlop)

LOGIC AND PHILOSOPHY OF SCIENCE

PHIL 150/250. Basic Concepts in Mathematical Logic — (Graduate students register for 250.) (Formerly 159.) The concepts and techniques used in mathematical logic, primarily through the study of the language of first order logic. Topics: formalization, proof, propositional logic, quantifiers, sets, mathematical induction, and enumerability. GER: DB-Math
4 units, Aut (Pauly)

PHIL 151/251. First-Order Logic — (Graduate students register for 251.) (Formerly 160A.) The syntax and semantics of sentential and first-order logic. Concepts of model theory, Gödel’s completeness theorem and its consequences: the Löwenheim-Skolem theorem and the compactness theorem. Prerequisite: 150 or consent of instructor. GER:DB-Math
4 units, Win (Pauly)

PHIL 152/252. Computability and Logic — (Graduate students register for 252; formerly 160B.) Approaches to effective computation: recursive functions, register machines, and programming styles. Proof of their equivalence, discussion of Church’s thesis. Elementary recursion theory. These techniques used to prove Gödel’s incompleteness theorem for arithmetic, whose technical and philosophical repercussions are surveyed. Prerequisite: 151. GER:DB-Math
4 units, Spr (Pauly)

PHIL 154/254. Modal Logic — (Graduate students register for 254.) Emphasis is on action and information. The interdisciplinary nature of the field, including philosophy, computer science, linguistics, mathematics, and economic game theory. Prerequisite: 150 (formerly 159) or preferably 151 (formerly 160A). GER:DB-Math
4 units (van Benthem) not given 2005-06

PHIL 155/255. Concepts of Freedom — (Graduate students register for 255.) Historical and current concepts of freedom. The views of Hume, Kant, Mill, A.V. Dicey, and Hayek; recent works, including economic concepts of freedom. Recent work on free will as a properly empirical concept. GER:DB-Hum
4 units, Spr (Suppes)

PHIL 156. Popper, Kuhn, and Lakatos — (Same as EDUC 214.) These 20th-century philosophers of science raise fundamental issues dealing with the nature of scientific progress: the rationality of change of scientific belief, science versus non-science, role of induction in science, truth or verisimilitude as regulative ideals. Their impact in the social sciences and applied areas such as educational research. GER:DB-Hum
3 units, Spr (Phillips)

PHIL 157/257. Topics in Philosophy of Logic — (Graduate students register for 257.) Disputed foundational issues in logic; the question of what the subject matter and boundaries of logic are, such as whether what is called second-order logic should be counted as logic. What is the proper notion of logical consequence? May be repeated for credit. Pre- or corequisite: 151, or consent of instructor.
3 units, Win (Feferman)

PHIL 161. Set Theory — (Enroll in MATH 161.)
3 units, Win (de Queiroz)

PHIL 162/262. Philosophy of Mathematics — (Graduate students register for 262.) 20th-century approaches to the foundations and philosophy of mathematics. The background in mathematics, set theory, and logic. Schools and programs of logicism, predicativism, platonism, formalism, and constructivism. Readings from leading thinkers. Prerequisite: 151 or consent of instructor.
4 units (Staff) not given 2005-06

PHIL 164/264. Central Topics in the Philosophy of Science: Theory and Evidence — (Graduate students register for 264.) The relation of theory to evidence and prediction, problems of induction, empirical under-determination of theory by evidence, and theory choice. Hypothetico-deductive, Bayesian, pragmatic, and inference to the best explanation models of explanation. The semantic approach to theories. GER:DB-Hum
4 units, Win (Ryckman)

PHIL 165/265. Philosophy of Physics — (Graduate students register for 265.) The philosophy of quantum mechanics. From classical to quantum mechanics, the double slit experiment, Schrödinger’s wave equation, the Born rule, Heisenberg’s uncertainty principle, the measurement problem, EPR and Bell’s theorem, interpretations of quantum theory including the relative state formulation, and quantum logic. May be repeated for credit. GER:DB-Hum
4 units, Spr (Ryckman)

PHIL 167A/267A. Philosophy of Biology — (Graduate students register for 267A.) Philosophical questions raised by evolutionary biology. The concepts of fitness and adaptation. How are hypotheses about adaptation to be tested? How should organisms be classified? How can the history of the phylogenetic branching process be inferred? Are there laws in evolutionary biology? Are theories in biology reducible to theories in physics? What does evolutionary biology contribute to the understanding of human mind and culture? GER:DB-Hum
4 units (Staff) not given 2005-06

PHIL 167B/267B. Philosophy, Biology, and Behavior — (Graduate students register for 267B.) Continuation of 167A/267A. Further philosophical study of key theoretical ideas in biology, focusing on problems involving explanation of behavior. Topics: evolutionary versus proximate causal explanations of behavior; genetic and other determinisms; and classification and measurement of behavior. Prerequisite: 167A; or one PHIL course and either one BIOSCI course or Human Biology core; or equivalent with consent of instructor.
4 units, Win (Longino)

ETHICS, AESTHETICS, AND SOCIAL AND POLITICAL PHILOSOPHY

PHIL 170/270. Ethical Theory — (Graduate students register for 270; same as ETHICSOC 170) Major strands in contemporary ethical theory. Readings include Bentham, Mill, Kant, and contemporary authors. GER:DB-Hum
4 units, Spr (Jaworska)
PHIL 171/271. Political Philosophy — (Graduate students register for 271; same as ETHICSOC 171.) Questions about a just society. Which liberties should a just society protect: economic, political, expressive? What sorts of equality should a just society ensure: opportunity, outcome, economic, political? Can a just society ensure both liberty and equality? Focus is on answers from rival, contemporary theories of justice: utilitarianism, libertarianism, and egalitarian liberalism. GER:DB-Hum, EC-EthicReas
4 units, Win (Satz)

PHIL 173B/273B. Metaethics — (Graduate students register for 273B.) Can moral and ethical values be justified or is it just a matter of opinion? Is there a difference between facts and values? Are there any moral truths? Does it matter if there are not? Focus is not on which things or actions are valuable or morally right, but what is value or rightness itself. Contemporary metaethics. Prerequisites: 80, 181, and an ethics course. GER:DB-Hum
4 units, Win (Hussain)

PHIL 174/274. Freedom and the Practical Standpoint — (Graduate students register for 274.) Confronted with the question of how to act, people think of themselves as freely determining their own conduct. Natural science poses a challenge to this by explaining all events, including human actions, in terms of causal processes. Are people justified in thinking of themselves as free? Major philosophical approaches to this question: incompatibilism, compatibilism, and the two-standpoint view. GER:DB-Hum
4 units, Aut (Ferrero)

PHIL 175M/275M. Agency and Ethics — (Graduate students register for 275M.) Human beings as agents; agency as the basis of much of ethics. GER:DB-Hum
4 units, Spr (Moravcsik)

PHIL 176/276. Political Philosophy: The Social Contract Tradition — (Graduate students register for 276.) Why and under what conditions do human beings need political institutions? What makes them legitimate or illegitimate? What is the nature, source, and extent of the obligation to obey the legitimate ones, and how should people alter or overthrow the others? Answers by political theorists of the early modern period: Hobbes, Locke, Rousseau, and Kant. GER:DB-Hum
4 units (Hills) not given 2005-06

PHIL 176B/276B. The Economic Individual in the Behavioral Sciences — (Graduate students register for 276B.)
4 units, Aut (Satz, Gordon)

PHIL 177. Philosophical Issues Concerning Race and Racism — (Same as POLISCI 136.) Concepts of race, race consciousness, and racism, and their connections. What is race and what is its role in racism? How should ethnic and racial identities be viewed to secure the conditions in which humanity can be seen as a single moral community whose members have equal respect? What laws, values, and institutions best embody the balance among competing goals of group loyalty, opposition to racism, and common humanity? Philosophical writings on freedom and equality, human rights, pluralism, and affirmative action. Historical accounts of group exclusion. GER:DB-Hum, EC-AmerCul
4 units (Satz) not given 2005-06

PHIL 178. Ethics in Society Honors Seminar — (Same as ETHICSOC 190.) For students planning honors in Ethics in Society. Methods of research. Students present issues of public and personal morality; topics chosen with advice of instructor.
3 units, Win (Reich)

EPISTEMOLOGY, METAPHYSICS, PHILOSOPHY OF MIND, AND PHILOSOPHY OF LANGUAGE

PHIL 179/279. Semantics: Theories of Meaning — (Graduate students register for 279.) What makes ambiguity, polysemy, and context sensitivity needed in natural languages? Why is this not the case with formal languages. How to develop semantics for context-sensitive structures. GER:DB-Hum
4 units, Aut (Moravcsik)

PHIL 181/281. Philosophy of Language — (Graduate students register for 281.) The study of conceptual questions about language as a focus of contemporary philosophy both for its inherent interest and because philosophers see questions about language as behind perennial questions in other areas of philosophy including epistemology, the philosophy of science, metaphysics, and ethics. Introduction to key concepts and debates about the notions of meaning, truth, reference, and language use, with relations to psycholinguistics and formal semantics. Readings from philosophers such as Frege, Russell, Wittgenstein, Grice, and Kripke. Prerequisites: 80 and background in logic.
4 units, Aut (Crimmins)

PHIL 182. Seminar in Semantics: Situation Semantics — (Same as LINGUIST 237.) Theory and applications of situation semantics to natural languages and the flow of information. May be repeated for credit.
1-4 units, Spr (Perry, Peters)

PHIL 183/283. Quine — (Graduate students register for 283.) The philosophy of Quine: meaning and communication; analyticity, modalty, reference, and ontology; theory and evidence; naturalism; mind, and the mental. GER:DB-Hum
4 units, Aut (Follesdal)

PHIL 184/284. Theory of Knowledge — (Graduate students register for 284.) Competing theories of epistemic justification (foundationalism, coherentism, and externalism) against the background of radical skepticism. Readings from contemporary sources. Prerequisite: 80 or consent of instructor. GER:DB-Hum
4 units, Spr (Hills)

PHIL 186/286. Philosophy of Mind — (Graduate students register for 286.) Debates concerning the nature of mental states, their relation to physical states of the human body, how they acquire their content, how people come to know about them in themselves and others, and the roles they play in the explanation of human conduct.
4 units (Staff) not given 2005-06

PHIL 187/287. Philosophy of Action — (Graduate students register for 287.) What is it to be an agent? Is there a philosophically defensible contrast between being an agent and being a locus of causal forces to which one is subject? What is it to act purposively? What is intention? What is it to act intentionally? What is it to act for a reason? Are the reasons for which one acts causes of one’s action? What is it to act autonomously? Readings include Davidson and Frankfurt. Prerequisite: 80. GER:DB-Hum
4 units, Win (Bratman)

PHIL 188. Personal Identity — People seem to remain the same despite the changes they undergo during their lives. Why? The answer can influence one’s beliefs about whether people are essentially bodies or minds, and whether one’s own survival matters. Readings include John Locke, Thomas Reid, David Hume, Bernard Williams, and Derek Parfit. GER:DB-Hum
4 units, Aut (Ferrero)

PHIL 189. Philosophical Applications of Cognitive Science — The relevance of recent discoveries about the mind to philosophical questions in metaphysics, epistemology and philosophy of science, and ethics. Questions include: is there a right way to carve up the world into categories? Are the rules of logic objective, or just the way we happen to think? Is there such a thing as objective right and wrong?
4 units (Staff) not given 2005-06

PHIL 190. Introduction to Cognitive Science — (Same as SYMBSYS 100.) The history, foundations, and accomplishments of the cognitive sciences, including presentations by leading Stanford researchers in artificial intelligence, linguistics, philosophy, and psychology. Overview of the issues addressed in the Symbolic Systems major. GER: DB-SocSci
4 units, Spr (Bresnan, van Benthem)
PHIL 193Q. The Art of the Movies: Story, Drama, and Image — (Same as HUMNTIES 193Q.) A philosophical study of how movies coordinate and transform elements they borrow from older arts of literary narrative, live theater, and graphic illustration. Examples from the career of Alfred Hitchcock. GER:DB-Hum
4 units, Win (Hills)

PHIL 194D. Undergraduate Seminar: Practical Reasoning — Priority to majors. Enrollment limited to 12. May be repeated for credit. Prerequisite: background in philosophy, 80.
4 units, Aut (Bratman)

PHIL 194E. Undergraduate Seminar: Ethical Antitheory — May be repeated for credit.
4 units, Win (Hills)

PHIL 194R. Topics in Metaphysics and Epistemology — Priority to majors. Enrollment limited to 12.
4 units, Win (Crimmins)

PHIL 196. Tutorial, Senior Year
5 units, Aut, Win, Spr, Sum (Staff)

PHIL 197. Individual Work, Undergraduate
1-15 units, Aut, Win, Spr, Sum (Staff)

PHIL 198. The Dualist — Weekly meeting of the editorial board of The Dualist, a national journal of undergraduate work in philosophy. Open to all undergraduates. May be taken 1-3 quarters. (AU)
1 unit, Aut, Win, Spr (Potochnik, Yap)

PHIL 199. Seminar for Prospective Honors Students — Open to juniors intending to do honors in philosophy. Methods of research in philosophy. Topics and strategies for completing honors project.
2 units, Spr (Staff)

PRIMARILY FOR GRADUATE STUDENTS

PHIL 224. Kant’s Philosophy of Physical Science — Kant’s Metaphysical Foundations of Natural Science (1786), published between the first (1781) and second (1787) editions of the Critique of Pure Reason, in the scientific and philosophical context provided by Newtonian natural philosophy and the Leibnizean tradition. The place of this work in the development of Kant’s thought. Prerequisite: acquaintance with either Kant’s theoretical philosophy or the contemporaneous scientific context, principally Newton, Leibniz, and Euler.
4 units, Aut (Friedman)

PHIL 230. The Philosophical and Educational Thought of John Dewey — (Same as EDUC 304.) Dewey’s pragmatic philosophy and educational thought; his debt to Darwin, Hegel, Peirce, and James; his educational writings including Democracy and Education; and his call for a revolution in philosophy in Reconstruction in Philosophy.
4 units (Philips) not given 2005-06

PHIL 237. Nietzsche — Preference to Ph.D. students. Nietzsche’s later works emphasizing The Gay Science, Beyond Good and Evil, and On the Genealogy of Morals. The overall shape of Nietzsche’s philosophical and literary projects, and his core doctrines such as eternal recurrence, will to power, and perspectivism. Problems such as the proper regulation of belief, and the roles of science, morality, art, and illusion in life.
4 units (Anderson) not given 2005-06

PHIL 239. Teaching Methods in Philosophy — For Ph.D. students in their first or second year who are or are about to be teaching assistants for the department. Discussion of issues about the teaching of philosophy.
1-4 units, Spr (Darby)

PHIL 240. Individual Work for Graduate Students — May be repeated for credit.
1-15 units, Aut, Win, Spr, Sum (Staff)

PHIL 241. Dissertation Development Seminar
3 units, Sum (Staff)

PHIL 248. Medieval Latin Paleography — (Formerly PHIL 314.) The history of medieval scripts and medieval abbreviation. Dating and placing Latin European medieval manuscripts. Editing medieval texts in philosophy, psychology, physics, and theology. Class project: an anonymous commentary on Aristotle’s ethics preserved in a Florentine manuscript.
3-5 units, Spr (R. Wood)

PHIL 258. Minds and Machines — Readings on arguments concerning mechanical models of the mind including Turing machine models to which Gödel’s incompleteness theorems are relevant, and connectionist (neural net) models. Prerequisites: 151 (formerly 160A), 152, or equivalents. Recommended: 389.
4 units (Feferman) not given 2005-06

PHIL 289. Seminar on the Language of Thought — The relation of recent research that favors the hypothesis that mental phenomena can be understood as computations over representations in a language of thought enrooted in people’s brains. How this program promises solutions to traditional problems in the philosophy of mind while leaving behind pretheoretic intuitions such as about qualia or consciousness. Readings include Rey, Fodor, Dennett, Searle, and Levine.
4 units (Staff) not given 2005-06

PHIL 313. Aristotle’s Psychology and Philosophy of Mind — Primary reading is De Anima.
4 units (Bobonich) not given 2005-06

PHIL 318. Aristotle’s Ethics — Topics in Aristotle’s ethical theory and related parts of his psychology.
4 units, Win (Bobonich)

PHIL 323. Kant’s Criticism of Metaphysics — Motivations and strategies of Kant’s criticisms of traditional metaphysics in the Critique of Pure Reason. Leibnizian and Wolffian versions of the concept containment theory of truth and the Wolffian ideal of a conceptual system of metaphysical knowledge. Kant’s analytic/synthetic distinction, focusing on its place in the rejection of metaphysics and in arguments about the ideas of reason in the transcendental dialectic. Prerequisite: course on the first Critique, or consent of instructor.
4 units, Spr (Anderson)

PHIL 325. Modern Seminar — (Same as HUMNTIES 325.) Modern anxieties about the place of human concerns within a disenchanted natural world, focusing on texts of philosophy, social theory, and imaginative literature. Cultural and psychological consequences of perceived decline in and threats to religious faith. Authors may include Schiller, Schopenhauer, Coleridge, Kierkegaard, Marx, Baudelaire, Darwin, Nietzsche, Weber, Eliot, Woolf, Sartre, and Camus.
3-5 units, Win (Anderson)

PHIL 328. Fichte’s Theory of Intersubjectivity — The founder of the German Idealist movement who adopted but revised Kant’s project of transcendental philosophy basing it on the principle of awareness of free self-activity. Awareness of other selves and of ethical relations to them as a necessary condition for self-awareness. His writings from 1793-98 emphasizing the place of intersubjectivity in his theory of experience.
4 units (A. Wood) not given 2005-06

PHIL 335. Topics in Aesthetics
4 units, Aut (Hills)

PHIL 350A. Model Theory — (Formerly PHIL/MATH 290A.) Language and models of the first order, predicate calculus, complete and decidable theories. Fraisse-Ehrenfeucht games. Preservation theorems. Prerequisites: 150, 151, or equivalent.
3 units, Win (Mints)

PHIL 350B. Model Theory — (Formerly PHIL/MATH 290B.) Kripke (possible world) semantics of intuitionistic and modal logics. Completeness results and strategies in automated deduction. Algebraic models. Second order systems. May be taken independently of 350A. Prerequisites: 151, 154, or equivalent.
3 units (Staff) not given 2005-06
PHIL 351A,B. Recursion Theory—(Formerly PHIL 291A/MATH 291A.) Theory of recursive functions and recursively enumerable sets. Register machines, Turing machines, and alternative approaches. Gödel’s incompleteness theorems. Recursively unsolvable problems in mathematics and logic. Introduction to higher recursion theory. The theory of combinators and the lambda calculus. Prerequisites: 151, 152, and 161, or equivalents.
3 units, A: Win (Feferman), B: Spr (de Queiroz)

PHIL 352A,B. Set Theory—(Same as MATH 292A,B.) The basics of axiomatic set theory; the systems of Zermelo-Fraenkel and Bernays-Gödel. Topics: cardinal and ordinal numbers, the cumulative hierarchy and the role of the axiom of choice. Models of set theory, including the constructible sets and models constructed by the method of forcing. Consistency and independence results for the axiom of choice, the continuum hypothesis, and other unsettled mathematical and set-theoretical problems. Prerequisites: 151, 152, and 161, or equivalents.
3 units, A: Win, B: Spr (P. Cohen)

3 units, A: (Feferman) not given 2005-06 B: Aut (Mints)

PHIL 354. Topics in Logic—(Formerly PHIL/MATH 294.) Epsilon calculus. Syntax and semantics of first order epsilon calculus. Hilbert’s epsilon substitution method. Recent progress and open problems. Prerequisites: 151, 152, or equivalents.
3 units, Spr (Mints)

PHIL 355. The Logic of Collective Judgments and Beliefs—Topics in deliberative democracy and social epistemology. How do groups arrive at collective judgments? What is a collective belief and how is it formed? How can formal logic provide insights into these notions? Focus is on formal logical models relating to collective judgments and beliefs. Prerequisite: 151 or consent of instructor.
4 units, Win (Pauly)

PHIL 356. Applications of Modal Logic—Applications of modal logic to knowledge and belief, and actions and norms. Models of belief revision to develop a dynamic doxastic logic. A workable modeling of events and actions to build a dynamic deontic logic on that foundation.
3 units (Staff) not given 2005-06

PHIL 358. Logic, Language, and Information—(Formerly 298.) Logical systems for analyzing information structures, communication, and other cognitive actions. Special topics: systems for information update; logic and game theory. Prerequisite: 169 or equivalent background in modal logic.
3 units, Spr (van Benthem)

PHIL 359. Advanced Modal Logic—(Formerly 269.) Mathematical analysis of modal systems, including bisimulation and expressive power, correspondence theory, algebraic duality, completeness and incompleteness, and extended modal logics, up to guarded fragments of first-order logic, fixed-point logics, and second-order logic. Prerequisite: 151, 154/254, or an equivalent background.
4 units (van Benthem) not given 2005-06

PHIL 360. Core Seminar in Philosophy of Science—Limited to first- and second-year Philosophy Ph.D. students.
4 units (Friedman, Ryckman) alternate years, given 2006-07

PHIL 365. Seminar in Philosophy of Science: Structural Realism—This recent version of scientific realism and its differences with standard realism and antirealism. Historical antecedents in Hertz, Poincaré, Russell, Eddington, and Weyl.
4 units (Ryckman) not given 2005-06

PHIL 370. Core Seminar in Ethics—(Formerly 270.) Limited to first- and second-year students in the Philosophy Ph.D. program.
4 units, Aut (Hussain)

PHIL 372. Problems in Kantian Ethics—May be repeated for credit.
4 units, Win (Schapiro)

PHIL 374. Valuing—What is it to value something? How is valuing related to desire? Judging something to be valuable, caring, the emotions, or having policies? What is the relation between valuing and the will? Are there reasons for valuing things or pursuing what we value? Readings from contemporary literature including Bratman, Frankfurt, Harman, Helm, Raz, Scheffler, and Velleman.
4 units (Jaworska) not given 2005-06

PHIL 376. Agency and Personal Identity—How philosophical theories of agency interact with philosophical accounts of personal identity. Readings include David Velleman and Harry Frankfurt.
4 units, Spr (Bratman, Perry)

PHIL 377. Topics in Democratic Theory—(Same as POLSCI 333.) Modern approaches to democratic theory including liberal, communitarian, republican, and participatory theories beginning with the works of Locke, Rousseau, and Mill. Writers: John Rawls, Ronald Dworkin, Jeremy Waldron, Joshua Cohen, Habermas, Petit, Iris Marion Young, Ian Shapiro, and Amy Gutmann.
3-5 units (Ferejohn, Satz) alternate years, given 2006-07

PHIL 378. Problems in Medical Ethics—Focus is on recent philosophical work concerning the moral status of non-paradigmatic human beings such as fetuses or Alzheimer’s patients, and non-ideal conditions of decision making such as concretized emotions or exploitation. Prerequisite: 170 or equivalent.
4 units, Win (Jaworska)

PHIL 379. Graduate Seminar in Metaethics—Theories about the meaning of ethical terms and the content of ethical judgments. Do these theories fit with best accounts of human agency and practical deliberation? Readings from recent literature. Prerequisites: 173B/273B, 181, 187/287 or equivalent.
4 units (Hussain) not given 2005-06

PHIL 380. Core Seminar in Metaphysics and Epistemology—Limited to first- and second-year students in the Philosophy Ph.D. program.
4 units, Win (Perry)

PHIL 381. Core Seminar in Philosophy of Language—Limited to first- and second-year students in the Philosophy Ph.D. program.
4 units (Perry) alternate years, given 2006-07

2 units, Aut (Esser, Suppes, Føllesdal)

PHIL 383. Justification and Entitlement—The recent idea that one is entitled to certain beliefs, without having to justify them, has been garnering support from rationalist and empiricist philosophers. What epistemic entitlement might be, whether anyone has it, and what it might be good for. Readings include Goldman, Burge, Peacocke, Sellar, and Williams.
4 units (Lawlor) not given 2005-06

PHIL 385B. Topics in Metaphysics and Epistemology
4 units, Spr (Crinmins)

PHIL 386B. Subjectivity—Readings from Husserl and others in the phenomenological tradition, and recent work on intentionality and consciousness by philosophers and cognitive scientists.
4 units, Aut (Føllesdal, Perry)

PHIL 387. Practical Reason—Contemporary work on practical rationality.
4 units (Bratman) not given 2005-06
PHIL 388. Graduate Seminar in Philosophy of Language
4 units, Win (Taylor)

PHIL 435. Topics in the Philosophy of Social Science—(Enroll in POLISCI 435.)
5 units, Spr (Stone)

PHIL 450. Thesis
1-15 units, Aut, Win, Spr, Sum (Staff)

PHYSICS

Emeriti: (Professors) Stanley S. Hanna, William A. Little, Walter E. Meyerhof, David M. Risdon, H. Alan Schwetman, Richard Taylor (SLAC), Mason R. Yearian; (Professor, Research) John P. Turneaure; (Professor, Courtesy) Peter A. Sturrock, Robert Wagener
Chair: Stanley G. Wojcicki
Associate Chair: Robert Wagener
Directors of Graduate Study: Sarah Church, Shoucheng Zhang
Director of Undergraduate Study: Roger Romani
Associate Professors: Tom Abel, Shamit Kachru, Roger W. Romani, Eva Silverstein
Assistant Professors: Sarah Church, David Goldhaber-Gordon, Hari Manoharan, Steve Allen
Professors (Research): John A. Lipa, Phillip H. Scherrer, Todd I. Smith
Courtesy Professor: Richard N. Zare
Lecturers: Alexander Kossovich, Gregorz M. Madejski, Rick Pam
Consulting Professors: Ralph DeVoe, Barbara Jones, Alan Title
Visiting Professors: Gerald Fisher, Allen Tucker, Gareth Williams
Department Offices: 382 Via Pueblo Mall
Mail Code: 94305-4060
Phone: (650) 723-4344
Web Site: http://www.stanford.edu/dept/physics

Courses in Physics have the subject code PHYSICS. For a complete list of subject codes, see Appendix.

The study of physics is undertaken by three principal groups of students: those preparing for careers in professional fields that require a knowledge of physics, such as medicine or engineering; and those preparing for careers in physics or related fields, including teaching and research in colleges and universities, research in federally funded laboratories and industry, and jobs in technical areas. Physics courses numbered below 100 are intended to provide a sound foundation in physics or related fields, including teaching and research in colleges and universities, research in federally funded laboratories and industry, and jobs in technical areas. Physics courses numbered below 100 are intended to provide a sound foundation in physics or related fields, including teaching and research in colleges and universities, research in federally funded laboratories and industry, and jobs in technical areas.

The Physics Library, a center for the reading and study of physics and astronomy at all levels, includes print and electronic access to current subscriptions and back sets of important journals together with textbooks, dissertations, scholarly monographs, and the collected works of the most eminent physicists.

Course work is designed to provide students with a sound foundation in both classical and modern physics. Students who wish to specialize in astronomy, astrophysics, or space science should also consult the “Astronomy Course Program” section of this bulletin.

Three introductory series of courses include labs in which undergraduates carry out individual experiments. The Intermediate and Advanced Physics Laboratories offer facilities for increasingly complex individual work. Laboratories provide students with a sound basis for more advanced laboratory work, including the conception, design, and fabrication of laboratory equipment. Undergraduates are also encouraged to participate in research; most can do this through the honors program and/or the summer research program.

Graduate students find opportunities for research in the fields of astrophysics, particle astrophysics, cosmology, experimental particle physics, theoretical particle physics, intermediate energy physics, low temperature physics, condensed matter physics, materials research, atomic physics, laser physics, quantum electronics, coherent optical radiation, novel imaging technologies, and biophysics. Faculty advisers are drawn from many departments, including Physics, Applied Physics, Materials Science and Engineering, Electrical Engineering, and Biological Sciences. Opportunities for research are also available with the faculty at SLAC in the areas of theoretical and experimental particle physics, particle astrophysics, cosmology, and accelerator design.

The number of graduate students admitted to the Department of Physics is strictly limited. Students should submit applications by December 14 for the following Autumn Quarter. Graduate students may normally enter the department only at the beginning of Autumn Quarter.

UNDERGRADUATE PROGRAMS

The study of physics is undertaken by three principal groups of undergraduates: those including physics as part of a general education; those preparing for careers in professional fields that require a knowledge of physics, such as medicine or engineering; and those preparing for careers in physics or related fields, including teaching and research in colleges and universities, research in federally funded laboratories and industry, and jobs in technical areas. Physics courses numbered below 100 are intended to serve all three of these groups. The courses numbered above 100 meet the needs mainly of the third group, but also of some students majoring in other branches of science and in engineering.
ENTRY-LEVEL SEQUENCES
The Department of Physics offers three year-long, entry-level physics sequences, the PHYSICS 20, 40 (formerly 50), and 60 series. The first of these is non-calculus-based, and is intended primarily for those who are majoring in the biological sciences. Such students with AP credit, particularly those who are considering research careers, may wish to consider taking the PHYSICS 20 or 40 series, rather than using AP placement. These introductory series provide a depth and emphasis on problem solving that is of significant value in biological research, which today involves considerable physics-based technology.

For those intending to major in engineering or the physical sciences, or simply wishing a stronger background in physics, the department offers the PHYSICS 40 and 60 series. Either of these satisfy the entry-level physics requirements of any Stanford major. The 60 series is intended for those who have already taken a Physics course at the level of the 40 series, or at least have a strong background in mechanics, some background in electricity and magnetism, and a strong background in calculus. The PHYSICS 40 series begins with mechanics in Winter Quarter, electricity and magnetism in Spring Quarter, and light and heat in Autumn Quarter. While it is recommended that most students begin the sequence with mechanics (PHYSICS 41) in Winter Quarter, those who have had strong physics preparation in high school (such as a score of at least 4 on the Physics Advanced Placement C exam) may start the sequence with PHYSICS 45 in Autumn Quarter.

BACHELOR OF SCIENCE
A calculus-based entry-level series is required, either PHYSICS 61, 63, 64, 65, 67, or 41, 43, 44, 45, 46 (or preferably 67 rather than 44). Students who take the PHYSICS 40 series take PHYSICS 70, which covers the foundations of modern physics. This material is incorporated into the PHYSICS 60 series beginning in 2005-06. Students taking the PHYSICS 60 series in 2005-06 or later do not take PHYSICS 70; instead they must take one advanced Physics elective (100-level or higher). In addition, the following more advanced courses are required: PHYSICS 105, 107 (WIM), 108, 110, 120, 121, 130, 131, 170, and 171; MATH 51, 52, 53, 131; one additional Mathematics course numbered 100 or higher; or PHYSICS 112. MATH 51H, 52H, and 53H may substitute for MATH 51, 52, and 53. It is strongly recommended that students intending to complete a Ph.D. in Physics also take PHYSICS 113, 134, and one or more of the following, depending upon their interests: PHYSICS 152, 153A,B, 160, 161, 172, 181, 204. PHYSICS 113 is designed to be taken in parallel with 110. The department advises the study of some computer science such as CS 106. Mathematics and Physics courses taken to satisfy the department’s major requirements cannot be taken on a credit/no credit basis. Prospective Physics majors are also recommended to take PHYSICS 59, Current Research Topics, in their freshman or sophomore year.

To decide which introductory sequence is appropriate, students contemplating majoring in Physics are urged to consult with the instructor of PHYSICS 61, 41 or 45, or the Director of Undergraduate Study, at the earliest possible date to see which sequence is the most suitable. Students who begin taking an entry level Physics course after their freshman year and wish to major in Physics are generally advised to take the PHYSICS 61, 63, 65 sequence, provided they have previously taken MATH 41.

Undergraduates are offered help with physics problems in the department tutoring center, the Reference Frame, which is staffed Monday through Thursday.

REQUIRED COURSES FOR MAJORS

INTRODUCTORY SEQUENCE

<table>
<thead>
<tr>
<th>Course No. and Subject</th>
<th>Qtr. and Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSICS 41 (formerly 53), Mechanics</td>
<td>W 4</td>
</tr>
<tr>
<td>PHYSICS 43 (formerly 55), Electricity and Magnetism</td>
<td>S 4</td>
</tr>
<tr>
<td>PHYSICS 44 (formerly 56), Electricity and Magnetism Lab</td>
<td>S 1</td>
</tr>
<tr>
<td>PHYSICS 45 (formerly 51), Light and Heat</td>
<td>A 4</td>
</tr>
<tr>
<td>PHYSICS 46 (formerly 52), Light and Heat Lab</td>
<td>A 1</td>
</tr>
<tr>
<td>PHYSICS 67 Introduction to Laboratory Physics</td>
<td>(recommended for prospective majors)</td>
</tr>
<tr>
<td>PHYSICS 70, Foundations of Modern Physics or</td>
<td></td>
</tr>
<tr>
<td>PHYSICS 61, Mechanics and Special Relativity</td>
<td>A 4</td>
</tr>
</tbody>
</table>

PHYSICS 63, Electricity, Magnetism and Waves	W 4
PHYSICS 64, Electromagnetism Lab	W 1
PHYSICS 65, Thermodynamics and Foundations of Modern Physics	S 4
PHYSICS 67, Introduction to Laboratory Physics	S 2
and MATH 51, 52, 53, Multivariable Math (or H series)	A, W, S 15
PHYSICS 59, Current Research Topics (recommended)*	A 1

INTERMEDIATE SEQUENCE

<table>
<thead>
<tr>
<th>Course No. and Subject</th>
<th>Qtr. and Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSICS 105, Physics Laboratory I: Analog Electronics</td>
<td>A 3</td>
</tr>
<tr>
<td>PHYSICS 107, Physics Laboratory II: Analysis (WIM)</td>
<td>W 4</td>
</tr>
<tr>
<td>PHYSICS 108, Physics Laboratory III: Project</td>
<td>S 3</td>
</tr>
<tr>
<td>PHYSICS 110, Intermediate Mechanics</td>
<td>S 4</td>
</tr>
<tr>
<td>PHYSICS 112. Math Methods of Physics (recommended)**</td>
<td>W 4</td>
</tr>
<tr>
<td>PHYSICS 113. Computational Physics (recommended)*</td>
<td>S 4</td>
</tr>
<tr>
<td>PHYSICS 120,121, Intermediate Electricity and Magnetism</td>
<td>W, S 8</td>
</tr>
<tr>
<td>and MATH 131. Partial Differential Equations</td>
<td>A, W 3</td>
</tr>
</tbody>
</table>

ADVANCED SEQUENCE

<table>
<thead>
<tr>
<th>Course No. and Subject</th>
<th>Qtr. and Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSICS 130,131, Quantum Mechanics</td>
<td>A, W 8</td>
</tr>
<tr>
<td>PHYSICS 134, Advanced Topics in Quantum Mechanics*</td>
<td>S 4</td>
</tr>
<tr>
<td>PHYSICS 170,171, Statistical Mechanics</td>
<td>A, W 8</td>
</tr>
<tr>
<td>and one advanced Mathematics elective (100 level or higher)</td>
<td></td>
</tr>
<tr>
<td>or PHYSICS 112</td>
<td></td>
</tr>
<tr>
<td>One advanced Physics elective (100 level or higher): required only for students who did not take PHYSICS 70</td>
<td></td>
</tr>
</tbody>
</table>

* These courses are not required, but 113 and 134 are recommended for students who intend to complete a Ph.D. in Physics.
** Those wishing to do physics theory in graduate school may wish to take a collection of courses in the Department of Mathematics rather than PHYSICS 112.

For sample schedules illustrating how to complete the Physics major, see http://www.stanford.edu/dept/physics/academics/undergrad.html#sample.

CONCENTRATIONS IN PHYSICS

The primary purpose of concentrations in the Physics major is to provide consistent and more formal advising to students who want to concentrate in a particular area of physics during their undergraduate education, or prepare for future studies (e.g., graduate studies) in a particular area of physics. Physics majors are not required to choose a concentration and a concentration does not add any formal requirements to the Physics major. Upon graduation, students will receive a certificate of completion of a concentration.

Students seeking further advice on a given concentration should contact the professor whose name appears next to the respective title of each section below.

A. THEORETICAL PHYSICS (Andrei Linde)
At least four, one quarter courses selected from the following courses, or three courses plus an honors thesis:

<table>
<thead>
<tr>
<th>Course No. and Subject</th>
<th>Qtr. and Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSICS 204, Advanced Seminar in Theoretical Physics</td>
<td>A 2</td>
</tr>
<tr>
<td>PHYSICS 212, Statistical Mechanics</td>
<td>A 2</td>
</tr>
<tr>
<td>PHYSICS 230, 231, 232, Quantum Mechanics</td>
<td>A 2</td>
</tr>
<tr>
<td>PHYSICS 252, Introduction to High Energy Physics</td>
<td>A 2</td>
</tr>
<tr>
<td>PHYSICS 260, Introduction to Astrophysics and Cosmology</td>
<td>A 2</td>
</tr>
<tr>
<td>PHYSICS 262, Introduction to Gravitation</td>
<td>A 2</td>
</tr>
<tr>
<td>PHYSICS 330, 331, 332, Quantum Field Theory</td>
<td>A 2</td>
</tr>
<tr>
<td>PHYSICS 351, 352, Elementary Particle Physics</td>
<td>A 2</td>
</tr>
<tr>
<td>PHYSICS 362, Advanced Extragalactic Astrophysics and Cosmology</td>
<td>A 2</td>
</tr>
<tr>
<td>PHYSICS 364, Advanced Gravitation</td>
<td>A 2</td>
</tr>
</tbody>
</table>

Notes to students taking this concentration:
1. No more than one of the courses should be taken for CR/NC.
2. Students should take either the undergraduate Quantum Mechanics series (PHYSICS 130, 131, 134) or the graduate series (PHYSICS 230-232), but not both for credit.
3. Students should discuss the choice of courses with members of the Institute for Theoretical Physics and/or their major adviser.

B. APPLIED PHYSICS (Hari Manoharan)
At least four, one quarter courses selected from the following courses, or three courses plus an honors thesis:

<table>
<thead>
<tr>
<th>Course No. and Subject</th>
<th>Qtr. and Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSICS 172, Physics of Solids I</td>
<td>A 2</td>
</tr>
<tr>
<td>APPPHYS 270, Magnetism and Long Range Order in Solids</td>
<td>A 2</td>
</tr>
<tr>
<td>MATSCI 195, Waves and Diffraction in Solids</td>
<td>A 2</td>
</tr>
</tbody>
</table>
C. BIOPHYSICS (David Goldhaber-Gordon)

We recommend that Physics majors interested in pursuing a career in biophysics consider a minor in Biological Sciences.

D. ASTROPHYSICS (Roger Romani, Sarah Church)

Requirements:
PHYSICS 100. Introduction to Observational and Laboratory Astronomy
PHYSICS 160. Introduction to Stellar and Galactic Astrophysics
PHYSICS 161. Introduction to Extragalactic Astrophysics and Cosmology

Plus one elective from below or an honors thesis:
PHYSICS 211. Continuum Mechanics
PHYSICS 260. Introduction to Astrophysics and Cosmology
PHYSICS 262. Introduction to Gravitation
PHYSICS 312. Basic Plasma Physics
(prerequisites are PHYSICS 210 and PHYSICS 220)

E. GEOPHYSICS (Rosemary Knight, Geophysics)

At least four, one quarter courses selected from the following courses, or three courses plus an honors thesis:
GEOPHYS 102. Geosphere
GEOPHYS 112. Exploring Geosciences with MATLAB
GEOPHYS 140. Introduction to Remote Sensing
GEOPHYS 150. General Geophysics and Physics of the Earth
GEOPHYS 180. Geophysical Inverse Problems
GEOPHYS 182. Reflection Seismology
GEOPHYS 190. Near-Surface Geophysics
GEOPHYS 262. Rock Physics
GEOPHYS 288. Crustal Deformation

INDIVIDUALLY DESIGNED MAJOR PROGRAM IN TEACHING PHYSICAL SCIENCE

This major, a joint effort of the Department of Physics and the Stanford Teacher Education Program, is designed for students to prepare themselves as high school teachers of physics and general science. Students complete 45-47 units of Physics and related Mathematics courses, 40-43 units of course work in other sciences such as the life sciences, chemistry, and geosciences, and in general issues of science, and 9-15 units of concentration and depth courses. Total program units: 94-105. Students interested in this program should consult Professor Patricia Burchat (burchat@stanford.edu, 725-5771), and Frederic Stout, coordinator of the STEP Coterminal Teaching Program in the School of Education (fstout@stanford.edu, 725-6321).

CORE PHYSICS COURSES:

Course No. and Subject Qtr. and Units
Mechanics:
PHYSICS 41. Mechanics or PHYSICS 61. Mechanics and Special Relativity 4
Heat:
PHYSICS 45. Light and Heat
PHYSICS 46. Light and Heat Lab

PHYSICS 65. Thermodynamics and Foundations of Modern Physics
Electricity and Magnetism:
PHYSICS 43. Electricity and Magnetism
PHYSICS 63. Electricity, Magnetism, and Waves
PHYSICS 64. Electricity and Magnetism Lab
PHYSICS 105. Analog Electronics (Lab) 8-9
Wave Motion:
PHYSICS 107. Laboratory Seminar. Optics (WIM) 4
Modern Physics:
PHYSICS 70. Foundations of Modern Physics 4
Applications:
PHYSICS 59. Current Research Topics 1

Mathematics (Physics departmental requirement):
MATH 51, 52, 53. Multivariable Calculus

and a course in Statistics (choose one):
STATS 110. Statistical Methods in Engineering and the Physical Sciences
STATS 116. Theory of Probability
STATS 141. Biostatistics
STATS 166. Statistical Methods in Computational Genetics

STATS 191. Introduction to Applied Statistics 20

Total ... 45-47

ADDITIONAL SCIENCE BREADTH COURSES

Life Sciences:
BIOSCI 41. Evolution, Genetics, and Ecology
BIOSCI 42. Biochemistry, Molecular Biology, and Cell Biology
BIOSCI 43. Development and Physiology of Organisms
CHEM 31. Chemical Principles
CHEM 33. Structure and Reactivity

Geosciences:
EARTHSYS 10. Introduction to Earth Systems
PHYSICS 15. The Nature of the Universe
PHYSICS 16. Cosmic Horizons

General Issues of Science:
STS 101. Science, Technology, and Contemporary Society
HUMBIO 2S, 3S, 4S
and EDUC 180. Directed Reading in History of Science

and ENGR 103. Public Speaking and Presentation Development

CONCENTRATION AND DEPTH COURSES

3 courses (100 level or above) in a single area of concentration

Total units for general science 49-58
Total units for the Physical Science program ... 94-105

This individually designed major program in Physical Science includes all the elements of a Program of Subject Matter Preparation for Secondary Teachers of Physics and General Science that has been approved by the California Commission on Teacher Credentialing (CCTC). Students who complete the program are exempt from taking the CSET examination in Physics and General Science for admission to the Stanford Teacher Education Program (STEP) or any other accredited secondary teacher education program in California. Full details of the CCTC-approved program may be found at http://ed.stanford.edu/suse/programs-degrees/program-co-terminal-step.html. Note: the Stanford individually designed major program in Physical Science requires course work beyond the CCTC-approved program, specifically 9-15 units of depth courses in a field of concentration: Physics, Astrophysics, Biological Sciences, Chemistry, Earth Sciences, Human Biology, or Computational Mathematics. See the adviser in the Physics department or the School of Education for more details.

MINORS

Students who take the 20 or 40 series at Stanford in support of their major may count those units towards the minor. Those who have fulfilled Physics requirements at the 20 or 40 series level by enrollment at another accredited university, or through advanced placement credits, may count credits towards 21/22 and 23/24, or 41 and 43/44, respectively. 25/26, or 45/46 for a technical minor, must be taken at Stanford even if similar material has been covered elsewhere. With the 21/22/23/24 or 41/43/44 exception noted above, all courses for the minor must be taken at Stanford University for a letter grade, and a grade of ‘C’ or better must be received for all units applied toward the minor. The minor declaration deadline is three quarters before graduation, i.e., beginning of Autumn Quarter if the student is graduating at the end of Spring Quarter.

MINOR IN PHYSICS

An undergraduate minor in Physics requires a minimum of 27 units with the following course work:

Non-Technical—For students whose majors do not require the PHYSICS 40 or 60 series:

Course No. Units
PHYSICS 21, 22, 23, 24, 25, and 26 12
Any combination of Physics courses totaling 15 units or greater 15

Total ... 27
MINOR IN ASTRONOMY

Students wishing to pursue advanced work in astrophysical sciences should major in physics and concentrate in astrophysics. However, students outside of physics with a general interest in astronomy may organize their studies by completing one of the following minor programs.

An undergraduate minor in astronomy requires the following courses:

Non-Technical—For students whose majors do not require the PHYSICS 40 series:

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSICS 41, 43/44, 45/46 and PHYSICS 70</td>
<td>18</td>
</tr>
<tr>
<td>or PHYSICS 61, 63/64, 65/67</td>
<td>15</td>
</tr>
</tbody>
</table>

at least three PHYSICS courses numbered 100 or above 15

Total .. 27-30

Technical—For students whose majors require the PHYSICS 40 series:

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSICS 15, 16, 17</td>
<td>6</td>
</tr>
<tr>
<td>Choose two courses from the following:</td>
<td></td>
</tr>
<tr>
<td>PHYSICS 15, 16, 17</td>
<td>6</td>
</tr>
<tr>
<td>PHYSICS 15, 16, 17</td>
<td>6</td>
</tr>
</tbody>
</table>

Total .. 19-20 (9-10 in addition to the 20 series)

GRADUATE PROGRAMS

MASTER OF SCIENCE

The department does not offer a coterminal degree program, or a separate program for the M.S. degree, but this degree may be awarded for a portion of the Ph.D. degree work.

University requirements for the master’s degree, discussed in the “Graduate Degrees” section of this bulletin, include completion of 45 units of unduplicated course work after the bachelor’s degree. Among the department requirements are a grade point average (GPA) of at least 3.0 (B) in courses 210 or 211, 212, 220, 221, 230, 231, or their equivalents. Up to 6 of these required units may be waived on petition if a thesis is submitted.

DOCTOR OF PHILOSOPHY

The university’s basic requirements for the Ph.D. are discussed in the “Graduate Degrees” section of this bulletin. The minimum department requirements for the Ph.D. degree in Physics consist of completing all courses listed below, and at least one quarter from each of two subject areas (among condensed matter, quantum optics and atomic physics, astrophysics and gravitation, and nuclear and particle physics) chosen from courses with numbers above 232, except 290 and 294. The requirements in the following list may be fulfilled by passing the course at Stanford or passing an equivalent course elsewhere: 210 or 211, 212, 220, 221, 230, 231, 290, 294. A grade point average (GPA) of at least 3.0 (B) is required in all the courses taken toward the degree.

All Ph.D. candidates must have math proficiency equivalent to the following Stanford math courses: 106, 113, 114, 131, 132.

Prior to making an application for candidacy, each student is required to pass a comprehensive qualifying examination on undergraduate physics. This closed book exam is given in the month of January immediately following the student’s arrival at Stanford. This is a written examination held over two days, covering particle mechanics, electricity and magnetism, quantum mechanics, statistical mechanics, thermodynamics, special relativity, and general physics. A thesis proposal must be submitted during the third year. In order to assess the direction and progress toward a thesis, an oral report and evaluation are required during the fourth year. After completion of the dissertation, each student must take the University oral examination (defense of dissertation).

Three quarters of teaching (including a demonstrated ability to teach) are a requirement for obtaining the Ph.D. in Physics.

Students interested in applied physics and biophysics research should also take note of the Ph.D. granted independently by the Department of Applied Physics and by the Biophysics Program. Students interested in astronomy, astrophysics, or space science should also consult the “Astronomy Course Program” section of this bulletin.

PH.D. MINOR

Minors in Physics must take at least six courses numbered 210 to 232 among the 20 required units. All prospective minors must obtain approval of their Physics course program from the Physics Graduate Study Committee at least one year before award of the Ph.D.

FELLOWSHIPS AND ASSISTANTSHIPS

The Department of Physics makes an effort to support all its graduate students through fellowships, teaching assistantships, research assistantships, or a combination of sources. Information on application procedures is mailed with the admission information.

TEACHING CREDENTIALS

For information on teaching credentials, consult the “School of Education” section of this bulletin or address an inquiry to the Credential Administrator, Office of Academic Services, Cubberley Building, School of Education.
COURSES

There are four series of beginning courses. One course from the teen series (11, 15, 16, 17, 19) is recommended for the humanities or social science student who wishes to become familiar with the methodology and content of modern physics. The 20 series (21, 22, 23, 24, 25, 26) is recommended for general students and for students preparing for medicine or biology. The 40 series (41, 43, 44, 45, 46; formerly the 50 series) is for students of engineering, chemistry, geology, mathematics, or physics. The advanced freshman series (61, 63, 64, 65, 67) is for students who have had strong preparation in physics and calculus in high school. Students who have had appropriate background and wish to major in physics should take this introductory series.

The 20, 40, and 60 series consist of demonstration lectures on the fundamental principles of physics, problem work on application of these principles to actual cases, and lab experiments correlated with the lectures. Their objectives are not only to give information on particular subjects, but also to provide training in the use of the scientific method. The primary difference between the series of courses is that topics are discussed more thoroughly and treated with greater mathematical rigor in the 40 and 60 series.

Courses beyond 99 are numbered in accordance with a three-digit code.

The first digit indicates the approximate level of the course:

- Undergraduate courses
- Research, special, or current topics

The second digit indicates the general subject matter:

- Laboratory
- General courses
- Nuclear physics
- Astrophysics, cosmology, gravitation
- Condensed matter physics
- Optics and atomic physics
- Miscellaneous courses

UNDERGRADUATE

WIM indicates that the course satisfies the Writing in the Major requirements.

PHYSICS 11N. The Basic Rules of Nature—Stanford Introductory Seminar. Preference to freshmen. Scientists have developed successful descriptions of the basic behavior of matter on microscopic scales (inner space) and on scales characteristic of the universe as a whole (outer space). Despite these successes, deep mysteries remain. Elements of these successful descriptions including quantum mechanics, particle physics, and general relativity. Remaining mysteries and the leading approaches that scientists hope will unravel them including string theory and M theory. Discussions are semiquantitative. Term project paper. Prerequisite: high school physics or equivalent. GER:DB-NatSci

3 units, Aut (Shenk)

PHYSICS 15, 16, 17, Topics in Modern Astronomy—Designed for, but not restricted to, undergraduates not majoring in the physical sciences. Emphasis is on aspects of modern astronomy, astrophysics, and cosmology. No mathematics beyond algebra used. Courses may be taken individually or in sequence.

PHYSICS 15. The Nature of the Universe—The structure, origin, and evolution of the major components of the Universe: planets, stars, and galaxies. Emphasis is on the formation of the Sun and planets, the evolution of stars, and the structure and content of our galaxy. Topics: cosmic enigmas (dark matter, black holes, pulsars, X-ray sources), star birth and death, and the origins of and search for life in the solar system and beyond. GER:DB-NatSci

3 units, Win, Sum (Sako)

PHYSICS 16. Cosmic Horizons—The origin and evolution of the universe and its contents: stars, galaxies, quasars. The overall structure of the cosmos and the physical laws that govern matter, space, and time. Topics include the evolution of the cosmos from its primeval fireball, the origin of the elements and the formation of stars and galaxies, exotic astronomical objects (black holes, quasars, supernovae, and gamma ray bursts), dark matter, and the fate of the cosmos. GER:DB-NatSci

3 units, Aut (Abel)

PHYSICS 17. Black Holes—Newton’s and Einstein’s theories of gravity and their relationship to the predicted properties of black holes. Their formation and detection, and role in galaxies and high-energy jets. Hawking radiation and aspects of quantum gravity. GER: DB-NatSci

3 units, Spr (Blandford)

PHYSICS 19. How Things Work: An Introduction to Physics—Principles of physics in an approachable context by examining familiar objects such as a microwave oven, refrigerator, and pop-up toaster. Emphasis is on developing an intuitive picture. Estimates of real quantities from simple calculations. Prerequisite: high school algebra and trigonometry. GER:DB-NatSci

3 units, Win (I.R. Fisher)

PHYSICS 21. Mechanics and Heat—For biology, social science, and premedical students. Introduction to Newtonian mechanics, fluid mechanics, theory of heat. Calculus is used as a language and developed as needed. Prerequisite: working knowledge of elementary algebra and trigonometry. GER:DB-NatSci

3 units, Aut (Wojcicki)

PHYSICS 21S. Mechanics and Heat w/laboratory—Equivalent to 21 and 22. GER:DB-NatSci

4 units, Sum (G. Fisher)

1 unit, Aut (Staff)

PHYSICS 23. Electricity and Optics—Electric charges and currents, magnetism, induced currents; wave motion, interference, diffraction, geometrical optics. Prerequisite: 21. GER:DB-NatSci

3 units, Win (Gratta)

PHYSICS 24. Electricity and Optics Laboratory—Pre- or corequisite: 23.

1 unit, Win (Staff)

PHYSICS 25. Modern Physics—Introduction to modern physics. Relativity, quantum mechanics, atomic theory, radioactivity, nuclear reactions, nuclear structure, high energy physics, elementary particles, astrophysics, stellar evolution, and the big bang. Prerequisite: 23 or consent of instructor. GER:DB-NatSci

3 units, Spr (Linde)

4 units, Sum (G. Fisher)

PHYSICS 26. Modern Physics Laboratory—Pre- or corequisite: 25.

1 unit, Spr (Staff)

PHYSICS 28. Mechanics, Heat, and Electricity—For biology, social science, and premedical students. The sequence 28 and 29 fulfills, in ten weeks, the one-year college physics requirement with lab of most medical schools. Topics: Newtonian mechanics, fluid mechanics, theory of heat, electric charges, and currents. Calculus is used as a language and developed as needed. Prerequisite: working knowledge of elementary algebra and trigonometry. GER:DB-NatSci

6 units, Sum (G. Fisher)
PHYSICS 29. Electricity and Magnetism, Optics, Modern Physics—Magnetism, induced currents; wave motion, optics; relativity, quantum mechanics, atomic theory, radioactivity, nuclear structure and reactions, elementary particles, astrophysics, and cosmology. Prerequisite: 28. GER:DB-NatSci
6 units, Sum (G. Fisher)

PHYSICS 41. Mechanics—(Formerly 53.) Vectors, particle kinematics and dynamics, work, energy, momentum, angular momentum; conservation laws; rigid bodies; mechanical oscillations and waves. Discussions based on use of calculus. Corequisite: MATH 19 or 41, or consent of instructor. GER:DB-NatSci
4 units, Win (Susskind)

PHYSICS 43. Electricity and Magnetism—(Formerly 55.) Electrostatics, Coulomb’s law, electric fields and fluxes, electric potential, properties of conductors, Gauss’s law, capacitors and resistors, DC circuits; Magnetic forces and fields, Biot-Savart law, Faraday’s law, Ampere’s law, inductors, transformers, AC circuits, motors and generators, electric power, Galilean transformation of electric and magnetic fields, Maxwell’s equations; limited coverage of electromagnetic fields and special relativity. Prerequisites: 41 (formerly 53), and MATH 19 or 41. Corequisite: MATH 20 or 42, or consent of instructor. GER:DB-NatSci
4 units, Spr (Osheroff)

PHYSICS 44. Electricity and Magnetism Lab—(Formerly 56.) Pre- or corequisite: 43 (formerly 55).
1 unit, Spr (Staff)

PHYSICS 45. Light and Heat—(Formerly 51.) Reflection and refraction, lenses and lens systems; polarization, interference, and diffraction; temperature, properties of matter and thermodynamics, introduction to kinetic theory of matter. Prerequisites: high school physics or 41 (formerly 53), and MATH 19 or 41, or consent of instructor. GER:DB-NatSci
4 units, Aut (Michelson)

PHYSICS 45N. Advanced Topics in Light and Heat—Stanford Introductory Seminar. Preference to freshmen. Expands on the subject matter presented in 45 to include optics and thermodynamics in everyday life, and applications in the research laboratory. Corequisite: 45 or advanced placement.
1 unit, Aut (Greven)

PHYSICS 46. Light and Heat Laboratory—(Formerly 52.) Pre- or corequisite: 45 (formerly 51).
1 unit, Aut (Staff)

PHYSICS 50. Astronomy Laboratory and Observational Astronomy—Introduction to observational astronomy with emphasis on the use of optical telescopes. Observations of stars, nebulae, and galaxies in laboratory sessions with 16- and 24-inch telescopes at the Stanford Observatory. Lectures and analysis are descriptive; no calculations or previous physics required. Limited enrollment. Lab. GER:DB-NatSci
3 units, Spr (Church)

PHYSICS 59. Current Research Topics—Recommended for prospective Physics majors. Presentations of current research topics by faculty with research interests related to physics, often including tours of experimental laboratories where the research is conducted.
1 unit, Aut (Staff)

PHYSICS 61,63,65. Advanced Freshman Physics—For students with a strong high school mathematics and physics background contemplating a major in Physics or interested in a rigorous treatment of physics. The fundamental structure of classical physics including Newtonian mechanics, electricity and magnetism, waves, optics, thermodynamics, Foundations of modern physics including special relativity, atomic structure, quantization of light, matter waves and the Schrödinger equation. Diagnostic quiz in calculus and conceptual Newtonian mechanics at first meeting to decide if course is appropriate; some students may benefit more from the 40 (formerly 50) series. Prerequisites: high school physics and familiarity with calculus (differentiation and integration in one variable); pre- or corequisite MATH 42. GER:DB-NatSci
PHYSICS 61. Mechanics and Special Relativity
4 units, Aut (Susskind)

PHYSICS 63. Electricity, Magnetism, and Waves
4 units, Win (Allen)

PHYSICS 65. Thermodynamics and Foundations of Modern Physics
4 units, Spr (Marcus)

PHYSICS 64. Advanced Electromagnetism Laboratory—Experimental work in mechanics, electricity and magnetism. Corequisite 63.
1 unit, Win (Staff)

2 units, Spr (Fisher)

PHYSICS 70. Foundations of Modern Physics—Required for Physics majors who completed the 40 or 50 series, or the PHYSICS 60 series prior to 2005-06. Special relativity, the experimental basis of quantum theory, atomic structure, quantization of light, matter waves, Schrödinger equation. Prerequisites: 41, 43. Corequisite: 45. Recommended: prior or concurrent registration in MATH 53.
4 units, Aut (Kasevich)

PHYSICS 80N. The Technical Aspects of Photography—Stanford Introductory Seminar. Preference to freshmen. For those with some background in photography. How cameras record photographic images on film and electronically. The technical photographic processes which the photographer must understand in order to use cameras effectively. Camera types and their advantages, how lenses work and their limitations, camera shutters, light meters and the proper exposure of film, film types, depth of focus, control of the focal plane and perspective, and special strategies for macro and night photography. View cameras and range finder technical cameras. Students exploit the flexibility of these formats to take photographs around campus. Prerequisite: knowledge of elementary physics.
3 units, Win (Osheroff)

PHYSICS 83N. Physics in the 21st Century—Stanford Introductory Seminar. Preference to freshmen. Current topics at the frontier of modern physics. Topics include subatomic particles and the standard model, symmetries in nature, extra dimensions of space, string theory, supersymmetry, the big bang theory of the origin of the universe, black holes, dark matter, and dark energy of the universe. Why does the sun shine; cosmology and inflation. GER:DB-NatSci
3 units, Win (Dimopoulos)

3 units, Aut (Manoharan)

PHYSICS 100. Introduction to Observational and Laboratory Astronomy—For physical science or engineering students. Emphasis is on the quantitative measurement of astronomical parameters such as distance, temperature, mass, composition of stars, galaxies, and quasars. Observation using the 16- and 24-inch telescopes at the Stanford Observatory. Limited enrollment. Prerequisites: one year of physics; prior or concurrent registration in 25, 65, or 70; and consent of instructor. GER:DB-NatSci
4 units, Aut (Romani)
PHYSICS 105, 107, 108. Intermediate Physics Laboratory Sequence — Sequence in experimental techniques required of all Physics majors.

PHYSICS 105. Intermediate Physics Laboratory I: Analog Electronics — Analog electronics, from Ohm’s Law and passive circuits to transistor and op amp circuits, with an emphasis on developing practical circuit design skills to prepare undergraduates for laboratory research. Course culminates in a short design project. Minimal use of math and physics, no prior electronics experience assumed beyond introductory physics. Prerequisite: PHYSICS 43 (formerly 55) or 63 or other introductory electricity and magnetism course.

3 units, Aut (Pam)

PHYSICS 107. Intermediate Physics Laboratory II: Experimental Techniques and Data Analysis — Experiments on lasers, Gaussian optics, and atom-light interaction, with emphasis on data and error analysis techniques. Students describe a subset of experiments in scientific paper format. Prerequisites: completion of 40 (formerly 50) or 60 series, 70, and 105. Recommended: 130, prior or concurrent enrollment in 120. WIM

4 units, Win (Kasevich)

3 units, Spr (Moler)

4 units, Spr (Gratta)

PHYSICS 112. Mathematical Methods of Physics — Theory of complex variables, complex functions, and complex analysis. Fourier series and Fourier transforms. Special functions such as Laguerre, Legendre, and Hermite polynomials, and Bessel functions. The uses of Green’s functions. Covers material of MATH 106 and 132 most pertinent to Physics majors. Prerequisites: MATH 50 or 50H series, MATH 131.

4 units, Win (Fetter)

PHYSICS 113. Computational Physics — Numerical methods for solving problems in mechanics, electromagnetism, quantum mechanics, and statistical mechanics. Methods include numerical integration; solutions of ordinary and partial differential equations; solutions of the diffusion equation, Laplace’s equation and Poisson’s equation with relaxation methods; statistical methods including Monte Carlo techniques; matrix methods and eigenvalue problems. Short introduction to MatLab, used for class examples; class projects may be programmed in any language such as C. Prerequisites: MATH 53, prior or concurrent registration in PHYSICS 110, 121. Previous programming experience not required.

4 units (Cabrida) not given 2005-06

PHYSICS 120, 121. Intermediate Electricity and Magnetism — Vector analysis, electrostatic fields, including multipole expansion; dielectrics. Special relativity and transformation between electric and magnetic fields. Maxwell’s equations. Static magnetic fields, magnetic materials. Electromagnetic radiation, plane wave problems (free space, conductors and dielectric materials, boundaries). Dipole and quadrupole radiation. Wave guides and cavities. Prerequisites: 43 (formerly 55) or 63; concurrent or prior registration in MATH 53 and 131 for 120 and 121, respectively. Recommended: concurrent or prior registration in 112.

PHYSICS 120, 4 units, Win (Greven)

PHYSICS 121, 4 units, Spr (Shen)

PHYSICS 130, 131. Quantum Mechanics — The origins of quantum mechanics, wave mechanics, and the Schrödinger equation. Heisenberg’s matrix formulation of quantum mechanics, solutions to one-dimensional systems, separation of variables and the solution to three-dimensional systems, the central field problem and angular momentum eigenstates, spin and the coupling of angular momentum, Fermi and Bose statistics, time-independent perturbation theory. Prerequisites: 70, 110; pre- or corequisites: 120, 121, and MATH 131.

PHYSICS 130, 4 units, Aut (Kahn)

PHYSICS 131, 4 units, Win (Kahn)

4 units, Spr (Kapitulnik)

3 units, Win (Roodman)

4 units, Win (Kachru)

PHYSICS 153B. Introduction to String Theory II — Open strings and D-branes. Emergence of gauge theory and connections to particle physics. String thermodynamics and black holes. T-duality, string compactification, and stringy modifications of geometry. Prerequisite: 153A.

4 units, Spr (Kachru)

PHYSICS 160. Introduction to Stellar and Galactic Astrophysics — Physics of the sun. Evolution and death of stars. White dwarfs, novae, planetary nebulae, supernovae, neutron stars, pulsars, binary stars, x-ray stars, and black holes. Galactic structure: interstellar medium, molecular clouds, HI and HII regions, star formation and element abundances. Prerequisites: calculus and one year of college physics at the level of the PHYSICS 40 (formerly 50) series or equivalent.

3 units, Win (Romani)

PHYSICS 161. Introduction to Extragalactic Astrophysics and Cosmology — Observations of the distances and compositions of objects on cosmic scales: galaxies, galaxy clusters, quasars, and diffuse matter at high redshift. Big bang cosmology, physical processes in the early universe, the origin of matter and the elements, inflation, and creation of structure in the Universe. Observational evidence for dark matter and dark energy. Future of the Universe. Prerequisites: calculus and college physics at the level of the 40 (formerly 50) series.

3 units, Spr (Michelson)

PHYSICS 164. Planetary Systems: Dynamics and Origins — (Enroll in GES 222.)

3-4 units, Aut (Lissauer)

PHYSICS 169. Independent Study in Astrophysics and Honors Thesis — While not all projects require three quarters, the sequence below suggests the format most projects are expected to follow. Projects may commence in Autumn, Winter, Spring, or Summer.

PHYSICS 169A. Independent Study in Astrophysics and Honors Thesis: Selection of the Problem — Description of the problem, its background, work planned in the subsequent two quarters, and development of the theoretical apparatus or initial interpretation of the problem.

1-9 units, Aut, Win, Spr, Sum (Staff)

PHYSICS 169B. Independent Study in Astrophysics and Honors Thesis: Continuation of Project — Substantial completion of the required computations or data analysis for the research project selected.

1-9 units, Aut, Win, Spr, Sum (Staff)

PHYSICS 169C. Independent Study in Astrophysics and Honors Thesis: Completion of Project — Completion of research and writing of a paper presenting methods used and results.

1-9 units, Aut, Win, Spr, Sum (Staff)
PHYSICS 170, 171. Thermodynamics, Kinetic Theory, and Statistical Mechanics—The derivation of laws of thermodynamics from basic postulates; the determination of the relationship between atomic substructure and macroscopic behavior of matter. Temperature; equations of state, heat, internal energy; entropy; reversibility; applications to various properties of matter; absolute zero and low-temperature phenomena. Distribution functions, transport phenomena, fluctuations, equilibrium between phases, phase changes, the partition function for classical and quantum systems, Bose-Einstein condensation, and the electron gas. Cooperative phenomena including ferromagnetism, the Ising model, and lattice gas. Irreversible processes. Prerequisites: 45 (formerly 51) or 65, and MATH 53.

PHYSICS 170. 4 units, Aut (Fetter)
PHYSICS 171. 4 units, Win (Zhang)

3 units, Spr (I. R. Fisher)

PHYSICS 173. Magnetism and Long Range Order in Solids—(Enroll in APPPHYS 270.)

3 units (I. R. Fisher) not given 2005-06

PHYSICS 173B. Concepts in Condensed Matter Physics—Focus is on simple, archetypical examples. Topics include interaction and correlation, emergent order and symmetry breaking, new states of matter, pattern formation, and nonlinear dynamics in material systems. Prerequisite: introductory solid state or condensed matter physics.

1 unit (Beasley) not given 2005-06

PHYSICS 181. Introduction to Modern Optics—(Enroll in EE 268.)

3 units, Aut (Byer)

PHYSICS 190. Independent Study—Undergraduate research in experimental or theoretical physics under the supervision of a faculty member. Prerequisites: superior work as an undergraduate Physics major, and consent of instructor.

1-9 units, Aut, Win, Spr, Sum (Staff)

PHYSICS 204. Advanced Seminar in Theoretical Physics—Topics of recent interest in theoretical physics: Bose-Einstein condensation of atoms, high T$_c$ superconductivity of cuprates, quantized Hall effect, quantum and classical chaos, superfluidity in 2D, protein folding. Work in the seminar may provide a basis for an honors project in theoretical physics. Prerequisite: 134 or consent of instructor.

3 units, Aut (Domiach)

PHYSICS 204B. Seminar in Theoretical Physics—Applications of the Renormalization Group; emphasis is on principles and intuitions.

3 units (Shenker) not given 2005-06

PHYSICS 205. Undergraduate Honors Research—Experimental or theoretical project and thesis in Physics under supervision of a faculty member. Planning of the thesis project should begin no later than middle of the junior year. Successful completion of an honors thesis leads to graduation with departmental honors. Prerequisites: superior work in Physics as an undergraduate major and approval of the honors adviser.

1-12 units, Aut, Win, Spr, Sum (Staff)

PHYSICS 207. Laboratory Electronics—(Enroll in APPPHYS 207.)

3 units, Win (Fox)

PHYSICS 208. Laboratory Electronics—(Enroll in APPPHYS 208.)

3 units (Fox) alternate years, given 2006-07

GRADUATE

3 units, Spr (Kallos)

PHYSICS 211. Continuum Mechanics—Elasticity, fluids, turbulence, waves, gas dynamics, shocks, and MHD plasmas. Examples from everyday phenomena, geophysics, and astrophysics.

3 units, Win (Blandford)

3 units, Spr (Fetter)

PHYSICS 215. Numerical Methods for Physicists and Engineers—(Enroll in APPPHYS 215.)

3 units, Aut (Moler)

PHYSICS 216. Back of the Envelope Physics—Techniques to make order-of-magnitude estimates of physical effects. Goal is to sharpen physical intuition and promote a synthesis of physics through the application of undergraduate physics to problems, some not included in the standard curriculum. Techniques such as scaling and dimensional analysis. Applications include properties of materials, geophysics, astrophysics and cosmology, biomechanics, and particle physics. Prerequisites: undergraduate mechanics, statistical mechanics, electricity and magnetism, and quantum mechanics.

3 units, Aut (Madejski)

PHYSICS 220. 3 units, Aut (Church)
PHYSICS 221. 3 units, Spr (Church)

PHYSICS 222. Applied Quantum Mechanics I—(Enroll in EE 222.)

3 units, Aut (Miller)

PHYSICS 223. Applied Quantum Mechanics II—(Enroll in EE 223.)

3 units, Win (Miller)

PHYSICS 226. Physics of Quantum Information—(Enroll in APPPHYS 226.)

3 units (Yamamoto) alternate years, given 2006-07

PHYSICS 230, 231, 232. Quantum Mechanics—Prerequisites: quantum mechanics at the undergraduate level and a strong course on differential equations.

PHYSICS 230. Quantum Mechanics—Fundamental concepts. Introduction to Hilbert spaces and Dirac’s notation. Postulates applied to simple systems, including those with periodic structure. Symmetry operations and gauge transformation. The concept of propagators and path integral quantization. Problems related to measurement theory.
The quantum theory of angular momenta and central potential problems (hydrogen, quarkonium).

3 units, Aut (Silverstein)

3 units, Win (Shenker)

3 units, Spr (Shenker)

PHYSICS 252. Introduction to High Energy Physics — See 152.

3 units, Win (Roodman)

3 units, Aut (Petrossian)

PHYSICS 262. Introduction to Gravitation — Review of special relativity. Introduction to general relativity. Curvature, energy-momentum tensor, Einstein field equations. Newtonian limit of general relativity. Black holes, gravitational waves, cosmology. Prerequisites: 121 or other courses including special relativity.

3 units, Win (Wagoner)

PHYSICS 272. Solid State Physics I — (Enroll in APPPHYS 272.)

3 units, Win (Manoharan)

PHYSICS 273. Solid State Physics II — (Enroll in APPPHYS 273.)

3 units, SPR (Manoharan)

PHYSICS 275. Electrons in Nanostructures — The behavior of electrons in metals or semiconductors at length scales below 1 micron, smaller than familiar macroscopic objects but larger than atoms. Ballistic transport, Coulomb blockade, localization, quantum mechanical interference, and persistent currents. Topics may include quantum Hall systems, spin transport, spin-orbit coupling in nanostructures, magnetic tunnel junctions, Kondo systems, and 1-dimensional systems. Readings focus on the experimental research literature, and recent texts and reviews. Prerequisite: undergraduate quantum mechanics and solid state physics.

3 units, SPR (Goldhaber-Gordon)

PHYSICS 290. Research Activities at Stanford — Required of first-year Physics graduate students; suggested for junior or senior Physics majors for 1 unit. Review of research activities in the department and elsewhere at Stanford at a level suitable for entering graduate students.

1-3 units, Aut (Romani)

PHYSICS 291. Practical Training — Opportunity for practical training in industrial labs. Arranged by student with the research adviser’s approval. A brief summary of activities is required, approved by the research adviser.

3 units, Sum (Staff)

PHYSICS 292. Introductory Biophysics — (Enroll in APPPHYS 192/292.)

3 units, SPR (Doniach) alternate years, not given 2006-07

PHYSICS 293. Literature of Physics — Intensive study of the literature of any special topic. Preparation, presentation of reports. If taken under the supervision of a faculty member outside the department, approval of the Physics chair required. Prerequisites: 25 units of college physics, consent of instructor.

1-15 units, Aut, Win, Spr, Sum (Staff)

1 unit, Aut, Win, Spr (Pam)

PHYSICS 301. Astrophysics Laboratory — Seminar/lab. Astronomical observational techniques and physical models of astronomical objects. Observational component uses the 24-inch telescope at the Stanford Observatory and ancillary photometric and spectroscopic instrumentation. Emphasis is on spectroscopic and photometric observation of main sequence, post-main sequence, and variable stars. Term project developing observational equipment or software. Limited enrollment. Prerequisite: consent of instructor.

3 units, Aut (Romani)

PHYSICS 321. Basic Plasma Physics — For the nonspecialist who needs a working knowledge of plasma physics for space science, astrophysics, fusion, or laser applications. Topics: orbit theory, the Boltzmann equation, fluid equations, MHD waves and instabilities, EM waves, the Vlasov theory of ES waves and instabilities including Landau damping and quasilinear theory, the Fokker-Planck equation, and relaxation processes. Advanced topics in resistive instabilities and particle acceleration. Prerequisite: 210 and 220, or consent of instructor.

3 units (Kosovichev) not given 2005-06

3 units (Kasevich) not given 2005-06

PHYSICS 323. Laser Cooling and Trapping — Principles of laser cooling and atom trapping. Optical forces on atoms, forms of laser cooling, atom optics and atom interferometry, ultra-cold collisions, and introduction to Bose condensation of dilute gases. Emphasis is on the development of the general formalisms that treat these topics. Applications of the cooling and trapping techniques: atomic clocks, internal sensors, measurements that address high-energy physics questions, many-body effects, polymer science, and biology. Prerequisite: 231 or equivalent.

3 units, SPR (Kasevich)

PHYSICS 324. Introduction to Accelerator Physics — (Enroll in APPPHYS 324.)

3 units, Win (Chao, Ruth) alternate years, not given 2006-07

3 units, Aut (Peskin)

3 units, Win (Peskin)

PHYSICS 351. Particle Physics and Collider Physics — The standard big bang theory, its successes and problems. Versions of inflationary cosmology including old, new, chaotic, and hybrid inflation. Reheating of the Universe and creation of matter after inflation. The theory of density perturbations, large-scale structure formation, and anisotropy of cosmic microwave background radiation. Eternal inflation and the global structure of the Universe. Anthropic principle, the cosmological constant problem, and dark energy. Towards inflation in string theory and brane cosmology. 3 units, Aut (Dimopoulos)

PHYSICS 360. Physics of Astrophysics — Theoretical concepts and tools for modern astrophysics. Radiation transfer equations; emission, scattering, and absorption mechanisms: Compton, synchrotron and Bremsstrahlung processes; photoionization and line emission. Equations of state of ideal, interacting, and degenerate gasses. Application to astrophysical sources such as HII regions, supernova remnants, cluster of galaxies, and compact sources such as accretion disks, X-ray, gamma-ray, and radio sources. Prerequisites: 121, 171 or equivalent. 3 units, Win (Petrosian)

PHYSICS 361. Stellar and Galactic Astrophysics — Astronomical data on stars, star clusters, interstellar medium, and the Milky Way galaxy. Theory of stellar structure; hydrostatic equilibrium, radiation balance, and energy production. Stellar formation, Jean’s mass, and protostars. Evolution of stars to the main sequence and beyond to red giants, white dwarfs, neutron stars, and black holes. Structure of the Milky Way; the disk and spiral arms, central bulge or bar, black hole, the halo, and mass of the galaxy. Prerequisites: 221, and 260 or 360. 3 units (Petrosian) not given 2005-06

PHYSICS 362. Advanced Extragalactic Astrophysics and Cosmology — Observational data on the content and activities of galaxies, the content of the Universe, cosmic microwave background radiation, gravitational lensing, and dark matter. Models of the origin, structure, and evolution of the Universe based on the theory of general relativity. Test of the models and the nature of dark matter and dark energy. Physics of the early Universe, inflation, baryosynthesis, nucleosynthesis, and galaxy formation. Prerequisites: 210, 211, 260 or 360. 3 units, Spr (Petrosian) alternate years, not given 2005-06

PHYSICS 364. Advanced Gravitation — Principles and experiments. Methods for solving Einstein equations. Penrose diagrams, singularities, black holes, and thermodynamics. Charged and rotating black holes, Hawking radiation. Anti de Sitter and de Sitter spaces in applications to high energy physics and cosmology. Topics in general relativity, astrophysics, and high-energy physics. Prerequisites: 220, 221, and 262, or equivalent introduction to general relativity. 3 units (Linde) not given 2005-06

PHYSICS 370. Theory of Many-Particle Systems — Application of quantum field theory to the nonrelativistic, many-body problem, including methods of temperature-dependent Green’s functions and canonical transformations. Theory of finite-temperature, interacting Bose and Fermi systems with applications to superfluidity, superconductivity, and electron gas. Offered occasionally. Prerequisite: 232. 3 units (Zhang) not given 2005-06

PHYSICS 372. Condensed Matter Theory I — (Enroll in APPPHYS 372.)

PHYSICS 373. Condensed Matter Theory II — (Enroll in APPPHYS 373.) 3 units (Staff) not given 2005-06

PHYSICS 377. Literature of Condensed Matter Physics — (Enroll in APPPHYS 377.) 3 units, Aut (Shen) alternate years, not given 2006-07

PHYSICS 383. Introduction to Atomic Processes — (Enroll in APPPHYS 383.) 3 units, S. Harris alternate years, not given 2006-07

PHYSICS 387. Quantum Optics and Measurements — (Enroll in APPPHYS 387.) 3 units, Win (Yamamoto) alternate years, not given 2006-07

PHYSICS 388. Mesoscopic Physics and Nanostructures — (Enroll in APPPHYS 388.) 3 units, Spr (Yamamoto) alternate years, not given 2006-07

PHYSICS 450, 451, 452. Theoretical Physics of Particles and Fields — Advanced topics in theoretical high-energy physics. Topics change by quarter and year to provide a background in all areas of current theoretical research. Prerequisite: 332.

PHYSICS 456. Theoretical Physics of Particles and Fields — Advanced topics in theoretical high-energy physics. Topics change by quarter and year to provide a background in all areas of current theoretical research. Prerequisite: 332.

PHYSICS 450. Introduction to Supersymmetry and Supergravity — Construction of quantum field theories with supersymmetry. Super-space, nonrenormalization theorems, supersymmetry breaking, and supergravity. Models of supersymmetry in elementary particle physics. Extended and high-dimensional supersymmetry. Supergravity in 5, 11, and other higher dimensions. Prerequisite: 332. 3 units (Kallosh) not given 2005-2006

PHYSICS 451. Physics Beyond the Standard Model — Grand unified theories. Supersymmetric standard model. Large extra dimensions and TeV-strings. The landscape of vacua, split supersymmetry. 3 units, Win (Dimopoulos)
PHYSICS 452. Particle Astrophysics — What current understanding of quantum gravity and string/M theory says about physics behind horizons. Goal is to develop areas for future research.
3 units, Spr (Staff)

PHYSICS 463. Special Topics in Astrophysics: Experimental Cosmology — Content varies depending on participant interest. This year, topics include nonlinear aspects of structure formation as they relate to the first objects in the Universe, galaxies, and clusters of galaxies. Cosmological parameter estimation including observational methods and analysis techniques. Stereoscopic visualization and current observational data.
3 units, Aut (Abel, Allen)

PHYSICS 473A. Condensed Matter Physics — (Enroll in APPPHY 473A.)
2 units (Staff) not given 2005-06

PHYSICS 490. Research — Open only to Physics graduate students, with consent of instructor. Work is in experimental or theoretical problems in research, as distinguished from independent study of a non-research character in 190 and 293.
1-15 units, Aut, Win, Spr, Sum (Staff)

POLITICAL SCIENCE

Chair: Terry M. Moe

Associate Professor: Luis R. Fraga, Simon D. Jackman, Michael A. McFaul (Stanford in Washington), Kenneth A. Schultz (on leave)

Assistant Professors: Alberto Díaz-Cayeros, Claudine Gay, Beatriz Magaloni (on leave), Isabela Mares (on leave Autumn), Rob Reich, Peter Stone, Michael R. Tomz, Jonathan Wand, Jeremy Weinstein, Carolyn Wong, Anne T. Wren (on leave Autumn, Winter)

Professor (Research): Norman Nie

Lecturers: Mary I. Dakin, Volodymyr Kulyk, Abbas Milani, Andrew R. Rutten, Kathryn Stoner-Weiss, Mary Sprague

Courtesy Professors: David P. Baron, Jonathan B. Bendor, Coit D. Blacker, Gerhard Casper, Larry Diamond, Gerald A. Dorfman, Jean-Pierre Dupuy, James Fishkin, Lawrence Friedman, Keith Krehbiel, Roger Noll, Stephen J. Stedman

Courtesy Associate Professor: Debra M. Satz

Visiting Professors: Robert Adcock, Josef Joffe, David Kang, Paul Kapur

Visiting Associate Professor: H. Lyman Miller

Visiting Lecturer: Anu Kulkarni

Department Offices: Encina Hall West, Room 100
Mail Code: 94305-6044
Phone: (650) 723-1806
Web Site: http://polisci.stanford.edu

Courses given in Political Science have the subject code POLISCI. For a complete list of subject codes, see Appendix.

UNDERGRADUATE PROGRAMS

BACHELOR OF ARTS

To receive a B.A. in Political Science, a student must:

1. Submit an application for the Political Science major to the undergraduate administrator, and declare on Axess. Forms are available in Encina Hall West, Room 100. For additional information, drop by or phone (650) 723-1608. Students must complete their major declaration no later than the end of Autumn Quarter in junior year.

2. Complete 60 units:
 a) 35 Political Science course units must complete the breadth requirements.
 b) 15 Political Science units must be completed by taking other Political Science courses including directed reading, other introductory-level courses, and freshman/sophomore seminar courses.
 c) the remaining 10 units may be from: other Political Science courses; courses outside the department that are related to the student’s interests in political science and are not introductory-level courses in other disciplines such as ECON 1 or PSYCH 1. Courses from outside the department should be listed on the declaration form and approved by the Director of Undergraduate Studies when the major is declared; alternatively, a petition may be submitted later.

3. Satisfy breadth requirements (35 units): each major must take two courses out of the following Political Science courses, one of which must be in the primary concentration; the other may be in any field. These courses should be completed by the end of sophomore year.
POLISCI 1. Introduction to International Relations
POLISCI 2. American National Government and Politics
POLISCI 3. Introduction to Political Philosophy
POLISCI 4. Introduction to Comparing Political Systems
POLISCI 151A. Doing Political Science, or POLISCI 151B. Data Analysis for Political Science

The primary concentration must be completed by fulfilling the depth requirement with at least 20 units (see Statement 4).

Each major should declare a secondary concentration in another subfield, with at least 10 units in that concentration. Each major should take at least 5 units in a third subfield.
4. Satisfy a depth requirement. Each major should declare a primary concentration in one subfield and take at least 20 units in this concentration, including the introductory course for that subfield. Subfields include:
 - International Relations (1, 110-119, 210-219, 310-319)
 - American Politics (2, 120-129, 220-229, 320-329)
 - Political Theory (3, 130-139, 230-239, 330-339)
 - Comparative Politics (4, 140-149, 240-249, 340-349)
5. Demonstrate the capacity for sustained research and writing in the discipline. This requirement is satisfied by taking a Political Science course designated as a Writing in the Major (WIM) course.
6. Take at least one 5-unit, advanced undergraduate seminar in Political Science.
7. Students may apply a maximum of 10 units from Stanford Summer Session or courses outside Stanford. Transfer students are allowed up to 20 units of transfer units or summer session. A maximum of 15 units may be applied towards breadth requirements and 5 towards other Political Science course units. All transfer cases require petitions which must be reviewed and approved by the Director of Undergraduate Studies.
8. Directed reading and Oxford tutorial units require a petition and may only be applied towards any related course units. These units may not be used to fulfill a breadth requirement, and no more than 10 units of directed reading and Oxford tutorial units may count toward the required 60 Political Science units.
9. Courses counting toward the 60-unit requirement must be taken for a letter grade, although units in excess of the required 60 may be taken on a credit/no credit basis. A minimum grade of ‘C’ is required for courses to count towards major requirements.

MINORS

Students must complete their declaration of the minor via Axess no later than the end of the junior year.

To receive a minor in Political Science, a student must complete a minimum of 30 unduplicated units. All units must be in courses listed or crosslisted in the Department of Political Science. A maximum of 5 units of directed reading may count if supervised by a member of the department.

All units are for a letter grade. A minimum grade of OC is required for courses to count towards minor requirements.

Concentration — The student selects a subfield in which three courses are taken. One of these courses is the introductory course, the other two at a more advanced level (numbered above 100). Where a linked set of advanced courses is offered (as with the Political Theory 130A,B,C series), the introductory course need not be taken.

The concentration corresponds to one of the subfields the department already has in place, namely, international relations, American politics, political theory, and comparative politics.

Distribution — Three courses must be in the area of concentration, as specified above, for 15 units. An additional 10 units of intermediate and advanced courses (100 level or above) must be in two additional subfields.

Transfer Work — A maximum of 10 units of work completed outside Stanford may be given Political Science credit toward the minor for transfer students. A maximum of 5 units of work completed in Stanford Summer Session or outside of Stanford for non-transfer students may be given Political Science credit toward the minor. All such cases must be individually reviewed and approved by the Director of Undergraduate Studies.

PRIZES

There are several annual prizes for undergraduate students: the Arnaud B. Leavelle Memorial Prize for the best paper in the History of Political Thought sequence (POLISCI 130A,B,C), a cash prize for the best thesis written in political theory, the Lindsay Peters, Jr., Memorial Prize for the outstanding student each year in POLISCI 2, and Cottrell Prizes for outstanding students in POLISCI 1, 3, and 4.

HONORS PROGRAM

The honors program offers qualified students an opportunity to conduct independent research, write a thesis summarizing their findings, and make a presentation of their work. During the process of research, analysis, thinking, drafting, rethinking, and redrafting, students work closely with a faculty adviser and their fellow students.

Applicants must have a 3.5 grade point average (GPA) in Political Science courses, and an adviser who must be a member of the academic council. Application forms should be completed by the Spring Quarter of the junior year, and can be obtained from the department office.

Students who are interested in writing a thesis are encouraged to enroll in POLISCI 299Q, Junior Research Seminar, in the Winter Quarter of their junior year. This credit/no-credit course is designed to help students find a manageable thesis topic and adviser.

Students who are accepted into the program should plan to make the thesis the focus of their senior year. They should enroll in POLISCI 299A,B,C, which covers research and writing directed by the student’s adviser. In addition, students must enroll in POLISCI 299R, a 3-unit Autumn Quarter seminar designed to develop research and writing skills. In the Winter and Spring quarters, students enroll in POLISCI 299S and T, which are credit/no credit tutorials in which students work with other students and tutors to finish their research.

Most students find themselves in one of two groups: (1) those who already have substantial background in their thesis topic, and can expect to complete the honors program in two or three quarters for a total of 10-15 units completed in POLISCI 299A,B,C; or (2) those who have little or no previous work on the topic, and can expect to complete the program in three quarters with 15 units of work.

To complete the honors program, students must:
1. Complete all requirements for the major.
2. Enroll in POLISCI 299R.
3. Complete a thesis of honors quality (B+ or better).

Honors work done for credit (POLISCI 299A,B,C) may not be counted toward the required 60 units in Political Science.

GRADUATE PROGRAMS

Admission — Prospective graduate students should see http://gradmissions.stanford.edu for application materials. Applicants for admissions to graduate work are required to submit a recent writing sample (not to exceed 35 pages). All applicants are required to submit a sample of their writing and to take the General Test of the Graduate Record Examination. Applicants whose native language is not English must take the Test of English as a Foreign Language (TOEFL). The TOEFL requirements are waived for applicants who have recently completed two or more years of study in an English-speaking country. For details concerning these tests, see the Guide to Graduate Admission, available at http://registrar.stanford.edu/publications. The application deadline is December 6. Admission is offered for the Autumn Quarter only. The department expects all students to pursue a full-time program except for time devoted to teaching or research assistantships.

MASTER OF ARTS

The M.A. degree may be pursued as part of a joint degree program with one of the University’s professional schools. Students interested in a joint degree should apply for admission to the M.A. program in Political Science during the Autumn Quarter of the first year in the Stanford professional school.
Doctoral candidates may elect to take the M.A. degree when they have met the following requirements:

1. Completion of at least three quarters of residency as a graduate student with 45 units of credit of which at least 25 units must be taken in Political Science graduate seminars of 300 level and above. Not more than 25 units of the 45-unit requirement may be taken in a single field.
2. At least two graduate seminars in each of two fields and at least one graduate seminar in a third field.
3. Of the remaining 20 units, not more than 10 units of work from related departments may be accepted in lieu of a portion of the work in Political Science. Not more than 10 units may be taken as directed reading.
4. Courses must be numbered above 300.
5. A grade point average (GPA) of 2.7 (B-) or better must be attained for directed reading and all course work.

The department does not offer a coterminal bachelor’s and master’s degree.

Doctoral candidates may pursue master’s degrees from other departments. Recent examples include but are not restricted to master’s degrees in Statistics and Economics. Students interested in this option should consult the relevant sections of this bulletin for both University and department requirements for master’s degrees.

MASTER OF ARTS IN TEACHING

The M.A. degree in Teaching is offered jointly by this department and the School of Education. The degree is intended for candidates who have a teaching credential or relevant teaching experience and wish to further strengthen their academic preparation. The program consists of a minimum of 25 units in Political Science courses and 12 units in the School of Education. A student’s program must be approved by the Director of Graduate Studies before the courses are taken. Detailed program requirements are outlined in the “School of Education” section of this bulletin.

DOCTOR OF PHILOSOPHY

The University’s basic requirements for the Ph.D. degree are discussed in the “Graduate Degrees” section of this bulletin.

Programs of study leading to the Ph.D. degree are designed by the student, in consultation with advisers and the Director of Graduate Studies, to serve his or her particular interests as well as to achieve the general department requirements. A student is recommended to the University Committee on Graduate Studies to receive the Ph.D. degree in Political Science when the following program of study has been completed:

1. The candidate for the Ph.D. degree must offer three of the following concentrations in political science: American politics, comparative politics, international relations, methodology, political theory, and political organizations. Upon petition, a special field (for example, public law, or urban politics) may be offered as a third concentration. Students concentrate on two of these areas by fulfilling, depending on the concentration, combinations of the following: written qualifying examinations, research papers, research design, or course work. The requirement for the third concentration may be satisfied by taking either a written examination in that area or by offering a minimum of 10 units with a grade point average (GPA) of 3.0 (B) or better in the third concentration from among the formal graduate-level courses in the six divisions of the department. The third concentration cannot be satisfied by courses taken as a requirement for a first or second concentration. A third concentration in theory requires two courses in addition to the 5 units necessary to fulfill the program requirement. Completion of special concentrations may require more than 10 units of course work. Students are not permitted to use the following combination of concentrations for the purposes of fulfilling the requirements for the Ph.D.: American politics, political organizations, and methodology. Students wishing to concentrate in American politics, political organizations, and methodology are not prohibited from doing so, but must add another field of concentration to their course of study.

2. The Ph.D. candidate is required to demonstrate competence in a language and/or skill that is likely to be relevant to the dissertation research. The level of competence needed for successful completion of the research is determined by the student’s adviser. All candidates must complete 5 units of statistical methods or its equivalent. Students who are in the concentration of international relations, American politics, or political organizations are required to take an additional 5 units of methods. Previous instruction can be counted towards this requirement only if approved by the Director of Graduate Studies.
3. Every Ph.D. candidate must complete at least five units of graduate-level instruction in political theory.
4. By the start of the fourth quarter in residence, each first-year graduate student submits to the student’s adviser a statement of purpose. This statement indicates the student’s proposed major concentrations of study, the courses taken and those planned to be taken to cover those fields, the student’s plan for meeting language and/or skill requirements, plans for scheduling of comprehensive examinations and/or research papers, and, where possible, dissertation ideas or plans. This statement is discussed with, and must be approved by, the student’s adviser. In the Autumn Quarter following completion of their first year, students are reviewed at a regular meeting of the department faculty. The main purposes of this procedure are, in order of importance: to advise and assist the student to realize his or her educational goals; to provide an incentive for clarifying goals and for identifying ways to achieve them; and to facilitate assessment of progress toward the degree.
5. Students must take the comprehensive exams in two major fields by the end of their second year in the program. Students are expected to have passed these examinations and to have faculty approval of their research paper by the end of their second year.
6. Upon completion of one research paper and two comprehensive exams in his or her two major concentrations, the student files an Application for Admission to Candidacy for the Ph.D. which details program plans and records. The University and the department expects that students be admitted to candidacy by the completion of their sixth quarter as a full-time student. Each second-year student is reviewed and considered for admission to candidacy in a meeting of the faculty that is typically held during the tenth week of Spring Quarter. Since completion of two comprehensive exams and a research paper are prerequisites for admission to candidacy, students should plan their first- and second-year studies so that these requirements are satisfied by the time of the faculty review meeting. In particular, students should submit their research paper to the relevant faculty readers no later than the start of Spring Quarter, since revisions of the paper are often required prior to obtaining faculty approval.
7. During the third year, a formal dissertation proposal is submitted by the student to a thesis committee of three faculty members, including the principal adviser. The dissertation proposal requires approval by the student’s dissertation adviser and the Director of Graduate Studies. Dissertation proposals must be approved by the end of the third year.
8. A candidate for the Ph.D. in Political Science is required to serve as a teaching assistant (TA) in the department for a minimum of three quarters.
9. Doctoral candidates who apply for the M.A. degree are awarded that degree on completion of the requirements outlined in the description of the M.A. program.
10. The candidate must pass the University oral examination on the area of the dissertation at a time, after the passing of the written comprehensive examinations, suggested by the candidate’s dissertation committee.
11. The candidate must complete a dissertation satisfactory to the Dissertation Reading Committee and the University Committee on Graduate Studies.
PH.D. MINOR

Candidates in other departments offering a minor in Political Science select two concentrations in political science in consultation with the Director of Graduate Studies and submit to her or him a program of study for approval. Written approval for the program must be obtained from the Director of Graduate Studies before application for doctoral candidacy. Students are required to complete at least 20 units in Political Science courses. Two of these courses, in separate concentrations of political science, must be 300 level and above. All grades must be a GPA of 3.0 (B) or better. Candidates may be examined in their concentrations in the general oral examination by a member of the Department of Political Science, chosen in consultation with the Director of Graduate Studies.

COURSES

WIM indicates that the course satisfies the Writing in the Major requirements.

Summer Quarter — During Summer Quarter, the Department of Political Science offers a variety of courses and seminars. Offerings depend upon available faculty.

The department uses the following course numbering system:

1–99 Introductory Courses
100-199 Intermediate Undergraduate Lecture Courses
200-299 Advanced Undergraduate Seminar Courses
300-400 Advanced Undergraduate/Graduate Courses
400-500 Graduate Courses

Course information is accurate when the Stanford Bulletin goes to press; however, students should be aware that there may be changes and should check the quarterly Time Schedule for up-to-date information.

INTRODUCTORY

POLISCI 1. Introduction to International Relations — Approaches to the study of conflict and cooperation in world affairs. Applications to war, terrorism, trade policy, the environment, and world poverty. Debates about the ethics of war and the global distribution of wealth. GER: DB-SocSci 5 units, Aut (Tomz)

POLISCI 2. Introduction to American National Government and Politics — The role and importance of the ideal of democracy in the evolution of the American political system. American political institutions (the Presidency, Congress, and the Court) and political processes (the formation of political attitudes and voting) are examined against the backdrop of American culture and political history. The major areas of public policy in the current practice of the ideal of democracy. GER: DB-SocSci 5 units, Win (Ferejohn, Fiorina)

POLISCI 3. Introduction to Political Philosophy — (Enroll in PHIL 30, ETHICSCOC 30.) 5 units, Aut (Hussain)

POLISCI 4. Introduction to Comparing Political Systems — Politics in major regime types including democratic, authoritarian, and communist; how types of politics affect economic development and state/society relations. GER: DB-SocSci, EC-GlobalCom 5 units, Spr (Díaz-Cayeros)

POLISCI 15N. Explaining Ethnic Violence — Stanford Introductory Seminar. Preference to freshmen. Particularly deadly forms of ethnic violence since 1945 including violence associated with civil wars where the combatants claim to represent ethnic groups, and violence associated with ethnic riots. Case studies and theoretical work on the sources and nature of ethnic violence. GER: DB-SocSci 5 units, Spr (Fearon)

POLISCI 23N. Public Opinion and American Foreign Policy — Stanford Introductory Seminar. Preference to sophomores. How citizens make choices about issues in foreign policy. How choices among alternative courses of action are influenced by national identity. Goal is to introduce undergraduates to doing research, translating promising ideas into testable hypotheses, and seeing how far the chain of implication can be extended by analyzing public opinion surveys. Focus is on quantitative analysis using software. No background in statistics required. GER: DB-SocSci 5 units, Win (Sniderman)

POLISCI 32Q. Politics through Literary Lenses: Different Vantage Points — Stanford Introductory Seminar. Preference to sophomores. How political activity is understood through drama and novels, particularly utopian and dystopian novels. Do different genres such as drama or utopian writing offer different insights into politics? How do stories and myths function within the political arena, particularly myths of new beginnings, golden ages, and the possibility of perfection? Is the concreteness of literature compatible with the search for generalizations in political science? GER: DB-Hum 3 units, Win (Hansot)

POLISCI 41N. Comparative Public Opinion and Political Behavior — Stanford Introductory Seminar. Preference to sophomores. Comparison of mass publics in Italy and the U.S. Do they arrive at political choices in similar or different ways? Comparison of considerations when choosing between policy alternatives. Goal is to introduce undergraduates to doing research, translating promising ideas into testable hypotheses, and seeing how far the chain of implication can be extended by analyzing public opinion surveys. Focus is on quantitative analysis using software. No background in statistics required. GER: DB-SocSci 5 units, Spr (Sniderman)

POLISCI 45N. Civil War Narratives — Stanford Introductory Seminar. Preference to freshmen. Focus is on a new statistics-based theory to account for the susceptibility of countries to civil war. How to write a theory-based historical narrative. Students write and present an original historical narrative focusing on how well the theory explains a particular history and new factors to explain civil war onsets. GER: DB-SocSci 5 units, Aut (Laitin)

POLISCI 48G. The Historical Roots of Modern East Asia — (Enroll in HISTORY 92A.) 5 units, Spr (Miller)

POLISCI 48H. East Asia in the Age of Imperialism — (Enroll in HISTORY 92B.) 5 units, Aut (De Boer)

INTERMEDIATE UNDERGRADUATE LECTURES

INTERNATIONAL RELATIONS

Students interested in international relations are encouraged to take POLISCI 1. While not a formal prerequisite for many of the courses below, it provides background for more advanced work.

The courses in international relations offered in Political Science can be divided into those dealing with global political, military, and economic problems, and those dealing with the foreign relations of nations or geographic regions. Students concentrating in international relations are encouraged to select their courses from both groups.

Students interested in a major in international relations should refer to the “International Relations” section of this bulletin.

POLISCI 110A. Sovereignty and Globalization — The relationship between globalization and the viability of state sovereignty, the development of international institutions, and the international distribution of wealth and security. GER: DB-SocSci 5 units (Krasner) not given 2005-06

POLISCI 110B. Strategy, War, and Politics — Traditional and modern theories on the causes of war and sources of peace. Contrasting explanations for the origins of WW I and II; alternative theories of deterrence in the nuclear age; the causes of war in the Persian Gulf, ethnic conflicts, and terrorism in the post-Cold War era. GER: DB-SocSci 5 units, Spr (Kapur)
POLISCI 110C. America and the World Economy — American foreign economic policy. Issues: the evolution of American tariff and trade policy, the development of mechanisms for international monetary management, and American foreign investment policy reflected in the changing political goals pursued by American central decision makers. Prerequisite: 1 or equivalent. GER:DB-SocSci, WIM 5 units, Win (Goldstein)

POLISCI 110D. War and Peace in American Foreign Policy — The causes of war in American foreign policy. Issues: international and domestic sources of war and peace; war and the American political system; war, intervention, and peace making in the post-Cold War period. GER: DB-SocSci 5 units (Schultz) not given 2005-06

POLISCI 110X. America and the World Economy — (Same as 110C.) Does not fulfill WIM requirement. GER:DB-SocSci 5 units, Win (Goldstein)

POLISCI 111D. British Politics — Over the last two decades, Margaret Thatcher and Tony Blair have provoked major changes in policies, politics, and the institution of government. The impact of these changes on the world’s oldest democracy. GER:DB-SocSci, EC-GlobalCom 5 units, Spr (Dorfman)

POLISCI 112. Japanese Foreign Policy — (Graduate students register for 312.) The origins of WW II in the Pacific; Japan’s role in international security; the N. Korean nuclear crisis; Japan’s evolving security policies; and the U.S.-Japan trade conflict. GER:DB-SocSci, EC-GlobalCom 5 units, Aut (Okimoto)

POLISCI 114D. Democracy, Development, and the Rule of Law — (Same as INTNLREL 114D.) Links among the establishment of democracy, economic growth, and the rule of law. How democratic, economically developed states arise. How the rule of law can be established where it has been historically absent. Variations in how such systems function and the consequences of institutional forms and choices. How democratic systems have arisen in different parts of the world. Available policy instruments used in international democracy, rule of law, and development promotion efforts. 5 units, Aut (Stoner-Weiss)

POLISCI 114R. Technology and National Security — (Enroll in MS&E 193/293.) 3 units, Aut (Perry, Paté-Cornell)

POLISCI 114S. International Security in a Changing World — The major international and regional security problems in the modern world. Interdisciplinary faculty lecture on the political and technical issues involved in arms control, the military legacy of the Cold War, regional security conflicts, proliferation of advanced weapons capabilities, ethnic conflicts, and terrorism. GER:DB-SocSci 5 units, Win (Sagan, Blacker, Perry)

POLISCI 114T. Major Issues in International Conflict Management—(Same as ICA 114T.) Conflict prevention, mediation and implementation of peace agreements, peacekeeping, peacebuilding, and humanitarian intervention. Topics: ethical dilemmas of conflict management, evaluation of international, regional, and non-governmental organizations in conflict management, the future of the UN, and the use of economic sanctions. GER:DB-SocSci 5 units, Spr (Stedman)

POLISCI 115R. International Relations of Korea — The historical and current situation of N. and S. Korea. Korea’s relations with its neighbors emphasizing China and Japan; North-South relations; the economic situation in N.E. Asia; and US-ROK relations. International relations theories. GER:DB-SocSci, EC-GlobalCom 5 units, Win (Kang)

POLISCI 116. History of Nuclear Weapons — (Same as HISTORY 103E.) The development of nuclear weapons and policies. How existing nuclear powers have managed their relations with each other. How nuclear war has been avoided so far and whether it can be avoided in the future. GER:DB-SocSci 5 units (Holloway) not given 2005-06

AMERICAN POLITICS

POLISCI 120A. American Political Sociology and Public Opinion: Who We Are and What We Believe — First of team-taught, intermediate-level, three-part sequence designed to introduce students to topics in American politics and government. The sociology of the U.S. and the political beliefs and values of Americans. Students may enroll for one, two, or three quarters, but the course is cumulative so maximum benefit results from enrollment in the entire sequence. Completion of 2 is assumed but not required. GER:DB-SocSci 5 units (Fiorina, Snidman) not given 2005-06

POLISCI 120B. Parties, Interest Groups, the Media, and Elections — The role of political parties, interest groups, and the media in the American political system. Rules, resources, voter turnout, and vote choice in U.S. elections. GER:DB-SocSci 5 units, Aut (Sprague)

POLISCI 120C. American Political Institutions: Congress, the Executive Branch, and the Courts — How politicians, once elected, work together to govern America. The roles of the President, Congress, and Courts in making and enforcing laws. Focus is on the impact of constitutional rules on the incentives of each branch, and on how they influence law. GER:DB-SocSci 5 units, Win (Rutter)

POLISCI 121. Urban Politics — (Same as URBANST 111.) The major actors, institutions, processes, and policies of sub-state government in the U.S., emphasizing city general-purpose governments through a comparative examination of historical and contemporary politics. Issues related to federalism, representation, voting, race, poverty, housing, and finances. Prerequisite: POLISCI 2 or consent of instructor. GER:DB-SocSci 5 units, Win (Fraga)

POLISCI 122. Introduction to American Law — (Same as AMSTUD 179, LAW 106.) For undergraduates. The structure of the American legal system including the courts; American legal culture; the legal profession and its social role; the scope and reach of the legal system; the background and impact of legal regulation; criminal justice; civil rights and civil liberties; and the relationship between the American legal system and American society in general. GER:DB-SocSci 3-5 units, Aut (Friedman)

POLISCI 123. Politics and Public Policy — (Same as PUBLPOL 101.) The domestic policy making process, emphasizing how elected officials, bureaucrats, and interest groups shape government policies in areas including tax, environmental, and social welfare policy, given their goals and available tactics. How public policies are formulated and implemented. The results of this process using equity and efficiency criteria. Prerequisite: 2. GER:DB-SocSci 5 units, Spr (Sprague)

POLISCI 124R. Judicial Politics and Constitutional Law: The Federal System — The impact of constitutional rules on policy making in the U.S. with a focus on structural issues such as separation of powers and federalism. Topics such as: the role of unelected judges in a democracy; the rule of law; and the constitutionality of the war in Iraq. Prerequisites: 2 or equivalent, and sophomore standing. GER:DB-SocSci, WIM 5 units, Aut (Rutter)
POLISCI 124T. Legislatures, Courts, and Public Policy — (Same as PUBLPOL 124T.) How courts exert power and play a role in creating policy in the U.S. Can or should judges read their own values into law? Can the elected branches check the power of unelected judges? What is good government and how do courts fit into it? Focus is on the Civil Rights Act of 1964 examining the political maneuvers to pass it and recent Supreme Court decisions applying it to affirmative action. GER: DB-SocSci
5 units, Win (Rotten)

POLISCI 127. Organizations and Public Policy — (Enroll in PUBLPOL 102.)
5 units, Win (Bendor)

POLISCI 127S. Mass Media Economics and Policy — (Enroll in PUBLPOL 172.)
4-5 units (Owen) not given 2005-06

POLISCI 128. Colonial and Revolutionary America — (Enroll in HISTORY 150A.)
5 units, Aut (Rakove)

POLISCI 129. The Death Penalty: Human Biology, Law, and Policy — (Enroll in HUMBIO 166.)
3 units, Aut, Spr (Abrams)

POLITICAL THEORY

POLISCI 130A. History of Ancient Political Thought I: Constructing and Questioning Political Obligation in the Ancient World — (Graduate students register for 330A.) Political philosophy in classical antiquity, focusing on canonical works of Plato, Aristotle, Cicero, and St. Augustine. Historical background. Topics include: political obligation, citizenship, and leadership; and tensions between political obligation and the claims of family, philosophy, and faith. GER: DB-SocSci
5 units, Aut (Adcock)

POLISCI 130B. History of Political Thought II: Early Modern Political Thought, 1500-1700 — (Graduate students register for 330B.) The development of constitutionalism, Renaissance humanism and the Reformation, and changing relationships between church and states. Emphasis is on the relationships among political thought, institutional frameworks, and immediate political problems and conflicts. The usefulness of the history of political thought to political science. GER: DB-SocSci
5 units, Win (Adcock)

POLISCI 130C. History of Political Thought III: Freedom, Reason, and Power — (Graduate students register for 330C.) Classic works in political theory on the themes of freedom, democracy, or power since the American and French revolutions. Readings include Kant, Hegel, Marx, Nietzsche, Dewey, and Foucault. GER: DB-SocSci
5 units, Spr (Stone)

POLISCI 131. Children’s Citizenship: Justice Across Generations — (Same as ETHICSOC 131.) The development of children into citizens, focusing on major social institutions responsible for their civic education: schools, families, communities, and civil society. How does each institution develop citizenship? What is the relationship between civic education and the reproduction of social equality or inequality? Do children's rights differ from those of adults? Readings: political theorists on justice, feminist theorists on family and children, court cases on tensions between the state and community interest in education, and social critics on the practice of civic education. GER: DB-SocSci
5 units, Spr (Reich)

POLISCI 133. Ethics and Politics in Public Service — (Same as ETHICSOC 133.) Primarily for freshmen and sophomores who participate or intend to participate in service activities through the Haas Center or register for courses with service learning components. The basis for a connection between an undergraduate’s service activities and academic experiences at Stanford. What does it mean to do public service? Why should or should not citizens do volunteer work? Is public service a good thing? The history, hazards, responsibilities, and dilemmas of doing public service. A historical context of public service work in the U.S., introducing the range of ethical concerns involved with service. GER:DB-SocSci
5 units, Aut (Reich)

POLISCI 134. Democracy and the Communication of Consent — (Enroll in COMM 136/236.)
4-5 units, Aut (Fishkin)

POLISCI 136S. Political Philosophy — (Enroll in PHIL 171/271, ETHICSOC 171.)
4 units, Win (Satz)

POLISCI 138. Modern Political Ideologies — Prominent political ideologies that define the terms of contemporary political discourse including liberalism, conservatism, feminism, and anarchism through the intellectual debates generated by the French Revolution. Readings include Price, Burke, Godwin, Wollstonecraft, and Paine. GER:DB-Hum
5 units, Win (Stone)

POLISCI 139. Children, Youth, and the Law — (Enroll in HUMBIO 102B.)
5 units, Win (Abrams)

COMPARATIVE POLITICS

Undergraduate courses and seminars in comparative politics generally fall into two groups: those dealing with a particular country or region, and those dealing with major political problems or processes. Students are encouraged to take courses from both groups, and are also urged to do course work in more than one country or region.

POLISCI 140. Political Economy of Development — Emphasis is on the interplay between political economic processes, and national and international factors from Latin America, Africa, and Asia. Do governments provide the foundations for economic development? The role of the state in solving problems of violence and capital accumulation. GER: DB-SocSci, EC-GlobalCom
5 units, Spr (Diaz-Cayeros)

POLISCI 140L. China in World Politics — The implications of the rise of China in contemporary world politics and for American foreign policy, including issues such as arms and nuclear proliferation, regional security arrangements, international trade and investment, human rights, environmental problems, and the Taiwan and Tibet questions.
5 units (Miller) not given 2005-06

5 units, Win (Karl)

POLISCI 141R. Russian Politics — The evolution of the Russian political system including the Soviet era, reform attempts from Khrushchev to Gorbachev, and the collapse of the USSR. Post-communist political institutions including the Russian federal system, executive-legislative relations, political parties, and lobbies; social and economic conditions and the post-communist relationship between political and economic reform; and foreign relations with the former Soviet states and the West. GER:DB-SocSci, EC-GlobalCom
5 units, Aut (Dakin)
POLISCI 142. Political Economy of Western Europe — Differences in economic performance explained by the relative importance of structural institutional variables and the strategic choices of key political actors. Topics: macroeconomic policy, wage determination and income inequality, welfare state expansion and retrenchment, European integration. Readings focus on Britain, Germany, and Sweden. GER:DB-SocSci, EC-GlobalCom
5 units (Mares) not given 2005-06

POLISCI 142R. Representative Government in Europe — How electoral institutions, party systems, and structures of interest group representation differ across European countries, and between Europe and the U.S. How these variations influence the structure and content of ideological debate and mediate its influence on the policy making process. How European integration is altering the structure of citizen representation in EU member states. GER:DB-SocSci
5 units (Wren) not given 2005-06

POLISCI 143. Nongovernmental Organizations and Development in Poor Countries — (Same as ICA 143, INTNLREL 143A.) How nongovernmental organizations affect economic growth, equity, political stability, and prospects for democracy in poor countries. Do NGOs contribute to these goals? What is reasonable to expect from the NGO sector? Interactions among NGOs from wealthy and poor countries, governments, international financial institutions, and multinational corporations. GER:DB-SocSci
5 units, Spr (Abernethy)

POLISCI 144S. Democracies and Autorocracies — The study of political regimes. The main characteristics of democratic versus authoritarian regimes. What determines that political order is established in the form of democracy or authoritarianism? How democracies and autocracies operate; how each regime achieves political order, adopts public decisions, and impacts economic performance. GER:DB-SocSci
5 units (Magaloni) not given 2005-06

POLISCI 145. Politics and Development in Latin America — Political, economic, and social development in Brazil, Mexico, Cuba, and Argentina. Emphasis is on historical and comparative analyses and policy and theoretical issues such as ideologies of development, democracy and its alternatives, constraints on national autonomy, and civil-military, state-society, and state-market relations. GER:DB-SocSci, EC-GlobalCom
5 units, Win (Packenham)

POLISCI 146R. War Transitions: The Promise and Perils of Post-Conflict Reconstruction — Theoretical and policy approaches to post-conflict political, social, and institutional reconstruction in Latin American, Africa, Asia, and the Middle East. The evolution of reconstruction policies in comparative and historical perspective; changing roles of state and non-state actors; security in transition; demobilization and reintegration of combatants; resettlement of displaced populations; constitutional and institutional design and creation; social justice and reconciliation; economic development in war-distorted economies; and environment, resources, and public health after war. GER:DB-SocSci
5 units, Win (Kalkarni)

POLISCI 147. Comparative Democratic Development — Social, cultural, political, economic, and international factors affecting the development and consolidation of democracy in historical and comparative perspective. Individual country experiences with democracy, democratization, and regime performance. Emphasis is on the third wave of democratization over the past three decades and contemporary possibilities for democratic change. GER:DB-SocSci, EC-GlobalCom
5 units, Win (Diamond)

POLISCI 148/348. Chinese Politics: The Transformation and the Era of Reform — (Graduate students register for 348.) For advanced undergraduates and beginning graduate students. The content, process, and consequences of reform in China from 1976 to the present. Changes in property rights, markets, credit, and the role of the state in economic development. GER:DB-SocSci, EC-GlobalCom
5 units (Oi) not given 2005-06

POLISCI 148G. Asia-Pacific Transformation — (Enroll in SOC 167A/267A.)
5 units, Aut (Shin)

POLISCI 148R. Chinese Politics — The politics of the People’s Republic of China. The origins of the Communist Revolution, the institutionalization and consequences of communist rule, and attempts to reform the system since 1978. GER:DB-SocSci
5 units, Aut (Miller)

POLISCI 148S. The U.S. and Asia During the Cold War — International relations perspective. WW II and its impact on international relations; the efforts of Allied statesmen to design a stable postwar order; the Chinese civil war; the American occupation of Japan; the Korean War; S.E. Asian independence struggles; the American alliance system in the 50s, the Sino-Soviet alliance; Indo-Pakistani conflicts; the Vietnam War; strategic realignment in the 70s; and the legacy of the Cold War on the region’s international agenda and American policy priorities. The relevance of the region to the international system. GER:DB-SocSci, EC-GlobalCom
5 units, Win (Miller)

POLISCI 149S. Islam and the West — Changes in relative power and vitality of each side. The relationship in the Middle Ages revolved around power and domination, and since the Renaissance around modernity. Focus is on Muslims of the Middle East. GER:DB-SocSci
5 units, Spr (Miller)

POLITICAL METHODOLOGY

POLISCI 150A. Political Methodology I — (Graduate students register for 350A.) Introduction to probability and statistical inference, with applications to political science and public policy. Prerequisite: elementary calculus. GER:DB-Math
5 units, Aut (Rivers)

POLISCI 150B. Political Methodology II — (Graduate students register for 350B.) Understanding and using the linear regression model in a social-science context; properties of the least squares estimator; inference and hypothesis testing; assessing model fit; presenting results for publication; consequences and diagnosis of departures from model assumptions; outliers and influential observations, graphical techniques for model fitting and checking; interactions among exploratory variables; pooling data; extensions for binary responses. GER:DB-Math
5 units, Win (Jackman)

POLISCI 150C. Political Methodology III — (Graduate students register for 350C.) Models for discrete outcomes, time series, measurement error, and simultaneity. Introduction to nonlinear estimation, large sample theory. Prerequisite: 150B/350B.
3-5 units, Spr (Rivers, Wand)

POLISCI 151A. Doing Political Science — For students planning a major in Political Science. An introduction to social science methodological approaches, from case studies and formal models, to the study of politics and government. Beneath the diversity of means that political scientists use to pursue knowledge lies a common language, core concepts, and scholarly goals. Concepts and their use through the research of Stanford Political Science professors. In addition to the instructors, 6-8 other faculty appear in various course sessions. Goal is to prepare students to do political science, not just study it. GER:DB-Math
5 units (Fiorina, Jackman) not given 2005-06

POLISCI 151B. Data Analysis for Political Science — Operationalization of concepts, measurement, scale construction, finding and pooling/merging data, cross-tabulations, tests of association, comparison of means, correlation, scatterplots, and regression models. How to present the results of data analysis in research reports, essays, and theses. Emphasis is on getting and using data with appropriate statistical software. Prior mathematics not required. GER:DB-Math
5 units, Spr (Jackman)
POLISCI 152. Introduction to Game Theoretic Methods in Political Science—(Graduate students register for 352.) Concepts and tools of non-cooperative game theory developed using political science questions and applications. Formal treatment of Hobbes’ theory of the state and major criticisms of it; examples from international politics. Primarily for graduate students; undergraduates admitted with consent of instructor. 5 units (Fraga) not given 2005-06

ADVANCED UNDERGRADUATE SEMINARS

INTERNATIONAL RELATIONS

POLISCI 215. Explaining Ethnic Violence—What is ethnic violence and why does it occur? Should elite machinations, the psychology of crowds, or historical hatreds be blamed? Case studies and theoretical work on the sources and nature of ethnic violence. GER:DB-SocSci, WIM 5 units, Spr (Fearon)

POLISCI 218. U.S. Relations in Iran—The evolution of relations between the U.S. and Iran. The years after WW II when the U.S. became more involved in Iran. Relations after the victory of the Islamic republic. The current state of affairs and the prospects for the future. Emphasis is on original documents of U.S. diplomacy (White House, State Department, and the U.S. Embassy in Iran). Research paper. GER:DB-SocSci 5 units, Aut (Milani)

AMERICAN POLITICS

POLISCI 221R. Urban Policy—Public finance, housing, education, transportation, and crime in major metropolitan areas in the U.S. Students are placed in internships in government departments, social service agencies, or community-based organizations. Required policy brief integrating theory with the internship experience. GER:DB-SocSci, EC-AmerCul, WIM 5 units, Aut (Fraga)

POLISCI 221S. Civic Capacity and Urban Youth—The logic and possibilities of mobilizing urban youth to overcome the decline in civic engagement across American society. Can youth be trained to be advocates for their interests in education or in local government? If youth are mobilized, can this serve as a catalyst to mobilize their parents and other adults? Class requirements include an internship of at least 7 hours per week in the John W. Gardner Center for Youth and their Communities. GER:DB-SocSci, EC-AmerCul, WIM 5 units, Aut (Fraga)

POLISCI 221T. Politics of Race and Ethnicity in the United States—Race and ethnicity issues used to understand current challenges to political development of the U.S. Focus is on political institutions and how current issues such as campaigning, affirmative action, and voting rights operate within parameters set by these institutions. National values underlying notions of identity, citizenship, justice, and public interest. GER:DB-SocSci, EC-AmerCul 5 units (Fraga) not given 2005-06

POLISCI 221U. Latinos in American Politics—(Same as PUBLPOL 189.) Evolution of Latino participation in American politics from the mid-19th century to the present. Issues include conquest, immigration, the Chicano movement, national origin diversity, gender, political parties, and office holding. GER:DB-SocSci, EC-AmerCul 5 units, Win (Fraga)

POLISCI 221V. California Politics: Past, Present, and Future—(Same as PUBLPOL 188.) Changing patterns of politics from the mid-19th century to the present. Emphasis is on the role of institutions in structuring the state’s politics. GER:DB-SocSci, EC-AmerCul 5 units, Win (Fraga)

POLISCI 222S. Topics in Constitutional History—(Same as HISTORY 250B.) Topics in the history of the American Constitution and its interpretation, including the invention of the concept of the written constitution in the Revolutionary era, the crisis of Civil War and Reconstruction, and the controversies over interpretation and the rights revolution in the 20th century. GER:DB-SocSci, EC-AmerCul 5 units (Rakove) not given 2005-06

POLISCI 223R. Philanthropy and Social Innovation—(Enroll in PUBLPOL 183.) 5 units (Arrillaga) not given 2005-06

POLISCI 223S. The Imperial Temptation: U.S. Foreign Policy in a Unipolar World—How did the collapse of the Soviet Union liberate the U.S. from the constraints of bipolarity. How current policy fits into earlier traditions such as Wilsonianism or realism. Normative questions; what is America’s proper role in the world? GER:DB-SocSci 5 units, Spr (Sniderman)

POLISCI 224R. Democratic Citizenship: Can Ordinary Citizens Reason about Politics—The tradition of skepticism about whether ordinary citizens can discharge the responsibilities of democratic citizenship. How this skepticism has been strengthened by recent research on public opinion and electoral behavior. Sources include the interplay of empirical and normative democratic theory. GER:DB-SocSci 5 units, Spr (Sniderman)

POLISCI 225R. Black Politics in the Post-Civil Rights Era—The shift among Black Americans from protest to politics. Emphasis is on the development and use of political resources as the means to achieve policy objectives. Topics: black political attitudes and political participation, voting rights and representation, party politics, multiracial coalition building. GER:DB-SocSci, EC-AmerCul 5 units, Aut (Gay)

POLISCI 227R. Polarized Politics and Special Interest Groups—The influence of special interest groups on electoral competition and policy outcomes in the U.S., and the increasing partisan polarization among elites. How money spent by special interest groups affects the types of candidates who are elected, the agendas of the parties, and the votes of Congressmen. GER:DB-SocSci 5 units, Win (Wand)

POLITICAL THEORY

POLISCI 231S. Contemporary Theories of Justice—Social and political justice and contemporary debates in political theory. Recent works that develop the principles of justice, and the political arrangements that best satisfy their requirements. Limited enrollment. GER: DB- SocSci, WIM 5 units, Win (Reich)

POLISCI 232. Civil Society and the Nonprofit Sector—(Enroll in URBANST 121.) 2-4 units, Spr (Sievers)

COMPARATIVE POLITICS

POLISCI 240L. Politics of the Korean Peninsula—Historical development of Korean politics, the political economy of development in S. Korea since 1948, and N. Korean politics. GER:DB-SocSci 5 units, Aut (Kang)

POLISCI 242T. Social Protection Around the World—The political origin of and differences in major policies of social protection across developed and developing countries; recent challenges faced by these policies. Why some countries provide old-age or sickness benefits to all citizens, while others offer no protection during employment-related risks. Are these differences in policies and institutions driven by economic development alone? Prerequisite: 4.
5 units (Mares) not given 2005-06

POLISCI 242U. Varieties of Capitalism—Core differences in institutions and policies across advanced industrialized democracies. Are there meaningful distinctions among models of capitalism? Do these differences persist in the face of economic globalization? Topics: industrial relations, corporate governance, and social insurance. Prerequisite: 4.
GER:DB-SocSci
5 units (Mares) not given 2005-06

POLISCI 243R. Research Seminar in Democratization and Human Rights—Goal is to produce a minimum 30-page paper based on field research abroad. Students prepare research problem statement, meet individually with the professor, and circulate drafts for class comment. Graduate students should register for directed reading under the professor’s name. GER:DB-SocSci
5 units, Win (Karl)

POLISCI 244R. Political Economy of Disease: AIDS in Historical Perspective—Demographic, economic, cultural, and political changes in the wake of AIDS. The social dimensions of infectious diseases and epidemics; the impact of epidemics on political and economic institutions; and the political economy of responses to the AIDS crisis. Students conduct original research on causes and/or consequences of AIDS or AIDS-related policies. GER:DB-SocSci
5 units (Weinstein) not given 2005-06

POLISCI 245R. Politics in Modern Iran—Modern Iran has been a smythe for political movements, ideologies, and types of states. Movements include nationalism, constitutionalism, Marxism, Islamic fundamentalism, social democracy, Islamic liberalism, and fascism. Forms of government include Oriental despotism, authoritarianism, Islamic theocracy, and liberal democracy. These varieties have appeared in Iran in an iteration shaped by history, geography, proximity to oil and the Soviet Union, and the hegemony of Islamic culture. GER:DB-SocSci, EC-GlobalCom
5 units, Win (Milani)

POLISCI1246R. Market-Oriented Reform and Development in Latin America—Preference to juniors and seniors. Theoretical and policy approaches to Latin American development in recent decades emphasizing policies since the 80s and their effects on economic, social, and political development. GER:DB-SocSci
5 units, Spr (Packenham)

5 units, Aut (Kulkarni)

POLISCI 247S. Politics and Economic Policy in Advanced Industrial Democracies—Political economic approaches to patterns of economic policy making and performance in the advanced industrial democracies of W. Europe and N. America. What is the role of political ideology and government partisanship in influencing economic outcomes? How do the political parties interact with organized interest groups in the formation of economic strategies? Can voters influence patterns of economic policy making and how is this influence felt? What are the cross-national impacts of globalization and the increasing openness of trade and capital markets? What constraints are placed on domestic political actors by the development of supranational political organizations like the EU?
GER:DB-SocSci
5 units, Spr (Wren)

POLISCI 247T. The Politics of the European Union—The origins and the current structure of the EU. The effects of the EU on domestic politics, the electoral landscape, the distribution of political power, the power of national governments to formulate public policy, and economic and social policies. Current issues in EU politics including the creation of the EU constitution; the enlargement of the EU to include countries from the former Soviet bloc; the future of European welfare states; and the EU’s military role. GER:DB-SocSci, EC-GlobalCom
5 units (Wren) not given 2005-06

POLISCI 247U. Electoral and Party Politics in Developed Democracies—The relationships between political parties and electorates, and their impact on public policy formation in W. Europe and N. America. The historical origins of modern parties and party systems, the determinants of individual voting behavior, the role of parties in electoral competition and government formation, the effects of partisan governments and elections on political-economic outcomes, and recent shifts in the structure of electoral cleavages and party systems.
5 units (Wren) not given 2005-06

POLISCI 248. Mexican Politics—Why did Mexico fail to eliminate poverty and destitution despite resources channeled to that end and a rhetoric of social justice inherited from the Revolution? The durability of the political regime, the peculiar characteristics of the Mexican process of democratization, and the regime’s incentives to redress ancestral problems of inequality and destitution. Emphasis is on crafting research projects on the political economy of Mexican development, and hypothesis testing with empirical data. GER:DB-SocSci, EC-GlobalCom
5 units (Díaz-Cayeros) not given 2005-06

POLISCI 248S. Latin American Politics—Fundamental transformations in Latin America in the last two decades: why most governments are now democratic or semidemocratic; and economic transformation as countries abandoned import substitution industrialization policies led by state intervention for neoliberal economic policies. The nature of this dual transformation. GER:DB-SocSci
5 units (Magaloni) not given 2005-06

POLISCI 248T. Problems of Governance and Economic Growth in Mexico: From the Aztecs to NAFTA—(Same as HISTORY 278.) Political and economic institutions of Mexico. The origins and economic consequences of authoritarianism. GER:DB-SocSci
5 units, Spr (Haber)

RESEARCH
POLISCI 299A,B,C. Senior Project—Students conduct independent research work towards a senior honors thesis. See “Honors Program” above.
1-5 units, Aut, Win, Spr (Staff)

POLISCI 299Q. Junior Research Seminar—For students interested in writing a senior honors thesis. Focus is on finding a manageable topic and an adviser.
2 units, Win (Rutten)

POLISCI 299R. Senior Research Seminar—Required of students writing honors theses. Focus is on acquiring research skills and developing an appropriate research design. WIM
3 units, Aut (Rutten)

POLISCI 299S,T. Senior Honors Tutorial—Required of students writing honors theses. Focus is on solving problems in writing a thesis such as keeping on schedule and rewriting drafts. Students work with other honors students and graduate student tutors.
2 units, S: Win, T: Spr (Staff)
ADVANCED UNDERGRADUATE/GRADUATE
INTERNATIONAL RELATIONS
POLISCI 310A. International Relations Theory, Part I — First of a three-part graduate sequence. History of international relations, current debates, and applications to problems of international security and political economy.
 5 units, Aut (Tomz)

POLISCI 310B. International Relations Theory, Part II — Second of a three-part graduate sequence. History of international relations theory, current debates, and applications to problems of international security and political economy. Prerequisite: 310A.
 5 units, Win (Fearon, Sagan)

POLISCI 310C. Research in International Relations—Third of a three-part graduate sequence. Focus is on developing research papers begun in 310A or B, and exploring active areas of research in the field. Prerequisite: 310B.
 3-5 units (Staff) not given 2005-06

POLISCI 311A,B,C. Workshop in International Relations—For graduate students. Contemporary work. Organized around presentation of research by students and outside scholars. May be repeated for credit.
 1-5 units, A: Aut (Goldstein, Tomz), B: Win (Sagan, Tomz),
 C: Spr (Fearon, Goldstein)

POLISCI 312. Japanese Foreign Policy—(For graduate students; see 112.)
 5 units, Aut (Okimoto)

POLISCI 312R. Domestic Politics and International Conflict—Theoretical and empirical research on the effects of domestic politics and political institutions on the incidence, outcome, and resolution of international conflict. Topics include the democratic peace, diversionary conflict, economic sources of war and peace, domestic influences on war outcomes, and the politics of resolving international rivalries.
 5 units (Schultz) not given 2005-06

POLISCI 314S. Decision Making in U.S. Foreign Policy—(Same as IPS 314S.) Priority given to students in International Policy Studies. The formal and informal processes involved in U.S. foreign policy decision making. The formation, conduct, and implementation of policy, emphasizing the role of the President and executive branch agencies. Theoretical and analytical perspectives are supplemented by case studies. Preparation of policy memorandum and substantial research paper or take-home final.
 5 units, Spr (Blacker)

POLISCI 316. International History and International Relations Theory—(Same as HISTORY 202/306E.) GER:DB-SocSci
 5 units (Holloway) not given 2005-06

POLISCI 318S. State Building—Past and present efforts by external actors to influence domestic authority structures. Topics may include: colonialism; protection of minority rights in the 19th and first half of the 20th century; U.S. intervention in the Caribbean and Central America; U.S. and Soviet intervention in Europe after WW II; Afghanistan; and Iraq. For Ph.D. students; others with consent of instructor.
 5 units (Krasner) not given 2005-06

AMERICAN POLITICS
POLISCI 321. Creating the American Republic—(Same as HISTORY 251/352.) Concepts and developments in the late 18th-century invention of American Constitutionalism; the politics of constitution making and ratifying; emergence of theories of constitutional interpretation including originalism; early notions of judicial review. Primary and secondary sources. GER:DB-SocSci
 5 units, Win (Rakove)

POLISCI 322. Campaign Finance and Elections—The strategies and behavior of special interest groups, parties, candidates, and voters in the U.S. Emphasis is on statistical models and empirical tests of formal models. Prerequisite: 350B; 351 sequence or 352; or equivalents.
 5 units (Wand) not given 2005-06

POLISCI 323R. The Press and the Political Process—(Same as COMM 160/260.) The role of mass media and other channels of communication in political and electoral processes. GER:DB-SocSci
 4-5 units, Win (Iyengar)

POLISCI 323S. Analysis of Political Campaigns—(Same as COMM 162/262.) Seminar. The evolution of American political campaigns, and the replacement of the political party by the mass media as intermediary between candidates and voters. Academic literature on media strategies, the relationship between candidates and the press, the effects of campaigns on voter behavior, and inconsistencies between media campaigns and democratic norms. Do media-based campaigns enable voters to live up to their civic responsibility? Has the need for well-financed campaigns increased the influence of elites over nominations? Have citizens become disengaged? GER:DB-SocSci
 4-5 units, Aut (Iyengar)

POLISCI 324R. Questionnaire Design for Surveys and Laboratory Experiments: Social and Cognitive Perspectives—(Enroll in COMM 239.)
 4 units (Krosnick) not given 2005-06

POLISCI 325S. Race and Place in American Politics—The political opinions of individuals cannot be explained apart from the environments within which they occur. How features of neighborhood environments, including their racial and socioeconomic composition, shape the politics and political behavior of Americans. How shifting patterns of residential segregation and suburbanization affect the attitudes and behaviors of African Americans and whites.
 5 units, Aut (Gay)

POLISCI 326R. Urban Politics and Public Policy — Major theoretical approaches regarding democracy, participation, representation, economic development, and governance.
 5 units (Fraga) not given 2005-06

POLISCI 328. Introduction to the Politics of Education—(Enroll in EDUC 220B.)
 4 units, Spr (Kirst)

POLITICAL THEORY
POLISCI 330A History of Ancient Political Thought I: Constructing and Questioning Political Obligation in the Ancient World—(For graduate students; see 130A.)
 5 units, Aut (Adcock)

POLISCI 330B History of Political Thought II: Early Modern Political Thought, 1500-1700—(For graduate students; see 130B.)
 5 units, Win (Adcock)

POLISCI 330C History of Political Thought III: Freedom, Reason, and Power—(For graduate students; see 130C.)
 5 units, Spr (Stone)

 5 units, Win (Stone)

POLISCI 333. Topics in Democratic Theory—(Same as PHIL 377.) Modern approaches to democratic theory including liberal, communitarian, republican, and participatory theories beginning with the works of Locke, Rousseau, and Mill. Writers: John Rawls, Ronald Dworkin, Jeremy Waldron, Joshua Cohen, Habermas, Petit, Iris Marion Young, Ian Shapiro, and Amy Gutman.
 3-5 units (Ferejohn, Satz) alternate years, given 2006-07

POLISCI 334R. Democracy, Justice, and Deliberation—(Enroll in COMM 236G/336G.)
 1-5 units (Fishkin) not given 2005-06
POLISCI 334S. Democracy, Press, and Public Opinion—(Enroll in COMM 244/344.)
1-4 units (Fishkin) not given 2005-06

POLISCI 334T. Democratic Theory: Normative and Empirical Issues—(Enroll in COMM 238/338.)
1-5 units, Win (Fishkin, Luskin)

POLISCI 338G. Political Anthropology from Rousseau to Freud—(Enroll in FRENGEN 256E.)
3-5 units (Dupuy) alternate years, given 2006-07

POLISCI 338I. Foundations of Nanoethics: Toward a Rapprochement between Europe and the U.S.—(Enroll in FRENGEN 258E.)
3-5 units, Spr (Dupuy)

COMPARATIVE POLITICS

POLISCI 340R. Political Economics—How governments collect revenue, allocate spending, and obtain credit, as determined by variations in institutional and political conditions. The emphasis in a democracy on the provision of public goods and services and representative accountability as against the emphasis in less democratized settings on the extractive capacity of the state, the temporal horizons of rulers, and the purchase of political support with money.
5 units (Díaz-Cayeros) not given 2005-2006

POLISCI 340S. Political Economy of Post-Communism—The sources of the collapse of the communist states in E. Europe and the former Soviet Union. Issues facing the formation and consolidation of post-communist states and societies including democratization, privatization, nationalism, and foreign relations between newly independent states. Models and historical analogues for analyzing the emergence of post-communist politics.
5 units, Win (Stoner-Weiss)

POLISCI 340U. Politics of Identity in Eastern Europe—Relations between policy and identity in post-communist E. Europe. Language, ethnicity, religion, and memory in areas such as education, public administration, citizenship, foreign policy, media, churches, holidays, and monuments. Emphasis is on Ukraine; also Belarus, Estonia, Romania, Macedonia, Tatarstan, and Chuvashia. How different degrees of radicalism in nationalizing policy are determined by inherited ideologies and identities, and how they determine post-Soviet identity transformation.
5 units, Win (Kulyk)

POLISCI 341T. Comparative Democratization and Regime Change—Issues of democracy, its definition, problems of transition and consolidation, and comparison. The relationship between democracy and the military, the economy, and the interstate system.
5 units, Spr (Karl)

POLISCI 342R. Politics of Welfare State Expansion and Reform—The main theories explaining the development of the welfare state and its impact on the organization of the political economy. The relative importance of institutional variables, social cleavages, partisanship, and ideology, and the role of economic openness in explaining cross-national differences in social policy. The recent politics of social policy adjustment, and the extent existing differences among welfare states endure in the face of unfavorable economic and demographic developments and common political pressures towards welfare state retrenchment.
5 units (Mares) not given 2005-06

POLISCI 343R. African Civil Wars in Comparative Perspectives: A Research Seminar—Taught jointly with Columbia University via videoconferencing. Topics include causes of civil war, patterns of recruitment and participation, organization of rebel groups, strategies of warring factions, bargaining in the context of peace processes, and civil war termination. Required research paper using original datasets from instructors. Prerequisites: econometric modeling and graduate course work in comparative politics, international relations, and statistics.
5 units, Aut (Weinstein)

POLISCI 344S. Comparative Political Institutions—Overview of existing political institutions and their impact on political-economic outcomes. The roles of political institutions and what determines their stability, how they are chosen, and which processes enable their transformation over time. The main variances in institutional settings, emphasizing the menu of democratic institutions, including parliamentary, semi-presidential, and presidential systems; electoral rules; bicameralism; federalism; and legislative-executive relations. The effect of political institutions on economic growth and political stability.
5 units (Magaloni) not given 2005-06

POLISCI 344U. Political Culture—An approach to culture that emphasizes its equilibrium attributes through relationships among culture, choice, coordination, and common knowledge. Implications for the study of political processes and institutions. Required paper on the role of culture in a political institution.
5 units, Spr (Laitin, Weingast)

POLISCI 345R. Political Economy of Japan—Institutions and processes in the political organization of economic activity in Japan. The interaction of public and private sector institutions in the growth of Japan’s postwar economy. The organization and workings of key economic ministries and agencies of the government, private sector business groupings, and public policy making. Comparison of Japan’s political economy before the bursting of the bubble in 1990-91 with the current situation; why it fell into stagnation and why it has taken Japan so long to recover.
5 units, Aut (Okimoto)

POLISCI 346S. The Logic of Authoritarian Government—If authoritarianism is less economically efficient and a less stable form of political organization than democracy, then why, as a matter of history, are there more authoritarian governments than democracies? The theoretical and empirical literature on authoritarian governments, and related literatures on the micro-economic analysis of property rights and credible commitments.
5 units (Haber) not given 2005-06

POLISCI 347S. Comparative Political Economy of Developed Democracies—Theoretical approaches to differences in economic policy and performance across the advanced industrial democracies. What is the relative importance of government partisanship and ideology, social cleavages, and institutional structures in explaining patterns in economic policy and outcomes? How do these political models compare with models emphasizing economic variables such as capital market integration, trade openness, or technological change?
3-5 units, Spr (Wren)

POLISCI 348S. Contemporary Chinese Foreign Relations—(Same as HISTORY 297/397.)
5 units, Spr (Miller)

4-5 units, Win (Samoff)

POLITICAL METHODOLOGY

POLISCI 350A. Political Methodology I—(For graduate students; see 150A.)
5 units, Aut (Rivers)

POLISCI 350B. Political Methodology II—(For graduate students; see 150B.)
5 units, Win (Jackman)

POLISCI 350C. Political Methodology III—(For graduate students; see 150C.)
5 units, Spr (Rivers, Wand)
POLISCI 351A. Foundations of Political Economy — (Same as POL- ECON 680.) Emphasis is on formal models of collective choice, public institutions, and political competition. Topics include voting theory, social choice, institutional equilibria, agenda setting, interest-group politics, bureaucratic behavior, and electoral competition.
4 units, Aut (Shotts)

POLISCI 351B. Economic Analysis of Political Institutions — (Same as POLIECON 681.) Applying the techniques of microeconomic analysis and game theory to the study of political behavior and institutions, including information economics, games of incomplete information, sequential bargaining theory, repeated games, and rational expectations. Applications include agenda formation in legislatures, the implications of legislative structure, government formation, lobbying, electoral competition and interest groups, the control of bureaucracies, interest group competition, and collective choice rules.
4 units, Win (Baron)

POLISCI 351C. Applied Formal Models: Governmental Decision Making — (Same as POLIECON 682.) Focus is on empirical applications of formal models to the study of legislatures to obtain a systematic understanding of collective decision making. Prerequisites: 351A,B, or equivalent.
4 units, Spr (Krehbiel)

POLISCI 352. Introduction to Game Theoretic Methods in Political Science — (For graduate students; see 152.)
5 units (Fearon) not given 2005-06

POLISCI 353A,B,C. Workshop in Statistical Modeling — Theoretical aspects and empirical applications of statistical modeling in the social sciences. Guest speakers. Students present a research paper. Prerequisite: 350B or equivalent.
1-5 units, A: Aut, B: Win, C: Spr (Jackman, Rivers, Wand)

POLISCI 355. Advanced Topics in Research Methods — Applications to American and comparative politics and international relations.
1-5 units, Win (Wand)

POLITICAL ORGANIZATIONS

POLISCI 362. New Economics of Organization — (Same as OB 686.) Survey of economic approaches to organization, emphasizing theory and application, with attention to politics.
5 units, Spr (Weingast)

POLISCI 364. Politics and Organization — Political institutions and formal organizations. Norms, expectations, and routines characteristic of informal political structure.
5 units, Win (Bendor)

POLISCI 365. Organizational Decision Making — Behavioral theories of organization. Emphasis is on the institutional applications of bounded rationality. Models of incrementalism; evolutionary models of change; organizational learning. The differences between predictions of theories of perfect rationality and those of imperfect rationality. Organizational responses (constructive and pathological) to constraints on information processing. Institutional contexts; public agencies and firms.
5 units (Bendor) not given 2005-2006

GRADUATE

POLISCI 411A,B,C. Research Seminar in International Security and Social Science — Advanced graduate students, faculty, and visitors present research on contemporary problems in international security.
1 unit, Aut, Win, Spr (Eden, Sagan)

POLISCI 420A. Approaches to the Study of American Politics — Theories of American politics, focusing on Congress, the presidency, the bureaucracy, and the courts.
5 units, Aut (Weingast)

POLISCI 420B. Topics in American Political Behavior — For graduate students with some background in American politics embarking on their own research. Current research in American politics, emphasizing political behavior and public opinion. Possible topics: uncertainty and ambivalence in political attitudes, heterogeneity in public opinion, the structure of American political ideology, political learning, the media as a determinant of public opinion, and links between public opinion and public policy.
5 units, Win (Gay)

POLISCI 420C. American Political Institutions — Field seminar. Prerequisites: 420A,B.
5 units, Spr (Ferejohn)

POLISCI 422A,B. Research Seminar in American Political Institutions — Two quarter sequence. Recent work on American institutions including Congress, the courts, and administrative agencies. Some attention to issues of federalism.
5 units (Ferejohn) not given 2005-06

POLISCI 424. Introduction to Political Psychology — Current issues in public opinion and political psychology. The design and analysis of experiments embedded in survey research. Focus is on reviewing the research literature and analyzing relevant data sets.
5 units, Win (Sniderman)

POLISCI 427. The Political Economy of Immigration — The theoretical and empirical literature on migration politics and the economic causes and effects of migration. The political economy of American immigration in comparative perspective. The immigration dilemmas of governments in W. Europe, Asia, and Australia.
5 units, Spr (Wong)

POLISCI 435. Topics in the Philosophy of Social Science — Topics relevant to present-day political science practice including: the foundation of probability theory; theories of scientific progress; the scope and limits of rational choice theory; and interpretive social science.
5 units, Spr (Stone)

POLISCI 436. Rational Choice — The scope and limits of rational choice theory. Possible topics: explanatory and normative uses of rational choice; self-interest versus altruism; the nature of social norms; incommensurable choices; and bounded rationality.
5 units (Stone) not given 2005-06

POLISCI 440A. Theories in Comparative Politics — Required of Political Science Ph.D. students with comparative politics as a first or second concentration; others by consent of instructor. Theories addressing major concerns in the comparative field including democracy, regime change, the state, revolutions, national heterogeneity, and economic performance.
5 units, Aut (Díaz-Cayeros, Laitin)

POLISCI 440B. Comparative Political Economy — Required of all Political Science Ph.D. students with comparative politics as a first or second concentration; others by consent of the instructor. Micro- and macro-level explanations for variation in economic policies and outcomes. The formation of cleavages and political coalitions, and the economic and political consequences of variation in partisanship, political institutions, regime types, and economic openness.
5 units, Win (Haber)

POLISCI 440C. Methods in Comparative Politics — Required of Political Science Ph.D. candidates with comparative politics as a first or second concentration; others by consent of instructor. Current methodological
standards in comparative politics. Students develop their own research design that meets these standards.

5 units, Spr (Laitin, Weinstein)

POLISCI 440D. Workshop in Comparative Politics — Faculty, guest speakers, and graduate students conducting research in comparative politics present work-in-progress. Graduate students may enroll for up to 5 total units apportioned by quarter. Auditors welcome. Graduate students whose major or minor field is comparative politics must make at least one presentation to the seminar.

1-5 units, Aut (Díaz-Cayeros), Win, Spr (Díaz-Cayeros, Mares)

POLISCI 441. Politics of Development — Theoretical understanding of how political processes and institutions are reflected in poverty and inequality; the creation of land, labor, and credit markets; and the configuration of fiscal, monetary, and trade policies. The politics of developing countries with emphasis on contrasts between Latin America and Africa.

5 units (Díaz-Cayeros) not given 2005-06

POLISCI 442. Qualitative and Field Methods — Qualitative methods for data gathering and analysis in political science. Theoretical literature on research design; challenges associated with analysis; techniques for fieldwork. Topics include case selection, levels of analysis, process tracing, ethical concerns in the field, participant observation, interviewing, archival research, survey design, and field experiments. Prerequisites: 440A,B,C.

5 units (Weinstein) not given 2005-06

POLISCI 443R. Corporate Restructuring and Governance in Asia — The political economy of state-business relations and attempts at reform. Problems that have emerged since the 1997 financial crisis and the reforms and restructuring that have been introduced. Focus is on the politics that surround the reforms and their consequences for corporate governance. Cases include China, Japan, and Korea.

5 units (Oi) not given 2005-06

POLISCI 443S. Political Economy of Reform in China — The content, process, and problems of China’s post-Mao reforms. Changes in property rights, markets, credit, and the role of the state in economic development. Comparative insights about reform in the Chinese communist system that distinguishes it from the experience of regimes in Eastern Europe and the former Soviet Union. Readings in Chinese and English. Prerequisite: knowledge of post-1949 Chinese government and politics.

5 units (Oi) not given 2005-06

OVERSEAS STUDIES

Courses approved for the Political Science major and taught overseas can be found in the “Overseas Studies” section of this bulletin, or in the Overseas Studies office, 126 Sweet Hall.

BEIJING

POLISCI 246P. Comparing the Chinese and American Legal Systems

5 units, Aut, Spr (Zhang)

BERLIN

POLISCI 110P. Globalization: International Challenges, Regional Responses

4-5 units, Spr (Tempel)

POLISCI 111P. The German Economy: Past and Present — (Same as ECON 115X.)

4-5 units, Aut (Klein)

POLISCI 112P. A People’s Union? Money, Markets, and Identity in the EU

4-5 units, Aut (Brückner)

POLISCI 245P. Shifting Alliances? The European Union and the U.S

5 units, Win (Brückner)

FLORENCE

POLISCI 42P. An Extraordinary Experiment: Politics and Policies of the New European Union

5 units, Aut (Morlino)

POLISCI 145P. Italy: From Agrarian to Postindustrial Society — (Same as HISTORY 106V.)

4 units, Aut (Mammarella)

POLISCI 210P. Current Issues in Human Rights and International Justice

4 units, Win (Cassese)

KYOTO

POLISCI 211P. Japan in Contemporary International Affairs

5 units, Spr (MacDougall)

POLISCI 240P. The Political Economy of Japan

4-5 units, Spr (Hayashi)

MOSCOW

POLISCI 118P. Russian Politics and Institutions in a Comparative Perspective

5 units, Aut (Melville)

POLISCI 143P. Problems and Prospects of Post-Soviet Eurasia

5 units, Aut (Trenin)

OXFORD

POLISCI 141P. Modern UK and European Government and Politics

4 units, Aut (Capoccia)

POLISCI 148P. European Imperialism and the Third World, 1870-1970 — (Same as HISTORY 141V.)

5 units, Spr (Darwin)

POLISCI 244P. British and American Constitutional Systems in Comparative Perspective

5 units, Spr (McMahon)

PARIS

POLISCI 143P. Human Rights in Comparative Perspective

4-5 units, Spr (Remy-Granger)

POLISCI 149P. Europe: Integration and Disintegration of States, Politics, and Civil Societies

4-5 units, Win (Strudel)

POLISCI 241P. Political Attitudes and Behavior in Contemporary France

4-5 units, Aut (Mayer, Muxel)

SANTIAGO

POLISCI 117P. Latin America in the International System

4-5 units, Win (Fuentes)

POLISCI 242P. Modernization and its Discontents: Chilean Politics at the Turn of the Century

5 units, Spr (Correa)

POLISCI 243P. Political Transition and Democratic Consolidation: Chile in Comparative Perspective — (Same as LATINAM 221X.)

5 units, Aut (Micco)
MORRISONS INSTITUTE FOR POPULATION AND RESOURCE STUDIES

Faculty: (Director) Marcus W. Feldman (Biological Sciences); Carl Djerassi (Chemistry), William Durham (Anthropological Sciences), Paul R. Ehrlich (Biological Sciences), Lawrence H. Goulder (Economics, Institute for International Studies), Mary Lake Polan (Obstetrics and Gynecology), Shripad Tuljapurkar (Biological Sciences)

Institute Office: 371 Serra Mall (Gilbert 116)
Mail Code: 94305-5020
Phone: (650) 723-7518
Email: morrinist@stanford.edu
Web Site: http://www.stanford.edu/group/morrinist/

Although Stanford University does not have a degree program in population studies, it does have scholars of international reputation in specialties such as demographic history, demographic methods, economic demography, epidemiology, population biology, population genetics, and the sociology and anthropology of populations.

The Morrison Institute for Population and Resource Studies is an interdisciplinary group serving three major functions: (1) encouraging graduate work in population and resource studies through fellowship grants and supervision, (2) instituting courses and seminars in population and resource studies, and (3) bringing visiting faculty to Stanford to strengthen existing course offerings. The institute also organizes an interdisciplinary Colloquium on Population Studies to introduce upper-division undergraduates and graduate students to issues in population-related specialties.

COURSES

Many departments offer courses focusing on issues related to the study of populations and resource use. The following course is sponsored by the Morrison Institute.

BIOSCI 146. Population Studies—Series of talks by distinguished speakers introducing approaches to population and resource studies.
1 unit, Win (Feldman)
10 units must be pre-approved by the student services office or faculty adviser. These courses should represent a coherent thematic focus. One way to achieve this focus is through a specialization track. All courses taken to satisfy the 70-unit requirement must be taken for a grade of ‘C-’ or better (except for courses offered only on a satisfactory/no credit basis). All majors must take PSYCH 1, Introduction to Psychology, and PSYCH 10, Introduction to Statistical Methods, or a comparable Statistics course. Advanced placement (AP) credit may no longer be used toward the Psychology major requirements. Beyond these two required courses, students must complete at least five of the following ten core Psychology courses, with a minimum of two from each area A and B:

Area A Courses:
- BIOSCI 20, Introduction to Brain and Behavior (formerly PSYCH 20)
- PSYCH 30, Introduction to Perception
- PSYCH 45, Introduction to Learning and Memory
- PSYCH 55, Introduction to Cognition and the Brain

Area B Courses:
- PSYCH 60, Introduction to Developmental Psychology
- PSYCH 70, Introduction to Social Psychology
- PSYCH 75, Introduction to Cultural Psychology
- PSYCH 80, Introduction to Personality Psychology
- PSYCH 90, Introduction to Clinical Psychology
- PSYCH 95, Introduction to Abnormal Psychology

Students who declared a major in Psychology prior to the 2002-03 academic year may choose any five of the ten core courses. Students who declared a major in Psychology prior to the 2005-06 academic year may choose to adhere to the 55-unit major requirement, taking PSYCH 1 and 10, five core courses, and elective courses, totaling 55 units.

Students must take one Writing in the Major (WIM) course in Psychology, and should check the Stanford Bulletin yearly as these courses may change. The department also strongly recommends that all majors take at least one advanced seminar.

Students may count up to 10 units of research, independent study, and practica (including but not limited to PSYCH 194, 195, 281) toward the Psychology major. Students who are teaching assistants for a Psychology course or are enrolled in the senior honors program are allowed up to 15 units in independent study and practica. Any units beyond the limit of 10 or 15 may be counted toward the 180 units required for graduation.

Summer Quarter Psychology courses are not equivalent to courses given during the regular academic year and, while applicable toward the 70 units needed for the major, may not be used to fulfill the core course requirement. Additionally, a course taken during the Summer Quarter cannot be used to replace the grade of a non-Summer Quarter course, even if the title and units of the two courses are the same.

Beyond the Minimal Requirements — The following recommendations may be helpful to students who wish to plan a program which goes beyond the minimal requirements listed above:

1. Within the general major, the student may take advanced undergraduate or graduate courses, including seminars. The student may also take advantage of widespread opportunities for directed research, working closely with individual faculty and graduate students.
2. The student may apply to the Senior Honors Program, described below.
3. The student may elect to pursue one of four specialization tracks: Cognitive Sciences; Health and Development; Mind, Culture, and Society; or Neuroscience, described below.

The training obtained from the pursuit of any of these options is valuable not only for students considering graduate work in psychology, but also for those thinking of professional careers outside of psychology in fields such as business, counseling, education, law, or medicine.

MINORS

Declaration — Students who wish to declare a minor field of concentration in Psychology must do so no later than the deadline for their application to graduate.

Requirements — Completion of a minimum of 35 units in Psychology is required for the minor, in addition to PSYCH 1, Introduction to Psychology, and PSYCH 10, Introduction to Statistical Methods, or a comparable statistics course. Advanced placement (AP) credit may no longer be used towards the Psychology minor. The minor must include three of ten core courses, with a minimum of one from each of two areas (A: BIOSCI 20; PSYCH 30, 40, 45, 50; and B: 60, 70, 75, 80, 90, 95) and elective Psychology courses of at least three units each, totaling 35 units. Students who declared a Psychology minor prior to the 2002-03 academic year may choose any three of the ten core courses. Students who declared a Psychology minor prior to the 2005-06 academic year may choose to complete seven total courses: PSYCH 1 and 10, three core courses, and two elective courses. Independent study, research, and practica cannot be counted toward the minor. Summer Quarter Psychology courses are not applicable toward the 35 units needed for the minor. All courses used to fulfill the requirements of the minor must be passed with a grade of ‘C-’ or better.

TRANSFER CREDIT

Evaluation of transfer credit for the Psychology major or minor is a three-step process. First, in order to submit an undergraduate petition for transfer credit, a student must already have declared Psychology as a major or minor. Second, Stanford credit for courses completed at other institutions must be granted by the External Credit Evaluation section of the Registrar’s Office. Those units can then be applied toward the 180 units required for graduation. Third, the Psychology department evaluates the courses to determine if they can be applied toward Psychology major or minor requirements. To have a course evaluated, students complete an undergraduate petition form (available from the student services office) and submit it with a course syllabus and a copy of the signed transcript from the External Credit Evaluation section showing the number of Stanford units granted for the course.

Psychology majors must complete at least 43 units of course work toward their major at Stanford. No more than 10 units of transfer credit may be counted toward the Psychology minor. Both majors and minors may use only one transfer course towards fulfilling the core course requirements. Additional courses may be used to fulfill the 70-unit requirement, but do not count as core courses.

SPECIALIZATION TRACKS

Students in the major program, including those in the Senior Honors Program, may elect to specialize in one of four tracks: Cognitive Sciences; Health and Development; Mind, Culture, and Society; or Neuroscience. Specialization tracks consist of a coherent set of courses leading to advanced undergraduate or even graduate level courses in an area. In the ideal case, the student who specializes would acquire an understanding of a range of psychological processes, as well as an appreciation of the significance of these processes in the chosen area of application. In this way, specialization could facilitate the student’s preparation for a professional career in, for example, medicine, business, or counseling, as well as for graduate work in Psychology.

Specialization in a track is optional, although students who do not wish to complete all the requirements for a track may still want to use the track as a guideline for an integrated program in Psychology. Students who choose to complete a specialization track must meet the requirements for the major plus the additional requirements designated for the track. Typically the courses required for a track include one or two required courses, four to six recommended courses in Psychology, one or two advanced seminars, and three to four courses in related disciplines. Psychology courses completed for the track count toward satisfying the major requirements. Courses from other departments listed for the tracks may count toward the 10 outside units for the major requirement, but must be pre-approved by the student services office or faculty adviser. The Mind, Culture, and Society track includes a two quarter research practicum; students are encouraged to apply for this track by Autumn Quarter of their junior year. Application forms are available from the student services office. There is no application for the other tracks, but all tracks must be declared on Axess and students must submit a track form that can be found at http://www-psych.stanford.edu/undergraduate_forms.html or at the student services office. Completion of a track is noted on a student’s transcript, but not on the diploma.
Information about the required and recommended courses for each track is available from the student services office.

HONORS PROGRAM

The senior honors program is designed for exceptionally able Psychology majors who wish to pursue a year of intensive supervised independent research. Admission to the program is made at the end of the student’s junior year on the basis of (1) excellent academic performance, (2) previous research experience, and (3) two letters of recommendation by faculty and/or graduate students. An information meeting about the program is held in Winter Quarter. Applications are available late Spring Quarter and are to be turned in to the student services office with a current transcript and recommendations by June 17 prior to the student’s senior year.

Students interested in the program should involve themselves in research as early as possible and should acquire a broad general background in Psychology, including statistics, and a deep background in their chosen area. The honors program is particularly appropriate for students planning to go to graduate school in Psychology or in other social sciences, as well as in computer science, business, law, and medicine.

During Autumn Quarter of their senior year, honors program students participate in a weekly seminar. Initially, discussions are on general methods and issues in psychological research, but most of the sessions are devoted to discussions of students’ presentations of their proposed research. During the quarter, students meet with their advisers to develop their experimental program and begin data collection. At the end of Autumn Quarter, students turn in a written proposal. Winter and Spring quarters are devoted to completing the research, analyzing and making sense of the data, and writing the thesis, which is submitted mid-May. Students give oral presentations of their projects at the annual Honors Convention, scheduled for the day between classes and exams. This convention is attended by undergraduates, graduate students, and faculty.

GRADUATE PROGRAMS

MASTER OF ARTS

The Department of Psychology normally offers a Master of Arts degree only to students concurrently enrolled in its Ph.D. program or to students currently pursuing Stanford B.A. or M.A. degrees. Admission to the program is by Psychology faculty nomination only. All applicants must satisfy University residency requirements for the degree and are responsible for consulting with their primary departments or the Financial Aid Office about the effects of the proposed program on their current funding. General University requirements for the master’s degree are described in the “Graduate Degrees” section of this bulletin.

Stanford undergraduate students who would like advanced training in Psychology may apply for a coterminal M.A. degree in Psychology. To do so, students should consult with the student services officer in the department. Along with a coterminal program application, applicants must submit (1) a statement of purpose, (2) a preliminary program plan specifying the courses in which they intend to enroll, (3) at least two letters of recommendation from Stanford faculty members familiar with their academic work, (4) a current Stanford undergraduate transcript, and (5) a written nomination by a member of the Psychology faculty willing to serve as the student’s master’s degree adviser. This program is limited in size and admission is selective. Applicants must have earned a minimum of 120 units towards graduation as shown on the transcript. The department’s deadline for the submission of an application to the coterminal program is January 10.

For University coterminal degree program rules and University application forms, see http://registrar.stanford.edu/publications/#Coterm.

In exceptional cases, students concurrently enrolled in another doctoral or professional program at Stanford may also apply for the M.A. degree. Such applicants also consult with the department’s student services officer.

Students must complete at least 45 units of Psychology courses for the degree. (For coterminal degree students, course work for the master’s degree may not duplicate courses taken for the undergraduate degree.) Of these 45 units, at least 27 must be in Psychology courses numbered 200 or above. Units from research, teaching, independent study, and lab courses, such as PSYCH 258, 269, 275, 281, 282, and 297, may not be counted toward these 27 units. Two of the graduate courses of at least 3 units each (one from Area A and one from Area B below) are required. In addition, at least one upper division statistics course is required. The course must be approved by the student’s adviser. It is recommended that all coterminal students enroll in PSYCH 196, Contemporary Psychology. In addition to the unit and course requirements, coterminal students are required to serve as a teaching assistant for one Psychology course. Details about the teaching assistantships are available upon acceptance to the program.

All courses to be counted toward the master’s degree must be passed with a grade of ’B+’ or better (unless the course is offered only on a satisfactory/no credit basis). Units from research, teaching, practica, independent study, and lab courses, such as PSYCH 258, 269, 275, 281, 282, and 297, may be counted toward the remaining required 18 units. Psychology courses numbered in the 100-level and courses from other Stanford departments may be used to satisfy the remaining 18 units. Courses specifically for undergraduates (i.e., undergraduate honors courses) may not be counted toward the master’s program unit requirements. Demonstration of competence in the design and execution of psychological research is also required for receipt of the master’s degree. This demonstration entails completion of a master’s thesis. If the student is currently doing a senior honors thesis, this honors thesis may be accepted as proof of research competence provided the honors thesis is judged to be master’s level research by the student’s adviser and the department’s Committee on Graduate Studies. If the student has just completed an honors thesis in Psychology in the prior year, the student would be expected to continue independent research during the coterminal year and to submit thesis research in a written report which, together with the completed honors thesis, would constitute the master’s thesis. All students are required to make an oral presentation of their research during the Spring Quarter, and to present their thesis or written report by June 1.

Area A Courses:
- 202. Cognitive Neuroscience
- 205. Foundations of Cognition
- 210. Memory and Learning
- 214. Psycholinguistics
- 221. Applied Vision and Image Systems
- 228. Ion Transport
- 251. Affective Neuroscience
- 261. Emotion
- 261A. Learning and Cognition in Activity

Area B Courses:
- 211. Developmental Psychology
- 212. Social Psychology
- 213. Personality and Psychopathology
- 215. Mind, Culture, and Society
- 217. Topics and Methods in Cultural Psychology
- 259. Emotions: History, Theories, Research
- 271. Applications of Social Psychology

DOCTOR OF PHILOSOPHY

There are no specific course requirements for admission to the doctoral program. However, an applicant should have research experience as an undergraduate, as well as the equivalent of an undergraduate major in psychology. The major focus of the doctoral program is on research training, and admission is highly selective.

Applicants for admission must submit their scores on the general Graduate Record Examination as part of the application. GRE subject scores are strongly encouraged.

General University requirements for the Ph.D. are described in the “Graduate Degrees” section of this bulletin.

In addition to fulfilling Stanford University requirements for the degree, the following departmental requirements are stipulated.
First-Year Course Requirements — During the first year of graduate study, the student must take 207, Proseminar for First-Year Ph.D. Graduate Students, at least one approved graduate statistics course, and at least two core courses from the list below:

- 202. Neuroscience
- 205. Foundations of Cognition
- 211. Developmental Psychology
- 212. Social Psychology
- or 215. Mind, Culture, and Society
- 213. Personality

Students in each area may be required to take up to two additional non-core graduate courses in their area of specialization.

The student is expected to spend at least half of the time in research from the beginning of the first year of graduate study to the completion of the Ph.D., normally taking no more than 10 units of course work each quarter. At the end of the first year of graduate study, the student must file with the department a written report of the first-year research activities. The deadline for filing this report is June 1.

Second-Year Course Requirements — By the end of the second year of graduate study, the student must complete the core courses listed above and take a second approved graduate course in statistics.

Third-Year Major Area Paper — During the first week of Autumn Quarter of the fourth year, the student must turn in a Conceptual Analysis of the Dissertation Area (CADA). This paper provides a general framework for the research topic of the dissertation, addresses the central issues within the specialty area, and reviews the pertinent literature. Typically, the analysis has the kind of scope found in the opening chapters of the more traditional dissertations, but the exact format and scope of the paper is a joint decision made by student and adviser.

Prior to Autumn Quarter, the student should select two faculty members to read this paper and give feedback and commentary on it. These should be two faculty members most likely to serve later on the oral committee of the dissertation. A portion of the paper, revised as appropriate, can then become the first section of the actual dissertation proposal.

If the student should radically change the area of the dissertation research after the CADA has been written, the formal CADA procedure does not need to be repeated for the second dissertation topic. The student is still expected, however, to be knowledgeable about the literature and problems of any research topics being pursued for the dissertation.

Minor Requirements — The candidate must complete either a University minor satisfactory to the minor department, or elect to have the minor waived by selecting 12 upper-level units. These 12 units may be fulfilled by either (a) non-core graduate courses in Psychology, excluding any non-core graduate courses required by a particular area, or (b) graduate-level courses in other departments comparable in quality to Psychology’s graduate courses. If there is any question about comparability, students should consult the Graduate Education Committee before taking the course.

Dissertation Reading Committee — The candidate must select a dissertation reading committee satisfactory to the department. The minimum membership of this committee must be (1) the principal dissertation adviser, (2) a second member from within the department, and (3) a third member chosen from Psychology or another department.

Orals — The candidate must pass the University oral examination, which is based on the dissertation proposal, not on the completed dissertation. The reason for this policy is to permit the oral examination to serve the function of guiding and improving the proposed research. This function can best be served if the oral examination is scheduled early in the year in which the dissertation research is conducted. It is therefore expected that the oral examination be taken by the end of the Autumn Quarter of the fourth year.

Dissertation Requirements — The candidate must complete a dissertation satisfactory to the dissertation reading committee.

Ph.D. candidacy expires five years after admission to candidacy at the end of the second year of study. Reapplication requires department reexamination.

STUDENT EVALUATIONS

First-Year Evaluation — It is the department’s policy to evaluate the progress of each graduate student at the end of the first year of graduate study. As part of the procedure, each student is required to file with the department a report of the first-year research activities.

Students should discuss this report and the evaluation procedures with their adviser as early as possible in their first year. The report is due on June 1. If the student fulfills the academic promise displayed upon entrance, he or she is invited to continue to the doctorate.

The first-year evaluation is primarily based on three factors:
1. quality of research carried out in the first year
2. performance in courses (especially required courses)
3. recommendations of the adviser (including a commitment on the part of that adviser to continue in that role)

Second-Year Evaluation — A similar evaluation is conducted at the end of the second year of graduate training involving the same criteria as the first year; however, the student is not required to submit a paper. Students who do not make satisfactory progress during the second year may be dropped from the program.

THE DOCTORAL TRAINING PROGRAM

As indicated by the requirements described above, a student may concentrate in any one of several areas within psychology. Regardless of area, however, the training program places emphasis on the development of research competence, and students are encouraged to develop those skills and attitudes that are appropriate to a career of continuing research productivity.

Two kinds of experience are necessary for this purpose. One is the learning of substantial amounts of technical information. A number of courses and seminars are provided to assist in this learning, and a student is expected to work out a program, with his or her adviser, to attain this knowledge in the most stimulating and economical fashion.

A second aspect of training is one that cannot be gained from the courses or seminars. This is firsthand knowledge of, and practical experience with, the methods of psychological investigation and study. These methods include ways of behaving with the people or animals being studied. Students are provided with whatever opportunities they need to reach those levels of competence representative of doctoral standing. Continuing research programs, sponsored by members of the faculty, offer direct opportunities for experience in fields represented by the faculty’s many research interests.

Each student achieves competence in unique ways, and at different rates. Each student and adviser share in planning a program leading to the objectives discussed. The student is expected to spend half of his or her time on research and normally takes no more than 10 units of course work per quarter.

TEACHING REQUIREMENT

The department views experience in supervised teaching as an integral part of its graduate program. Regardless of the source of financial support, all students serve as teaching assistants for five Psychology courses during their graduate study. Of the courses, two should be PSYCH 1, Introduction to Psychology, and/or PSYCH 10, Statistical Methods. Students are discouraged from participating in teaching during the first year of graduate study. Students typically progress from closely supervised teaching to more independent work. Some students may be invited to offer a supervised, but essentially independent, seminar during their final year of graduate study.

PH.D. MINOR

Candidates for the Ph.D. degree in other departments may elect a minor in Psychology. To obtain a minor, the student must complete 20 units of course work at the graduate level in the Department of Psychology, excluding PSYCH 275 (graduate-level research). Crosslisted graduate courses can be used to satisfy this requirement. All courses counting toward the Ph.D. minor must be passed with a grade of ‘B-’ or better (unless the course is offered only on a satisfactory/no credit basis).
COGNITIVE SCIENCE PROGRAM

Psychology participates, along with the departments of Computer Science, Linguistics, and Philosophy, and the School of Education, in an interdisciplinary program of cognitive science. The program is intended to provide students with an interdisciplinary education as well as a deeper concentration in psychology. Doctoral students in Psychology are eligible to participate in the cognitive science program. Students who complete the requirements receive a special designation in cognitive science along with the Ph.D. in Psychology. To receive this field designation, students must complete 30 units of approved courses, 18 of which must be taken in two disciplines outside of psychology. For information or course approval, see the student services officer.

PSYCHOLOGY COLLOQUIUM

The Psychology Colloquium meets on most Wednesday afternoons at 3:45. Speakers from Stanford and other institutions present topics of current interest. Graduate students are expected to attend.

COURSES

WIM indicates that the course satisfies the Writing in the Major requirement.

SUMMER SESSION

The courses announced for the Summer Session are those regularly scheduled in the department curriculum. Additional courses may be announced by Stanford Summer Session at http://summer.stanford.edu.

STANFORD INTRODUCTORY SEMINARS

PSYCH 7Q. Language Acquisition—Stanford Introductory Seminar. Preference to sophomores. Debates concerning how biology guides linguistic development; theories about the nature and origins of human language abilities; and experimental research on the emergence of understanding in infancy.

3 units, Aut (A. Fernald)

3 units, Spr (Markman)

PSYCH 12N. Self Theories—Stanford Introductory Seminar. The impact of people’s self theories, their beliefs in a fixed self versus a self that can be developed through motivation and performance in school, business, sports, and relationships. How self theories develop and can be changed. Readings include research articles and popular writings. GER:DB-SocSci

3 units, Aut (Dweck)

PSYCH 13N. Culture and Social Relationships—Stanford Introductory Seminar. Preference to freshmen. How does culture influence how people relate to others including romantic partners, family, friends, acquaintances, and strangers? The cultural norms, values, and structures that shape expectations of and interactions with others. GER:DB-SocSci

3 units, Win (Tsai)

PSYCH 19N. Memory and Brain—Stanford Introductory Seminar. Preference to freshmen. How experience shapes people. Why some experiences are readily and accurately remembered, whereas others are forgotten or misremembered. What is known about how the brain supports learning and remembering; how this cognitive ability is sometimes prone to error and distortion.

3 units, Win (Wagner)

OPEN TO ALL STUDENTS

PSYCH 1. Introduction to Psychology—Human behavior and mental processes including the nervous system, consciousness, learning, memory, development, emotion, psychopathology, interpersonal process, society, and culture. Current research. GER:DB-SocSci

5 units, Aut (Gross, Quill), Win (Kirkham, Quill), Spr (Staff, Quill)

PSYCH 10. Introduction to Statistical Methods: Precalculus—(Same as STATS 60/160.) Techniques for organizing data, computing, and interpreting measures of central tendency, variability, and association. Estimation, confidence intervals, tests of hypotheses, t-tests, correlation, and regression. Possible topics: analysis of variance and chi-square tests, computer statistical packages. GER:DB-Math

5 units, Aut (Walther), Win (Thomas), Spr (Bartroff), Sum (Staff)

PSYCH 30. Introduction to Perception—Perceptual psychology and sensory neuroscience, emphasizing vision and hearing. Topics include anatomy and physiology of the eye and ear, and of the visual and auditory areas of the brain, pitch and loudness perception, speech perception, color vision, depth and motion perception, and object and face recognition. Recommended: 1. GER:DB-NatSci

3 units, Win (Grill-Spector)

PSYCH 45. Introduction to Learning and Memory—The literature on learning and memory including cognitive and neural organization of memory, mechanisms of remembering and forgetting, and why people sometimes falsely remember events that never happened. Cognitive theory and behavioral evidence integrated with data from patient studies and functional brain imaging. Recommended: 1.

3 units, Spr (Wagner)

PSYCH 55. Introduction to Cognition and the Brain—Major topics in cognitive psychology and neuroscience, including empirical approaches to perception, language, learning, memory, knowledge representation, problem solving, and reasoning.

4 units, Spr (Boroditsky)

PSYCH 60. Introduction to Developmental Psychology—Psychological development from birth to adulthood, emphasizing infancy and the early and middle childhood years. The nature of change during childhood and theories of development. Recommended: 1. GER:DB-SocSci, WIM

3 units, Win (Johnson)

PSYCH 60A. Introduction to Developmental Psychology Section—Guided observation of children age 2-6 at Bing Nursery School. Corequisite: 60.

2 units, Win (Hartman)

PSYCH 70. Introduction to Social Psychology—Theory and empirical research in social psychology: conformity, obedience, helping, and aggression; attitudes, persuasion, identity and roles; person perception, attribution, and social judgment; interpersonal and intergroup relationships, social conflict, prejudice, and stereotyping. Original research proposal. Recommended: 1. GER:DB-SocSci, WIM

4 units, Spr (Ross, Staff)

PSYCH 75. Introduction to Cultural Psychology—The cultural sources of diversity in thinking, emotion, motivation, self, personality, morality, development, and psychopathology. Recommended: 1. GER:DB-SocSci, EC-GlobalCom, WIM

5 units (Markus) alternate years, given 2006-07

PSYCH 80. Introduction to Personality Psychology—Concepts and research methods, major theoretical approaches, and related empirical findings. The psychodynamic, trait, biological, humanistic, behavioral, social learning, cognitive, and cultural perspectives. Recommended: 1. GER:DB-SocSci

3 units, Spr (Tsai)

PSYCH 90. Introduction to Clinical Psychology—Topics include the history of clinical psychology, models and assessment of personality, behavior, cognition, psychopathology, and approaches to the treatment
of abnormal behavior. Emphasis is on current theory, research, issues in, and the role of clinical psychology in contemporary society. Recommended: 1. GER:DB-SocSci
3 units, Aut (Gottlib)

PSYCH 95. Introduction to Abnormal Psychology—(Formerly 90.) The nature, origin, and treatment of a variety of psychological disorders from various psychological and biomedical perspectives. Historical and current controversies in the field. Recommended: 1. GER:DB-SocSci
3 units, Spr (Hong)

PSYCH 101. Community Health Psychology—(Same as HUMBIO 178.) Social ecological perspective on health emphasizing how individual health behavior is shaped by social forces. Topics include: biobehavioral factors in health; health behavior change; community health promotion; and psychological aspects of illness, patient care, and chronic disease management.
3 units, Spr (Heaney)

PSYCH 102. Longevity—Multidisciplinary. Challenges to and solutions for the young from increased human life expectancy: health care, financial markets, families, work, and politics. Guest lectures from engineers, economists, and lawyers.
3 units, Win (Carstensen, Rando)

PSYCH 103S. Psychology and Culture—How many psychological processes assumed to be universal are culture-bound; why human thinking should be studied in conjunction with sociocultural context. Cultural sources of diversity in thinking, emotion, motivation, self, personality, development, social interaction, and psychopathology. How cultural traditions and social practices regulate, express, transform, and permute psychological functioning. Sources include recent crosscultural literature.
3 units, Sun (Rice, Wong)

PSYCH 110. Research Methods and Experimental Design—Structured research exercises and design of an individual research project. Prerequisite: consent of instructor. GER:DB-SocSci, WIM
5 units, Win (M. Lepper)

PSYCH 112S. The Psychology of Mind Reading—Interdisciplinary. How to understand facial expressions, body language, gesture, intentional and unintentional actions, and deception; the development of mind-reading in children and across species. How the mind understands other minds. How to evaluate empirical research. Readings from cognitive, social, and developmental psychology and neuroscience.
3 units, Sun (Martin, Lozano)

PSYCH 117A. Community Health: Assessment and Planning I—(Enroll in HUMBIO 117A.)
3 units, Win (Heaney)

PSYCH 117B. Community Health: Assessment and Planning II—(Enroll in HUMBIO 117B.)
3 units, Spr (Heaney)

PSYCH 120. Cellular Neuroscience: Cell Signaling and Behavior—Neural interactions underlying behavior. Prerequisites: 1 or basic biology. GER:DB-NatSci
4 units, Aut (Wine)

PSYCH 121. Ion Transport and Intracellular Messengers—(Graduate students register for 228.) Ion channels, carriers, ion pumps, and their regulation by intracellular messengers in a variety of cell types. Lab demonstrations and hands-on introduction to techniques such as patch clamping. Recommended: 120 or introductory course in biology or human biology.
1-3 units (Wine) not given 2005-06

PSYCH 122. Human Behavioral Biology—(Enroll in BIOSCI 150.)
3-6 units, Spr (Sapolsky) alternate years, not given 2006-07

PSYCH 125. Beyond Stereotype Threat: Claiming a Rightful Place in an Academic Community—(Same as CTL 130.) Stereotype threat as mitigating the quality of a student’s test performance; its impact on academic success at Stanford. How to reduce the impact of stereotype threat on Stanford students.
2 units, Win (Glickman)

PSYCH 130. Introduction to Cognitive Science—(Same as SYMBSYS 100.) The history, foundations, and accomplishments of the cognitive sciences, including presentations by leading Stanford researchers in artificial intelligence, linguistics, philosophy, and psychology. Overview of the issues addressed in the Symbolic Systems major. GER:DB-SocSci
4 units, Spr (Bresnan, van Benthem)

PSYCH 131. Language and Thought—(Graduate students register for 262.) The psychology of language including: production and understanding in utterances; from speech sounds to speaker’s meaning; children’s acquisition of the first language; and the psychological basis for language systems. Language functions in natural contexts and their relation to the processes by which language is produced, understood, and acquired. Prerequisite: 1 or LINGUIST 1. GER:DB-SocSci
4 units (H. Clark) not given 2005-06

PSYCH 133. Human Abilities—(Same as EDUC 255.) Psychological theory and research on human cognitive abilities; their nature, development, and measurement; and their importance in society. Persistent controversies and new areas of research, recent perspectives on the nature-nurture debate and the roles of genetics, health and education in shaping HCAs. Prerequisite: PSYCH 1 or equivalent. (PSE) GER:DB-SocSci
3 units (Shavelson) not given 2005-06

PSYCH 134. Seminar on Language and Deception—Deceptive, exploitative, and other noncooperative uses of language. How is language used to deceive or exploit? Where are these techniques practiced and why? What are the personal, ethical, and social consequences of these practices?
Prerequisite: 131, LINGUIST 1, or PHIL 181. GER:DB-SocSci
3 units (H. Clark) not given 2005-06

PSYCH 135. The Science of Well-Being—Limited enrollment. Preference to students who have taken 75. Prerequisite: application; consent of instructor.
3 units, Win (Markus, Curhan)

PSYCH 137. Birds to Words: Cognition, Communication, and Language—(Graduate students register for 239A.) Although the communicative abilities of animals are determined by their genetic endowment, and human communicative skills dwarf those of other species, the relation between language and genetics remains the subject of debate. Is human language genetically specified? Or are human communicative powers just one facet of human cognitive advantage? Focus is on the nature and origins of language, using evidence from studies of animals, children, and adults. GER:DB-SocSci
3 units, Aut (A. Fernald, Ramscar)

PSYCH 140. Research Methods in Developmental Psychology—Conceptual and methodological issues related to research on early development, training in experimental design, lab, and observational procedures, and the collection, analysis, and interpretation of data. Students conduct supervised experiments with infants and preschoolers at the Center for Infant Studies in the Department of Psychology and at Bing Nursery School. Limited enrollment. Lab required. GER:DB-SocSci
5 units (Markman, Johnson) not given 2005-06

PSYCH 141. Cognitive Development—Topics and issues on cognitive development, developmental changes in memory, conceptual organization, logical reasoning, and communication skills. Prerequisite: 1. GER:DB-SocSci
3 units, Aut (Markman)

PSYCH 143. Developmental Anomalies—(Graduate students register for 239.) Neurodevelopmental disorders and impairments. What can the sparing of isolated mental abilities in otherwise devastating disorders (or vice versa) tell about the mind and its development in the normal case? Disorders and impairments: autism, congenital blindness, deafness, dyslexia, and Williams syndrome. Prerequisites: 60, 141 or LINGUIST 1. GER:DB-SocSci
3 units (Johnson) not given 2005-06
PSYCH 145. Seminar on Infant Development —For students preparing honors research. Conceptual and methodological issues related to research on developmental psycholinguistics; training in experimental design; and collection, analysis, and interpretation of data. Limited enrollment.
1-2 units, Win (A. Fernald)

PSYCH 146. Observation of Children—Learning about children through guided observations at Bing Nursery School, Psychology’s lab for research and training in child development. Physical, emotional, social, cognitive, and language development. Recommended: 60. GER: DB-SocSci
3-5 units, Aut, Spr (Winters, Hartman)

PSYCH 147. Development in Early Childhood—Supervised experience with young children at Bing Nursery School. 3 units require 4 hours per week in Bing classrooms throughout the quarter; 4 units require 7 hours per week; 5 units require 10.5 hours per week. Seminar on developmental issues in the Bing teaching-learning environment. Prerequisite: 60 or 146, or consent of instructor.
3-5 units, Aut, Win, Spr (Staff)

PSYCH 149. The Infant Mind: Cognitive Development over the First Year—How do babies learn so much in so little time? Emphasis is on cognitive and perceptual development, and the relationship between brain and behavior in infancy. Prerequisite: 1. Recommended: 60 or 141. GER: DB-SocSci
3 units, Win (Kirkham)

PSYCH 152. Mediation for Dispute Resolution—(Same as EDUC 131.) Mediation as more effective and less expensive than other forms of settling disputes such as violence, lawsuits, or arbitration. How mediation can be structured to maximize the chances for success. Simulated mediation sessions.
3 units, Aut (Kramholz)

PSYCH 153. Reading, Science, Education, and Politics—(Same as HUMBIO 153.) The intellectual foundations of reading curriculum development including contributions of scientists, educators, and policy makers. Neural mechanisms of reading including the methodology used to measure complex behavior. Intervention studies to improve reading skills, and the implications of basic and applied science for social policy.
3 units, Spr (Kirkham)

PSYCH 155. Introduction to Comparative Studies in Race and Ethnicity—(Same as CSRE 155, ENGLISH 196C.) How different disciplines approach topics and issues central to the study of ethnic and race relations in the U.S. and elsewhere. Lectures by senior faculty affiliated with CSRE. Discussions led by CSRE teaching fellows. GER: DB-SocSci
5 units, Win (Markus, Moya)

PSYCH 156. Applications of Social Psychology—(Graduate students register for 271.) The application of social psychological theory and research to evaluating the impact of social interventions, strategies, and shortcomings in personal and social decision making; the effects of mass media and other sources of social persuasion; conflict resolution and negotiation; applications in legal, medical, educational, and business settings. Prerequisites: 1 and 10, or consent of instructor.
1-4 units (Ross) not given 2005-06

PSYCH 158. Emotions: History, Theories, and Research—(Graduate students register for 259.) Theoretical and empirical issues in the domain of emotions. The history of emotion theories, current approaches, and the interaction between emotion and cognition.
1-3 units, Spr (Zajonc)

PSYCH 161. Emotion—(Graduate students register for 261.) The scientific study of emotion. Topics: models of emotion, emotion antecedents, emotional responses (facial, subjective, and physiological), functions of emotion, emotion regulation, individual differences, and health implications. Focus is on experimentally tractable ideas. GER: DB-SocSci
3 units, Win (Gross)

PSYCH 162. The Psychology of Gender—Research and theory on the socialization and psychological development of women and men. The biological, cultural, and social factors that influence gendered behavior. GER: EC-Gender
4 units (Carstensen) not given 2005-06

PSYCH 163. Interpersonal Basis of Abnormal Behavior—The role of interpersonal problems and processes in producing forms of psychopathology including neurotic reactions and schizophrenia. Conventional empirical methods clarify the origin, nature, and treatment of emotional and personality disorders. Prerequisite: 90. GER:DB-SocSci
3 units, Win (Horowitz)

PSYCH 165. Peace Studies—(Same as POLISCI 111.) Interdisciplinary. The challenges of pursuing peace in a world where the sources of conflict are many, and regional, ethnic, and religious antagonisms are rising. The art of creating and maintaining peace from historical, social, psychological, and moral perspectives. Goal is to illustrate the contributions of academic disciplines and critical analyses to the study of peace, and to prepare students to think critically and to act responsibly and effectively on behalf of peace. Students explore a conflict and offer contributions to the building of peace. Limited enrollment. GER: DB-SocSci
5 units (Bland, Ross, Holloway) not given 2005-06

PSYCH 166. Seminar on Personal and Social Change—Social cognitive approaches to personal and social change. Applications of sociocognitive theory to the modification of psychological dysfunctions in familial, educational, medical, and organizational settings. Ethical and value issues in behavior change.
3 units, Spr (Bandura)

PSYCH 167. Seminar on Aggression—The causes and modification of individual and collective aggression. Major issues in aggression: social labeling of injurious conduct, social determinants of aggression, effects of the mass media, institutionally sanctioned violence, terrorism, psychological mechanisms of moral disengagement, modification of aggressive styles of behavior, and legal sanctions and deterrence doctrines.
3 units, Win (Bandura)

PSYCH 168. Emotion Regulation—(Graduate students register for 268.) The scientific study of emotion regulation. Topics: historical antecedents, conceptual foundations, autonomic and neural bases, individual differences, developmental and cultural aspects, implications for psychological and physical health. Focus is on experimentally tractable ideas. GER: DB-SocSci
3 units, Spr (Gross)

PSYCH 171. Research Seminar on Aging—Two quarter practicum exposes students to multiple phases of research by participating in a laboratory focusing on social behavior in adulthood and old age. Review of current research; participation in ongoing data collection, analysis, and interpretation. Prerequisites: 1, research experience, and consent of instructor.
4 units, Aut, Win, Spr (Carstensen)

PSYCH 173. Mind, Culture, and Society Research Lab—For juniors in the Mind, Culture, and Society track. Offered over two quarters. Lecture series on current research topics. Research project in second quarter.
2-3 units, Win, Spr (Markus)

PSYCH 177. Senior Seminar on Mind, Culture, and Society—For seniors in the Mind, Culture, and Society track.
3 units, Aut (Markus)

PSYCH 178. Stigma and Marginality—(Graduate students register for 263.) The perceptions and strategies of the targets of prejudice and discrimination, with emphasis on race and ethnicity. Topics: social perceptions and the judgments of targets, racial identity, behavioral consequences of prejudice and discrimination, and legal/policy implications. Readings from social psychology, African American studies, sociology, and law. Limited enrollment. GER: DB-SocSci
3 units (Eberhardt) not given 2005-06
PSYCH 179. The Psychology of Everyday Morality — (Graduate students register for 270.) For graduate students, cotermals, and senior Psychology majors. Traditional approaches focusing on how morality colors mundane human activities such as eating and on morality as defined by actors themselves rather than social scientists. Moral hypocrisy, food and disgust, taboo trade-offs, moral reproach, and prejudice with compunction. Limited enrollment. Prerequisite: 70 and consent of instructor.

4 units (Monin) not given 2005-06

PSYCH 180. Social Psychological Perspectives on Stereotyping and Prejudice — (Graduate students register for 245.) Classic and contemporary social psychological approaches to prejudice and stereotyping. Emphasis is on how stereotypes are employed and maintained, and the influence of stereotyping on behavior in domains including education, employment, politics, and law. Limited enrollment. GER: DB-SocSci

3 units (Eberhardt) not given 2005-06

PSYCH 185. Contemporary Issues in Peace Studies — (Graduate students register for 285; same as POLISCI 311) Interdisciplinary. The challenges of pursuing peace in a world of conflict and regional, ethnic, and religious antagonisms. Historical, social, psychological, and moral perspectives. Current research in social psychology, political science, international relations, and negotiation theory. Student involvement in real-world efforts to identify and overcome the barriers that impede a peace settlement. Prerequisite: consent of instructor. GER: DB-SocSci

3 units (Bland, Ross, Holloway) not given 2005-06

PSYCH 192. Career and Personal Counseling — (Same as EDUC 134/234.) Methods of integrating career and personal counseling with clients and counselors from differing backgrounds. Practice with assessment instruments. Case studies of bicultural role conflict. Informal experience in counseling. (PSE)

3 units, Spr (Krumholz)

PSYCH 194. Reading and Special Work — Independent study. May be repeated for credit. Prerequisite: consent of instructor.

1-3 units, Aut, Win, Spr, Sum (Staff)

PSYCH 195. Special Laboratory Projects — Independent study. May be repeated for credit. Prerequisites: 1, 10, and consent of instructor.

2-3 units, Aut, Win, Spr, Sum (Staff)

PSYCH 196. Contemporary Psychology: Overview of Theory, Research, Applications — Capstone experience for juniors and seniors that bridges course work with research opportunities. Lectures representing the department’s areas: social, personality, developmental, neuroscience, and cognitive psychology. Faculty present current research and engage with participants. Discussions led by advanced graduate students in the field represented by that week’s guest. Students write research proposals. Small grants available to students interested in conducting a pilot study of their proposed research. Limited enrollment. Prerequisite: consent of instructor. May be repeated for credit.

3 units, Aut (Thomas)

PSYCH 197. Advanced Research — Limited to students in senior honors program. Weekly research seminar, independent research project under the supervision of an appropriate faculty member. A detailed proposal is submitted at the end of Autumn Quarter. Research continues during Winter and Spring quarters as 198. A report demonstrating sufficient progress is required at the end of Winter Quarter.

1-4 units, Aut (Eberhardt)

PSYCH 198. Senior Honors Research — Limited to students in the senior honors program. Finishing the research and data analysis, written thesis, and presentation at the Senior Honors Convention. May be repeated for credit.

1-4 units, Win, Spr (Zimbardo)

PSYCH 199. Research Methods in Psychology — Prerequisite: 207 or consent of instructor.

3 units, Win (Markman, Dweck)

PSYCH 201. Social Psychology — Prerequisite: 207 or consent of instructor.

3 units, Win (M. Lepper, Ross)

PSYCH 211. Personality and Psychopathology — Theory and research. Prerequisite: 207 or consent of instructor.

3 units, Spr (Horowitz)

PSYCH 214. Psycholinguistics — Prerequisite: graduate standing in Psychology or consent of instructor.

3 units (H. Clark) not given 2005-06

PSYCH 215. Mind, Culture, and Society — Social psychology from the context of society and culture. The interdependence of psychological and sociocultural processes: how sociocultural factors shape psychological processes, and how psychological systems shape sociocultural systems. Theoretical developments to understand social issues, problems, and policies. Works of Baldwin, Mead, Asch, Lewin, Burner, and contempo-
ratory theory and empirical work on the interdependence of psychology and social context as constituted by gender, ethnicity, race, religion, and region of the country and the world. Prerequisite: 207 or consent of instructor.

PSYCH 217. Topics and Methods in Cultural Psychology — Conceptual and methodological issues in cultural psychology. Possible topics: the mechanisms by which cultural influences psychological and social processes in monocultural and multicultural contexts; relations between culture and biology; measurement of culture; development of culturally appropriate instruments and tasks; and use of questionnaire, interview, observational, and physiological methods to study cultural influences on human behavior. May be repeated for credit.

1-3 units, Win (Tsai)

PSYCH 218. Early Social Cognitive Development — Current literature on social and cognitive development in infancy emphasizing the interface between the two domains. May be repeated for credit.

1-3 units, Spr (Johnson)

PSYCH 220. Topics in Cognitive Development — Prerequisite: graduate standing in Psychology or consent of instructor.

1-3 units (Markman) not given 2005-06

PSYCH 221. Applied Vision and Image Systems — The design and control of color imaging devices (display, printers, cameras, and scanners). Aspects of human vision relevant to software and hardware design. Topics: digital halftoning, color calibration, color metrics, ficker sensitivity, motion compensation, human spatial resolution, visual masking, JPEG principles, printer design, scanner design, and color software architecture. Lab.

1-3 units, Win (Wandell)

PSYCH 222. Social Norms — (Same as OB 630.) Research and theory on the origins and function of social norms. Topics include the estimation of public opinion, function of norms as ideals and standards of judgment, and impact of norms on collective and individual psychology. How to identify and formulate tractable research questions.

4 units (Miller) not given 2005-06

PSYCH 224. Questionnaire Design for Surveys and Laboratory Experiments: Social and Cognitive Perspectives — (Enroll in COMM 239.)

4 units (Krosnick) not given 2005-06

PSYCH 227. Seminar in Psycholinguistics — (Same as LINGUIST 247.)

2-4 units (Staff) not given 2005-06

PSYCH 228. Ion Transport and Intracellular Messengers — (Undergraduates register for 121; see 121.)

1-3 units (Wine) not given 2005-06

PSYCH 230. Aping: Imitation, Control, and the Development of the Human Mind — Seminar. The idea that a childhood that prolongs a state of stimulus-bound helplessness beyond that of animals is the price human beings pay for the benefits of shared cognitive structures. How such structures enable social collaboration, language, and the transmission and sharing of knowledge. Sources include psychological data from animals and humans, and recent discoveries in neuroscience.

1-3 units, Spr (Kirkham, Ramscarc)

PSYCH 231. Graduate Seminar on Self-Efficacy — The origins, mediating mechanisms, and effects of people’s beliefs in their ability to control events in their lives. Alternative theories of perceived control; the nature and structure of self-efficacy belief systems; major sources of efficacy beliefs; processes through which they affect human functioning; development of analysis of efficacy beliefs over life course; the application of self-efficacy theory to cognitive development, health functioning, clinical dysfunctions, organizational functioning, and athletic performance; the exercise of collective efficacy to accomplish social change.

1-3 units (Bandura) not given 2005-06

PSYCH 232. Workshop on Neuroeconomics and the Neural Basis of Decision Making

2 units, Win, Spr (Knutson, Newsome, Rangel)

PSYCH 234. Topics in Affective Disorders — Current research topics in the study of affective disorders. Topics: epidemiology and phenomenology of affective disorders, psychological theories of depression, gender differences in affective disorders, cognitive and social functioning of depressed persons, psychobiology of affective disorders, depression in children, postpartum depression, suicide issues in the treatment of depression, and cultural aspects of affective disorders. Prerequisite: graduate standing in Psychology or consent of instructor.

1-3 units (Gotlib) not given 2005-06

PSYCH 235. American Indian Mental Health and Education — (Enroll in EDUC 340X.)

3-5 units (LafRomboise) not given 2005-06

PSYCH 239. Developmental Anomalies — (Undergraduates register for 143; see 143.)

3 units (Johnson) not given 2005-06

PSYCH 239A. Birds to Words: Cognition, Communication, and Language — (Undergraduates register for 137; see 137.)

3 units, Aut (A. Fernald, Ramscarc)

PSYCH 240. Language Acquisition I — (Enroll in LINGUIST 140.)

4 units, Spr (Estigarribia)

PSYCH 241. Language Acquisition II: Advanced Topics in Language Acquisition — (Enroll in LINGUIST 241.)

1-4 units (E. Clark) not given 2005-06

PSYCH 243. General Development Seminar — Prerequisite: consent of instructors.

1-2 units, Win (Markman, A. Fernald, Kirkham)

PSYCH 244. Psychology of Aging — Theory and research in gerontology. Normal and abnormal changes that occur in biological, cognitive, and psychological aging. Emphasis is on the environmental factors that influence the aging process. Prerequisite: graduate standing in Psychology or consent of instructor.

1-3 units (Carstensen) not given 2005-06

PSYCH 245. Social Psychological Perspectives on Stereotyping and Prejudice — (Undergraduates register for 180; see 180.)

3 units (Eberhardt) not given 2005-06

PSYCH 248. Introduction to Test Theory — (Enroll in EDUC 252.)

3-4 units, Spr (Haertel)

PSYCH 249A. Problems in Measurement: Item Response Theory — (Enroll in EDUC 353A.)

3 units, Aut (Haertel)

PSYCH 250. High-level Vision — Theories and ongoing research. Topics: behavioral studies pertaining to representation of objects; generalization and invariances; learning new categories; neuropsychological deficits; properties of high-level visual areas in monkeys and human beings; and theories and models of object and face recognition.

1-3 units (Grill-Spector) alternate years, given 2006-07

PSYCH 251. Affective Neuroscience — Theory and research. Comparative and human research approaches map affective function to neuroanatomical and neurochemical substrates. Prerequisite: consent of instructor.

3 units (Knutson) not given 2005-06

PSYCH 252. Statistical Methods for Behavioral and Social Sciences — For students who seek experience and advanced training in empirical research. Analysis of data from experimental through factorial designs, randomized blocks, repeated measures; regression methods through multiple regression, model building, analysis of covariance; categorical data analysis through two-way tables. Integrated with the use of statistical computing packages. Prerequisite: 10 or equivalent.

1-6 units, Aut (Thomas)
PSYCH 253. Statistical Theory, Models, and Methodology — Practical and theoretical advanced data analytic techniques such as loglinear models, signal detection, meta-analysis, logistic regression, reliability theory, and factor analysis. Prerequisite: 252 or EDUC 257.
 3 units, Spr (Thomas)
PSYCH 254. Frontiers of Personality — In the 70s, personality research almost disappeared from psychology. Recently, there has been a resurgence of interest in it, especially from fields outside traditional psychology. New findings from fields such as genetics, neuroscience, medicine, and health psychology. Readings from current science journals with an emphasis on the interdisciplinary integration and applications of personality research.
 3 units (Knutson) not given 2005-06
PSYCH 255. Topics in Personality and Abnormal Psychology — Topic varies every year. This year’s topic is the construct of a prototype, prototype methodology, and applications to clarifying phenomena such as miscommunications, close relationships, and inter-rater reliability. May be repeated for credit. Prerequisite: consent of instructor.
 1-3 units, Aut, Win, Spr, Sum (Staff)
PSYCH 256. Topics in Language and Cognition — Perspectives from psychology, computational modeling, and neuroscience. May be repeated for credit. Prerequisite: consent of instructor.
 1-3 units (Ramscar) not given 2005-06
PSYCH 258. Graduate Seminar in Social Psychology Research — For students who are already or are planning to become involved in research on social construal and the role that it plays in a variety of phenomena, notably the origin and escalation of conflict.
 1-3 units, Aut, Win, Spr (Zajonc)
PSYCH 259. Emotions: History, Theories, and Research — (Undergraduates register for 158; see 158.)
 1-3 units, Spr (Zajonc)
PSYCH 260. Emotion — (Undergraduates register for 161; see 161.)
 3 units, Win (Gross)
PSYCH 262. Language and Thought — (Undergraduates register for 131; see 131.)
 4 units (H. Clark) not given 2005-06
PSYCH 263. Stigma and Marginality — (Undergraduates register for 178; see 178.)
 3 units (Eberhardt) not given 2005-06
PSYCH 266. Current Debates in Learning and Memory — Memory is not a unitary faculty, but consists of multiple forms of learning and remembering. The cognitive and neural architectures of memory, focusing on the application of functional brain imaging (primarily fMRI and ERP).
 3 units (Wagner) not given 2005-06
PSYCH 267. Cognitive Psychology Concepts in Clinical and Social Psychology — How memory concepts have influenced clinical and social psychology. Topics include childhood amnesia, autobiography, emotions and memory, distortions and illusions of memory, recovery of repressed memories, false memories, implicit memories, unconscious influences, and theories of psychopathology. Social topics include stereotypes, self-serving biases, and two-process theories of attitudes.
 2-3 units, Spr (Bower)
PSYCH 268. Emotion Regulation — (Undergraduates register for 168; see 168.)
 3 units, Spr (Gross)
PSYCH 269. Graduate Seminar in Personality Research — May be repeated for credit. Prerequisite: graduate standing in Psychology.
 1 unit, Aut, Win, Spr (Gotlib)
PSYCH 270. The Psychology of Everyday Morality — (Undergraduates register for 179; see 179.)
 4 units (Momin) not given 2005-06
PSYCH 271. Applications of Social Psychology — (Undergraduates register for 156; see 156.)
 1-4 units (Ross) not given 2005-06
PSYCH 272. Special Topics in Psycholinguistics — May be repeated for credit. Prerequisite: consent of instructor.
 1-3 units (H. Clark) not given 2005-06
PSYCH 275. Graduate Research — Intermediate-level research undertaken with members of departmental faculty. Prerequisite: consent of instructor.
 1-15 units, Aut, Win, Spr, Sum (Staff)
PSYCH 278. Neuroeconomics — (Same as ECON 178/278.) Techniques from neuroscience and psychology to study how the brain makes economic decisions; implications for the social sciences, especially economics and political science. Topics include: brain processes related to reward, control, and attention; role of emotion in decision making; morality; emotion in social encounters; bargaining and strategic thinking; decision making and probability assessment in risky situations; intertemporal decision making; and addiction. Prerequisite: graduate background in neuroscience or economics, or consent of instructor.
 5 units (Rangel) not given 2005-06
PSYCH 279. Topics in Cognitive Control — The processes that enable flexible behavior by biasing contextually relevant perceptual, mnemonic, and response representations or processing pathways. Cognitive control is central to volitional action, allowing work with memory, task/goal states, and overriding inappropriate responses. Current models of cognitive control, functional neuroimaging, and neuropsychological evidence.
 1-3 units (Wagner) not given 2005-06
PSYCH 281. Practicum in Teaching — Enrollment limited to teaching assistants in selected Psychology courses. May be repeated for credit.
 1-5 units, Aut, Win, Spr, Sum (Staff)
PSYCH 282. Practicum in Teaching PSYCH 1 — Logistical training including: preparing for sections; creating, proctoring, correcting exams; grading an iterative writing assignment; office hours; review sessions; developing audiovisual expertise; communicating via coursework. Review of student evaluations with instructor to set goals and strategies. Second quarter focuses on pedagogical improvement. Limited to current PSYCH 1 TAs. May be repeated for credit.
 1-2 units, Aut, Win, Spr (Quill)
PSYCH 283. Interdisciplinary Seminar on Conflict and Dispute Resolution — (Same as LAW 611, MS&E 459.) Problems of conflict resolution and negotiation from an interdisciplinary perspective. Presentations by faculty and scholars from other universities.
 1 unit, Win (Hensler, Ross)
PSYCH 285. Contemporary Issues in Peace Studies — (Same as POLISCI 311; undergraduates register for 185; see 185.)
 3 units (Bland, Ross, Holloway) not given 2005-06
PSYCH 290. Graduate Research Methods — Primary tool use for psychologists: basics of experiment design; computer-based experiments; web-based experiments; data analysis packages and data presentation; exploratory statistics; eye-tracking methods; psychophysiology methods; survey construction; corpus and discourse analysis; and perhaps hypnosis. Prerequisite: Ph.D. student in Psychology.
 2 units, Win (Crosby)
PSYCH 296. Methods in Personality and Social Psychology — Focus is on developing a set of methodological skills in personality and social psychology. Experimental survey and multivariate methods. Topics: archival and correlational studies; experimental and quasi-experimental design; formulating the research problem; going from abstract ideas to concrete instances; handling research artifacts; measuring and analyzing change data; observational techniques; organizing data: professional and ethical issues; triangulation; validity and reliability of measurement. Practicum format. Research proposal. Prerequisite: graduate standing in Psychology or consent of instructor.
 1-3 units, Aut (M. Lepper, Steele)
PSYCH 297. Seminar for Coterminal Master of Arts — Contemporary issues and student research. Student and faculty presentations.
1-2 units, Aut, Win, Spr (Thomas)

PSYCH 459. Frontiers in Interdisciplinary Biosciences — (Same as CHEMENG 459, BIOSCI 459, CHEM 459, BIOC 459, BIOE 459.) For specialists and non-specialists. Sponsored by the Stanford BioX Program. Three seminars per quarter address scientific and technical themes related to interdisciplinary approaches in bioengineering, medicine, and the chemical, physical, and biological sciences. Leading investigators from Stanford and the world present breakthroughs and endeavors that cut across core disciplines. Pre-seminars introduce basic concepts and background for non-experts. Registered students attend all pre-seminars; others welcome. See http://www.stanford.edu/group/biox/courses/459.html. Recommended: basic mathematics, biology, chemistry, and physics.
1 unit, Aut, Win, Spr (Robertson)

PUBLIC POLICY PROGRAM

Director: Bruce M. Owen
Associate Director: Geoffrey Rothwell (Senior Lecturer, Economics)
Executive Committee: Jonathan Bendor (Business), David Brady (Political Science, Hoover Institution), Morris Fiorina (Political Science), Luis Fraga (Political Science), Daniel Kessler (Business and Law), Roger Noll (Economics), Susan Olzak (Sociology), Leonard Ortolaño (Civil and Environmental Engineering), Debra Satz (Philosophy)
Affiliated Faculty and Staff: Donald Barr (Sociology), Coit Blacker (Stanford Institute for International Studies), Timothy Bresnanahan (Economics), M. Kate Bundorf (Health Research and Policy), John Cogan (Hoover Institution), Luis Fraga (Political Science), Judith Goldstein (Political Science), Lawrence Goulder (Economics, Institute for International Studies), Henning Hillmann (Sociology), Mark Hlatky (Health Research and Policy), Nicholas Hope (Center for Research on Economic Development and Policy Reform), Michael Kirs (Education), Thomas McCurdy (Economics), Mark McClellan (Economics, School of Medicine; on leave), Robert McGinn (Management Science and Engineering), Milbrey McCluskey (Education), Debra Meyerson (Education), Terry Moe (Political Science), Norman Nie (Political Science), Bruce Owen (Economics), James Phillips (Business), A. Mitchell Polinsky (Law), Andy Rutten (Political Science), Myra Strobeber (Education), Barton Thompson (Law), Nancy Brandon Tuma (Sociology), Barry Weingast (Political Science), Frank Volok (Economics)

Lecturers: Laura Arrillaga, Patrick Egan, Roger Printup, Mary Sprague, Patrick Windham

Visiting Associate Professor: Eva Meyerson Milgrom

Department Phone: (650) 723-3452
Web Site: http://www.stanford.edu/dept/publicpolicy/

Courses given in Public Policy Program have the subject code PUBLPOL. For a complete list of subject codes, see Appendix.

Government plays an important, ubiquitous role in contemporary society. Moreover, the growing complexity of public policies, the political processes that give rise to them, and the organizations that implement them have created a need in government, business, and the nonprofit sector for people who understand how government operates. The Public Policy Program provides students with the foundational skills and institutional knowledge necessary for understanding the policy process, and provides an interdisciplinary course of study in the design, management, and evaluation of public sector programs and institutions. The major in Public Policy is useful as preparation for employment as an analyst in government agencies or business; as a foundation for postgraduate professional schools in business, education, law, and public policy; and as preparation for graduate study in the social sciences, especially economics, political science, and sociology. For more details about the Public Policy Program, including updated information about course offerings and other activities, see http://www.stanford.edu/dept/publicpolicy/

UNDERGRADUATE PROGRAMS

BACHELOR OF ARTS

The core courses in the Public Policy Program develop the skills necessary for understanding the political constraints faced by policy makers, assessing the performance of alternative approaches to policy implementation, evaluating the effectiveness of policies, and appreciating the sharp conflicts in fundamental human values that often animate the policy debate. After completing the core, students apply these skills by focusing their studies in one of several areas of concentration. The areas of concentration address specific field of public policy, types of institutions, or a deeper development of the tools of policy analysis. A list of recommended courses for each concentration is available in the Public Policy Program office. Areas of concentration are:

- Advanced Methods of Policy Analysis
- Business Policies
- Design of Public Institutions
- Development and Growth Policies
- Education
- Environment, Resources, and Population
- Health Care
- International Policies
- Law and the Legal System
- Media and Policy
- Science and Technology Policy
- Social Entrepreneurship
- Social Policy: Discrimination, Crime, Poverty
- Urban and Regional Policy

Completion of the program in Public Policy requires 83 units of course work.

1. 35 units of prerequisite courses: POLISCI 2; ECON 1, 50, 102A, 102B; SOC 160 or MS&E 180; and either MATH 19 and 20, or 41. In addition, students may be required to take ECON 50M before enrolling in ECON 50, and are encouraged to take MATH 42 and 51, and at least one course in linear algebra.

2. Five additional units of analytical skills courses. Among the courses that satisfy the requirement are ECON 51, 52, 102C; and POLISCI 151A, B, 152. For current information about courses that fulfill this requirement, check with the program office.

3. The 25-unit sequence of 5-unit core courses, which students should plan to complete by the end of their junior year (see below for descriptions 101-105). To satisfy the core requirement in Philosophy, students must take PUBLPOL 103A or 103B.

4. Majors must complete 15 units of course work in an area of concentration. The 15 units of post-core course work must be approved by a concentration adviser.

5. Seniors are required to participate in one quarter (3 units) of the Senior Seminar (PUBLPOL 200A, B, or C). Majors also must submit at least one research paper during the senior year and present it before the Senior Seminar. The senior paper may be a term paper for either the senior seminar or another course, or an honors thesis.

6. A maximum of 10 units may be taken on a satisfactory/no credit basis in the prerequisite courses for the Public Policy core. All remaining courses required for Public Policy majors must be taken for a letter grade.

7. Students must complete the Public Policy core and their concentration area courses with a grade point average (GPA) of 2.0 or higher.

8. The major must be declared no later than the end of Autumn Quarter of the junior year. Application forms are available in the Public Policy Program office and on the web site.

The Public Policy Program encourages students to participate in various Stanford internship programs, including those available through the Haas Center for Public Service and Stanford in Washington.
MINORS

The Public Policy Program offers a minor that is intended to provide students with interdisciplinary training in applied social sciences. Students who pursue the minor are required to take the courses listed below for a total of 34 units in Public Policy and its supporting disciplinary departments. Because University rules prohibit double-counting courses, the requirements for a minor differ according to the student’s major requirements.

For students whose major department or program requires no courses in economics, political science, or sociology, the requirements for a Public Policy minor are:

- **Course No. and Subject**
- **Units**
- ECON 1, 50; PUBLPOL 104
- 15
- POLISCI 2 and PUBLPOL 101
- 10
- MS&E 180 and PUBLPOL 102
- 9

For students who are Economics majors or who satisfy a major requirement by taking ECON 50, but no courses in political science, the requirements for a Public Policy minor are:

- **Course No. and Subject**
- **Units**
- MS&E 180 and PUBLPOL 102
- 9
- POLISCI 2: PUBLPOL 101
- 10
- PUBLPOL 103
- 5
- PUBLPOL 104
- 5
- PUBLPOL 105
- 5

For students who are Political Science majors or who satisfy a major requirement by taking POLISCI 2 but no courses in Economics, the requirements for a Public Policy minor are:

- **Course No. and Subject**
- **Units**
- ECON 1, 50, 102A; PUBLPOL 104
- 20
- PUBLPOL 103
- 5
- MS&E 180 and PUBLPOL 102
- 9

For Sociology majors, the requirements for a Public Policy minor are:

- **Course No. and Subject**
- **Units**
- ECON 1, 50, 102A; PUBLPOL 104
- 20
- POLISCI 2; PUBLPOL 101
- 10
- PUBLPOL 103
- 5

For students who major in another interdepartmental program (such as International Relations) and who satisfy major requirements by taking ECON 50, POLISCI 2, and an introductory course in statistics (such as ECON 102A or STATS 60), the requirements for a Public Policy minor are:

- **Course No. and Subject**
- **Units**
- ECON 102B; PUBLPOL 105
- 10
- PUBLPOL 101
- 5
- PUBLPOL 103
- 5
- PUBLPOL 104
- 5
- MS&E 180 and PUBLPOL 102
- 9

HONORS PROGRAM

The Public Policy Program offers students the opportunity to pursue honors work during the senior year. To graduate with honors in Public Policy, a student must:

1. Apply for admission to the honors program no later than the end of the second week of Autumn Quarter of the senior year.
2. Complete the requirements for the B.A. in Public Policy and achieve a grade point average (GPA) of 3.3 in the following courses: the Public Policy core, the student’s concentration area courses, the Senior Seminar, and PUBLPOL 199 (senior research). Courses not taken at Stanford are not included in calculating the GPA.
3. Enroll in at least 8 but no more than 15 units of PUBLPOL 199 during the senior year and receive a final grade on the senior thesis of at least a ‘B+.’

Students who intend to pursue honors work should plan their academic schedules so that most of the core courses are completed before the beginning of the senior year, and all of the core and concentration courses are completed by the end of Winter Quarter of senior year. This scheduling gives students both the time and the necessary course background to complete a senior research project in Spring Quarter. In addition, honors students are encouraged to enroll in PUBLPOL 197, Junior Honors Seminar, during Winter Quarter; this course focuses on developing a research plan and the research skills necessary to complete a thesis. Also, students should plan on taking PUBLPOL 105 during their junior year.

To apply, a student must submit a completed application to the Public Policy Program office with a brief description of the thesis. The student must obtain the sponsorship of a faculty member who approves of the thesis description and who agrees to serve as a thesis adviser. Students intending to write a thesis involving more than one discipline may wish to have two advisers, at least on of which is from the faculty listed above.

The honors thesis must be submitted to both the thesis adviser and the Public Policy Program office. Graduation with honors requires that the thesis be approved by both the adviser and the Director of the Public Policy Program. The role of the director is to assure that the thesis deals with an issue of public policy and satisfies the standards of excellence of the program. However, the grade for the honors thesis is determined solely by the adviser. The thesis adviser sets the deadlines for receiving the final draft of the thesis; the director sets the deadline for theses to be considered for University and department awards. To graduate with honors at the Spring commencement, a student must submit a final bound copy and an electronic copy of the thesis to the Public Policy program office no later than the last Friday in May. To be considered for awards given to outstanding senior theses, a student must submit a copy of the thesis to the Public Policy program office no later than the third Wednesday in May.

Members of the core faculty in Public Policy are available to provide assistance in selecting a senior thesis topic.

COURSES

<table>
<thead>
<tr>
<th>WIM indicates that the course satisfies the Writing in the Major requirements.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBLPOL 101. Politics and Public Policy — (Same as POLISCI 123.) The domestic policy making process, emphasizing how elected officials, bureaucrats, and interest groups shape government policies in areas including tax, environmental, and social welfare policy, given their goals and available tactics. How public policies are formulated and implemented. The results of this process using equity and efficiency criteria. Prerequisite: POLISCI 2. GER:DB-SocSci 5 units, Spr (Sprague)</td>
</tr>
<tr>
<td>PUBLPOL 102. Organizations and Public Policy — Analysis of public organizations, stressing problems of effective management and incentives in a non-market environment. Prerequisite: SOC 160 or MS&E 180. GER:DB-SocSci 5 units, Win (Bendor)</td>
</tr>
<tr>
<td>PUBLPOL 103A. Introduction to Political Philosophy — (Enroll in PHIL 30, ETHICSOC 30.) 5 units, Aut (Hussain)</td>
</tr>
<tr>
<td>PUBLPOL 103B. Ethics and Public Policy — (Same as STS 110, MS&E 197.) Ethical issues in science- and technology-related public policy conflicts. Focus is on complex, value-laden policy disputes. Topics: the nature of ethics and morality; rationales for liberty, justice, and human rights; and the use and abuse of these concepts in policy disputes. Case studies from biomedicine, environmental affairs, technical professions, communications, and international relations. GER:DB-Hum, WIM 5 units, Win (McGinn)</td>
</tr>
<tr>
<td>PUBLPOL 104. Economic Policy Analysis — (Same as ECON 150.) The relationship between microeconomic analysis and public policy making. How economic policy analysis is done and why political leaders regard it as useful but not definitive in making policy decisions. Economic rationales for policy interventions, methods of policy evaluation and the role of benefit-cost analysis, economic models of politics and their application to policy making, and the relationship of income distribution to policy choice. Theoretical foundations of policy making and analysis, and applications to program adoption and implementation. Prerequisites: ECON 50 and 102A. WIM 5 units, Win (Noll)</td>
</tr>
</tbody>
</table>
PUBLPOL 105. Quantitative Methods and Their Applications to Public Policy — Reviews material covered in prerequisites with applications of quantitative independent variable techniques to labor market data. Maximum likelihood estimation and estimation dependent variable models with an application to voting models. Final papers estimate influence of quantitative and qualitative independent variables on Congressional voting probabilities. Prerequisites: ECON 102A.B. GER:DB-SocSci 5 units, Spr (Rothwell)

PUBLPOL 124T. Legislatures, Courts, and Public Policy — (Same as POLISCI 124T.) How courts exert power and play a role in creating policy in the U.S. Can or should judges read their own values into law? Can the elected branches check the power of unelected judges? What is good government and how do courts fit into it? Focus is on the Civil Rights Act of 1964 examining the political maneuvers to pass it and recent Supreme Court decisions applying it to affirmative action. GER:DB-SocSci 5 units, Spr (Ruten)

PUBLPOL 145. Globalization and Labor Conditions — The politics and economics of alternative private and public policies aimed at improving labor conditions around the world. Do international trade, offshore outsourcing, international migration, and multinational corporations undermine working conditions and labor rights? 5 units (Flanagan) not given 2005-06

PUBLPOL 149L. The Death Penalty: Human Biology, Law, and Policy — (Enroll in HUMBIO 166.) 3 units, Aut, Spr (Abrams)

PUBLPOL 154. Economics of Legal Rules and Institutions — (Enroll in ECON 154.) 5 units, Win (Owen)

PUBLPOL 163. Formal Organizations — (Enroll in SOC 160.) 5 units, Win (Hillmann)

PUBLPOL 164. Comparative Public Policy — Problems, answers, underlying political philosophies, and impacts of public policy choices in areas such as aging populations, health care costs, illegal immigration, terrorism, pollution, and competition from low-cost countries. Focus is on N. America and Europe. GER:DB-SocSci 3 units (Crombez) not given 2005-06

PUBLPOL 168. Managing Global Diversity: The Matrix of Change — Diversity in organizations consists not only of racial, cultural, and gender differences, but also differences in perspectives and interests among employees based on profession, assignments, or compensation. Diversity can be a source of strength when different perspectives lead to insight and information, and when pay differences leave room to reward superior performance. It can also be a barrier to communication and cooperation. Policy and managerial issues concerning when and how far to encourage diversity and how to harness its strengths and mitigate the conflicts it can create. GER:DB-SocSci 5 units, Win (Meyersson Milgrom)

PUBLPOL 172. Mass Media Economics and Policy — Consumer demand for, the economic structure of, and federal regulation and policies affecting print and electronic mass media industries including the Internet. Topics include economies of scale and first-copy costs, production of non-rivalrous consumption goods, demand and supply of diversity and localism, ownership concentration, access barriers, technological change, the role of networks, and efficient risk bearing. Prerequisite: ECON 50 or equivalent preparation in microeconomics. GER:DB-SocSci 4-5 units (Owen) not given 2005-06

PUBLPOL 173. Risk in Contemporary Culture — (Enroll in STS 163.) 4 units, Spr (Schmid)

PUBLPOL 174. Science and Engineering in the Security State — (Enroll in STS 165.) 4 units, Spr (Slayton)

PUBLPOL 175. Technology in Modern Security Discourse — (Enroll in STS 170.) 4 units, Aut (Slayton)

PUBLPOL 180. Social Innovation — The mechanisms and features of social innovation defined as the process of inventing, securing support for, and implementing novel solutions to social needs and problems. Focus is on the social, economic, technical, and organizational mechanisms underlying innovations. Sources include social science theory and research, and insights from the practical world. GER:DB-SocSci 4 units, Aut (Phillis)

PUBLPOL 182. Polarized Politics and Special Interest Groups — (Enroll in POLISCI 227R.) 5 units, Win (Wand)

PUBLPOL 183. Philanthropy and Social Innovation — Philanthropy’s role in modern society and the translation of its vision and capital into social action. How individuals, foundations, corporations, and philanthropic organizations engage in social investing. Topics: the individual and philanthropy; philanthropic history and industry; foundation strategy and infrastructure; philanthropy and the political landscape; corporate philanthropy and social responsibility; global social investing; grant-making; outcome assessment; and social innovation. Readings: business school cases, and theoretical and industry articles. Guest speakers include global philanthropists, foundation presidents, and Silicon Valley business leaders. Final project: students write grant proposals. Enrollment limited to 20. GER:DB-SocSci 5 units (Arrillaga) not given 2005-06

PUBLPOL 185. Managing Public Policy — The role of administration in the U.S. government. Major issues include political control of government agencies, role of the civil service, reinventing government, contracting out government services, budgeting, and human resource administration. GER:DB-SocSci 5 units, Aut (Printup)

PUBLPOL 187. IT and Society: Unanticipated Consequences of New Technologies — How human inventions impact other inventions, society, the individual, and history. Unintended social consequences of technologies, such as railroads, telegraphs, telephones, automobiles, and jet travel. Group projects focus on the design of a national survey to gauge the social effects of Internet technology (IT) on how people spend their time, including the impact of Internet use on non-work activities such as sleep and time spent with friends and family. Practical and innovative techniques in statistical analysis. GER:DB-SocSci 3-4 units, Win (Nie)

PUBLPOL 188 California Politics: Past, Present, and Future — (Same as POLISCI 221V.) Changing patterns of politics from the mid-19th century to the present. Emphasis is on the role of institutions in structuring the state’s politics. GER:DB SocSci, EC-AmerCul 5 units, Win (Fraga)

PUBLPOL 189. Latinos in American Politics — (Same as POLISCI 221V.) Evolution of Latino participation in American politics from the mid-19th century to the present. Issues include conquest, immigration, the Chicanvo movement, national origin diversity, gender, political parties, and office holding. GER:DB-SocSci, EC-AmerCul 5 units, Win (Fraga)

PUBLPOL 190. Social Innovation and the Social Entrepreneur — (Enroll in URBANST 131.) 1 unit, Aut (Staff)

PUBLPOL 191. Concepts and Analytic Skills for the Social Sector — (Enroll in URBANST 132.) 4 units, Win (Kieschnick)

PUBLPOL 193. Social Entrepreneurship Collaboratory — (Enroll in URBANST 133.) 4 units, Win, Spr (Edwards)
PUBLPOL 194. Technology Policy — The evolution of U.S. technology policy and how policy is made. Topics: federal technology policy before and after WW II; the debate over using R&D programs to promote economic growth and competitiveness; the impact of federal policy on the development of the Internet and biotechnology; and stem-cell research and digital copyrights as examples of controversies over the social impact of technological activities. Prerequisites: ECON 1, POLISCI 2.
4-5 units, Win (Windham)

PUBLPOL 196. The Political Economy of the Federal Budget — (Enroll in ECON 142.)
5 units, Win (Windham)

PUBLPOL 197. Junior Honors Seminar — Primarily for students who expect to write an honors thesis. Weekly sessions discuss writing an honors thesis proposal (prospectus), submitting grant applications, and completing the honors thesis. Readings focus on writing skills and research design. Students select an adviser, outline a program of study for their senior year, and complete a prospectus by the end of the quarter. Seniors working on their theses also may enroll and present their research to the seminar participants. Seniors are required to make substantial progress on their thesis by the end of the quarter. Enrollment limited to 25.
5 units, Win (Rothwell)

PUBLPOL 198. Directed Readings in Public Policy
1-5 units, Aut, Win, Spr (Staff)

PUBLPOL 199. Senior Research
1-15 units, Aut, Win, Spr (Staff)

PUBLPOL 200A,B,C. Senior Seminar — For Public Policy students. How to conduct research in public policy. Students make oral presentations and write a paper on a topic in public policy. Topic and methods of analysis determined by student in consultation with instructor. Prerequisites: completion of core courses in Public Policy or consent of instructor.
3 units, A: Aut, B: Win (Sprague), C: Spr (Egan)

PUBLPOL 209. Economics and Public Policy — (Enroll in MGT-ECON 309.)
4 units (Kessler) not given 2005-06

PUBLPOL 231. Political Economy of Health Care in the United States — (Same as HRP 391, MGTECON 331.) The economic tools and institutional and legal background to understand how markets for health care products and services work. Moral hazard and adverse selection. Institutional organization of the health care sector. Hospital and physician services markets, integrated delivery systems, managed care, pharmaceutical and medical device industries. Public policy issues in health care, medical ethics, regulation of managed care, patients’ bill of rights, regulation of pharmaceuticals, Medicare reform, universal health insurance, and coverage of the uninsured. International perspectives, how other countries’ health care systems evolved, and what the U.S. can learn from their experiences.
4 units, Spr (Kessler)

OVERSEAS STUDIES

Courses approved for the Public Policy major and taught overseas can be found in the “Overseas Studies” section of this bulletin, or in the Overseas Studies office, 126 Sweet Hall.

PARIS
PUBLPOL 111P. Health Systems and Health Insurance: France and the U.S., a Comparison across Space and Time — (Same as HUMBIO 153X.)
4-5 units, Win (Staff)
1. At least eight of the 60 units must be courses at the introductory level. Students may satisfy this requirement by taking either:
 a) IHUM 68A,B, Approaching Religion: Tradition, Transformation, and the Challenge of the Present (Winter/Spring sequence), or
 b) two courses numbered less than 100, one of which must be a designated gateway-to-the-major course. Stanford Introductory Seminars are not gateways to the major; however, one Stanford Introductory Seminar in Religious Studies may be used to fulfill 4 units required in courses numbered under 100.
2. At least 29 units are to be taken in intermediate lecture and seminar courses numbered 100-289. Of these, at least two seminars are required from courses numbered above 200. Language courses relating to students’ study of religion within the department (such as Arabic, biblical Hebrew, New Testament Greek, Chinese, or Japanese) may, with departmental approval, be counted among these 29 units.
3. 15 units in integrative courses:
 a) Majors’ Seminar: RELIGST 290, Theories of Religion (5 units)
 b) Senior Essay or Honors Thesis Research: RELIGST 297 (3-5 units; up to 10 units over two quarters)
 c) Senior Majors’ Colloquium: RELIGST 298 (5 units, Spring Quarter), concluding with public presentations of the results of work on a senior essay or honors thesis.
 d) completion of either a senior essay or honors thesis. See below concerning the difference between these options.
4. Each student, in consultation with his/her adviser, works out a focus of study centering either on a particular religious tradition or on a theme or problem which cuts across traditions such as ritual, ethics, scripture, or gender.

SENIOR ESSAY
A 25-30 page essay on a topic chosen by the student and approved by the adviser upon receipt of a student’s proposal by the end of the fourth quarter prior to expected graduation. The character and content of the essay, which is meant to allow the student to call into play knowledge and skills learned in the course of the major, may take several forms. For example, a student may return to a subject studied earlier but now pursued with more questions or from a new perspective, or research a recent or new topic of interest in the field, or offer a carefully framed critical assessment of what has been learned in the major based on review of influential sources, theories, and methods of studying religion. The senior essay is read and graded by the student’s adviser and one other member of the Religious Studies faculty.

HONORS THESIS
A 40-80 page research paper on a topic chosen by the student and approved by the adviser upon receipt of a proposal in the fourth quarter prior to expected graduation. The paper, supported by mastery of primary and secondary scholarship, advances a well-reasoned, supportable thesis. Writers of honors theses must have a grade point average (GPA) of 3.5 in Religious Studies courses, and at least 3.2 overall, and are expected to have already demonstrated success in writing research papers. The honors thesis is read and graded by the student’s adviser and one other member of the Religious Studies faculty. Theses earning a grade of A- or above receive honors.

MINORS
A minor in Religious Studies requires a minimum of 7 courses (30-36 units of graded work). Students must declare the minor no later than the last day of the quarter, two quarters before degree conferral.

Requirements for the minor include:
1. Two introductory courses. To satisfy this requirement, students take either:
 a) IHUM 68A,B, Approaching Religion: Tradition, Transformation, and the Challenge of the Present (Winter/Spring sequence), or
 b) two courses numbered less than 100, one of which must be a designated gateway-to-the-major course. Stanford Introductory Seminars are not gateways to the major; however, one Stanford Introductory Seminar in Religious Studies may be used to fulfill 4 units required in courses numbered under 100.
2. Five intermediate lecture and seminar courses, 100-289.
3. One course in directed reading (RELIGST 199) may count towards the minor.
4. Students may petition for other Stanford courses to fulfill minor requirements, but they must take courses from at least two Religious Studies faculty members.
5. Students are strongly encouraged to focus their program of study either in a religious tradition or in a theme which cuts across traditions. In consultation with their advisers, students may design the minor in Religious Studies to complement their major.

MAJOR IN RELIGIOUS STUDIES AND PHILOSOPHY
The departments of Religious Studies and Philosophy jointly nominate for the B.A. students who have completed a major in the two disciplines. See a description of this joint major under the “Philosophy” section of this bulletin, or in the guidelines available from the undergraduate director of either department.

GRADUATE PROGRAMS
MASTER OF ARTS
University regulations pertaining to the M.A. are listed in the “Graduate Degrees” section of this bulletin. The following requirements are in addition to the University’s basic requirements.

The student completes at least 45 units of graduate work at Stanford beyond the B.A. degree, including a required graduate seminar (304A or B). Residence may be completed by three quarters of full-time work or the equivalent.

The student’s plan of courses is subject to approval by the Graduate Director. No field of specialization is expected, but students may focus work in particular areas. Advanced and graduate courses in other departments may be taken. No thesis is required; a thesis, if elected, may count for as many as 9 units.

Each student demonstrates reading knowledge of at least one foreign language.

DOCTOR OF PHILOSOPHY
University regulations regarding the Ph.D. are found in the “Graduate Degrees” section of this bulletin. The following requirements are in addition to the University’s basic requirements.

Residence — Each student completes three years (nine quarters) of full-time study, or the equivalent, in graduate work beyond the B.A. degree, and a minimum of 135 units of graduate course work (excluding the dissertation).

Field of Study — The Ph.D. signifies special knowledge of a field of study and potential mastery of an area of specialization within it. The faculty of the department have established certain fields of study in which the department’s strengths and those of other Stanford departments cohere. They are: East Asian religions, Christianity, Judaism, religious ethics, and modern Western religious thought. Students who wish to specialize in other fields must obtain early approval by the faculty.

Stages of Advancement —
1. In the first two years, the student refines an area of specialization within the chosen field of study in preparation for candidacy.
2. After attaining candidacy, the student concentrates on the area of specialization in preparation for the qualifying examination.
3. The student writes a dissertation and defends it in the University oral examination.

Languages — Each student demonstrates a reading knowledge of two foreign languages, including French or German. Each student also demonstrates reading knowledge of other ancient or modern languages necessary for the field of study, area of specialization, and dissertation topic.

Courses — Each student satisfactorily completes the two graduate seminars (304A,B), two quarters of the pedagogy seminar (391), and one reading seminar before the candidacy decision. Other courses are taken with the approval of a faculty adviser in consideration of the student’s
field of study.

Candidacy — At the end of each academic year, the department’s faculty recommend second-year students for candidacy on the basis of all relevant information, and especially on the student’s candidacy dossier which includes the approved declaration of an area of specialization, certification for one foreign language, and two substantial papers written for courses during the previous two years.

Paper-in-Field — During the third year, under the supervision of their adviser, students prepare a paper suitable for submission to an academic journal in their field. The paper is read and approved by at least two faculty members in the department.

Teaching Internship — At least one teaching internship under the supervision of faculty members is undertaken at a time negotiated with the Graduate Director. Students receive academic credit for the required internship, which is a project of academic training and not of employment.

Qualifying Examination — To qualify for writing a dissertation, the student must successfully pass a comprehensive examination in the chosen field and the area of specialization. The student must complete the second language requirement before taking qualifying examinations.

Dissertation — The dissertation contributes to the humanistic study of religion and is written under the direction of the candidate’s dissertation adviser and at least two other members of the Academic Council. The University oral examination is a defense of the completed dissertation.

PH.D. MINOR IN RELIGIOUS STUDIES

Candidates for the Ph.D. in other departments may select a Ph.D. minor in Religious Studies. The minor requires at least 24 units in Religious Studies at the 200 level or above. Four of the 24 units should be in “Theories and Methods.”

JOINT PH.D. IN RELIGIOUS STUDIES AND HUMANITIES

Religious Studies participates in the Graduate Program in Humanities leading to the joint Ph.D. in Religious Studies and Humanities, described in the “Interdisciplinary Studies in Humanities” section of this bulletin.

INTRODUCTION TO THE HUMANITIES (IHUM)

The following Introduction to the Humanities courses are taught by Religious Studies department faculty members. IHUM courses are typically available only to freshmen seeking to fulfill GER:1 requirements; see the “Introduction to the Humanities” section of this bulletin for further information. Prospective majors in Religious Studies are advised to consider satisfying their GER:1b,c requirements by registering for the following IHUM courses.

IHUM 68A.B. Approaching Religion: Tradition, Transformation, and the Challenge of the Present — Two quarter sequence. Challenges facing the world’s religions in responding to issues such as globalization, feminism, science, pluralism, and individualism. How Judaism, Buddhism, and Islam changed or resisted change in their founding moments. Encounters between these religious traditions and the forces of contemporary social change. GER:IHUM-2,3

IHUM 68A.B. 5 units, Win (Fonrobert, Zimmermann)
IHUM 68A.B. 5 units, Spr (Eisen)

INTRODUCTORY

RELIGST 2N. Prophecy and Politics in America: The Thought of Abraham Joshua Heschel and Martin Luther King, Jr. — Stanford Introductory Seminar. Preference to freshmen. The religious beliefs and political activities of these pre-eminent religious figures in 20th-century America, each a hero in his own religious community and beyond who took the mandate of the biblical prophets, convinced that God demanded action, to transform the social order. GER:DB-Hum, EC-AmerCul
3 units, Win (Eisen)

4 units, Win (Yearley)

RELIGST 5N. Three Sacred Stories of Judaism, Christianity, and Islam — Stanford Introductory Seminar. Preference to freshmen. Interpretations of the scriptural narratives of Sarah and Hagar/Hajar, Jonah/Yunus and the great fish, and Mary/Maryam, the mother of Jesus/Isa, by the rabbis, the first Christian theologians, and early commentators on the Qur’an, and by artists in the three traditions. GER:DB-Hum, EC-GlobalCom
3 units, Aut (Gregg)

RELIGST 6N. The Life of the Buddha — Stanford Introductory Seminar. Preference to freshmen. Who was the historical Buddha Gautama and what is known about him, and his time and society? The oldest texts attributed to him and what they reveal about him, and his ideas and spirituality. Sources include Indian literary works in translation, Buddhist art, and contemporary films about the Buddha’s life. GER:DB-Hum, EC-GlobalCom
4 units, Spr (Zimmermann)

RELIGST 11. Religious Classics of Asia: India’s Ramayana Epic — The Ramayana as one of the most important religious and cultural texts of India. Its heroes, Rama and Sita, as incarnations of the supreme God and Goddess and models for ideal manhood and womanhood. Textual and performative versions including Valmiki’s 2,000-year-old Sanskrit poem, medieval vernacular versions, rural women’s folk songs, and the TV serial of 1988-89. Ramayana traditions through the lenses of religion, literature, performance, popular culture, gender, and politics. GER:DB-Hum, EC-GlobalCom
3 units (Hess) not given 2005-06

RELIGST 12. Introduction to Hinduism — Historical study from earliest period to the present, including religious poetry, narrative, performance, concepts of self and liberation, yoga, ritual, God and gods, views of religion through history, region, class, caste, and gender. GER:DB-Hum, EC-GlobalCom
4 units, Spr (Hess)

RELIGST 14. Introduction to Buddhism — Basic tenets of Buddhism with focus on its origin, intellectual developments, ethical foundations, and meditative practices. Translations of Buddhist texts from different periods and cultures. The spread of Buddhism throughout Asia and, since the last century, the West. GER:DB-Hum, EC-GlobalCom
4 units (Zimmermann) not given 2005-06

RELIGST 15. Introduction to the World of the Hebrew Bible — Cultural and religious context including its interactions with Sumerian and Phoenician epic. Recent archeological discoveries that shed light on Israelite religion. Theories of authorship and analysis of priestly and prophetic texts. GER:DB-Hum
4 units, Aut (Leeven)

RELIGST 16. Introduction to South Asian Buddhism — Focus is on Buddhist intellectual developments from the time of its founder, the historical Buddha Shakyamuni, to contemporary forms in Nepal and Sri Lanka. Basic aspects of Buddhist ethics, ritual, and art. GER:DB-Hum, EC-GlobalCom
4 units (Zimmermann) not given 2005-06

4 units, Spr (Bielefeldt)

RELIGST 23. Introduction to Judaism — The historical development
of Jewish religious thought and practice, from the biblical period to the present. Scriptural, liturgical, midrashic, legal, historical, and philosophical texts reflecting that development. The Sabbath, and annual festivals and sacred days. GER:DB-Hum
4 units, Win (Leveen)

RELIGST 24. Introduction to Christianity — The historical development of Christian religious thought and practice from Jesus to the present. Emphasis is on the formation of Christianity’s major teachings and their transformation and diverse expressions in the medieval, reformation, and modern periods. Readings focus on primary texts. GER:DB-Hum
4 units, Aut (Pitkin)

RELIGST 32. The Problem of God — Gateway course. Monotheism is a belief for which people continue to live and die. Philosophical inquiry into the concept of God through its classic formulations, modern critics, and contemporary defenders. What has the idea of God meant to serious minds in the past? And in the modern or postmodern world? GER:DB-Hum
4 units, Win (Sockness)

RELIGST 42. Philosophy of Religion — Gateway course. Classic and modern questions in the philosophy of religion traced through Western and Eastern traditions: the coherence of theism, relativism, verification and ethics of belief, and implications of science. Readings from traditional and modern texts. GER:DB-Hum
4 units, Aut (Gerber)

RELIGST 53. Jews and Judaism in America — Development of the Jewish religious tradition in 20th-century America and its role in the life of its ethnic community. Comparison to the role of the church in the life of the African American community. Historical, sociological, and theological works complemented by novels, poetry, films, and TV. GER:DB-Hum, EC-AmerCul
4 units (Eisen) not given 2005-06

RELIGST 55. Introduction to Chinese Religions — Confucianism, Daoism, Buddhism, and the interchange among these belief systems and institutions. Set against the background of Chinese history, society, and culture, with attention to elite and popular religious forms. GER: DB-Hum, EC-GlobalCom
4 units (Eisen) not given 2005-06

RELIGST 56. Introduction to Daoism — Historical survey from origins to the present. Main schools, notions, communal rites, and individual practices, and the relation of Daoism to facets of Chinese culture.
4 units, Win (Pregadio)

RELIGST 82. Approaches to the Study of Religion: Christianity — Gateway course. Historical and contemporary Christianity from four viewpoints: ritual and prayer; sacred texts and creeds; ethics and life; and community governance. GER:DB-Hum
4 units (Pregadio) not given 2005-06

RELIGST 84. Mystics, Pilgrims, Monks, and Scholars: Religious Devotion in Medieval Christianity — Gateway course. The variety and vitality of religious expression in medieval Christian Europe. How Christians sought God through mystical encounter, the structure of monastic life, visits to shrines, devotion to the saints, and the study of scripture and ancient Christian wisdom. Readings focus on primary texts. GER:DB-Hum
4 units (Pitkin) not given 2005-06

UNDERGRADUATE LECTURES

RELIGST 103K. Demons, Witches, and Priests: Religion and Popular Culture in Russia — (Enroll in HISTORY 220G/320G.)
5 units, Aut (Kollmann)

RELIGST 105. Spiritual, not Religious: What Does this Phrase Mean? — Does this often-voiced formula mark a significant cultural change? Viewpoints and philosophies that present themselves as spiritual in books and films, and in the language and practices of adherents. What are the central ideas and convictions of the spiritual, not religious, person or group? What do spirit and spiritual connote that creates distance from religious ideas and practices? GER:DB-Hum, EC-GlobalCom
4 units (Gregg) not given 2005-06

RELIGST 106. New Pope, New Church — The recent election of Joseph Ratzinger as Benedict XVI. His legacy during the papacy of John Paul II. The state of the Catholic church in the areas of creed, morality, liturgy, and polity. Prospects for reforming Catholicism during the current papacy. GER:DB-Hum
4 units, Aut (Sheehan)

RELIGST 107/307. Hindus and Muslims in South Asia — Graduate students register for 307.) Hindus and Muslims have been living together in S. Asia for over 1000 years in peace and conflict, creating composite cultures and interdependent social worlds. In 1947, they split violently into separate nations, yet 100 million Muslims remain in India. The history of Hindu and Muslim life in the subcontinent, including religious literature, arts, practices, and sociopolitical formations. GER:DB-Hum, EC-GlobalCom
4-5 units (Hess) not given 2005-06

RELIGST 108. Japanese Religion through Film — Aspects of Japanese religion using recent animated films and movies as primary materials. GER:DB-Hum
4 units, Aut (Faure)

RELIGST 109K. Gender and Sexuality in Early Christianity — How earliest Christianity constructed two categories of embodied existence: gender and sexuality. The attitudes of Christians about sexuality, body, masculinity, and womanhood? Modes of practice such as asceticism and virginity that enabled believers to manage the desires of the flesh. Greco-Roman constructions of masculinity, femininity, and desire; how Christianity irreversibly transformed traditional views. GER:DB-Hum, EC-Gender
4 units, Win (Kalleres)

RELIGST 110. Handmaids and Harlots — Miraculous births, wandering in the wilderness, encounters with angels: scriptural stories of women such as Hagar, Sarah, Hannah, and Mary, and how their tales are read and re-told by later Jews and Christians. Sources include the Hebrew Bible and New Testament, Jewish and Christian commentary, and religious iconography. GER:DB-Hum, EC-Gender
4 units (Leveen, Pitkin) not given 2005-06

RELIGST 111. Zhuangzi and the Daoist Idea of Sainthood — Focus is on its views of the Dao and the application of those views to self-cultivation, ethics, government, and the ideal of sainthood. GER:DB-Hum, EC-GlobalCom
4 units (Pregadio) not given 2005-06

RELIGST 112. Jews and Judaism in America — Development of the Jewish religious tradition in 20th-century America and its role in the life of its ethnic community. Comparison to the role of the church in the life of the African American community. Historical, sociological, and theological works complemented by novels, poetry, films, and TV. GER:DB-Hum, EC-AmerCul
4 units (Eisen) not given 2005-06

RELIGST 113. Jews and Judaism in America — Development of the Jewish religious tradition in 20th-century America and its role in the life of its ethnic community. Comparison to the role of the church in the life of the African American community. Historical, sociological, and theological works complemented by novels, poetry, films, and TV. GER:DB-Hum, EC-AmerCul
4 units (Eisen) not given 2005-06

5 units (Kalleres) not given 2005-06
RELIGST 119/319. Gandhi and Nonviolence—(Graduate students register for 319.) Gandhi’s life; his advocacy and practice of nonviolence in political movements in India and S. Africa; Indian religious sources of ahimsa or nonviolence; political interpretations of the Bhagavad Gita; Gandhian theory of nonviolence; adaptations of Gandhian nonviolence for conflict resolution in the world; critiques of Gandhi. GER:DB-Hum, EC-GlobalCom
4 units, Aut (Hess)

RELIGST 120. Reading the Qur’an—The sacred text from perspectives including historical, mystical, juridical, literary, Islamist, and feminist. Focus is on reading and listening to the original text. Interpretive tools include traditional sources (hadîth, sirah, tafsîr, and Sufi literature) and contemporary literature (Salafi, Islamist, reformist, and feminist). The Qur’an’s use in ritual practice as reading and recitation. GER:DB-Hum, EC-GlobalCom
4 units, Win (McLarney)

RELIGST 122. Radical Catholicism—Past, present, and future of Roman Catholicism in Europe and the Americas. Its roots in Second Temple Judaism and the Greco-Latin world, the structural crises of contemporary Catholicism in governance, spirituality, doctrines, and morals, and the possibility of radical change in those areas. GER:DB-Hum
4 units (Sheehan) not given 2005-06

RELIGST 123. Judaism in Late Antiquity—The religious world and literature of the rabbis who created the classical and normative literature of Judaism. Jewish diversity and sectarianism in the first century C.E., responses to Roman imperialism and the destruction of Jerusalem, the emergence of the rabbinic movement, the rabbi and sage as new Jewish leader, rabbinic authority and the making of religious boundaries, heresy versus orthodoxy, and the role of the family in rabbinic religion. Readings include primary sources in English translation and contemporary scholarship. GER:DB-Hum
4 units (Sheehan) not given 2005-06

RELIGST 125. Catholic Reformation—Reform and renewal of Roman Catholicism in the 16th century through key figures and movements such as Erasmus, Ignatius of Loyola, Teresa of Avila, and the Council of Trent. GER:DB-Hum
4 units (Pitkin) not given 2005-06

RELIGST 126. Protestant Reformation—16th-century evangelical reformers (Luther, Calvin) and reform movements (Lutheran, Reformed, Anabaptist) in their medieval context. GER:DB-Hum
4 units (Pitkin) not given 2005-06

RELIGST 127. Introduction to Classical Judaism—The genres of classical Jewish literature and the issues which shaped its worldview. Selections from rabbinic (Jewish sacred) texts in English translation: Midrash, Mishnah, and Talmud. Topics include the biblical background, the emergence and nature of rabbinic authority and its institutions, the religious importance of discipleship, the legitimacy of dissent, diaspora versus Israel, perceptions of other religions and cultures, the tension between commitment to family and commitment to religious life. GER:DB-Hum
4 units (Pitkin) not given 2005-06

RELIGST 133. Reading the Bible Today—How did Israelites identify themselves? Did the Exodus happen? Why did Deborah have so much power? The influence of recent interpretations such as ethnic studies, literary approaches, feminist critique, and archeological discoveries on contemporary readings and reception of the biblical texts. GER:DB-Hum
4 units (Leveen) not given 2005-06

RELIGST 136. Buddhist Yoga—Introduction to Buddhist models of spiritual practice emphasizing issues in the interpretation of the contemplative path. GER:DB-Hum, EC-GlobalCom
4 units, Win (Bieiefeldt)

RELIGST 138. Faith, Doubt, and Ethics—Comparative examination of five 20th-century theological classics from the Protestant, Jewish, and Roman Catholic traditions: Karl Barth’s Epistle to the Romans, Martin Buber’s I and Thou, Reinhold Niebuhr’s Moral Man and Immoral Society, Paul Tillich’s Courage to Be, Abraham Heschel’s Man is Not Alone, and Karl Rahner’s Foundations. GER:DB-Hum
4 units (Sockness) not given 2005-06

RELIGST 141. Martin Luther—Religious radical, theological dissident, or social conservative? The religious reforms of Martin Luther in intellectual and historical context. Focus is on theology, ethics, biblical interpretation, and social reforms. GER:DB-Hum
5 units, Spr (Pitkin)

RELIGST 143. Pain, Power, and Imitation: Martyrdom in Early Christianity—Why the Roman authorities persecuted early Christians, and why the Christians resisted the government. How these acts of defiance were understood by the martyrs’ peers and successors. The mentality of the martyrs themselves, and the role that martyrdom played in the growth of the early church. Sources include martyr texts, 100-400 C.E., and modern scholarly interpretations. GER:DB-Hum
4 units, Spr (Washburn)

RELIGST 144D. Tibetan Buddhism and Culture in Exile—(Same as CASA 141.) Coincides with the visit of the Dalai Lama to Stanford. The practice and meaning of formal Buddhist and lay rituals in exile; how traditional beliefs and practices have been reworked to meet the spiritual needs and material circumstances of Tibetan refugees. The role of the Dalai Lama in Tibetan religious and political life emphasizing the current Dalai Lama. Effects at cultural preservation in India and the U.S.; the hybrid expressive culture of refugee youth, political activism, and challenges of building and maintaining a diasporic community. Field trips to Bay Area Tibetan events; field work with local Tibetan refugees.
5 units, Aut (Diehl)

RELIGST 150. Mahayana Buddhism in East Asia—The Lotus school of Mahayana, and its Indian sources, Chinese formulation, and Japanese developments. GER:DB-Hum
4 units, Spr (Bieiefeldt)

RELIGST 152. The Great Clarity Tradition in Early Medieval Daoism—History, teachings, and methods of the Great Clarity (Taiqing) tradition of Daoism in China that developed in the third and fourth centuries C.E. Its integration into mainstream medieval Daoism, decline after new traditions arose in the latter half of the fourth century, and legacy to the later history of Daoism.
4 units, Spr (Pregadio)

RELIGST 154. Buddhism Today: Responses to New Global Challenges—How do the traditions of Buddhism cope with new social, ethical, and global challenges? Case studies from Sri Lanka, Japan, and the West. The historical position of Buddhist social thought. Buddhism’s ascetic and meditative legacy; friend or foe of social engagement? GER:DB-Hum, EC-GlobalCom
4 units, Aut (Zimmermann)

RELIGST 156/356. Goddesses and Gender in Indian Religion—(Graduate students register for 356.) Introduction to the abundant female forms of the divine in India; goddess stories, iconographies, worship; lives and religious practices of women and men; constructions of gender in religion and society. Readings in history, myth, poetry, ritual, ethnography, sociology, films. GER:DB-Hum, EC-Gender
4 units (Hess) not given 2005-06
RELIGST 159/359. Music and Religion in South Asia—(Graduate students register for 359.) Music and religion have been closely related for millennia in the India subcontinent. Topics include theories of sound, mantra, music as yoga, guru-disciple relationship, devotional singing, gods and their relation to music, aesthetic theory, classical and folk forms, and Hindu and Muslim traditions. Practical instruction in music. Coordinated with Stanford S. Asian music festival in Winter 2006. GER: DB-Hum, EC-GlobalCom
4-5 units, Win (Hess)

RELIGST 162. Spirituality and Nonviolent Social Transformation—(Enroll in URBANST 126.)
4 units, Win (McLennan, Karlín-Neumann, Sanders)

RELIGST 164. Ritual Musics of the World—(Enroll in CASA 164/264, MUSIC 164/264.)
4 units (Diehl) not given 2005-06

RELIGST 169. Christianity in Late Antiquity—Communal struggles, personal rivalries, theological conflicts, and social controversies in the early church (2nd-6th centuries C.E.) that shaped Christianity and its history. Heresy and orthodoxy, hierarchy and charisma, gender and class, persecution and martyrdom, paganism and classical tradition, creeds and councils, asceticism and the body, church and state, eastern and western Christianity. GER:DB-Hum
4 units (Kalleres) not given 2005-06

RELIGST 170C. Reading in Biblical Hebrew—The third quarter of a three-quarter sequence in Biblical Hebrew. Readings and translation of biblical narratives emphasizing grammar and literary techniques. Prerequisite: AMELANG 170B.
4 units, Spr (Leveen)

RELIGST 172. Sex, Body, and Gender in Medieval Religion—Anxiety about sex and the body increased markedly during the early years of Christianity, while the doctrine of the Incarnation put the human body at the center of religious concern. Ideas of virginity, chastity, ascetic self-denial of necessities like food, sleep, and freedom from pain were central to lay and clerical piety. The religious theory and practice associated with questions about sex, body, and gender in the Middle Ages as constructed in literature, mythology, ritual, mystic, and monastic texts. GER:DB-Hum, EC-Gender
4 units, Spr (Gelber)

RELIGST 185. Prophetic Voices of Social Critique—Judges, Samuel, Amos, and Isaiah depict and question power, strong rulers who inevitably fail, the societal inequities and corruption inevitable in prosperity, and the interplay between prophet as representative of God and the human king. How these texts succeed in their scrutiny of human power and societal arrangements through attention to narrative artistic and poetic force, and condemnation of injustice. May include a service-learning component in conjunction with the Haas Center. GER:DB-Hum
4 units (Leveen) not given 2005-06

UNDERGRADUATE DIRECTED READING

RELIGST 199. Individual Work—Prerequisite: consent of instructor and department. May be repeated for credit.
1-15 units, Aut, Win, Spr, Sum (Staff)

UNDERGRADUATE SEMINARS

RELIGST 204. Buddhist Philosophy and Religion in Comparative Perspective—Foundational Buddhist positions on human nature through the ways in which Buddhism has portrayed the boundaries of the human. Juxtaposition of Buddhist and Western philosophical/religious views of liberation, asceticism, body and mind, consciousness, language, epistemology and ethics. Sources include: Buddhist texts in translation such as the Buddhist Canon, Nagajuna, and Vasubandhu; and Plato, Aristotle, Augustine, Descartes, Hume, Kant, and Berkeley. GER:DB-Hum
4 units, Win (Ronkin)

RELIGST 210. Translating the Daode Jing—One of the most frequently translated works in world literature. Challenges faced by translators, support from commentaries and related sources, and assumptions underlying translations into Western languages. Recommended: classical Chinese. GER:DB-Hum
4 units, Win (Pregadio)

RELIGST 211. Religion, Politics, and American Democracy—Seminar. Should religious arguments have a public role in policy debates in a democratic society that includes conflicting religious conceptions of the good? Does the separation of church and state require a completely secular society? Readings include Rawls, Rorty, Carter, Hauerwas, and Stout.
5 units (Harvey) not given 2005-06

RELIGST 212. Chuang Tzu—The Chuang Tzu in its original setting and as understood by its spiritual progeny. Limited enrollment. GER: DB-Hum
5 units, Win (Yearley)

RELIGST 213. Daode Jing—Passages of the Daode jing (Scripture of the Way and its Virtue) and interpretation in major traditional commentators. Topics include Daoist metaphysics, the ideal of saihthood, the view of rulership and society, and Daoist notions of non-action, spontaneity, and return to the Dao. GER:EC-GlobalCom
4 units (Pregadio) not given 2005-06

RELIGST 216/316. Doctrine and Practice in Theravada Buddhism—(Graduate students register for 316.) The religious principles, practices, underlying doctrines, and the accommodation between religion and society in the Theravada tradition of Sri Lanka and S.E. Asia. The origins of Buddhism in ancient India, the consolidation of the Theravada tradition, the development of its monastic, intellectual, and lay communities, its spread across S.E. Asia, and modern transformations and trends. Anthropological and textual perspectives, and methodological difficulties. GER:EC-GlobalCom
4-5 units (Kumada, Ronkin) not given 2005-06

3 units, Aut (Kumada)

RELIGST 218/318. Buddhist Ethics: Nonviolence and Compassion—(Graduate students register for 318.) Approaching Buddhist ethics descriptively. The position of ethics in Indian Buddhism, its relation to Buddhist soteriological goals, and changes since the founder. Themes include nonviolence (ahimsa), compassion, bodhisattva, the ascetic saint (arahat), and social activism. Readings of Buddhist literature in translation. GER:EC-GlobalCom
4 units (Zimmermann) not given 2005-06

RELIGST 221/321. Modern Judaism—(Graduate students register for 321.) Changes in Judaism over the last two centuries with focus on emancipation, Zionism, and developments in theology and practice. GER:DB-Hum
5 units (Eisen) not given 2005-06

RELIGST 228/328. Buddhist Sanskrit Texts on Ethics—(Graduate students register for 328.) Translation and interpretation. Texts on Buddhist morality from the first half of the first millennium C.E. Prerequisite: reading competence in Sanskrit.
1-5 units, Win (Zimmermann)

RELIGST 232. God: A Biography—Readings in the Hebrew Bible illuminate a God who walks among human beings, appears on mountain top and in cloud, and can be challenged and conciliated. Genesis, Exodus, the prophet Ezekiel, and Job convey the dimensions in which the religious imagination encounters the Hebrew God. Recent works such as The God of Old, The Divine Symphony, and An Early History of God in which an ancient multidimensional approach to God re-emerges. GER:DB-Hum
4 units, Spr (Leveen)
RELIST 235. Pilgrimage and Sacred Landscapes—(Same as CASA 135X.) Perspectives include cultural, spiritual, psychological, medical, economic, and political. Christianity, Buddhism, Hinduism, Islam, Native American and secular; sources include Europe, Tibet, India, Native America, and the Middle East. Why do pilgrims often make their journeys as difficult and painful as possible? How do landscapes become sacred? What happens when places such as Jerusalem are intersections for groups with different belief systems? Contemporary U.S. destinations such as Graceland and the Vietnam Memorial; journeys of personal or non-parochial cultural significance. GER:DB-Hum
4 units, Win (Diehl)

RELIST 245. Religion, Reason, and Romanticism—(Same as HUMNTIES 196B.) The late 18th-century European cultural shift from rationalist to romantic modes of thought and sensibility. Debates about religion as catalysts for the new Zeitgeist. Readings include: the Jewish metaphysician, Mendelssohn; the dramatist, Lessing; the philosopher of language and history, Herder; the critical idealist, Kant; and the transcendental idealist, Fichte. GER:DB-Hum
5 units (Sockness) not given 2005-06

RELIST 245S. Islam and the West—(Enroll in POLISCI 149S.)
5 units, Spr (Milani)

RELIST 251/351. Readings in Indian Buddhist Texts—(Graduate students register for 351.) Introduction to Buddhist literature through original texts in Sanskrit. No knowledge of Sanskrit required. GER:DB-Hum
4-5 units (Zimmermann) not given 2005-06

RELIST 254T. Japanese Buddhism—(Enroll in JAPANGEN 166.)
1-5 units, Aut (Odagiri)

RELIST 256E. Political Anthropology from Rousseau to Freud—(Enroll in FREGEN 256E.)
3-5 units (Dupuy) alternate years, given 2006-07

RELIST 257. Readings in East Asian Religious Texts—Readings from primary sources. Prerequisite: classical Chinese.
4 units, Spr (Pregadio)

3-5 units, Win (Bielefeldt)

RELIST 270. Science and Religion—Relations between the fields via case studies drawn primarily from biology and Judaism highlighting similarities and differences. Current debates emphasizing genetics, the evolution of learning, communication, ritual and tradition, and the role of religious and scientific communities. GER:DB-Hum
4 units (Staff) not given 2005-06

RELIST 271A,B. Dante’s Spiritual Vision—Mysticism, poetry, ethics, and theology in Dante’s Divine Comedy. Supplementary readings from classical authors such as St. Augustine and St. Thomas, and from modern writers. Students may take 271A without B. GER:DB-Hum
A: 4 units, B: 5 units, (Yearley) not given 2005-06

RELIST 274/374. From Kant to Kierkegaard—(Graduate students register for 374.) The main currents of religious thought in Germany from Kant’s critical philosophy to Kierkegaard’s revolt against Hegelianism. Emphasis is on the theories of religion, the epistemological status of religious discourse, the role of history (especially the figure of Jesus), and the problem of alienation/reconciliation in seminal modern thinkers: Kant, Schleiermacher, Hegel, and Kierkegaard. GER:DB-Hum
5 units (undergraduates), 3-5 units (graduate students), Spr (Sockness)

RELIST 275/375. Kierkegaard and Religious Existentialism—(Graduate students register for 375.) Close reading of Kierkegaard’s pivotal work, Concluding Unscientific Postscript. The discovery and appropriation of Kierkegaard in the 20th century by Christian and Jewish thinkers. GER:DB-Hum
5 units (undergraduates), 3-5 units (graduate students)
(Sockness) not given 2005-06

RELIST 278. Heidegger, Rahner, and God—A critical presentation of the post-1989 paradigm shift in Heidegger research and its relevance to questions of religion and God. Prerequisite: consent of instructor. GER:DB-Hum
5 units (Sheehan) not given 2005-06

RELIST 279/379. Heidegger and the Holy—(Graduate students register for 379.) Heidegger’s philosophy as opening a new door onto the possibility of experiencing the sacred after the collapse of traditional metaphysical theology. A close reading of Being and Time as an introduction to the question of the holy.
4 units, Win (Sheehan)

RELIST 290. Majors Seminar—Introduction to Religious Studies through the fields and approaches represented by the faculty of the Stanford Department of Religious Studies. WIM
4 units, Win (Eisen)

RELIST 297. Senior Essay/Honors Essay Research—Guided by faculty adviser. Prerequisite: consent of instructor and of the department.
3-5 units, Aut, Win, Spr (Staff)

RELIST 298. Senior Colloquium—For Religious Studies majors writing the senior essay. Students present work in progress, and read and respond to others. Approaches to research and writing in the humanities.
5 units, Spr (Hess)

GRADUATE SEMINARS, RESEARCH, AND TEACHING

RELIST 304A,B. Theories and Methods—Required of graduate students in Religious Studies. Approaches to the study of religion. Prerequisite: consent of instructor.
4 units, A: Aut (Yearley), B: (Faure) not given 2005-06

RELIST 308. Medieval Japanese Buddhism—Japanese religion and culture, including Buddhism, Shinto, popular religion, and new religions, through the medium of film.
3-5 units, Aut (Faure)

RELIST 313. Buddhist Iconography and Ritual
3-5 units (Faure) not given 2005-06

RELIST 335. Enlightenment Seminar—(Same as HUMNTIES 324.) Enlightenment thought, culture, and politics organized around 17th- and 18th-century debates concerning the meaning, role, and viability of religion in European society. Authors include Descartes, Pascal, Leibniz, Voltaire, Rousseau, Hume, and Kant.
3-5 units, Aut (Sockness)

RELIST 338. Medieval Seminar—(Same as HUMNTIES 322, MED-VLST 322.) Medieval culture and ethical ideals extolled by medieval authors explicitly in philosophical and theological texts and implicitly in literary ones. Connections among ethics, cosmology, sacred history, anthropology, and soteriology in the medieval worldview. Medieval ethical beliefs as a window on medieval intellectual culture.
3-5 units, Win (Gelber)

RELIST 347. Research in Religion in Late Antiquity: Early Christian Platonism—Elements of Platonistic thought in texts including: Gospel of John, Epistle to the Hebrews, Justin’s 2nd Apology, Origen’s On First Principles, and comparison of Philo’s and Gregory of Nyssa’s Life of Moses.
4 units, Aut (Gregg)
RELIGST 370. Comparative Religious Ethics—The difference that the word religious makes in religious ethics and how it affects issues of genre. Theoretical analyses with examples from W. and E. Asia. Prerequisite: consent of instructor. 4 units (Yearley) not given 2005-06.

RELIGST 389. Individual Work for Graduate Students—May be repeated for credit. Prerequisite: consent of instructor. 1-15 units, Aut, Win, Spr, Sum (Staff).

RELIGST 390. Teaching in Religious Studies—Required supervised internship. 4 units, Aut, Win, Spr (Staff).

RELIGST 391. Pedagogy—Required of Ph.D. students. 1 unit, Aut (Epstein).

RELIGST 392. Candidacy Essay—Prerequisite: consent of graduate director. 1-15 units, Aut, Win, Spr (Staff).

RELIGST 395. Master of Arts Thesis 2-9 units, Aut, Win, Spr (Staff).

OVERSEAS STUDIES

Courses approved for the Religious Studies major and taught overseas can be found in the “Overseas Studies” section of this bulletin, or in the Overseas Studies office, 126 Sweet Hall.

BEIJING

RELIGST 19B. Philosophy and Religion, East and West 4 units, Aut (Zhao).

BERLIN

RELIGST 21F. Jewish Berlin: The Metropolis in the Imagination of a Minority 4 units, Aut (Fonrobert).

RELIGST 22F. The Politics of Memory 3 units, Aut (Fonrobert).

KYOTO

RELIGST 17R. Religion and Japanese Culture 4-5 units, Spr (Ludvik).

CENTER FOR RUSSIAN, EAST EUROPEAN AND EURASIAN STUDIES

Emeriti: Terence L. Emmons, Joseph N. Frank, Alex Inkeles, Joseph Van Campen, Henry Rowen
Director: Nancy S. Kollmann (History)
Associate Director: Mary Dakin
Academic Coordinator: Jack Kollmann

Professors: Lazar Fleishman (Slavic Languages), Gregory Freidin (Slavic Languages), David J. Holloway (History, Political Science, on leave), Nancy S. Kollmann (History), David Laitin (Political Science), Norman Naimark (History), Aron Rodrigue (History), Richard D. Schupbach (Slavic Languages), Nancy B. Tuma (Sociology), Steven J. Zipperstein (History)

Associate Professors: Maria Gough (Art History), Monika Greenleaf (Slavic Languages, on leave), Michael McFaul (Political Science), Gabriella Safran (Slavic Languages), Amir Weiner (History)

Assistant Professors: Robert Crews (History), Pavle Levi (Art History), Bissera Pentcheva (Art History, on leave)
Senior Lecturers: Rima Greenhill (Slavic Languages), Katherine Jolluck (History), Geoffrey Rothwell (Economics)

Lecturers: John Dunlop (International Policy Studies), Amelia Glaser (Slavic), Eugenia Khassina (Slavic Language), Alma Kunanbaeva (Cultural and Social Anthropology), Volodymyr Kulyk (Political Science), Izaly Zemtsovsky (Music)

Courtesy Professors: Coit Blacker (Political Science)
Affiliates: Michael Bernstam (Hoover Institution), Robert Conquest (Hoover Institution), Elena Danielson (Hoover Institution), John D. Dunlop (Hoover Institution), Joseph D. Dwyer (Hoover Institution), Bertrand Patenaude (Hoover Institution), Karen Rondestvedt (Stanford Libraries), Kathryn Stoner-Weiss (Stanford Institute for International Studies), Wojciech Zalewski (Stanford Libraries)

Center Offices: Building 40, Main Quad
Mail Code: 94305-2006
Phone: (650) 723-3562
Web Site: http://CREEES.stanford.edu

Courses given by the Center for Russian, East European and Eurasian Studies have the subject code REES. For a complete list of subject codes, see Appendix.

The Center for Russian, East European and Eurasian Studies (CREEES) coordinates the University’s teaching, research, and extracurricular activities related to the former Soviet Union and Eastern Europe, and administers two interdisciplinary academic programs: an undergraduate minor and an M.A. graduate degree program. Information on center programs and activities is available at http://CREEES.stanford.edu. CREEES and its degree programs are directed by the CREEES Steering Committee, composed of faculty members associated with the Center. The programs draw on the strengths of nationally recognized area faculty and research affiliates and significant library and archival collections at Stanford. The Center is a U.S. Department of Education Title VI National Resource Center for Russia and East Europe.

UNDERGRADUATE PROGRAMS

MINORS

The minor in Russian, East European and Eurasian Studies (REEES) is an interdisciplinary area studies program that allows the participating student significant opportunity to select REEES courses in various departments according to his or her interests.

REQUIREMENTS

1. Two core courses: one on Russia/Eurasia, one on Eastern Europe, to be selected by the student from an annual list of qualifying courses issued by CREEES.
2. At least four additional REEES courses, totaling at least 20 units.
3. The student’s courses, core and additional, must be distributed among at least three departments. In addition to REEES courses in the departments of History, Political Science, and Slavic Languages and Literatures, REEES courses in Cultural and Social Anthropology, Economics, Sociology, and so on, when offered, may qualify. The CREEES academic coordinator determines which courses qualify for the minor.
4. A capstone experience in REEES, including, but not limited to, one of the following:
 a) a departmental seminar course for advanced undergraduates
 b) directed reading and research with a Stanford faculty member or a CREEES-approved resident or visiting scholar
 c) participation in the Stanford Overseas Studies Program in Moscow.

Foreign Language—The REEES minor has no language requirement, but students are strongly encouraged to attain working competence in Russian or another relevant language. Courses at the third-year level or
above in Russian or another language of the former Soviet Union or Eastern Europe (excluding German) may be counted towards the REEES minor, up to a maximum of 3 units per academic quarter, 9 units total.

Additional Information — The total number of courses applied to the REEES minor must be at least six, but the minor should total no more than 36 units. Courses counting towards the REEES minor may not be counted towards the student’s major. Courses taken at Stanford overseas campuses (particularly the Moscow campus) may count towards the REEES minor, with the approval in each case of the CREEES academic coordinator; at least three courses for the minor must be taken in residence at Stanford.

Approval of CREEES Academic Coordinator — Students interested in pursuing the REEES minor should consult the CREEES academic coordinator. The minor is declared online using the AXESS system. Students declaring the REEES minor must do so no later than three quarters prior to their intended quarter of degree conferral. Approval of minor declarations and certification of requirements are made by the academic coordinator.

Students pursuing the REEES minor work with the CREEES academic coordinator, who is responsible for determining that requirements for the minor are satisfied.

COTERMINAL BACHELOR’S AND MASTER’S DEGREES

To qualify for a coterminal M.A. degree in Russian, East European and Eurasian Studies, besides completing University requirements for the B.A. degree, a student must:

1. Submit a coterminal application for admission to the program no later than the quarter prior to the expected completion of the undergraduate degree, normally the Winter Quarter prior to Spring Quarter graduation. Students with advanced placement and transfer credit must apply at least four quarters before the expected master’s degree conferral date. Applications may be obtained at Registrar.stanford.edu/publications/. The deadline for all coterminal applications to the M.A. program in Russian, East European and Eurasian Studies is January 10, 2006.

2. Include in the application a program which outlines, by quarter, the schedule of courses the student plans to complete toward the M.A. degree. The student should seek the advice of the CREEES academic coordinator in drafting this schedule. The application also should include: (a) a current Stanford transcript; (b) a one-page statement of purpose; and (c) two letters of recommendation from Stanford professors. Applicants must have a grade point average (GPA) of at least 3.0 (B). Coterminal applicants must take the general test of the Graduate Record Examination and have the results sent to Graduate Admissions, Office of the University Registrar.

3. Complete 15 full-time quarters or the equivalent, or three quarters in full-time residence after completing 180 units; and complete, in addition to the 180 units required for the bachelor’s degree, a minimum of 48 units for the master’s degree.

The same courses may not be counted to meet both undergraduate and graduate requirements, and no courses taken before the junior year may be used to meet the course requirements for the master’s degree. Requirements for completion of the M.A. degree are summarized below; a more detailed description of the program and requirements is available from the center.

SLAVIC THEME HOUSE

Slavianskii Dom, at 650 Mayfield Avenue, is an undergraduate residence which houses 50 students and offers a wide variety of opportunities to expand knowledge, understanding, and appreciation of Russia, the former Soviet Union, and Eastern Europe.

OVERSEAS STUDIES PROGRAMS

Undergraduate students interested in the study of languages, history, culture and social organization of the countries of Russia, Eurasia, and Eastern Europe can apply to study at the Stanford centers in Moscow and Berlin. Participation in these programs is encouraged and easily integrated into the REEES minor. Information about these programs is available at http://osp.stanford.edu.

GRADUATE PROGRAMS

MASTER OF ARTS

CREEES offers a one-year intensive interdisciplinary master’s degree program in Russian, East European and Eurasian Studies for students with a strong prior language and area studies background. The program structure allows students the flexibility to pursue their particular academic interests, while providing intellectual cohesion through a required core curriculum that addresses historical and contemporary processes of change in the former Soviet Union and Eastern Europe. This core curriculum consists of three core courses and REES 200, Core Seminar Series. The program may be taken separately or coterminally with a B.A. degree program. The interdisciplinary M.A. program typically serves three types of students:

1. Those who intend to pursue careers and/or advanced degrees in such fields as business, education, government, journalism, or law, and who wish to establish competence in Russian, East European and Eurasian studies.

2. Those who intend to apply to a Ph.D. program involving Russian, East European and Eurasian studies and who need to enhance their academic skills and credentials.

3. Those who are as yet undecided on a career but who wish to continue an interest in Russian, East European and Eurasian studies.

ADVISING

The advising structure is two-tiered: each M.A. candidate works with the CREEES academic coordinator who advises on the program of course work and monitors the student’s progress toward completing the degree. Candidates are also assigned a faculty adviser from the Academic Council faculty, who provides intellectual and academic guidance.

ADMISSION

Applicants are encouraged to apply electronically; see http://gradadmissions.stanford.edu/ for a link to the electronic application and general information regarding graduate admission, or to request a written application. In addition, prospective applicants are strongly encouraged to consult with the academic coordinator at CREEES regarding the application process.

To qualify for admission to the program, the following apply:

1. Applicants must have earned a B.A. or B.S. degree, or the equivalent.

2. Applicants must have completed at least three years of college-level Russian language study or the equivalent prior to beginning the program. Other languages of Eastern Europe or the former Soviet Union may be accepted on a case-by-case basis.

3. Applicants whose native language is not English are ordinarily expected to take the Test of English as a Foreign Language (TOEFL) and have the results sent to Graduate Admissions, Office of the University Registrar.

4. All applicants must take the General Test of the Graduate Record Examination and have the results sent to Graduate Admissions, Office of the University Registrar.

The deadline for submission of applications for admission and for financial aid is January 3, 2006. Admission is normally granted for Autumn Quarter, but requests for exceptions are considered.

The successful applicant generally demonstrates the following strengths: requisite foreign language study, significant course work in Russian, East European and Eurasian studies in multiple disciplines, outstanding grades in previous academic work, high GRE scores (particularly verbal and analytical writing), study or work experience in the region, strong letters of recommendation, and a persuasive statement of purpose explaining why and how the program fits the applicant’s academic and career goals.
DEGREE REQUIREMENTS

Candidates for the M.A. degree must meet University requirements for an M.A. degree as described in the “Graduate Degrees” section of this bulletin.

The M.A. program in REEES can ordinarily be completed in one academic year by a well-prepared student; longer periods of study are permitted.

Requirements to complete the interdisciplinary M.A. degree are principally ones of distribution, with the exception of three required core courses and a core seminar, as described below. Each student, with the advice of the CREEES academic coordinator, selects courses according to the student’s interests, needs, and goals.

All students in the M.A. REEES program must complete a minimum of 48 academic credit units within the following guidelines.

1. Core Courses: students must complete three, one quarter core courses.
 - Each year, four to six courses, typically from the History, Political Science, and Slavic Languages and Literatures departments, are designated as M.A. core courses; students may select three of these to meet the core course requirement. Courses selected as core courses examine subject areas of fundamental importance within modern Russian, East European and Eurasian Studies, and address questions of research, methodology, and current scholarship.

2. Core seminar 200, Current Issues in Russian, East European and Eurasian Studies, is required of all students in the M.A. program for a total of three academic quarters. The goal of this course is to survey current methodological and substantive issues in Russian, East European and Eurasian studies, acquaint students with Stanford resources and faculty, and present professional development and career options.

3. Interdisciplinary Course Work: a minimum of five graduate courses in Russian, East European and Eurasian studies must be completed and distributed among at least three departments. All course work applied to the 48-unit minimum must deal primarily with Russian, Eurasian, or East European studies.

4. Language Study: students in the program are expected to study Russian or another language of the former Soviet Union or Eastern Europe. Credit towards the 48-unit minimum (maximum 3 units per quarter, 9 units total) is allowed for advanced language work; in the case of Russian, “advanced” is defined as third-year Russian language instruction and above. Similar standards apply for other languages.

5. All course work qualifying for the 48-unit minimum (except REES 200) must have a letter grade of ‘B’ or higher. (‘B-’ does not count for degree credit, nor does ‘S’ or ‘CR’.)

6. All courses counting towards the 48-unit minimum must be approved by the CREEES academic coordinator, who ensures that planned course work satisfies requirements towards the degree. The CREEES director and steering committee determine the requirements.

A description of the M.A. program is also available on the web at http://CREEES.stanford.edu/GraduatePrograms.html and by request from the Center for Russian, East European and Eurasian Studies.

FINANCIAL AID

Subject to funding, CREEES may have a limited number of Foreign Language and Area Studies (FLAS) fellowships for U.S. citizens or permanent residents. Additional financial aid may also be available from CREEES. Applicants in the M.A. program have priority in the annual FLAS competition; in recent years CREEES has also awarded FLAS fellowships in the Graduate School of Business, the School of Medicine, and the School of Law. Consult the CREEES academic coordinator for further information about the application and award process. Applications for FLAS fellowships can be obtained at http://CREEES.stanford.edu/FellowshipsGrants.html.

DOCTORAL PROGRAMS

Since the University does not offer a Ph.D. in Russian, East European and Eurasian Studies, students wishing to pursue a REEES-related doctoral program must apply to one of the departments offering a Ph.D. with an emphasis on Russia, Eurasia, or Eastern Europe, such as the departments of History, Political Science, or Slavic Languages and Literatures.

COURSES

REEES 200. Current Issues in Russian, East European and Eurasian Studies — Enrollment limited to REEES students. Scholars present analyses of methodologies, challenges, and current issues in the study of Russia, E. Europe, and Eurasia.
 1 unit, Aut, Win, Spr (N. Kollmann)

INTERDEPARTMENTAL OFFERINGS

The courses listed below by department deal at least in part with Russia, the former Soviet Union, or Eastern Europe. See the respective department listings for course descriptions. Additional relevant courses by resident or visiting faculty may be offered; for updated information, consult the quarterly Time Schedule or contact the Center for Russian, East European and Eurasian Studies. Students in the area studies M.A. program must have their course list approved each quarter by the Academic Coordinator prior to enrollment.

ART HISTORY

ARTHIST 106/306. Byzantine Art and Architecture, 300-1453 C.E.
 4 units (Pentcheva) not given 2005-06

ARTHIST 145/345. European Modernism and the International Avant Gardes, 1895-1945
 4 units, Aut (Gough)

ARTHIST 410. Aesthetics of the Icon
 5 units (Pentcheva) not given 2005-06

CULTURAL AND SOCIAL ANTHROPOLOGY

CASA 113/213. Women in Islam: The Central Asian Case
 5 units, Win (Kunanbaeva)

CASA 153/253A. Nationalism, Culture, and Identity in Central Asia
 5 units, Spr (Kunanbaeva)

DRAMA

DRAMA 150/250. Chekhov and Before
 4 units, Win (Arad)

DRAMA 151/251. Adaptation: Turning into Drama
 4 units, Spr (Arad)

ECONOMICS

ECON 120. Socialist Economies in Transition
 5 units, Spr (Gathmann)

HISTORY

HISTORY 19S. Sables, Shamans, Salvation, and Civilization: Changing Meanings of Siberia
 5 units, Aut (Monahan)

HISTORY 20. Introduction to Modern Russian History
 5 units, Spr (Weiner)

HISTORY 20N. Early Modern European Views of Eastern Europe and Russia
 5 units, Spr (Kollmann)

HISTORY 20S. The Soviet Citizen on Trial
 5 units, Aut (Moyal)

HISTORY 102. The History of the International System
 5 units, Spr (Sheehan)

HISTORY 120A. Russia, 988-1762
 4-5 units, Aut (N. Kollmann)
HISTORY 120B. History of Imperial Russia
5 units, Win (Crews)

HISTORY 125/325A. 20th-Century Eastern Europe
5 units, Win (Jolluck)

HISTORY 204E. Modernity, Revolution, and Totalitarianism
5 units, Spr (Weiner)

HISTORY 204G. War, Culture, and Society in the Modern Age
5 units, Win (Weiner)

HISTORY 220G. Demons, Witches, and Priests: Religion and Popular Culture in Russia
5 units, Aut (J. Kollmann)

HISTORY 221B. The Woman Question in Modern Russia
5 units, Win (Jolluck)

HISTORY 222. Honor, Law and Modernity
5 units, Win (N. Kollmann)

HISTORY 224/324. Violence, Islam, and the State in Central Asia
5 units, Aut (Crews)

HISTORY 226F. Stalinism in Eastern Europe
5 units, Spr (Fidelis)

HISTORY 227/327. East European Women and War in the 20th Century
5 units, Aut (Jolluck)

HISTORY 229/329. Poles and Jews
5 units, Spr (Jolluck)

HISTORY 299X/399A. Design and Methodology for International Field Research
1 unit, Win (N. Kollmann, Roberts)

HISTORY 321B. Imperial Russian Historiography
5 units (Crews) not given 2005-06

HISTORY 323B. Research Methodologies in Early Modern Russian History
5 units, Aut (N. Kollmann)

HISTORY 424A,B. Soviet Civilization—(Formerly 419.)
4-5 units, A: Win, B: Spr (Weiner)

INTERNATIONAL POLICY STUDIES
IPS 266. Russia and Islam
5 units, Win (Dunlop)

LANGUAGE CENTER
For courses in Russian, Eastern European, and Eurasian language instruction with the subject code SLAVLANG or SPECLANG, see the “Language Center” section of this bulletin.

MUSIC
MUSIC 9A. Tchaikovsky, Stravinsky, Shostakovich, and Beyond: A History of Russian Music
3 units, Spr (Zemtsovsky)

POLITICAL SCIENCE
POLISCI 114D. Democracy, Development, and the Rule of Law—(Same as INTNLREL 114D.)
5 units, Aut (Stoner-Weiss)

5 units, Win (Sagan, Blacker, Perry)

POLISCI 141R/340T. Russian Politics
5 units, Aut (Dakin)

POLISCI 340S. Political Economy of Post-Communism
5 units, Win (Stoner-Weiss)

POLISCI 340U. Politics of Identity in Eastern Europe
5 units, Win (Kulyk)

POLISCI 341T. Comparative Democratization and Regime Change
5 units, Spr (Karl)

SLAVIC GENERAL
SLAVGEN 13N. Russia, Russian, Russians
3-4 units, Win (Schupbach)

SLAVGEN 77Q. Russia’s Weird Classic: Nikolai Gogol
3 units, Aut (Fleishman)

SLAVGEN 123/223. The Yiddish Novel
3-4 units, Spr (Glaser)

SLAVGEN 135/235. The Literatures of Ukraine: The Modern Period
3-4 units, Aut (Glaser)

SLAVGEN 145/245. The Age of Experiment, 1820-50
3-4 units, Aut (Fleishman)

SLAVGEN 146/246. The Age of Transgression: The Great Russian Novel
4 units, Win (Safran)

SLAVGEN 147/247. The Age of War and Revolution: A Survey of Russian Literature and Culture, 1900-1950s
4 units, Spr (Graham)

SLAVGEN 151/251. Dostoevsky and His Times
4 units, Win (Frank)

SLAVGEN 155/255. Anton Chekhov and the Turn of the Century
4 units, Spr (Safran)

SLAVGEN 163/263. Gender in Postwar Russian Culture
4 units, Aut (Graham)

SLAVGEN 197B. Camera as Witness: International Human Rights Documentaries—(Same as HUMNTIES 197B, INTNLREL 141B.)
5 units, Aut (Bojic)

SLAVGEN 197C. Camera as Witness: International Human Rights Documentaries—(Same as HUMNTIES 197C, INTNLREL 141C.)
5 units, Spr (Bojic)

SLAVIC LITERATURE
SLAVLIT 129/229. Poetry as System: Introduction to Theory and Practice of Russian Verse
4 units (Fleishman) not given 2005-06

SLAVLIT 184/284. History of the Russian Literary Language
3-4 units, Win (Schupbach)

SLAVLIT 188/288. From Alexander Blok to Joseph Brodsky: Russian Poetry of the 20th Century
3-4 units, Aut (Fleishman)

SLAVLIT 200. Proseminar in Literary Theory and Study of Russian Literature
4 units, Aut (Freidin)

SLAVLIT 200A. Introduction to Library and Archival Research in Slavic Studies
2-3 units, Aut (Fleishman)

SLAVLIT 203. Academic Russian
3 units, Aut (Golburt)

SLAVLIT 271. Poema: Russia’s Long Narrative Poem
3-4 units, Spr (Fleishman)

SLAVLIT 272. Osip Mandelstam and the Modernist Paradigm
2-4 units, Win (Freidin)
SCIENCE, TECHNOLOGY, AND SOCIETY

Emeriti: James Adams (Management Science and Engineering, Mechanical Engineering), Alex Inkeles (Sociology), Walter Vincenti (Aeronautics and Astronautics)

Director: Robert McGinn (Management Science and Engineering; Science, Technology, and Society)

Program Committee: Stephen Barley (Management Science and Engineering), Ursula K. Heise (English), Brad Osgood (Electrical Engineering), Eric Roberts (Computer Science), Scott Sagan (Political Science), Fred Turner (Communication)

Lecturers: Henry Lowood, Sonja Schmid, Rebecca Slayton

Affiliated Faculty and Staff: Stephen Barley (Management Science and Engineering), Barton Bernstein (History), Scott Bukatman (Art and Art History), Thomas Byers (Management Science and Engineering), Joseph Corn (History), Jean-Pierre Dupuy (French), Paula Findlen (History), David Freyberg (Civil and Environmental Engineering), Ursula K. Heise (English), Sarah Jain (Cultural and Social Anthropology, on leave), Joseph Manning (Classics), Gilbert Masters (Civil and Environmental Engineering), Brad Osgood (Electrical Engineering), Jessica Riskin (History, on leave), Eric Roberts (Computer Science), Nathan Rosenberg (Economics), Scott Sagan (Political Science), Michael Shanks (Classics, Cultural and Social Anthropology), Paul Turner (Art and Art History), Gavin Wright (Economics)

Mail Code: 94305-2120
Phone: (650) 723-2565
Web Site: http://sts.stanford.edu

Courses given in Science, Technology, and Society have the subject code STS. For a complete list of subject codes, see Appendix.

Technology and science are activities of central importance in contemporary life, intimately bound up with society’s evolving character, problems, and potentials. If scientific and technological pursuits are to further enhance human well-being, they and their effects on society and the individual must be better understood by non-technical professionals and ordinary citizens as well as by engineers and scientists. Issues of professional ethics and social responsibility confront technical practitioners. At the same time, lawyers, public officials, civil servants, and business people are increasingly called upon to make decisions requiring a basic understanding of science and technology and their ethical, social, and environmental consequences. Ordinary citizens, moreover, are being asked with increasing frequency to pass judgment on controversial matters of public policy related to science and technology. These circumstances require education befitting the complex sociotechnical character of the contemporary era.

Science, Technology, and Society (STS) is an interdisciplinary program devoted to understanding the nature, consequences, and shaping of technological and scientific activities in modern and contemporary societies. Achieving this understanding requires critical analysis of the interplay of science and technology with human values and world views, political and economic forces, and cultural and environmental factors. Hence, students in STS courses study science and technology in society from a variety of perspectives in the humanities and social sciences. To provide a basic understanding of technology and science, STS majors are also required to achieve either literacy (B.A.) or a solid grasp of fundamentals (B.S.) in some area of engineering or science.

GENERAL INFORMATION

Selected STS courses may be used, individually or in groups, for various purposes:
1. To satisfy University General Education Requirements
2. To satisfy the Technology in Society Requirement of the School of Engineering
3. To comprise parts of student-designed concentrations required for majors in fields such as Human Biology and Public Policy
4. To satisfy the requirements of the STS Honors Program complementing any major (see below)
5. To satisfy requirements for the minor in STS (see below)
6. To satisfy requirements for a minor in STS (see below)

STS courses are particularly valuable for undergraduates planning further study in graduate professional schools (for example, in business, education, engineering, law, journalism, or medicine) and for students wishing to relate the specialized knowledge of their major fields to broad technology and science-related aspects of modern society and culture.

The STS Program is a unit of the Center for the Interdisciplinary Study of Science and Technology (CISST). For further information about CISST see the “Academic Centers” section of this bulletin.

UNDERGRADUATE PROGRAMS

Degree programs in STS are interdisciplinary curricula devoted to understanding the nature and significance of technology and science in modern society. Majors analyze phenomena of science and technology in society from ethical, aesthetic, historical, economic, and sociological perspectives. In addition, students pursuing the B.A. degree study a technical field in sufficient depth to obtain a grasp of basic concepts and methods, and complete a structured concentration on a theme, issue, problem, or area of personal interest related to science and technology in society. Those seeking the B.S. degree complete at least 50 structured units in technology, science, and mathematics. The particular technical courses chosen reflect the student’s special interest in science and technology in society. Specific requirements for the bachelor’s degree in STS are as follows:

BACHELOR OF ARTS

1. STS Core (eight courses):
 a) Interdisciplinary Foundational course: STS 101 or 101Q
 b) Disciplinary Analyses (five courses with at least one in each category):
 1) philosophical/ethical perspectives: STS 110, 112, 114, 116, 118
 2) historical perspectives: STS 102, 120, 122, 123A, 124, 126, 128, 130, 134
 3) social science perspectives: STS 138, 152, 162, 169, 171, 172
 c) Advanced courses (one course in each category):
 1) disciplinary analysis: STS 207, 210, 211, 212, 215, 217, 218, 219, 221, 229, 231
 2) senior colloquium: STS 200

2. Technical Literacy (five courses):
 a) CS 105 or 106A or equivalent; and
 b) A four-course sequence (minimum of 12 units) in one field of engineering or science (sample sequences available in the STS office); or
 c) Four of the following Engineering Fundamentals courses: Engineering 10, 14, 15, 20, 25, 30, 40, 50, 60, 62, 70A (see course descriptions in the “School of Engineering” section of this bulletin).

3. Thematic Concentration (minimum of 20 units, at least five courses, one each from among those designated on the appropriate concentration course list as foundational and advanced). Thematic concentrations are organized around an STS-related problem or area. The following thematic concentration topics have been pre-certified: the intersections of technology and science with aesthetics, development, history and philosophy, information and society, public policy, social change, and work and organizations.

Course lists for these concentration topics are available in the STS office. A student selecting one of the certified topics may include one or more courses not on the corresponding course list if they are germane to
the concentration and meet the student’s special interests. Alternatively, the student may choose to design a thematic concentration topic and course package subject to program approval. Each thematic concentration, certified or self-designed, requires the signature of an appropriate faculty adviser. See the program director for details.

BACHELOR OF SCIENCE

The student pursuing the B.S. degree shall complete the STS Core and a structured package of at least 50 units of technical courses intended to enable students to understand socially significant technical phenomena in some field of engineering or science. Introductory courses in mathematics or physics (for example, MATH 19 or PHYSICS 19) are not normally counted as parts of this technical depth component.

The B.S. candidate follows one of two models in fulfilling the minimum 50-unit technical depth requirement:

1. **Focused Depth:** at least seven courses amounting to at least 25 units in a single field of science or engineering, with the remaining units (except for at most two stand-alone courses) grouped in sequences of at least three courses each in other fields of science or engineering. For example, a Focused Depth package might contain eight mechanical engineering, three physics, three mathematics, and three computer science courses, and one course each in electrical engineering and chemistry. At least four of the seven courses in the focused depth area must be advanced, that is, not normally taken in the first year of study in that field.

2. **Clustered Depth:** two or more clusters of at least five courses and 15 units each in different fields of science or engineering, with at most two stand-alone courses, and remaining courses, if any, in sequences of three or more courses. For example, a Clustered Depth package might contain five-course clusters in computer science, electrical engineering, and physics, three courses in civil engineering, and one course each in biology and chemical engineering. At least two courses in each cluster area must be advanced.

It is recommended that B.S. majors complete CS 106A or equivalent.

MINORS

Students planning careers in many technical and non-technical fields, including business, education, engineering, science, law, medicine, and public affairs, are faced with important STS issues in their professional practice. Therefore, a minor in STS is likely to prove practically valuable as well as intellectually stimulating.

Requirements — The STS minor requires successful completion of six courses satisfying the following four requirements:

1. **Foundational Course:** STS 101 or 101Q
2. One disciplinary analysis course from each of the following three categories:
 a) Philosophical/Ethical Perspectives: STS 110, 112, 114, 115, 116, 117, 118, 119
 b) Historical Perspectives: STS 102, 120, 122, 123A, 124, 126, 128, 130, 134
 c) Social Science Perspectives: STS 138, 152, 162, 169, 171, 172
3. Two advanced courses, from one or two of the following categories, building on courses taken under requirements 1 and 2:
 a) Philosophical/Ethical Perspectives: STS 207, 210, 211, 212, 215, 217
 b) Historical Perspectives: STS 130, 134, 221, 229
 c) Social Science Perspectives: STS 207, 218, 219, 231, 279
4. At least one of the courses taken under requirements 1 to 3 should incorporate a weekly, small group discussion.
5. With at most one exception, all courses taken to satisfy STS minor requirement must be taken for a letter grade where available. The exception cannot be STS 101 or 101Q.

Note — Students wishing to use a course not listed above to satisfy one of the requirements for a minor in STS may petition to do so. For details, inquire at the STS office, Building 370, Room 109.

HONORS PROGRAM

STS offers a limited number of students an opportunity to achieve honors through in-depth study of the interaction of science and technology with society. The honors program is open to students majoring in any field (including STS). Students accepted for this program carry out an honors project, the work for which normally begins in Spring Quarter of the junior year and is completed by mid-May of the senior year. Students who want their theses to be considered for the Firestone Prize must submit them to STS by May 20, 2006; all theses must be submitted to STS by June 1, 2006. STS thesis projects usually entail writing an honors essay, although occasionally students have chosen to produce a technical artifact or carry out some other work that itself represents original thinking. When a project results in a work other than an essay, students must also submit an accompanying scholarly exegesis of the work in question.

ADMISSION

Application for admission to the STS honors program is typically made during the last quarter of the student’s junior year. By the eighth week of that quarter, interested students must have completed, or be completing that quarter, at least two of the four courses required to satisfy honors requirements 1 to 4 listed below. Each applicant must also have submitted a formal proposal for her or his project to the STS Honors Committee, including the name of the primary thesis adviser. For proposal parameters, see the document *Honors in STS*, available in the STS office. Students whose proposals are approved are encouraged to apply to attend Honors College in early September to get a running start on their theses. STS honors students are also encouraged to sign up for 1-5 units of credit per quarter in STS 195A,B,C for work on the honors project. While not required, doing so leaves the student sufficient time to finish the thesis in three quarters. Writing a senior honors thesis while simultaneously carrying a full academic load each quarter is a very difficult task to complete with distinction. STS majors pursuing honors in STS or another honors program take STS 200 for 2 units instead of 4 and do not write a research paper for this required course. However, failure to complete the thesis requires additional research work in STS 200. (Note: under exceptional circumstances, a student may be admitted to the STS honors program early in the first quarter of his or her senior year.)

REQUIREMENTS

For non-STS Majors

1. Foundational Course: STS 101 or 101Q
2. One Philosophical/Ethical Perspectives course: STS 110, 112, 114 115, 116, 117, 118, 210, 211, 212, 215
3. One Historical Perspectives course: STS 102, 120, 122, 123A, 124, 126, 128, 130, 134, 221, 229
5. Honors Project: an original critical essay (or investigative project with accompanying explanatory essay) on an STS topic of general importance (up to 12 units may be taken while working on the thesis). Past honors projects are on file in the STS office library.

For STS majors

1. Completion of STS core.
2. Requirement 5 above.

To earn honors, the project must receive a grade of at least ‘B’ on the completed thesis. The student not majoring in STS must also achieve a grade point average (GPA) of at least 3.3 in the courses taken to satisfy requirements 1 to 4 above. In the case of STS majors, the student must compile a GPA of at least 3.3 in the entire STS core. If all these requirements are met, the designation “Honors Program in Science, Technology, and Society” is affixed to the student’s permanent record and appears in the commencement program.
COURSES

WIM indicates that the course satisfies the Writing in the Major requirements.

See http://sts.stanford.edu for updated course scheduling information, course syllabi, faculty and staff information, and information about how to declare a major or a minor in STS.

INTRODUCTORY

STS 101. Science, Technology, and Contemporary Society — (Graduate students register for 201; same as ENGR 130.) Key social, cultural, and values issues raised by contemporary scientific and technological developments; distinctive features of science and engineering as sociotechnical activities; major influences of scientific and technological developments on 20th-century society, including transformations and problems of work, leisure, human values, the fine arts, and international relations; ethical conflicts in scientific and engineering practice; and the social shaping and management of contemporary science and technology. GER:DB-SocSci
4-5 units, Aut (McGinn)

STS 101Q. Technology in Contemporary Society — Stanford Introductory Seminar. Preference to sophomores. Introduction to the STS field. The nature of science and technology and their relationship, what is most distinctive about these forces today, and how they have transformed and been affected by contemporary society. Social, cultural, and ethical issues raised by recent scientific and technological developments. Case studies from areas such as information technology and biotechnology, with emphasis on the contemporary U.S. Unexpected influences of science and technology on contemporary society and how social forces shape scientific and technological enterprises and their products. Enrollment limited to 12. GER:DB-SocSci
4 units, Aut (McGinn)

STS 102. Science, Technology, and Art: The Worlds of Leonardo— (Graduate students register for 202; same as HISTORY 31.) The intersections among science, technology, and society, and an interdisciplinary introduction to Renaissance studies. Why does this 15th-century artist, engineer, and inventor continue to fascinate and inspire innovative, interdisciplinary work? The world of the historical Leonardo, looking at his range of interests and accomplishments (including Mona Lisa, human anatomies, flying machines), and the culture of invention that shaped him. Students think with Leonardo, reconstructing some of his projects. The persistence of the Renaissance as a touchstone for innovation in the 21st century, examining the myth of Leonardo. GER:DB-Hum
5 units, Win (Findlen)

STS 110. Ethics and Public Policy — (Same as MS&E 197, PUBLPOL 103B.) Ethical issues in science- and technology-related public policy conflicts. Focus is on complex, value-laden policy disputes. Topics: the nature of ethics and morality; rationales for liberty, justice, and human rights; and the use and abuse of these concepts in policy disputes. Case studies from biomedicine, environmental affairs, technical professions, communications, and international relations. GER:DB-Hum, WIM
5 units, Win (McGinn)

STS 112. Ten Things: Science, Technology, and Design — (Same as CLASSTRT 113/213.) Connections among science, technology, society and culture by examining the design of a prehistoric hand axe, Egyptian pyramid, ancient Greek perfume jar, medieval castle, Wedgwood teapot, Edison’s electric light bulb, computer mouse, Sony Walkman, supersonic aircraft, and BMW Mini. Interdisciplinary perspectives include archaeology, cultural anthropology, science studies, history and sociology of technology, cognitive science, and evolutionary psychology.
4-5 units, Win (Shanks)

STS 114. Technology, Ecology, and the Imagination of the Future — Seminar. Literary visions of the future from the 60s to the present. How such texts imagine new and existing technologies in interrelation with the evolution of natural ecosystems. The development of wild habitats, alterations of the human body, and visions of the future city. The role of images and stories about globalization. Literary, scientific, and technical texts. GER:DB-Hum
5 units (Heise) not given 2005-06

STS 115. Ethical Issues in Engineering — (Same as ENGR 131.) Moral rights and responsibilities of engineers in relation to society, employers, colleagues, and clients; cost-benefit-risk analysis, safety, and informed consent; the ethics of whistle blowing; ethical conflicts of engineers as expert witnesses, consultants, and managers; ethical issues in engineering design, manufacturing, and operations; ethical issues arising from engineering work in foreign countries; and ethical implications of the social and environmental contexts of contemporary engineering. Case studies, guest practitioners, and field research. Limited enrollment. GER:DB-Hum
4 units (McGinn) alternate years, given 2006-07

STS 116. Philosophy and the Scientific Revolution — (Enroll in HPS 61, PHIL 61.)
5 units, Aut (Friedman)

STS 118. The Invention of Modern Architecture — (Enroll in ARTHIST 141/341.)
4 units, Aut (Turner)

STS 120. Science and Technology in Ancient Egyptian Society — (Same as CLASSHIS 131.) From 3000 B.C.E. to the Roman period. What was the source of technological change and innovation in Egypt? Why is the ancient Egyptian legacy important for later developments? What was the balance between changes internal and external to Egypt? Topics: ancient texts concerned with science, technology, mathematics, astronomy, medicine; Egyptian material culture and building techniques; the economic role of technology; Alexandrian science and its legacy.
4 units (Manning) not given 2005-06

STS 122. American Spaces: An Introduction to Material Culture and the Built Environment — (Enroll in HISTORY 164, AMSTUD 152.)
5 units, Spr (Corn)

STS 123A. The Scientific Revolution — (Enroll in HISTORY 232F/332F.)
5 units, Win (Findlen)

STS 124. American Economic History — (Enroll in ECON 116.)
5 units, Spr (Wright)

STS 126. The Prehistory of Computers — (Enroll in HISTORY 241J/341J.)
3-5 units (Riskin) not given 2005-06

STS 128. Science and Technology in WW II and What Happened Afterward — (Same as EE 45.) The efforts of engineers, mathematicians, and scientists during WWII. The effect on the postwar world in areas such as information, communication, transportation, materials, and medicine. Science and engineering in the war effort, and what became of them after the war, drawn from: encryption and computation; radar, communication, and electronics; control and optimization; materials; drugs and medicine. GER:DB-EngrAppSci
3 units (Osgood) not given 2005-06

STS 130. Origins and History of the Scientific Fact — (Enroll in HISTORY 241F/341F.)
5 units (Riskin) not given 2005-06

STS 134. History of the Senses — (Same as HISTORY 241G/341G.)
Technological, medical, philosophical, and scientific history of the five senses, drawing upon readings from antiquity to the present. How physiologists and philosophers have explained the functioning of the senses; how doctors have tampered with them both to help and to hinder; and how technologies including medical devices, scientific instruments, and tools of the arts have continually transformed the nature and experience of sensation. GER:DB-SocSci
5 units (Riskin) not given 2005-06
 5 units, Win (Sagan, Blacker, Perry)

STS 145. History of Computer Game Design: Technology, Culture, and Business—Historical contexts include entertainment media, computing technology, applications of gaming technology, and business history. Topics: play in human culture, early computer games from chess to space war, the role of artificial intelligence research, the history of computer graphics and sound technology, the evolution of techniques and genres of computer game design, video game machines, games and the microcomputer revolution, networked gaming, gadgets and games as factors in the evolution of software and hardware, marketing, gendering of games and game play, virtual worlds, simulation, video and computer game industries, and technology transfer such as military simulations. Enrollment limited to 90.
 4 units (Lowood) not given 2005-06

STS 152. Digital Media in Society—(Enroll in COMM 120/220.)
 4-5 units, Spr (Turner)

STS 162. Computers and Interfaces—(Enroll in COMM 169/269.)
 4-5 units, Win (Nass)

STS 163. Risk in Contemporary Culture—How people perceive, assess, and handle risks. Concepts such as risk, uncertainty, probability, and safety. Approaches to risk assessment, management, and communication. Relationship between scientific experts and the public. Relationship of science to state agencies in the context of regulatory decision making for high risk technologies.
 4 units, Spr (Schmid)

 4 units, Spr (Slayton)

STS 169. History of Nuclear Weapons—(Enroll in HISTORY 103E, POLSCI 116.)
 5 units (Holloway) not given 2005-06

STS 170. Technology in Modern Security Discourse—Technology’s central role in discussions of international security issues including nuclear proliferation or containment, ballistic missiles or anti-missiles, biological weapons or vaccines, and data mining or computer security. What uses can and should technology serve in diplomacy? Why are some weapons stigmatized while others are deemed acceptable? How does discourse itself become a weapon? The history of the technologies and the discourses about them.
 4 units, Aut (Slayton)

STS 171. Technology and National Security—(Enroll in MS&E 193/293.)
 3 units, Aut (Perry, Paté-Cornell)

STS 172. Issues in Technology and Work for a Post-Industrial Economy—(Enroll in MS&E 181.)
 3 units, Spr (Barley)

STS 173. High Technology Entrepreneurship—(Enroll in ENGR 145.)
 4 units, Win (Byers, Komisar)

STS 184. Technology Policy—(Enroll in PUBLPOL 194.)
 5 units, Win (Windham)

STS 190. Honors Seminar—For juniors intending to pursue honors in STS or a related discipline. Goal is to identify a research problem and identify key components of honors research and thesis writing such as literature reviews, methodologies, theoretical frameworks, and writing standards.
 4 units, Win (Slayton)

STS 195A,B,C. Honors Project—For students in STS honors program. 195A for submission of proposal; 195B for continued study and writing; 195C for final work on project.
 1-5 units, Aut, Win, Spr (Staff)

STS 199. Individual Work
 1-5 units, Aut, Win, Spr (Staff)

ADVANCED UNDERGRADUATE AND GRADUATE

STS 200. Senior Colloquium—Key analytical and theoretical texts treating the natures and interplay of science, technology, and society. Only STS majors writing senior honors theses may take for 2 units. Prerequisite: STS major with senior standing and four STS core courses, or consent of instructor.
 2-4 units, Win (Roberts), Spr (Heise)

STS 201. Science, Technology, and Contemporary Society—(Same as 101, ENGR 130; see 101.)
 4-5 units, Aut (McGinn)

 5 units, Win (Findlen)

STS 207. Science, Technology, and Economic Growth—(Enroll in INTNLREL 205.)
 3-5 units, Aut (Ptak)

STS 210. Ethics, Science, and Technology—Ethical issues raised by advances in science and technology. Topics: biotechnology including agriculture and reproduction, the built environment, energy technologies, and information technology. Prerequisite: 110 or another course in ethics. Limited enrollment. GER:DB-Hum
 4 units, Spr (McGinn) alternate years, not given 2006-07

STS 211. Foundations of Nanoethics: Toward a Rapprochement between Europe and the U.S.—(Enroll in FRENGEN 258E.)
 3-5 units, Spr (Dupuy)

STS 212. Ethics, Technology, and International Relations—(Enroll in INTNLREL 205.)
 5 units, Spr (McGinn)

STS 215. Computers, Ethics, and Social Responsibility—(Enroll in CS 201.)
 3-4 units, Spr (Johnson)

STS 217. Good Products, Bad Products—(Enroll in ME 314.)
 3-4 units, Win (Beach)

STS 218. The Role of the University in the Knowledge Economy—The industrial world has come to consist of knowledge economies; economic performance has come to depend upon the ability to advance knowledge in science and technology. University research activities are sources of commercial advantage. Many universities routinely take out patents, some of which are highly profitable. The historical forces and the social and economic policy implications behind the new economic importance of universities. Emphasis is on Stanford’s role in Silicon Valley.
 3 units (Rosenberg) not given 2005-06

STS 219. Management and Organization of Research and Development—(Enroll in MS&E 281.)
 3 units (Barley) not given 2005-06

STS 221. The Politics and Ethics of Modern Science and Technology—(Same as HISTORY 257.) The WW II decision to build and use the atomic bomb. The controversy over the H-bomb. The Oppenheimer loyalty-security case and the relationship of scientist to the state. Medical experimentation on humans and pitfalls of technology. Relations among science, technology, and university. GER:DB-Hum
 5 units (Bernstein) not given 2005-06
SLAVIC LANGUAGES AND LITERATURES

Emertii: (Professors) Joseph Frank, Joseph A. Van Campen
Chair: Gabriella Safran
Professors: Lazar Fleishman, Gregory Freidin, Richard D. Schupbach
Associate Professors: Monika Greenleaf, Gabriella Safran
Senior Lecturer: Rima Greenhill
Director of Graduate Studies: Lazar Fleishman
Director of Undergraduate Studies: Gregory Freidin

* Recalled to active duty.

Department Offices: Building 40, Room 41C
Mail Code: 94305-2006
Phone: (650) 723-4438
Email: slavic@stanford.edu
Web Site: http://slavic.stanford.edu

Courses given in Slavic Languages and Literatures have the subject code SLAVGEN, SLAVLANG, and SLAVLIT. For a complete list of subject codes, see Appendix.

The department accepts candidates for the degree of Bachelor of Arts, Master of Arts, and Doctor of Philosophy. Particular requirements for each degree are described below.

UNDERGRADUATE PROGRAMS

BACHELOR OF ARTS

The Department of Slavic Languages and Literatures (Slavic) offers three tracks for undergraduate majors: Russian Language and Literature; Russian Language, Culture, and History; and Russian and Philosophy.

Writing in the Major — Undergraduates are required by the University to pass at least one writing-intensive course in their field of concentration in order to graduate. Majors in any Slavic track may satisfy the writing requirement by passing SLAVGEN 146.

RUSSIAN LANGUAGE AND LITERATURE

The track in Russian Language and Literature is designed for those students who desire to gain a firm command of the Russian language and to study the nation’s literary tradition. Emphasis is placed on the linguistic and philological study of literature, as well as the history of Russian literature and related media in the broader context of Russian culture. Students may explore historically related literary traditions (for example, English, French, German), as well as other related fields. The Russian Language and Literature track also welcomes students with an interest in Russian and Slavic linguistics.

Prerequisites — Successful completion of SLAVLANG 51, 52, 53, or the equivalent, as determined by the results of the department placement examination.

REQUIREMENTS

Candidates for the B.A. degree with a track in Russian Language and Literature must complete an additional 52 units according to the following distribution:

Russian Literature — The 20-unit core literature sequence consisting of: SLAVGEN 145, 146, 147 or 148; SLAVLIT 187, 188.

Electives — Students must take 20 units of electives embracing at least two of the following categories: (1) Russian language or linguistics; (2) Russian literature; and (3) historically related literatures. These courses are selected in consultation with the undergraduate director. With department permission, work in related academic fields may be applied toward the degree requirements. Students who have completed IHUM 28A,B, Poetic Justice: Order and Imagination in Russian Culture, with a grade
‘B’ or better may count these 10 units towards elective courses required for the major in Russian Languages and Literature or the major in Russian Language, Culture, and History.

 Majors who concentrate in Russian Language and Literature must earn a grade point average (GPA) of 2.0 (C) or better in order to receive credit toward the major.

RUSSIAN LANGUAGE, CULTURE, AND HISTORY

The track in Russian Language, Culture, and History is for students who would like to obtain a firm command of the Russian language and to pursue a broad, interdisciplinary study of Russian literature, other expressive media (including film), as well as cultural traditions and institutions. Emphasis is placed on the relation of the Russian literary tradition to disciplines that have enriched the historical understanding of Russian literature: primarily history, but also anthropology, communications, political science, and sociology.

Prerequisites — Successful completion of the following or the equivalent as determined by the results of the department placement examination:

SLAVLANG 51, 52, 53. Second-Year Russian

REQUIREMENTS

Candidates for the B.A. degree with a concentration in Russian Language, Culture, and History must complete an additional 52 units according to the following distribution.

Russian Language — A minimum of 12 units from the following:

- SLAVLANG 111, 112, 113. Third-Year Russian
- SLAVLANG 177, 178, 179. Fourth-Year Russian
- SLAVLANG 181, 182, 183. Fifth-Year Russian

Prerequisites:

19th-Century Russian Literature and History — A minimum of 8 units chosen from the following courses or the equivalent; students must choose one course from Slavic and one course from History.

SLAVGEN 145, 146

HISTORY 120B

20th-Century Russian Literature and History — A minimum of 8 units chosen from the following or the equivalent; students must choose one course from Slavic and one course from History.

SLAVGEN 147 or 148

HISTORY 120C

Electives — In order to complete the basic degree requirements, students must take 24 additional units of course work embracing at least two of the following categories: (1) Russian language; (2) Russian literature; and (3) Russian history. These courses are selected in consultation with the undergraduate director. With department permission, work in related academic fields (for example, anthropology, communications, political science, religion, sociology) may apply toward the degree requirements.

Majors with a concentration in Russian Language, Culture, and History must earn a GPA of 2.0 (C) or better in order to receive credit toward the major.

RUSSIAN AND PHILOSOPHY

The track in Russian and Philosophy offers students the opportunity to gain a command of the Russian language and literary tradition, while gaining a background in philosophical thought, broadly construed. They take courses alongside students in other departments participating in the program in Philosophical and Literary Thought, with administrative staff in the DLCL.

Prerequisites — Completion of SLAVLANG 51, 52, 53, or the equivalent as determined by the results of the department placement examination.

REQUIREMENTS

Candidates for the B.A. degree with a concentration in Russian and Philosophy must complete an additional 67 units according to the following distribution:

Russian Language — A minimum of 12 units selected from the following: SLAVLANG 111, 112, 113, 177, 178, 179, 181, 182, 183.

Russian Literature — A minimum of 16 units of Russian literature, including the following:

1. SLAVGEN 145 and 146
2. SLAVGEN 147 or 148
3. SLAVLIT 187 or 188

Electives — At least 12 units of electives in Russian language and literature, selected in consultation with the undergraduate director.

Philosophy and Literature Gateway Course (4 units): FRENGEN 181 (same as PHIL 81)

Philosophy Writing in Major (5 units): PHIL 80; prerequisite: introductory philosophy course.

Philosophy Core — 12 units, including the following:

1. Value Theory: a course in the PHIL 170 series
2. Theories of Mind, Language, Action: a course in the PHIL 180 series
3. History of Philosophy: a course from the PHIL 100-139 series

Related Course — An upper-division course of special relevance to philosophy and literature. A list of approved courses is available from the program director.

Capstone Seminar — To be taken in the senior year, and selected from a list of seminars approved by the director of the program in philosophical and literary thought.

Majors who concentrate in Russian and Philosophy must earn a grade point average (GPA) of 2.0 (C) or better in order to receive credit toward the major. Courses in other departments may not, in general, be counted toward the Russian language, Russian literature, and elective requirements, but may be counted toward the other requirements.

MINORS

The Department of Slavic Languages and Literatures offers three undergraduate minor programs in Russian Language, Literature, and Culture.

The minor program is designed for students who, while pursuing a major in another program, seek a comprehensive introduction to Russian culture, whether primarily through (1) Russian language courses; or (2) a combination of minimal proficiency in Russian and courses in the history of Russian culture; or (3) courses on Russian literature in translation and, depending on the student’s interest, other forms of the country’s cultural expression and social institutions. Students seeking a Slavic minor are particularly encouraged to take advantage of Stanford’s Overseas Studies Program in Moscow. Students who have chosen one of the minor programs in Russian may use 5 units of IHUM credit towards their electives.

RUSSIAN LANGUAGE

Prerequisites — The minor track in Russian Language requires the successful completion of SLAVLANG 1, 2, 3, First-Year Russian, and SLAVLANG 51, 52, 53, Second-Year Russian, or a demonstrated equivalent competence as determined by the departmental Russian language placement examination.

Requirements — Candidates for the B.A. degree with a minor track in Russian Language must complete 24 units of Russian language and literature courses according to the following distribution: 12 to 15 units selected from SLAVLANG 111, 112, 113, 177, 178, 179, 181, 182, 183. The remaining 9 to 12 units should be selected from SLAVGEN 145, 146, 147, 148, SLAVLIT 187, 188, other monograph courses offered by the department, or, with the approval of the department’s undergraduate adviser, in history, politics, linguistics, or other relevant programs.

RUSSIAN LANGUAGE, LITERATURE, AND CULTURE

Prerequisites — The minor track in Russian Language, Literature, and Culture requires the completion of SLAVLANG 1A, 2B, 3C, First-Year Russian, or the equivalent as determined by the departmental Russian language placement examination.

Requirements — Candidates for the B.A. degree with the minor track in Russian Language, Literature, and Culture must complete 28 units according to the following distribution:
1. A minimum of 16 units of courses on literature and culture selected from the following Slavic Languages and Literatures courses: two quarters in the SLAVGEN 145, 146, 147, 148 sequence, Russian Literature in English Translation, or one quarter in the SLAVGEN 145, 146, 147, 148 sequence and one quarter in the SLAVLIT 187, 188 sequence, Russian Poetry (prerequisite: second-year Russian); and at least one monograph course focusing on a single writer.

2. 12 units of elective courses either in the Department of Slavic Languages and Literatures or, with the approval of the Slavic department’s undergraduate adviser, in History, Linguistics, Political Science, or other relevant programs.

RUSSIAN CULTURE
Candidates for the B.A. degree with the minor track in Russian Culture must complete 36 units according to the following distribution: a minimum of 20 units of courses on literature and culture selected from the following Slavic Languages and Literatures courses: three quarters in the SLAVGEN 145, 146, 147, 148 sequence, Russian Literature in English Translation, and two monograph courses focusing on a single writer. In addition, one course in Russian history is selected from HISTORY 120B or 120C. No knowledge of Russian is required.

Electives — 11 units of elective courses either in the Department of Slavic Languages and Literatures or, with the approval of the Slavic department’s undergraduate adviser, in Art, History, Linguistics, Political Science, or other relevant programs.

The deadline for minor declarations in all tracks is no later than the last day of the third quarter before degree conferral.

HONORS PROGRAM
Students in any track with a grade point average (GPA) of 3.3 (B+) or better in their major courses are eligible to participate in the department’s honors program. Prospective honors students may enroll for 2 units of credit in SLAVLIT 199 in Spring Quarter of the junior year to conduct preliminary research and draft an honors proposal. In addition to the program requirements above, students must also complete the following:

1. Majors in any track who propose a senior project in literature must take a course in literary or cultural theory; this requirement may be fulfilled by enrollment in DLCL 189 or in an advanced course related to the area of the student’s expected research. Students concentrating in Russian Language, Culture, and History and pursuing a project in cultural history must take a course in literary or cultural theory, a graduate seminar in the area of their topic, or DLCL 189, a 5-unit seminar that focuses on researching and writing the honors thesis. DLCL 189 is taken in Autumn Quarter of the senior year. Students concentrating in Russian Language and Literature who propose a senior project in Russian language select their course in consultation with the undergraduate director.

2. SLAVLIT 199, taken for 5 units of credit while composing the thesis during Winter Quarter. To qualify for honors, the candidate must receive a grade of ‘B’ or better on the thesis or project completed during this period. A total of 10-12 units are awarded for completion of honors course work, independent study, and the finished thesis.

SLAVIC THEME HOUSE
Slavianskii Dom, at 650 Mayfield Avenue, is an undergraduate residence that offers a wide variety of opportunities to expand one’s knowledge, understanding, and appreciation of Russian and Eastern Europe.

COTERMINAL BACHELOR’S AND MASTER’S PROGRAM
The department allows a limited number of undergraduates to work for coterminal B.A. and M.A. degrees in Slavic Languages and Literatures with a concentration on Russian. In addition to University requirements for the B.A. degree, the student must:

1. Submit an application for admission by January 31 of the senior year. Applicants must meet the same general standards as those seeking admission to the M.A. program. Applicants must submit: an application for admission; a written statement of purpose; a transcript; and three letters of recommendation, at least two of which should be from members of the Department of Slavic Languages and Literatures faculty.

2. Meet all requirements for both the B.A. and M.A. degrees. Applicants must complete 15 full-time quarters (or the equivalent), or three full-time quarters after completing 180 units, for a total of 225 units. During the senior year they may, with the consent of the instructors, register for as many as two graduate courses. In the final year of study, they must complete at least three graduate-level courses.

For University coterminal degree program rules and University application forms, see http://registrar.stanford.edu/publications/#Coterm.

GRADUATE PROGRAMS
MASTER OF ARTS
University requirements for the M.A. degree are discussed in the “Graduate Degrees” section of this bulletin.

Admission — The requirements for admission to the master’s degree program in Russian are:

1. A B.A. (or its equivalent) from an accredited college or university.
2. A command of the Russian language sufficient to permit the student to do satisfactory graduate work in an area of specialization.
3. A familiarity with Russian literature sufficient to permit the student to perform adequately in courses at the graduate level.

The applicant’s previous academic training in Russian language and literature must normally serve as a tentative indication of competence. Accordingly, the department does not ordinarily consider applications from students who have not had at least three years of college Russian and some undergraduate training in Russian literature of the 19th and 20th centuries.

Before registering for the first quarter’s work in the department, entering graduate students are required to take placement examinations in language and literature. Students who fail to perform satisfactorily on such examinations must register for remedial courses in the areas in which they are deficient. Such remedial courses, normally completed within the first three quarters of residence, carry no credit toward either the M.A. or the Ph.D. degree.

Course Requirements — Candidates for the M.A. who are not also candidates for the Ph.D. should plan course work that ensures adequate preparation for the M.A. final examination at the end of the third quarter of work. Ph.D. candidates should attempt to include as many of the department’s basic course offerings as possible in the first-year program to ensure sufficient time to complete the M.A. thesis during the fifth quarter of registration. In any case, course work should be planned in consultation with the graduate adviser, whose written approval of the overall course load is required.

Candidates for the M.A. must complete a program of 45 units, of which 36 units must be selected from courses given by the department. The other 9 units may, with approval of the candidate’s adviser, be selected from courses in related fields. Of the 36 units in the department, a minimum of 9 may be in language and a minimum of 9 in literature. The remaining 18 units may be distributed in accordance with the needs and interests of the student, and with the advice and approval of the department adviser.

No credit toward the M.A. degree is allowed for first- or second-year courses in non-Slavic languages required for the Ph.D. degree.

The M.A. Thesis — A requirement for candidates for a Ph.D., the M.A. thesis represents a complete article-length research paper (6,900 words) that, in both form and substance, qualifies for submission to English language professional publications in the Slavic field. The M.A. thesis must be submitted to the thesis adviser no later than the fifth quarter and approved no later than the sixth quarter of registration.

Final Examination — Students not enrolled in the Ph.D. program may either submit an M.A. thesis or take a final examination. In the latter case, regardless of the area of specialization, the student must demonstrate in a written examination: (1) command of the phonology, morphology, syntax, and lexicology of contemporary Standard Russian sufficient to teach beginning and intermediate courses at the college level; (2) an ability to
read contemporary Standard Russian sufficient to assist students studying contemporary Russian poetry or literary prose; and (3) sufficient familiarity with Russian literature of either the 19th or 20th century to successfully handle survey courses dealing with a chosen period of specialization.

The examination should be passed at the end of the final quarter of required course work.

MASTER OF ARTS IN TEACHING

The degree of Master of Arts in Teaching is offered jointly by the department and the School of Education. It is intended for candidates with a teaching credential or relevant teaching experience who wish to further strengthen their academic preparation. Requirements for the degree are outlined in the “School of Education” section of this bulletin. The program includes 45 units, of which 25 must be in the teaching field and 12 in education. Specific language requirements are established in consultation with the department.

DOCTOR OF PHILOSOPHY

University requirements for the Ph.D. are discussed in the “Graduate Degrees” section of this bulletin.

Students enrolled in the Ph.D. program in Slavic Languages and Literatures are expected to fulfill the following requirements:

1. **Minor or Related Fields:** during the course of study, students must develop substantial expertise in a field contiguous to the area of specialization. A candidate may elect to present a full minor or, in consultation with the graduate adviser, develop a special program in a related field.
 a) **Related Field:** a student is required to complete a sequence of basic courses (12 units) in a chosen discipline outside the Department of Slavic Languages and Literatures. The choice of patterns is one of the following:
 1) a sequence of three courses in one West European literature, selected in consultation with the adviser, or
 2) three basic courses in comparative literature to be selected in consultation with the graduate adviser and the Department of Comparative Literature.
 b) **Minor:** if the student elects a minor (for example, French, German, Spanish, or Russian history), he or she should take six graduate courses in that department with a minimum of 20 units at the graduate level, according to the minor requirements established by that department. Students considering minors in other departments, such as Asian Languages, English, or Comparative Literature, should consult with the adviser, the Chair of the Department of Slavic Languages and Literatures, and the chair of the minor department. Students who wish to enroll in the Graduate Program in the Humanities should apply there.

2. **Admission to Candidacy:** candidates should read carefully the general regulations governing the degree, as described in the “Graduate Degrees” section of this bulletin. No student is accepted as a candidate until the equivalent of the M.A. degree requirements, including the M.A. thesis described above, are completed. Admission to candidacy is determined early in the sixth quarter of graduate studies. The candidate by that time must have demonstrated commitment to graduate studies by completion of a minimum of 60 quarter units of credit and with a grade point average (GPA) of 3.3 (B+) or better.

3. **Proficiency Test:** administered for all entering graduate students, this test determines whether the student’s knowledge of Russian language and literature falls below the department’s standard. Students who fail to excel in this test are asked to complete appropriate courses in the first year of graduate study.

4. **Course Requirements:** before qualifying for the department oral and written examinations, a Ph.D. candidate is expected to accumulate at least 72 quarter units of credit for courses taken while in graduate school. No less than half of this course work (36 units) must be done in the Department of Slavic Languages and Literatures, including at least 24 units of credit for seminar-level courses. (All entering graduate students are expected to enroll in SLAVLIT 200.) The candidate must submit to the department’s Academic Progress Committee three seminar-level papers completed at the Department of Slavic Languages and Literatures, as well as the M.A. thesis.

5. **Foreign Languages:** a candidate must demonstrate reading knowledge of French or German, plus another language useful for the student’s area of concentration, by passing written examinations.

6. **Examinations:** a candidate must pass the departmental general qualifying examinations. The written part covers:
 a) the history and structure of the Russian language and its relationship to the other Slavic languages. (Students are excused from this portion of the examination if they have completed SLAVLIT 211 and 212 with a grade point average (GPA) of 2.7 (B-) or better.)
 b) the history of Russian literature, including its relationship to the development of other Slavic literatures, or West European literature, or to Russian intellectual history.

The oral portion follows shortly after the successful completion of the written portion. The department oral examination is designed to test the student’s knowledge of the major cultural and literary trends in a period of their choice as well as the student’s ability to participate in a challenging scholarly discussion. It can be used most profitably as an opportunity to do intensive reading in the period of a candidate’s projected dissertation work. Preparation for the oral should begin immediately following the successful completion of the department’s written examination. After consulting with members of the faculty, the student proposes a reading list, which, once approved, serves as the basis for the examination. The exam structure requires that the student make an opening presentation on a topic or set of topics of particular interest or relevance to the period in question. After an open discussion of the presentation, each examiner is given the chance to question the student on other topics related to the reading list.

Following the department examinations, a candidate must pass a University oral examination, which is a defense of a dissertation proposal covering content relevant to the area of study, rationale for the proposed investigation, and strategy to be employed in the research.

Specialization—Candidates in Slavic Languages and Literatures specialize in literature and related media. Candidates may draw up individual programs of study and research in consultation with the graduate adviser. Requirements vary according to the nature of the specialized program requested.

Continuation—Continuation in the Ph.D. program is contingent on: for first-year students, a high quality of performance in course work (decided by department evaluation); for second-year students, an M.A. thesis, which should be completed no later than the end of the second quarter of the second year.

Course Work, Breadth Requirements, and Overall Scheduling—

1. Candidates for the Ph.D. degree are allowed as much freedom as possible in the selection of course work to suit their individual program of study. However, candidates are held responsible for all of the areas covered by the general examinations, regardless of whether they have registered for the department’s offerings in a given field. For this reason, it is strongly recommended that before taking Ph.D. examinations, students complete seminar-level work directly related to the following broad areas:
 a) Russian poetry
 b) the Russian novel
 c) 20th-century Russian literature
 d) 19th-century Russian literature (the Age of Pushkin and after)
 e) 18th-century Russian literature (from the early 1700s to the Age of Pushkin)
 f) Medieval Russian literature
g) a monograph course on a major Russian author
h) theory of literature

Students may not normally register for individual work in a given area until they have covered the basic course offerings in that area. First-year students may register for individual work only under special circumstances and must obtain the written approval of the graduate adviser. Those candidates who are also candidates for the M.A. degree should consult the course requirements for that degree in planning their first year’s work. The M.A. thesis or written examination should be completed by the end of the fifth quarter of graduate study at the latest. The remainder of the second year should be devoted to course work preparing the student for the general qualifying examination and to fulfill the requirements of the minor, if any. Any department’s general qualifying examinations must be taken by the end of the first quarter of the third year of study; they may be taken during the second year if the student and the adviser feel this is appropriate. During the two quarters following the general qualifying examinations, the student should be concerned primarily with preparation for the University oral examination, which should take place no later than the end of the third quarter of the third year. However, students may, if necessary, do limited amounts of course work not directly related to the dissertation proposal. The fourth and fifth years should be devoted to research and writing leading to completion of the Ph.D. dissertation.

2. Students possessing the equivalent of the Stanford M.A. are normally expected to adhere to the schedule for the second, third, and fourth years of work outlined under item 1 above.

3. Students in the Ph.D. program are required to do four quarters of teaching in partial fulfillment of the requirements of the Ph.D. degree: three quarters of first-year Russian, and one quarter of literature as a teaching assistant to a faculty member (usually for one of the survey courses in translation: SLAVGEN 145, 146, 147, 148). All students are required to take a one quarter TA training course, APPLING 201, during their first year.

Non-Slavic Language Requirements — Credit toward either the M.A. or the Ph.D. degrees is not given for first- or second-year courses in non-Slavic languages. It is assumed that, on entering the program, the student has a reading knowledge of either German or French. The reading examination in German or French must be passed by the end of the first year of study. The reading examination in the second language of choice must be passed by the end of the second year of study. Both language examinations must be passed before the candidate takes the University oral examination, that is, before the end of the third year.

JOINT PH.D. IN SLAVIC LANGUAGES AND LITERATURES AND HUMANITIES

The Department of Slavic Languages and Literatures participates in the Graduate Program in Humanities leading to the joint Ph.D. degree in Slavic Languages and Literatures and Humanities. For a description of that program, see the “Interdisciplinary Studies in Humanities” section of this bulletin.

COURSES

WIM indicates that the course satisfies the Writing in the Major requirements. (AU) indicates that the course is subject to the University activity unit limitation (8 unit maximum).

Students interested in literature and literary studies should also consult course listings in the departments of Asian Languages, Classics, Comparative Literature, English, French and Italian, German Studies, and Spanish and Portuguese, in the Program in Modern Thought and Literature, and in the Division of Literatures, Cultures, and Languages.

RUSSIAN LANGUAGE COURSES

The following courses in Russian language instruction represent a typical sequence for three years of Russian language study. Majors and prospective majors should consult the requirements for a B.A. in Russian above. For descriptions, other information, and additional courses including special emphasis, intensive, and summer courses, and for other Slavic languages under the SPECLANG subject code, see the “Language Center” section of this bulletin.

SLAVLANG 1,2,3. First-Year Russian
5 units, 1: Aut, 2: Win, 3: Spr (Staff)

SLAVLANG 51,52,53. Second-Year Russian
5 units, 51: Aut, 52: Win, 53: Spr (Staff)

SLAVLANG 111,112,113. Third-Year Russian
4 units, 111: Aut, 112: Win, 113: Spr (Greenhill)

INTRODUCTION TO THE HUMANITIES (IHUM)

The following Introduction to the Humanities courses are taught by Slavic Languages and Literatures department faculty members. IHUM courses are typically available only to freshmen seeking to fulfill IHUM requirements; see the “Introduction to the Humanities” section of this bulletin for further information. Prospective majors in Slavic Languages and Literatures are advised to consider satisfying their IHUM-2,3 requirements by registering for the following courses.

IHUM 28A. B. Poetic Justice: Order and Imagination in Russia — Two quarter sequence. The difference between justice and law in 19th- and 20th-century Russian writers. Focus is on the notion of poetic justice: the artistic representation of order whether divine, natural, or human. Goal is to heighten awareness of familiar narratives, mythologies, ideas, and images, and to convey a sense of a long-established national culture with its own dynamic vision. GER:IHUM-2,3
IHUM 28B. 5 units, Win (Safran)
IHUM 28B. 5 units, Spr (Freidin)

GENERAL

This curriculum covers topics of general interest. Courses are open to all students and have no prerequisites. Some courses may be taken for graduate credit. Additional work in the original language may be arranged with individual instructors. The courses:

1. introduce students to the major authors and texts in the Russian literary and cultural tradition,
2. offer broad conceptual frameworks for understanding the material covered, and
3. demonstrate the dynamic interaction between cultural texts and a variety of contexts (literary, intellectual, and sociopolitical).

While these goals are pursued to some extent in all courses, the curriculum may be classified according to the following contextual emphasis to assist students in choosing courses according to their interests.

Literary Movements and Genres: SLAVGEN 145, 146, 147, 155, 156
Literature and Intellectual History: SLAVGEN 151, 190
Literature and Social History: SLAVGEN 141, 149
Media, Gender, Ethnicity: SLAVGEN 148, 152, 154, 161, 162, 163, 165, 166, 167, 168, 221

SLAVGEN 13N. Russia, Russian, Russians—Stanford Introductory Seminar. Preference to freshmen. The political and cultural history of Russia and the Russians: prominent persons, prominent events, and how they shape current attitudes and society. Short works by Russian authors. GER:DB-Hum
3-4 units, Win (Schupbach)

SLAVGEN 77Q. Russia’s Weird Classic: Nikolai Gogol—Stanford Introductory Seminar. Preference to sophomores. The work and life of Nikolai Gogol, the eccentric founder of Fantastic Realism. The relationship between romanticism and realism in Russian literature, and between popular Ukrainian culture and high Russian and W. European traditions in Gogol’s oeuvre. The impact of his work on 20th-century modernist literature, music, and art, including Nabokov, literature of the absurd, Shostakovich, Meyerhold, and Chagall. GER:DB-Hum
3 units, Aut (Fleishman)
SLAVGEN 122/222. Yiddish Literature — The humor, drama, anger, and artistry of modern of E. European and American Yiddish writers including Sholem Aleichem, I. L. Peretz, Isaac Bashevis Singer, Chaim Grade, and Yankev Glatshtyen. In English. GER:DB-Hum, EC-GlobalCom
3-4 units, Spr (Safran) not given 2005-06

SLAVGEN 123/223. The Yiddish Novel — How Yiddish novels reveal changes in modern Jewish life and literature in Europe and the U.S. The influences of folklore, traditional Jewish culture, and European literature. Works by Isaac and Joshua Singer, Joseph Opatoshu, Der Nister, Chaya Rosenfarb, Sholem Asch, and David Bergelson. Readings in English; optional sessions for close readings in Yiddish. GER:DB-Hum
3-4 units, Spr (Glaser)

SLAVGEN 133/233. Poles and Others: Literature and History in Modern Poland — The physical and cultural territories of the former Polish-Lithuanian Commonwealth have long been objects of contest. The 20th century witnessed two or three rebirths of Poland and one or two deaths; a belated modernization of Polish society; the final inclusion of Polish-speaking peasants and burghers in a Polish national identity; and the exclusion of Jews, Germans, Lithuanians, Belarusians, Ukrainians, and others from the state and participation in a partially shared culture. GER:DB-Hum
3-4 units, not given 2005-06

SLAVGEN 135/235. The Literatures of Ukraine: The Modern Period — (Same as COMPLIT 148S/248S.) Borderlands, national identity, geography, and narrative uses of landscape and travel within Ukraine. Contemporary literature in and about Ukraine. Readings include Ukrainian writers such as Kotliarevsky and Ukrainka, Russian writers such as Gogol and Bulgakov, and Polish and Yiddish writers. Readings in English; optional reading groups in original languages.
3-4 units, Aut (Glaser)

SLAVGEN 141/241. Staging the Revolution: Russian Theater and Society, 1917-1937 — Between 1917 and 1937, artistic experimentation in the Russian theater coincided with political and social changes in Russian society. Modernist artists interpreted the revolution as an artistic possibility to demolish conventions of representation. Mass festivals, circus, and street performances replaced the old theater. In the time of the Great Terror and staged trials, theater and opera remained among the leading arts, but state patronage caused a major reorientation of artistic practices. Readings include plays by Mayakovskiy, Bulgakov, Babel, Tretiakow, and Erdman. Readings in English. GER:DB-Hum
4 units (Staff) not given 2005-06

SLAVGEN 145/245. The Age of Experiment, 1820-50 — (Same as COMPLIT 145S/245S.) The Golden Age of Russian literature as a period of one-of-a-kind experiments. Pushkin, Lermontov, and Gogol in the context of Russian culture and contemporary European trends. GER:DB-Hum, EC-GlobalCom
3-4 units, Aut (Fleishman)

SLAVGEN 146/246. The Age of Transgression: The Great Russian Novel — Tolstoy’s War and Peace, Dostoevsky’s Demons, and Turgenev’s Fathers and Sons, written in decade following the emancipation of the serfs and the great legal reforms, ask how much one person can change history for good or ill. Chekhov’s Ward Number Six as an example of the deformation and adaptation of this tradition at the end of the age of realism. Historical and philosophical context and literary-critical techniques. GER:DB-Hum, EC-GlobalCom, WIM
4 units, Win (Safran)

SLAVGEN 147/247. The Age of War and Revolution: A Survey of Russian Literature and Culture, 1900-1950s — First of two-part sequence. Russian modernism and the avant garde. The Russian Revolution, the era of the NEP, Soviet civilization, and the literature of opposition following Stalin’s death. All texts in English translation. GER:DB-Hum, EC-GlobalCom
4 units, Spr (Graham)

SLAVGEN 148/248. The Age of Dissent: A Survey of Russian Literature and Culture, 1953 to the Present — From the death of Stalin to post-communist Russia. Literature of the thaw and de-Stalinization, official and unofficial literature of dissent, samizdat, village and urban prose, literature of the new emigration, late Soviet underground, sots-art, perestroika, and post-communist literature and culture. Texts in English translation. For graduate credit for research paper, register for SLAVLIT 399. GER:DB-Hum, EC-GlobalCom
2-4 units (Freidin) not given 2005-06

SLAVGEN 151/251. Dostoevsky and His Times — (Same as COMPLIT 118/218.) Open to juniors, seniors, and graduate students. Major works in English translation with reference to related developments in Russian and European culture, literary criticism, and intellectual history. GER:DB-Hum
4 units, Win (Frank)

SLAVGEN 155/255. Anton Chekhov and the Turn of the Century — Chekhov’s art in its Russian literary, historical, philosophical, and political contexts. Short stories and major plays; supplemental readings for graduate students from Chekhov’s letters and works by his friends and contemporaries, such as Leskov, Tolstoy, Korolenko, and Gorky. GER:DB-Hum
4 units, Spr (Safran)

SLAVGEN 156/256. Nabokov and Modernism — (Same as COMPLIT 156D/256D.) Nabokov’s stories, novels, and a film script in the context of: modernist writers such as Bergson, Proust, and Joyce; media including painting, film, and photography; and philosophical thought. Critical approaches that elude the author’s control. Readings include Bend Sinister, Lolita, Pale Fire, Speak Memory, and Ada. GER:DB-Hum
3-5 units (Greenleaf) not given 2005-06

SLAVGEN 161/261. Poetess: The Grammar of the Self when the Poet is a Woman — (Same as COMPLIT 121/221.) Seminar. Lyric works by women poets from the U.S., Russia, E. Europe, and Germany (Dickinson, Moore, Brooks and the Harlem Renaissance, Bishop, Akhmatova, Tsvetayeva, Sachs, Plath, Cisneros, Angelou, Graham, Howe, and Szyborska.) Theoretical and practical issues: breaking and entering the male preserve of high poetry; the interaction of written and oral, political, and performative modes of expression; representations of the feminine body and experience in the visual arts; and the development of a female lineage and modes of poetic legitimation, association, and inspiration. GER:DB-Hum, EC-Gender
4 units (Greenleaf) not given 2005-06

SLAVGEN 162/262. Gender Images in Film — Film creates permanent new images of femininity. One of its conscious prerequisites is the notion of social stereotypes. The development of enduring images of the film heroine, 1914-90, through a comparison of the Russian, American, and W. European cinema, and analytical approaches to them from feminist film theory. GER:EC-Gender
3 units (Staff) not given 2005-06

SLAVGEN 163/263. Gender in Postwar Russian Culture — Issues of femininity and masculinity in Russian literature, film, and popular culture from the 40s to the present. Readings include fiction, memoirs, poetry, drama, and theoretical works in gender studies.
3-4 units, Aut (Graham)

3-4 units (Fleishman) not given 2005-06
SLAVGEN 169/269. Folklore: Theory and Practice — Genres, scholarship, and collection methods. Differences between and mutual influence of folklore and media such as literature and film. The folk origins of contemporary archetypes, narratives, and beliefs. Primary sources are Russian and Slavic folklore; comparative theoretical readings.
3–4 units (Graham) not given 2005-06

SLAVGEN 190/290. Tolstoy’s Anna Karenina and the Social Thought of Its Time — (Same as HUMNTIES 197F). Preference to Humanities honors students. Historical and cultural context, contesting major currents of social thought in Tolstoy’s time including Marx on class and history, Mill on sex equality, Nietzsche, Dostoevsky, and Shestov on morality and power, Freud on desire and the unconscious, Durkheim on the nature of religion, and Weber on legitimation and authority. Limited enrollment. See http://www.stanford.edu/~gfreidin/courses/AK/. GER:DB-Hum
5 units (Freidin) alternate years, given 2006-07

SLAVGEN 197B. Camera as Witness: International Human Rights Documentaries — (Same as HUMNTIES 197B, INTNLREL 141B). Rarely screened documentary films, focusing on global problems, human rights issues, and aesthetic challenges in making documentaries on international topics. Meetings with filmmakers. GER: DB-Hum
5 units, Aut (Bojic)

SLAVGEN 197C. Camera as Witness: International Human Rights Documentaries — (Same as HUMNTIES 197C, INTNLREL 141C.) Challenges facing film makers documenting the struggle for human rights including communication of complex situations to an international audience, interpreting foreign cultures and politics, and filmmaker roles as artists, activists, and journalists. Meetings with filmmakers. GER: DB-Hum
5 units, Spr (Bojic)

SLAVGEN 313. Visuality and Literacy Workshop — Relationships among visual arts, theater, and literature in the culture of modernity.
1–2 units (Staff) not given 2005-06

ADVANCED UNDERGRADUATE AND GRADUATE

4 units (Fleishman) not given 2005-06

4 units (Fleishman) not given 2005-06

SLAVLIT 183/283. Readings in the Russian Press — For students at the fifth-year Russian level. Advanced language training based on Russian newspapers and magazines. Discussion of issues regarding the Russian media and reading articles of a typical Russian press format.
4 units (Staff) not given 2005-06

SLAVLIT 184/284. History of the Russian Literary Language — Major structural and semantic changes from the 10th to the 19th centuries. Recommended: 211, 212
3–4 units, Win (Schapbach)

3–4 units (Fleishman) not given 2005-06

SLAVLIT 187/287. Russian Poetry of the 18th and 19th Centuries — Required of all majors in Russian language and literature; open to undergraduates who have completed three years of Russian, and to graduate students. The major poetic styles of the 19th century as they intersected with late classicism, the romantic movement, and the realist and post-realist traditions. Representative poems by Lomonosov, Derzhavin, Zhukovskii, Pushkin, Baratynskii, Lermontov, Tiutchev, Nekrasov, Fet, Soloviev. Lectures/discussions in Russian.
3 units (Fleishman) not given 2005-06

3–4 units, Aut (Fleishman)

SLAVLIT 189/289. Literature from Old Rus’ and Medieval Russia — From earliest times through the 17th century. The development of literary and historical genres, and links among literature and art, architecture, and religious culture. Readings in English; graduate students read in original.
4 units (Zhitov) not given 2005-06

SLAVLIT 194A/294A. Russia and The Other: A Cultural Approach — Seminar for students returning from Moscow; required of Slavic majors working on honors thesis; recommended for Slavic majors and minors. Russian cultural identity and its emergence in literature and art dealing with the other (W. Europe; the Orient including Central Asia, Siberia and the Caucasus, and marginal groups including Jews, Gypsies, and American students of Russian). Works of literature and other cultural texts; introduction to literary analysis, cultural and social theory. Class presentation.
4–5 units (Safran, Freidin) not given 2005-06

SLAVLIT 194B/294B. Russia and The Other: A Cultural Approach — For students who choose to develop their ideas further by doing additional research and writing a scholarly paper, possibly an honors thesis in Slavic literature or related field. Class presentation and research paper. Prerequisite: 194A.
4–5 units (Freidin, Safran) not given 2005-06

SLAVLIT 199. Individual Work for Undergraduates — Open to Russian majors or students working on special projects. May be repeated for credit. Prerequisite: consent of instructor.
1–5 units, Aut, Win, Spr (Staff)

SLAVLIT 200. Proseminar in Literary Theory and Study of Russian Literature — Required for graduate students and honors undergraduates in Slavic; first-year Slavic graduate students must enroll during their first quarter. Introduction to graduate study in Russian literature and culture: profession, discipline, and approaches to the study of literature and culture. Theoretical readings, practical exercises in the analysis of verse and narrative, and recent monographs on Russian literature.
4 units, Aut (Freidin)

SLAVLIT 200A. Introduction to Library and Archival Research in Slavic Studies — Required of first-year Slavic graduate students. Major Western and Slavic language sources and search methodologies pertaining to Russian and E. European area studies. Tailored to students’ research interests.
2–3 units, Aut (Fleishman)

SLAVLIT 200B. Proseminar in Russian Literary Theory — Corequisite: 305.
1 unit (Safran) not given 2005-06

SLAVLIT 203. Academic Russian — How to read and analyze secondary sources, formulate arguments, and present intellectual work in Russian.
In Russian. Prerequisite: four years of Russian or equivalent.
3 units, Aut (Golburt)

SLAVLIT 211. Introduction to Old Church Slavic — The first written language of the Slavic peoples. Grammar. Primarily a skills course, with attention to the historical context of Old Church Slavic.
3 units (Timberlake) not given 2005-06

SLAVLIT 212. Old Russian and Old Church Slavic — Continuation of 211. Readings in additional canonical Old Church Slavic texts, fol-
lowing the Church Slavic tradition as it develops in early Rus (Kiev, Novgorod). Selections from the Primary Chronicle, Boris and Gleb, The Life of Theodosius. The general issues of writing and the reception of Byzantine culture in early Russia.

3 units (Timberlake) not given 2005-06

SLAVLIT 213. The Literary Dialogue of Pushkin and Gogol in the Formative Context of the 1830s—(Same as COMPLIT 213.) Pushkin and Gogol’s poetic, fictional, and journalistic works of the 1830s as an implicit dialogue about the emerging artistic and national directions of Russian literature, the Petersburg text, journalism, and theater. Paired Pushkin and Gogol texts read against the background of Belinsky, Polegin, Senkovsky, Shakhostokoi, St. Beuve, Jules Janin, Balzac, and L. Ginzburg. Prerequisite: Russian. GER:DB-Hum

2-4 units (Greenleaf) not given 2005-06

SLAVLIT 225. Readings in Russian Realism—Open to graduate students and advanced undergraduates. Russian realist and naturalist prose emerged in a historical context that fostered specific ideas about the function and form of the literary word. Readings from Turgenev, Goncharov, Leskov, Saltykov-Shchedrin, Dostoevsky, Garshin, Tolstoy, Chekhov, Gorky, Bunin. Discussions in English.

4 units (Safran) not given 2005-06

SLAVLIT 227. Boris Pasternak and the Poetry of the Russian Avant Garde—Pasternak’s works within a cultural context to identify and analyze characteristic features of the Russian avant garde poetics. Readings in Russian.

3-4 units (Staff) not given 2005-06

SLAVLIT 270. Pushkin—Major poems and prose with detailed examination of his cultural milieu. Emphasis is on changes in the understanding of literary concepts relevant to this period of Russian literature (poetic genres, the opposition between poetry and prose, romanticism).

2-3 units (Staff) not given 2005-06

SLAVLIT 270C. Pushkin and The Moderns—(Same as COMPLIT 270.) Graduate seminar. Pushkin’s major poetic texts and a study of the Pushkin function in specific works of 20th-century Russian literature. Prerequisite: knowledge of Russian.

3-5 units (Greenleaf) not given 2005-06

SLAVLIT 271. Poema: Russia’s Long Narrative Poem—Russian long narrative poems of the 19th and 20th centuries in literary and historical context.

3-4 units, Spr (Fleishman)

2-4 units, Win (Freidin)

SLAVLIT 299. Individual Work for Graduate Students—For graduate students in Slavic working on theses or engaged in special work. Prerequisite: written consent of instructor.

1-12 units, Aut, Win, Spr, Sum (Staff)

SLAVLIT 305. Russian Critical Traditions—The Russian intelligentsia invested its literature with esthetic and ethical value, and developed a critical apparatuses that have inspired Western approaches to text. Readings in theorists from the 19th-20th centuries including positivists and formalists. Possible topics: 19th-century radicals, futurist manifestoes, formalists, Freudian and Marxist models, Bakhtin, and the Tartu semioticians. Readings in English. Prerequisite: some familiarity with the Russian canon.

3-4 units (Safran) not given 2005-06

SLAVLIT 310. Civilizing Process: Paradigms of Society and Culture in Modern Russian Literature and Film—Texts representing theoretical models of society and culture in confrontation with works of Russian fiction and film. Emphasis is on Norbert Elias’s civilizing process and related theories. Topics: body and desire (Freud, Bakhtin); manners and civilizing process (Elias, Cuddihy, Lotman); symbolic forms, ritual, and systems (Geertz, Zorin); identities and practices (de Certeau, Bourdieu); subcultures (Hebdige). Authors include Mayakovsky, Babel, Mandelstam, Bulgakov, Platonov, Zoshchenko, Erofeev, Pelevin, Trifonov, and Petrushevskaya; film makers: Mamin and Rogozhkin. Recommended: knowledge of Russian.

2-4 units (Freidin) not given 2005-06

SLAVLIT 369. Introduction to Graduate Studies: Criticism as Profession—(Enroll in COMPLIT 369, GERLIT 369.)

5 units, Aut (Berman)

SLAVLIT 399. Advanced Research Seminar in Russian Literature—Follow-up to 200- or 300-series seminars, as needed. May be repeated for credit.

2-4 units, Aut, Win, Spr, Sum (Staff)

OVERSEAS STUDIES

Courses approved for the Slavic Languages and Literatures major and taught overseas can be found in the “Overseas Studies” section of this bulletin, or in the Overseas Studies office, 126 Sweet Hall.

MOSCOW

SLAVGEN 112. The Master and Margarite and Its Moscow Setting

3-4 units, Aut (Schupbach)
SOCIOLOGY

Chair: to be announced
Professors: Lawrence Bobo, Karen Cook, Paula England, Mark Granovetter, David Grusky, Michael T. Hannan, Douglas McAdam, Susan Olzak, Cecilia Ridgeway, C. Matthew Snipp, Nancy B. Tuma, Andrew Walder
Associate Professor: Gi-Wook Shin
Assistant Professors: Henning Hillmann, Noah Mark, Monica McDermott, Michael Rosenfeld, Rebecca L. Sandefur
Associate Professor (Teaching): Donald Barr
Lecturers: Cynthia Brandt, Robin Cooper
Courtesy Professors: Anthony Bryk, Glenn Carroll, Larry Diamond, Joanne Martin, Clifford J. Nass, Walter Powell, Francisco Ramirez
Courtesy Associate Professors: Michele Landis Dauber, Sean Reardon
Consulting Professor: Daniel McFarland
Consulting Associate Professor: Ruth Cronkite
Visiting Associate Professors: Eva-Maria Meyersson Milgrom, Patricia Thornton
Department Offices: Building 120, Room 160
Mail Code: 94305-2047
Phone: (650) 725-3956
Web Site: http://www.stanford.edu/dept/soc/

Courses given in Sociology have the subject code SOC. For a complete list of subject codes, see Appendix.

Sociology is concerned with the full spectrum of social behavior (of individuals, small groups, large organizations, communities, institutions, and societies) and provides a strong intellectual background for students considering careers in the professions or business. Students may pursue degrees in sociology at the bachelor’s, master’s (crotinal), or doctoral levels.

UNDERGRADUATE PROGRAMS

Sociology offers two programs leading to the B.A. degree: the general sociology major and the specialized major. Both are designed around a core curriculum, the intent of which is to ensure adequate coverage of basic sociological knowledge and to provide enough flexibility for tailoring the degree program to fit individual needs and interests. The general major consists of the core curriculum plus a selection of additional courses in one area of sociology. Areas of concentration include Organizations, Business, and the Economy; Race and Ethnic Relations; Social Movements, Comparative Politics, and Social Change; Social Psychology and Interpersonal Processes; and Social Stratification and Inequality. If a specialized major is completed, the student’s transcript will reflect his or her specialized field of study. These programs and the requirements for each are described below.

CORE CURRICULUM AND GENERAL SOCIOLOGY MAJOR

To graduate with a B.A. in Sociology, students must complete a minimum of 60 units of course work in the major. All units applied to the major must be taken for a letter grade (except for SOC 190-193) and a grade point average (GPA) of 2.0 (C) or better must be achieved. Related course work from other departments may fulfill part of this requirement, but such work must be approved in advance by a department advisor and must not exceed 15 units. All degree candidates must fulfill the following core requirements:

1. Introduction to Sociology (1). It is recommended that students take this course early in their program.
2. Methods for Sociological Research (180), or its equivalent.
3. An introductory course in statistics such as SOC 181B, STATS 60, PSYCH 60, or equivalent.
4. Classics of Modern Social Theory (170), or an equivalent course in social theory.
5. At least three foundation courses, each from a different area of concentration.
6. Senior Seminar: Honors (200H) or Senior Seminar for Majors (200), to be taken during the senior year. These courses fulfill the Writing in the Major (WIM) requirement.

To complete the general Sociology major, students must also complete 20 additional units of work.

SPECIALIZED SOCIOLOGY MAJOR

The department recognizes that some students may wish to engage in more in-depth study than that provided by the major in general Sociology. The specialized Sociology major permits students to pursue a more focused program in one of these five field designations: Organizations, Business, and the Economy; Race and Ethnic Relations; Social Movements, Comparative Politics, and Social Change; Social Psychology and Interpersonal Processes; and Social Stratification and Inequality. To complete the requirements for the B.A. degree in Sociology with a field designation, a student must complete all core curriculum requirements and complete 20 units of course work in the selected field of concentration.

CONCENTRATION AREAS

Each area identifies a specialized area of inquiry, a set of skills within sociology, and basic preparation for a variety of careers. A brief description of each area follows.

Organizations, Business, and the Economy—Focus is on the arrangements which societies construct for the provision of material goods or services. A formal organization which provides goods or services for profit and sells them through a market is called a business, and the economic system is capitalism. Social needs are also met through government and not-for-profit organizations, such as garden clubs, hospitals, prisons, and the Red Cross. Some private and social needs are met outside of organizations, such as health care provided by family members and exchange of favors among friends. Courses stress the factors that determine whether needs that people define are met through markets or by non-market allocation, through organizations or by other means. They also investigate the environmental and technical factors that shape organization structure, the determinants of how efficiently organizations operate, and the interpersonal processes that shape individual behavior within organizations. Careers related to this area include management and administration in business or public settings, management consulting and analysis, and legal studies related to corporations, organizations, and business.

Race and Ethnic Relations—Focus is on issues surrounding the emergence, persistence, and dynamics of conflict and cooperation among race and ethnic groups in the United States and elsewhere. Course topics include racial identity, sources of prejudice and hostility, emergence of minority movements, indigenous peoples’ movements, ethnic genocide, ethnic collective violence, and cooperation among groups.

Social Movements, Comparative Politics, and Social Change—Focus is on the emergence, reproduction, and change of political systems and institutions, especially on why and how different political systems and social movements appear in different times and places, and how differences in political regimes and economic systems influence attempts to change these systems. The origins and significance of national and transnational social movements, transition to democracy, including revolution, nationalism, and other forms of collective action, in creating and sustaining these changes analyzed across countries and over time. Careers that are relevant to this area include law, public policy, government service, nonprofit and international nongovernmental organizations, business online and media.
organizations (especially those with international interests), consulting, and managerial jobs.

Social Psychology and Interpersonal Processes—Focus is on the social organization of individual identity, beliefs, and behavior, and upon social structures and processes which emerge in and define interpersonal interactions. Processes studied include social acceptance and competition for prestige and status, the generation of power differences, the development of intimacy bonds, the formation of expectation states which govern performance in task oriented groups, and social pressures to constrain deviance. Foundation courses emphasize the effect of social processes on individual behavior and the analysis of group processes. This area provides training for careers with a significant interpersonal component, including advertising and marketing, business, education, law, management, medicine and health, or social work.

Social Stratification and Inequality—Focus is on forms of social inequality, including areas such as: the shape and nature of social inequalities; competition for power; allocation of privilege; production and reproduction of social cleavages; and consequences of class, race, and gender for outcomes such as attitudes, political behavior, and lifestyles. Many courses emphasize changes in the structure of social inequalities over time, and the processes which produce similarities or differences in stratification across nations. Topics include educational inequality, employment history, gender differences, income distributions, poverty, race, and ethnic relations, social mobility, and status attainment. Careers related to this field include administration, advertising, education, foreign service, journalism, industrial relations, law, management consulting, market research, public policy, and social service.

CONCENTRATION AREA COURSES

Many of the department courses can be categorized as primarily oriented to one of the five areas of concentration; a few courses are relevant to more than one area. Within each area of concentration, one or more undergraduate foundations courses are identified which provide a general introduction to the area or some portion of it. Courses, classified by area, are as follows:

1. Organizations, Business, and the Economy
 Foundation courses: 114 or 160
 Other courses: 110, 115, 130, 161-169, 260-268
2. Race and Ethnic Relations
 Foundation courses: 145 or 148
 Other courses: 139, 141A, 143, 144, 146, 147
3. Social Movements, Comparative Politics, and Social Change
 Foundation courses: 110 or 118 or 130
4. Social Psychology and Interpersonal Processes
 Foundation courses: 120 or 121
 Other courses: 125-128, 132, 142, 150, 220-227, 242
5. Social Stratification and Inequality
 Foundation course: 140
 Other courses: 132, 134, 139, 141, 141A-149, 150, 241, 241A-249

MINORS

The minor in Sociology is intended to familiarize students with the basic concepts and methods of the discipline. In addition to ensuring considerable breadth of exposure to the fundamental issues and approaches of the field of sociology, students are encouraged to obtain some depth of exposure to one of the specialized areas of study.

The requirements for a minor in sociology are as follows:

<table>
<thead>
<tr>
<th>Course No. and Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOC 1. Introduction to Sociology</td>
<td>5</td>
</tr>
<tr>
<td>SOC 180. Methods for Sociological Research</td>
<td>5</td>
</tr>
<tr>
<td>Two foundation courses, one each from two of the field five concentration areas (see above)</td>
<td>10</td>
</tr>
<tr>
<td>Additional course work in the department, preferably in the areas of concentration associated with the foundation courses taken (consult listing of courses for each area described elsewhere in the Stanford Bulletin)</td>
<td>15</td>
</tr>
<tr>
<td>Total course work required</td>
<td>35</td>
</tr>
</tbody>
</table>

All courses qualifying for the minor must be taken for a letter grade, and a grade point average (GPA) of 2.0 (C) or better must be achieved.

HONORS PROGRAM

Students desiring to undertake an independent scholarly project under the direction of a faculty member are encouraged to apply for admission to the department’s honors program. To enter the program, the student must be accepted by a faculty member of the department who agrees to advise on the research and writing of the essay. It is possible in some cases for students to work with faculty advisers in other departments, but such arrangements must be approved by the chair of the Undergraduate Studies Committee. Admission to the program requires a grade point average (GPA) of 3.5 or higher in courses taken within the major, and an overall GPA of 3.3 (B+) or higher in all undergraduate course work.

Work on the project can begin earlier, but ordinarily is initiated in connection with the course requirements of SOC 200H, Honors Senior Seminar, or SOC 200, Senior Seminar. Students are encouraged to begin designing their honors project in connection with this seminar, in consultation with the seminar leader and a faculty member who is willing to serve as sponsor for the honors project. If admitted to the program, the work can then be completed during Winter and Spring Quarters.

To formally enter the program, a student must complete an application form available from the department office. The form requires the endorsement of the faculty sponsor and is to be accompanied by a brief description of the project to be undertaken and a copy of the student’s undergraduate transcript. Prospective candidates must submit the copy of the completed application to the chair of the Undergraduate Studies Committee no later than the end of the third quarter before graduation (typically Autumn Quarter of the senior year).

Honors students may earn up to 12 units credit for work leading to completion of the required honors thesis (excluding units associated with the Senior Seminar). To be eligible for an honors degree, a grade of ‘A’ or better must be earned on the honors thesis. If an ‘A’ is not earned, the thesis credit counts toward meeting the standard major requirements.

Successful completion of honors in Sociology requires (1) completion of all requirements for the major; and (2) completion of a thesis of honors quality (a grade of ‘A’ or higher). The thesis is due on or before the beginning of the End-Quarter period in the student’s final quarter before graduating. If the thesis has been sponsored by a faculty member outside the department, it must be submitted to both that sponsor and to the chair of the Undergraduate Studies Committee, who appoints a departmental reader to evaluate the paper. Both the sponsor and the reader must agree that the paper merits honors. In every case, two copies of the final paper must be submitted. One is retained by the department and becomes a part of the department’s permanent collection.

COTERMINAL BACHELOR’S AND MASTER’S PROGRAM

Stanford undergraduate students who wish additional training in sociology (whatever their undergraduate major), and who have a good academic record (a GPA of at least 3.5 in previous undergraduate work is required), may apply to the coterminal master’s program as described in the “Undergraduate Degrees” section of this bulletin.

To apply for admission to the coterminal program, students should submit the coterminal application and the following: (1) a statement of purpose providing the rationale for the proposed program of study, (2) a proposed program that specifies at least 45 units of course work relevant to the degree program and at least 36 units in Sociology, (3) a current undergraduate transcript, and (4) two letters of recommendation from Stanford faculty familiar with the student’s academic work.

All 45 course units to be counted toward the graduate degree must be at or above the 100 level; at least 18 course units must be above the 200 level. Because the acquisition of research skills is an important component of graduate training in the social sciences, it is recommended that coterminal students take one or more research methodology courses, for example, SOC 280 or 281B. All units applied to the coterminal master’s...
degree must be taken for a grade and an overall grade point average (GPA) of 3.0 (B) or better is required.

Most coterminal students propose programs that concentrate on one of the five areas of concentration offered by the department: Organizations, Business, and the Economy; Race and Ethnic Relations; Social Movements, Comparative Politics, and Social Change; Social Psychology and Interpersonal Relations; and Social Stratification and Inequality. This approach helps to ensure program coherence.

For University coterminal degree program rules and University application forms, see http://registrar.stanford.edu/publications/#Coterm.

GRADUATE PROGRAMS

University requirements for the M.A. and Ph.D. degree are described in the “Graduate Degrees” section of the bulletin.

Admission — Each applicant must submit results from the general Graduate Record Examination (GRE). Foreign students must take the TOEFL exam (a minimum score of 250 on the computer-based test or 600 on the paper-based test is required). Applicants must also submit a personal statement, writing sample, three letters of recommendation, and transcripts. For more information, see http://gradadmissions.stanford.edu.

MASTER OF ARTS

University requirements for the master’s degree are described in the “Graduate Degrees” section of this bulletin. The department does not admit students who are candidates solely for the M.A. in Sociology. The M.A. degree is available to Ph.D. candidates in Sociology or from other departments. In this instance, the usual admission requirements are waived and course requirements are determined in consultation with a Sociology adviser. Students must complete a minimum of 45 units with a grade point average (GPA) of 3.0 (B) or better. All 45 units must be taken in courses taught by Sociology faculty and must be taken for a grade whenever possible. Research and directed reading courses are acceptable, but must be approved in advance. All course work must be at the 100 level or above; 18 units must be above the 200 level. Interested students should contact the department for additional information and advance approval of their programs.

DOCTOR OF PHILOSOPHY

The department admits only those students who appear to have the aptitude and qualities to complete the Ph.D. program successfully. The curriculum and degree requirements are designed to provide students with the necessary knowledge and skills to become proficient as both scholars and teachers. The courses and requirements also provide faculty with essential information on the progress of each student and on areas of difficulty or deficiency requiring attention and improvement. Doctoral students in the department must take all required courses for a grade and are expected to earn a grade of B+ or better in each course. Any grade of B or below is considered to be less than satisfactory.

Students must complete the following department requirements for the Ph.D. degree in Sociology:

1. In order to receive a thorough introduction and orientation to the field of sociology, the department, and the faculty, each student must enroll in SOC 305, Graduate Proseminar. The proseminar is a one-quarter course given during the Autumn Quarter of the first year of residence. One unit of credit is given for this course; grading is on a satisfactory/no credit basis. The proseminar leader also serves as the academic adviser for all first-year students. After the first year, students are allowed to select their academic adviser from among members of the department’s faculty.

2. As partial preparation for becoming an accomplished researcher, each student must complete three quarters of research experience, working under the supervision of one or more faculty members (including regular, emeritus, and affiliated faculty). The experience may involve paid work as a Research Assistant (RA), or unpaid work as a research apprentice, carried out to obtain research experience. With the approval of the chair of Graduate Studies, research experience may be acquired by involvement in research projects outside the department, for example, the American Institute for Research or the Veteran’s Administration Hospital. It is recommended that students complete their research requirements early in their graduate program; the requirement must be completed by the end of the fourth year of residency.

3. As partial preparation for becoming an accomplished teacher, each student must complete three quarters of teaching apprenticeship in departmental courses, or in other courses by approval. Work as either a teaching assistant (TA) under the supervision of a faculty member or as a teaching fellow (TF) fulfills this requirement. All students are required to take a one-quarter TA training course offered by the department during their first year. In addition, students are expected to take advantage of department and University teacher training programs during their first few years of residence. Students for whom English is a second language are expected to acquire sufficient facility in English to be an effective teacher.

4. In order to demonstrate command of a range of sociological literatures, students must take four broad survey courses. Each year the department specifies which courses meet this requirement, and will undertake to ensure that an adequate selection of such courses is offered. A list of courses that generally fulfill this requirement is listed in the requirements section below. Students should consult with their adviser to ensure that the combination of courses selected to meet this requirement exhibits sufficient breadth. This requirement is normally completed by the end of the second year of residency and must be met by the end of the third year of residency.

5. In order to obtain a thorough grounding in sociological theory, each student must take two courses. One course should be in classical sociological theory (SOC 370A or 370B or equivalent), and the second course should be on the development of theory and research design (SOC 372 or equivalent).

6. In order to obtain a thorough grounding in research methods, each student must complete a series of required courses in methodology. Students with little background in statistics are encouraged to take SOC 281B or equivalent. See the requirements section below for specific course requirements.

7. In partial preparation for a career of writing scholarly papers, each student must complete a paper by May 15 of the second year of residency. This second-year paper may be on any sociological topic, and may address theoretical, empirical, or methodological issues. The paper is expected to reflect original work and is considered an important piece of evidence in the decision to advance to candidacy. A two-person committee that includes the primary adviser evaluates the paper. Although the reading committee is usually comprised of two regular faculty members in the department, emeritus and other faculty outside of the department may serve as a committee member with prior approval.

8. In order to demonstrate the ability to conduct independent scholarly work, each student must prepare a dissertation prospectus and pass the University oral examination. The oral exam is intended to evaluate the dissertation prospectus or a partial draft of the dissertation and to assess the student’s knowledge of the relevant theory and research in the area in which the project intends to contribute.

9. Each student must complete a doctoral dissertation. Assessment of satisfactory completion is determined by the student’s doctoral committee members. All students are invited to present their dissertation findings at an informal department colloquium.

The faculty assumes the responsibility to provide students with timely and constructive feedback on their progress toward a degree. In order to evaluate student progress and to identify potential problem areas, the department’s faculty reviews the academic progress of each first-year student at the beginning of Winter and Spring quarters and again at the end of Spring Quarter. The reviews at the beginning of Winter and Spring Quarters are primarily intended to identify developing problems that could impede progress. In most cases, students are simply given constructive feedback, but if more serious concerns warrant, a student may be placed on probation with specific guidelines for addressing the problems detected. The review at the end of Spring Quarter is more thorough: Each student’s
performance during the first year is reviewed and discussed. Possible outcomes of the spring review include: (1) continuation of the student in good standing, or (2) placing the student on probation, with specific guidelines for the period of probation and the steps to be taken in order to be returned to good standing. For students on probation at this point (or at any other subsequent points), possible outcomes of a review include: (1) restoration to good standing; (2) continued probation, again with guidelines for necessary remedial steps; or (3) termination from the program.

Students leaving the program at the end of the first year are usually allowed to complete the requirements to receive an M.A. degree, if this does not involve additional residence or financial support. All students are given feedback from their advisers at the end of their first year of graduate work, helping them to identify areas of strength and potential weakness.

At the end of the second year of residency, the faculty again review the progress of all doctoral students in the program. Students who are performing well, as indicated by their course work, teaching and research apprenticeship performance, and second-year paper, are advanced to candidacy. This step implies that the student has demonstrated the relevant qualities required for successful completion of the Ph.D. Future evaluations are based on the satisfactory completion of specific remaining department and University requirements. Students who are still on probation at this stage may be (1) advanced to candidacy; (2) retained on probation with specification of the steps still required to be removed from this status; or (3) terminated from the program.

At any point during the degree program, evidence that a student is performing at a less than satisfactory level may be cause for a formal academic review of that student.

REQUIREMENTS

SURVEY COURSES

Students must complete four courses from the approved list, including:

- 308. Social Demography
- 310. Political Sociology
- 314. Economic Sociology
- 316. Historical and Comparative Sociology
- 318. Social Movements and Collective Action
- 320. Foundations of Social Psychology
- 322. Social Interaction, Social Structure, and Social Exchange
- 324. Social Networks
- 340. Social Stratification
- 342B. Gender and Social Structure
- 345. Comparative Race and Ethnic Relations
- 360. Foundations of Organizational Sociology
- 362. Organization and Environment
- 363A. Seminar on Organizational Theory
- 363B. Seminar on Organizations: Institutional Analysis

RESEARCH METHODS

The following course requirements apply to all students who enter the Ph.D program in 2005-06 or later. In addition to the courses identified below, there are three other methods requirements currently in development: a modular methods course to be taken Autumn Quarter of the second year, and a new two quarter methods course to be taken in Winter and Spring quarters of the second year. Students are expected to complete one elective from a list of approved courses. The modular methods course and the new two quarter methods course are offered for the first time in 2006-07.

- 381A. Sociological Methodology IA: Computer-Assisted Data Analysis
- 381B. Sociological Methodology IB: Statistics (recommended for students with little statistical background)
- 382. Sociological Methodology II: The General Linear Model
- 383.. Sociological Methodology III: Advanced Models for Discrete Outcomes

THEORY

- 370A. Sociological Theory: Social Structure, Inequality, and Conflict
- 370B. Sociological Theory: Social Interaction and Group Processes
- 372. Theoretical Analysis and Design

Students must complete additional course work sufficient to prepare them to write their second-year paper.

PH.D. MINOR

Sociology offers a minor for School of Education doctoral students. Students must complete a minimum of 30 graduate-level units with a grade point average (GPA) of 3.0 (B) or better. All 30 units for the minor are to be in courses taught by Sociology faculty with the following exception: 5 units may be taken in a statistics or methods course taught in another department. All units must be taken for a grade. Research and directed reading courses are acceptable, but must be approved in advance. The specific program must be approved by a Sociology adviser and filed with the Department of Sociology.

JOINT PROGRAMS WITH THE SCHOOL OF LAW

The School of Law and Department of Sociology conduct joint programs leading to either a combined J.D. degree with an M.A. degree in Sociology or to a combined J.D. degree with a Ph.D. in Sociology.

Law students interested in pursuing an M.A. in Sociology apply for admission to the Department of Sociology during the first year of Law school. Once admitted to the Department of Sociology, the student must complete standard departmental master’s degree requirements as specified in this bulletin. Applications for the joint J.D./M.A. degree program must be approved by both the department and the Law school. Faculty advisers from each program participate in the planning and supervising of the student’s academic program.

The J.D./Ph.D. degree program is designed for students who wish to prepare themselves for research or teaching careers in areas relating to both legal and sociological concerns. Students interested in the joint degree program must be admitted to both the School of Law and the Department of Sociology. Interest in the joint degree program must be noted on each of the student’s applications. Alternatively, an enrolled student in either the Law School or the Sociology department may apply to the other program, preferably during their first year of study.

Upon admission, students are assigned a joint program faculty adviser who assists the student in planning an appropriate program and ensuring that all requirements for both degrees are satisfied. The faculty adviser serves in this capacity during the student’s course of study regardless of whether the student is enrolled in the School of Law or the Sociology department.

J.D./Ph.D. students may elect to begin their course of study in either the School of Law or the Department of Sociology. Students must be enrolled full-time in the Law school for the first year of Law school, and must enroll full time in the graduate school for the first year of the sociology program. After that time, enrollment may be in the graduate school or the Law school, and students may choose courses from either program regardless of where enrolled. Students must satisfy the requirements for both the J.D. and the Ph.D. degrees. Up to 36 semester (54 quarter) hours of approved courses may be counted toward both degrees, but no more than 24 semester (36 quarter) hours of courses that originate outside the Law school may count toward the Law degree. To the extent that courses under this joint degree program originate outside of the Law school but count toward the Law degree, the Law school credits permitted under Section 17(1) of the Law School Regulations for cross-registration in other schools or departments of Stanford University are reduced on a unit-per-unit basis, but not below zero. Students must complete the equivalent of 210 quarter units to complete both degrees. Tuition and financial aid arrangements normally are through the school in which the student is currently enrolled.
COURSES

Courses are open to all students without prerequisites, unless specifically indicated. Courses numbered 200-299 are open to advanced undergraduate and graduate students. Courses numbered 300 and above are normally offered to matriculated doctoral students only. Courses with an ‘X’ suffix are taught at an overseas campus only.

OPEN TO ALL STUDENTS

INTRODUCTORY

SOC 1. Introduction to Sociology — Concepts, methods, and theoretical orientations. Sociological imagination illustrated by recent theory and research. Possible topics: the persistence of class cleavages; ethnic, racial, and gender inequalities; religious beliefs and the process of secularization; functions and dysfunctions of educational institutions; criminology and social deviance; social movements and social protest; production and reproduction of culture; rise of organizational society. GER:DB-SocSci

5 units, Win (McAdam), Spr (Snipp)

SOC 22N. The Roots of Social Protest — Stanford Introductory Seminar. Preference to freshmen. The conditions under which social protest occurs and the emergence, success, and viability of contemporary social movements. Examples include women’s civil rights, ecology, and antiwar and anti-globalization movements in the U.S. and elsewhere. Sociological theories to explain the timing, location, and causes of mobilization; how researchers evaluate these theories. Comparison of tactics, trajectories, and outcomes.

3 units, Aut (Rosenfeld)

SOC 25N. Understanding the Sixties — Stanford Introductory Seminar. Preference to freshmen. The tendency of critics to view the 60s through ideological lenses as either the best or worst of times has made a balanced perspective difficult to achieve. Goal is to provide a sociological explanation for the political and cultural turbulence that marked the era. The confluence of demographic, political, economic, and cultural trends that date back to at least the 30s. The ambiguous legacy of the 60s. Using the 60s to shed light on the 80s and 90s. Enrollment limited to 16.

3 units, Win (McAdam)

SOC 26N. The Changing American Family — Preference to freshmen. Family change from historical, social, demographic, and legal perspectives. Extramarital cohabitation, divorce, later marriage, interracial marriage, same sex cohabitation and marriage: what do all these changes mean?

3 units, Aut (Rosenfeld)

5 units, Aut (Snipp)

SOC 46N. Race, Ethnic, and National Identities: Imagined Communities — Stanford Introductory Seminar. Preference to freshmen. How new identities are created and legitimated. What does it mean to try on a different identity? National groups and ethnic groups are so large that one individual can know only an infinitesimal fraction of other group members. What explains the seeming coherence of groups? If identities are a product of the imagination, why are people willing to fight and die for them? Enrollment limited to 16.

3 units, Spr (Rosenfeld)

POLITICAL AND COMPARATIVE SOCIOLOGY

SOC 108. Population and Society — (Graduate students register for 208.) Population size, composition, geographical distribution, and change in contemporary and historical perspective. Determinants of important processes affecting population including births, deaths, marriages, and geographical moves. Social, economic, and political consequences of population characteristics and population change. Population problems and policies.

4-5 units, Spr (Pals)

SOC 109. Sociology of Terrorism — (Graduate students register for 209.) Multidisciplinary including psychology, sociology, political science, and economics. Comparison of terrorist organizations and movements across institutions, places, and times; their motives, tactics, financing, and organization. Emphasis is on suicide bombing. What mass media think they know and what they do not know.

5 units, Spr (Meyersson Milgrom)

SOC 110. Politics and Society — (Graduate students register for 210.) Themes of political sociology, the origins and expansion of the modern state, linkages between state and society, the impact of the modern world system on national policies, the internal distribution of power and authority, and the structure of political group formation and individual participation in modern states. Emphasis is on modern empirical literature. GER:DB-SocSci

5 units (Meyer) not given 2005-06

SOC 111. State and Society in Korea — (Graduate students register for 211.) 20th-century Korea from a comparative historical perspective. Colonialism, nationalism, development, state-society relations, democratization, and globalization with reference to the Korean experience.

5 units (Shin) not given 2005-06

SOC 112. Comparative Democratic Development — (Enroll in POLISCI 147.)

5 units, Win (Diamond)

SOC 115A. Social Structure, Culture, and the Economy — (Graduate students register for 215A.) How neoclassical economists assume that society is a collection of individuals who act rationally and independently of one another, while economic sociologists emphasize the social context and relation with others as people work, buy, and sell. The interplay among social structure, culture, and economic life. Potential topics: religion and social class; centrality and power; markets, hierarchies, and networks; the diffusion of innovations; small worlds and scale-free networks; strong and weak ties; and brokers, bridges, and communication networks.

5 units, Win (Everton)

SOC 117A. China Under Mao — (Graduate students register for 217A.) The transformation of Chinese society from the 1949 revolution to the eve of China’s reforms in 1978: the creation of a socialist economy, the reorganization of rural society and urban workplaces, the emergence of new inequalities of power and opportunity, and the new forms of social conflict during Mao’s Cultural Revolution of 1966-69 and its aftermath. GER:EC-GlobalCom

5 units (Walder) not given 2005-06

SOC 118. Social Movements and Collective Action — (Graduate students register for 218.) Why social movements arise, who participates in them, the obstacles they face, and how to gauge movement success or failure? Theory and empirical research. Application of concepts and methods to a social movement such as civil rights, gay marriage equality, environmental justice, fair wages, anti-globalization, or pro-choice or anti-abortion.

5 units, Spr (Brandt)

SOC 130. Education and Society — (Graduate students register for 230; same as EDUC 220C.) The effects of schools and schooling on individuals, the stratification system, and society. Education as socializing individuals and as legitimizing social institutions. The social and individual factors affecting the expansion of schooling, individual educational attainment, and the organizational structure of schooling. GER:DB-SocSci

4-5 units, Win (Ramirez)

SOC 133. Computers and Interfaces — (Enroll in COMM 169/269.)

4-5 units, Win (Nass)
SOC 136. Law and Society — (Graduate students register for 236.) Major issues and debates in the sociology of law. Topics include: historical perspectives on the origins of law; rationality and legal sanctions; normative decision making and morality; cognitive decision making; crime and deviance; the law in action versus the law on the books; organizational responses to law in the context of labor and employment; the roles of lawyers, judges, and juries; and law and social change emphasizing the American civil rights movement. GER:DB-SocSci

3-5 units, Aut (Dauber)

SOC 137. Homelessness: Its Causes, Consequences, and Policy Solutions — Homelessness as a social policy issue and concern within the local community. Service-learning format: students work with a local community partner to assess needs of local homeless, and evaluate policies and services delivery.

5 units, Aut (Barr)

SOC 138. American Indians in Comparative Historical Perspective — (Graduate students register for 238.) Demographic, political, and economic processes and events that shaped relations between Euro-Americans and American Indians, 1600-1890. How the intersection of these processes affected the outcome of conflicts between these two groups, and how this conflict was decisive in determining the social position of American Indians in the late 19th century and the evolution of the doctrine of tribal sovereignty. GER:DB-SocSci

3-5 units, Win (Snipp)

SOC 152. Sociology of Japanese Society — Politics, business, work, social security, crimes, law, education, history, popular culture, folk culture, family structure, gender, and ethnic diversity. Goal is to challenge commonly held notions through sources such as empirical data, ethnographic accounts, movies, photos, and video footage. Comparative sociological perspectives to situate Japan in the wider world.

5 units, Spr (Tsutsui)

SOCIAL PSYCHOLOGY AND INTERPERSONAL PROCESSES

SOC 105. Status, Friendship, and Social Pressure — The basic social processes that structure the individual’s experience in interpersonal situations, including group pressure on individual choices, social control of deviants, operation of status distinctions (sex and race), and formation of friendships and intimate (love) relationships. Structured exercises and simulation gaming in section meetings provide experience with these processes. Lectures examine the processes in terms of theoretical ideas, empirical research, and clinical strategy. Enrollment limited to 30. GER: DB-SocSci

5 units (Staff) not given 2005-06

SOC 120. Interpersonal Relations — (Graduate students register for 220.) Forming ties, developing norms, status, conformity, deviance, social exchange, power, and coalition formation; important traditions of research have developed from the basic theories of these processes. Emphasis is on understanding basic theories and drawing out their implications for change in a broad range of situations, families, work groups, and friendship groups. GER:DB-SocSci

5 units (Ridgeway) not given 2005-06

SOC 121. Social Psychology and Social Structure — (Graduate students register for 221.) The individual’s relationship to social groups, from two-person groups to society at large. Emphasis is on how social structure shapes individuals and how individuals affect their social environment. Topics: identity, agency, interpersonal relations, social dilemmas, the life course, and collective behavior. GER:DB-SocSci

5 units, Win (Cooper)

SOC 122. Sociology of Culture — (Graduate students register for 222.) Why do people act like different kinds of culture? How do cultural taste and practice affect friendship patterns, academic success, occupational attainment, and marital selection? Emphasis is on the relationship between culture and social structure with attention to social networks, social class, cultural capital, and symbolic exclusion. Topics include musical taste, arts participation, leisure activity, urban legends, names chosen for children, and opinions, beliefs, and values. GER:DB-SocSci

5 units, Aut (Mark)

SOC 123. Sex and Love in Modern Society — (Graduate students register for 223.) Social influences on private intimate relationships involving romantic love and sexuality. Topics include the sexual revolution, contraception, dating, hook-ups, cohabitation, sexual orientation, and changing cultural meanings of marriage, gender, and romantic love. GER:DB-SocSci, EC-Gender

5 units (England) not given 2005-06

SOC 125. Sociology of Religion — (Graduate students register for 225.) The social patterns of religious belief and practice, and the classical and contemporary theoretical approaches to understanding these patterns. Topics: churches, sects and cults, sources of religious pluralism, relationships between religion and aspects of social structures including the economy, class structure, ethnicity, social networks, and the state. GER:DB-SocSci

5 units, Spr (Mark)

SOC 126. Introduction to Social Networks — (Graduate students register for 226.) Theory, methods, and research. Concepts such as density, homogeneity, and centrality; applications to substantive areas. The impact of social network structure on individuals and groups in areas such as communities, neighborhoods, families, work life, and innovations. GER:DB-SocSci

5 units, Win (Mark)

SOC 127. Bargaining, Power, and Influence in Social Interaction — (Graduate students register for 227.) Research and theoretical work on bargaining, social influence, and issues of power and justice in social settings such as teams, work groups, and organizations. Theoretical approaches to the exercise of power and influence in social groups and related issues in social interaction such as the promotion of cooperation, effects of competition and conflict, negotiation, and intergroup relations. Enrollment limited to 40. GER:DB-SocSci

3-5 units, Win (Cook)

SOC 128. Sociology of the Life Course — (Graduate students register for 228.) Focus is on continuity and change in human lives, and how an individual’s life course is linked to the fate of larger social structures. Individual life patterns and trajectories in the domains of family, education, and work. Topics include the transition to adulthood and the impact of disruptive historical change on life courses. Applying the life course approach to an area of student interest such as political attitudes, criminal careers, or health outcomes.

5 units, Win (Brandt)

SOC 150. The Family — Theories of social psychology to study interactions within American families and between the family and other institutions. Topics: the nature and history of the family, state regulation of families, variations by class and ethnicity, family violence, gender roles, parenting, and divorce. GER:DB-SocSci

5 units, Aut (Yiu)

SOCIAL STRATIFICATION AND INEQUALITY

SOC 132. Sociology of Education: The Social Organization of Schools — (Graduate students register for 332; same as EDUC 110/310.) Topics and case studies that elaborate on the embeddedness of classrooms and schools in social environments, spanning school processes such as stratification, authority, moral and technical specialization, curricular differentiation, classroom instruction, voluntary associations, social crowds, and peer influence. (SSPEP) GER:DB-SocSci

4 units, Spr (McFarland)

SOC 134. Education and the Status of Women: Comparative Perspective — (Enroll in EDUC 197.)

4-5 units (Staff) not given 2005-06
SOC 135. Seminar in Women’s Health: Women and Disabilities — (Enroll in FEMST 260/360.)
5 units, Spr (Krieger)

SOC 139. American Indians in Contemporary Society — (Graduate students register for 239.) The social position of American Indians in contemporary American society, 1890 to the present. The demographic resurgence of American Indians, changes in social and economic status, ethnic identification and political mobilization, and institutions such as tribal governments and the Bureau of Indian Affairs. Recommended: 138 or a course in American history. GER:EC-AmerCul
5 units, Win (Bobo)

SOC 140. Introduction to Social Stratification — (Graduate students register for 240.) The main classical and modern explanations of the causes of social, economic, and political inequality. Issues include: power; processes that create and maintain inequality; the central axes of inequality in contemporary societies (race, ethnicity, class, and gender); the consequences of inequality for individuals and groups; and how social policy can mitigate and exacerbate inequality. Cases include technologically simple groups, the Indian caste system, and the modern U.S. GER:DB-SocSci
5 units, Win (Grusky)

SOC 141. Controversies about Inequality — (Graduate students register for 241.) Debate format involving Stanford and guest faculty. Forms of inequality including racial, ethnic, and gender stratification; possible policy interventions. Topics such as welfare reform, immigration policy, affirmative action, discrimination in labor markets, sources of income inequality, the duty of rich nations to help poor nations, and causes of gender inequality.
5 units, Spr (Grusky)

SOC 141A. Social Class, Race, Ethnicity, Health — (Graduate students register for 241A.) Socioeconomic, racial, and ethnic differences in health status. Access to care of racial and ethnic minorities and those from lower social classes. Institutional factors such as government programs, and individual factors such as unconscious racial bias on the part of care providers or distrust of providers on the part of patients. The intersection of lower social class and ethnic minority status in health status and health care access. GER:DB-SocSci, EC-AmerCul
4-5 units, Win (Barr)

SOC 142. Sociology of Gender — (Graduate students register for 242.) Gender inequality in contemporary American society and how it is maintained. The social and relative nature of knowledge and the problems this poses for understanding sex differences and gendered behavior in society. Analytical levels of explanation for gender inequalities: socialization, interaction processes, and socioeconomic processes; arguments and evidence for each approach. The social consequences of gender inequality such as the feminization of poverty, and problems of interpersonal relations. GER:EC-Gender
5 units, Aut (Mollborn)

SOC 143. Prejudice, Racism, and Social Change — (Graduate students register for 243.) Ethno-racial attitudes and beliefs in the U.S. since 1965. Conflict including urban riots and cooperation including interracial dating, marriage, and mixed-race identity. Changes in racial prejudice and racism and their influence in domains of life such as jobs, housing, political power, and everyday interactions.
5 units (Bobo) not given 2005-06

SOC 144. Race and Crime in America — (Graduate students register for 244.) Theories of involvement in crime and deviance emphasizing youth gangs, poverty, the impact of racial residential segregation on involvement in crime, and the impact of high rates of incarceration. The role of the media in fostering fear of crime and racial stereotypes. Public policy questions such as post-incarceration disenfranchisement and reintegration.
5 units, Spr (Bobo)

SOC 145. Race and Ethnic Relations — (Graduate students register for 245.) Race and ethnic relations in the U.S. and elsewhere. The processes that render ethnic and racial boundary markers, such as skin color, language, and culture, salient in interaction situations. Why only some groups become targets of ethnic attacks. The social dynamics of ethnic hostility and ethnic/racial protest movements. GER:EC-AmerCul
5 units, Win (Bobo)

SOC 147. Crime and Incarceration — (Graduate students register for 247.) The process of criminal justice in the U.S.; major theories of criminal deviance. How individuals and social groups are processed through the criminal court system; historical changes in correctional philosophy and organizational structure; inmate socialization; and changes in the social environment of U.S. prisons. GER:DB-SocSci
5 units, Aut (Colwell)

SOC 148. Racial Identity — (Graduate students register for 248.) The construction and meanings of racial identities in the U.S. Attention is on multiracial identities and the shifting boundaries of racial categories in contemporary America. GER:EC-AmerCul
5 units (McDermott) not given 2005-06

SOC 149. The Urban Underclass — (Graduate students register for 249; same as URBANST 112.) Recent research and theory on the urban underclass, including evidence on the concentration of African Americans in urban ghettos, and the debate surrounding the causes of poverty in urban settings. Analysis of ethnic/racial conflict, residential segregation, and changes in the family structure of the urban poor. GER:DB-SocSci
5 units, Spr (Rosenfeld)

ORGANIZATIONS, BUSINESS, AND THE ECONOMY

SOC 114. Economic Sociology — (Graduate students register for 214.) The sociological approach to production, distribution, consumption, and markets, emphasizing the impact of norms, power, social structure, and institutions on the economy. Comparison of classical and contemporary approaches to the economy among the social science disciplines. Topics: consumption, labor markets, organization of professions such as law and medicine, the economic role of informal networks, industrial organization, including the structure and history of the computer and popular music industries, business alliances, capitalism in non-Western societies, and the transition from state socialism in E. Europe and China. GER:DB-SocSci
5 units (Granovetter) not given 2005-06

SOC 115. Topics in Economic Sociology — (Graduate students register for 215.) Discussion of topics initially explored in 114/214, with emphasis on countries and cultures outside N. America. Possible topics: families and ethnic groups in the economy, corporate governance and control, corporate strategy, relations among firms in industrial districts and business groups, the impact of national institutions and cultures on economic outcomes, transitions from state socialism and the role of the state in economic development. Possible case studies: the U.S., Germany, Italy, Britain, France, Brazil, Korea, India, Japan, and China. Prerequisite: 114/214 or 314.
5 units (Staff) not given 2005-06

SOC 116. Globalization and Organizations — (Enroll in INTNLREL 131, IPS 231.)
5 units, Win (Drori)

SOC 154A. Science, Technology, and Development — (Enroll in IPS 230, INTNLREL 130.)
5 units, Aut (Drori)

5 units, Win (Hillmann)
SOC 161. The Social Science of Entrepreneurship — (Graduate students register for 261.) Who is likely to become an entrepreneur and where is entrepreneurship likely to occur? Classic and contemporary theory and research. Interaction with expert practitioners in creating entrepreneurial opportunities including venture and corporate capitalists. The role of culture, markets, hierarchies, and networks. Market creation and change, and factors that affect success of new organizations. Field projects on entrepreneurial environments such as technology licensing offices, entrepreneurial development organizations, venture capital firms, and corporate venturing groups. GER: DB-SocSci
 5 units, Spr (Thornton)

SOC 165. Power, Gender, and the Professions — (Graduate students register for 265.) Alternative views of professions and professionals, combining theories of professions and gender. The institutionalization of professional power and professional structure in the 20th century. Changing professional roles in the face of increasing bureaucratization of professional work. The role of gender in professional work, and alternative explanations for gender-based differences. How these forces operate, particularly in the professions of medicine, law, and academics. GER: DB-SocSci
 5 units (Barr) not given 2005-06

SOC 167A. Asia-Pacific Transformation — (Graduate students register for 267A.) Post-WW II transformation in the Asia-Pacific region, with focus on the ascent of Japan, the development of newly industrialized capitalist countries (S. Korea and Taiwan), the emergence of socialist states (China and N. Korea), and the changing relationship between the U.S. and these countries.
 5 units, Aut (Shin)

SOC 168. Managing Global Diversity: The Matrix of Change — (Enroll in PUBBLPOL 168.)
 5 units, Win (Meyersson Milgrom)

SOC 169. Health Care in America: The Organizations and Institutions that Shape the Health Care System — (Enroll in HUMBIO 160.)
 4 units, Aut (Barr)

SOC 169A. American Health Policy — (Enroll in HUMBIO 160A.)
 3 units, Spr (G. Heller, Lee)

SOCIOLOGICAL THEORY

SOC 170. Classics of Modern Social Theory — (Graduate students register for 270.) For majors only. Contributions of Marx, Weber, and Durkheim to contemporary sociology. Topics: the problem of social order and the nature of social conflict; capitalism and bureaucracy; the relationship between social structure and politics; the social sources of religion and political ideology; and the evolution of modern societies. Examples from contemporary research illustrate the impact of these traditions.
 5 units, Win (Oltuk)

RESEARCH METHODS

SOC 180. Introduction to Sociological Research — (Graduate students register for 280.) Focus is on strategies for designing research and analyzing data. GER: DB-SocSci
 5 units, Aut (Hillmann)

SOC 181B. Sociological Methods: Statistics — (Graduate students register for 281B.) Statistical methods of principal relevance to sociology: contingency tables, correlation, and regression.
 5 units (Staff) not given 2005-06

SOC 182. Designing Surveys for Social Science Research — Priority to undergraduates who have received URP funds. Practical introduction to survey methods. Topics include causality, research design, sampling, and item and questionnaire format. Offered through the Methods of Analysis Program in the Social Sciences (MAPSS). Enrollment limited to 25.
 3 units, Spr (Staff)

SOC 183. Qualitative Methods in Social Science Research — Priority to undergraduates who have received URP funds. Goal is to prepare students to design and implement their own qualitative research projects. Topics include: articulating research questions and objectives; connecting research to theoretical concerns in the social sciences; formulating appropriate research strategies; and project design. Offered through the Methods of Analysis Program in the Social Sciences (MAPSS). Enrollment limited to 25.
 3-5 units, Spr (Staff)

SOC 200. Senior Seminar for Majors — Capstone course in which sociological problems are framed, linked to theories, and answers pursued through research designs. WIM
 5 units, Aut, Spr (Cooper)

SOC 200H. Senior Seminar for Honors
 5 units (McDermott) not given 2005-06

SOC 202. Preparation for Honors Thesis — (Same as URBANST 202.) Primarily for juniors in Sociology or Urban Studies thinking about writing a senior honors thesis; sophomores who plan to be off-campus Winter Quarter of their junior year may register with consent of instructor. Students write a research prospectus and grant proposal for research funding. Urban Studies seniors writing an honors thesis register for 1 unit to present their work. For WIM credit, must be junior or sophomore registering for at least 3 units. WIM
 1-5 units, Win (Tuma)

INDIVIDUALIZED LEARNING EXPERIENCES, PRIMARILY FOR UNDERGRADUATE MAJORS

SOC 190. Undergraduate Individual Study
 1-5 units, Aut, Win, Spr, Sum (Staff)

SOC 191. Undergraduate Directed Research — Work on a project of student’s choice under supervision of a faculty member. Prior arrangement required.
 1-5 units, Aut, Win, Spr, Sum (Staff)

SOC 192. Undergraduate Research Apprenticeship — Work in an apprentice-like relationship with faculty on an on-going research project. Prior arrangement required.
 1-5 units, Aut, Win, Spr, Sum (Staff)

SOC 193. Undergraduate Teaching Apprenticeship
 1-5 units, Aut, Win, Spr, Sum (Staff)

SOC 196. Senior Thesis — Work on an honors thesis project under faculty supervision (see description of honors program). Must be arranged early in the year of graduation or before.
 1-15 units, Aut, Win, Spr, Sum (Staff)

FOR ADVANCED/COTERMINAL UNDERGRADUATES AND MASTER’S STUDENTS

SOC 208. Population and Society — (For graduate students; see 108.)
 4.5 units, Spr (Pals)

SOC 209. Sociology of Terrorism — (For graduate students; see 109.)
 5 units, Spr (Meyersson Milgrom)

SOC 210. Politics and Society — (For graduate students; see 110.)
 5 units (Meyer) not given 2005-06

SOC 211. State and Society in Korea — (For graduate students; see 111.)
 5 units (Shin) not given 2005-06

SOC 215A. Social Structure, Culture, and the Economy — (For graduate students; see 115A.)
 5 units, Win (Everton)

SOC 217A. China Under Mao — (For graduate students; see 117A.)
 5 units (Walder) not given 2005-06
SOC 218. Social Movements and Collective Action—(For graduate students; see 118.)
5 units, Spr (Brandt)

SOC 230. Education and Society—(For graduate students; see 130; same as EDUC 220C.)
4-5 units, Win (Ramirez)

SOC 231. World, Societal, and Educational Change: Comparative Perspectives—(Same as EDUC 136/306D.) Theoretical perspectives and empirical studies on the structural sources of educational expansion and differentiation, and on the cultural and structural consequences of educational institutionalization. Research topics: education and nation building; education, mobility, and equality; education, international organizations, and world culture. GER:DB-SocSci
4-5 units, Win (Ramirez)

SOC 234. Research Seminar on Access to Justice—(Graduate students register for 334.) The functions and dysfunctions of modern legal systems. Topics include: official statements of the U.S. and the EU about the rights of parties to civil disputes; the roles of lawyers as gatekeepers and facilitators; the filtering process by which injuries and experiences become the basis for legal claims; access to and use of courts; the balance of power and advantage between individual persons and organizations in disputes. Prerequisite: advanced undergraduate or graduate standing, or consent of instructor.
5 units (Sandefur) not given 2005-06

SOC 236. Law and Society—(For graduate students; see 120.)
3-5 units, Aut (Landis Dauber)

SOC 238. American Indians in Comparative Historical Perspective—(For graduate students; see 138.)
3-5 units, Win (Snipp)

SOCIAL PSYCHOLOGY AND INTERPERSONAL PROCESSES

SOC 220. Interpersonal Relations—(For graduate students; see 120.)
5 units (Ridgeway) not given 2005-06

SOC 221. Social Psychology and Social Structure—(For graduate students; see 121.)
5 units, Win (Cooper)

SOC 222. Sociology of Culture—(For graduate students; see 122.)
5 units, Aut (Mark)

SOC 223. Sex and Love in Modern Society—(For graduate students; see 123.)
5 units (England) not given 2005-06

SOC 224A. Traditions of Microsociology—(Same as EDUC 312A.) The educational applications of sociological and social psychological theory and research to interaction processes in schools. Readings include: foundational works by Mead, Schutz, and Simmel; contemporary work by Goffman, Homans, Merton, Blau, and Harold. Readings span empirical settings such as work, classrooms, gangs, primate societies, and children's games. Topics: processes of influence, role differentiation, identity formation, social mechanisms, and intra/inter group dynamics of peer relations. Methods for observation and analysis of small groups. (SSPEP)
4 units, Win (McFarland) alternate years, not given 2006-07

SOC 224B. Contemporary Microsociology—(Same as EDUC 312B.) How to interpret interpersonal social situations using contemporary microsociological theories. Interaction processes observed in educational settings. The roles of intention, identity, routines, scripts, rituals, conceptual frameworks, and emotions in interaction. Processes by which interactions reverberate to more general changes in social structure. Readings include Goffman, Collins, Wieder, Garfinkel, Scheff, von Goethe, and Schegloff.
4 units (Staff) alternate years, given 2006-07

SOC 225. Sociology of Religion—(For graduate students; see 125.)
5 units, Spr (Mark)

SOC 226. Introduction to Social Networks—(For graduate students; see 126.)
5 units, Win (Mark)

SOC 227. Bargaining, Power, and Influence in Social Interaction—(For graduate students; see 127.)
3-5 units, Win (Cook)

SOC 228. Sociology of the Life Course—(For graduate students; see 128.)
5 units, Win (Brandt)

SOCIAL STRATIFICATION AND INEQUALITY

SOC 237. Homelessness: Its Causes, Consequences, and Policy Solutions—Homelessness as a social policy issue and concern within the local community. Service-learning format: students work with a local community partner to assess needs of local homeless, and evaluate policies and services delivery.
5 units, Aut (Barr)

SOC 239. American Indians in Contemporary Society—(For graduate students; see 139.)
5 units, Spr (Snipp)

SOC 240. Introduction to Social Stratification—(For graduate students; see 140.)
5 units, Win (Grusky)

SOC 241. Controversies about Inequality—(For graduate students; see 141.)
5 units, Spr (Grusky)

SOC 241A. Social Class, Race, Ethnicity, Health—(For graduate students; see 141A.)
4-5 units, Win (Barr)

SOC 242. Sociology of Gender—(For graduate students; see 142.)
5 units, Aut (Mollborn)

SOC 243. Prejudice, Racism, and Social Change—(For graduate students; see 143.)
5 units (Bobo) not given 2005-06

SOC 244. Race and Crime in America—(For graduate students; see 144.)
5 units, Spr (Bobo)

SOC 245. Race and Ethnic Relations—(For graduate students; see 145.)
5 units, Win (Bobo)

SOC 247. Crime and Incarceration—(For graduate students; see 147.)
5 units, Aut (Colwell)

SOC 248. Racial Identity—(For graduate students; see 148.)
5 units (McDermott) not given 2005-06

SOC 249. The Urban Underclass—(For graduate students; see 149.)
5 units, Spr (Rosenfeld)

ORGANIZATIONS, BUSINESS, AND THE ECONOMY

SOC 214. Economic Sociology—(For graduate students; see 114.)
5 units (Granovetter) not given 2005-06

SOC 215. Topics in Economic Sociology—(For graduate students; see 115.)
5 units (Staff) not given 2005-06

SOC 260. Formal Organizations—(For graduate students; see 160.)
5 units, Win (Hillmann)

SOC 261. The Social Science of Entrepreneurship—(For graduate students; see 161.)
5 units, Spr (Thornton)
SOC 261B. Women in Organizations — (Same as OB 387) Women’s working experiences in managerial and professional positions. Career-related gender issues, including: the effects of gender proportions on a woman’s experience in a job; how to shape human resource policies and organizational cultures; how to pick an organization with good gender relations; how networking strategies of men and women differ; the realities of starting an independent business; how to maximize the fairness of promotions and pay; and how to cope with gender-related difficulties in work situations.

4 units, Win (Martin)

SOC 265. Power, Gender, and the Professions — (For graduate students; see 165.)

5 units (Barr) not given 2005-06

SOC 267A. Asia-Pacific Transformation — (For graduate students; see 167A.)

5 units, Aut (Shin)

SOCIOLOGICAL THEORY

SOC 252. Sociology of Japanese Society — Politics, business, work, social security, crimes, law, education, history, popular culture, folk culture, family structure, gender, and ethnic diversity. Goal is to challenge commonly held notions through sources such as empirical data, ethnographic accounts, movies, photos, and video footage. Comparative sociological perspectives to situate Japan in the wider world.

5 units, Spr (Tsutsui)

SOC 270. Classics of Modern Social Theory — (For graduate students; see 170.)

5 units, Win (Olszak)

RESEARCH METHODS

SOC 257. Causal Inference in Quantitative Educational and Social Science Research — (Same as EDUC 257C.) Quantitative methods to make causal inferences in the absence of randomized experiment including the use of natural and quasi-experiments, instrumental variables, regression discontinuity, matching estimators, longitudinal methods, fixed effects estimators, and selection modeling. Assumptions implicit in these approaches, and appropriateness in research situations. Students develop research proposals relying on these methods. Prerequisites: exposure to quantitative research methods; multivariate regression.

3 units (Reardon) not given 2005-06

SOC 280. Introduction to Sociological Research — (For graduate students; see 180.)

5 units, Aut (Hillmann)

SOC 281B. Sociological Methods: Statistics — (For graduate students; see 181B.)

5 units (Staff) not given 2005-06

PRIMARILY FOR DOCTORAL STUDENTS

300-level courses are limited to matriculated doctoral students; other students require consent of instructor.

GENERAL

SOC 300. Workshop: Teaching Development — For first-year Sociology doctoral students only. The principles for becoming an effective instructor, adviser, and mentor to undergraduates. Topics: ethics, course organization and syllabus development, test construction and grading, conflict resolution, common classroom problems, and University policies related to matters such as sexual harassment. Technologies and other topics related to making effective presentations, and campus resources to improve classroom performance. Roundtable discussions with faculty and advanced graduate students known for teaching excellence. Students may be asked to give demonstration lecture.

2 units, Spr (Beck)

SOC 305. Graduate Proseminar — For first-year Sociology doctoral students only. Introduction and orientation to the field of Sociology.

1 unit, Aut (Staff)

SOC 308. Social Demography — For graduate students and advanced undergraduates. Topics: models of fertility behavior, migration models, stable population theory, life table analysis, data sources, and measurement problems. How population behavior affects social processes, and how social processes influence population dynamics. Recommended: sociological research methods; basic regression analysis and log linear models.

5 units (Snipp) not given 2005-06

POLITICAL AND COMPARATIVE SOCIOLOGY

SOC 310. Political Sociology — Theory and research on the relationship between social structure and politics. Social foundations of political order, the generation and transformation of ideologies and political identities, social origins of revolutionary movements, and social consequences of political revolution. Prerequisite: doctoral student.

5 units (Walder) not given 2005-06

SOC 311A,B,C. Comparative Studies of Educational and Political Systems — (Same as EDUC 387A,B,C.) Analysis of quantitative and longitudinal data on national educational systems and political structures. May be repeated for credit. Prerequisite: consent of instructor. (SSPEP/ICE)

2-5 units, A: Aut, B: Win, C: Spr (Meyer, Ramirez)

SOC 312. Workshop: Collective Action and Social Movements — Recent research on the legislative process, national and international social movements and collective action, and the intersection of politics, organizations, and social movement activity. Graduate student presentations. May be repeated for credit.

1-5 units, Aut, Win, Spr (McAdam, Olszak)

SOC 316. Historical and Comparative Sociology — Theory and research on macro-historical changes of sociological significance such as the rise of capitalism, the causes and consequences of revolutions, and the formation of the modern nation state and global world system. Methodological issues in historical and comparative sociology.

5 units, Aut (Shin)

SOC 318. Social Movements and Collective Action — Topics: causes, dynamics, and outcomes of social movements; organizational dimensions of collective action; and causes and consequences of individual activism.

5 units, Spr (McAdam)

SOC 334. Research Seminar on Access to Justice — (For graduate students; see 234.)

5 units (Sandefur) not given 2005-06

SOC 337. Workshop on Korean Studies — For graduate students or undergraduates working on honors theses. Comparative and sociological perspectives. Discussions of readings, presentation of project findings, or participation in faculty’s research.

2 units (Shin) not given 2005-06

SOC 368. Workshop: Politics and Social Change — Market reform, privatization, regime change, and political movements in rapidly changing societies. May be repeated for credit. Prerequisite: consent of instructor.

1-5 units (Walder) not given 2005-06
SOCIAL PSYCHOLOGY AND INTERPERSONAL PROCESSES
SOC 317C. Workshop on Community and Youth Development—(Same as EDUC 317X.) The Youth Development Seminar presents an opportunity to discuss, read, and collaborate on youth development research issues by providing participants with access to the National Longitudinal Study of Adolescent Health Data (requires permission), tutorials on statistical methods to facilitate analysis of the dataset, and articles that help researchers develop tools of inquiry. Participants present their work for feedback.
1-2 units (Staff) not given 2005-06

2-5 units (Ridgeway) not given 2005-06

SOC 321. Workshop: Social Psychology — Current theories and research agendas, reviews of recent publications, presentations of ongoing research by faculty and students. May be repeated for credit. Prerequisite: consent of instructor.
2-5 units (Staff) not given 2005-06

SOC 322. Social Interaction, Social Structure, and Social Exchange — Current theory and research on topics such as social cognition and identity, group processes, bargaining and negotiation, social justice, social dilemmas and exchange, and networks and collective action. The social exchange approach.
5 units, Spr (Cook)

SOC 324. Social Networks — How the study of social networks contributes to sociological research. Application of core concepts to patterns of relations among actors, including connectivity and clusters, duality of categories and networks, centrality and power, balance and transitivity, structural equivalence, and blockmodels. Friendship and kinship networks, diffusion of ideas and infectious diseases, brokerage in markets and organizations, and patronage and political influence in historical contexts.
3-5 units, Aut, Win, Spr (Hillmann)

SOC 326. Workshop: Sociology of Culture — Current theories and research agendas, critical reviews of recent publications, presentations of ongoing research by faculty and students. May be repeated for credit. Prerequisite: consent of instructor.
2-5 units, Aut, Win, Spr (Mark)

SOC 327. Frontiers of Social Psychology — Advanced topics, current developments, theory, and empirical research. Possible topics include social identity processes, status beliefs and processes, social exchange, affect and social cohesion, legitimacy, social difference and inequality, norms, and social dilemmas.
3-5 units (Ridgeway) not given 2005-06

SOC 342B. Gender and Social Structure — The role of gender in structuring contemporary life. Social forces affecting gender at the psychological, interactional, and structural levels. Gender inequality in labor markets, education, the household, and other institutions. Theories and research literature.
3-5 units (England) not given 2005-06

SOCIAL STRATIFICATION AND INEQUALITY
SOC 332. Sociology of Education: The Social Organization of Schools — (For graduate students; see 132; same as EDUC 110/310.)
4 units, Spr (McFarland)

SOC 336. Sociology of Law — Classical perspectives and contemporary developments in the sociological investigation of law and legal systems. Foundational works in the sociology of law, contemporary statements, and topics of interest to participants. Possible topics include: legal services markets; the effects of law on behaviors and attitudes; the workings of concrete components of legal institutions; and comparative legal systems. May be repeated for credit.
3-5 units (Sandefur) not given 2005-06

SOC 340. Social Stratification — Classical and contemporary approaches to the unequal distribution of goods, status, and power. Modern analytic models of the effects of social contact, cultural capital, family background, and luck in producing inequality. The role of education in stratification. The causes and consequences of inequality by race and gender. The structure of social classes, status groupings, and prestige hierarchies in various societies. Labor markets and their role in inequality. The implications of inequality for individual lifestyles. The rise of the new class, the underclass, and other emerging forms of stratification. Prerequisite: Ph.D. student or consent of instructor.
5 units, Win (Grusky)

SOC 342A. Race and Ethnic Relations — Presentations of current work by faculty, students, and guest speakers. Recent publications and contemporary issues. May be repeated for credit. Prerequisite: consent of instructor.
3-5 units (McDermott) not given 2005-06

SOC 344. Changing Ideologies of Race in the U.S. — Research by historians, social psychologists, political scientists, and sociologists on the content, roots, and social dynamics of racial identities and beliefs.
3 units (Bobo) not given 2005-06

SOC 345. Seminar in Comparative Race and Ethnic Relations — Factors that create, maintain, and diminish the salience of race and ethnic boundaries. Theoretical debates surrounding the emergence, persistence, and change in racial and ethnic boundaries, nationalism and sovereignty, and mobilization. Empirical evidence on race and ethnic tensions, conflict, and warfare. The relationship between democracy, immigration, and diversity.
5 units (Olzak) not given 2005-06

ORGANIZATIONS, BUSINESS, AND THE ECONOMY
SOC 314. Economic Sociology — Classical and contemporary literature covering the sociological approach to markets and the economy, and comparing it to other disciplines. Topics: consumption, labor, professions, industrial organization, and the varieties of capitalism; historical and comparative perspectives on market and non-market provision of goods and services, and on transitions among economic systems. The relative impact of culture, institutions, norms, social networks, technology, and material conditions. Prerequisite: doctoral student or consent of the instructor.
5 units (Granovetter) not given 2005-06

SOC 335. Illegal Organizations and the State — The political economy of illegal organizations and their relationship to the state from contemporary and historical-comparative perspectives. When do state governments enforce the deterrence of illegal behavior? When do states redefine the boundary between legal and illegal behavior? When do they promote such activities to advance their own interests? Topics: state-sponsored terrorism; organized crime such as the Mafia as placeholder for government; violence and coercion in state building; organized corruption; sea piracy and privateering as instruments in conflicts between states; weapon smuggling; and the production and distribution of narcotics.
3-5 units, Win (Hillmann)

SOC 355. Higher Education and Society — (Enroll in EDUC 355X.)
3 units (Gamport) not given 2005-06

SOC 360. Foundations of Organizational Sociology — Core problems in the sociology of organizations, main theoretical perspectives, and research programs directed at evaluating these perspectives.
5 units (Staff) not given 2005-06

SOC 361. Social Psychology of Organizations — (Same as OB 671.) Social psychological theories and research relevant to organizational behavior. Current research topics in micro-organizational behavior and their relationship to cognitive and social psychology and sociology. Topics
include models of attribution, social comparison and justice, commitment, stereotyping, informal relationships, groups, and leadership. Prerequisites: Ph.D. student, and a graduate-level social psychology course.

4 units, Spr (Staff)

SOC 362. Organization and Environment — (Same as OB 672.) Leading sociological approaches to analyzing relations of organizations and environments emphasizing dynamics, Theoretical formulations, research designs, and results of empirical studies. Prerequisite: Ph.D. student.

4 units, Win (Hannan)

SOC 363. Social and Political Processes in Organizations — (Same as OB 676.) Seminar. Focus is on cognition, attitudes, and behavior in organizations, drawing on psychological and sociological research at the meso level of analysis. Topics vary each year, including organizational learning and decision making; power and conflict; emotions in organizations; mobility and stratification; gender inequality and discrimination; networks; organizational justice and legitimacy; cultural perspectives on organizations. Prerequisite: Ph.D. student.

4 units, Spr (Martin)

SOC 363A. Seminar on Organizational Theory — (Same as EDUC 375A.) For Ph.D. students. Social science literature on organizations. Major theoretical traditions and debates. The intellectual development of the field reflects shifts in emphasis in studies from workers to managers, organizational processes to outputs, and single organizations to populations of organizations. May be repeated for credit.

5 units, Win (Powell)

SOC 363B. Seminar on Organizations: Institutional Analysis — (Same as EDUC 375B.) The fruitfulness of research programs from institutional, network, and evolutionary perspectives in explaining large-scale change in organizational populations and institutions.

3-5 units, Spr (Powell)

SOC 366. Organizational Behavior and Analysis — (Same as EDUC 288X.) Principles of organizational behavior and analysis; theories of group and individual behavior; organizational culture; and applications to school organization and design. Case studies.

4 units, Aut (McFarland)

SOC 367. Institutional Analysis of Organizations — Reading and research on the nature, origins, and effects of the modern institutional system. Emphasis is on the effects of institutional systems on organizational structure.

3-5 units, Aut (Scott)

SOC 369. Network Analysis of Formal and Informal Organizations — (Same as EDUC 316.) The educational applications of social network analysis. Introduction to social network theory, methods, and research applications in sociology. Network concepts of interactionist (balance, cohesion, centrality) and structuralist (structural equivalence, roles, duality) traditions are defined and applied to topics in small groups, social movements, organizations, communities. Applications to data on schools and classrooms. (SSPEP)

4-5 units (McFarland) alternate years, given 2006-07

SOC 374A,B. Research Workshop: Knowledge Networks — (Same as EDUC 374A,B.) Research workshop. Key factors that shape processes of transferring basic knowledge into commercial development. Topics: the sociology and economics of science, intellectual property and patenting issues, university-industry relations, cross-national differences in knowledge transfer and science/technology policy, and entrepreneurial activity in universities. Students must have or develop research projects on these topics. Undergraduate prerequisite: consent of instructor.

A: 1-3 units, Win, B: 2-3 units, Spr (Powell)

SOC 376. Perspectives on Organization and Environment — (Enroll in OB 674.)

4 units, Win (Staff)

SOCIOLOGICAL THEORY

SOC 370A. Sociological Theory: Social Structure, Inequality, and Conflict — The traditions of structural analysis derived from the work of Marx, Weber, and related thinkers. Antecedent ideas in foundational works are traced through contemporary theory and research on political conflict, social stratification, formal organization, and the economy.

3-5 units, Aut (Olzak)

SOC 370B. Social Interaction and Group Process — The analyses of social solidarity and group processes derived from such thinkers as Durkheim, Simmel, and Mead. Antecedent ideas in foundational works are traced through contemporary theory and research on small group processes, social networks, group identification, and related subjects.

3-5 units, Spr (Zelditch)

SOC 372. Theoretical Analysis and Design — Theoretical analysis and the logical elements of design, including the systematic analysis of the logical structure of arguments, the relationship of arguments to more encompassing theoretical or metatheoretical assumptions, the derivation of logical implications from arguments, assessments of theoretically significant problems or gaps in knowledge.

3-5 units, Aut (Zelditch)

RESEARCH METHODS

SOC 374A. Research Workshop: Knowledge Networks — (Same as EDUC 374A.) Research workshop. Key factors that shape processes of transferring basic knowledge into commercial development. Topics: the sociology and economics of science, intellectual property and patenting issues, university-industry relations, cross-national differences in knowledge transfer and science/technology policy, and entrepreneurial activity in universities. Students must have or develop research projects on these topics. Undergraduate prerequisite: consent of instructor.

1-3 units, Win (Powell)

SOC 380. Qualitative Methods — Equivalent to 180/280, but restricted to doctoral candidates in Sociology or Sociology of Education. Methods in contemporary sociological research, focusing on strategies for designing research and analyzing data.

5 units (Staff) not given 2005-06

SOC 381A. Sociological Methods 1A: Computer-Assisted Data Analysis — The computer as research tool. Common data sets in the social sciences. Necessary skills for further courses in sociological methodology.

3 units (Everton) not given 2005-06

SOC 382. Sociological Methodology II: The General Linear Model — The general linear model for discrete and continuous variables. Introduction to model selection, the principles of estimation, assessment of fit, and modeling diagnostics. Prerequisites: 281A,B, or equivalents.

3-6 units, Win (Tuma)

3-6 units, Spr (Tuma)

SOC 387. Frontiers of Quantitative Sociological Research — Advanced topics in quantitative sociological research, especially recently-developed models and methods. Possible topics: robust regression methods, bootstrapping, local likelihood estimation, quantile regression, two-sided logit models, event count models, event sequence models, heterogeneous diffusion models, and models for change in social networks.

3-5 units (Tuma) not given 2005-06

SOC 388. Log-Linear Models — Analysis of categorical data with log-linear and negative binomial models. Measures of fit and hypothesis testing.

5 units, Aut (Rosenfeld)
SOC 389. Mixed Method Research Design and Analysis — Research designs that incorporate qualitative and quantitative analyses in a single project. The tension between thinking case-wise and variable-wise; how the focus on relationships between variables that is the hallmark of the quantitative approach can be brought into qualitative work.
3-5 units (England) not given 2005-06

GRADUATE INDIVIDUAL STUDY

SOC 390. Graduate Individual Study
1-15 units (Staff)

SOC 391. Graduate Directed Research
1-15 units (Staff)

SOC 392. Research Apprenticeship
1-15 units (Staff)

SOC 393. Teaching Apprenticeship
1-15 units, Aut, Win, Spr, Sum (Staff)

SOC 394. Thesis
1-15 units, Aut, Win, Spr, Sum (Staff)

SOC 395. Research Internship — Graduate students integrate internship work into their academic program. Students register in the quarter following internship work and complete a research report outlining their work activity, problems investigated, key results, and follow-up projects they expect to perform. Meets requirements for Curricular Practical Training for students on F-1 visas. Work completed cannot be counted toward the departmental research assistantship requirement.
1-15 units (Staff)

OVERSEAS STUDIES

These courses are approved for the Sociology major and taught at the campus indicated. Course descriptions can be found in the “Overseas Studies” section of this bulletin or in the Overseas Studies Program office, 126 Sweet Hall.

BERLIN

SOC 158S. Theory from the Bleachers: Reading German Sports and Culture
3 units, Win (Junghanns)

FLORENCE

SOC 114S. Migrations and Migrants: The Sociology of a New Phenomenon
5 units, Spr (Allam)

OXFORD

SOC 117W. Gender and Social Change in Modern Britain
4 units, Aut (Palmer)

PARIS

SOC 115S. Immigration in France
4 units, Spr (Maurer)

SANTIAGO

SOC 111S. Social Heterogeneity in Latin America — (Same as SPAN-LIT 164S.)
5 units, Aut (Valdés)

SEMINARS

SOC 107S. Community Reconstruction and Development in Post-Apartheid South Africa — (Same as AFRICAAM 121.) Location: Cape Town, South Africa.
4 units, Win (Stanton)

CENTER FOR SPACE SCIENCE AND ASTROPHYSICS

Director: Robert V. Wagoner

Associate Directors: Umran S. Inan, Roger W. Romani, Philip H. Scherrer

Professors: Roger Blandford (Physics, SLAC), Elliot Bloom (SLAC), W. Gary Ernst (Geological and Environmental Sciences), Lambertus Hesselink (Electrical Engineering), Umran S. Inan (Electrical Engineering), Steven Kahn (Physics, SLAC), Peter F. Michelson (Physics), Vahe Petrosian (Physics), Norman H. Sleep (Geophysics), G. Leonard Tyler (Electrical Engineering)

Associate Professors: Tom Abel, Bruce B. Lusignan (Electrical Engineering), Roger W. Romani (Physics), Howard Zebker (Electrical Engineering, Geophysics)

Assistant Professors: Steve Allen, Sarah Church (Physics), Guenther Walther (Statistics)

Professors (Research): C.-W. Francis Everitt (Hansen Laboratory), Philip H. Scherrer (Physics)

Associate Professor (Research): Chris Chyba (Geological and Environmental Sciences)

Consulting Professors: Alan M. Title, Martin Walt (Electrical Engineering)

SLAC Staff Physicist: Grzegorz Madejski

Center Offices: Varian, Room 316

Mail Code: 94305-4060

Phone: (650) 723-1439

Email: danav@stanford.edu

Web Site: http://www.stanford.edu/group/CSSA/

The center is an interdepartmental organization coordinating teaching and research in space science and astrophysics. Its members are drawn from the Department of Geological and Environmental Sciences in the School of Earth Sciences; the departments of Aeronautics and Astronautics, Electrical Engineering, and Mechanical Engineering in the School of Engineering; the departments of Applied Physics, Physics, and Statistics in the School of Humanities and Sciences; the W. W. Hansen Experimental Physics Laboratory; and the Stanford Linear Accelerator Center. Its membership also includes all faculty and appropriate staff at the Kavli Institute for Particle Astrophysics and Cosmology, located at SLAC and the Physics department.

Research now in progress covers a wide array of investigations and is approached in a variety of ways, including experiments flown on rockets, satellites, and space probes; ground-based observations made from the Hobby-Eberly Telescope, the Wilcox Solar Observatory, and from national observatories; and theoretical research including computer modeling. Topics currently being studied include cosmology, gamma-ray astronomy, gravitation theory and experiments, including gravitational waves (LIGO, LISA), guidance and control, high-energy astrophysics, ionospheric and magnetospheric physics, microwave and infrared astronomy, planetary sciences, solar physics, solar-terrestrial phenomena, stellar structure, theoretical astrophysics, x-ray and extreme ultraviolet astronomy, and the study of life in the universe. Some of these projects involve opportunities for collaboration with scientists at the Lockheed-Martin Research Laboratory through the Stanford-Lockheed Institute for Space Research, the NASA/Ames Research Center, and the SETI Institute.

Stanford is a member of the Universities Space Research Association, a consortium of universities which operates the Lunar Science Institute in
Stanford is the lead institution for the GLAST gamma-ray observatory, Gravity Probe B, and the Solar Oscillations Investigation on the Solar and Heliospheric Observatory spacecraft (SOHO); and participates in the USA X-ray satellite and the Soft X-Ray Telescope program on the Japanese Yohkoh spacecraft.

Stanford is also a member of the Hobby-Eberly Telescope Consortium which has constructed a 10-meter telescope at the McDonald Observatory of the University of Texas. Full science operations are in progress.

The facilities of the center are available to any interested and qualified student, who must be admitted by and registered in a department. The departments of Aeronautics and Astronautics, Applied Physics, Electrical Engineering, Mechanical Engineering, and Physics offer opportunities leading to an M.S. or Ph.D. degree for work in space science or astrophysics. The center also offers opportunities to undergraduates who may, for instance, participate in research projects in their junior or senior years, on a part-time basis during the school year or on a full-time basis during the summer. The Astronomy Course Program operates a small student observatory where students may gain practical experience in astronomical observing. The course list at the end of this entry includes courses of interest to undergraduates, as well as courses primarily of interest to graduate students.

Further information is available from the director.
The Language Center is designed to enable students to develop a concentration in a particular area of interest, accompanied by basic work in other areas. Students are normally expected to declare the major during the sophomore year, but it is possible to declare during the junior year as well, particularly after overseas study in Santiago, Chile.

The major in Spanish requires 50 units in addition to completion of one of the second-year language sequences, or equivalent:

- **SPANLANG 21B, 22B, 23B, Second-Year Spanish for Heritage Language, or a combination of the above second-year language courses.**
- For area 5 (Portuguese language and Luso-Brazilian literature and culture), the following courses may replace the ones above: all Portuguese classes count toward the major in area 5:
 - PORTLANG 1A, 2A (or PORTLANG 1, 2, 3)
 - PORTLANG 11A, 12A

Course work for the major is grouped under the following subject areas; students are required to take four courses in one of these areas, two courses in a second and one in a third. Students in area five are required to take six courses in their main area, one course in a second area, and one course in a third area:

1. **Latin American/Caribbean studies (including Brazil)**
2. **Iberian Studies (including Portugal)**
3. **U.S. Latino/Chicano studies**
4. **Language in the Spanish-speaking world**
5. **Portuguese language and Luso-Brazilian literature and culture**

Course work for the major in areas 1-4 must include:

- **One of the language sequences or equivalent (see above).**
- **One 100-level Brazilian literature class.**
- **One 200-level Brazilian literature class.**

All courses in the department numbered 101 or above count toward the major. With the consent of the student’s adviser, up to 10 units of relevant course work outside the department and up to 10 units of course work done in English may be counted toward the major, more if the major subject area is Latino/Chicano studies. With the consent of the adviser, up to 25 units of relevant course work taken abroad may be counted toward the major. All courses must be taken for a letter grade. SPANLANG 100, Advanced Oral Communication, does not count toward the major. Courses taken credit/no credit do not count toward the major.

How to Declare a Major — Students interested in declaring a Spanish major should see the majors and minors coordinator, Josué Cartagena-Calderón, or the undergraduate adviser, Lúcia Sá.

Double Majors — The major in Spanish and Portuguese is designed to combine readily with a second major in another field and with study abroad. Students may not count the same course to fulfill requirements in both majors.

Courses for Heritage Language Speaker — The Language Center offers a series of second- and third-year courses specially designed for students who grew up in homes where Spanish is spoken and who wish to develop their existing linguistic strengths. See the “Language Center” section of this bulletin for these courses. The suffix ‘B’ in course numbers indicates these courses.

MINORS
The department offers two minor concentrations. With the consent of the student’s adviser, up to 10 units of relevant course work outside the department, and up to 15 units of relevant course work taken abroad, may count toward the following minors:

LANGUAGE AND CULTURE STUDIES
This minor is intended for students who wish to focus on developing advanced linguistic competence in Spanish and/or Portuguese, or who wish to combine acquisition of linguistic competence with the study of the literature, thought, culture, or language systems of the Spanish- or Portuguese-speaking world.

Requirements — Thirty units of course work at the level of SPANLANG 11 or above, and/or in Portuguese at any level. Students must take at least three courses in one of the following subject areas (note that eligible courses change annually):

- 1. Latin American and Iberian Studies; recommended: SPANLIT 133, 136, 139, 149, 173, and 194; and any SPANLIT course numbered 213-279.
- 3. Advanced Language: any combination of second-year Spanish and/or first- and second-year Portuguese, plus a selection of 100- and 200-level language courses; recommended: SPANLIT 207.
- 4. Luso-Brazilian Language and Culture; recommended: PORTLANG 11A, 12A; PORTLIT 268.

CULTURE AND AREA STUDIES
This minor is intended for students who wish to study the literature, culture, or thought of the Spanish- and Portuguese-speaking world without necessarily acquiring proficiency in Spanish or Portuguese language. Students choosing this minor are strongly encouraged to take language courses in Spanish or Portuguese, including reading courses (such as SPANLANG 50 or PORTLANG 50). Such courses count toward, but are not required for, this minor.

Requirements — Thirty units of course work in Latin American, Iberian, U.S. Latino/Chicano, or Luso-Brazilian literature, culture, language, and thought studied in the original or in translation at the level of SPANLANG 11 or above.

HOW TO DECLARE A MINOR
For minors in the School of Humanities and Sciences, students must complete their declaration of the minor no later than the last day of the quarter two quarters before degree conferral. For example, a student graduating in June (Spring Quarter) must declare the minor no later than the last day of Autumn Quarter of senior year. Students declaring a minor should meet with the majors and minors coordinator, Josué Cartagena-Calderón.

HONORS PROGRAM
Spanish and Portuguese majors with a grade point average (GPA) of 3.3 (B+) or better in major courses may apply to the honors program in Spring Quarter of the junior year. Students should submit an application for the honors program and a proposal outline and may enroll for 2 units of credit in DLCL 189, Honors Thesis Seminar, for the drafting or revision of the thesis proposal and preliminary research. Honors students are encouraged to participate in the honors college coordinated by the Division of Literatures, Cultures, and Languages and offered at the end of the summer before the senior year. In Autumn Quarter of the senior year, students must enroll in DLCL 189, a 5-unit seminar that focuses on researching and writing the honors thesis. Students then enroll for 5 units of credit in SPANLIT 198 while composing the thesis during Winter Quarter. Each honors student must write an honors essay of 20-25 pages under the direction of a faculty member who serves as adviser, and the completed thesis...
must be submitted by the end of Winter Quarter. A total of 10-12 units are awarded for completion of honors course work, independent study, and the finished thesis. Consult the undergraduate adviser for additional information on the honors program.

OVERSEAS STUDIES

All majors are strongly encouraged to study abroad. To transfer credits from non-Stanford programs abroad, consult the Office of the Registrar. Depending on course selections, up to 25 units of course work taken abroad may be applied toward the major and 15 units toward the minor in Spanish. Students planning study abroad, or returning from study programs, are encouraged to consult with the majors and minors coordinator or an undergraduate adviser to coordinate the course work from abroad with their degree program.

Both the department and Bechtel International Center maintain information banks on study abroad programs. Stanford sponsors the following options.

STANFORD IN SANTIAGO, CHILE

The Stanford Program in Santiago, Chile, requires one year of college Spanish to begin study in Autumn, one year plus one quarter to begin in Winter, and completion of two years to begin in Spring. Course work in Santiago is done entirely in Spanish, with the opportunity to attend classes at Chilean universities during Spring Quarter. Detailed information, including curricular offerings, is listed in the “Overseas Studies” section of this bulletin, or on the Overseas Studies Program web site at http://osp.stanford.edu. Internships and research opportunities may be arranged for two quarter students.

BRAZIL AND PORTUGAL

The University maintains a relationship with the Universidade Estatal do Rio de Janeiro in Brazil. Students interested in study in Brazil or Portugal should contact Professor Sá or Lyris Wiedemann.

SPAIN

The Department of Spanish and Portuguese recommends study in Spain with the Hamilton College Academic Year in Spain program, administered by the Department of Romance Languages of Hamilton College in cooperation with faculty members of Williams and Swarthmore colleges. Two distinguishing features of this program are: (1) Spanish must be spoken at all times, both in and outside of class; all students are required to sign a pledge to this effect before their arrival in Madrid; (2) the arrangement of independent study projects in lieu of regular courses. The program is based in Madrid, where the cultural, educational, social, and geographical benefits are optimal.

An additional excellent program recommended by the department is the Madrid campus of St. Louis University. This program has many of the features of the Hamilton College program. In addition, it has its own buildings and facilities located on the outskirts of the University of Madrid campus. This is the only U.S. overseas studies program in Spain that has received full accreditation by the Spanish authorities.

Students interested in study in Spain should consult Professor Haro or Predmore.

TEACHING CREDENTIALS

For information concerning the requirements for teaching credentials, see the “School of Education” section of this bulletin and the credentials administrator, School of Education.

COTERMINAL B.A. AND M.A.

The requirements for the coterminal B.A. are the same as those outlined below for the M.A. No course can count for both the B.A. and M.A. degrees. Contact Graduate Admissions at the Registrar’s Office for information.

For University coterminal degree program rules and University application forms, see http://registrar.stanford.edu/publications/#Coterm.

STEP COTERMINAL TEACHING PROGRAM

The Department of Spanish and Portuguese, in cooperation with the Stanford Teacher Education Program (STEP) of the School of Education, offers a special course of study for students interested in becoming teachers. By following this course of study in Spanish Language, Literatures, and Cultures and enrolling in the STEP Coterminal Teaching Program, students can, after 5 years, receive a B.A. in Spanish and Portuguese, an M.A. in Education, and a California Teaching Credential.

The Spanish Language, Literatures, and Cultures curriculum consists of approximately 50 quarter units in addition to demonstrated proficiency in the language, defined as listening, speaking, reading, and writing at a level equivalent to advanced on the ACTFL Oral Proficiency Interview. This course of study fulfills all the major requirements of the Department of Spanish and Portuguese and includes coursework in linguistics and language diversity studies, the history of the Spanish-speaking world, and Spanish literature and cultures.

Students enrolled in the STEP Coterminal Teaching Program are also expected to complete a series of core courses during their undergraduate years. These include one course in developmental psychology; one course in cognitive psychology; one course in the social foundations of education; one course on the role of race, class, and ethnicity in American society; a structured internship experience in a community-based organization serving youth and/or their families; and a teaching practicum offered by the School of Education.

For more information about this option, please consult Professor Valdés and/or the coordinator of the STEP Coterminal Teaching Program in CERAS 309; (650) 725-6321 or (650) 725-0652.

GRADUATE PROGRAMS

University requirements for the M.A. and Ph.D. degrees are discussed in the “Graduate Degrees” section of this bulletin.

MASTER OF ARTS IN SPANISH AND PORTUGUESE

This terminal M.A. degree program is for students who do not intend to continue their studies through the Ph.D. degree. Students in this program may not apply concurrently for entrance to the Ph.D. program. Students must complete a minimum of 45 graduate-level units, 36 of which must have a grade point average (GPA) of 3.0 or above.

The requirements of the M.A. are:

1. One linguistics course (LINGUIST 203, 204, 205, 206, 207), one course in language pedagogy, and one course in literary or cultural theory
2. Two 200-or-above courses in Latin American or Latino/Chicano literature
3. Two 200-or-above courses in Peninsular literature or Luso-Brazilian literature
4. Reading knowledge of one foreign language other than Spanish (preferably Portuguese for students concentrating in Spanish)

Independent study courses (SPANLIT 299, 399) and crosslisted courses originating outside the department may not be used to fulfill requirements except by permission of one of the graduate advisers, Yvonne Yarbro-Bejarano or Gordon Brotherston.

In addition, students may take approved courses in related fields such as classics, comparative literature, education, history of art, linguistics, modern thought, and philosophy.

DOCTOR OF PHILOSOPHY

The requirements of the Ph.D. are:

1. 135 units of graduate-level course work with a grade point average (GPA) of 3.0 (B) or above. Units completed toward the M.A. degree can be counted for the Ph.D.
2. One course in Spanish linguistics, one course on methods of teaching Spanish, and one course on introduction to literary theory
3. A reading knowledge of Portuguese and one other foreign language
4. The qualifying paper, the comprehensive, and the University oral examinations, as described below
5. Teaching of three to five courses in the department
6. Completion of a dissertation

Independent study courses (299, 399) and crosslisted courses originating outside the department may not be used to fulfill requirements except by consent of the graduate adviser. For basic residency and candidacy requirements, see the “Graduate Degrees” section of this bulletin. For further information, consult the department’s Graduate Student Handbook.

In preparation for teaching, Ph.D. candidates must take APPLLING 201 and/or SPANLIT 300 in the first year.

In consultation with the adviser, students select one major field of study from the following:

1. Spanish Literature of the Golden Age
2. Modern Spanish Literature
3. Spanish American Literature to Independence
4. Spanish American Literature of the 19th and 20th Centuries
5. Chicano Literature and Culture.

In addition, candidates select two secondary areas of study outside the major field from the following:

1. Spanish Medieval Literature
2. Spanish Literature of the Golden Age
3. Modern Spanish Literature
4. Spanish American Literature of the Colonial Period
5. Spanish American Literature from Independence
6. Chicano Literature
7. Literary Theory
8. Linguistics
9. Spanish American Film
10. Brazilian Literature

At least four courses must be taken in the major field of study. At least two courses must be taken in each secondary area. Students whose major field is in Spanish-American or Latino/Chicano Literature must choose one secondary area in Peninsular literature and vice versa. One secondary area of concentration may be taken outside the department in consultation with the adviser.

In addition to the department’s course offerings, students may take relevant courses with the approval of their adviser in other departments and programs, such as the graduate programs in Comparative Literature, Feminist Studies, History, Humanities, or Modern Thought and Literature. It is also possible to complete a minor in another department with approval of the adviser. Normally, not more than 25 units are taken outside the department.

After the first year of study, the student’s progress is evaluated by the faculty to determine whether continuation to the Ph.D. is recommended and whether there are particular areas where improvement is needed. For this evaluation, students submit a research paper of approximately 20 pages by the third week of Winter Quarter of the second year. The requirements for this paper are outlined in the Graduate Student Handbook.

If approval of the qualifying paper is granted, the student should file a formal application for candidacy no later than the end of the second year, as prescribed by the University. Course requirements are usually completed by the third year of study. A written comprehensive examination on the major field and secondary areas is then taken. The examination is based on a list of readings, selected in consultation with the adviser, which integrates major and secondary topics in both Peninsular and Latin American or Latino/Chicano Studies. At this time, students hand in a long research paper to be evaluated by the faculty. For further details, consult the Graduate Student Handbook.

Following the comprehensive examination, students should find a topic requiring extensive original research and request that a member of the department serve as dissertation adviser. The student must complete the Reading Committee form and request that the chair approve a committee to supervise the dissertation. The committee may advise extra preparation within or outside the department, and time should be allowed for such work. The University oral examination usually takes place one or two quarters after passing the comprehensive examination. The oral examination covers plans for the dissertation based on a prospectus approved by the committee (15 to 20 pages), and may be taken in English, Spanish, or Portuguese.

The dissertation must be submitted to the reading committee in substantially final form at least four weeks before the University deadline in the quarter during which the candidate expects to receive the Ph.D. degree. Ph.D. dissertations must be completed and approved within five years from the date of admission to candidacy. Candidates taking more than five years must apply for reinstatement of candidacy.

PH.D. MINOR

For a minor in Spanish or Portuguese, the student must complete 25 units, with a grade point average (GPA) of 3.0 or above, selected from courses numbered 200 or higher.

Students who choose a minor in another department should consult with advisers in that department.

JOINT PH.D. PROGRAMS

The Department of Spanish and Portuguese participates in the Graduate Program in Humanities leading to a joint Ph.D. degree in Spanish and Humanities. For a description of that program, see the “Interdisciplinary Studies in Humanities” section of this bulletin.

COURSES

WIM indicates that the course satisfies the Writing in the Major requirements.

Students interested in literature and literary studies should also consult course listings in the departments of Asian Languages, Classics, Comparative Literature, English, French and Italian, German Studies, and Slavic Languages and Literatures, in the Program in Modern Thought and Literature, and in the Division of Literatures, Cultures, and Languages.

OVERVIEW

1. Stanford Introductory Seminars, freshman and sophomore preference
2. Literature, Culture, Linguistics, and Theory (120-399)
 a) Undergraduate Courses (130-199)
 b) Courses for Advanced Undergraduates and Graduates (200-299)
 Language, Linguistics, and Theory (200-212)
 Peninsular Literature (213-239)
 Latin American Literature (240-279)
 Latino/Chicano Literature (280-289)
 Individual Work (299)
3. Graduate Seminars (300-399)
 a) Linguistics, Methodology, and Literary Theory (300-313)
 b) Peninsular Literature (314-339)
 c) Latin American Literature (340-369)
 d) Luso-Brazilian Literature (370-379)
 e) Chicano Literature (380-389)
 f) Individual Work (399)
 g) Dissertation Research (802)

Courses bearing the suffix “E” are taught in English and do not assume competence in another language. All other courses require some knowledge of Spanish or Portuguese, and may be given in those languages or bilingually.

SPANISH AND PORTUGUESE LANGUAGE COURSES

The following courses in Spanish and Portuguese language instruction represent a typical sequence for three years of Spanish and Portuguese language study. Majors and prospective majors should consult the requirements for a B.A. in Spanish or Portuguese above. For descriptions, other information, and additional courses including special emphasis, intensive, summer, and activity courses at the Yost House, see the “Language Center” section of this bulletin.
SPANLANG 1,2,3. First-Year Spanish
5 units, Aut, Win, Spr (Guzmán, Schell, Urruela, Won, Zaragoza, Staff)

SPANLANG 11C,12C,13C. Second-Year Spanish: Cultural Emphasis
4-5 units, Aut, Win, Spr (Kenna, Schell, Urruela, Won)

SPANLANG 100. Advanced Oral Communication
3 units, Aut, Win, Spr (Staff)

SPANLANG 101. The Structure of Spanish
3-5 units, Aut, Win (Sierra)

SPANLANG 102. Composition and Writing Workshop
3-5 units, Aut (Kenna)

PORTLANG 1,2,3. First-Year Portuguese
5 units, 1: Aut, 2: Win, 3: Spr (Delgado)

PORTLANG 11A,12A. Accelerated Second-Year Portuguese
3-5 units, Aut, Win, Spr (Delgado, Wiedemann)

STANFORD INTRODUCTORY SEMINARS

SPANLIT 101N. Visual Studies and Chicana/o Art — Stanford Introductory Seminar. Preference to freshmen. Images, context, and spectatorship. Who is seen and not seen in visual contexts? Whose gaze is privileged? Which aspects of the past are circulated as visual representations? Whose fantasies are fed by which visual images? In what circumstances is looking and returning the gaze an act of political resistance? How do people interact with images to make and remake the world in the shape of their own desires and fantasies? GER:DB-Hum, EC-AmerCul
3-5 units, Win (Yarbro-Bejarano)

SPANLIT 111N. Contemporary Spain: The Challenge of Change — Stanford Introductory Seminar. Preference to freshmen. Years marked by experimentation and change in life in Spain. Society and culture from postwar times and the transition years from the Franco regime to the present democratic state. Student research project. Prerequisite: AP score of 4 or 5 in Spanish language or literature, or equivalent. GER:DB-Hum
4 units, Aut (Haro)

3-5 units, Win (Predmore)

SPANLIT 115N. Growing up Bilingual — Stanford Introductory Seminar. Preference to freshmen. How do people become bilingual? When and how do people use two languages in their everyday lives? What kinds of bilinguals are there? Intended for students who have grown up in bilingual communities or households, or who have studied Spanish formally for three or more years at the secondary level. Field project involving students studying in nearby Latin community.
3-5 units, Aut (Valdés)

SPANLIT 165Q — Machado, Jiménez, Lorca: An Exploration of Self and Society in 20th-Century Spanish Lyric Poetry — Stanford Introductory Seminar. Preference to sophomores. Focus is on: Antonio Machado’s Soledades, galerías y otros poemas, and Campos de Castilla; Juan Ramón Jiménez’ Diario de un poeta recien casado; and Federico Garcia Lorca’s Canciones. Prerequisite: reading knowledge of Spanish. Recommended: 100-level SPANLIT courses or equivalent.
3-5 units, Win (Predmore)

SPANLIT 178N. From Inside the First World: Women of Color Playwrights Re-mapping the U.S. — (Same as DRAMA 17N.) Stanford Introductory Seminar. Preference to freshmen. From the 60s to the present. Playwrights who create an aesthetic and political space outside the geopolitics of white capitalist patriarchy through social issues including the legacy of slavery and forced immigration, dislocation and relocation, diasporic ties, indigenous inheritance, sexuality, self-censorship, and the war on terror. Students create and perform in public short dramatic pieces informed by the playwrights’ style and subject matter. GER: DB-Hum, EC-AmerCul
3 units, Aut (Morgana)

PORTLIT 193Q, Spaces and Voices of Brazil through Films — Stanford Introductory Seminar. Preference to sophomores. Brazilian culture through films that portray its five cultural-geographical regions. Focus is on movies and complementary texts on Brazilian culture to understand the forces that shaped the multicultural reality of modern Brazil.
3-4 units, Aut (Wiedemann)

LITERATURE, CULTURE, LINGUISTICS, AND THEORY

UNDERGRADUATE

SPANLIT 42. Dances of Latin America — (Enroll in DANCE 42.)
2 units, Aut (Cashion)

SPANLIT 43. Afro-Brazilian and Afro-Peruvian Dance — (Enroll in DANCE 43.)
2 units, Win (Cashion)

SPANLIT 105C. The Literature of the Americas — (Enroll in COMP-LIT 142, ENGLISH 172E.)
5 units (Greene, Saldívar) not given 2005-06

3-5 units, Spr (Cartagena-Calderón)

SPANLIT 136. Introduction to Modern Peninsular Spanish Literature — Representative works of Spanish literature from the 1830s to the 1930s: Larra, Espronceda, Bécquer, Rosalía de Castro, Galdós, Unamuno, Valle-Inclán, Machado, and García Lorca. Emphasis is on texts related to the problem of Spain within the democratic tradition of Spanish liberalism. In English. GER:DB-Hum
3-5 units, Aut (Kenna)

SPANLIT 139. Spain Reimagined: the Generation of 1898 — New theories on the contribution of Spain’s Generation of 1898; new light on the role of philosophy, politics, religion, regenerationism, and Europeanization in intellectuals such as Giner de los Ríos, Joaquín Costa, Lucas Mallada, Ganiyey, Unamuno, Valle-Inclán, Ramiro de Maetzu, and Antonio Machado. Sources include essays, novels, and poetry.
3-5 units, Win (Fernández-Medina)

SPANLIT 140. Introduction to Methods of Literary and Cultural Analysis — Notions, terminologies, methods, tools, and resources of literary and cultural analysis. Topics include: literature and material culture; the formation of cultural identities; the intersection of aesthetics and nation building; popular and mass discourses; the re-democratization of authoritarian societies; and globalization. Sources include readings from peninsular Spanish, Latin American, and Latin/o literary texts, and other forms of artistic expression including film, music, and the visual arts.
3-5 units, Aut (S)
SPANLIT 149. The Mexican Novel and the Cinema—(Same as LATINAM 135.) Novels dealing with the Mexican Revolution from the revolutionary period to the 80s. Adaptations to film and television. Relationship among artistic languages.

5 units, Spr (Glantz)

SPANLIT 173. Literature, Consumption, and Revolution in Cuba—Preference to freshmen. How issues of consumption were articulated by Cuban authors and artists before, during, and after the revolution of 1959. How revolutionary discourse is constructed around the unstable relation between commerce and culture. Relationships between the texts or works of art and their circulation and distribution, and between consumption and gender, racial, and sexual identity. Commodification of the nation and nationalization of the commodities. Readings: José Martí, Fernando Ortiz, Reinaldo Arenas, Lezama Lima, and Nancy Morejón; movies by Gutiérrez Alea; and visual work by Wilfredo Lam. GER:DB-Hum

3-5 units, Spr (Rosa)

SPANLIT 181S. U.S.-Mexico Borderlands in Comparative Perspective—(Enroll in CHICANST 181S, CSRE 181S.)

5 units, Spr (Palafox)

SPANLIT 194. Women in Film and Film by Women: A Different Gaze?—Female representation in Hispanic films from male and female perspectives. Is there a distinctively feminine approach to filmmaking? How do female directors’ objectives, preoccupations, and aesthetics differ? Do women looking at women project less stereotypical images? Are male directors becoming more sympathetic to the woman’s plight? Can a woman director be one of the boys? Spanish, Latin American, and Chicano films. GER:DB-Hum, EC-Gender

3-5 units, Aut (Haro)

SPANLIT 199. Individual Work—Open only to students in the department, or by consent of instructor. Spanish and Portuguese.

1-12 units, Aut, Win, Spr, Sum (Staff)

ADVANCED UNDERGRADUATES AND GRADUATE STUDENTS

LANGUAGE, LINGUISTICS, AND THEORY

SPANLIT 207. Theory and Issues in the Study of Bilingualism—(Same as EDUC 149/249.) Sociolinguistic perspective. Emphasis is on typologies of bilingualism, the acquisition of bilingual ability, description and measurement, and the nature of societal bilingualism. Prepares students to work with bilingual students and their families and to carry out research in bilingual settings. (SSPEP) GER:DB-Hum

3-5 units, Aut (Valdés)

SPANLIT 214. Introduction to Ladino Literature—(Enroll in JEWISHST 247B.)

4 units, Win (Borovaya)

PENINSULAR LITERATURE

SPANLIT 222. The Problem of Two Spains: Literature and Society in 19th-Century Spain—Representative literary figures including Larra, Espronceda, Zorrilla, Rosalía de Castro, Bécquer, and Galdós. Modern lyric poetry and the modern realist novel against the background of Napoleonic invasions, the loss of overseas colonies, two Carlist civil wars, and frustrated attempts to establish the First Spanish Republic.

3-5 units, Spr (Predmore)

SPANLIT 224. The Spanish Republic, the Civil War, and the Aftermath—The significance of the civil war in Spanish, European, and world history. The International Brigades. The effect of war on the literary and cultural life of the country and the response of writers from Spain (Alberti, Lorca, Machado) and Latin America (Guillón, Neruda, Vallejo). Literary protest during the Franco regime by Aleixandre, Alonso, Cela, and Sender.

3-5 units, Spr (Predmore)

LATIN AMERICAN LITERATURE

SPANLIT 243. Cuba from Che to Elian in Literature and Film—The development of literature, film, art, and historical discourse in Cuba since 1959 as related to daily life. How these arts worked for or against political power and created heroes and heroines.

3-5 units, Win (Ruffinelli)

3-5 units, Win (Ruffinelli)

SPANLIT 263. Andean Literatures—The constitutive bases of Andean literatures in forms including oral narrative, poetry writing, music, dance, weaving, and ritual. Rethinking Western definitions of literature to recognize Andean types of textuality. Texts include José María Arguedas’s Los ríos profundos, El Inca Garcilaso’s Comentarios reales, and Felipe Guaman Poma de Ayala’s Nueva corónica y buen gobierno. Theories of transculturation, heterogeneity, textual ontology, textual rights, and heteroglossia.

3-5 units, Spr (Rowe)

SPANLIT 264. Intellectuals in Latin America: Between Interpretation and Reality—Configurations and functions of Latin American intellectuals in the 19th and 20th centuries. The relationship of the intellectual with political power.

3-5 units, Aut (Laera)

SPANLIT 268. Monstrous Fictions: Nightmares and Fantasies in Contemporary Latin American Narrative—Contemporary stories in which the ordinary world is moved by the irruption of some kind of monstrousity of bodies, spaces, or personal ties, or the coexistence of an aberrant double.

3-5 units, Win (Laera)

SPANLIT 269. Borges—Short stories, poetry, and essays. His works as literature and as a paradigm for the subsequent generation, utilizing film adaptations of the short stories to make comparisons between two different aesthetic expressions.

3-5 units, Win (Rosa)

SPANLIT 274. Say You Want a Revolution: Argentina and Brazil in the Sixties—Representations of the revolutionary subject in literary and aesthetic works at a moment of political antagonism. Aesthetic languages to examine cultural practices and modes through which literature and aesthetics intervene in the configuration of Hispanic American imaginaries.

3-5 units, Aut (Aguilar)

SPANLIT 275. Market and Culture in the Caribbean—How the Caribbean has been imagined and lived through textual and cultural strategies, reacting to and influencing political and economic scenarios. How the image of the Caribbean is constructed from spatial and social locations and how the cultural landscape has recently been transformed. Issues: cultural geography; migration; urban problems; and popular cultures, race, and feminism. GER:DB-Hum

3-5 units, Spr (Rosa)

SPANLIT 278. Senior Seminar: The Picarresco Across the Centuries—16th- and 17th-century picarresque fiction as one of Spain’s major contributions to world literature and a still influential literary mode. Its characteristics, antecedents, and evolution to the present. The picaro/a as social outcast; issues of subversion, social reform, justice, satirical power, and ironic criticism. Sources include works from Spain and Latin America.

3-5 units, Win (Cartagena-Calderón)

LATINO/CHICANO LITERATURE

SPANLIT 283. Chicana Feminisms—(Graduate students register for 383.) From the 70s to the present. Comparison to frameworks of social inequality including race, class, and sexuality. Readings include Alma García, Ana Nieto-Gómez, Marta Cotera, Elizabeth Martínez, Cherríe Moraga, Gloria Anzaldúa, Chela Sandoval, Ana Castillo, Sonia...
SPANLIT 287. Teatro America Workshop: The Theater of Native/Chicano America — (Same as DRAMA 179A.) A Chicana feminist and indigenist approach to the theory and practice of performance. Introduction to writing for the stage. Readings include plays, stories, and performance texts by Chicano/a and Native American writers. Public performance. Prerequisite: consent of instructor. GER:DB-Hum
5 units, Win (Yarbro-Bejarano)

SPANLIT 289. The Body in Chicana/o Cultural Representations — What is at stake in representations of the body? Social meanings of the body as depicted in Chicana/o cultural texts including literature and visual art. The body as: location of knowledge and resistance; target and challenger of racism, misogyny, class oppression, and homophobia; conforming to or refusing discourses of the ideal citizen; and site and agent of desire. Writers and artists may include Laura Aguilar, Oscar Casares, Arturo Islas, and Cherríe Moraga.
5 units, Win (Yarbro-Bejarano)

INDIVIDUAL WORK
PORTLIT 299. Individual Work — Open to department undergraduates or graduates by consent of professor. May be repeated for credit.
1-12 units, Aut, Win, Spr, Sum (Staff)

SPANLIT 299. Individual Work — Open to department undergraduates or graduates by consent of professor. May be repeated for credit.
1-12 units, Aut, Win, Spr, Sum (Staff)

GRADUATE SEMINARS
Open to undergraduates with consent of instructor.

LINGUISTICS, METHODOLOGY, AND LITERARY THEORY
5 units, Spr (Valdés)

PENINSULAR LITERATURE
SPANLIT 319. Don Quijote and Cultural Studies — The impact of cultural studies on early modern Spanish literature and Cervantes’ Don Quijote. The cultural and confictive construction of gender, sexuality, ethnicity, and other formative features of early modern Spanish identity; materialist practices; empire and nation building; ideological formation and cultural authority in Counter-Reformation Spain.
3-5 units, Aut (Cartagena-Calderón)

LATIN AMERICAN LITERATURE
SPANLIT 333. The Verse Epic of the Americas — Since independence, major attempts have been made to write a Great Song of America or an epic commensurate with the geography and history of the continent. Focus is on such attempts in Spanish, Portuguese, and English. Pablo Neruda’s 1950 Canto general, the most celebrated success to date.
3-5 units, Spr (Brotherston)

SPANLIT 342. Literature and Political Economy in Latin America’s Long 19th Century — The relationship between literature and forms of exchange in Latin America during the republican period. From the first loans taken by the new states to the New York stock market crash, how Latin American writers reflected on commerce, finance, credit, and new forms of consumption and property, and how their literary production responded to them. Primary readings include Andres Bello, Bilbao, Gómez de Avellaneda, and Jorge Lu’s Borges. Theoretical texts include Simmel, Mauss, J. J. Goux, and Rama.
3-5 units, Win (Rosa)

SPANLIT 346. Where is the Money? Economy and Fictional Imagination in Latin American Romances of the 19th Century — How fiction represents money, and how those social, textual, and symbolic representations make it possible to admire or criticize a merchandised world and to compensate for the social anxiety produced by economic transformations.
3-5 units, Win (Laera)

SPANLIT 354. Censorship and Culture in Argentina, Chile, and Uruguay: Literature, Cinema, and Music — Military dictatorships in the South Cone during the 80s repressed artistic expressions as subversive and dangerous. Films such as La batalla de Chile, literary works such as Nanina and El guardiaespaldas, and popular songs, forbidden because they told an unofficial story.
3-5 units, Spr (Raffinelli)

SPANLIT 355. Gender Violence in Latin American Literature — Undergraduates register for LATINAM 136.) Women writers who dealt with gender-based social inequities and contradictions. Writers include Sor Juana Inés de la Cruz, María de Zayas, Nellie Campobello, and Elena Garro.
3-5 units, Aut (Glantz)

SPANLIT 360. Marginal Identities: Representations of Bandits and Prostitutes in Latin American — The relationship between fiction and identity from 1880 to the present in Latin American romances. Representations of the late 19th-century Mexican or Argentine outlaw or 90s prostitutes as privileged configurations to exhibit transgression and marginality; how they embody forms of social, cultural, and political crisis, and how fiction intervenes in culture and politics.
3-5 units, Aut (Laera)

3-5 units, Win (Rowe)

SPANLIT 364. The Mexican Codices: An Introductory Reading — The pre-European books or codices of Mexico as a neglected chapter of world literature. How they illuminate early America. Their impact on Western knowledge and imagination since first contact. How they help in reconsidering what constitutes script and visible language. The principles of reading and interpreting them. In English and Spanish.
3-5 units, Win (Brotherston)

SPANLIT 369C. Introduction to Graduate Studies: Criticism as Profession — (Enroll in COMPLIT 369, GERLIT 369.)
5 units, Aut (Berman)

CHICANO LITERATURE
SPANLIT 381. Working with the Archive: Chicana/o Culture — Archival research in Chicana/o writing. Theories of the archive and the position of the investigator. Presentation of research findings from the writers’ personal papers held in Special Collections. Writers include Arturo Islas, Cherríe Moraga, Bernice Zamora, Harry Gamboa, Jr., Juan Felipe Herrera, Raúl Salinas, Ricardo Sánchez, and Jimmy Santiago Baca. In English.
3-5 units (Yarbro-Bejarano) not given 2005-06

SPANLIT 383. Chicana Feminisms — (Same as 283; see 283.)
3-5 units, Spr (Yarbro-Bejarano)
INDIVIDUAL WORK
PORTLIT 399. Individual Work — For Spanish and Portuguese department graduate students only. Prerequisite: consent of instructor.
1-12 units, Aut, Win, Spr, Sum (Staff)

SPANLIT 399. Individual Work — For Spanish and Portuguese department graduate students only. Prerequisite: consent of instructor.
1-12 units, Aut, Win, Spr, Sum (Staff)

OVERSEAS STUDIES
Courses approved for the Spanish and Portuguese majors and taught overseas can be found in the “Overseas Studies” section of this bulletin, or in the Overseas Studies office, 126 Sweet Hall.

SANTIAGO
SPANLIT 118X. Chilean Society through the Lens of Cinema
3-5 units, Aut (Ruffinelli)

SPANLIT 155X. Contemporary Chilean Women Writers
3-5 units, Win (Haro)

SPANLIT 164S. Social Heterogeneity in Latin America — (Same as SOC 111S.)
5 units, Aut (Valdés)

SPANLIT 166S. Cultural Modernization: The Case of Chile
5 units, Win (Micco)

SPANLIT 290Z. Modernization and Culture in Latin America — (Same as ANTHSCI 104X.)
5 units, Aut (Subercaseaux)

STATISTICS
Emeriti: Theodore W. Anderson, Albert Bowker, M. Vernon Johns, Lincoln E. Moses, Ingram Olkin, Charles Stein
Chair: Bradley Efron
Associate Professor: Guenther Walther
Assistant Professor: Jonathan Taylor
Associate Professor (Teaching): Susan Holmes
Courtesy Professor: Richard A. Olshen
Courtesy Associate Professors: Simon Jackman, David Rogosa
Mail Code: 94305-4065
Phone: (650) 723-2620
Web Site: http://www-stat.stanford.edu

Courses given in Statistics have the subject code STAT. For a complete list of subject codes, see Appendix.

The department’s goals are to acquaint students with the role played in science and technology by probabilistic and statistical ideas and methods, to provide instruction in the theory and application of techniques that have been found to be commonly useful, and to train research workers in probability and statistics. There are courses for general students as well as those who plan careers in statistics in business, government, industry, and teaching.

The requirements for a degree in statistics are flexible, depending on the needs and interests of the students. Some students may be interested in the theory of statistics and/or probability, whereas other students may wish to apply statistical and probabilistic methods to a substantive area. The department has long recognized the relation of statistical theory to applications. It has fostered this by encouraging a liaison with other departments in the form of joint and courtesy faculty appointments: Economics (Anderson), Education (Olkin, Rogosa), Electrical Engineering (Cover), Geological and Environmental Sciences (Switzer), Health Research and Policy (Efron, Hastie, Johnstone, Moses, Olshen, Tibshirani, Wong), Mathematics (Dembo, Diaconis), Political Science (Jackman), and the Stanford Linear Accelerator (Friedman). The research activities of the department reflect an interest in both applied and theoretical statistics, and probability. There are workshops in biology-medicine and in environmental factors in health.

In addition to courses for Statistics majors, the department offers a number of service courses designed for students in other departments. These tend to emphasize the application of statistical techniques rather than their theoretical development.

The Department of Statistics is well equipped for statistical applications and research in computational statistics. Computer facilities include several networked Unix servers and a PC lab for general research and teaching use. The Mathematical Sciences Library serves the department jointly with the departments of Mathematics and Computer Science.

The department has always drawn visitors from other countries and universities. As a consequence, there is usually a wide range of seminars offered by both the visitors and our own faculty.

UNDERGRADUATE PROGRAMS
MAJOR
Students wishing to build a concentration in probability and statistics are encouraged to consider declaring a major in Mathematical and Computational Sciences. This interdepartmental program is administered in the Department of Statistics (Bradley Efron, chair) and provides core training in computing, mathematics, operations research, and statistics, with opportunities for further elective work and specialization. See the “Mathematical and Computational Science” section of this bulletin.
MINORS
The undergraduate minor in Statistics is designed to complement major degree programs primarily in the social and natural sciences. Students with an undergraduate Statistics minor should find broadened possibilities for employment. The Statistics minor provides valued preparation for professional degree studies in postgraduate academic programs.

The minor consists of a minimum of six courses with a total of at least 20 units. There are two required courses (8 units) and four qualifying or elective courses (12 or more units). An overall 2.75 grade point average (GPA) is required for courses fulfilling the minor.

1. Qualifying Courses: at most, one of these two courses may be counted toward the six course requirement for the minor: MATH 52; STATS 191.
2. Required Courses: STATS 116 and 200.
3. Elective Courses: at least one of the elective courses should be a STATS 200-level course. The remaining two elective courses may also be 200-level courses. Alternatively, one or two elective courses may be approved courses in other departments. Special topics courses and seminars for undergraduates are offered from time to time by the department and these may be counted toward the course requirement.

Examples of elective course sequences are:
- STATS 202, 203, emphasizing data analysis and applied statistics
- STATS 205, 206, (207), emphasizing statistical methodology
- STATS 206, ECON 160, emphasizing economic optimization
- STATS 206, PSYCH 156, emphasizing psychology modeling and experiments
- STATS 207, EE 264, (279), emphasizing signal processing
- STATS 217, BIOSCI 283, emphasizing genetic and ecologic modeling
- STATS 217, 218, emphasizing probability and its applications
- STATS 240, 250, emphasizing mathematical finance

GRADUATE PROGRAMS

MASTER OF SCIENCE
The department requires that the student take 45 units of work from offerings in the Department of Statistics or from authorized courses in other departments. Ordinarily, four or five quarters are needed to complete all requirements.

Student must fulfill the following requirements for the M.S. degree:
1. STATS 116, 200, 191 or 203, and 217. Courses previously taken may be waived by the adviser, in which case they must be replaced by other graduate courses offered by the department.
2. One of MATH 103, 113, 115, 171; and one of CS 106A, 106X, 137. Substitution of other courses in Mathematics and Computer Science may be made with consent of the adviser.
3. At least four additional courses from graduate offerings in the department (202-399). Consent of the adviser is required in order to take more than 6 units of STATS 260, 390, or 399.
4. Additional units to complete the requirements may be chosen from the list available from the department. Other graduate courses (200 or above) may be authorized by the adviser if they provide skills relevant to statistics or deal primarily with an application of statistics or probability and do not overlap courses in the student’s program. There is sufficient flexibility to accommodate students with interests in applications to business, computing, economics, engineering, health, operations research, and biological and social sciences.

Students with a strong mathematical background who may wish to go on to a Ph.D. in Statistics should consider applying directly to the Ph.D. program.

All statistics courses required for the M.S. degree (116, 200, 217, and four additional Statistics graduate courses) must be taken for letter grades, and an overall 2.75 grade point average (GPA) is required.

DOCTOR OF PHILOSOPHY
The department looks for motivated students who want to prepare for research careers in statistics or probability, either applied or theoretical. Advanced undergraduate or master’s level work in mathematics and statistics provides a good background for the doctoral program. Quantitatively oriented students with degrees in other scientific fields are also considered for admission. The program normally takes four years.

Program Summary — STATS 300A,B,C, 305, 306A,B, and 310A,B,C (first-year core program); pass two of three parts of the qualifying examination (beginning of second year); breadth requirement (second or third year); University oral examination (end of third year or beginning of fourth year); dissertation (fourth year).

In addition students are required to take 9 units of advanced topics courses offered by the department (including at least two of the following: 314, 317, 318, 315A, or 315B, but not including literature, research, or consulting), and 3 units of statistical consulting. All students who have passed the qualifying exam but have not yet passed the University oral examination must take 319 at least once per year.

First-Year Core Courses — STATS 300 systematically surveys the ideas of estimation and of hypothesis testing for parametric and nonparametric models involving small and large samples. 305 is concerned with linear regression and the analysis of variance. 306 surveys a large number of modeling techniques, related to but going beyond the linear models of 305. 310 is measure-theoretic probability theory, beginning with the basic concepts of analysis. Students who do not have enough mathematical background can take 310 after their first year but need to have their first-year program approved by the Ph.D. program adviser.

Qualifying Examinations — These are intended to test the student’s level of knowledge when the first-year program, common to all students, has been completed. There are separate examinations in the three core subjects of statistical theory and methods, applied statistics and probability theory, and all are given before the beginning of the Autumn Quarter, usually before the beginning of their second year. Students may take two or three of these examinations and are expected to show acceptable performance in two examinations.

Breadth Requirement — Students are advised to choose an area of concentration in a specific scientific field of statistical applications; this can be realized by taking at least 15 units of course work approved by the Ph.D. program adviser.

Current areas with suggested course options include:
- Computational Biology and Statistical Genomics — Students are expected to take 9 units of graduate courses in genetics or neurosciences (imaging), such as GENE 203/BIOSCI 203, as well as 9 units of classes in Statistical Genetics or Bioinformatics, STATS 345, STATS 366, STATS 367.
- Machine Learning — Courses can be chosen from the following list:
 - Statistical Learning: STATS 315A and 315B
 - Data Bases: CS 245, 346, 347
 - Probabilistic Methods in AI: CS 221
 - Stochastic Learning Theory and Pattern Classification: CS 229
- Applied Probability — Students are expected to take 15 units of graduate courses in some of the following areas:
 - Control and Stochastic Calculus: MS&E 322, 351, MATH 237, EE 363
 - Finance: STATS 250, FINANCE 622, MATH 236
 - Information Theory: EE 376A, 376B
 - Monte Carlo: STATS 318, 345, 362, MS&E 323
 - Queuing Theory: EE 327, GSB 661, 663
 - Stochastic Processes: STATS 317, MATH 234
- Earth Science Statistics — Students are expected to take:
 - STATS 317 (Stochastic Processes)
 - STATS 318 (Monte Carlo Markov Chains)
 - STATS 352 (Spatial Statistics)
 - and three courses from the GES or Geophysics departments, such as GES 144. Fundamentals of Geographic Information Science or GEOPHYS 210. Basic Earth Imaging.
Students are expected to take three advanced courses from the department with an applied orientation such as:

- STATS 261/262 (Discrete Data and Survival Analysis)
- STATS 324 (Multivariate Analysis)
- STATS 343 (Time Series)
- STATS 354 (Bootstrap and Resampling)

and three advanced quantitative courses from departments such as Psychology, Sociology, Political Science, Anthropology, Economics, and the Schools of Education, Business or Medicine.

University Oral Examination — The University oral examination is taken on the recommendation of the student’s research adviser after the thesis problem has been well defined and some research progress has been made. Usually, this happens early in the student’s fourth year. The oral examination consists of a 40-minute presentation on the thesis topic, followed by two question periods. The first relates directly to the student’s presentation and the second is intended to explore the student’s familiarity with broader statistical topics related to the thesis research.

Financial Support — Students accepted to the Ph.D. program are offered financial support. All tuition expenses are paid and there is a fixed monthly stipend determined to be sufficient to pay living expenses. Financial support can be continued for five years, department resources permitting, for students in good standing. The resources for student financial support derive from funds made available for student teaching and research assistantships. Students receive both a teaching and research assignment each quarter which, together, do not exceed 20 hours. Students are strongly encouraged to apply for outside scholarships, fellowships, and other forms of financial support.

PH.D. MINOR

The Department of Statistics devises individual Ph.D. minor programs, but the department urges all graduate students in other fields who wish to have a subspecialty in statistics to study for an M.S. degree instead. The unit requirement for an M.S. degree is 45 units, whereas the number of units required for a minor averages around 30. This difference of 15 units can be made up by the student by including in the M.S. program courses from his or her own field which are related to statistics or applications of statistics.

COURSES

INTRODUCTORY

Introductory courses for any student with an interest in the problems of descriptive statistics and statistical inferences are STATS 30, 50, 60, and 141. These courses have no mathematical prerequisites. STATS 60 and 141 explain the techniques and methods of statistical inference. STATS 60 emphasizes applications in the social sciences and STATS 141 applications in the biological sciences. STATS 60 and 141 can be followed by STATS 191 which explains more advanced methods and their applications.

STATS 110, 116, 200, 217-218 are introductory but have a calculus prerequisite. STATS 110 covers the most important techniques used in the analysis of experimental data in engineering and science. STATS 110 can be followed by STATS 191. STATS 116 provides a general introduction to the theory of probability. It may be followed by STATS 200, which deals with statistical theory, or by 217 and 218, which deal with stochastic processes. The sequence 116, 200 is a two quarter sequence in basic mathematical statistics; the sequence 116, 217, 218 is a one-year course in basic probability theory.

STATS 30. Statistical Thinking — Statistical inference, with a minimum of mathematical formulation. Topics: comparisons and the randomized clinical trial, statistical significance, accuracy and the meaning of statistical error (plus or minus), correlation and regression to the mean, exploratory methods and data mining, life tables and survival analysis, and learning from experience (Bayesian inference). Lectures supplemented with web-based statistical simulations. GER:DB-Math

3 units (Staff) not given 2005-06

STATS 47N. Breaking the Code? — Stanford Introductory Seminar. Preference to freshmen. Cryptography and its counterpart, cryptanalysis or code breaking. How the earliest cryptanalysts used statistical tools to decrypt messages by uncovering recurring patterns. How such frequency-analysis tools have been used to analyze biblical texts to produce a Bible code, and to detect genes in the human genome. Overview of codes and ciphers. Statistical tools useful for code breaking. Students use simple computer programs to apply these tools to break codes and explore applications to various kinds of data. GER:DB-Math

3 units, Win (Holmes)

3 units (Cover) not given 2005-06

STATS 60. Introduction to Statistical Methods: Precalculus — (Graduate students register for 160; same as PSYCH 10.) Techniques for organizing data, computing, and interpreting measures of central tendency, variability, and association. Estimation, confidence intervals, tests of hypotheses, t-tests, correlation, and regression. Possible topics: analysis of variance and chi-square tests, computer statistical packages. GER:DB-Math

5 units, Aut (Walther), Win (Thomas), Spr (Bartroff), Sum (Staff)

STATS 110. Statistical Methods in Engineering and the Physical Sciences — Introduction to statistics for engineers and physical scientists. Topics: descriptive statistics, probability, interval estimation, tests of hypotheses, nonparametric methods, linear regression, analysis of variance, elementary experimental design. Prerequisite: one year of calculus. GER:DB-Math

4-5 units (Bartroff)

3-5 units, Aut (Diaconis), Spr (Nacu), Sum (Staff)

3 units (Staff) not given 2005-06

STATS 141. Biostatistics — (Same as BIOSCI 141.) Statistical analysis of biological data. Topics: discrete and continuous distributions, testing hypotheses and confidence procedures, fixed and random effects analysis of variance, regression, and correlation. Wilcoxon and other nonparametric procedures, inference on contingency tables and other data arising from counts. Tests of goodness of fit. Emphasis is on finding numerical solutions to biostatistical problems, and practical interpretations and their implications. GER:DB-Math

4-5 units, Aut (Rogosa)

STATS 160. Introduction to Statistical Methods: Precalculus — (Graduate students register for 60; see 60; same as PSYCH 10.)

5 units, Aut (Walther), Win (Thomas), Spr (Bartroff), Sum (Staff)

3-4 units, Win (Holmes)

STATS 191. Introduction to Applied Statistics—Statistical tools for modern data analysis. Topics include regression and prediction, elements of the analysis of variance, bootstrap, and cross-validation. Emphasis is on conceptual rather than theoretical understanding. Applications to social/biological sciences. Student assignments/projects require use of the software package R. Recommended: 60, 110, or 141. GER:DB-Math

3 units, Win (Olkin)

STATS 199. Independent Study—For undergraduates.

1-15 units, Aut, Win, Spr, Sum (Staff)

CONTINUATION

Courses in this category have been designed for particular use in applications. Generally, they have introductory statistics or probability as prerequisites.

STATS 200. Introduction to Statistical Inference—Modern statistical concepts and procedures derived from a mathematical framework. Statistical inference, decision theory; point and interval estimation, tests of hypotheses; Neyman-Pearson theory. Bayesian analysis; maximum likelihood, large sample theory. Prerequisite: STAT 191. 3 units, Win (Romano), Sum (Staff)

3 units, Win (Romano), Sum (Staff)

STATS 202. Data Analysis—Data mining is used to discover patterns and relationships in data. Emphasis is on large complex data sets such as those in very large databases or through web mining. Topics: decision trees, neural networks, association rules, clustering, case based methods, and data visualization.

3 units, Aut (Friedman)

3 units, Spr (Switzer)

STATS 204. Applied Regression Analysis—Introduction to the statistical analysis of several quantitative measurements on each observational unit. Emphasis is on concepts, computer-intensive methods. Examples from economics, education, geology, psychology. Topics: multiple regression, multivariate analysis of variance, principal components, factor analysis, canonical correlations, multidimensional scaling, clustering. Pre- or corequisite: 200.

3 units, Win (Owen)

STATS 205. Introduction to Nonparametric Statistics—Nonparametric analogs of the one- and two-sample t tests and analysis of variance; the sign test, median test, Wilcoxon’s tests, and the Kruskal-Wallis and Friedman tests, tests of independence. Nonparametric regression and nonparametric density estimation, modern nonparametric techniques, nonparametric confidence interval estimates.

3 units, Win (Friedman)

STATS 206. Applied Multivariate Analysis—Introduction to the statistical analysis of several quantitative measurements on each observational unit. Emphasis is on concepts, computer-intensive methods. Examples from economics, education, geology, psychology. Topics: multiple regression, multivariate analysis of variance, principal components, factor analysis, canonical correlations, multidimensional scaling, clustering. Pre- or corequisite: 200.

3 units, Win (Owen)

STATS 207. Introduction to Time Series Analysis—Time series models used in economics and engineering. Trend fitting, autoregressive and moving average models and spectral analysis, Kalman filtering, and state-space models. Seasonality, transformations, and introduction to financial time series. Prerequisite: basic course in Statistics at the level of 200.

3 units, Spr (Staff)

STATS 208. Introduction to the Bootstrap—The bootstrap is a computer-based method for assigning measures of accuracy to statistical estimates. By substituting computation in place of mathematical formulas, it permits the statistical analysis of complicated estimators. Topics: nonparametric assessment of standard errors, biases, and confidence intervals; related resampling methods including the jackknife, cross-validation, and permutation tests. Theory and applications. Prerequisite: course in statistics or probability.

3 units, Spr (Staff)

STATS 211. Topics in Quantitative Methods: Meta-Analysis—(Same as EDUC 493B.) Meta-analysis as a quantitative method for combining the results of independent studies enabling researchers to evaluate available evidence. Examples of meta-analysis in medicine, education, and social and behavioral sciences. Statistical methods include nonparametric methods, contingency tables, regression and analysis of variance, and Bayesian methods. Project involving an existing published meta-analysis. Prerequisite: basic sequence in statistics.

1-3 units, Win (Olkin)

STATS 212. Applied Statistics with SAS—Data analysis and implementation of statistical tools in SAS. Topics: reading in and describing data, categorical data, dates and longitudinal data, correlation and regression, nonparametric comparisons, ANOVA, multiple regression, multivariate data analysis, using arrays and macros in SAS. Prerequisite: statistical techniques at the level of 191 or 203; knowledge of SAS not required.

3 units, Sum (Staff)

STATS 214. Randomness in the Physical World—(Enroll in AP-PHYS 214.)

3 units (Diaconis, S. Holmes, Kapitulnik, Shenker)

alternate years, given 2006-07

3 units, Win (Romano), Sum (Staff)

3 units, Spr (Cover), Sum (Staff)

STATS 219. Stochastic Processes—(Enroll in MATH 136.)

3 units, Aut (Dembo)

3 units (Staff) not given 2005-06

3 units, Sum (Staff)

STATS 239A,B. Workshop in Quantitative Finance—Topics of current interest.

1 unit, A: Aut, B: Win (Durrleman)
3-4 units, Spr (Lai)

3 units, Win (Papanicolaou)

STATS 252. Data Mining and Electronic Business — The Internet and related technologies have caused the cost of communication and transactions to plummet, and consequently the amount of potentially relevant data to explode. The underlying principles, statistical issues, and algorithmic approaches to data mining and e-business, with real world examples.
3 units, Sum (Staff)

STATS 253. Spatial Statistics — (Same as STATS 352.) Statistical descriptions of spatial variability, spatial random functions, grid models, spatial partitions, spatial sampling, linear and nonlinear interpolation and smoothing with error estimation, Bayes methods and pattern simulation from posterior distributions, multivariate spatial statistics, spatial classification, nonstationary spatial statistics, space-time statistics and estimation of time trends from monitoring data, spatial point patterns, models of attraction and repulsion. Applications to earth and environmental sciences, meteorology, astronomy, remote-sensing, ecology, materials. GER:DB-Math
3 units (Staff) not given 2005-06

STATS 260A,B,C. Workshop in Biostatistics — (Same as HRP 260A,B,C.) Applications of statistical techniques to current problems in medical science. Enrollment for more than 2 units of credit involves extra reading or consulting and requires consent of instructor.

STATS 260A. 1-3 units, Aut (Lazzeroni, Olshen, Bloch, Efron, Hastie, Lavori, Tibshirani, Wong)

STATS 260B. 3 units, Win (Lazzeroni, Olshen, Bloch, Efron, Hastie, Lavori, Tibshirani, Wong)

STATS 260C. 1-5 units, Spr (Lazzeroni, Olshen, Bloch, Efron, Hastie, Lavori, Tibshirani, Wong)

3 units, Win (Hastie, Cobb)

STATS 262. Intermediate Biostatistics: Regression, Prediction, Survival Analysis — (Same as HRP 262.) Methods for analyzing longitudinal data. Topics include Kaplan-Meier methods, Cox regression, hazard ratios, time-dependent variables, longitudinal data structures, profile plots, missing data, modeling change, MANOVA, repeated-measures ANOVA, GEE, and mixed models. Emphasis is on practical applications. Prerequisites: basic ANOVA and linear regression.
3 units, Spr (Cobb)

STATS 270. A Course in Bayesian Statistics — (Ph.D. students register for 370.) Bayesian statistics including theory, applications, and computational tools. Topics: history of Bayesian methods, foundational problems (what is probability?), subjective probability and coherence, exchangeability and deFinetti’s theorem. Conjugate priors, Laplace approximations, Gibbs sampling, hierarchical and empirical Bayes, nonparametric methods, Dirichlet and Pula tree priors. Bayes robustness, asymptotic properties of Bayes procedures.
3 units (Staff) not given 2005-06

STATS 279. Practical Training — For students in the M.S. program in Financial Mathematics only. Students obtain employment in a relevant industrial or research activity to enhance their professional experience. May be repeated for credit. Prerequisite: consent of adviser.
1-3 units, Aut, Win, Spr, Sum (Lai)

STATS 298. Industrial Research for Statisticians — Masters-level research as in 299, but must be conducted for an off-campus employer. Final report required. Prerequisite: enrollment in Statistics M.S. or Ph.D. program (prior to candidacy).
1-9 units, Aut, Win, Spr, Sum (Staff)

STATS 299. Independent Study — For Statistics M.S. students only. Reading or research program under the supervision of a Statistics faculty member. May be repeated for credit.
1-10 units, Aut, Win, Spr, Sum (Staff)

PRIMARYLY FOR DOCTORAL STUDENTS

Sequences 300A,B,C, 305, 306B, and 310A,B,C comprise the fundamental sequence which serves as a general introduction to and prerequisite for further work.

STATS 300. Advanced Topics in Statistics
3 units, Sum (Staff)

STATS 300A,B,C. Theory of Statistics — Elementary decision theory; loss and risk functions, Bayes estimation; UMVU estimators, shrinkage estimators. Hypothesis testing and confidence intervals; Neyman-Pearson theory; UMP tests and uniformly most accurate confidence intervals; use of unbiasedness and invariance to eliminate nuisance parameters. Large sample theory; basic convergence concepts; robustness; efficiency; contiguity, locally asymptotically normal experiments; convolution theorem; asymptotically UMP and maximin tests. Asymptotic theory of likelihood ratio and score tests. Rank permutation and randomization tests; jackknife, bootstrap, subsampling and other resampling methods. Further topics: sequential analysis, optimal experimental design, empirical processes with applications to statistics, Edgeworth expansions, density estimation, time series.
2-4 units, A: (Romano), B: (Walther), C: Spr (Walther)

STATS 305. Introduction to Statistical Modeling — The linear model: simple linear regression, polynomial regression, multiple regression, anova models; and with some extensions, orthogonal series regression, wavelets, radial basis functions, and MARS. Topics: normal theory inference (tests, confidence intervals, power), related distributions (\(F \), \(t \)), numerical methods (QR, SVD), model selection/regularization (Cp, AIC, BIC), diagnostics of model inadequacy, and remedies including bootstrap inference, and cross-validation. Emphasis is on problem sets involving substantial computations with data sets, including developing extensions of existing methods. Prerequisite: consent of instructor, 116, 200, one applied statistics course, CS 106A, MATH 114.
2-4 units, Aut (Owen)

STATS 306A. Methods for Applied Statistics — Extension of modeling techniques of 305: binary and discrete response data and nonlinear least squares. Topics include regression, Poisson loglinear models, classification methods, clustering. May be repeated for credit. Prerequisite: 305 or equivalent.
2-4 units, Win (Owen)
2-4 units, Spr (Tibshirani)

STATS 310A. Theory of Probability — Mathematical tools: asymptotics, metric spaces; measure and integration; Lp spaces; some Hilbert spaces theory. Probability: independence, Borel-Cantelli lemmas, almost sure and Lp convergence, weak and strong laws of large numbers. Weak convergence and characteristic functions; central limit theorems; local limit theorems; Poisson convergence. Prerequisites: 116, MATH 171.
2-4 units, Aut (Dembo)

2-4 units, Win (Dembo)

2-4 units, Spr (Lai)

STATS 314. Advanced Statistical Methods — Topic this year is multiple hypothesis testing. The demand for new methodology for the simultaneous testing of many hypotheses as driven by modern applications in genomics, imaging, astronomy, and finance. High dimensionality: how tests of many hypotheses may be considered simultaneously. Classical techniques, and recent developments. Stepwise methods, generalized error rates such as the false discovery rate, and the role of resampling. May be repeated for credit.
2-3 units, Spr (Romano)

STATS 315A,B. Modern Applied Statistics — Two-part sequence on new techniques for predictive and descriptive learning using ideas that bridge gaps among statistics, computer science, and artificial intelligence. Emphasis is on statistical aspects of their application and integration with more standard statistical methodology. Predictive learning refers to estimating models from data with the goal of predicting future outcomes, in particular, regression and classification models. Descriptive learning is used to discover general patterns and relationships in data without a specific predictive goal. From a statistical perspective, it can be viewed as computer automated exploratory analysis of usually large complex data sets.

STATS 315A. Learning 2-3 units, Win (Hastie)

STATS 315B. Data Mining 2-3 units, Spr (Friedman)

STATS 316. Introduction to Stochastic Differential Equations — (Enroll in MATH 236.)
3 units, Win (Papanicolaou)

2-3 units (Staff) not given 2005-06

2-3 units, Aut (Diaconis)

STATS 319. Literature of Statistics — Literature study of topics in statistics and probability culminating in oral and written reports. May be repeated for credit.
1-3 units, Win (Cover), Spr (Switzer)

STATS 322. Computational Methods for Geometric Design and Imaging — Multiresolution approximation analysis as a mathematical tool for the construction of wavelets and sub-banding coding schemes; modifications and extensions of this have contributed to the advancement in curve/surface design and image manipulation. Computational methods for geometric design and image processing. Curve and surface subdivision schemes, and computational schemes based on the anisotropic diffusion model. The diffusion framework applied to the analysis and visualization of higher dimensional data sets by introducing diffusion kernels and metrics.
2-3 units (Staff) not given 2005-06

2-3 units (Staff) not given 2005-06

2-3 units (Staff) not given 2005-06

STATS 350. Advanced Topics in Probability Theory — Topics reflect interests of students and instructor. Possible topics: Brownian motion, coarse graining, concentration inequalities, discrete probability, Gibbs measures, interacting particle systems, large deviations, percolation, random matrices, Stein’s method.
2-3 units (Staff) not given 2005-06

STATS 352. Spatial Statistics — (Same as STATS 253; see 253.)
3 units (Staff) not given 2005-06

2-3 units, Aut (Owen)

STATS 366. Computational Biology — (Same as STATS 166, BIO-MEDIN 366; see 166.)
2-3 units, Aut (Holmes)

STATS 367. Statistical Models in Genetics — Stochastic models and related statistical problems in linkage analysis of qualitative and quantitative traits in humans and experimental populations; sequence alignment and analysis; and population genetics/evolution, both classical (Wright-Fisher-Kimura) and modern (Kingman coalescent). Computational algorithms as applications of dynamic programming, Markov chain Monte Carlo, and hidden Markov models. Prerequisites: knowledge of probability through elementary stochastic processes and statistics through likelihood theory.
2-3 units (Staff) not given 2005-06

STATS 370. A Course in Bayesian Statistics — (Same as STATS 270; see 270.)
3 units (Staff) not given 2005-06
PROGRAM IN STRUCTURED LIBERAL EDUCATION

Director and Professor: Mark Mancall (History)

Coordinator: Suzanne Greenberg

The Program in Structured Liberal Education (SLE) is designed specifically for first-year students interested in an interdisciplinary approach to the liberal arts. The program emphasizes intellectual rigor and individualized contact between faculty and students. SLE has three basic purposes: to present a coherent program of instruction; to develop a student’s ability to ask effective questions of texts, teachers, the culture, and themselves; and to develop intellectual skills in logical reasoning, critical reading, expository writing, and group discussions. SLE stresses inquiry, criticism, and a tolerance for ambiguity. Neither the instructors nor the curriculum provides ready-to-serve answers to the questions being dealt with; rather, SLE encourages a sense of intellectual challenge, student initiative, and originality.

Freshmen interested in enrolling in SLE should indicate this preference for their Area One assignment. SLE is designed as a three-quarter sequence and students should be willing to make a commitment for the entire year.

Correspondence regarding the program should be addressed to Program in Structured Liberal Education, Florence Moore Hall, Stanford University, Stanford, CA 94305.

COURSES

SLE 91, 92, 93. Structured Liberal Education—SLE demands approximately 60 percent of the average academic workload during freshman year. Autumn Quarter focus is on the mythological and cultural foundations of ancient Greece and Israel. Winter Quarter focus is on the religious, ideological, and aesthetic transformations that occurred in Europe, Asia, and the New World as a result of the Middle Ages, Renaissance, Scientific Revolution, and Enlightenment. Spring Quarter focus is on the social, political, and artistic forces that shape the modern world. Completion of the SLE program satisfies the GER: IHUM, DB-Hum, and both University Writing Requirements.

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Units</th>
<th>Staff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autumn</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Win</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Win</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Spr</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PROGRAM IN SYMBOLIC SYSTEMS

Director: Ivan A. Sag

Program Coordinator: Todd Davies

Program Committee: Lera Boroditsky, Todd Davies, Byron Reeves, Eric Roberts, Ivan A. Sag, Paul Skokowski, Kenneth A. Taylor

Undergraduate Advising Fellows: Tina Chen, Ro-El Rio Cordero, Matthew Etchemendy, Gorkem Ozbek, Itamar Rosenne, Renee Trochet

Program Faculty:
- Art and Art History: Scott Bukatman (Associate Professor)
- Aplied Physics: Bernardo Huberman (Consulting Professor)
- Classics: Reviel Netz (Professor)
- Communication: Jeremy Bailenson (Assistant Professor), Clifford Nass (Professor), Byron Reeves (Professor), Frederick Turner (Assistant Professor)
- Computer Science: David Dill (Professor), Brian Jeffrey Fogg (Consulting Assistant Professor), Michael Genesereth (Associate Professor), Margaret Johnson (Senior Lecturer), Oussama Khatib (Professor), Scott Klemmer (Assistant Professor), Daphne Koller (Associate Professor), Jean-Claude Latombe (Professor), Marc Levoy (Associate Professor), Christopher Manning (Assistant Professor), John McCarthy (Professor Emeritus), Andrew Ng (Assistant Professor), Nils Nilsson (Professor Emeritus), Vaughn Pratt (Professor Emeritus), Eric Roberts (Professor, Teaching), Tim Roughgarden (Assistant Professor), Terry Winograd (Professor)
- Economics: Antonio Rangel (Assistant Professor), Muriel Niederle (Assistant Professor)
- Education: Raymond P. McDermott (Professor), Roy Pea (Professor), Daniel Schwartz (Associate Professor)
- Electrical Engineering: John R. Koza (Consulting Professor), Krishna Shenoy (Assistant Professor)
- French and Italian: Jean-Pierre Dupuy (Professor)
- Genetics: Russ B. Altman (Associate Professor)
- History: Jessica G. Riskin (Assistant Professor)
- Linguistics: Arto Anttila (Assistant Professor), David Beaver (Assistant Professor), Joan Bresnan (Professor), Eve Clark (Professor), Vivienne Fong (Lecturer), Daniel Jurafsky (Associate Professor), Ronald Kaplan (Consulting Professor), Lauri Karttunen (Consulting Professor), Martin Kay (Professor), Beth Levin (Professor), Christopher Manning (Assistant Professor), Stanley Peters (Professor), Ivan A. Sag (Professor), Thomas A. Wasow (Professor, Annie Zamen (Consulting Professor)
- Management Science and Engineering: Pamela Hinds (Associate Professor)
- Mathematics: Persi Diaconis (Professor), Solomon Feferman (Professor Emeritus)
- Medicine: Russ B. Altman (Associate Professor), John R. Koza (Consulting Professor)
- Music: Jonathan Berger (Associate Professor), Christopher Chafe (Associate Professor), Eleanor Selfridge-Field (Consulting Professor), William L. Verplank (Lecturer)
- Neurobiology: Ben Barres (Associate Professor), Jennifer Raymond (Assistant Professor)
- Philosophy: Michael Bratman (Professor), Mark Crimmins (Associate Professor), John Etchemendy (Professor), Solomon Feferman (Professor Emeritus), Dagfinn Follesdal (Professor), David Israel (Consulting Associate Professor), Krista Lawlor (Assistant Professor), Grigorii Mints (Professor), Marc Pauly (Assistant Professor), Raymond Perau (Consulting Associate Professor), John Perry (Professor), Kenneth Taylor (Associate Professor), Johan van Benthem (Professor), Thomas A. Wasow (Professor)
- Psychiatry and Behavioral Sciences: Vinod Menon (Assistant Professor)
- Psychology: Lera Boroditsky (Assistant Professor), Herbert H. Clark (Professor), Anne Fernald (Associate Professor), Susan Johnson (Assistant Professor), Brian Knutson (Assistant Professor), Ellen

STATS 374. Large Deviations—(Same as MATH 234.) Combinatorial estimates and the method of types. Large deviation probabilities for partial sums and for empirical distributions, Cramer’s and Sanov’s theorems and their Markov extensions. Applications in statistics, information theory, and statistical mechanics. Prerequisite: MATH 230A or STATS 310.

3 units (Staff) not given 2005-06

STATS 376A,B. Information Theory—(Enroll in EE 376A,B.)

3 units, A: Win (Weissman), B: Spr (Cover)

STATS 390. Consulting Workshop—Provides the skills required of practicing statistical consultants, including exposure to statistical applications. Students participate as consultants in the department’s drop-in consulting service, analyze client data, and prepare formal written reports. Seminar provides supervised experience in short term consulting. May be repeated for credit. Prerequisites: course work in applied statistics or data analysis, and consent of instructor.

1-3 units, Aut (Olshen), Win (Switzer), Spr (Walther)

STATS 398. Industrial Research for Statisticians—Doctoral research as in 298, but must be conducted for an off-campus employer. Final report required. Prerequisite: Statistics Ph.D. candidate.

1-9 units, Aut, Win, Spr, Sum (Staff)

STATS 399. Research—Research work as distinguished from independent study of nonresearch character in 199. May be repeated for credit.

1-10 units, Aut, Win, Spr, Sum (Staff)
Markman (Professor), Michael Ramscar (Assistant Professor), Barbara Tversky (Professor), Anthony Wagner (Assistant Professor), Brian Wandell (Professor)

Statistics: Persi Diaconis (Professor), Susan P. Holmes (Associate Professor)

Symbolic Systems: William Byrne (Consulting Assistant Professor), Todd Davies (Lecturer), Tracy King (Consulting Associate Professor), Pat Langley (Consulting Professor), Jeff Shrager (Consulting Associate Professor), Paul Skokowski (Consulting Professor)

Other Affiliates: David Barker-Plummer (Engineering Research Associate), Keith Devlin (Senior Research Engineer, CSLI Executive Director), Daniel Flickinger (CSLI Senior Research Engineer), John Kunz (Senior Research Engineer), Stephan Oepen (CSLI Senior Research Engineer)

Program Offices: Margaret Jacks Hall, Building 460, Room 40A

Mail Code: 94305-2150

Phone: (650) 723-4284

Email: ssp-af@csli.stanford.edu

Web Site: http://symsys.stanford.edu

Courses given in the Program in Symbolic Systems have the subject code SYMBSYS. For a complete list of subject codes, see Appendix.

Both human beings and computers can manipulate symbols. This observation lies at the heart of Symbolic Systems, an interdisciplinary program focusing on the relationship between natural and artificial systems that represent, process and act on information. Computer programs, natural languages, the human mind, and the Internet are all examples of symbolic systems. As such, they all embody concepts whose study forms the core of the Symbolic Systems curriculum: concepts such as representation, communication, and intelligence. A body of knowledge and theory has developed around these notions, from disciplines like philosophy, computer science, linguistics, psychology, statistics, neurobiology, and communication. Since the invention of computers, researchers have been working across these and other disciplines to study questions such as: In what ways are computers and computer languages like humans and their languages? How can the interaction between people and computers be made easier and more beneficial? Can we build computers and robots that think and feel?

The Symbolic Systems Program (SSP) offers an opportunity to explore these issues. The core requirements include courses in symbolic logic, the philosophy of mind, formal linguistics, cognitive psychology, programming, the mathematics of computation, statistical theory, artificial intelligence, and interdisciplinary approaches to cognitive science. The core courses are designed to prepare students with the vocabulary, theoretical background, and technical skills needed for more concentrated study and research at the advanced undergraduate and graduate levels. Most of the courses in SSP are drawn from affiliated departments. Courses designed specifically for the program are aimed at integrating and supplementing topics covered by the department-based offerings. The curriculum includes humanistic approaches to questions about language and intelligence, as well as training in science and engineering.

SSP offers both B.S. and M.S. degree programs. Both programs require students to master a common core of required courses, and to choose an area of specialization.

UNDERGRADUATE PROGRAMS

BACHELOR OF SCIENCE

The program leading to a B.S. in Symbolic Systems provides students with a core of concepts and techniques, drawing on faculty and courses from various departments. The curriculum prepares students for advanced training in the interdisciplinary study of language and information, or for postgraduate study in any of the main contributing disciplines. It is also excellent preparation for employment immediately after graduation.

Symbolic Systems majors must complete a core of required courses plus a concentration consisting of six additional courses. All major courses are to be taken for letter grades unless an approved course is offered satisfactory/no credit only. All core courses must be passed with a grade of "C-" or better. Students who receive a grade lower than this in a core course must alert the program of this fact, so that a decision can be made about whether the student should continue in the major.

CORE REQUIREMENTS

In order to graduate with a B.S. in Symbolic Systems, a student must complete the following requirements. (Please note that some of these courses have other courses as prerequisites. Students are responsible for completing each course’s prerequisites before they take it.)

1. **Cognitive Science:** either SYMBSYS 100, Introduction to Cognitive Science, or one of the following:
 - LINGUIST 280/CS 224N. Natural Language Processing
 - PSYCH 131. Language and Thought
 - PSYCH 137. Birds to Words: Cognition, Communication, and Language

2. **Computer Programming:**
 - a) CS 106A. Programming Methodology, and 106B. Programming Abstractions; or 106X. Programming Methodology and Abstractions (Accelerated); and
 - b) CS 107. Programming Paradigms

3. **Discrete Structures:** CS 103B. Discrete Structures; or CS 103X. Discrete Structures (Accelerated)

4. **Logic:** PHIL 150. Basic Concepts in Mathematical Logic, and 151. First-Order Logic

5. **Statistics/Probability:** one of the following:
 - EE 178. Introduction to Probability and Statistics
 - MATH 151. Introduction to Probability Theory
 - MSE 120. Probabilistic Analysis
 - STATS 110. Statistical Methods in Engineering and the Physical Sciences
 - STATS 116. Theory of Probability
 - STATS 121. Probability, Induction, Statistics

6. **Philosophical Foundations:** an introductory course in Philosophy must be taken prior to PHIL 80, from among the following:
 - a Philosophy Department Stanford Introductory Seminar, numbered 11-19
 - PHIL 10. God, Self, and World: An Introduction to Philosophy
 - PHIL 20. Introduction to Moral Philosophy
 - PHIL 30. Introduction to Political Philosophy
 - PHIL 60. Introduction to Philosophy of Science
 - IHUM 23A.B. The Fate of Reason and PHIL 80. Mind, Matter, and Meaning

7. **Cognitive Psychology:** PSYCH 55. Introduction to Cognition and Brain

8. **Formal Linguistics:**
 - LINGUIST 120. Introduction to Syntax; and one of the following:
 - LINGUIST 130A. Introduction to Linguistic Meaning
 - LINGUIST 130B. Introduction to Lexical Semantics
 - LINGUIST 230A. Introduction to Semantics and Pragmatics

9. **Artificial Intelligence:** CS 121. Introduction to Artificial Intelligence; or 221. Artificial Intelligence: Principles and Techniques

10. **Turing Computability:** one of the following:
 - CS 103B. Discrete Structures
 - CS 154. Introduction to Automata and Complexity Theory
 - PHIL 152. Computability and Logic
 - SYMBSYS 100. Introduction to Cognitive Science

11. **Advanced Small Seminar:** an upper-division, limited-enrollment seminar drawing on material from other courses in the core. Courses listed under Symbolic Systems Program offerings with numbers from SYMBSYS 201 through 209 are acceptable, as are other courses which will be announced at the beginning of each academic year.

 * CS 103X does not fulfill this requirement.

 † A course taken to fulfill one of these requirements can also be counted toward another requirement, as part of either the core or a student’s concentration, but not both (see below).
CONCENTRATION AREAS

In addition to the core requirements listed above, the Symbolic Systems major requires each student to complete a concentration consisting of six courses that are thematically related to each other. Students select concentrations from the list below or design others in consultation with their advisers.

- Applied Logic
- Artificial Intelligence
- Cognitive Science
- Computer Music
- Decision Making and Rationality
- Learning
- Human-Computer Interaction
- Natural Language
- Neurosciences
- Philosophical Foundations

MINORS

Students may minor in Symbolic Systems by completing either item 1 or item 2 below.

1. One course in each of the following core areas (please note that several of these courses have prerequisites):
 a) Cognition: SYMBSYS 100* or PSYCH 55
 b) Logic and Computation: PHIL 150 or 151, or CS 103B, 103X, or 154
 c) Computer Programming: CS 106B, 106X, or 107
 d) Philosophical Foundations: SYMBSYS 100* or PHIL 80
 e) Formal Linguistics: LINGUIST 120, 130A, or 130B
 f) Artificial Intelligence: CS 121 or 221

2. SYMBSYS 100, plus an interdisciplinary SSP concentration listed on the SSP web site at http://symsys.stanford.edu. To qualify, the selection of courses used for the minor must be interdisciplinary; i.e., it must either include courses from at least three departments, or include more than one course from each of two departments.

*SYMBSYS 100 may not be counted for both areas ‘a’ and ‘d’.

UNDERGRADUATE RESEARCH

The program strongly encourages all SSP majors to gain experience in directed research by participating in faculty research projects or by pursuing independent study. In addition to the Symbolic Systems Honors Program (see below), the following avenues are offered.

1. Summer Internships: students work on SSP-related faculty research projects. Application procedures are announced in the winter quarter for SSP majors.
2. Research Assistantships: other opportunities to work on faculty research projects are typically announced to SSP majors as they arise during the academic year.
3. Independent Study: under faculty supervision, students work on independent projects. For course credit they may enroll in SYMBSYS 196.

Contact SSP for more information on any of these possibilities, or visit the program’s web site at http://www.stanford.edu/dept/symbol. In addition, the Undergraduate Research Opportunities office on campus offers numerous grants and scholarships supporting student research projects at all levels; see http://uro.stanford.edu.

HONORS PROGRAM

Seniors in SSP may apply for admission to the Symbolic Systems honors program prior to the beginning of their final year of study. Students who are accepted into the honors program can graduate with honors by completing an honors thesis under the supervision of a faculty member. Course credit for the honors project may be obtained by registering for SYMBSYS 190, Honors Tutorial, for any quarters while a student is working on an honors project. Juniors who are interested in doing an honors project during their senior year are strongly advised to take SYMBSYS 91, Junior Honors Seminar. SYMBSYS 191, Senior Honors Seminar, is recommended for honors students during the senior year. Contact SSP or visit the program’s web site for more information on the honors program, including deadlines and policies.

COTERMINAL BACHELOR’S AND MASTER’S DEGREES

Many SSP majors also complete coterminal M.S. or M.A. degrees in affiliated departments. In addition to the Symbolic Systems M.S. program (see below), the Department of Philosophy offers a special Symbolic Systems track for interdisciplinary graduate level work.

For University coterminal degree program rules and University application forms, see http://registrar.stanford.edu/publications/#Coterm.

GRADUATE PROGRAMS

The University’s basic requirements for the M.S. and Ph.D. degrees are discussed in the “Graduate Degrees” section of this bulletin.

MASTER OF SCIENCE

The M.S. degree in Symbolic Systems is designed to be completed in the equivalent of one academic year by coterminal students or returning students who already have a B.S. degree in Symbolic Systems. Admission is competitive, providing a limited number of students with the opportunity to pursue course and project work, in consultation with a faculty adviser who is affiliated with the Symbolic Systems Program. The faculty adviser may impose requirements beyond those described here.

Admission to the program as a coterminal student is subject to the policies and deadlines described in the “Undergraduate Degrees” section of this bulletin (see “Coterminal Bachelor’s and Master’s Degrees”). Applicants to the M.S. program are reviewed each quarter during the academic year. Information on exact deadlines and required procedures for applying are available from the Symbolic Systems Program’s Student Services Coordinator in the Linguistics Department office (460-127E).

REQUIREMENTS

A candidate for the M.S. degree in Symbolic Systems must complete a program of 45 units. At least 36 of these must be graded units, passed with an average grade of 3.0 (B) or better, and any course taken to fulfill requirements A, B, or C below must be taken for a letter grade unless the course is offered S/NC only. The 45 units may include no more than 21 units of courses from those listed below under Requirements A and B. Furthermore, none of the 45 units to be counted toward the M.S. degree may include units counted toward an undergraduate degree at Stanford or elsewhere. Course requirements are waived only if evidence is provided that similar or more advanced courses have been taken, either at Stanford or another institution. Courses that are waived rather than taken may not be counted toward the M.S. degree.

Each candidate for the M.S. degree must fulfill the following requirements:

REQUIREMENT A

Demonstrated competence in the core requirements for the B.S. degree in Symbolic Systems. Candidates who have gone through the Symbolic Systems undergraduate program satisfy this requirement in the course of the B.S. degree in Symbolic Systems. Other students admitted as candidates for a Symbolic Systems M.S. degree must complete all the Symbolic Systems undergraduate core requirements, with the exception of the advanced seminar requirement.

REQUIREMENT B

1. Completion of two additional skill requirements:
 a) Computer Programming: CS 108, Object-Oriented Systems Design; and
 b) Empirical Methods: one of the following:
 COMM 206, Communication Research Methods
 COMM 268/368, Experimental Research in Advanced User Interfaces
 COMM 318, Doctoral Research Methods II
LINGUIST 220/CS 224N. Natural Language Processing
PSYCH 110. Research Methods and Experimental Design
PSYCH 252. Statistical Methods for Behavioral and Social Science
(for 3 or more units)
PSYCH 253. Statistical Theory, Models, and Methodology (for 3 units)
STATS 191. Introduction to Applied Statistics
STATS 200. Introduction to Statistical Inference
a Statistics course numbered higher than 200
2. Completion of three quarters of the Symbolic Systems Program M.S. Seminar (SYMSYS 291).

REQUIREMENT C
Completion of an approved specialization track. All tracks of the Symbolic Systems M.S. program require students to do a substantial project. The course requirements for each track are designed to prepare a student to undertake such a project. The nature of the project depends on the student’s focus, but may include software development, user testing, or a combination of these. In all cases, a written thesis or paper describing the project is required. The project normally takes three quarters, and work on the project may account for up to 15 units of a student’s program. Each track of the SSP M.S. program has its own core requirements, as well as unit requirements from a set of elective courses. The tracks and their requirements are given below.

The Human-Computer Interaction (HCI) Track—The HCI Core:
a course in Computer Science numbered 141-179, or CS 241-279, or
CS 295. Software Engineering; and
CS 147. Introduction to HCI Design; and
CS 247. Human-Computer Interaction: Interaction Design Studio; and
CS 376. Research Topics in Human-Computer Interaction

The Natural Language Technology (NLT) Track—For the NLT Core, in addition to the courses below, students in the NLT track must complete LINGUIST 220/CS 224N. Natural Language Processing, which can be used as the empirical methods course for Requirement B above.
1) An in-depth theory of English grammar course such as LINGUIST 221A, Foundations of English Grammar
2) A graduate-level semantics course (if not already taken as part of Requirement A) such as LINGUIST 232A, Lexical Semantics, or 230B, Semantics and Pragmatics
3) A two-course sequence in Computational Linguistics:
LINGUIST 180. Introduction to Computer Speech and Language Processing; and
LINGUIST 183/283. Programming and Algorithms for Natural Language Processing
The NLT Electives (at least 8 units from the following list):
CS 145. Introduction to Databases
CS 147. Introduction to HCI Design
CS 161. Design and Analysis of Algorithms
CS 221. Artificial Intelligence: Principles and Techniques
CS 222. Knowledge Representation
CS 224M. Multi-Agent Systems
CS 228. Probabilistic Models in Artificial Intelligence
CS 229. Machine Learning
CS 276. Text Retrieval and Web Search
CS 329. Topics in Artificial Intelligence
LINGUIST 205. Phonetics
LINGUIST 221B. Studies in Universal Grammar
LINGUIST 222A. Lexicalist Foundations of Syntax
LINGUIST 222A. Introduction to Formal Universal Grammar
LINGUIST 227A. Research Seminar in Syntax
LINGUIST 230B. Semantics and Pragmatics
LINGUIST 233. Semantics Seminar
LINGUIST 234. Discourse Analysis
LINGUIST 285. Finite State Methods in Natural Language Processing
LINGUIST 282. Human Machine Translation
PHIL 298. Logic, Language, and Information
PSYCH 205. Foundations of Cognition
PSYCH 214. Psycholinguistics
PSYCH 272. Special Topics in Psycholinguistics

The Individually Designed Option—Students wishing to design their own M.S. curriculum in Symbolic Systems must present a project plan as part of their application. This plan must be endorsed by the student’s adviser prior to admission to the Symbolic Systems M.S. program. The application must also specify at least 20 units of coursework that the student will take in support of the project.
Students are admitted under this option only if they present well-developed plans whose interdisciplinary character makes them inappropriate for any departmental master’s program, but appropriate for Symbolic Systems.

COURSES
SYMSYS 10. Symbolic Systems Forum—A weekly lecture series, featuring different speakers who report on research of general interest to Symbolic Systems students and faculty. Regular attendance required for credit. May be repeated for credit.
1 unit, Aut, Win, Spr (Staff)

SYMSYS 100. Introduction to Cognitive Science—(Same as LINGUIST 144.) The history, foundations, and accomplishments of the cognitive sciences, including presentations by leading Stanford researchers in artificial intelligence, linguistics, philosophy, and psychology. Overview of the issues addressed in the Symbolic Systems major.
GER:DB-SocSci
4 units, Spr (Bresnan, van Benthem)

SYMSYS 145. Cognition in Interaction Design—Interactive systems from the standpoint of human cognition. Topics include skill acquisition, complex learning, reasoning, language, perception, methods in usability testing, special computational techniques such as intelligent and adaptive interfaces, and design for people with cognitive disabilities. Students conduct analyses of real world problems of their own choosing and redesign/analyze a project of an interactive system.
GER:DB-SocSci
3 units, Spr (Shragar)

SYMSYS 150. Computers and Social Decisions—Issues in the design of systems for interactive and collective decision making. Topics such as theories of games and social choice; qualitative and quantitative procedures for making collective decisions; psychological effects of presentation and framing on expressions of preference; features of dialogue systems and online communities; the ideal speech situation and related notions; online voting; the digital divide; and privacy, security, and trust.
GER:DB-SocSci
3 units (Davies) not given 2005-06

SYMSYS 205. Systems: Theory, Science, and Metaphor—Systems science explores abstract properties of systems such as network connectivity, complexity, and emergence, with applications in natural, social, and artificial domains. How useful are these theories? Are their claims testable or generalizable? Do they change the way people think and talk? Topics announced during the previous quarter on course web site. Limited enrollment. Prerequisites: Symbolic Systems undergraduate core course in each of philosophy, psychology or linguistics, and computer science.
3 units (Davies) not given 2005-06

SYMSYS 209. Battles Over Bits—The changing nature of information in the Internet age and its relationship to human behavior. Philosophical assumptions underlying practices such as open source software development, file sharing, common carriage, and community wireless networks,
contrasted with arguments for protecting private and commercial interests such as software patents, copy protection, copyright infringement lawsuits, and regulatory barriers. Theory and evidence from disciplines including psychology, economics, computer science, law, and political science. Prerequisite: PSYCH 40, 55, 70, or SYMBSYS 202.

3 units, Aut (Davies)

SYMBSYS 216. Biological Knowledge and Symbolic Biocomputing — Topics include the representation of biological knowledge including biological ontologies and qualitative and semi-quantitative models; model-based reasoning and explanation; automatic and guided model discovery; and knowledge-based biocomputation. No programming experience required.

3 units, Spr (Shrager)

RESEARCH

SYMBSYS 91. Junior Honors Seminar — Recommended for juniors doing an honors project during the following year. Defining a topic, choosing an adviser, considering overall goals. Resources at Stanford and some experiences of seniors discussed with guest speakers.

2 units, Win (Davies)

SYMBSYS 190. Senior Honors Tutorial — Under the supervision of their faculty honors adviser, students work on their senior honors project. May be repeated for credit.

1-5 units, Aut, Win, Spr, Sum (Staff)

SYMBSYS 191. Senior Honors Seminar — Recommended for seniors doing an honors project. Under the leadership of the Symbolic Systems program coordinator, students meet, discuss, and present their honors project.

2 units, Aut (Davies)

SYMBSYS 196. Independent Study — Independent work under the supervision of a faculty member. Can be repeated for credit.

1-15 units, Aut, Win, Spr, Sum (Staff)

SYMBSYS 291. Master’s Program Seminar — Enrollment limited to students in the Symbolic Systems M.S. degree program. Can be repeated for credit.

1 unit, Aut, Win, Spr (Davies)

INTERDEPARTMENTAL OFFERINGS

See the respective department listings for course descriptions and General Education Requirements (GER) information.

BIOLOGICAL SCIENCES

BIOSCI 20. Introduction to Brain and Behavior
3 units (Fernald) alternate years, given 2006-07

BIOSCI 150/250. Human Behavioral Biology
3-6 units, Spr (Sapolsky) alternate years, not given 2006-07

COMMUNICATION

COMM 106/206. Communication Research Methods
4-5 units, Win (Krosnick)

COMM 169/269. Computers and Interfaces
4-5 units, Win (Nass)

COMM 172/272. Psychological Processing of Media
4-5 units, Spr (Reeves)

COMPUTER SCIENCE

CS 103A. Discrete Mathematics for Computer Science
3 units, Aut, Win (Plummer)

CS 103B. Discrete Structures
3 units, Win (Johnson), Spr (Koltun)

CS 103X. Discrete Structures (Accelerated)
3-4 units, Win (Cain)
ECONOMICS
ECON 51. Economic Analysis II
5 units, Win (Tendall), Spr (Malker), Sum (Staff)
ECON 137. Information and Incentives
5 units (Staff) not given 2005-06
ECON 160. Game Theory and Economic Applications
5 units, Spr (Hammond)
ECON 178/278. Neuroeconomics
5 units (Rangel) not given 2005-06

EDUCATION
EDUC 218. Topics in Cognition and Learning: Quantitative Reasoning
3 units, Aut (Schwartz)
EDUC 298. Online Communities of Learning
3 units (Pea) not given 2005-06

ELECTRICAL ENGINEERING
EE 178. Probabilistic Systems Analysis
3 units, Win (El Gamal)
EE 376A. Information Theory
3 units, Win (Weissman)

ENGINEERING
ENGR 62. Introduction to Optimization
4 units, Aut, Spr (Staff)

LINGUISTICS
LINGUIST 105/205. Phonetics
4 units, Aut (Scarborough)
LINGUIST 110. Introduction to Phonetics and Phonology
4 units, Spr (Antilla)
LINGUIST 120. Introduction to Syntax
4 units, Aut (Sag)
LINGUIST 124A/224A. Introduction to Formal Universal Grammar
4 units, Aut (Sells)
LINGUIST 128/228. Real English: The Syntax of Language Use
4 units (Bresnan) not given 2005-06
LINGUIST 130A. Introduction to Linguistic Meaning
4 units, Aut (Peters)
LINGUIST 130B. Introduction to Lexical Semantics
4 units, Win (Fong)
LINGUIST 140. Language Acquisition I
4 units, Spr (Estigarribia)
LINGUIST 180. Introduction to Computer Speech and Language Processing
4 units, Aut (Jurafsky)
LINGUIST 182/282. Human and Machine Translation
4 units, Aut (Kay)
LINGUIST 183/283. Programming and Algorithms for Natural Language Processing
3-4 units, Win (Kay)
LINGUIST 187/287. Grammar Engineering
1-4 units, Spr (King, Kaplan)
LINGUIST 210. Phonology
4 units (Antilla) not given 2005-06
LINGUIST 221A. Foundations of English Grammar
1-4 units (Sag) not given 2005-06
LINGUIST 221B. Studies in Universal Grammar
1-4 units (Sag) not given 2005-06
LINGUIST 222A. Lexicalist Foundations of Syntax
2-4 units (Sells) not given 2005-06
LINGUIST 230A. Introduction to Semantics and Pragmatics
2-4 units, Aut (Beaver)
LINGUIST 230B. Semantics and Pragmatics
2-4 units, Spr (Peters)
LINGUIST 232A. Lexical Semantics
2-4 units, Win (Levin)
LINGUIST 241. Language Acquisition II: Advanced Topics in Language Acquisition
1-4 units (E. Clark) not given 2005-06
LINGUIST 247. Seminar in Psycholinguistics
2-4 units (Staff) not given 2005-06
LINGUIST 280. Natural Language Processing
3-4 units, Spr (Manning)
LINGUIST 285. Finite State Methods in Natural Language Processing
3-4 units, Spr (Karttunen)

MANAGEMENT SCIENCE AND ENGINEERING
MS&E 120. Probabilistic Analysis
5 units, Aut (Shachter)
MS&E 121. Introduction to Stochastic Modeling
4 units, Win (Glynn)
MS&E 201. Dynamic Systems
3-4 units, Spr (Tse)
MS&E 430. Contextual and Organizational Issues in Human-Computer Interaction
3-4 units, Spr (Hinds)

MATHEMATICS
MATH 103. Matrix Theory and its Applications
3 units, Aut, Win, Spr, Sum (Staff)
MATH 113. Linear Algebra and Matrix Theory
3 units, Aut, Win (Vakil)
MATH 151. Introduction to Probability Theory
3 units, Win (Liu)

MECHANICAL ENGINEERING
ME 115. Human Values in Design
3 units, Win (Staff)

MUSIC
MUSIC 151. Psychophysics and Cognitive Psychology for Musicians
4 units, Spr (J. Berger)
MUSIC 220A. Fundamentals of Computer-Generated Sound
2-4 units, Aut (Chafe)
MUSIC 220B. Compositional Algorithms, Psychoacoustics, and Spatial Processing
2-4 units, Win (Lopez-Lezcano)
MUSIC 250A. HCI Theory and Practice
3-4 units, Aut, Win (Verplank)
MUSIC 253. Musical Information: An Introduction
1-4 units, Win (Selfridge-Field)
MUSIC 254. Applications of Musical Information: Query, Analysis, and Style Simulation
1-4 units, Spr (Selfridge-Field)
SCHOOL OF HUMANITIES AND SCIENCES

NEUROBIOLOGY
NBIO 204. Computational Neuroimaging
1-3 units (Wandell, Grill-Spector) alternate years, given 2006-07
NBIO 206. The Nervous System
8 units, Win (Barres, Knudsen, Newsome, Raymond, Clandinin, Moore, Bacocus)
NBIO 218. Neural Basis of Behavior
4 units, Spr (Knudsen, Raymond) alternate years, not given 2006-07

PHILOSOPHY
PHIL 80. Mind, Matter, and Meaning
5 units, Win, Spr (Taylor)
PHIL 102. Modern Philosophy, Descartes to Kant
4 units, Spr (De Pierris)
PHIL 133/233. Major Figures in 20th-Century Philosophy
4 units (Føllesdal) not given 2005-06
PHIL 150/250. Basic Concepts in Mathematical Logic
4 units, Aut (Pauly)
PHIL 151/251. First-Order Logic
4 units, Win (Pauly)
PHIL 152/252. Computability and Logic
4 units, Spr (Pauly)
PHIL 154/254. Modal Logic
4 units (van Benthem) not given 2005-06
PHIL 162/262. Philosophy of Mathematics
4 units (Staff) not given 2005-06
PHIL 164/264. Central Topics in the Philosophy of Science: Theory and Evidence
4 units, Win (Ryckman)
PHIL 167B/267B. Philosophy, Biology, and Behavior
4 units, Win (Longino)
PHIL 181/281. Philosophy of Language
4 units, Aut (Crimmins)
PHIL 184/284. Theory of Knowledge
4 units, Spr (Hills)
PHIL 186/286. Philosophy of Mind
4 units (Staff) not given 2005-06
PHIL 187/287. Philosophy of Action
4 units, Win (Bratman)
PHIL 188. Personal Identity
4 units, Aut (Ferrero)
PHIL 189. Philosophical Applications of Cognitive Science
4 units (Staff) not given 2005-06
PHIL 350A. Model Theory
3 units, Win (Mints)
PHIL 358. Logic, Language, and Information
3 units, Spr (van Benthem)

PSYCHOLOGY
PSYCH 30. Introduction to Perception
3 units, Win (Grill-Spector)
PSYCH 45. Introduction to Learning and Memory
3 units, Spr (Wagner)
PSYCH 70. Introduction to Social Psychology
4 units, Spr (Ross, Staff)
PSYCH 120. Cellular Neuroscience: Cell Signaling and Behavior
4 units, Aut (Wine)
PSYCH 131/262. Language and Thought
4 units (H. Clark) not given 2005-06
PSYCH 137/239A. Birds to Words: Cognition, Communication, and Language
3 units, Aut (A. Fernald, Ramscar)
PSYCH 141. Cognitive Development
3 units, Aut (Markman)
PSYCH 143/239. Developmental Anomalies
3 units (Johnson) not given 2005-06
PSYCH 156/271. Applications of Social Psychology
1-4 units (Ross) not given 2005-06
PSYCH 202. Cognitive Neuroscience
3 units, Spr (Grill-Spector, Wagner, Wandell, Wine)
PSYCH 204A. Computational Neuroimaging
1-3 units (Wandell, Grill-Spector) alternate years, given 2006-07
PSYCH 227. Seminar in Psycholinguistics: Psycholinguistics of Conversational Speech
2-4 units (Jurafsky, H. Clark) not given 2005-06
PSYCH 250. High-level Vision
1-3 units (Grill-Spector) alternate years, given 2006-07
PSYCH 251. Affective Neuroscience
3 units (Knutson) not given 2005-06
PSYCH 252. Statistical Methods for Behavioral and Social Sciences
1-6 units, Aut (Thomas)
PSYCH 253. Statistical Theory, Models, and Methodology
3 units, Spr (Thomas)
PSYCH 272. Special Topics in Psycholinguistics
1-3 units (H. Clark) not given 2005-06
PSYCH 278. Neuroeconomics
5 units, Aut (Knutson, Rangel)

SOCIOLOGY
SOC 126/226. Introduction to Social Networks
5 units, Win (Mark)

STATISTICS
STATS 110. Statistical Methods in Engineering and the Physical Sciences
4-5 units Aut, Sum (Staff)
STATS 116. Theory of Probability
3-5 units, Aut (Diaconis), Spr (Nacu), Sum (Staff)
STATS 121. Probability, Induction, Statistics
3 units (Staff) not given 2005-06
STATS 191. Introduction to Applied Statistics
3-4 units, Win (Taylor)
STATS 200. Introduction to Statistical Inference
3 units, Win (Romano), Sum (Staff)
A major in Urban Studies prepares students for careers and advanced study in fields such as business, law, public policy, urban design, and urban planning; many have obtained graduate degrees in architecture, urban design, planning, community conflict resolution and the nonprofit sector. Other courses include: POLISCI 221T. Politics of Race and Ethnicity in the United States; POLISCI 143. Nongovernmental Organizations and Development in Poor Countries; HISTORY 260. Race and Ethnicity in the American Metropolis; ENGR 150. Social Innovation and Entrepreneurship; CEE 148. Design and Construction of Affordable Housing; and SOC 1, Introduction to Sociology.

Undergraduate Programs

All students majoring in Urban Studies must complete the Urban Studies core. Those who specialize in urban planning and design, urban education, or community organization must complete their majors by meeting the appropriate requirements for their chosen concentration, supplemented by electives that bring the total units to a minimum of 73. URBANST 198, URBANST 199, and prerequisites for required courses and for electives do not count towards the 73-unit minimum.

The Urban Studies major at Stanford prepares students to address urbanization, urban change, and the interaction of people and groups in urbanized areas. The major gives students a knowledge base and theoretical, analytical, and practical skills to understand urban social systems and effect social change. The major requires students to complete four types of courses totaling at least 73 units: 19 units in the core, 8 units of skills courses, 25 units in an area of concentration, and 10 units in the capstone sequence. If units in these categories total less than 73, the remaining units may be fulfilled by courses in other concentrations or in Urban Studies courses numbered 100 or higher (except URBANST 198 and 199). Majors must also complete two prerequisites, ECON 1, Elementary Economics, and SOC 1, Introduction to Sociology.

Urban Studies students obtain basic quantitative skills by completing MATH 19, 20, and 21, preferably before the junior year.

Urban Studies students should consider an internship in an urban organization in the public or private sector. Urban Studies majors may enroll in one course for credit for such an internship. Students can consult the Haas Center for Public Service on courses with internship placements at community organizations.

Urban Studies students should spend at least one quarter studying at an overseas studies program to learn how cities vary across societies. Some Urban Studies core course requirements, as well as electives, can be satisfied at Stanford overseas campuses. Courses offered overseas vary from year to year, and students should check in advance with Overseas Studies and Urban Studies concerning which courses meet Urban Studies requirements. It is often possible to arrange a summer placement relevant to an Urban Studies major at Stanford’s overseas locations.

A minimum grade of ‘C’ is required for courses used to satisfy requirements for the major. Qualified students may write a senior honors thesis and graduate with honors; see details in “Honors Program” below. Students interested in declaring Urban Studies as a major are required to meet first with one of the program directors; they then declare the Urban Studies major on Axess.

Urban Studies majors should complete URBANST 110, Introduction to Urban Studies, before Spring Quarter of their junior year. The following courses, totally 19 units, are required:

- URBANST 110. Introduction to Urban Studies
- URBANST 111. Urban Politics
- URBANST 112. The Urban Underclass
- URBANST 113. Introduction to Urban Design

Skills

A minimum of 8 units are required. The following courses may be used to fulfill the skills requirement; additional courses may be available on the program web site or in the program office:

- ARTSTUDI 60. Design I: Fundamental Visual Language
- CASA 93B. Prefield Research Seminar

Concentrations

Students must complete at least 25 units in one of the following concentrations. Courses may not be double counted. Students should consult an adviser to develop a program that meets their intellectual goals.

Community Organization—Focus is on how community action, philanthropy, and organizations in nonprofit and for-profit sectors address urban social problems. Courses concerned with public service and community organizations provide a foundation for more advanced studies of community conflict resolution and the nonprofit sector. Other courses introduce students to concepts, skills, and aspects of urban planning and design. This concentration prepares students to enter graduate programs concerned with urban affairs and community service, and to work with local governmental agencies and for-profit and nonprofit organizations engaged in community service and development.

Students who may want to pursue a graduate degree in business or city planning are encouraged to take ECON 50, Economic Analysis I.

The following course is required for the community organization concentration:

- POLISCI 133. Ethics and Politics in Public Service

The following courses may be counted toward the community organization concentration:

- CASA 88. Theories in Race & Ethnicity
- CEE 148. Design and Construction of Affordable Housing
- ENGR 150. Social Innovation and Entrepreneurship
- HISTORY 260. Race and Ethnicity in the American Metropolis
- POLISCI 143. Nongovernmental Organizations and Development in Poor Countries
- POLISCI 221T. Politics of Race and Ethnicity in the United States
- PUBLPOL 183. Philanthropy and Social Innovation
The purpose of this concentration is to prepare students for a career in educational policy and practice in diverse settings. This concentration is a useful basis for graduate study in educational policy, law, or business, and for students who have been admitted by the School of Education to pursue a coterminal master’s degree in the Stanford Teacher Education Program (STEP), the Policy, Organization and Leadership Studies Program (POLIS), or the John Gardner Center for Youth and Community Studies Program (POLS). Students who choose this concentration may be eligible for the undergraduate honors program of the School of Education, in which case opportunities to obtain teaching and advising experience are available in nearby schools through Upward Bound and other programs administered by the Haas Center for Public Service and through courses offered by the School of Education.

Students who choose this concentration may be eligible for the undergraduate honors program of the School of Education, in which case they should enroll in EDUC 199A, B, or C during their senior year. The following course is required for the urban education concentration:

EDUC 212X. Urban Education

The following courses may be counted toward the urban education concentration. Students pursuing a self-designed concentration must submit proposals for approval by the Director of Urban Studies by the middle of the second quarter of the student’s junior year. Applications received after that deadline are not considered. Students interested in designing their own concentration are strongly encouraged to meet with the Director of Urban Studies before the end of their sophomore year.

CAPSTONE

All majors are required to complete a sequence of two seminars, totaling at least 10 units, in which students design a senior project and write the results of their project. The capstone seminars can be used to satisfy the Writing in the Major requirement and to complete some work on an honors thesis. URBANST 201 or 202 should be taken in the junior year, and URBANST 203 in the senior year.

MINORS

The minor in Urban Studies is designed to introduce students to approaches in several different disciplines to the study of cities, and provides them with the opportunity to explore their interests in one of four specialized fields: Community Organization, Urban Education, Urban Planning and Design, or Urban Planning and Design Social Innovation. Students must declare a minor in Urban Studies no later than the last day of the quarter that is four quarters before degree conferred.

The minor in Urban Studies requires completion of seven courses for a letter grade, including URBANST 110, Introduction to Urban Studies. Two of the seven courses must be from among the other core classes: URBANST 111, 112, 113. At least one course must be from each category.
1. Community Organization
 a) POLISCI 133. Ethics and Politics in Public Service
 b) SOC 118. Social Movements and Collective Action
 c) URBANST 121. Civil Society and the Nonprofit Sector
 d) URBANST 132. Concepts and Analytic Skills for the Social Sector
2. Urban Education
 a) EDUC 110. Sociology of Education
 b) EDUC 179. Urban Youth and their Institutions: Research and Practice
 c) EDUC 212X. Urban Education
 d) URBANST 144. Dilemmas in Urban Education
3. Urban Planning and Design
 a) CEE 148. Design and Construction of Affordable Housing
 b) MS&E 196. Transportation Systems and Urban Development or URBANST 165. Sustainable Urban and Regional Transportation Planning
 c) POLISCI 221R Urban Policy
 d) URBANST 161. Urban History Since 1920
 e) URBANST 162. Managing Local Governments
 f) URBANST 163. Land Use Control
 g) URBANST 171. Urban Design Studio
4. Social Innovation
 a) URBANST 121. Civil Society and the Nonprofit Sector
 b) URBANST 132. Concepts and Analytic Skills for the Social Sector
 c) PUBPOL 180. Social Innovation
 d) ENGR 150. Social Entrepreneurship Startup (must be taken for 4 or 5 units for the minor) or URBANST 133. Social Entrepreneurship Collaboratory

HONORS PROGRAM
The honors program offers qualified students an opportunity to conduct independent research and to write a thesis summarizing the results. Before being accepted to the honors program in Urban Studies, a student must declare a major in Urban Studies and complete at least 30 of the 73 required units including all prerequisites and core classes.

1. complete URBANST 202 (offered Winter Quarter);
2. have an overall GPA of 3.3 and a GPA of at least 3.5 in Urban Studies
3. submit an application, including a one-page abstract and the signatures of an adviser and, if applicable, a second reader. If the adviser is not a member of Stanford’s Academic Council, the student must have a second reader who is an Academic Council member. The application must be submitted to the program office no later than the last day of classes in Spring Quarter of the junior year, and it must then be approved by the Director of the Urban Studies honors program. Honors students must register for 7-15 units total in URBANST 199, Senior Honors Thesis, over the course of their senior year. These units do not count towards the 73-unit requirement for graduating with a B.A. in Urban Studies. Honors work is considered to be above and beyond regular graduation standards.

URBANST 202 is required for all students who plan on writing honors theses. This course should be taken during junior year. Students who plan to be away during Winter Quarter of their junior year are advised to take URBANST 202 in the Winter Quarter of their sophomore year.

In Winter Quarter of senior year, all students writing honors theses must register for one unit of URBANST 202, in which they present portions of their theses as models for juniors in the class. Seniors also meet separately to present and discuss their work-in-progress. All honors students are required to present their theses at the Senior Honors Colloquium in Spring Quarter of senior year.

To graduate with honors, students must receive a grade of at least ‘A-‘ in the honors work and have a GPA of at least 3.5 in courses for the Urban Studies major at the time of graduation.

COTERMINAL PROGRAMS
Undergraduates in Urban Studies may enter coterminal master’s degree programs in a number of departments and schools in the University. In recent years, Urban Studies majors have developed coterminal programs with the departments of Civil and Environmental Engineering, Cultural and Social Anthropology, and Sociology, and with the School of Education. A special coterminal program with the School of Education exists for students in the Urban Education concentration, but other coterminal programs can also be arranged through the School of Education. Information and applications for coterminal degree programs are available at the Undergraduate Advising Office. Students should discuss the coterminal program with a program director during their junior year.

For University coterminal degree program rules and University application forms, see http://registrar.stanford.edu/publications/#coterm.

COURSES
Further descriptions and details of current courses offered by the Program on Urban Studies may be obtained from the program office before each quarter.

URBANST 110. Introduction to Urban Studies—The study of cities and urban civilization. History of urbanization and disciplinary methodologies comprising the field of urban studies including economics, political science, sociology, urban design, urban history, and urban public policy. GER:DB-SocSci
4 units, Aut, Spr (Stout), Win (Kahan)

URBANST 111. Urban Politics—(Same as POLISCI 121.) The major actors, institutions, processes, and policies of sub-state government in the U.S., emphasizing city general-purpose governments through a comparative examination of historical and contemporary politics. Issues related to federalism, representation, voting, race, poverty, housing, and finances. Prerequisite: POLISCI 2 or consent of instructor. GER:DB-SocSci
5 units, Win (Fraga)

URBANST 112. The Urban Underclass—(Same as SOC 149.) Recent research and theory on the urban underclass, including evidence on the concentration of African Americans in urban ghettos, and the debate surrounding the causes of poverty in urban settings. Ethnic/racial conflict, residential segregation, and changes in the family structure of the urban poor. GER:DB-SocSci
5 units, Spr (Rosenfeld)

URBANST 113. Introduction to Urban Design—Urban design theory and contemporary practice. Critical issues in urban development and conservation. Neighborhood livability, central city revitalization, historic preservation, and regional growth are examined through comparative case studies from N. America and abroad. Projects focus on neighborhood, downtown, and regional issues in San Francisco and the Bay Area. Two Saturday field workshops in San Francisco. GER:DB-SocSci
5 units, Win (Gast)

URBANST 121. Civil Society and the Nonprofit Sector—Development of the idea of civil society from early Enlightenment Europe to the contemporary U.S. Historical and theoretical foundations. Contemporary features of the nonprofit sector including its legal, economic, political, and ethical dimensions. Structure and operation of modern philanthropy and challenges of the 21st century.
2-4 units, Spr (Sievers)

URBANST 123. Introduction to Community-Based Research—Principles and practice of community-based research as a collaborative enterprise between academic researchers and community members. Guest speakers from community organizations, faculty members, and alumni of the Public Service Scholars Program. How previous experience with community organizations provides a starting point for developing community-based senior theses or independent research projects.
1 unit, Aut (Schmidt-Posner)

URBANST 124. Urban Youth and Their Institutions: Research and Practice—(Enroll in EDUC 179.)
4.5 units (McLaughlin) not given 2005-06

URBANST 125. Youth Empowerment and Civic Engagement—(Enroll in EDUC 179B.)
2-4 units (McLaughlin) not given 2005-06
URBANST 126. Spirituality and Nonviolent Social Transformation — A life of engagement in social transformation is often built on a foundation of spiritual and religious commitments. Case studies of nonviolent social change agents including Rosa Parks, César Chávez, and Women in Black; the religious and spiritual underpinnings of their commitments. Theory and principles of nonviolence. Films and readings. A service learning component includes placements in organizations engaged in social transformation. GER:DB-Hum
4 units, Win (McLennan, Karlin-Neumann, Sanders)

URBANST 130. Social Innovation — (Enroll in PUBLPOL 180.)
4 units, Aut (Phills)

URBANST 131. Social Innovation and the Social Entrepreneur — Invited lecture series. Perspectives and endeavors of thought leaders and entrepreneurs who address social needs in the U.S. and internationally through private for-profit and nonprofit organizations, nongovernmental organizations, or public institutions.
1 unit, Aut (Phills, Staff)

URBANST 132. Concepts and Analytic Skills for the Social Sector — Analytical methods, marketing, language, organizational mission, strategy, and finance in the for-profit and nonprofit social sectors. Focus is on the integration of theory and application. Opportunities and limits of methods from the for-profit sector to meet social goals. Enrollment limited to 20. Prerequisite: ECON 1. GER:DB-SocSci
4 units, Win (Kieschnick)

URBANST 133. Social Entrepreneurship Collaboratory — Interdisciplinary student teams create and develop U.S. and international social entrepreneurship initiatives. Proposed initiatives may be new entities, or innovative projects, partnerships, and/or strategies impacting existing organizations and social issues in the U.S. and internationally. Focus is on each team’s research and on planning documents to further project development. Project development varies with the quarter and the skill set of each team, but should include: issue and needs identification; market research; design and development of an innovative and feasible solution; and drafting of planning documents. In advanced cases, solicitation of funding and implementation of a pilot project. Enrollment limited to 30. May be repeated for credit. Prerequisite: 131, 132 (may be taken concurrently), or consent of instructor.
4 units, Win, Spr (Edwards, Scher)

URBANST 135. Social Innovation and Entrepreneurship — (Enroll in ENGR 150.)
1-6 units, Aut, Win, Spr (Behrman)

URBANST 140. Urban Education — (Enroll in EDUC 212X.)
3-4 units, Spr (McDermott)

URBANST 144. Dilemmas in Urban Education — Dichotomies such as: large, traditional schools versus small schools; segregation versus integration; and teacher certification versus large-scale testing. Topics: interaction of the city in the school through gang activity or job placement programs; current legal challenges; class size reduction; tracking; and retention and social promotion policies. Students contribute their own experiences. Goal is to explore issues facing education in an urban setting, not to solve problems. GER:DB-SocSci
5 units, Win (Scarloss)

URBANST 147. Crime and Incarceration — (Enroll in SOC 147.)
5 units, Aut (Colwell)

URBANST 161. U.S. Urban History since 1920 — Possible topics include: the end of European immigration and its impact on cities; the rise of the automobile; mass culture and consumerism; the Depression and cities; WW II and the martial metropolis; de-industrialization; suburbanization; African American migration; urban renewal; riots, race, and the narrative of urban crisis; the impact of immigration from Asia, Latin America, and Africa; homelessness; the rise of the Sunbelt cities; gentrification; globalization and cities. GER:DB-SocSci
5 units, Aut (Kahan)

URBANST 162. Managing Local Governments — In-the-trenches approach. Issues in leading and managing local governments in an era of accelerating and discontinuous change. Focus is on practical strategies related to financing, public services impacted by increasing demand and revenue constraints, the politics of urban planning, private-public partnerships, public sector marketing, entrepreneurial problem solving, promoting a learning and risk-taking organizational culture, and developing careers in local government. Enrollment limited to 25; preference to Urban Studies majors. GER:DB-SocSci
3-4 units, Win (Benest, Boesch)

URBANST 163. Land Use Control — Methods of land use control related to the pattern and scale of development and the protection of land and water resources. Emphasis is on the relationship between the desired land use goal and geographical landscape, physical externalities, land use law, and regulatory agencies. Topics include the historical roots of modern land use controls; urban reforms of the 19th century; private ownership of land; zoning; local, state, and federal land use regulation; and land trusts preservation. Smart growth, environmental impact consideration, private property rights, and special purpose agencies are related to current issues. GER:DB-SocSci
4 units, Spr (Hall)

URBANST 164. Utopia and Reality in Modern Urban Planning — Primarily for Urban Studies majors. Utopian urbanist thinkers such as Ebenezer Howard, Le Corbusier, and Frank Lloyd Wright who established the conceptual groundwork of contemporary urban planning practice. Research paper. GER:DB-Hum, WIM
5 units, Win (Stout)

URBANST 165. Sustainable Urban and Regional Transportation Planning — Environmental, economic, and equity aspects of urban transportation in 21st-century U.S. Expanding choices in urban and regional mobility that do not diminish resources for future generations. Implications for the global environment and the livability of communities. GER:DB-EngrAppSci
4-5 units, Aut (Kott)

URBANST 166. Urbanization, Global Change, and Sustainability — (Enroll in GES 138.)
3 units (Seto) not given 2005-06

URBANST 171. Urban Design Studio — The practical application of urban design theory. Projects focus on designing neighborhood and downtown regions to balance livability, revitalization, population growth, and historic preservation.
5 units, Spr (Glanz)

URBANST 174. Architectural Design Process — (Enroll in CEE 131.)
4 units, Spr (Blake, Todd)

URBANST 190. Urban Professions Seminar — Workshop. Contemporary practice of urban design and planning, community development, urban education, public service law, and related fields. Topics depend partly on student interests. Bay Area professionals lecture and respond to questions concerning their day-to-day work, impressions of their field, and the academic background recommended for their work. At least one session focuses on graduate schools and degrees relevant to these fields.
1 unit (Kahan) not given 2005-06

URBANST 194. Internship in Urban Studies — For Urban Studies majors only. Students organize an internship in an office of a government agency, a community organization, or a private firm directly relevant to the major. Reading supplements internship. Paper summarizes internship experience and related readings.
2-4 units, Aut, Win, Spr (Staff)

URBANST 195. Special Projects in Urban Studies
1-5 units, Aut, Win, Spr (Staff)

URBANST 197. Directed Reading
1-5 units, Aut, Win, Spr (Staff)
URBANST 198. Senior Research in Public Service—Limited to seniors approved by their departments for honors theses, and admitted to the year-round Public Service Scholars Program sponsored by the Haas Center for Public Service. What standards in addition to those expected by the academy apply to research conducted as a form of public and community service? How can communities benefit from research? Theory and practice of research as a form of public service. Readings in research theory and methods of participatory action research; presentations on research as service; workshops on each participant’s thesis work-in-progress; public presentation of completed research; and thesis evaluation by a community-based reader. May be repeated for credit. Corequisite: 199.

 1-3 units, Aut, Win, Spr (Schmidt-Posner, Staff)

URBANST 199. Senior Honors Thesis
 1-15 units, Aut, Win, Spr (Staff)

URBANST 200A. Choosing a Topic and Questions for a Senior Project—For juniors and sophomores majoring in Urban Studies or Sociology.
 1-2 units, Aut (Kahan)

URBANST 201. Preparation for Senior Project—First part of capstone experience for Urban Studies majors not writing honors theses. Students explore an urban issue of their choice and develop a proposal for a research project or internship based on it. The research or internship may be carried out beginning in Spring, Summer, or Autumn Quarter. Register for 203 to complete writing. WIM
 5 units, Spr (Kahan)

URBANST 202. Preparation for Honors Thesis—(Same as SOC 202.) Primarily for juniors in Sociology or Urban Studies thinking about writing a senior honors thesis; sophomores who plan to be off-campus Winter Quarter of their junior year may register with consent of instructor. Students write a research prospectus and grant proposal for research funding. Urban Studies seniors writing an honors thesis register for 1 unit to present their work. For WIM credit, must be junior or sophomore registering for at least 3 units. WIM
 1-5 units, Win (Tuma)

URBANST 203. Senior Seminar—Students write a substantial paper analyzing the research or internship project developed in 201 or 202. Students work independently but collaboratively, share work in progress, and offer peer feedback. Oral presentations.
 5 units (Staff) not given 2005-2006

OVERSEAS STUDIES
Courses approved for the Urban Studies major and taught overseas can be found in the “Overseas Studies” section of this bulletin, or in the Overseas Studies office, 126 Sweet Hall.

BERLIN
URBANST 143U. Architecture and the City, 1871-1990: Berlin as a Nucleus of Modernity—(Same as ARTHIST 110Y, HISTORY 229V, STS 119V.)
 4 units, Spr (Neckenig)

URBANST 155V. Inventing the Modern City: Berlin in the Twenties and the Nineties
 4 units, Spr (Friedlander)

FLORENCE
URBANST 156V. The Duomo and Palazzo della Signoria: Symbols of a Civilization—(Same as ARTHIST 115Y.)
 4 units, Aut (Verdon)

SANTIAGO
URBANST 157V. Traces of Authority: The City of Santiago de Chile
 5 units, Aut (Fuenzalida)
PROGRAM IN WRITING AND RHETORIC

Faculty Director: Andrea A. Lunsford
Associate Director: Marvin Diogenes
Assistant Director: Alyssa O’Brien
Writing in the Major Director: Claude Reichard
Stanford Writing Center Director: Clyde Moneyhun
Stanford Writing Center Assistant Directors: Wendy Goldberg, John Tinker
Community Writing Project Coordinator: Carolyn Ross

Department Offices: Building 460, Room 223, Margaret Jacks Hall
Mail Code: 2085
Department Phone: (650) 723-2631
Email: pwrcourses@stanford.edu
Web Site: http://pwr.stanford.edu

Courses given in the Program in Writing and Rhetoric have the subject code PWR. For a complete list of subject codes, see Appendix.

GOALS OF THE PROGRAM IN WRITING AND RHETORIC

The Program in Writing and Rhetoric (PWR) designs and teaches courses that meet the Writing and Rhetoric requirement for undergraduates at Stanford as well as intermediate and advanced writing and rhetoric classes. For more information on the requirement, see the “Courses” section below and the “Writing and Rhetoric Requirement” section of this bulletin.

PWR courses engage students in rhetorical and contextual analysis of texts and substantive research-based argument. Students in PWR courses learn and practice time-tested rhetorical principles to gain increasing control over the intellectual and stylistic elements of their writing; they learn to analyze the ideas and persuasive strategies of others and to apply those insights to their own writing.

Toward these ends, PWR 1 focuses on elements of academic argument: understanding a writer’s stance; developing a supportable argumentative thesis; discovering, developing, and deploying cogent proofs; making appropriate organizational and stylistic choices; and understanding the expectations of audiences. The course emphasizes research-based writing, including the effective use of print and non-print sources, primary and secondary sources, and data based on fieldwork. Students enrolled in PWR 1 carry out significant research and use it as the basis for a polished and persuasive research-based argument.

PWR 2 further develops students’ skills in writing and oral presentation, emphasizing the ongoing development of content, organization, and style. The course addresses the dynamic interdependence of writing and speaking, as well as the importance of visual and multimedia elements in effective presentation of research. Students enrolled in PWR 2 have opportunities for practice and revision of written assignments and oral presentations as well as opportunities to present the results of scholarly inquiry, with an emphasis on how to work purposefully and well with a variety of presentation media.

As a general rule, students complete a minimum of four major assignments in both PWR 1 and 2. Written assignments vary from 5 to 15 pages in length, and students work intensively on revising each piece of writing. Oral presentations may involve collaborative work as well as multimedia elements. All assignments involve analyzing a range of texts as well as identifying, evaluating, and using multiple sources in support of academic and research-based arguments. In-class work on how to read with an increasingly critical eye and how to identify, evaluate, integrate, and cite sources effectively provides some of the most important academic learning experiences of students’ first years of work at Stanford.

Writing and Rhetoric classes enroll no more than 15 students, and all classes are conducted as seminars in which participation is crucial. In-class work often includes close reading of and responding to the writing of peers; these workshops are augmented by a minimum of three individual or small group conferences with the PWR instructor during the quarter.

THE STANFORD WRITING CENTER

The Stanford Writing Center, located in Room 020 of Margaret Jacks Hall (Building 460), supports student writing in the full range of academic and extracurricular contexts. The center emphasizes support for students writing for PWR, Introduction to the Humanities, and Stanford Introductory Seminars, while also serving all Stanford undergraduates through one-to-one and group tutorials, workshops, and seminars. Other events sponsored or hosted by the center include regular Writers’ Nights featuring fiction and poetry readings, the “How I Write” series of dialogues with Stanford faculty, and spoken word performances. For further details on the center, visit the center’s web site at http://swc.stanford.edu.

THE STANFORD STUDY OF WRITING

In 2001, PWR began a major research project, the Stanford Study of Writing, focusing on the development of undergraduate writing and the teaching of writing. All students participating in the study received an electronic portfolio including all their writing when they graduated in 2005. This academic year, a group of study participants continues to submit their writing from settings which include graduate programs and workplaces.

PWR PEDAGOGY PROGRAM

PWR offers ENGLISH 397A, a pedagogy seminar for all graduate students (TAs) from English, Modern Thought and Literature, and Comparative Literature who teach PWR courses as part of their graduate studies. Taught in the Autumn Quarter, the pedagogy seminar focuses on syllabus design, developing writing assignments, and responding to student writing. The history of rhetoric and writing supplies a theoretical foundation as well as practical lessons for how to teach writing and research most effectively. In the Winter and Spring, graduate students continue their pedagogical development through a series of workshops and seminars focused on specific issues in the teaching of writing. Elements of the pedagogy program include class visits; group evaluation of writing assignments; workshops and lectures; a handbook on teaching; a library of teaching materials; a program web site with links to other writing program sites; and individual work with mentors and peers.

TRAINING FOR PEER WRITING CONSULTANTS

PWR offers PWR 195, a course on the tutoring of writing for undergraduates selected to serve as peer writing consultants in the Stanford Writing Center and across the campus, and PWR 198 for undergraduates who plan to work as tutors in high school as part of the Ravenswood Writings project.

COURSES

The Writing and Rhetoric requirement approved by the Faculty Senate in May 2001 includes courses at three levels. The first-level course, taken in the first year, can be satisfied by courses in PWR or Structured Liberal Education; the curriculum emphasizes analysis and research-based argument. The second-level course, to be completed by the end of the sophomore year, is a writing and oral/multimedia presentation course taught by the Program in Writing and Rhetoric and by other programs and departments; completion of Structured Liberal Education also satisfies the second-level requirement. The third-level course is a Writing in the Major (WIM) course taught in each major. WIM courses provide students with systematic opportunities to develop skills for writing in their chosen
fields. A list of certified WIM courses may be found in the table of “Undergraduate Major Unit Requirements” in the “Undergraduate Degrees and Programs” section of this bulletin. WIM course descriptions may be found under individual department and program sections.

The new sequence of required courses provides a coordinated approach responsive to how students mature as writers, researchers, and presenters during their undergraduate years. At each level, students are given opportunities to develop greater sophistication in conducting inquiry and producing scholarly work in progressively more specific disciplinary contexts.

Before the term in which students enroll in the first two levels of the requirement, they review course descriptions on the program website at http://pwr.stanford.edu. After reviewing the offerings, students submit a list of top choices, and the PWR office assigns students to courses based on these preferences.

THE WRITING AND RHETORIC 2 REQUIREMENT

As noted above, the second-level course requirement may be satisfied through completion of courses offered through PWR or by other programs and departments. Before the quarter in which students are assigned to enroll in the second-level course, they will be able to review all available courses that meet the requirement on the program website at http://pwr.stanford.edu. In addition to PWR 2, some Center for the Teaching of Learning courses and Stanford Introductory Seminars (SIS) satisfy the second-level Writing and Rhetoric requirement (WR 2). SIS courses require an additional application form; see http://introsems.stanford.edu/ and the SIS Winter and Spring supplements for more information.

COMMUNITY WRITING PROJECT (CWP)

Students may elect to enroll in a section of PWR 1 or 2 which has the designation “CWP” on the PWR website. Students in CWP sections write at least one project during the term (a grant proposal, pamphlet, news article, profile, or website) for a local community service agency. The Community Writing Project coordinator provides an orientation for each CWP section, including a description of participating agencies. Community Writing Project assignments are then made in consultation with the instructor and the CWP coordinator.

PWR 1. Writing and Rhetoric 1—Fulfills first level of the writing requirement. Rhetorical and contextual analysis of readings, research, and argument. Focus is on development of a substantive research-based argument using multiple sources. Individual conferences with instructor. Also for students admitted to Stanford prior to Autumn 2003-04 who scored 4 or 5 on the English AP Exam or 6 or 7 on the International Baccalaureate Higher Level Exam.

4 units, Aut, Win, Spr (Staff)

PWR 2. Writing and Rhetoric 2—Further work in developing skills in argument and research-based writing, with emphasis on oral presentations of research-based arguments. Individual conferences with instructor, and collaborative projects. Prerequisite: PWR 1.

4 units, Aut, Win, Spr (Staff)

PWR 4. Directed Writing—For students who have completed the second level of the writing and rhetoric requirement and want further work on developing their writing. Analysis and research-based argument, writing for a range of audiences and in varied disciplinary contexts. Workshops and individual conferences. May be repeated for credit.

3-4 units, Aut, Win, Spr (Staff)

PWR 5. Independent Writing—For students who have completed the first two levels of the writing requirement and wish to work on a specialized writing project with the guidance of a PWR instructor.

1-5 units, Aut, Win, Spr (Staff)

PWR 6. Writing Workshop

1 unit, Aut (Staff)

PWR 191. Advanced Writing—Open to undergraduates and graduate students. Crafting nonfiction prose in a range of genres. Tutorials, workshops, discussions. Prerequisite: first two levels of the writing requirement or equivalent transfer credit.

3 units, Spr (Diogenes)

PWR 192. Projects in Research, Writing, and Rhetoric—Advanced work on research projects, early drafts of theses, expository excursions, manifestos, scripts, first-hand accounts, investigative reports, proposals, comic disputations, and other textual, rhetorical and imaginative explorations. Shared work, discussions, and examination of methods, rhetorics, and styles in all disciplines. Prerequisite: consent of instructor.

1-5 units, Aut (Obenzinger)

PWR 193. Writing the Honors Thesis—For students from all majors in the process of writing an honors thesis. Review of key elements of thesis process, including literature reviews, structure, argumentation, style, and documentation. Group and individual workshops.

1-5 units, Win, Spr (Obenzinger)

PWR 195. Peer Writing Tutor Training Course—For students selected to serve as peer writing tutors in the Stanford Writing Center and/or at other campus sites. Readings on and reflection about writing processes, the dynamics of writing and tutoring situations, tutoring techniques, learning styles, diversity, and ethics. Observation of tutoring sessions, written responses to readings, and other written work.

3 units, Spr (Moneyhun)

PWR 198X. Tutoring with Adolescents: Ravenswood Writes—(Same as EDUC 198X.) Strategies and approaches for teaching writing to students from diverse backgrounds and languages, and cultural and learning styles. Course prepares students to become tutors for Ravenswood Writes. Prerequisites: application and committee approval.

3 units, Spr (Ball, Lunsford)
SCHOOL OF LAW

Dean: Larry D. Kramer
Vice Dean: Mark G. Kelman
Associate Dean for Curriculum: G. Marcus Cole
Associate Dean for Public Interest and Clinical Education: Lawrence Marshall
Associate Dean for Research and Academics: Pamela S. Karlan
Senior Associate Dean and Chief Financial Officer: Frank Brucato
Associate Deans: Faye Deal, Catherine Glaze, Catherine Nardone, Susan Robinson

Associate Professor: Mariano-Florentino (Tino) Cuéllar, Michele Landis Dauber

Assistant Professors: Amalia D. Kessler, Jenny S. Martinez, Alison D. Morantz

Professor (Teaching): William S. Koski

Associate Professors (Teaching): Jayashri Srikantia, Allen Weiner

Senior Lecturers: Margaret R. Caldwell, David W. Mills, Alan Morrison, Helen Stacy

Courtesy Professor: Daniel P. Kessler

Visiting Professors: Juliet Brodie, Christopher L. Kutz, David J. Luban, Joan Petersilia, Jane Schacter, Alan O. Sykes, Timothy Wu

Legal Research and Writing Instructors: Eric Fink, Grace Humphreys, Suzanne Kim, Beth McLellan, Jeanne Merino, Eliza Patten

Affiliated Faculty: Alexandria Boehm (Engineering), Madhav Rajan (GSB)

School Office: Stanford Law School, Office of the Registrar, Law School Building 559, Nathan Abbot Way, Stanford, CA 94305-8610

Phone: (650) 723-0994

Web Site: http://lawschool.stanford.edu/

Courses given in Law have the subject code LAW. For a complete list of subject codes, see Appendix.

The School of Law was established as a department of the University in 1893. Its purpose is to provide a thorough legal education for students who are fitted by their maturity and their previous academic training to pursue professional study under university methods of instruction. The curriculum leading to the first professional degree in law (J.D.) constitutes an adequate preparation for the practice of law in any English-speaking jurisdiction. Graduate work leading to the degrees of Master of Laws, Master of the Science of Law, and Doctor of the Science of Law are also offered. For the full curriculum, see the Stanford University School of Law web site at http://lawreg.stanford.edu. The school is on a two-term academic calendar: Autumn term classes begin on September 6, 2005 and the term ends on December 14, 2005; Spring term classes begin on January 23, 2006, and the term ends on May 5, 2006.

COURSES

GRADUATE

The following courses are open to qualified graduate students in other departments of the University with the consent of the instructor:

LAW 307. Gender, Law, and Public Policy—(Same as FEMST 307.) Topics: equal protection standards, employment, reproductive rights, sexual harassment, rape, domestic violence, pornography, sexual orientation, feminist legal theory, and the family. Prerequisite: second- or third-year law student; others by consent of instructor.

3 term units, Spr semester (Rhode)

LAW 313. Health Law and Policy I—One of a two-course sequence; may be taken separately or in any order. For medical students; graduate students admitted by consent of instructor. The American health care system and its legal and policy problems. Characteristics of medical care compared with other goods and services, difficulties in assuring quality care, and the patchwork financing system. How the present system works, where it does not work, and how it might be improved.

3 term units, Aut semester (Greely)

LAW 329. Intellectual Property as a Strategic Asset—Open to business students. How intellectual property, including patents, trademarks, copyrights, and trade secrets, creates value. Why intellectual property based companies are among the most profitable, and why firms such as Ford are shedding physical assets to concentrate their patent portfolios and acquire brand names. Research project explores how a student-chosen company manages intellectual property as an asset and how it manages the law’s impact on the asset.

3 term units, Spr semester (Goldstein)

LAW 356. Children and Public Policy—Possible topic is: education; vulnerable older youth, including dropouts and youth in the juvenile justice or foster care system; or abused and neglected children.

4 units, Spr semester (Wald)

LAW 368. Law and Biosciences—(Same as HRP 211.) For medical students; graduate students by consent of instructor. Legal, social, and ethical issues arising from advances in the biosciences. Focus is on human genetics; also advances in assisted reproduction and neuroscience. Topics include forensic use of DNA, genetic testing, genetic discrimination, eugenics, cloning, pre-implantation genetic diagnosis, neuroscientific methods of lie detection, and genetic or neuroscience enhancement.

3 term units, Aut semester (Greely)

LAW 369. Legal Ethics—Professional ethics and regulation. Topics include candor, confidentiality, conflicts of interest, lawyer/client relationships, competence, regulatory structures, delivery of services, and pro bono responsibilities.

3 term units, Aut semester (Luban, Rhode)

LAW 369. Legal Ethics—The organization of the legal profession and how it controls the delivery of legal services including issues such as bar admission, discipline, attorneys’ fees, pro bono obligations, limitations on advertising, and restrictions on non-lawyers undertaking activities performed by lawyers. The impact of these rules on services and cost. Traditional ethics: client confidentiality and avoiding conflicts of interest. Their impact on clients, the courts, and third parties. Ethical and related issues that arise in class actions; applicable rules of procedure and due process cases.

3 term units, Spr semester (Morrison)
LAW 440. Biotechnology Law and Policy — Interdisciplinary. Patenting, corporate organization and financing, conflicts of interest, regulatory approvals, health care financing issues, and tort liability. Prospects for and implications of the biotechnology revolution. Materials for non-scientists on background knowledge about the science and technologies involved, and for non-law students on background knowledge about the legal system. Students groups to present solution to posed problems. Undergraduates require consent of instructor.
3 term units, Spr semester (Greeley)

LAW 504. Globalization, Middle East Regional Dilemmas, and Israel — (Same as JEWISHST 253/353.) The impact of globalization on Middle Eastern issues, emphasizing Israel. How Israel is adapting to changes in the international arena, their effect on its relationship with organizations such as the UN, WTO, OECD, U.S., and EU, and their effect on regional processes including the Middle East peace process, the disengagement plan, and strategies for a more secure Middle East.
4 units (2 term units for Law students), Aut (Mattias)

LAW 514. California Coast: Science, Policy, and Law — (Same as CEE 175A/275A, EARTHSYS 175/275.) Interdisciplinary. The legal, science, and policy dimensions of managing California’s coastal resources. Coastal land use and marine resource decision making. The physics, chemistry, and biology of the coastal zone, tools for exploring data from the coastal ocean, and the institutional framework that shapes public and private decision making. Field work: how experts from different disciplines work to resolve coastal policy questions.
3-4 units, Aut (Caldwell, Boehm, Sivas)

LAW 538. Sociology of Law — Same content as SOC 136/236. Topics include: historical perspectives on the origins of law; rationality and legal sanctions; normative decision making and morality; cognitive decision making; crime and deviance; law in action versus law on the books; organizational responses to law in the context of labor and employment; the roles of lawyers, judges, and juries; and law and social change emphasizing the American civil rights movement.
3 units, Aut (Dauber)

LAW 604. Environmental Workshop — Academicians, practitioners, and policy makers discuss their current research or work in the environmental and natural resources field. Students lead in-class discussions.
2 term units, Spr semester (Caldwell)

LAW 611. Interdisciplinary Seminar on Conflict and Dispute Resolution — (Same as MS&E 459, PSYCH 283.) Problems of conflict resolution and negotiation from an interdisciplinary perspective. Presentations by faculty and scholars from other universities.
1 unit, Win (Hensler, Ross)

NONPROFESSIONAL

The following course is open to undergraduates and graduate students in other departments, and may be counted toward the B.A. degree, but not toward professional degrees in law.

LAW 106. Introduction to American Law — (Same as AMSTUD 179, POLISCI 122.) For undergraduates. The structure of the American legal system including the courts; American legal culture; the legal profession and its social role; the scope and reach of the legal system; the background and impact of legal regulation; criminal justice; civil rights and civil liberties; and the relationship between the American legal system and American society in general. GER:DB-SocSci
5 units, Aut (Friedman)

SCHOOL OF MEDICINE

Dean: Philip Pizzo
Senior Associate Dean for Research and Training: John C. Boothroyd
Senior Associate Dean for Research and Training: Harry B. Greenberg
Senior Associate Dean for Medical Education: Julie Parsonnet

The School of Medicine offers courses of study leading to the M.S., Ph.D., and M.D. degrees.

UNDERGRADUATE PROGRAMS

At the undergraduate level, a number of the school’s courses are open to any registered Stanford student who has fulfilled the prerequisites, subject to the usual limits of course enrollment and faculty approval. In the classroom, the school offers courses targeted to undergraduates as well as graduate-level courses where advanced undergraduates with a strong background in the life sciences are welcome. Among these offerings are many Stanford Introductory Seminars for freshmen and sophomores; interested students are encouraged to peruse the complete list of these offerings in the “Stanford Introductory Seminars” section of this bulletin or at http://www.stanford.edu/group/introsems/.

GRADUATE PROGRAMS

M.S. AND PH.D. PROGRAMS

The School of Medicine is home to graduate programs covering a broad range of disciplines within biomedicine leading to Ph.D. or M.S. degrees. All of these programs focus on interdisciplinary training with in-depth investigation of an original problem of fundamental importance to biomedicine. Each degree program sets its own curriculum, but many courses are taught by groups of faculty from multiple programs and departments. Flexibility is a priority to ensure that all students obtain the best possible training for pursuing careers in their areas of interest. Admission is through one of about 15 home programs. These home programs enable students to carry out dissertation research and training with School of Medicine faculty, as well as investigators in the departments of Biological Sciences and Biophysics in the School of Humanities and Sciences. Detailed information on School of Medicine M.S. and Ph.D. programs, curricula, and research can be found at http://med.stanford.edu/ms/ and http://med.stanford.edu/phd/. Application information may be obtained from Graduate Admissions, Office of the University Registrar, Old Union Building, 520 Lasuen Mall, Stanford University, Stanford, CA 94305-3005, or at http://gradadmissions.stanford.edu/.

M.D. PROGRAM

The School of Medicine seeks to attract creative medical students who are passionate about scholarship and wish to improve the health of the world’s people through research, innovation, and leadership. The Stanford M.D. curriculum provides education in biomedical and clinical sciences along with study and independent research through scholarly concentrations. Emphasis is placed on interdisciplinary learning, with streamlined content and melding of basic science and clinical instruction across the curriculum. Blocks of unscheduled time allow for individual or group study, participation in elective courses, research, and reflection. Alternative pathways through the curriculum include an option of a fifth or sixth year of study as well as opportunities for pursuing a second degree, such as an M.P.H. or Ph.D.

Broad clinical science education occurs throughout the curriculum with exposure to patient care and the practice of medicine beginning on the first day of medical school. Students may begin clinical clerkships as early as May of the second year. All medical students complete formal clinical experiences in medicine, surgery, pediatrics, obstetrics-gynecology, family medicine, psychiatry, neurology, and critical care.

Scholarly concentrations offer opportunities for in-depth study in subject areas including bioengineering, biomedical ethics and medical humanities, biomedical informatics, clinical research, community health
and public service, health services and policy research, immunology, molecular basis of medicine, neuroscience, women's health, and other areas that are independently designed. Students may pursue a scholarly concentration through the Original Research Track or the Scholars Track. Students in the Original Research Track pursue in-depth study in the area of concentration as well as a four quarter, independent research project, concluding with completion and write-up of the project. Original research is not required in the Scholars Track. Students also have the opportunity to conduct a Traveling Scholars project overseas. Following completion of 13 quarters of academic work, additional quarters may be taken at a decreased tuition rate. Completion of the M.D. degree must be achieved within six years, unless a petition is granted to extend this time frame.

Students with strong interests in medical research as a career are urged to investigate opportunities available under the auspices of the Medical Scientist Training Program (MSTP). This program provides a limited number of students the opportunity to pursue an individualized program of research and course work leading to both the M.D. and Ph.D. degrees. The estimated time for completion of the program is seven years. Students interested in participating in the MSTP are asked to provide supplemental information relevant to their research background and are considered for entry into the MSTP at the time of their application to the School of Medicine. Stanford also participates in a joint Master of Public Health program with the University of California, Berkeley, which requires an additional year to complete. Details about these programs may be found at http://med.stanford.edu/combined_degree/.

Stanford recognizes the diversity of the United States and California populations and is committed to representing this diversity in the medical student class. Provided an applicant to the school has completed the basic courses in physics, chemistry, and biology, the choice of an undergraduate major may reflect other interests, including the arts and humanities. Course work in biochemistry and the behavioral sciences is strongly recommended because of their importance in understanding medicine. Extracurricular activities and breadth of interests and experiences play an important role in the selection of students from among those applicants having superior records.

For further details on the M.D. degree, including admission requirements, see http://med.stanford.edu/md/admissions/.

BIOCHEMISTRY

Chair: Suzanne R. Pfeffer

Professors: Patrick O. Brown, Douglas L. Brutlag, Gilbert Chu, Ronald W. Davis, James E. Ferrell, Jr., Daniel Herschlag, Mark A. Krasnow, Suzanne R. Pfeffer, James A. Spudich

Associate Professors: Chaitan S. Khosla, Sharon Long

Assistant Professors: Aaron F. Straight

Courtesy Professors: Suzanne E. Kohler, Sharon Long

Department Offices: Beckman Center, B400

Mail Code: 94305-5307

Phone: (650) 723-6161

Web Site: http://biochem.stanford.edu/

Courses given in Biochemistry have the subject code BIOC. For a complete list of subject codes, see Appendix.

Biochemistry is a department within the School of Medicine, with offices and labs located in the Beckman Center for Molecular and Genetic Medicine at the Stanford Medical Center. Courses offered by the department may be taken by undergraduate, graduate, and medical school students.

Advanced courses are offered in more specialized areas and they emphasize the most recent developments in biochemistry, cell biology, and molecular biology. These courses include the physical and chemical principles of biochemistry, enzyme reaction mechanisms, membrane trafficking and biochemistry, molecular motors and the cytoskeleton, mechanisms and regulation of nucleic acid replication and recombination, the biochemistry of bacterial and animal viruses, the molecular basis of morphogenesis, the molecular and cell biology of yeast, and the structure and function of both eukaryotic and prokaryotic chromosomes.

Opportunities exist for directed reading and research in biochemistry and molecular biology, utilizing the most advanced research facilities, including those for light and electron microscopy, chromatography and electrophoresis, protein and nucleic acid purification, rapid kinetic analysis, synthesis and analysis, single molecule analyses using laser light traps, microarray generation and analysis and computer graphic workstation facilities for protein and nucleic acid structural analysis. Ongoing research utilizes a variety of organisms, from bacteria to animal cells.

GRADUATE PROGRAM

DOCTOR OF PHILOSOPHY

Requirements for the M.S. and Ph.D. degrees are described in the “Graduate Degrees” section of this bulletin. The department does not offer undergraduate degrees.

The Department of Biochemistry offers a Ph.D. program which begins in the Autumn Quarter of each year. The program of study is designed to prepare students for productive careers in biochemistry; its emphasis is training in research, and each student works closely with members of the faculty. In addition to the requirement for a Ph.D. dissertation based on original research, students are required to complete six advanced courses in biochemistry and related areas. Selection of these courses is tailored to fit the background and interests of each student. A second requirement involves the submission of two research proposals which are presented by the student to a small committee of departmental faculty members who are also responsible for monitoring the progress of student curricular and research programs, and a journal club presentation. All Ph.D. students are expected to participate actively in the department’s seminar program, and students are encouraged to attend and to present papers at regional and national meetings in cellular biochemistry and molecular biology. Teaching experience is an integral part of the Ph.D. curriculum and is required for the degree.

The Department of Biochemistry offers an M.S. degree only to students already enrolled in the Ph.D. program. Students should contact the Graduate Studies adviser for more details.

Those applying for graduate study should have at least a baccalaureate degree and should have completed work in cell and developmental biology, basic biochemistry and molecular biology, and genetics. Also required are: at least one year of university physics; differential and integral calculus; and analytical, organic, inorganic, and physical chemistry. The department is especially interested in those applicants who have research experience in biology or chemistry. Students must submit an application, including transcripts and letters of recommendation, by December 13.

Applications should be submitted at http://gradadmissions.stanford.edu and http://www.med.stanford.edu/school/biosciences/. If necessary, a paper application can be requested by mail from Graduate Admissions, Registrar’s Office, Old Union, 520 Lasuen Mall, Stanford University, Stanford CA 94304-3005, by phone (650) 723-4291, or email at gradadmissions@stanford.edu. Applicants are notified by April 1 of decisions on their applications. Stanford University requires scores from the Graduate Record Examination (GRE) (verbal, quantitative, and analytical), and applicants must submit scores from the GRE Subject Test in either biochemistry, biology, or chemistry. Applicants should take the October GRE exam.

All applicants are urged to compete for non-Stanford fellowships or scholarships, and U.S. citizens should complete an application for a National Science Foundation Predoctoral Traineeship. Students are provided with financial support to cover normal living expenses; Stanford tuition costs are paid.

All applicants for admission to the department are considered without regard to race, color, creed, religion, sex, age, national origin, or marital status.
Postdoctoral research training is available to graduates who hold a Ph.D. or an M.D. degree. Qualified individuals may write to individual faculty members for further information.

At present, the primary research interests of the department are the structure and function of proteins and nucleic acids, the biochemistry and control of development processes, molecular motors and the cytoskeleton, the trafficking of proteins between membrane-bound organelles, the control and regulation of gene expression, bioinformatics/protein structure design, and the application of microarrays to problems in human health and disease.

COURSES

3 units, Spr (Brutlag)

BIOC 199. Undergraduate Research—Prerequisite: consent of instructor.

1-18 units, Aut, Win, Spr, Sum (Staff)

BIOC 202. Metabolic Biochemistry: Structure, Metabolism, and Energetics—Structure and function of biological molecules, enzyme kinetics and mechanisms, bioenergetics, pathways of intermediary metabolism and their control, and membrane structure and function. Course offered via online lectures and problem sets, with weekly small-group review sessions.

1-3 units, Aut (Brutlag)

BIOC 205. Molecular Foundations of Medicine—Topics include: DNA structure, replication, repair, and recombination; chromosome structure and function; gene expression including mechanisms for regulating transcription and translation; and methods for manipulating DNA, RNA, and proteins. Patient presentations illustrate how molecular biology affects the practice of medicine.

3 units, Aut (Chu, Brown, Krasnow)

BIOC 210. Advanced Topics in Membrane Trafficking—The structure, function, and biosynthesis of cellular membranes and organelles. Current literature. Prerequisites: 200, 203, or equivalents, and consent of instructor.

3 units (Pfeffer) not given 2005-06

BIOC 214. Physical and Chemical Principles of Enzyme Function—Enzymatic mechanisms, with emphasis on the fundamental behavior of biochemical systems and the properties that emerge due to the complex nature of these systems. Student presentations on specific enzymes based on classic and current literature, developed in consultation with the instructor. Prerequisites: BIOC/SBIO 241 and a course in organic chemistry.

3-5 units (Herschlag) not given 2005-06

BIOC 215. Frontiers in Biological Research—(Same as DBIO 215, GENE 215.) Literature discussion in conjunction with the Frontiers in Biological Research seminar series hosted by Biochemistry, Developmental Biology, and Genetics in which distinguished investigators present current work. Students and faculty meet beforehand to discuss papers from the speaker’s primary research literature. Students meet with the speaker after the seminar to discuss their research and future direction, commonly used techniques to study problems in biology, and comparison between the genetic and biochemical approaches in biological research.

1 unit, Aut, Win, Spr (Harbury, Kingsley, Baker)

BIOC 217. Advanced Tutorial in Special Topics—Readings and tutorial in membrane biochemistry, enzyme mechanisms, chromosome structure, biochemical genetics, bacterial and animal viruses, and nucleic acid enzymology. Conducted by advanced graduate students and postdoctoral fellows.

1-3 units, Aut, Win, Spr (Staff)

BIOC 218. Computational Molecular Biology—Online course; see http://biochem218.stanford.edu. For molecular biologists and computer scientists. Major issues, existing methods, and future directions concerning biological sequences and structure. Topics: accessing molecular databases, pattern search, classification of sequence and structure, alignment of sequences, rapid similarity searching, phylogenies, automated pattern learning, representing protein structure, gene expression profiling, clustering expressed genes, and discovering transcription factor binding sites. Lecture/lab. Final project. Enrollment limited to 40. Prerequisite: BIOSCI 52 or equivalent, or consent of instructor.

3 units (Brutlag) not given 2005-06

BIOC 220. Chemistry of Biological Processes—(Same as MPHA 220.) The principles of organic and physical chemistry as applied to biomolecules. Goal is a working knowledge of chemical principles that underlie biological processes, and chemical tools used to study and manipulate biological systems. Prerequisites: organic chemistry and biochemistry, or consent of instructor.

4 units, Aut (Wandall, Herschlag, Chen, Bogoy)

BIOC 221. The Teaching of Biochemistry—Required for teaching assistants in 203, 204, 217, or 218. Practical experience in teaching on a one-to-one basis, and problem set design and analysis. Familiarization with current lecture and text materials; evaluations of class papers and examinations. Prerequisite: enrollment in the Biochemistry Ph.D. program or consent of instructor.

3 units, Aut, Win, Spr, Sum (Staff)

BIOC 230. Molecular Interventions in Human Disease—For M.D. students who intend to declare a concentration in molecular basis of medicine, M.S.T.P. students, and Ph.D. students with a strong interest in medicine. Advanced medical biochemistry focusing on cases where molecular-level research has led to new medical treatments or changes in the understanding of important diseases. The underlying molecular basis of diseases and the reasons for success and failure in molecular approaches to treatment. Student-led discussions on primary medical and scientific literature.

2-3 units, Aut (Theriot, Harbury)

BIOC 241. Biological Macromolecules—(Enroll in SBIO 241.)

3-5 units, Aut (Puglisi, Weis, Block, Herschlag, Ferrell, McKay, Pande, Garcia)

BIOC 242. Methods in Molecular Biophysics—(Enroll in SBIO 242.)

3 units (Weis, Puglisi) not given 2005-06

BIOC 257. Currents in Biochemistry—Limited to graduate students and postdoctoral fellows in Biochemistry. Seminars by Biochemistry faculty on their ongoing research. Background, current advances and retreats, general significance, and tactical and strategic research directions. Written reviews required.

1-2 units (Kornberg, Lehman) not given 2005-06

BIOC 299. Directed Reading—May be repeated for credit. Prerequisite: consent of instructor.

1-18 units, Aut, Win, Spr, Sum (Staff)

BIOC 399. Research and Special Advanced Work—Prerequisite: consent of instructor.

1-18 units, Aut, Win, Spr, Sum (Staff)

BIOC 450. Introduction to Biotechnology—(Enroll in CHEMENG 450.)

3 units, Spr (Khosla)
CENTER FOR BIOMEDICAL ETHICS

Director: David C. Magnus
Director Emeritus: Thomas A. Raffin
Associate Director: Mildred K. Cho
Assistant Director: Anne J. Footer
Participating Faculty and Staff: Clarence H. Braddock, Julie A. Collier, LaVerla M. Crawley, Maren Grainger-Monsen, Henry Greely, Judy Illes, Agnieszka Jaworska, Sandra S. Lee, Jose R. Maldonado, Audrey Shafer, Sara L. Tobin, Lawrence I. Zaroff
Center Offices: 701 Welch Road, Building A, Suite 1105, Palo Alto, CA 94304
Mail Code: 94304-5748
Phone: (650) 723-5760
Web Site: http://scbe.stanford.edu/

The Stanford University Center for Biomedical Ethics (SCBE) is dedicated to interdisciplinary research and education in biomedical ethics, and provides clinical and research ethics consultation. SCBE serves as a scholarly resource on emerging ethical issues raised by medicine and biomedical research.

SCBE offers a scholarly concentration in Biomedical Ethics and Medical Humanities to medical students. This program allows medical students to study in depth the ethical and humanistic dimensions of research and practice. Additional information on requirements for the scholarly concentration, and a comprehensive list of other related courses is available at http://scbe.stanford.edu/education/bemh.html.

COURSES

For further information, see the Stanford University School of Medicine Catalog.

MEDICINE

INDE 136. Foundations of Bioethics—Classic articles, legal cases, and foundational concepts. Theoretical approaches derived from philosophy. The ethics of medicine and research on human subjects, assisted reproductive technologies, genetics, cloning, and stem cell research. Ethical issues at the end of life.
3 units, Win (Magnus)

INDE 212. The Human Condition: Medicine, Arts, and Humanities—The interdisciplinary field of medical humanities: the use of the arts and humanities to examine medicine in personal, social, and cultural contexts. Topics include the doctor/patient relationship, the patient perspective, the meaning of doctoring, and the meaning of illness. Sources include visual and performance arts, film, and literary genres such as poetry, fiction, and scholarly writing. Non-M.D. students may enroll with consent of instructor.
2 units, Spr (Zaroff)

INDE 226. History of Medicine Online
1 unit, Aut, Win, Spr Sum, (Meites, Shafer)

INDE 238. Current Concepts and Dilemmas in Genetic Testing—(Same as GENE 238) For M.D. students and biomedical graduate students. Issues arising from the translational process from research to commercialization. Diagnostic inventions and applications, community implications, newborn screening, cancer genetics, and pharmacogenomics. Guest experts. Limited enrollment.
2 units, Spr (Tobin, Cowan, Schrijver)

MED 250A. Medical Ethics I—Required core course for Scholarly Concentration in Biomedical Ethics and Medical Humanities. The field of bioethics including theoretical approaches to bioethical problems. Contemporary controversies and clinical cases. Issues include: genetics and stem cell research; rationing; ethical issues in care at the end of life; organ transplantation issues. Values that arise in different situations and clinical encounters.
2 units, Win (Magnus)

MED 255. The Responsible Conduct of Research—Forum. How to identify and approach ethical dilemmas that commonly arise in biomedical research. Issues in the practice of research such as in publication and interpretation of data, and issues raised by academic/industry ties. Contemporary debates at the interface of biomedical science and society regarding research on stem cells, bioweapons, genetic testing, human subjects, and vertebrate animals. Completion fulfills NIH/ADAMHA requirement for instruction in the ethical conduct of research. Recommended: research experience.
1 unit, Aut, Win, Spr (Staff)

INTERDEPARTMENTAL OFFERINGS

GENETICS

GENE 104Q. Law and the Biosciences
3 units, Spr (Greely)

HEALTH RESEARCH AND POLICY

HRP 210. Health Law and Policy I—(Same as LAW 313)
3 units, Aut semester (Greely)

HRP 211. Law and the Biosciences—(Same as LAW 368)
3 units, Aut (Greely)

LAW

LAW 440. Biotechnology Law and Policy
3 units, Spr (Greely)

PHILOSOPHY

PHIL 78. Medical Ethics
4 units, Spr (Jaworska)

PHIL 170. Ethical Theories
4 units, Spr (Jaworska)

PHIL 378. Problems in Medical Ethics
4 units, Win (Jaworska)
BIOMEDICAL INFORMATICS PROGRAM

Committee: Russ B. Altman (Chair and Program Director); Mark A. Musen (Co-Director); Betty Cheng, Amar K. Das, Lawrence M. Fagan (Associate Directors); Douglas L. Brutlag, Atul Butte, Teri E. Klein

Participating Faculty and Staff by Department:

- Anesthesiology: David M. Gaba (Professor)
- Biochemistry: Douglas L. Brutlag (Professor), Ron Davis (Professor), Julie Theriot (Assistant Professor)
- Bioinformatics: Scott L. Delp (Associate Professor)
- Biostatistics: Richard A. Olshen (Professor)
- Business: Alan M. Garber (Professor, by courtesy)
- Civil and Environmental Engineering: Raymond E. Levitt (Professor)
- Computer Science: Serafim Batzoglou (Assistant Professor), Leo Guibas (Professor), Daphne Koller (Associate Professor), Jean-Claude Latombe (Professor), Giao Wiederhold (Professor, Research, emeritus), Terry Winograd (Professor)
- Genetics: Russ B. Altman (Professor), Mike Cherry (Associate Professor, Research), Stanley N. Cohen (Professor, Research, emeritus), Stuart Kim (Professor), Teri E. Klein (Senior Research Scientist), Richard M. Myers (Professor), Gavin Sherlock (Assistant Professor)
- Health Research and Policy: Mark A. Hlatky (Professor), Richard A. Olshen (Professor), Robert Tibshirani (Professor)
- Management Science and Engineering: Margaret Brandeau (Professor), Ronald A. Howard (Professor), Ross D. Shachter (Associate Professor)
- Mathematics: Samuel Karlin (Professor, emeritus)
- Medicine: Jay Bhattacharya (Assistant Professor), Terrance Blaschke (Professor), Atul Butte (Assistant Professor), Robert W. Carlson (Professor), Amar K. Das (Assistant Professor), Parvati Dev (Senior Research Scientist), Lawrence M. Fagan (Senior Research Scientist), Alan M. Garber (Professor), Mary Goldstein (Professor), Michael Higgins (Consulting Associate Professor), Peter D. Karp (Consulting Assistant Professor), David Katzenstein (Professor, Research), John Koza (Consulting Professor), Henry Lowe (Associate Professor, Research; Senior Associate Dean for Information Resources and Technology), Mark A. Musen (Professor), Douglas K. Owens (Associate Professor), Robert W. Shafer (Assistant Professor, Research), P.J. Utz (Associate Professor)
- Microbiology and Immunology: Karla Kirkegaard (Professor), Garry Nolan (Associate Professor)
- Neurosurgery: John R. Adler (Professor), Ramin Shahidi (Assistant Professor, Research)
- Obstetrics and Gynecology: W. LeRoy Heinrichs (Professor, emeritus)
- Pathology: Arend Sidow (Assistant Professor)
- Pediatrics: Atul Butte (Assistant Professor)
- Psychiatry and Behavioral Sciences: Amar K. Das (Assistant Professor)
- Radiation Oncology: Arthur L. Boyer (Professor), Lei Xing (Assistant Professor, Research)
- Radiology: Sam Gambhir (Professor), Gary H. Glover (Professor), Sandy A. Napel (Professor), Norbert J. Pelc (Professor), Geoffrey Rubin (Associate Professor)
- Statistics: Trevor J. Hastie (Professor), Susan Holmes (Professor), Art Owen (Professor)
- Structural Biology: Michael Levitt (Professor)
- Surgery: Thomas Krummel (Professor), Charles Taylor (Assistant Professor, Research)

Program Offices: MSOB 215
Mail Code: 94305-5479
Phone: (650) 723-6979
Web Site: http://www.bmi.stanford.edu

Courses given in Biomedical Informatics Program have the subject code BIOMEDIN. For a complete list of subject codes, see Appendix.

This interdisciplinary program was created in response to a recognized need for well-trained researchers and academic leaders in the expanding field of biomedical informatics. The Biomedical Informatics Program was formerly called Medical Informatics Sciences (1982-2000).

The program in Biomedical Informatics emphasizes research to develop novel computational methods that can advance biomedicine. Students receive training in the investigation of new approaches to conceptual modeling and to development of new algorithms that address challenging problems in the biological sciences and clinical medicine. Students with a primary interest in developing new informatics methods and knowledge are best suited for this program. Students with a primary interest in the biological or medical application of existing informatics techniques may be better suited for training in the application areas themselves.

GRADUATE PROGRAMS

The Biomedical Informatics Program is interdepartmental and offers instruction and research opportunities leading to M.S. and Ph.D. degrees in Biomedical Informatics. All students are required to complete the core curriculum requirements outlined below, and also to elect additional courses to complement both their technical interests and their goals in applying informatics methods to clinical settings, biology, or imaging. Students who fail to maintain a 3.0 grade point average (GPA) in all five categories of the core curriculum are expected to pass a comprehensive exam in that area before the graduate degree is granted. In addition, prior to being formally admitted to candidacy for the Ph.D. degree, the student must demonstrate knowledge of biomedical informatics fundamentals and a potential for research by passing a qualifying exam.

The core curriculum is common to all degrees offered by the program but is adapted or augmented depending on the interests and prior experience of the student. Deviations from the core curriculum outlined below must be justified in writing and approved by the student’s Biomedical Informatics academic adviser and the chair of the Biomedical Informatics Committee. It should be noted, however, that the program is intended to provide flexibility and to complement other opportunities in applied medical research that exist at Stanford. Although most students are expected to comply with the basic program of study outlined here, special arrangements can be made for those with unusual needs or those simultaneously enrolled in other degree programs within the University. Similarly, students with prior relevant training will have the curriculum adjusted to eliminate requirements that were met as part of their prior training.

CORE CURRICULUM

All students are expected to participate regularly in the Biomedical Informatics Student Seminar (201) and Colloquia (200), regardless of whether they register for credit in those courses. In addition, all students are expected to fulfill requirements in the following five categories:

1. Core Biomedical Informatics (15 units): students are expected to understand current applications of computing in biology and medicine and to develop a broad appreciation for research in the management of biomedical information. Required courses are: BIOMEDIN 200, 201, 210, 211, 212, and 214, all of which should be taken during the first and second year in the program. BIOMEDIN 200 and 201 are required courses but are not counted toward the core Biomedical Informatics requirement. Students must also take an additional 3 units of Biomedical Informatics course work (which may include crosslisted courses from other departments, but not including BIOMEDIN 200, 201, 299, 302, 303, or 305), selected in consultation with the academic adviser.

2. Computer Science (9 units): the student is expected to acquire knowledge of the use of computers, computer organization, programming, and symbolic systems. It is assumed that students will have had matriculation prior computing experience at least equivalent to a course introducing the fundamentals of data structures and algorithms such as CS 103A,B, 103X, 106A,B, 106X, or other courses approved by
academic adviser or executive committee. All students are required to take a minimum of 9 units of courses in the Department of Computer Science. If similar courses have not been taken previously, these units must include CS 121, 161, and a course that requires significant programming and knowledge of machine architectures (for example, CS 108, or the CS 193 series). For those who have taken such courses previously, replacement units may be taken from any other course in CS selected by the student and approved by the academic adviser. A course in databases is especially recommended. With the exception of CS 108, all other courses applied to the degree requirements must be numbered 137 or higher.

3. Probability, Statistics, and Decision Science (9 units): students are required to take at least three courses that span the following five topics: basic probability theory, Bayesian statistics, decision analysis, machine learning, and experimental-design techniques. Prior courses in statistics at least equivalent to STATS 60 and calculus equivalent to MATH 42 are prerequisites. A prior course in linear algebra equivalent to MATH 103 or 113 is recommended. For the probability requirements, students may, for example, take MS&E 120, STATS 116, or MS&E 221. For the statistics requirements, students should take STATS 141, if they have not had an equivalent class prior to entry to the program. Otherwise, sequences (taken after STATS 116) may include STATS 200 followed by a course in stochastic modeling, machine learning or data mining, such as STATS 202 or 315A, B, or CS 228 or 229. Options for decision analysis include MS&E 152 or 252, or cost effectiveness analysis (BIOMEDIN 432). Specific courses should be chosen in consultation with the student’s academic adviser. Also recommended is a course in the psychology of human problem solving.

4. Biomedical Domain Knowledge (9 units): students are expected to acquire an understanding of pertinent life sciences and how to analyze a domain of application interest. Prior courses in biology at least equivalent to BIOSCI 41 and 42 are prerequisites. All students must have completed a course in basic biochemistry, molecular biology, or genetics. Other areas of basic biology may be an acceptable alternative. Exposure to laboratory methods in biology is encouraged. All students without formal health care training must take IMMUNOL 230 (formerly BIOMEDIN 207).

5. Social and Ethical Issues (3 units): candidates are expected to be familiar with key issues regarding ethics, public policy, financing, organizational behavior, management, and pertinent legal topics. Students may select at least 3 units from suitable courses that include, for example, BIOMEDIN 432; CS 201; MS&E 284, 197; HRP 391, 392; or any other advanced course in policy and social issues proposed by the student and approved by the Biomedical Informatics academic adviser.

The core curriculum generally entails a minimum of 45 units of course work, but can require substantially more or less depending upon the courses selected and the previous training of the student. The varying backgrounds of students are well recognized and no one is required to take courses in an area in which he or she has already been adequately trained; under such circumstances, students are permitted to skip courses or substitute more advanced work. Students design appropriate programs for their interests with the assistance and approval of their Biomedical Informatics academic adviser. At least 27 units of formal course work are expected.

PROGRAM REQUIREMENTS FOR THE ACADEMIC M.S., PROFESSIONAL M.S., AND COTERMINAL DEGREES

Students enrolled in any of the M.S. degrees must complete the program requirements in order to graduate. Programs of at least 54 units that meet the following guidelines are normally approved:

1. Completion of the core curriculum.

2. A minimum of 6 additional units of courses in Computer Science numbered 135 or higher, courses in Management Science and Engineering or Statistics numbered 200 or higher, PSYCH 256 or 225, or relevant courses in other departments approved by the student’s academic adviser.

3. Electives: additional courses to bring the total to 54 or more units.

The University requirements for the M.S. degree are described in the “Graduate Degrees” section of this bulletin.

MASTER OF SCIENCE (ACADEMIC)

This degree is designed for individuals who wish to undertake in-depth study of biomedical informatics. Normally, a student spends two years in the program and implements and documents a substantial project during the second year. The first year involves acquiring the fundamental concepts and tools through course work and research project involvement. All first- and second-year students are expected to devote 50 percent or more of their time participating in research projects. Research rotations are not required, but can be done with approval of the academic adviser or training program director. Graduates of this program are prepared to contribute creatively to basic or applied projects in biomedical informatics. This degree requires a written research paper to be approved by two faculty members.

MASTER OF SCIENCE (PROFESSIONAL)

This degree is primarily designed for the working professional who already has advanced training in one discipline and wishes to acquire interdisciplinary skills. This program is offered part-time and courses are available online. The professional M.S. is offered in conjunction with Stanford Center of Professional Development (SCPD), which establishes the rates of tuition and fees. SCPD is based on the honors cooperative model (HCP), which assumes that the student is working in a corporate setting and is enrolled in the M.S. on a part-time basis. The student has up to five years to complete the program. Research projects are optional and the student must make arrangements with program faculty. Graduates of this program are prepared to contribute creatively to basic or applied projects in biomedical informatics.

MASTER OF SCIENCE (COTERMINAL)

The coterminal degree program allows undergraduates to study for a master’s degree while completing their bachelor’s degree(s) in the same or a different department. Please refer to the “Coterminal Bachelor’s and Master’s Degrees” section under “Undergraduate Degrees and Programs” in this bulletin for additional information.

The coterminal Master of Science program follows the same program requirements as the Master of Science (Professional), except for the requirement to be employed in a corporate setting. The coterminal degree is only available to current Stanford undergraduates. Coterminal students are enrolled full-time and courses are taken on campus. Research projects are optional and the student must make arrangements with program faculty. Graduates of this program are prepared to contribute creatively to basic or applied projects in biomedical informatics.

For University coterminal degree program rules and University application forms, see http://registrar.stanford.edu/publications/#Coterm.

DOCTOR OF PHILOSOPHY

The University’s basic requirements for the doctorate (residence, dissertation, examination, and so on) are discussed in the “Graduate Degrees” section of this bulletin.

Individuals wishing to prepare themselves for careers as independent researchers in biomedical informatics, with applications experience in bioinformatics, clinical informatics, or imaging informatics, should apply for admission to the doctoral program. The following are additional requirements imposed by the Biomedical Informatics Interdisciplinary Committee:

1. A student should plan and successfully complete a coherent program of study including the core curriculum and additional requirements for the master’s program. In addition, doctoral candidates are expected to take at least three more advanced courses (see categories under item ‘2’ of the master’s program requirements). In the first year, two or three research rotations are strongly encouraged. The master’s requirements should be completed by the end of the second year in the program (six
quarters of study, excluding summers). Doctoral students are generally advanced to Ph.D. candidacy after passing the qualifying exam, which takes place during the second year of training. A student’s academic adviser has primary responsibility for the adequacy of the program, which is regularly reviewed by the Biomedical Informatics Executive Committee.

2. To remain in the Ph.D. program, each student must attain a grade point average (GPA) as outlined above, and must pass a comprehensive exam covering introductory level graduate material in any curriculum category in which he or she fails to attain a GPA of 3.0. The student must fulfill these requirements and apply for admission to candidacy for the Ph.D. by the end of six quarters of study (excluding summers). In addition, reasonable progress in the student’s research activities is expected of all doctoral candidates.

3. During the third year of training, generally in the Winter Quarter, each doctoral student is required to give a preproposal seminar that describes evolving research plans and allows program faculty to assure that the student is making good progress toward the definition of a doctoral dissertation topic. By the end of nine quarters (excluding summers), each student must orally present a thesis proposal to a dissertation committee that generally includes at least one member of the Biomedical Informatics Executive Committee. The committee determines whether the student’s general knowledge of the field, and the details of the planned thesis, are sufficient to justify proceeding with the dissertation.

4. As part of the training for the Ph.D., each student is required to be a teaching assistant for two courses approved by the Biomedical Informatics Executive Committee; one should be completed in the first two years of study.

5. The most important requirement for the Ph.D. degree is the dissertation. Prior to the oral dissertation proposal and defense, each student must secure the agreement of a member of the program faculty to act as dissertation adviser. The principal adviser need not be an active member of the Biomedical Informatics program faculty, but all committees should include at least one participating BMI faculty member.

6. No oral examination is required upon completion of the dissertation. The oral defense of the dissertation proposal satisfies the University oral examination requirement. At the completion of the dissertation, the student should give a final talk.

7. The student is expected to demonstrate an ability to present scholarly material orally and present his or her research in a lecture at a formal seminar.

8. The student is expected to demonstrate an ability to present scholarly material in concise written form. Each student is required to write a paper suitable for publication, usually discussing his or her doctoral research project. This paper must be approved by the student’s academic adviser as suitable for submission to a refereed journal before the doctoral degree is conferred.

9. The dissertation must be accepted by a reading committee composed of the principal dissertation adviser, a member of the program faculty, and a third faculty member chosen from anywhere within the University.

COURSES

BIOMEDIN 156/256. Economics of Health and Medical Care — (Same as ECON 126/256.) Graduate students with research interests should take ECON 248. Institutional, theoretical, and empirical analysis of the problems of health and medical care. Topics: institutions in the health sector; measurement and valuation of health; nonmedical determinants of health; medical technology and technology assessment; demand for medical care and medical insurance; physicians, hospitals, and managed care; international comparisons. Prerequisite: ECON 50 and 102A or equivalent statistics, or consent of instructor. Recommended: ECON 51.

5 units, Aut (Bhattacharya)

BIOMEDIN 200. Biomedical Informatics Colloquium — Series of colloquia offered by program faculty, students, and occasional guest lecturers. Credit available only to students in a Biomedical Informatics degree program. May be taken no more than three times for credit.

1 unit, Aut, Win, Spr (Musen)

BIOMEDIN 201. Biomedical Informatics Student Seminar — Participants report on recent articles from the Biomedical Informatics literature or their research projects. Goal is to teach presentation skills. Credit available only to students in an Biomedical Informatics degree program. May be repeated three times for credit.

1 unit, Aut, Win, Spr (Musen)

BIOMEDIN 202. Introductory Biomedical Informatics — Overview of current research problems and computational approaches to them. Topics include medical security and privacy, electronic medical records, controlled terminologies and biomedical ontologies, electronic retrieval, technology-assisted learning environments, medical decision making and support, sequence analysis, phylogenetics, biological networks and pathways, microarray analysis, natural language processing, and protein structural analysis and prediction. For medical students; others by consent of instructor. Graduate students in the Biomedical Informatics training program may not take this class for credit.

1 unit, Aut, Win, Spr, Sum (Cheng, Fagan)

BIOMEDIN 210. Introduction to Biomedical Informatics: Fundamental Methods — (Same as CS 270.) Issues in the modeling, design, and implementation of computational systems for use in biomedicine. Topics: basic knowledge representation, controlled terminologies in medicine and biological science, fundamental algorithms, information dissemination and retrieval, knowledge acquisition, and ontologies. Emphasis is on the principles of modeling data and knowledge in biomedicine and on translation of resulting models into useful automated systems. Recommended: principles of object-oriented systems.

3 units, Aut (Musen)

BIOMEDIN 211. Introduction to Clinical Systems — (Same as CS 271.) Design and implementation of computational and information systems in complex biomedical environments. Topics: requirements analysis, workflow and organizational factors, functional specification, knowledge models, data heterogeneity and standards, component-based architectures, human-computer interaction, and system evaluation. Case studies illustrate challenges of system design for research and clinical settings. Prerequisite: 210, or consent of instructor.

3 units, Win (Das)

BIOMEDIN 212. Biomedical Informatics Project Course — (Same as CS 272.) Hands-on software building. Student teams conceive, design, specify, implement, evaluate, and report on a software project in the domain of biomedicine. Creating written proposals, peer review, providing status reports, and preparing final reports. Guest lectures from professional biomedical informatics systems builders on issues related to the process of project management. Software engineering basics. Prerequisites: 210 or 214, or consent of instructor.

3 units, Aut (Altman, Cheng, Klein)

BIOMEDIN 214. Representations and Algorithms for Computational Molecular Biology — (Same as CS 274.) Topics: algorithms for alignment of biological sequences and structures, computing with strings, phylogenetic tree construction, hidden Markov models, computing with networks of genes, basic structural computations on proteins, protein structure prediction, protein threading techniques, homology modeling, molecular dynamics and energy minimization, statistical analysis of 3D biological data, integration of data sources, knowledge representation and controlled terminologies for molecular biology, graphical display of biological data, and genetic algorithms and programming applied to biological problems. Prerequisites: programming skills and matrix algebra.

3-4 units, Spr (Altman)

1 unit, Spr (Altman)
BIOMEDIN 216A. Biological Knowledge and Symbolic Biocomputing
3 units, Spr (Shrager)

BIOMEDIN 228. Influence Diagrams and Probabilistic Networks — (Enroll in MS&E 355.)
3 units, Win (Shachter) alternate years, not given 2006-07

BIOMEDIN 231. Computational Molecular Biology — (Enroll in BIOC 218.)
3 units (Brutlag) not given 2005-06

3 units, Win (Hastie, Cobb)

BIOMEDIN 234. Biomedical Genomics — How genomics is influencing medical research and health-care delivery, illuminating the genomic discoveries being translated into diagnostic and therapeutic medical applications. Themes: the relevance of human genome project and functional genomics to inherited and acquired diseases, and the role of public databases and computational methods for solving problems in biology. Human genetic variation, SNPs, comparative genomics, computer models of biological processes, microbial genomics, pharmacogenomics, structure-based drug design, gene therapy. Case studies demonstrate the use of information technologies for converting molecular biological data into knowledge that can improve patient care and accelerate the discovery of new therapeutics.
3 units, Win (Shafer)

BIOMEDIN 239. Computer-Based Medical Education — Directed reading and research for graduate students in web-based hypermedia and simulation techniques in education. Possible topics: replacement of a lecture or a lab session, distance learning, student models, and clinical case simulations.
1-6 units, Aut, Win, Spr, Sum (Dev)

BIOMEDIN 240. Causal Models in Biomedical Informatics — Computational formalisms for encoding causal models in biological and biomedical domains from recent work on modeling genetic networks; also models that arise in medical applications. Readings include papers that describe causal models within a specific representational framework. Associated methods for reasoning over knowledge structures in that paradigm and for inducing such models from data. Goal is to understand how to represent, reason about, and discover biological knowledge in each framework, along with the strengths and weaknesses of that formalism.
3 units (Langley) not given 2005-06

BIOMEDIN 251. Outcomes Analysis — (Same as HRP 252.) Introduction to methods of conducting empirical studies which use large existing medical, survey, and other databases to ask both clinical and policy questions. Econometric and statistical models used to conduct medical outcomes research. How research is conducted on medical and health economics questions when a randomized trial is impossible. Problem sets emphasize hands-on data analysis and application of methods, including re-analyses of well-known studies. Prerequisites: one or more courses in probability, and statistics or biostatistics.
3 units, Spr (Bhattacharya)

BIOMEDIN 262. Computational Genomics — (Same as CS 262.) Applications of computer science to genomics, and concepts in genomics from a computer science point of view. Topics: dynamic programming, sequence alignments, hidden Markov models, Gibbs sampling, and probabilistic context-free grammars. Applications of these tools to sequence analysis: comparative genomics, DNA sequencing and assembly, genomic annotation of repeats, genes, and regulatory sequences, microarrays and gene expression, phylogeny and molecular evolution, and RNA structure. Prerequisites: 161 or familiarity with basic algorithmic concepts. Recommended: basic knowledge of genetics.
3 units, Win (Batzoglou)

BIOMEDIN 273. Algorithms for Structure and Motion in Biology — (Same as CS 273.) Algorithms motivated by challenges in predicting molecule properties in silico. Topics: geometric and kinematic models of biomolecules (proteins, ligands), conformation spaces, retention of structure from experimental data, finding sequence and structural similarities, molecular surfaces and shape analysis, energy calculation, detection of steric clashes and proximity computation, conformation sampling, threading, and study of folding and binding motions.
3 units, Spr (Batzoglou, Latombe)

BIOMEDIN 278. Probabilistic Models in Artificial Intelligence — (Enroll in CS 228.)
3 units, Win (Koller, Elidan)

BIOMEDIN 299. Directed Reading and Research
1-18 units, Aut, Win, Spr, Sum (Staff)

BIOMEDIN 301. Special Topics in Biomedical Informatics
1-6 units, Aut, Win, Spr, Sum (Staff)

BIOMEDIN 303. Statistics for Research — Statistical methods commonly used in research. Emphasis is on when and how to use the methods rather than on proofs. How to describe data and detect unusual values, compare treatment effects, interpret p-values, detect and quantify trends, and power for an experiment, and choose statistical tests and software. Topics include descriptive statistics (mean, median, standard deviation, standard error), probability, paired and unpaired t-tests, analysis of variance, correlation, regression, chi-square, discriminant analysis, and power and sample size. Statistical analysis software including Excel and Statistics.
1 unit (M. Walker) alternate years, given 2006-07

BIOMEDIN 328. Computational Structural Biology — (Enroll in SBIO 228, BIOPHYS 228.)
3 units, Aut, Spr (Levitt)

BIOMEDIN 329. Topics in Artificial Intelligence — (Enroll in CS 329.)
3 units, Aut, Win, Spr (Staff)

3-4 units, Spr (Hanrahan)

2-3 units, Aut (Holmes)

BIOMEDIN 374. Algorithms in Biology — (Same as CS 374.) Algorithms and computational models applied to molecular biology and genetics. Topics vary annually. Possible topics include biological sequence comparison, annotation of genes and other functional elements, molecular evolution, genome rearrangements, microarrays and gene regulation, protein folding and classification, molecular docking, RNA secondary structure, DNA computing, and self-assembly. May be repeated for credit. Prerequisites: 161, 262 or 274, or BIOCHEM 218, or equivalents.
2-3 units, Aut (Batzoglou)
BIOMEDIN 379. Interdisciplinary Topics: Computational Systems Biology—(Enroll in CS 379.)
3 units, Win (Staff)

BIOMEDIN 390A,B,C. Curricular Practical Training—Provides educational opportunities in biomedical informatics research. Qualified biomedical informatics students engage in internship work and integrate that work into their academic program. Students register during the quarter they are employed and must complete a research report outlining their work activity, problems investigated, key results, and any follow-up on projects they expect to perform. BIOMEDIN 390A, B, and C may each be taken only once.
1 unit, Aut, Win, Spr, Sum (Musen)

BIOMEDIN 432. Analysis of Costs, Risks, and Benefits of Health Care—(Same as MGTECON 332, HRP 392.) For graduate students. The principal evaluative techniques for health care, including utility assessment, cost-effectiveness analysis, cost-benefit analysis, and decision analysis. Emphasis is on the practical application of these techniques. Group project presented at end of quarter. Guest lectures by experts from the medical school, pharmaceutical industry, health care plans, and government.
4 units, Aut (Garber, Owens)

CANCER BIOLOGY PROGRAM

Program Director: Joseph Lipsick (Pathology and Genetics)
Committee on Cancer Biology: Steven Artandi (Medicine), Laura Attardi (Radiation Oncology, Genetics), Jeffrey Axelrod (Pathology), Dean Felsher (Medicine, Pathology), Joseph Lipsick (Pathology, Genetics), Anthony Oro (Dermatology), Timothy Stearns (Biological Sciences, Genetics)

Program Offices: Alway Building, 300 Pasteur Drive, Room M105
Mail Code: 94305-5121
Phone: (650) 723-6198
Email: Gina.Rocca@stanford.edu
Web Site: http://www.stanford.edu/group/cancerbio/

Courses given in Cancer Biology have the subject code CBIO. For a complete list of subject codes, see Appendix.

Established in 1978, the Cancer Biology Program at Stanford University includes an interdisciplinary program leading to the Ph.D. degree. During the past 25 years, understanding of cancer has increased dramatically with the discovery of oncogenes, tumor suppressor genes, pathways of DNA damage and repair, cell cycle regulation, angiogenesis and responses to hypoxia, and recent glimpses into the molecular basis of metastasis. In addition, methods of parallel analysis including gene expression arrays, protein arrays, and tissue arrays have begun to refine and redefine the taxonomy of cancer diagnosis. This explosion of basic and clinical science has, in turn, resulted in the first successful cancer chemotherapy and immunotherapies based on knowledge of specific molecular targets. Stanford presents a unique environment to pursue interdisciplinary cancer research because the School of Medicine, the School of Humanities and Sciences, and the School of Engineering are located on a single campus, all within walking distance of one another.

The goal of the Cancer Biology Ph.D. program is to provide students with education and training that enables them to make significant contributions to this remarkable field. Course work during the first year is designed to provide a broad understanding of the molecular, genetic, cellular biological, and pathobiological aspects of cancer. Students also learn about the current state of the epidemiology, clinical diagnosis, treatment, and prevention of human cancers. Equally important during the first year is a series of three rotations in research laboratories chosen by each student. By the beginning of the second year, each student chooses a research adviser and begins work on the dissertation project. A qualifying examination must be completed by the end of the second year. An annual Cancer Biology conference at Asilomar on the Pacific Ocean provides students with an opportunity to present their research to one another and to faculty.

BIOMEDIN 379. Interdisciplinary Topics: Computational Systems Biology—(Enroll in CS 379.)
3 units, Win (Staff)

BIOMEDIN 390A,B,C. Curricular Practical Training—Provides educational opportunities in biomedical informatics research. Qualified biomedical informatics students engage in internship work and integrate that work into their academic program. Students register during the quarter they are employed and must complete a research report outlining their work activity, problems investigated, key results, and any follow-up on projects they expect to perform. BIOMEDIN 390A, B, and C may each be taken only once.
1 unit, Aut, Win, Spr, Sum (Musen)

BIOMEDIN 432. Analysis of Costs, Risks, and Benefits of Health Care—(Same as MGTECON 332, HRP 392.) For graduate students. The principal evaluative techniques for health care, including utility assessment, cost-effectiveness analysis, cost-benefit analysis, and decision analysis. Emphasis is on the practical application of these techniques. Group project presented at end of quarter. Guest lectures by experts from the medical school, pharmaceutical industry, health care plans, and government.
4 units, Aut (Garber, Owens)

CANCER BIOLOGY PROGRAM

Program Director: Joseph Lipsick (Pathology and Genetics)
Committee on Cancer Biology: Steven Artandi (Medicine), Laura Attardi (Radiation Oncology, Genetics), Jeffrey Axelrod (Pathology), Dean Felsher (Medicine, Pathology), Joseph Lipsick (Pathology, Genetics), Anthony Oro (Dermatology), Timothy Stearns (Biological Sciences, Genetics)

Program Offices: Alway Building, 300 Pasteur Drive, Room M105
Mail Code: 94305-5121
Phone: (650) 723-6198
Email: Gina.Rocca@stanford.edu
Web Site: http://www.stanford.edu/group/cancerbio/

Courses given in Cancer Biology have the subject code CBIO. For a complete list of subject codes, see Appendix.

Established in 1978, the Cancer Biology Program at Stanford University includes an interdisciplinary program leading to the Ph.D. degree. During the past 25 years, understanding of cancer has increased dramatically with the discovery of oncogenes, tumor suppressor genes, pathways of DNA damage and repair, cell cycle regulation, angiogenesis and responses to hypoxia, and recent glimpses into the molecular basis of metastasis. In addition, methods of parallel analysis including gene expression arrays, protein arrays, and tissue arrays have begun to refine and redefine the taxonomy of cancer diagnosis. This explosion of basic and clinical science has, in turn, resulted in the first successful cancer chemotherapy and immunotherapies based on knowledge of specific molecular targets. Stanford presents a unique environment to pursue interdisciplinary cancer research because the School of Medicine, the School of Humanities and Sciences, and the School of Engineering are located on a single campus, all within walking distance of one another.

The goal of the Cancer Biology Ph.D. program is to provide students with education and training that enables them to make significant contributions to this remarkable field. Course work during the first year is designed to provide a broad understanding of the molecular, genetic, cellular biological, and pathobiological aspects of cancer. Students also learn about the current state of the epidemiology, clinical diagnosis, treatment, and prevention of human cancers. Equally important during the first year is a series of three rotations in research laboratories chosen by each student. By the beginning of the second year, each student chooses a research adviser and begins work on the dissertation project. A qualifying examination must be completed by the end of the second year. An annual Cancer Biology conference at Asilomar on the Pacific Ocean provides students with an opportunity to present their research to one another and to faculty.

expected time to degree is four to five years.

Students are not limited to a single department in choosing their research adviser. The Cancer Biology Ph.D. program currently has approximately 50 graduate students located in various basic science and clinical departments throughout the School of Medicine and the School of Humanities and Sciences.

GRADUATE PROGRAM

DOCTOR OF PHILOSOPHY

University requirements for the Ph.D. are described under the “Graduate Degrees” section of this bulletin.

A small number of well-qualified applicants are admitted to the program each year. Applicants should have completed an undergraduate major in the biological sciences; applicants with undergraduate majors in physics, chemistry, or mathematics may be admitted if they complete background training in biology during the first two years of study. During the first year, each student is required to take a minimum of three, one quarter laboratory rotations. Students must choose a dissertation adviser prior to the end of Summer Quarter, first year, but not before the end of Spring Quarter, first year.

The requirements for the Ph.D. degree are as follows:

1. Training in biology equivalent to that of an undergraduate biology major at Stanford.
2. Completion of the following courses:
 a) CBIO 241. Molecular, Cellular, and Genetic Basis of Cancer
 b) GENE 203. Advanced Genetics
 c) MCP 221. Cell Biology of Physiological Processes
 d) MPH 210. Signal Transduction Pathways and Networks
 f) MED 255. Responsible Conduct in Research; with permission, may be audited.
3. At least 6 units of additional cancer biology-related, graduate-level courses. Course work taken is determined in consultation with the student’s adviser and/or the Program Director.
4. Presentation of research results at the annual Cancer Biology Conference on at least three occasions, at least one being an oral presentation.
5. Successful completion of a qualifying examination in Cancer Biology is required for admission to Ph.D. candidacy. The exam consists of an NIH-style written grant proposal not to exceed ten pages (excluding references), and an oral examination. The examining committee consists of three faculty members from the Cancer Biology Program and does not include the student’s dissertation adviser. The composition of this committee is chosen by the student and dissertation adviser and must be submitted to and approved by the program director prior to the end of Autumn Quarter, second year. The qualifying examination must be taken prior to the end of Spring Quarter, second year. If necessary, one retake is permitted prior to the end of Summer Quarter, second year. After the qualifying examination has been successfully completed, the student is required to form a dissertation reading committee that includes the student’s adviser and three other members of the Academic Council with appropriate expertise. Each student is required to arrange annual meetings (more frequently, if necessary) of the dissertation reading committee, at which time oral presentations of progress during the past year and a plan of study for the coming year are presented and discussed. Completion of each annual committee meeting must be communicated in writing to the Program Director by the adviser by the end of Spring Quarter each year.
6. The major accomplishment of each successful Ph.D. student is the presentation of a written dissertation resulting from independent investigation that contributes to knowledge in the area of cancer biology. An oral examination is also required for the Ph.D. degree. In the Cancer Biology Program, a public seminar (one hour) is presented by the Ph.D. candidate, followed by a closed-door oral examination. The oral examination committee consists of at least four examiners (the members of the doctoral dissertation reading committee) and a chair.
The oral examination chair may not have a full or joint appointment in the adviser’s or student’s home department. However, a courtesy appointment does not affect eligibility. The oral examination chair may be from the same department as any other member(s) of the examination committee. All members of the oral examination committee are normally members of the Academic Council, as the oral examination chair must be. With the prior approval of the program director or school dean, one of the examiners may be a person who is not a member of the Academic Council if that individual contributes expertise not otherwise available. Official responsibility for selecting the oral examination chair rests with the program. Cancer Biology delegates this to the student and dissertation adviser.

COURSES

CBIO 299. Research — Cancer Biology Program. For a complete list of subject codes, see Appendix.

CBIO 280. Cancer Biology Journal Club — Focus is on recent papers in the literature presented by graduate students. Letters grade required. Undergraduates require consent of course director.

CBIO 241. Molecular, Cellular, and Genetic Basis of Cancer — Core course required for all first-year Cancer Biology graduate students. Focus is on key experiments and discoveries with emphasis on genetics, molecular biology, and cell biology. Topics include carcinogenesis, tumor virology, oncogenes, tumor suppressor genes, cell cycle regulation, angiogenesis, invasion and metastasis, cancer genomics, cancer epidemiology, and cancer therapies. Discussion sections based on primary research articles that describe key experiments in the field. Prerequisites: BIOSCI 41/42 4 units, Spr (Lipsick)

CBIO 260. Teaching in Cancer Biology — Credit is given for assisting a professor in the teaching of a cancer biology course. Prerequisite: consent of supervising instructor. 1-10 units, Aut, Win, Spr (Staff)

CBIO 280. Cancer Biology Journal Club — Focus is on recent papers in the literature presented by graduate students. Discussion sections based on primary research articles that describe key experiments in the field. Prerequisites: BIOSCI 41/42 4 units, Spr (Lipsick)

CBIO 299. Research — Cancer Biology Ph.D. students must register as soon as they begin dissertation-related research work. 1-18 units, Aut, Win, Spr, Sum (Staff)

COMPARATIVE MEDICINE

Chair: Linda C. Cork
Professor: Linda C. Cork
Associate Professors: Donna Bouley, Paul Buckmaster, Sherrill Green, Shaul Hestrin, Ravi Tolwani
Assistant Professors: Catherine Beckwith, Corinna Darian-Smith, Manuel Garcia

Department Offices: Edwards Building, Room R321
Mail Code: 94305-5342
Phone: (650) 498-5080
Web Site: http://med.stanford.edu/compmed/

Courses given in Comparative Medicine have the subject code COMPMED. For a complete list of subject codes, see Appendix.
COMP MED 108/208. Animals Advancing Biomedical Technology — (Graduate students register for 208.) Open to graduate students and undergraduates in all degree programs, especially computer science, engineering, or the BioX program. Lectures by faculty members in Comparative Medicine and invited speakers from the biomedical industry. The role of animals in biomedical research. Possible topics include: comparative anatomy and physiology of species used in biotechnology and medical device research; selecting an animal model for a research project; the genetically engineered mouse; and preclinical, animal testing of medical devices intended for use in humans. No background in animal biology required.

2 units (Cork) not given 2005-06

COMP MED 215. Synaptic Transmission — (Enroll in MCP 215.) 5 units, Aut (Smith, Madison)

UNDERGRADUATE INDIVIDUAL WORK

COMP MED 198. Directed Reading — May be taken as a prelude to research and may also involve participation in a lab or research group seminar and/or library research.

1-3 units, Aut, Win, Spr, Sum (Staff)

COMP MED 199. Undergraduate Research — By arrangement with department faculty. May be repeated for credit.

1-3 units, Aut, Win, Spr, Sum (Staff)

FOR GRADUATE STUDENTS

COMP MED 299. Directed Reading — May be repeated for credit. Prerequisite: consent of instructor.

1-18 units, Aut, Win, Spr, Sum (Staff)

COMP MED 399. Research — Opportunities are available in comparative medicine and pathology, immuno-histochemistry, electron microscopy, molecular genetics, quantitative morphometry, neuroanatomy and neurophysiology of the hippocampus, pathogenesis of intestinal infections, immunopathology, biology of laboratory rodents, anesthesiology of laboratory animals, gene therapy of animal models of neurodegenerative diseases, and development and characterization of transgenic animal models. Enrollment limited to 6. Prerequisite: consent of instructor.

1-18 units, Aut, Win, Spr, Sum (Staff)

DEVELOPMENTAL BIOLOGY

Emeriti: (professors) David A. Clayton, David S. Hogness, A. Dale Kaiser
Chair: Margaret Fuller
Associate Chair: Lucy Shapiro
Professors: Ben Barres, Gerald Crabtree, Margaret Fuller, Stuart Kim, David Kingsley, Roeland Nusse, Matthew Scott, Lucy Shapiro, James Spudich, Irving Weissman
Associate Professors: William Talbot, Anne Villeneuve
Assistant Professor: Seung Kim
Associate Professor (Teaching): Ellen Porzig
Associate Professor (Research): Harley McAdams

Courses given in Development Biology have the subject code DBIO.

For a complete list of subject codes, see Appendix.

A fundamental problem in biology is how the complex set of multicellular structures that characterize the adult animal is generated from the fertilized egg. Advances at the molecular level, particularly with respect to the genetic control of development, have been explosive. These advances represent the beginning of a major movement in the biological sciences toward the understanding of the molecular mechanisms underlying developmental decisions and the resulting morphogenetic processes. This new thrust in developmental biology derives from the extraordinary methodological advances of the past decade in molecular genetics, immunology, and biochemistry. However, it also derives from groundwork laid by the classical developmental studies, the rapid advances in cell biology and animal virology, and from models borrowed from prokaryotic systems. Increasingly, the work is directly related to human diseases, including oncogene function and inherited genetic disease.

The Department of Developmental Biology includes a critical mass of scientists who are leading the thrust in developmental biology and who can train new leaders in the attack on the fundamental problems of development. Department labs work on a wide variety of organisms from microbes to worms, flies, and mice. The dramatic evolutionary conservation of genes that regulate development makes the comparative approach of the research particularly effective. Scientists in the department labs have a very high level of interaction and collaboration. The discipline of developmental biology draws on biochemistry, cell biology, genetics, and molecular biology.

The department is located in the Beckman Center for Molecular and Genetic Medicine within the Stanford University Medical Center.

GRADUATE PROGRAM

MASTER OF SCIENCE

Students in the Ph.D. program in Developmental Biology may apply for an M.S. degree, assuming completion of their course requirements and preparation of a written proposal. The master’s degree awarded by the Department of Developmental Biology does not include the possibility of minors for graduate students enrolled in other departments or programs. Students are required to take, and satisfactorily complete, at least three lecture courses offered by the department, including 210, Developmental Biology. In addition, students are required to take three courses outside the department. Students are also expected to attend Developmental Biology seminars and journal clubs. In addition, the candidate must complete a research paper proposing a specific experimental approach and background in an area of science relative to developmental biology.

DOCTOR OF PHILOSOPHY

University requirements for the Ph.D. are described in the “Graduate Degrees” section of this bulletin.

The graduate program in Developmental Biology leads to the Ph.D. degree. The department also participates in the Medical Scientists Training Program in which individuals are candidates for both the M.D. and Ph.D. degrees.

Students are required to take, and satisfactorily complete, at least six courses, including Developmental Biology (210); Advanced Genetics (203); Frontiers in Biological Sciences (215); and an advanced molecular biology, biochemistry, or biophysics course. Students are also expected to attend Developmental Biology seminars and journal clubs.

Successful completion of a qualifying examination is required for admission to Ph.D. candidacy. The examination consists of two parts. One proposal is on a subject different from the dissertation research and the other proposal is on the planned subject of the thesis. The final requirements of the program include the presentation of a Ph.D. dissertation as the result of independent investigation and constituting a contribution to knowledge in the area of developmental biology. The student must then successfully pass the University oral examination which is taken only after the student has substantially completed his or her research. The examination is preceded by a public seminar in which the research is presented by the candidate. The oral examination is conducted by a dissertation reading committee.

COURSES

Course and lab instruction in the Department of Developmental Biology conforms to the “Policy on the Use of Vertebrate Animals in Teaching Activities,” the text of which is available at http://www.stanford.edu/dept/DoR/rph/8-2.html.

DBIO 156. Human Developmental Biology and Medicine — (Same as HUMBIO 156.) The biological, medical, and social aspects of normal and abnormal human development. Topics: in vitro fertilization and embryo transfer; gene and cell therapy; gametogenesis; pattern formation
in the nervous system and limb development; gene and grand multiple pregnancies; prematurity, in utero effects of teratogens; sex determination and differentiation; growth control; gigantism and dwarfism; neural tube defects; cardiac morphogenesis; progress in the developmental biology of humans. Limited enrollment. Prerequisites: Human Biology or Biological Sciences core, or consent of instructor.

4 units, Spr (Porzig)

DBIO 198. Research
1-18 units, Aut, Win, Spr, Sum (Staff)

DBIO 199. Undergraduate Research
1-18 units, Aut, Win, Spr, Sum (Staff)

DBIO 201. Development and Disease Mechanisms—Mechanisms that direct human development from conception to birth. Conserved molecular and cellular pathways regulate tissue and organ development; errors in these pathways result in congenital anomalies and human diseases. Topics: molecules regulating development, cell induction, developmental gene regulation, cell migration, programmed cell death, pattern formation, stem cells, cell lineage, and development of major organ systems. Emphasis on links between development and clinically significant topics including infertility, assisted reproductive technologies, contraception, prenatal diagnosis, multiparity, teratogenesis, inherited birth defects, fetal therapy, adolescence, cancer, and aging.

4 units, Aut (Kingsley, Crabtree, Porzig, Seung, Kim, Nussel, Scott)

DBIO 202. Infertility: Mechanisms of Disease and Clinical Frontiers—(Same as OBGYN 202.) Primary literature in basic and clinical science, and demonstrations of assisted reproductive technologies (ART). Techniques include in vitro fertilization including micromanipulation procedures such as intracytoplasmic sperm injection and the culture of blastocysts, using mouse gametes, and pre-embryos. Students observe procedures in the ART clinic. Recommended: DBIO 201 or consent of instructors.

3-4 units, Win (Porzig, Behr)

DBIO 203. Advanced Genetics—(Same as BIOSCI 203, GENE 203.) For graduate students in Bioscience programs; may be appropriate for graduate students in other programs. The genetic toolbox. Examples of analytic methods, genetic manipulation, genome analysis, and human genetics. Emphasis is on use of genetic tools in dissecting complex biological pathways, developmental processes, and regulatory systems. Faculty-led discussions sections with evaluation of papers. Students with minimal experience in genetics should prepare by working out problems in college level textbooks.

4 units, Aut (Barsh, Kim, Sidow, Stearns)

DBIO 210. Developmental Biology—Current areas of research in developmental biology. How organismic complexity is generated during embryonic and post-embryonic development. The roles of genetic networks, induction events, cell lineage, maternal inheritance, cell-cell communication, and hormonal control in developmental processes in well-studied organisms such as vertebrates, insects, and nematodes. Team-taught. Students meet with faculty to discuss current papers from the literature. Prerequisite: graduate standing, consent of instructor. Recommended: familiarity with basic techniques and experimental rationales of molecular biology, biochemistry, and genetics.

5 units, Spr (Talbot, Nussel, Crabtree, Fuller, Kim, Kingsley, Scott)

DBIO 215. Frontiers in Biological Research—(Same as BIOC 215, GENE 215.) Literature discussion in conjunction with the Frontiers in Biological Research seminar series hosted by Biochemistry, Developmental Biology, and Genetics in which distinguished investigators present current work. Students and faculty meet beforehand to discuss papers from the speaker’s primary research literature. Students meet with the speaker after the seminar to discuss their research and future direction, commonly used techniques to study problems in biology, and comparison between the genetic and biochemical approaches in biological research.

1 unit, Aut, Win, Spr (Harbury, Kingsley, Baker)

DBIO 232. Readings in the History of Molecular Biology—Prerequisite: graduate standing.
2 units (Kaiser) not given 2005-06

DBIO 299. Directed Reading—May be repeated for credit. Prerequisite: consent of instructor.
1-18 units, Aut, Win, Spr, Sum (Staff)

DBIO 399. Research—Investigations sponsored by faculty members. May be repeated for credit. Prerequisite: consent of instructor.
1-18 units, Aut, Win, Spr, Sum (Staff)

EPIDEMIOLOGY PROGRAM

Director: Victor W. Henderson (Professor, Health Research and Policy, and Neurology and Neurological Sciences)

Advisory Committee: Stephen P. Fortmann (Professor, Medicine), John R. Huguenard (Associate Professor, Neurology and Neurological Sciences), Charles C. Prober (Professor, Pediatrics, and Microbiology and Immunology), Robert Tibshirani (Professor, Health Research and Policy)

Core Faculty and Academic Teaching Staff: Raymond R. Balise (Lecturer), Gary D. Friedman* (Consulting Professor), Mark Hlatky (Professor), Victor W. Henderson* (Professor), Abby C. King* (Professor), Lorene M. Nelson* (Associate Professor), Julie Parsonnet* (Professor), Rita A. Popat (Instructor), Dee W. West* (Professor), Alice S. Whittemore* (Professor)

Instructor: Kristin Cobb

* Member of the program steering committee

Program Offices: HRP Redwood Building, Room T213D.
Mail Code: 94305-5405
Phone: (650) 723-5456
Email: epi@stanford.edu
Web Site: http://www.stanford.edu/dept/HRP/epidemiology/

GRADUATE INTERDISCIPLINARY PROGRAM IN EPIDEMIOLOGY

The Graduate Interdisciplinary Program in Epidemiology offers instruction and interdisciplinary research opportunities leading to the M.S. degree in Epidemiology. Core faculty and academic teaching staff are administratively housed in the Department of Health Research and Policy. Affiliated faculty come from Stanford University departments and centers and Bay Area research facilities. The program provides researchers from diverse clinical backgrounds with the knowledge and skills to become clinical investigators; it also provides an introduction to Epidemiology for students without a clinical background or research experience and students with research experience in the behavioral and social sciences. Research strengths include cancer epidemiology, cardiovascular disease epidemiology, infectious disease epidemiology, musculoskeletal disease epidemiology, neuroepidemiology, epidemiologic methods, genetic epidemiology, reproductive epidemiology and women’s health, and environmental and occupational epidemiology.

The program recognizes two academic tracks leading to the M.S. degree: the Traditional Epidemiology track for students without prior clinical training who are considering careers in epidemiology and for behavioral and social scientists who wish to bring an epidemiologic orientation to their research; and the Clinical Epidemiology track for physicians and others with specific interests in clinical research who receive training in epidemiologic methods, statistical analysis, and other areas essential to patient-oriented clinical research. Students in this track are typically clinical investigators with an M.D. or comparable clinical degree, often during the fellowship stage of their training.

To receive the degree, students in both instructional tracks are expected to obtain a grounding in epidemiologic methods and applied biostatistics and to demonstrate research skills through the completion of a master’s thesis. Required courses are HRP 225, Design and Conduct of Clinical
and Epidemiologic Studies; HRP 226, Advanced Epidemiologic and Clinical Research Methods; HRP 236, Epidemiology Research Seminar; HRP 259, Introduction to Probability and Statistics for Epidemiology; HRP 261, Intermediate Biostatistics; HRP 262, Regression, Prediction, Survival Analysis; and a master’s thesis with 12 or more units of credit. Students in the Clinical Epidemiology track must also complete HRP 251, Design and Conduct of Clinical Trials; and MED 255, Responsible Conduct of Research. All students are required to select at least two other courses in Epidemiology. Students are assigned a methodology mentor, who is usually from the Department of Health Research and Policy, and a research mentor, who may be from another department. For the students in the Clinical Epidemiology track, the research mentor is often an affiliated faculty member from the department of the student’s clinical specialty. Other programmatic requirements are described in Graduate Interdisciplinary Program in Epidemiology, Information and Guidelines, available from the educational coordinator in the Department of Health Research and Policy.

COURSES

The course listings of individual departments participating in the Graduate Interdisciplinary Program in Epidemiology should be consulted for complete descriptions.

GENETICS

Emeritus: (Professor) Luca Cavalli-Sforza, Leonard Herzenberg
Chair: Richard M. Myers
Professors: Russ Altman, Gregory S. Barsh, Stanley N. Cohen, Ronald W. Davis, Andrew Fire, Uta Francke, Margaret Fuller, Mark Kay, Stuart Kim, Joseph Lipsick, Richard M. Myers, Matthew Scott
Associate Professors: Michele Calos, Arend Sidow, Tim Stearns, Anne Villeneuve, Douglas Vollrath
Assistant Professors: Laura Attardi, Julie Baker, Anne Brunet, James Ford, Julien Sage, Joanna Mountain, Man-Wah Tan
Professor (Research): Leonore Herzenberg
Associate Professors (Research): J. Michael Cherry, Zijie Sun
Assistant Professor (Research): Gavin Sherlock
Courtey Professor: Hank Greely
Consulting Professor: David Cox
Mail Code: 94305-5120
Phone: (650) 723-3335
Email: genetics-info@genome.stanford.edu
Web Site: http://genome-www.stanford.edu/genetics/

Courses given in Genetics have the subject code GENE. For a complete list of subject codes, see Appendix.

GRADUATE PROGRAMS

University requirements for the Ph.D. degree are described in the “Graduate Degrees” section of this bulletin.

The Ph.D. program in the Department of Genetics offers graduate students the opportunity to pursue a discipline that encompasses not just a set of tools but a coherent and fruitful way of thinking about biology and medicine. All major areas of genetics are represented in the department, including human genetics (molecular identification of Mendelian traits and the pathophysiology of genetic disease, gene therapy, genetic epidemiology, analysis of complex traits, genetic anthropology, and human evolution), and application of model organisms such as bacteria, yeast, flies, worms, zebrafish, or mice to basic questions in biomedical research. The department is especially strong in genomic and bioinformatic approaches to genome biology and evolution, and includes several genome-scale databases such as the Saccharomyces Genome Database (SGD), the Stanford Microarray Database (SMD), and the Pharmacogenetics and Pharmacogenomics Knowledge Base (PharmGKB), the Stanford Human Genome Center (SHGC), and, administered through the Department of Biochemistry, the Stanford Genome Technology Center (SGTC).

Exposure to the broad intellectual scope that characterizes and integrates the department is provided by laboratory rotations, dissertation research, a series of advanced courses in genetics and other areas of biomedical science, seminar series, journal clubs, and an annual three-day retreat that includes faculty members, students, postdoctoral fellows, and staff scientists. A strong emphasis is placed on interactions and collaborations among students, postdoctoral students, and faculty members within the department and throughout the campus.

Located in the School of Medicine, the department includes approximately 50 graduate students, 75 postdoctoral fellows, 50 staff members, and 30 faculty. In addition to interactions within the department, graduate students have contact with a much larger number of students, fellows, and faculty programs throughout the School of Medicine and the University.

During their first year, graduate students in the department take advanced graduate courses and sample several areas of research by doing rotations in three or four of the department’s laboratories. At the end of the first three quarters, students may select a laboratory in which to do their dissertation research. While the dissertation research is generally performed in one laboratory, collaborative projects with more than one faculty member are encouraged. In addition to interacting with their faculty preceptor, graduate students receive input regularly from other faculty members who serve as advisers on their dissertation committee. Study for the Ph.D. generally requires between four and five years of graduate work, most of which is focused on dissertation research.

Students are generally enrolled in the program to receive the Ph.D. degree, although a limited number of M.D. candidates can combine research training in genetics with their medical studies. Ph.D. candidates who have passed the qualifying exam in the second year can opt to receive the M.S. degree.

There are opportunities for graduate students to teach in graduate-level and professional-school courses. In addition, students are encouraged to participate in educational outreach activities coordinated by the department, which include opportunities to interact with secondary school students and teachers, lay groups, and local science museums.

Students who have recently received a bachelor’s, master’s, M.D., or Ph.D. degree in related fields may apply for graduate study in the Department of Genetics. Prospective students must have a background in general biology, mathematics, physics and chemistry. Decisions for admission are based on comparison of the relative merits of all the candidates’ academic abilities and potential for research. Interviews take place in late February or early March and successful applicants are offered admission by early spring. Students who wish to pursue a combined M.D./Ph.D. degree are considered for admission into the graduate program in the Department of Genetics after they have been admitted to the M.D. program in the School of Medicine. All applicants are considered equally regardless of race, color, creed, religion, national origin, sexual preference, age, or gender.

Students begin graduate studies in the Autumn Quarter. Prospective students are encouraged to start the application process early to ensure that they are able to submit a complete application by the December deadline. All students accepted into the Ph.D. program in the Department of Genetics are provided with full tuition and a stipend to cover the cost of living. Two training grants from the National Institutes of Health provide major support for the graduate training program in the department. Other student support is provided by departmental funds and from research grants, both federal and private, of the faculty. In addition, a number of graduate students are funded by fellowships, including those from the National Science Foundation. Prospective students are encouraged to apply for a fellowship by requesting an application from the National Science Foundation, http://www.nsf.gov. The application is due on November 1 of each year.
COURSES

For further information on the availability of courses, consult the quarterly Time Schedule, or inquire at the departmental office. Additional courses in or related to genetics are included in the listings of the departments of Biological Sciences, Biochemistry, Developmental Biology, Microbiology and Immunology, Neuroscience, Biomedical Informatics, and Structural Biology.

GENE 104Q. Law and the Biosciences — Stanfords Introductory Seminar. Preference to sophomores. Focus is on human genetics; also assisted reproduction and neuroscience. Topics include forensic use of DNA, genetic testing, genetic discrimination, eugenic, cloning, pre-implantation genetic diagnosis, neuroscientific methods of lie detection, and genetic or neuroscience enhancement. Student presentations on research paper conclusions.
3 units, Spr (Greely)

GENE 106Q. The Heart of the Matter — Stanfords Introductory Seminar. Preference to sophomores. The molecular and biochemical basis of life. Emphasis is on the methods and scientific logic that lead to advances in knowledge. The human heart and circulatory system is the unifying theme for topics such as the constituents and activities of cells, tissues, and organs; the chemicals and proteins that carry on life processes; the biotechnology revolution; the role of genes in human disease and normal functions; and the Human Genome Project. How scientific knowledge is built up through research; how biology initiates advances in medicine; and how science, engineering, and economics interact in biotechnology. Student presentations, demonstrations, and field trips. GER:DB-NatSci
3 units, Win (Myers, Simoni)

3 units, Win (Altman)

GENE 199. Undergraduate Individual Research — Prerequisite: consent of instructor. May be repeated for credit.
1-18 units, Aut, Win, Spr, Sum (Staff)

GENE 202. Human Genetics — Theoretical and experimental basis for the genetics of human health and disease. Molecular, chromosomal, biochemical, developmental, cancer, and medical genetics, emphasizing the last. Clinical case discussions. Prerequisites: biochemistry; basic genetics.
4 units, Aut (Ford, Myers)

GENE 203. Advanced Genetics — (Same as BIOSCI 203, DBIO 203.) For graduate students in Bioscience programs; may be appropriate for graduate students in other programs. The genetic toolbox. Examples of analytic methods, genetic manipulation, genome analysis, and human genetics. Emphasis is on use of genetic tools in dissecting complex biological pathways, developmental processes, and regulatory systems. Faculty-led discussions sections with evaluation of papers. Students with minimal experience in genetics should prepare by working out problems in college level textbooks.
4 units, Aut (Barsh, Kim, Sidow, Stearns)

GENE 211. Genomics — Genome evolution, organization, and function; technical, computational, and experimental approaches; hands-on experience with representative computational tools used in genome science; and a beginning working knowledge of PERL.
3 units, Win (Cherry, Myers, Sidow, Sherlock)

GENE 215. Frontiers in Biological Research — (Same as BIOC 215, DBIO 215.) Literature discussion in conjunction with the Frontiers in Biological Research seminar series hosted by Biochemistry, Developmental Biology, and Genetics in which distinguished investigators present current work. Students and faculty meet beforehand to discuss papers from the speaker’s primary research literature. Students meet with the speaker after the seminar to discuss their research and future direction, commonly used techniques to study problems in biology, and comparison between the genetic and biochemical approaches in biological research.
1 unit, Aut, Win, Spr (Harbury, Kingsley, Baker)

GENE 222. Method and Logic in Experimental Genetics — For graduate students only. How experimental strategies are applied to biological questions irrespective of discipline boundaries. Examples include purifying activities from complex mixtures, localizing molecules in space and time, discovering macromolecular interactions, inferring from sequence similarity, using structure to elucidate function, and applying genomics to biological problems. Weekly discussion of two representative papers selected by faculty and a student presentation of a third paper which illustrate principles of biochemistry and cell and molecular biology, and the historical context of important scientific advances.
3 units, Win (Baker)

GENE 233. The Biology of Small Modulatory RNAs — (Same as MI 233, PATH 233.) Open to graduate and medical students. How recent discoveries of miRNA, RNA interference, and short interfering RNAs reveal potentially widespread gene regulatory mechanisms mediated by small modulatory RNAs during animal and plant development. Requires paper proposing novel research.
2 units, Aut (Chen, Fire)

GENE 235. C. elegans Genetics — Genetic approaches to C. elegans, practice in designing experiments and demonstrations of its growth and anatomy. Probable topics include: growth and genetics, genome map and sequence, mutant screens that start with a desired phenotype, reverse genetics and RNAi screens, genetic duplications, uses of null phenotype non-null alleles, genetic interactions and pathway analysis, and embryogenesis and cell lineage. Focus of action, mosaic analysis, and interface with embryological and evolutionary approaches.
2 units, Spr (Fire)

GENE 238. Current Concepts and Dilemmas in Genetic Testing — (Same as INDE 238.) For M.D. students and biomedical graduate students. Issues arising from the translational process from research to commercialization. Diagnostic inventions and applications, community implications, newborn screening, cancer genetics, and pharmacogenomics. Guest experts. Limited enrollment.
2 units, Spr (Tobin, Cowan, Schrijver)

GENE 255. The Responsible Conduct of Research — A forum for scientists to familiarize themselves with institutional policies/practices and professional standards that define scientific integrity. Overview of ethics in research, authorship, patents, and human interest at the academic-commercial interface, and small group sessions for more extended discourse between students and faculty. Completion fulfills NIH/ADAMHA requirement for instruction in the ethical conduct of research. Required course for incoming students.
1 unit, Win (Staff)

GENE 260. Supervised Study — Genetics graduate student lab research from first quarter to filing of candidacy. May be repeated for credit. Prerequisite: consent of instructor.
1-18 units, Aut, Win, Spr, Sum (Staff)

GENE 262. Advanced Microbial Genetics and Genomics — (Same as BIOSCI 162/262.) Genetic tools for studying the cell biology and behavior of bacteria. Case studies on genetic approaches in combination with biochemistry, microscopy, and genomics to study mechanisms of gene expression, signal transduction, cell cycle regulation, development, and pathogenesis. GER:DB-NatSci
4 units, Spr (Tan, Burkholder)

GENE 299. Directed Reading — May be repeated for credit. Prerequisite: consent of instructor.
1-18 units, Aut, Win, Spr, Sum (Staff)

GENE 399. Research — May be repeated for credit. Prerequisite: consent of instructor.
1-18 units, Aut, Win, Spr, Sum (Staff)
HEALTH RESEARCH AND POLICY

Emeriti: (Professors) John Faquhar, Victor R. Fuchs, Lincoln E. Moses, Ralph S. Paffenbarger, Jr.
Chair: Alice Whittemore
Co-Chair: Robert Tibshirani
Associate Professors: Laurence Baker, Lorene M. Nelson
Assistant Professor: M. Kate Bundorf
Professor (Research): Dan Bloch
Associate Professor (Research): Laura Lazzeroni
Courtesy Professors: Stephen P. Fortmann, Alan M. Garber, Mary Goldstein
 Courtesy Associate Professors: Alex Macario, Yvonne Maldonado, Mark McClellan (on leave), Douglas Owens, David R. Rogosa, Marilyn Winkleby
Courtesy Assistant Professors: Michael K. Gould, Paul Heidenreich
Senior Lecturer: Irene Corso
Lecturers: Raymond Balise, Margaret Eaton, Laurel Habel, Lisa Herrington, Pamela Horn-Ross, Andy Karter, David Lilenfeld, Caroline Tanner, Timothy K. Stanton, Stephen Van Den Eeden
Consulting Professors: Gary Friedman, Elizabeth Holly, Joseph Selby
Consulting Associate Professors: Paul Barnett, Sally Glaser, Esther John
Consulting Assistant Professor: Todd Wagner
Visiting Associate Professor: Marion Lee
Instructor: Kristin Cobb, Rita Popat
Mail Code: 94305-5405
Phone: (650) 723-5082
Email: hrp@med.stanford.edu
Web Site: http://www.stanford.edu/dept/HRP/

Courses given in Health Research and Policy have the subject code HRP. For a complete list of subject codes, see Appendix.

The Department of Health Research and Policy has three principal areas of scholarly interest:

1. Biostatistics deals with scientific methodology in the medical sciences, emphasizing the use of statistical techniques.
2. Epidemiology is concerned with problems of health and disease in human populations and with efforts toward improving levels of health. Epidemiology also provides training in the application of epidemiologic methods to the study of disease etiology and control.
3. Health Services Research is concerned with many aspects of health policy analysis in the public and private sectors.

GRADUATE PROGRAMS

The Program in Epidemiology and the Program in Health Services Research are housed in the Department of Health Research and Policy. These programs, which offer M.S. degrees in Epidemiology and in Health Services Research, are described separately in the relevant sections this bulletin. Students with an interest in pursuing advanced degrees with an emphasis on biostatistics can do so through programs offered by the Department of Statistics. Division of Biostatistics faculty participate in these programs.

For additional information, address inquiries to the Educational Coordinator, Department of Health Research and Policy, Stanford University School of Medicine, HRP Redwood Building, Room T213D, Stanford, California 94305-5405.

COURSES

HRP 89Q. Introduction to Crosscultural Issues in Medicine—Stanford Introductory Seminar. Preference to sophomores. Crosscultural issues that impact health care delivery such as ethnicity, immigration, language barriers, and service expectations. Fosters an understanding of culturally unique and non-English speaking populations, developing interpersonal and communication skills with diverse ethnic groups.
GER:EC-American
3 units, Win (Corso)

HRP 199. Undergraduate Research—Student investigations sponsored by faculty members. Prerequisite: consent of the instructor.
1-18 units, Aut, Win, Spr, Sum (Staff)

HRP 206. Topics in Quantitative Methods: Meta-Analysis—(Enroll in STATS 211, EDUC 493B.)
1-3 units, Win (Olkin)

HRP 207. Issues and Methods of Health Services and Policy Research—Primarily for students in the Health Services and Policy Research scholarly track. Topics include health care systems and institutions, health insurance, regulation, cost effectiveness analysis, and medical decision making.
2 units, Aut (Baker, McDonald)

HRP 209. Medicine and the Law—Topics: medical malpractice, patient consent and confidentiality rights, human subject research, withdrawing life support and physician-assisted suicide, futile medical care, legal requirements in psychiatry, physician discipline, medical staff law, and HMO litigation.
2 units, Win (Eaton)

HRP 210. Health Law and Policy—(Same as Law 313.) Open to law or medical students and qualified undergraduates by consent of instructor. The American health care system and its legal and policy problems. Topics: characteristics of medical care compared to other goods and services; difficulties of assuring quality care; the complex patchwork of the financing system; and ethical problems the system raises. Course begins September 6.
3 term units, Aut semester (Greely)

HRP 211. Law and Biosciences—(Same as LAW 368.) For medical students; graduate students by consent of instructor. Legal, social, and ethical issues arising from advances in the biosciences. Focus is on human genetics; also advances in assisted reproduction and neuroscience. Topics include forensic use of DNA, genetic testing, genetic discrimination, eugenics, cloning, pre-implantation genetic diagnosis, neuroscientific methods of lie detection, and genetic or neuroscience enhancement. Course begins September 6.
3 term units, Aut semester (Greely)

HRP 212. Crosscultural Medicine—Interviewing and behavioral skills needed to facilitate culturally relevant health care across all population groups. Explicit and implicit cultural influences operating in formal and informal medical contexts.
3 units, Spr (Corso)

HRP 214. Scientific Writing—Step-by-step through the process of writing and publishing a scientific manuscript. How to write effectively, concisely, and clearly. Preparation of an actual scientific manuscript. Students are encouraged to bring a manuscript on which they are currently working to develop and polish throughout the course.
2-3 units, Win (Cobb)

HRP 223. Data Management and Statistical Programming—The skills required for management and analysis of biomedical data. Topics include importing and exporting data from multiple database systems, visualizing and cleaning data, data management for multicenter projects, and data security. Introduction to applied statistical programming relevant to epidemiologic and clinical research. No previous programming experience required.
2-3 units, Aut (Balise)
HRP 225. Design and Conduct of Clinical and Epidemiologic Studies—Intermediate-level. The skills to design, carry out, and interpret epidemiologic studies, particularly of chronic diseases. Topics: epidemiologic concepts, sources of data, cohort studies, case-control studies, cross-sectional studies, sampling, estimating sample size, questionnaire design, and the effects of measurement error. Prerequisite: 159/259 or equivalent, or consent of instructor.
3-4 units, Aut (Popat)

HRP 226. Advanced Epidemiologic and Clinical Research Methods—The principles of measurement, measures of effect, confounding, effect modification, and strategies for minimizing bias in epidemiologic studies. Prerequisite: 225 or consent of instructor.
3-4 units, Win (Nelson)

HRP 230. Cancer Epidemiology—Descriptive epidemiology and sources of incidence/mortality data; the biological basis of carcinogenesis and its implications for epidemiologic research; methodological issues relevant to cancer research; causal inference; major environmental risk factors; genetic susceptibility; cancer control; examples of current research; and critique of the literature. Prerequisite: 225, or consent of instructor.
3 units, Win (West) alternate years, not given 2006-07

HRP 231. Epidemiology of Infectious Diseases—The principles of the transmission of the infectious agents (viruses, bacteria, rickettsiae, mycoplasma, fungi, and protozoan and helminth parasites). The role of vectors, reservoirs, and environmental factors. Pathogen and host characteristics that determine the spectrum of infection and disease. Endemicity, outbreaks, and epidemics of selected infectious diseases. Principles of control and surveillance.
3 units (Parsonnet, Maldonado) not given 2005-06

HRP 234. Foundations of Pharmacoepidemiology—Historical development of pharmacoepidemiology, the drug development process and pharmacoepidemiology role in it, pharmacoepidermia/drug safety systems, epidemiology in outcomes research, the role of pharmacoepidemiology in risk management, and classic examples of pharmacoepidemiologic investigations.
2-3 units, Spr (Lilenfeld) alternate years, not given 2006-07

HRP 236. Epidemiology Research Seminar—Weekly forum for ongoing epidemiologic research by faculty, staff, guests, and students, emphasizing research issues relevant to disease causation, prevention, and treatment. May be repeated for credit.
1 unit, Aut, Win, Spr (Friedman, Henderson)

HRP 248. Promoting Health over the Life Course: Multidisciplinary Perspectives—(Enroll in HUMBIO 148.)
3 units, Aut (Alles, Stefaniak)

HRP 250C. Statistical Analysis in Educational Research: Multivariate Analysis—(Enroll in EDUC 250C.)
2-4 units, Win (Olkin)

HRP 251. Design and Conduct of Clinical Trials—The rationale for phases 1-3 clinical trials, the recruitment of subjects, techniques for randomization, data collection and endpoints, interim monitoring, and reporting of results. Emphasis is on the theoretical underpinnings of clinical research and the practical aspects of conducting clinical trials.
3 units, Spr (Hlatky)

HRP 252. Outcomes Analysis—(Same as BIOMEDIN 251.) Introduction to methods of conducting empirical studies which use large existing medical, survey, and other databases to ask both clinical and policy questions. Econometric and statistical models used to conduct medical outcomes research. How research is conducted on medical and health economics questions when a randomized trial is impossible. Problem sets emphasize hands-on data analysis and application of methods, including re-analyses of well-known studies. Prerequisites: one or more courses in probability, and statistics or biostatistics.
3 units, Spr (Bhattacharya)

HRP 256. Economics of Health and Medical Care—(Enroll in ECON 126/256, BIOMEDIN 156/256.)
5 units, Aut (Bhattacharya)

HRP 259. Introduction to Probability and Statistics for Epidemiology—Topics: random variables, expectation, variance, probability distributions, the central limit theorem, sampling theory, hypothesis testing, confidence intervals. Correlation, regression, analysis of variance, and nonparametric tests. Introduction to least squares and maximum likelihood estimation. Emphasis is on medical applications.
4-5 units, Aut (Cobb)

HRP 260A,B,C. Workshop in Biostatistics—(Same as STATS 260A.) Applications of statistical techniques to current problems in medical science. Enrollment for more than 2 units of credit involves extra reading or extra consulting and requires consent of instructor.
1-3 units, A: Aut, B: Win, C: Spr (Lazzeroni, Olshen, Bloch, Efron, Hastie, Lavori, Tibshirani, Wong)

3 units, Win (Hastie, Cobb)

HRP 262. Intermediate Biostatistics: Regression, Prediction, Survival Analysis—(Same as STATS 262.) Methods for analyzing longitudinal data. Topics include Kaplan-Meier methods, Cox regression, hazard ratios, time-dependent variables, longitudinal data structures, profile plots, missing data, modeling change, MANOVA, repeated-measures ANOVA, GEE, and mixed models. Emphasis is on practical applications. Prerequisites: basic ANOVA and linear regression.
3 units, Spr (Cobb)

HRP 280,281,282. Spanish for Medical Students—(Same as SPAN-LANG 121M,122M,123M.) Goal is a practical and rapid command of spoken Spanish. Topics: the human body, hospital procedures, diagnostics, food, and essential phrases for on-the-spot reference when dealing with Spanish-speaking patients. Series can be taken independently, depending on the level of prior knowledge.
3 units, 280: Aut, 281: Win, 282: Spr (Corso)

HRP 283. Health Services Research Core Seminar—Presentation of research in progress and tutorials in the field of health services research.
1 unit, Aut, Win, Spr (Baker, Bundorf, Garber, Hlatky, Owens)

HRP 290. Advanced Spanish Conversation—Oral language skills covering pediatric, gynecological, and other specialty exams; patient education and counseling; and diseases such as diabetes, asthma, and TB. Prerequisite: Spanish proficiency or consent of instructor.
3 units, Aut, Win, Spr (Corso)

HRP 299. Directed Readings in Health Research and Policy—Epidemiology, health services research, preventive medicine, medical genetics, public health, economics of medical care, occupational or environmental medicine, international health, or related fields. May be repeated for credit. Prerequisite: consent of instructor.
1-18 units, Aut, Win, Spr, Sum (Staff)

HRP 351. Innovation and Management in Health Care—(Same as GSBGEN 351.) The workings of the major institutions such as hospitals, health insurance companies, HMOs, Medicare and Medicaid, federal regulators, and the medical establishment. National health expenditures and alternative models for healthcare financing and delivery. Trends in treatment innovations provided by biopharmaceuticals, medical devices, and surgical procedures; delivery innovations facilitated by information systems and new processes. Policy and business challenges raised by these innovations and the health care ecosystems they promote.
4 units, Win (Zenios)
HRP 391. Political Economy of Health Care in the United States—
(Same as PUBLPOL 231, MGTECON 331.) The economic tools and
institutional and legal background to understand how markets for health
care products and services work. Moral hazard and adverse selection.
Institutional organization of the health care sector. Hospital and phy-
sician services markets, integrated delivery systems, managed care,
pharmaceutical and medical device industries. Public policy issues in
health care, medical ethics, regulation of managed care, patients’ bill of
rights, regulation of pharmaceuticals, Medicare reform, universal health
insurance, and coverage of the uninsured. International perspectives,
how other countries’ health care systems evolved, and what the U.S.
can learn from their experiences.
4 units, Spr (Kessler)

HRP 392. Analysis of Costs, Risks, and Benefits of Health Care —(Same
as MGTECON 332, BIOMEDIN 432.) For graduate students. The
principal evaluative techniques for health care, including utility assess-
ment, cost-effectiveness analysis, cost-benefit analysis, and decision
analysis. Emphasis is on the practical application of these techniques.
Group project presented at end of quarter. Guest lectures by experts
from the medical school, pharmaceutical industry, health care plans,
and government.
4 units, Aut (Garber, Owens)

HRP 399. Research—Graduate students investigations sponsored by
individual faculty members. Prerequisite: consent of instructor.
1-18 units, Aut, Win, Spr, Sum (Staff)

HEALTH SERVICES RESEARCH
PROGRAM

Director: Mark Hlatky (Professor, Health Research and Policy, and
Medicine)

Executive Committee: Laurence Baker (Associate Professor, Health
Research and Policy), M. Kate Bundorf (Assistant Professor, Health
Research and Policy), Alan Garber (Professor, Medicine), Mary
Goldstein (Associate Professor, Medicine), Mark Hlatky (Professor,
Health Research and Policy, and Medicine), Douglas Owens (Associ-
ate Professor, Medicine)

Participating Faculty and Staff by Department:
Anesthesia: Alex Macario (Associate Professor)
Economics: Thomas Macurdy (Professor), Mark McClellan (Associate
Professor, on leave)
Business: Alain Entenhouen (Professor, emeritus), Daniel Kessler (Pro-
fessor)

Health Research and Policy: Laurence Baker (Associate Professor), Paul
Barnett (Consulting Associate Professor), M. Kate Bundorf (Assistant
Professor), Victor Fuchs (Professor, emeritus), Trevor Hastie (Pro-
fessor), Mark Hlatky (Professor), Philip Lavori (Professor), Richard
Olshen (Professor), Ciaran Phibbs (Consulting Associate Professor),
Joseph Selby (Consulting Professor), Anita Stewart (Visiting Scholar),
Robert Tibshirani (Professor)

Law: Henry Greely (Professor)

Management Science and Engineering: Margaret Brandeau (Professor)

Medicine: Jay Bhattacharya (Assistant Professor), Alan Garber (Pro-
fessor), Mary Goldstein (Professor), Michael Gould (Assistant Professor),
Paul Heidenreich (Assistant Professor), Mark Hlatky (Professor),
Mark McClellan (Associate Professor, on leave), Douglas Owens
(Professor)

Pediatrics: Paul Wise (Professor)

Psychiatry: Rudolph Moos (Professor)

Sociology: Richard Scott (Professor, emeritus)

Program Offices: HRP Redwood Building, Room T213D
Mail Code: 94305-5405
Phone: (650) 723-5456
Email: HSRprogram@med.stanford.edu
Web Site: http://www.stanford.edu/dept/HRP

GRADUATE PROGRAM
MASTER OF SCIENCE

The Master's Degree Program in Health Services Research seeks to
train students in the quantitative analysis of issues in health and medical
care. The program emphasizes an individually designed program of course
work and completion of a master’s project under the mentorship of a faculty
member. The typical student in the program is either a physician who has
completed residency training and is preparing for a research career, or a
student with a strong background in policy analysis who wishes to focus
on problems in health or medical care. Faculty interests include outcomes
research, health economics, health care organization, health care access,
quality of care, decision analysis, clinical guidelines, and assessment of
patient preferences and quality of life.

To receive the degree, students are expected to demonstrate knowledge of
issues in health services research and the quantitative skills necessary for
research in this area. Students must take at least 45 units of course work (9
of the units may be double-counted to meet other degree requirements)
and write a University thesis. The course work requirements are:
1. At least 8 units from the following group of Health Research and Policy
(HRP) core courses: 256, Economics of Health and Medical Care; 391,
Political Economy of Health Care in the United States; 392, Analysis
of Costs, Risks, and Benefits in Health Care.
2. At least 6 units of graduate-level statistics courses. The sequence of
HRP 261 and 262 is strongly recommended.
3. At least 3 units of HRP 283, Health Services Research Core Seminar.
4. At least 15 units of HRP research credit from 299, Directed Reading,
or 399, Research.
5. An additional set of approved elective courses to complete the program
total of at least 45 units.

For additional information, address inquiries to the Educational
Coordinator, Department of Health Research and Policy, Stanford
University School of Medicine, HRP Redwood Building, Room T213D,
Stanford, California 94305-5405.

Courses
The course listings of individual departments participating in the
Health Services Research Program should be consulted for complete
descriptions.

IMMUNOLOGY PROGRAM

Chair, Executive Committee for the Immunology Program: Lawrence
Steinman (Professor, Neurology and Neurosciences)

Director for Immunology Program: K. Christopher Garcia (Associate
Professor, Microbiology and Immunology)

Director for Clinical Immunology Program: C. Garrison Fathman
(Medicine/Immunology and Rheumatology)

Participating Departments and Faculty:
Biological Sciences: Patricia F. Jones (Professor)
Cardiothoracic Surgery: Carol Clayberger (Associate Professor,
Research, Pediatrics)
Chemistry: Harden M. McConnell (Professor, emeritus)*
Genetics: Leonard A. Herzenberg (Professor, emeritus), Lenore
A. Herzenberg (Professor, Research), Man-wah Tan (Assistant
Professor)

Medicine/Bone Marrow Transplantation Program: Robert Negrin
(Professor), David Miklos (Assistant Professor), Judith Shizuru
(Associate Professor)

Medicine/Endocrinology: Ajay Chawla (Assistant Professor)

Medicine/Hematology: Peter Lee (Assistant Professor)

Medicine/Immunology and Rheumatology: C. Garrison Fathman
(Professor), Jane R. Parnes (Professor), William Robinson (Assistant
Professor), Samuel Strober (Professor), Paul J. Utz (Assistant
Professor)

Medicine/Oncology: Gilbert Chu (Associate Professor, and Bio-
chemistry), Dean Felsher (Assistant Professor), Ronald Levy
SCHOOL OF MEDICINE

DOCTOR OF PHILOSOPHY

University requirements for the Ph.D. are described in the “Graduate Degrees” section of this bulletin.

The interdepartmental Immunology Program offers instruction and research opportunities leading to a Ph.D. in Immunology. The goal of the program is to develop young investigators who have a solid foundation in immunology as well as related sciences and who can carry out innovative research. The program features a flexible selection of courses and seminars to enrich the students’ backgrounds, combined with extensive research training in the laboratories of the participating immunology faculty.

Students applying to the program typically have an undergraduate major in biological sciences, but majors in other areas are acceptable if the applicants have had sufficient course work in biology and chemistry. Formal application should be made by December 12. Applications are evaluated by the Immunology Predoctoral Committee based on scores on the GRE exams (including the subject test in either biology, biochemistry, or chemistry), which should be taken by the October test date; grades; evidence of prior research experience; letters of recommendation, including letters from research sponsor(s); and commitment to a career in biomedical research. Interested Stanford medical students are welcome to apply to the program and should submit a formal application by December 12th.

Students admitted to the program are offered financial support covering tuition, a living stipend, insurance coverage, and an allowance for books/travel. Applicants are urged to apply for independent fellowships such as from the National Science Foundation. Fellowship applications are due in November of the year prior to matriculation in the graduate program, but Immunology graduate students may continue to apply for outside fellowships after matriculation. Because of the small number of department-funded slots, students who have been awarded an outside fellowship will have an improved chance of acceptance into the program. On matriculation, each student is assisted in selecting courses and lab rotations in the first year and in choosing a lab for the dissertation research. Once a dissertation adviser has been selected, a dissertation committee including at least two Immunology faculty, and including the dissertation adviser, is constituted to guide the student during the dissertation research. The student must meet with the dissertation committee at least once a year.

Candidates for Ph.D. degrees at Stanford must satisfactorily complete a three-year program of study that includes 72 units of graduate course work and research. At least 3 units must be taken with each of four different Stanford faculty members.

The requirements for the Ph.D. degree in Immunology include the following:

1. Training in biology and cognate disciplines equivalent to that provided by the undergraduate Biology major at Stanford.
2. Completion of the following courses (or their equivalents from undergraduate work):
 a) Basic Immunology (BIOSCI 230 or MI 200)
 b) Advanced Immunology (IMMUNOL 201, 202, 203)
 c) Biochemistry and Molecular Biology (BIOC 200)
 d) Advanced Genetics (GENE 203)
 e) Cell Biology of Physiological Processes (MCP 221)
 f) Principles of biological technologies (IMMUNOL 215)
 g) one of three possible courses: MPHA 210, Signal Transduction Pathways and Networks; SBIO 241, Biological Macromolecules; or DBIO 210, Developmental Biology.
 h) Responsible Conduct in Science (MED 255)
 i) Immunology Journal Club (IMMUNOL 305)
3. First-year students are required to take both the IMMUNOL 311, Seminar in Immunology and the companion course, IMMUNOL 311A, Seminar Discussion in Immunology, and participation in IMMUNOL 305, Immunology Journal Club. Students in their second year and above must participate in the IMMUNOL 311, Seminar in Immunology and may opt to take the companion course, IMMUNOL 311A. Students who have not yet achieved TGR status must register for 1 unit for IMMUNOL 311. Students attend the weekly Immunol-
ogy Seminar Series (4-5 p.m., Tuesdays). Students read the papers of and have dinner with visiting seminar speakers two or three times each quarter, and meet with a faculty member to discuss the material.

4. Elective courses as agreed upon by the student, adviser, and advisory committee. Electives may be chosen from graduate courses and seminars in any of the biomedical science departments and programs.

5. Completion in the first year of two or three one quarter rotations. Two weeks after taking the written portion of the qualifying examination process in mid-July, students shall present their lab rotation research projects to the Predoctoral Committee. Medical students who have declared Immunology as their scholarly concentration major, and who are accepted into the Ph.D. program, are exempt from doing lab rotations.

6. Teaching assistantship in two immunology courses. A teaching assistantship requirement may be fulfilled by proposing a graduate student-initiated course IMMUNOL 315, Topics in Immunology. Before fulfilling their teaching assistantships, Immunology graduate students are required to undertake a teaching assistantship workshop offered at the beginning of every quarter by the Center for Teaching and Learning.

7. For admission to candidacy, completion of two requirements by the end of the Autumn Quarter of the second year: a rotation presentation on one of three lab rotations, and a comprehensive written examination in immunology and related biomedical sciences must be completed satisfactorily by the middle of Summer Quarter of the first year. Finally, students must prepare and defend a research proposal on their dissertation research by December 17, the end of Autumn Quarter of their second year. Administration and evaluation of these requirements is the responsibility of the student’s dissertation committee.

8. Participation (through regular attendance and oral presentation) in the student-run immunology journal clubs for at least the first 2 years (IMMUNOL 305). First- through fourth-year students are also expected to attend the graduate students’ journal club, the Tuesday evening immunology seminars, and the annual Stanford Immunology Scientific Conference.

9. Passing of the University oral examination on the dissertation research, which is to be taken only after the student has substantially completed the research. The examination is preceded by a public seminar in which the candidate presents his/her research.

10. Completion of a Ph.D. dissertation, resulting from independent investigation and constituting a contribution to knowledge in the area of immunology.

COURSES

Course and lab instruction in the Immunology Program conforms to the “Policy on the Use of Vertebrate Animals in Teaching Activities,” the text of which is available at http://www.stanford.edu/dept/DoR/rph/8-2.html.

IMMUNOL 201. Advanced Immunology I—(Same as MI 211.) For graduate and medical students and advanced undergraduates. Molecules and cells of the innate and adaptive immune systems; genetics, structure, and function of immune molecules; lymphocyte differentiation and activation; regulation of immune responses; autoimmunity and other problems in clinical immunology. Prerequisites: undergraduate course in Immunology; and familiarity with experimental approaches in biochemistry, molecular biology, and cell biology.

3 units, Win (Chien, Staff)

IMMUNOL 202. Advanced Immunology II—(Same as MI 212.) Readings of immunological literature and specific areas of immunology. Classic problems and emerging areas are covered based on primary literature. Student and faculty presentations. Prerequisite: 211.

3 units, Spr (Garcia, Staff)

IMMUNOL 203. Advanced Immunology III—(Same as MI 213.) Key experiments and papers in immunology. Student presentations and faculty participation; faculty describe their experimental process and scientific papers. Prerequisite: IMMUNOL 201/MI 211 or IMMUNOL 202/MI 212.

3 units, Sum (Staff)

IMMUNOL 215. Principles of Biological Technologies—(Same as MI 215.) Required of first-year graduate students in Microbiology and Immunology, and the Immunology program. The principles underlying commonly utilized technical procedures in biological research. Lectures and primary literature critiques on gel electrophoresis, protein purification and stabilization, immunofluorescence microscopy, FACS. Prerequisites: biochemistry, organic chemistry, and physics.

2 units, Spr (Kirkegaard)

IMMUNOL 230. Introduction to Medicine—For graduate students in biological sciences, bioengineering, and biomedicalinformatics. Information and approaches used by physicians to understand human disease. Focus is on diabetes. Lectures by medical school and outside faculty. Field trips, including a biotechnology company, clinics, and the clinical laboratory. Quarter-long, team projects addressing current medical issues.

2-4 units, Spr (Mellins, Parnes)

IMMUNOL 290. Teaching in Immunology—Practical experience in teaching by serving as a teaching assistant in an immunology course.

1-10 units, Aut, Win, Spr, Sum (Staff)

IMMUNOL 299. Directed Reading in Immunology

1-15 units, Aut, Win, Spr, Sum (Staff)

IMMUNOL 300. Research—For Ph.D., M.D./Ph.D. students, and medical students whose scholarly concentrations are in immunology.

1-15 units, Aut, Win, Spr, Sum (Staff)

IMMUNOL 305. Immunology Journal Club—Required of first- to fourth-year graduate students. Graduate students present and discuss recent papers in the literature. May be repeated for credit.

1 unit, Aut, Win, Spr (Staff)

IMMUNOL 311. Seminar in Immunology—Enrollment limited to Ph.D., M.D./Ph.D., and medical students whose scholarly concentrations are in immunology. Current research topics.

1 unit, Aut, Win, Spr (Fathman, Steinman)

IMMUNOL 311A. Immunology Seminar Discussion—Required of first-year students. Students discuss papers of speakers in 311, and meet with the speakers. Corequisite: 311.

1 unit, Aut, Win, Spr (Fathman, Steinman)

IMMUNOL 315. Special Topics in Immunology—Graduate student-initiated seminar in journal club style. Previous topics include evolutionary immunology and the principles of vaccine development, cytokines, tumor immunology, and neuroimmunology. May be repeated for credit.

1-4 units, Aut, Win, Spr, Sum (Staff)

IMMUNOL 317. Frontiers in Immunology—Seminar class in journal club style. Focus is on one topic in immunology per quarter. Readings range from historical development to current research and questions. May be repeated for credit.

1-3 units, Aut, Win, Spr, Sum (Staff)
MICROBIOLOGY AND IMMUNOLOGY

Emeriti: (Professors) Sidney Raffel, Leon T. Rosenberg, Esther M. Lederberg
Chair: Mark M. Davis
Associate Professors: Kenan Christopher Garcia, Peter Jackson, Garry Nolan, David Relman
Assistant Professors: Matthew Bogyo, Chang-Zheng Chen, David Schneider, Upinder Singh, Julie Theriot
Associate Professor (Teaching): Robert D. Siegel
Courtesy Assistant Professor: Christopher Contag (Pediatrics)
Department Offices: D300 Fairchild Building, 299 Campus Drive
Mail Code: 94305-5124
Phone: (650) 725-8541
Email: micro_immuno@lists.stanford.edu
Web Site: http://cmgm.stanford.edu/micro/

Courses given in Microbiology and Immunology have the subject code MI. For a complete list of subject codes, see Appendix.

The Department of Microbiology and Immunology offers a complete program of training leading to the Ph.D. degree, as well as research training, courses, and seminars for medical students and postdoctoral fellows. Research interests focus on two broad areas, host/parasite interactions, and the function of the immune system. Individual laboratories investigate mechanisms of pathogenesis and the physiology of viruses, bacteria, and protozoan parasites, as well as the lymphocyte function in antigen recognition, immune response, and autoimmunity.

GRADUATE PROGRAMS
MASTER OF SCIENCE

A regular M.S. program is not offered, although this degree is awarded under special circumstances. Candidates for master’s degrees are expected to have completed the preliminary requirements for the B.S. degree, or the equivalent. In addition, the candidate is expected to complete 45 quarter units of work related to microbiology; at least 25 of these units should concern research devoted to a thesis. The thesis must be approved by at least two members of the department faculty.

DOCTOR OF PHILOSOPHY

University requirements for the Ph.D. are described in the “Graduate Degrees” section of this bulletin.

Application, Admission, and Financial Aid—Prospective Ph.D. candidates should have completed a bachelor’s degree in a discipline of biology or chemistry, including course work in biochemistry, chemistry, genetics, immunology, microbiology, and molecular biology. The deadline for receipt of applications with all supporting materials is December 15.

Applicants must file a report of scores on the general subject tests and on an advanced test (normally in cellular and molecular biology, chemistry, or biochemistry) of the Graduate Record Examination (GRE). It is strongly recommended that the GRE be taken before October so that scores are available when applications are evaluated.

In the absence of independent fellowship support, entering predoctoral students are fully supported with a stipend and tuition award. Highly qualified applicants may be honored by a nomination for a Stanford fellowship. Successful applicants have been competitive for predoctoral fellowships such as those from the National Science Foundation.

Program for Graduate Study—The Ph.D. degree requires course work and independent research demonstrating an individual’s creative, scholastic, and intellectual abilities. On entering the department, students meet an advisory faculty member and together they design a timetable for completion of the degree requirements. Typically, this consists of first identifying gaps in the student’s undergraduate education and determining courses that should be taken. Then, a tentative plan is made for two to four lab rotations (one rotation per quarter). During the first year of graduate study in the department, each student also takes six or seven upper-level (200-series) courses. Three of these courses, Principles of Biological Techniques, Medical Microbiology, and Advanced Pathogenesis of Bacteria, Viruses, and Eukaryotic Parasites, are specific requirements of this department. Three courses, Advanced Genetics, Molecular Biology, and Cell Biology, are part of the core curriculum that is required of many graduate students in Stanford Biosciences.

In Spring Quarter of the second year, each student defends orally a formal research proposal on a topic outside the intended thesis project. The outline of this proposal is due to the Graduate Program Steering Committee by March 1st. Based on successful performance on this proposal, the student is admitted to candidacy. In the Autumn Quarter of the second year, a research proposal based on the student’s own thesis topic is defended to his or her thesis committee. Teaching experience and training are also part of the graduate curriculum. All graduate students are required to act as teaching assistants for two quarters. In addition, first- and second-year graduate students are required to participate in a bi-weekly journal club.

COURSES

MI 25N. Modern Plagues—Stanford Introductory Seminar. Preference to freshmen. The molecular and medical aspects of new and old microorganisms that infect humans. Goal is to place modern human plagues in scientific and historical perspective focusing on the factors that lead to emergence and control. WRITE-2
3 units, Spr (Boothroyd)

MI 103. Parasites and Pestilence: Infectious Public Health Challenges—(Same as HUMBIO 103.) Parasitic and other diseases with public health impact. Pathogenesis, clinical syndromes, complex life cycles, and the interplay among environment, vectors, hosts, and reservoirs in historical context to understand public health policy approaches to halting disease transmission. Focus is on World Health Organization tropical disease research-targeted disease entities including: river blindness, sleeping sickness, leishmaniasis, schistosomiasis, mycobacterial disease (tuberculosis and leprosy), malaria, toxoplasmosis, dracunculiasis, and intestinal helminthes. Guest lecturers in disease control. Original proposal to solve a current disease.
4 units, Spr (Smith)

MI 104. Innate Immunology—(Undergraduate section; see 204.)
3 units, Spr (Schneider)

MI 115A. Humans and Viruses—(Same as HUMBIO 115A.) Concepts in biology and the social sciences, focusing on emerging infections, viral classification, transmission and prevention, vaccination and treatment, eradication of disease, viral pathogenesis, mechanisms of virally-induced cancer, and viral evolution. Topics: molecular biology of genetic shift and drift in influenza virus, cellular tropism of HIV, developmental biology of virally-induced birth defects, clinical aspects of infantile diarrhea, social aspects of the common cold, policy issues of blood antibody tests, factors in pathogenesis and transmission of prions. Prerequisites: Human Biology core or consent of instructor.
6 units, Aut (Siegel)

MI 115B. The Vaccine Revolution—(Same as HUMBIO 115B.) Advanced seminar. Human aspects of viral disease, focusing on recent discoveries in the area of vaccine development and emerging infections. Journal club format: students select articles from primary scientific literature, write formal summaries, and synthesize it into a literature review on a specific topic. Emphasis is on the development of critical reading, analysis, experimental design, and interpretation of data. Students give oral presentations and lead discussions based on their scientific journal reading. Enrollment limited to 10. Prerequisite: 115A.
6 units (Siegel) alternate years, given 2006-07
MI 185. Topics in Microbiology — Topics include diversity, molecular regulation, growth, bioenergetics, and unique metabolic processes. Student papers for presentation on current topics such as antibiotic resistance and molecular approaches to bioremediation. Prerequisites: CHEM 31, 33, 35. Recommended: BIOSCI 31.

3 units, Spr (Matin, Staff)

MI 198A,B,C,D,E,F. Directed Reading — Fields of research open to students are decided in consultation with sponsoring faculty member.
1-15 units, Aut, Win, Spr, Sum (Staff)

MI 198A. Microbiology
MI 198B. Immunology
MI 198C. Virology
MI 198D. Microbial Genetics
MI 198E. Parasitology
MI 198F. Bacterial Physiology

MI 199. Undergraduate Research — Individual study or research by arrangement with a faculty member. Possible fields: microbial molecular biology and physiology, microbial pathogenicity, immunology, virology, and molecular parasitology. Prerequisites: consent of instructor.
1-18 units, Aut, Win, Spr, Sum (Staff)

MI 203. Biological Stress Response — Current literature. Possible topics: the nature and molecular regulation of the stress response; biochemistry and structural biology molecular chaperones; the role of stress proteins in the pathogenic process; psychoneuroendocrinology; multidrug resistance. Limited enrollment. Prerequisites: Biological Sciences core; upper-division course in molecular biology/genetics or biochemistry.
3 units, Win (Matin, Staff) alternate years, not given 2006-07

MI 204. Innate Immunology — (Undergraduate register for 104.) Innate immune mechanisms as the only defenses used by the majority of multicellular organisms. Topics include Toll signaling, NK cells, complement, antimicrobial peptides, phagocytes, neuroimmunity, community responses to infection, and the role of native flora immunity. How microbes induce and defeat innate immune reactions with examples from vertebrates, invertebrates, and plants.
3 units, Spr (Schneider)

MI 206. Animal Viruses — Current literature. Possible topics: the nature and molecular regulation of the stress response; biochemistry and structural biology molecular chaperones; the role of stress proteins in the pathogenic process; psychoneuroendocrinology; multidrug resistance. Limited enrollment. Prerequisites: Biological Sciences core; upper-division course in molecular biology/genetics or biochemistry.
3 units (Mocarski, Staff) alternate years, given 2006-07

MI 209. Medical Microbiology — For graduate and advanced undergraduate students. Required of first-year graduate students in Microbiology and Immunology. Introduction to the concepts of microbial pathogenesis with emphasis on the mechanisms employed by pathogenic microorganisms in establishing infection in the host, and the responses of the host to infection. Prerequisite: understanding of biochemistry and molecular biology.
1-3 units, Spr (Falckow)

MI 210. Advanced Pathogenesis of Bacteria, Viruses, and Eukaryotic Parasites — For graduate, medical, and advanced undergraduate students. Required for first-year graduate students in Microbiology and Immunology. The molecular mechanisms by which microorganisms invade animal and human hosts, express their genomes, interact with macromolecular pathways in the infected host, and induce disease. Problem sets and recent literature pertaining to microbial pathogenesis.
5 units, Win (Sarnow, Staff)

MI 211. Advanced Immunology I — (Same as IMMUNOL 201.) For graduate and medical students and advanced undergraduates. Molecules and cells of the innate and adaptive immune systems; genetics, structure, and function of immune molecules; lymphocyte differentiation and activation; regulation of immune responses; autoimmunity and other problems in clinical immunology. Prerequisites: undergraduate course in Immunology; and familiarity with experimental approaches in biochemistry, molecular biology, and cell biology.
3 units, Win (Chien, Staff)

MI 212. Advanced Immunology II — (Same as IMMUNOL 202.) Readings of immunological literature and specific areas of immunology. Classic problems and emerging areas are covered based on primary literature. Student and faculty presentations. Prerequisite: 211.
3 units, Spr (Garcia, Staff)

MI 213. Advanced Immunology III — (Same as IMMUNOL 203.) Key experiments and papers in immunology. Student presentations and faculty participation; faculty describe their experimental process and scientific papers. Prerequisite: IMMUNOL 201/MI 211 or IMMUNOL 202/MI 212.
3 units, Sum (Staff)

MI 215. Principles of Biological Technologies — (Same as IMMUNOL 215.) Required of first-year graduate students in Microbiology and Immunology, and the Immunology program. The principles underlying commonly utilized technical procedures in biological research. Lectures and primary literature critiques on gel electrophoresis, protein purification and stabilization, immunofluorescence microscopy, FACS. Prerequisites: biochemistry, organic chemistry, and physics.
2 units, Spr (Kirkegaard)

MI 233. The Biology of Small Modulatory RNAs — (Same as GENE 233, PATH 233.) Open to graduate and medical students. How recent discoveries of miRNA, RNA interference, and short interfering RNAs reveal potentially widespread gene regulatory mechanisms mediated by small modulatory RNAs during animal and plant development. Requires paper proposing novel research.
2 units, Aut (Chen, Fire)

MI 250. Frontiers in Microbiology and Immunology — Required of first- and second-year students in Microbiology and Immunology. How to evaluate biological research. Held in conjunction with the Microbiology and Immunology Friday noon seminar series. Before the seminar, students and faculty discuss one or more papers from the speaker’s primary research literature on a related topic. After the seminar, students meet informally with the speaker to discuss their research.
1 unit, Aut, Win, Spr (Sarnow)

MI 299. Directed Reading — Prerequisite: consent of instructor. See faculty list for section numbers.
1-18 units, Aut, Win, Spr, Sum (Staff)

MI 399. Directed Reading — Prerequisite: consent of instructor. See faculty list for section numbers.
1-18 units, Aut, Win, Spr, Sum (Staff)

MI 399. Graduate Research — Students who have completed required foundation courses may elect research work in general bacteriology, bacterial physiology and ecology, bacterial genetics, microbial pathogenicity, immunology, parasitology, and virology. Prerequisite: consent of instructor.
1-18 units, Aut, Win, Spr, Sum (Staff)

MOLECULAR AND CELLULAR PHYSIOLOGY

Chair: Richard S. Lewis

Associate Professor: V. Daniel Madison

Assistant Professors: Miriam Goodman, Merritt Maduke

Coursey Associate Professor: Anson W. Lowe

Coursey Assistant Professors: John Huguenard, Richard J. Reimer

Department Offices: Beckman Center, B100

Mail Code: 94305-5345

Phone: (650) 725-7554

Email: schantae@stanford.edu

Web Site: http://mcp.stanford.edu
Courses given in Molecular and Cellular Physiology have the subject code MCP. For a complete list of subject codes, see Appendix.

The Department of Molecular and Cellular Physiology is located in the Beckman Center for Molecular and Genetic Medicine.

A central goal of physiology in the post-genomic era is to understand how thousands of encoded proteins serve to bring about the highly coordinated behavior of cells and tissues. Research in the department approaches this goal at many levels of organization, ranging from single molecules and individual cells to multicellular systems and the whole organism. The faculty share common interests in the molecular mechanisms of cell signaling and behavior, with a special focus on structure/function analysis of ion channels and G-protein coupled receptors, and their roles at the cellular, organ, and whole-organism levels; the molecular basis of sensory transduction, synaptic transmission, plasticity and memory; the role of ion channels and calcium in controlling gene expression in neural and immune cells; and the regulation of vesicle trafficking and targeting, cell polarity, and cell-cell interactions in the nervous system and in epithelia. Research programs employ a wide range of approaches, including molecular and cell biology, biochemistry, genetics, biophysics, x-ray crystallography and solution NMR, electrophysiology, and in vitro and in vivo imaging with confocal and multi-photon microscopy.

GRADUATE PROGRAMS

The department offers required and elective courses for students in the School of Medicine and is also open to other qualified students with the consent of the instructor. Training of medical, graduate, and postdoctoral students is available. The program offers a course of study leading to the Ph.D. degree. No B.S. is offered, and an M.S. is offered only in the unusual circumstance where a student completes the course work, rotation, and the written section of the qualifying exam, but is unable to complete the requirements for the Ph.D.

DOCTOR OF PHILOSOPHY

Students with undergraduate or master’s degrees who have completed a year each of college chemistry (including lectures in organic and physical chemistry), physics, calculus, and biology are considered for admission to graduate study. Applicants submit a report of scores from the Graduate Record Examination (verbal, quantitative, analytical, and an advanced subject test in one of the sciences) as part of the application.

Students who do not speak English as their native language must submit scores from TOEFL unless waived by Graduate Admissions, the Registrar’s Office.

Study toward the Ph.D. is expected to occupy five years, including summers. A minimum of six quarter-long courses are required. These include four graduate-level courses (200-300 series) and a choice of two out of these three courses: MCP 221, MCP 255, and MCP 256. Students are also required to take the Molecular and Cellular Physiology seminar/Research In Progress series. Each student presents a talk on research in progress to the department at least every other year, starting their second year. Acceptable grades for all course work must be a minimum of 'B-' and at least two grades equal to 'A-' or above are necessary (but not sufficient) for continuation in the program.

Qualifying Examination — At the end of the second year in residence as a graduate student, each Ph.D. candidate presents a written thesis proposal to be defended at an oral comprehensive examination. The examinations may be taken only after all course work has been completed by the required standard. Students undertake individual research studies as early as possible after consultation with their preceptor. Upon passing this exam, the student is advanced to candidacy for the Ph.D.

Dissertation and University Oral Examination — The results of independent, original work by the students are presented in a dissertation. The oral examination is largely a defense of the dissertation.

Advisers and Advisory Committees — A graduate advisory committee, currently Professors Lewis and Aldrich, advises students during the period before the formation of their qualifying committees.

Financial Aid — Students may be funded by their advisers’ research grants, by training grants, by department funds, or by extramural funds. Students are encouraged to obtain funding from outside sources (e.g., NIH and NSF).

COURSES

Course and lab instruction in the Department of Molecular and Cellular Physiology conforms to the “Policy on the Use of Vertebrate Animals in Teaching Activities,” the text of which is available at http://www.stanford.edu/dept/DoR/rph/8-2.html.

MCP 100Q. The Hippocampus as a Window to the Mind — Stanford Introductory Seminar. Preference to sophomores.
3 units, Spr (Madison)

MCP 199. Undergraduate Research — Fields of research open to students decided in consultation with sponsoring faculty member.
1-18 units, Aut, Win, Spr, Sum (Staff)

MCP 200-204. Physiology — Offered jointly with the Department of Medicine. Lectures, small group instruction, clinical presentations, and lab demonstrations of normal and disordered human cardiovascular physiology, normal and disordered function in the endocrine, respiratory, renal, fluid and electrolyte, and acid-base systems. Prerequisite: understanding of general biochemistry.

MCP 200. Cardiovascular Physiology
5 units, Spr (Kobilka)

MCP 202. Gastrointestinal Physiology
1-3 units, Aut (Lowe)

MCP 203. Renal Physiology
1-3 units, Aut (Meyer)

MCP 204. Respiratory Physiology
1-2 units, Aut (Raffin)

MCP 213. Special Topics in Molecular and Cellular Physiology — Seminar. Introductory and advanced physiological topics agreed on by an instructor and students. Prerequisite: consent of instructor.
1-18 units, Aut, Win, Spr, Sum (Staff)

MCP 215. Synaptic Transmission — Primarily for graduate students with an interest in synaptic function; interested medical students and advanced undergraduates may enroll. The anatomical, physiological, and biochemical basis of synaptic function in the peripheral and central nervous system. Research papers.
5 units, Aut (Smith, Madison)

MCP 216. Genetic Analysis of Behavior — (Same as NBIO 216.) Advanced seminar. Findings and implications of behavioral genetics as applied to invertebrate and vertebrate model systems. Topics include biological clocks, and sensation and central pattern generators. Relevant genetic techniques and historical perspective. Student presentation.
4 units (Clandinin, Goodman) not given 2005-06

MCP 218. Transmembrane Signal Transduction — The molecular mechanisms of signal transduction for a variety of structurally and functionally different plasma membrane receptors. Topics: the structure of receptors and the interaction of the receptor protein with the lipid bilayer; ligand binding and ligand mediated changes in receptor structure; and cytosolic, cytoskeletal, and membrane proteins that interact with receptors. Recent research developments and the value of experimental approaches for the study of receptors.
2 units, Win (Kobilka)

MCP 221. Cell Biology of Physiological Processes — Open to graduate and medical students. Mechanisms of membrane and cellular biogenesis in relation to physiological processes. Emphasis is on regulatory and signaling mechanisms involved in coordinating cellular phenomena such as cellular organization, function, and differentiation. Topics: cellular compartmentalization, transport and trafficking of macromolecules, organelle biogenesis, cell division, motility and adhesion, and multicellularity. Prerequisites: Biological Sciences core, BIOSCI 187/287.
2-5 units, Win (Kopito, Frydman, Nelson)
MCP 221A,B,C,D,E,F,G,H. Cell Biology of Physiological Processes Discussion — Required course taken with 221, taught by medical school faculty, to expand on the topics covered in 221. Students register for only one section. Prerequisites: Biological Sciences core, BIOCHEM 201.

2 units, Win (Staff)

MCP 222. Imaging: Biological Light Microscopy — (Same as BIOSCI 152.) Survey of instruments which use light and other radiation for analysis of cells in biological and medical research. Topics: basic light microscopy through confocal fluorescence and video/digital image processing. Lectures on physical principles; involves partial assembly and extensive use of lab instruments. Lab. Prerequisites: some college physics, Biological Sciences core. GER:DB-NatSci

3 units, Spr (S. Smith)

MCP 232. Advanced Imaging Lab in Biophysics — (Same as BIOSCI 132/232, BIOPHYS 232.) Laboratory and lectures. Microscopy, emphasizing hands-on experience with a range of apparatus and techniques. Topics include microscope optics, Koehler illumination, contrast-generating mechanisms (bright/dark field, fluorescence, phase contrast, differential interference contrast), and resolution limits. Advanced topics vary by year, but include single-molecule fluorescence, fluorescence resonance energy transfer, confocal microscopy, two-photon microscopy, optical trapping, and fiber optic methods. Limited enrollment. Recommended: basic physics, Biological Sciences core or equivalent, and consent of instructor. GER:DB-NatSci

4 units, Spr (S. Block, Schnitzer, S. Smith, Stearns)

MCP 255. Molecular Physiology of Membranes — Recommended for MCP graduate students; open to graduate and medical students; advanced undergraduates with consent of instructor. Structure and mechanisms of the molecules underlying transmembrane processes. Topics include structure of membrane proteins, energetics of membranes, transmembrane signaling (receptors and channels), transport (transporters and pumps), single molecule methods and theory, and membrane complexes. Lectures introduce concepts; student activities and small group discussion emphasize application of concepts to research the literature. Recommended: BIOCS/BIO 214 or equivalent.

4 units, Win (Maduke, Aldrich)

MCP 256. Molecular Physiology of Cells — Recommended for MCP graduate students; open to graduate and medical students; advanced undergraduates with consent of instructor. Dynamic aspects of cell function, including cellular energetics, gas exchange, solute transport, absorption and secretion in epithelia, ionic and electrical signaling in nerve and muscle, and sensory physiology. Emphasis is on the cellular function of ion channels and transporters, joining experimental and analytical approaches. Lectures, in-class readings, discussions, student presentations, and the use of mathematical models of cell function. Recommended: 255; basic cell and molecular biology.

4 units, Spr (Lewis, Goodman)

MCP 258. Information and Signaling Mechanisms in Neurons and Circuits — How do synapses, cells and neural circuits process information relevant to a behaving organism? How phenomena of information processing emerge at several levels of complexity in the nervous system, including sensory transduction in molecular cascades, information transmission through axons and synapses, plasticity and feedback in recurrent circuits, and encoding of sensory stimuli in neural circuits.

5 units, Aut (Aldrich, Baccus, Tsien)

MCP 299. Directed Reading — Prerequisite: consent of instructor. See faculty list for section numbers.

1-18 units, Aut, Win, Spr, Sum (Staff)

MCP 399. Advanced Research — Investigation sponsored by individual faculty members undertaken by interested, qualified medical or graduate students. Research fields include endocrinology, neuroendocrinology, and topics in molecular and cellular physiology.

1-18 units, Aut, Win, Spr, Sum (Staff)

MOLECULAR PHARMACOLOGY

Emeritus: (Professors) Robert H. Dreisbach, Avram Goldstein, Dora B. Goldstein, Tag E. Mansour, James P. Whitlock

Chair: Daria Mochly-Rosen

Professors: James E. Ferrell, Jr., Oleg Jardetzky, Tobias Meyer, Daria Mochly-Rosen, Richard A. Roth

Assistant Professors: James K. Chen, Karlene A. Cimprich, Thomas J. Wandless

Consulting Professors: Gordon Ringold, Alejandro Zaffaroni

Web Site: http://molepharm.stanford.edu

Courses given in Molecular Pharmacology have the subject code MPHA. For a complete list of subject codes, see Appendix.

GRADUATE PROGRAMS

MASTER OF SCIENCE

Students in the Ph.D. program may apply for an M.S. degree, after having satisfactorily completed the course and laboratory requirements of the first two years. The degree also requires a written thesis based on literature or laboratory research. Postdoctoral research training is available to graduates having the Ph.D. or M.D. degree.

DOCTOR OF PHILOSOPHY

University requirements for the Ph.D. are described in the “Graduate Degrees” section of this bulletin.

The Department of Molecular Pharmacology offers interdisciplinary training to prepare students for independent careers in biomedical science. Research and training in the department focuses on the mechanisms by which hormones and drugs regulate cell function, and on the development of new therapeutic technologies. At the heart of these issues lies the analysis of cell signaling at the level of pathways and networks.

The program leading to the Ph.D. degree includes formal and informal study in pharmacology, genetics, biochemistry, and molecular cell biology. First-year students spend one quarter in each of three different laboratories, working closely with other graduate students, a professor, and postdoctoral fellows on various research projects. During the fourth quarter, the student chooses a faculty mentor with whom to undertake a thesis research, based on available positions and the student’s interest. During or before the eighth quarter of study, students must pass a qualifying exam which consists of an oral exam on general knowledge and a defense of a research proposal. Course requirements are fulfilled during the first two years of study; the later years of the four- to six-year program are devoted to full-time dissertation research. Close tutorial contact between students and faculty is stressed throughout the program.

Research opportunities also exist for medical students and undergraduates. The limited size of the labs in the department allows for close tutorial contact between students, postdoctoral fellows, and faculty.

The department participates in the four quarter Health and Human Disease sequence which provides medical students with a comprehensive, systems-based education in physiology, pathology, microbiology, and pharmacology.

COURSES

Course and lab instruction in the Department of Molecular Pharmacology conforms to the “Policy on the Use of Vertebrate Animals in Teaching Activities,” the text of which is available at http://www.stanford.edu/dept/DoR/ph8-2.html.

MPHA 199. Undergraduate Research

1-18 units, Aut, Win, Spr, Sum (Staff)

ADVANCED

Open to all University students; instructor’s consent required prior to registration. Students should consult with the instructor about the adequacy of their preparation.
MPHA 210. Signal Transduction Pathways and Networks — The molecular mechanisms through which cells receive and respond to external signals. Emphasis is on principles of cell signaling, the systems-level properties of signal transduction modules, and experimental strategies through which cell signaling pathways are being studied. Prerequisite: working knowledge of biochemistry and genetics.
4 units, Win (Ferrell, Meyer)

MPHA 220. Chemistry of Biological Processes — (Same as BIOC 220.) The principles of organic and physical chemistry as applied to biomolecules. Goal is a working knowledge of chemical principles that underlie biological processes, and chemical tools used to study and manipulate biological systems. Prerequisites: organic chemistry and biochemistry, or consent of instructor.
4 units, Aut (Wandless, Herschlag, Chen, Bogyo)

MPHA 240. Drug Discovery — The scientific principles and technologies involved in making the transition from a basic biological observation to the creation of a new drug emphasizing molecular and genetic issues. Prerequisite: biochemistry, chemistry, or bioengineering.
4 units (Mochly-Rosen, Cimprich) alternate years, given 2006-07

MPHA 260. Quantitative Chemical Biology — Current topics including protein and small molecule engineering, cell signaling sensors and modulators, molecular imaging, chemical genetics, combinatorial chemistry, in vitro evolution, and signaling network modeling. Prerequisites: undergraduate organic chemistry, and biochemistry or cell biology.
4 units (Chen, Bogyo, Wandless, Jackson) alternate years, not given 2006-07

MPHA 270. Research Seminar — Current research in pharmacology. Seminars are reviewed and discussed in a separate conference with a member of the faculty.
1-2 units, Aut, Win, Spr (Staff)

MPHA 280. Tutorial Program — Guided readings in the literature of any area of pharmacology. Review paper may be required. Primarily for students in pharmacology. May be repeated for credit.
1-18 units, Aut, Win, Spr, Sum (Staff)

MPHA 299. Directed Reading — May be repeated for credit.
1-18 units, Aut, Win, Spr, Sum (Staff)

MPHA 399. Research — Investigations sponsored by individual faculty members. May be repeated for credit.
1-18 units, Aut, Win, Spr, Sum (Staff)

NEUROBIOLOGY
Emeritus: Denis Baylor, Eric Shooter, Lubert Stryer
Chair: Eric I. Knudsen
Professors: Ben Barres, Eric I. Knudsen, Uel J. McMahan, William T. Newsome
Assistant Professors: Stephen Baccus, Thomas Clandinin, Tirin Moore, Jennifer Raymond
Department Offices: Fairchild Building, Second Floor
Mail Code: 94305-5125
Web Site: http://www.stanford.edu/dept/nbio/

Courses given in Neurobiology have the subject code NBIO. For a complete list of subject codes, see Appendix.

GRADUATE PROGRAM
Graduate students in the Department of Neurobiology obtain the Ph.D. degree through the interdepartmental Neurosciences Ph.D. program. Accepted students receive funding for tuition and a living stipend. Applicants should familiarize themselves with the research interests of the faculty and, if possible, indicate their preference on the application form which is submitted directly to the Neurosciences Program.

Medical students also are encouraged to enroll in the Ph.D. program. The requirements of the Ph.D. program are fitted to the interests and time schedules of the student. Postdoctoral training is available to graduates holding Ph.D. or M.D. degrees, and further information is obtained directly from the faculty member concerned.

Research interests of the department include: mechanisms of visual transduction and information transmission in vertebrate retina; structure, function, and development of auditory and visual systems; integrative mechanisms and regeneration in the central and peripheral nervous system; mechanisms of ion channel function; and neuronal growth and differentiation.

COURSES

Course and lab instruction in the Department of Neurobiology conforms to the “Policy on the Use of Vertebrate Animals in Teaching Activities,” the text of which is available at http://www.stanford.edu/dept/DoR/rph/8-2.html.

The department offers a one quarter course (NBIO 200) on the structure and function of the nervous system, which is open to medical and graduate students and advanced undergraduates. Advanced courses are open to students who have completed the basic course.

NBIO 199. Undergraduate Directed Reading
1-18 units, Aut, Win, Spr (Baccus, Barres, Clandinin, Knudsen, McMahan, Moore, Newsome, Raymond)

NBIO 204. Computational Neuroimaging — (Same as PSYCH 204A.) Advanced seminar. For students working with functional magnetic resonance imaging (fMRI). The physiological basis of the signal measured using fMRI. Possibilities for experiment design and interpretation of the signal with respect to other physiological and behavioral measurements. Emphasis is on experimental design, software tools, and pulse sequences for fMRI experiments.
1-3 units (Wandell, Grill-Spector) alternate years, given 2006-07

NBIO 206. The Nervous System — Introduction to the structure and function of the nervous system, including neuroanatomy, neurophysiology, and systems neurobiology. Topics include the properties of neurons and the mechanisms and organization underlying higher functions. Framework for general work in neurology, neuropathology, clinical medicine, and for more advanced work in neurobiology. Lecture and lab components must be taken together.
8 units, Win (Baccus, Barres, Knudsen, Newsome, Raymond, Clandinin, Moore)

NBIO 215. Synaptic Transmission — (Enroll in MCP 215.)
5 units, Aut (Smith, Madison)

NBIO 216. Genetic Analysis of Behavior — (Same as MCP 216.)
Advanced seminar. Findings and implications of behavioral genetics as applied to invertebrate and vertebrate model systems. Topics include biological clocks, and sensation and central pattern generators. Relevant genetic techniques and historical perspective. Student presentation.
4 units (Clandinin, Goodman) not given 2005-06

NBIO 218. Neural Basis of Behavior — Advanced seminar. The principles of information processing in the vertebrate central nervous system, and the relationship of functional properties of neural systems with perception and behavior. Emphasis is on the visual and auditory systems. Original papers, directed discussions, and student presentations. Prerequisite: 200 or consent of instructor.
4 units, Spr (Knudsen, Raymond) alternate years, not given 2006-07

2-4 units (Newsome) not given 2005-06

NBIO 221. Frontiers in Translational Medicine — For first-year MSTP and M.D./Ph.D. students only. Pathways for combining science and
NEUROSCIENCES PROGRAM

Director: William T. Newsome (Professor, Neurobiology)

Participating Faculty:
Anesthesia: Rona Giffard (Associate Professor), M. Bruce MacIver (Assistant Professor, Research), Sean Mackey (Assistant Professor), David Yeomans (Associate Professor)
Applied Physics: Mark Schnitzer (Assistant Professor)
Biological Sciences: Bruce Baker (Professor), Russell D. Fernald (Professor), William F. Gilly (Professor), H. Craig Heller (Professor), Ron Kopito (Professor), Liqun Luo (Assistant Professor), Susan McConnell (Professor), Robert M. Sapolsky (Professor), Mark Schnitzer (Assistant Professor), Kang Shen (Assistant Professor), Stuart Thompson (Professor)
Comparative Medicine: Paul S. Buckmaster (Assistant Professor), Linda C. Cork (Professor), Corinna Darian-Smith (Assistant Professor), Shaul Hestrin (Associate Professor)
Developmental Biology: Matthew P. Scott (Professor)
Electrical Engineering: Krishna Shenoy (Assistant Professor)
Genetics: Anne Brunet (Assistant Professor), David R. Cox (Professor)
Molecular and Cellular Physiology: Richard Aldrich (Professor), Miriam B. Goodman (Assistant Professor), Brian Kobilka (Professor), Richard S. Lewis (Professor), V. Daniel Madison (Associate Professor), Merritt C. Maduke (Assistant Professor), Stephen Smith (Professor), Richard Tsien (Professor)
Molecular Pharmacology: Helen Blau (Professor), Tobias Meyer (Professor), Daria Mobley-Rosen (Professor)
Neurobiology: Stephen Baccus (Assistant Professor), Ben Barres (Associate Professor), Tom Clandinin (Assistant Professor), Ricardo Dolmetsch (Assistant Professor), Eric I. Knudsen (Professor), U. J. McManus (Professor), Tirin Moore (Assistant Professor), William T. Newsome (Professor), Jennifer Raymond (Assistant Professor)
Neurology and Neurological Sciences: Robert S. Fisher (Professor), Ting-Ting Huang (Assistant Professor), John A. Huguenard (Associate Professor), William C. Mobjley (Professor), David A. Prince (Professor), Thomas A. Rando (Assistant Professor), Richard Reimer (Assistant Professor), Terence Sanger (Assistant Professor), Lawrence Steinman (Professor), Tony Wyss-Coray (Assistant Professor), Yanmin Yang (Assistant Professor)
Neurosurgery: Pak H. Chan (Professor), Theo Palmer (Assistant Professor), Gary K. Steinberg (Professor)
Pathology: Bingwei Lu (Assistant Professor), Raymond Sobel (Associate Professor)
Psychiatry and Behavioral Sciences: Karl Deisseroth (Assistant Professor), Craig Garner (Professor), Terrence A. Ketter (Associate Professor), Robert C. Malenka (Professor), Vinod Menon (Assistant Professor, Research), Emmanuel Mignot (Professor), Allan L. Reiss (Professor), Edith Sullivan (Professor, Research)
Psychology: Ian Gotlib (Professor), Kalanit Grill-Spector (Assistant Professor), James J. Gross (Associate Professor), Brian Knutson (Assistant Professor), Anthony Wagner (Assistant Professor), Brian Wandell (Professor), Jeffrey J. Wine (Professor)
Radiology: Gary H. Glover (Professor)
Program Offices: Alway Bldg., M-105A
Mail Code: 94305-5121
Phone: (650) 723-9855
Web Site: http://neuroscience.stanford.edu/

Courses given in the Neurosciences Program have the subject code NEPR. For a complete list of subject codes, see Appendix.

GRADUATE PROGRAM
DOCTOR OF PHILOSOPHY

University requirements for the Ph.D. are described in the “Graduate Degrees” section of this bulletin. The interdepartmental Neurosciences Program offers instruction and research opportunities leading to a Ph.D. in Neurosciences. The requirements for a Ph.D. degree follow those of the University and in addition are tailored to fit the background and interests of the student. Accepted students receive an award covering tuition, a basic health plan, and a living stipend. Qualified applicants should, where possible, apply for the predoctoral fellowships in open competition, especially those from the National Science Foundation. December 16 is the deadline for receipt in the Neurosciences Program office of applications with all supporting material.

Applicants should familiarize themselves with the research interests of the faculty and indicate their preferences clearly on the application form. Since students enter with differing backgrounds, and the labs in which they may elect to work cover several different disciplines, the specific program for each student is developed individually with an advisory committee. All students are required to complete the basic introduction...
to neurobiology (NBIO 206 or equivalent). Students must also take five advanced courses, four of which must be distributed among four of the following core areas: systems and behavioral neuroscience, molecular and cellular neuroscience, developmental neuroscience, clinical neuroscience, and computational neuroscience. The fifth advanced course is chosen by the student in an area related to the student’s research interest, and may be selected from outside the Neurosciences core with prior approval from the Program Director and the student’s adviser.

Students usually rotate through several labs during their first year, although they may choose to begin thesis research on entry. After the first rotation, students may rotate both within and outside the Neurosciences Program. Required course work should be completed by the end of the second year. Passing of a comprehensive oral preliminary examination given by the student’s advisory committee is required for admission to Ph.D. candidacy. This examination is usually taken by the end of the second year. The student is required to present a Ph.D. dissertation, which is the result of independent investigation contributing to knowledge in an area of neuroscience, and to defend his or her dissertation in a University oral examination, which includes a public seminar.

Medical students may participate in this program provided they meet the prerequisites and satisfy all the requirements of the graduate program as listed above. The timing of the program may be adjusted to fit their special circumstances.

COURSES

Course and lab instruction in the Neurosciences Program conforms to the “Policy on the Use of Vertebrate Animals in Teaching Activities,” the text of which is available at http://www.stanford.edu/dept/DoR/raf/8-2.html.

NEPR 299. Directed Reading
1-18 units, Aut, Win, Spr, Sum (Staff)

NEPR 300. Professional Development and Integrity in Neuroscience
—(Enroll in NBIO 300.)
1-2 units, Aut, Win, Spr (Raymond)

NEPR 399. Research
—Prerequisite: consent of instructor.
1-18 units, Aut, Win, Spr, Sum (Staff)

OBSTETRICS AND GYNECOLOGY

Chair: Mary Lake Polan

Courses given in Gynecology have the subject code OBGYN. For a complete list of subject codes, see Appendix.

The Department of Obstetrics and Gynecology does not offer degrees; however, qualified medical, graduate, or undergraduate students with an interest in basic research in reproductive biology may apply to arrange individual projects under the supervision of the faculty. The focus for the Division of Reproductive Biology is the study of the molecular and cellular biology of male and female reproductive organs.

COURSES

OBGYN 199. Undergraduate Research
1-18 units, Aut, Win, Spr, Sum (Staff)

OBGYN 202. Infertility: Mechanisms of Disease and Clinical Frontiers
—(Same as DBIO 202.) Primary literature in basic and clinical science, and demonstrations of assisted reproductive technologies (ART). Techniques include in vitro fertilization including micromanipulation procedures such as intracytoplasmic sperm injection and the culture of blastocysts, using mouse gametes, and pre-embryos. Students observe procedures in the ART clinic. Recommended: DBIO 201 or consent of instructors.
3-4 units, Win (Porzig, Behr)

PATHOLOGY

Emeriti: (Professor) Richard L. Kempson; (Professor, Clinical) P. Joanne Cornbleet, Lawrence F. Eng, Luis Fajardo, Heinz Furtmayer, F. Carl Grumet

Chair: Stephen J. Galli

Associate Professors: Jeffrey D. Axelrod, Athena M. Cherry, Tina Cowan, James D. Faix, Susan A. Gable, Sharon M. Geaghan, Peter K. Jackson, Sabine Kohler, Teri A. Longacre, Sara A. Michie, Kent W. Nowels, Bruce Patterson, Donald P. Regula, Arend Sidow, Raymond A. Sobel, Jan Matthijs van de Rijn, Hannes Vogel, James L. Zehnder

Assistant Professors: Matthew Bogyo, David Cassarino, Andrew Connolly, Dean Felscher, Magali Fontaine, Tracey George, John P. Higgins, Neeraja Kambham, Christina Kong, Bingwei Lu, Yasodha Natkunam, Jonathan R. Pollack, Iris Schrijver, Uma Sundram

Acting Assistant Professors: Soheil Dadras, Erich Schwartz, Robert West

Courtesy Professor: Lucy Tompkins

Courtesy Assistant Professor: Donna Bouley, Robert Shafer

Clinician Educators: Susan Atwater, Carey D. Austin, David B. Bingham, Christopher A. Callahan, Barbara Egbert, Tracey George, Terri Haddix, Norman Lehman, Melanie Manning, Dorothy Nguyen, Christopher Park, Michael Petzar, Brent Tan Maureen Viele

Adjunct Clinical Faculty: Robert Archibald, Jerome S. Burke, Stephen Shi-Hua Chen, Seth Haber, Maie K. Herrick, Paul W. Herrmann, Charles Lombard, John E. McNeal, Judy Melinick, Lawrence Naiman, Mahendra Ranchod, Thomas W. Rogers, William Ruehl, Joshua Sickel, Sharon Van Meter

Department Offices: Medical Center, Lane Building, L-235

Mail Code: 94305-5324

Phone: (650) 723-5252

Web Site: http://pathology.stanford.edu

Courses given in Pathology have the subject code PATH. For a complete list of subject codes, see Appendix.

PROGRAMS OF STUDY

The Department of Pathology offers advanced courses in aspects of pathology. The department does not offer advanced degrees in pathology, but qualified graduate students who are admitted to the Biophysics Program, the Cancer Biology Program, or other interdepartmental programs may elect to pursue their thesis requirements in the department’s research laboratories. The discipline of pathology has served as a bridge between the preclinical and clinical sciences and is concerned with the application of advances in the basic biological sciences, both to the diagnosis of human disease and the elucidation of the mechanisms of normal molecular, cellular, and organ structure and function that manifest themselves in clinical disease. Accordingly, the department’s research interests extend from fundamental molecular biology to clinical-pathological correlations, with an emphasis on experimental oncology.

At present, investigation in the department includes basic studies in different areas utilizing molecular biological, biochemical, and genetic cell biological techniques: DNA replication in yeast and cultured eukaryotic cells, cell cycle control in animal cells and yeast, identification and pathogenetic role of chromosomal aberrations in human malignancies and mechanisms of activation of oncogenes in human and animal cells, lymphocyte and neutrophil-interactions with endothelial cells, cell type specification and signal transduction pathways leading to specific gene expression or modulation of cytoskeletal behavior; cytoskeletal architecture, cell-matrix interaction, developmental biology of hematopoietic stem cells and thymus, regulation of the immune system, and mechanisms of immunity and other responses in the central nervous system. In addi-
tion, a variety of studies focus on the development of novel diagnostic and immunotherapeutic treatment modalities and techniques for solid tumors, lymphomas, HIV, and genetic diseases. Research training in all of these areas is available for qualified medical and graduate students by individual arrangement with the appropriate faculty member. A summary of the research interests of the department faculty is available at http://pathology.stanford.edu.

COURSES

Course and lab instruction in the Department of Pathology conforms to the “Policy on the Use of Vertebrate Animals in Teaching Activities,” the text of which is available at http://www.stanford.edu/dept/DoR/rph/8-2.html.

PATH 199. Undergraduate Research

PATH 211. Advanced Immunology I.—(Enroll in MI 211, IMMUNOL 201.)

PATH 218. Computational Analysis of Biological Images

PATH 299. Directed Reading.—Prerequisite: consent of instructor. 1-18 units, Aut, Win, Spr, Sum (Staff)

PATH 233. The Biology of Small Modulatory RNAs.—(Same as GENE 233, MI 233.) Open to graduate and medical students. How recent discoveries of miRNA, RNA interference, and short interfering RNAs reveal potentially widespread gene regulatory mechanisms mediated by small modulatory RNAs during animal and plant development. Requires paper proposing novel research. 2 units, Aut (Chen, Fire)

PATH 399. Research.—Department faculty are involved in active research programs at the Stanford Medical Center. Students interested in research at the molecular, cellular, and clinical-pathologic levels are encouraged to seek out faculty advisors. The department is equipped for modern research and maintains an active postdoctoral research training program. Prerequisite: consent of instructor. 1-18 units, Aut, Win, Spr, Sum (Staff)

Radiation Oncology

Chair: Gary M. Glazer

Associate Professors: Patrick D. Barnes, Christopher F. Beaulieu, Francis Blankenberg, Michael D. Bake, Bruce Daniel, Terry Desser, Huy M. Do, Debra M. Ikeda, Stephen Kee, Eric W. Olcott, Geoffrey D. Rubin, George M. Segall, Daniel M. Spielman, Daniel Y. Sze

Assistant Professors (Research): sandip Biswal, FranciCS P. Chan, Dominik Fleischmann, Joa Kn K. Frisoli, Garry E. Gold, Kathryn J. Stevens

Assistant Professors (Research): Kim Butts, Craig Levin

Consulting Assistant Professor: MarK Bednarski, Rebecca Fahrig, Sylvia Plevritis, Xiaoyuan Chen

Consulting Assistant Professor: Jarrett Rosenberg

Web Site: http://www.radiology.stanford.edu/

Courses given in Radiation Oncology have the subject code RADO. For a complete list of subject codes, see Appendix.

The Department of Radiation Oncology does not offer degrees; however, its faculty teach a variety of courses open to medical students, graduate students, and undergraduates. The department also accepts students in other curricula as advisories for study and research. Graduate students in the Biophysics Program and in the Cancer Biology Program may perform their thesis research in the department. Undergraduate students may also arrange individual research projects under the supervision of the faculty.

At the present time, the major areas of basic research investigation in the department include: DNA repair in mammalian cells after ionizing irradiation; studies of the mechanism of tumor hypoxia in animal tumors; development of new anti-cancer drugs to exploit tumor hypoxia; cytogenetic and molecular methods of predicting the sensitivity of individual tumors to cancer therapy; radiolabeled monoclonal antibodies for cancer detection and treatment; studies of oxygen levels in human tumors using polarographic electrodes; clinical trials of a new hypoxic cytotoxic agent (irinotecan); studies of the late effects of cancer therapy; and techniques of conformal and intensity modulated radiation therapy.

COURSES

Course and lab instruction in the Department of Radiation Oncology conforms to the “Policy on the Use of Vertebrate Animals in Teaching Activities,” the text of which is available at http://www.stanford.edu/dept/DoR/rph/8-2.html.

The following are open to undergraduates and graduate students.

RADO 101. Readings in Radiation Biology

1-18 units, Aut, Win, Spr (Staff)

RADO 199. Undergraduate Research

1-18 units, Aut, Win, Spr, Sum (Staff)

RADO 299. Directed Reading

Prerequisite: consent of instructor. 1-18 units, Aut, Win, Spr, Sum (Staff)

RADO 399. Research

Prerequisite: consent of instructor. 1-18 units, Aut, Win, Spr, Sum (Staff)

Radiology

Chair: Gary M. Glazer

Associate Professors: Patrick D. Barnes, Christopher F. Beaulieu, Francis Blankenberg, Michael D. Bake, Bruce Daniel, Terry Desser, Huy M. Do, Debra M. Ikeda, Stephen Kee, Eric W. Olcott, Geoffrey D. Rubin, George M. Segall, Daniel M. Spielman, Daniel Y. Sze

Assistant Professors (Research): sandip Biswal, FranciCS P. Chan, Dominik Fleischmann, Joa Kn K. Frisoli, Garry E. Gold, Kathryn J. Stevens

Assistant Professors (Research): Kim Butts, Craig Levin

Consulting Assistant Professor: MarK Bednarski, Rebecca Fahrig, Sylvia Plevritis, Xiaoyuan Chen

Consulting Assistant Professor: Jarrett Rosenberg

Web Site: http://www.radiology.stanford.edu/

Courses given in Radiology have the subject code RAD. For a complete list of subject codes, see Appendix.
This discipline focuses on the use of radiation, ultrasound, and magnetic resonance as diagnostic, therapeutic, and research tools. The fundamental and applied research within the department reflects this broad spectrum as it relates to anatomy, pathology, physiology, and interventional procedures. Original research and development of new clinical applications in medical imaging is supported within the Radiological Sciences Laboratory.

COURSES

The following courses are open to undergraduates and graduate students.

RAD 101. Readings in Radiology Research
1-18 units, Aut, Win, Spr (Staff)

RAD 199. Undergraduate Research
1-18 units, Aut, Win, Spr (Staff)

RAD 208. Experimental Nuclear Medicine—Computer applications in medicine, particularly in the use of radioisotopes as tracers. Recommended: some knowledge of physiology and calculus.
2 units, Win, Spr (Goris)

RAD 220. Introduction to Imaging and Image-Based Human Anatomy—(Same as BIOE 220.) The physics of medical imaging and human anatomy through medical images. Emphasis is on contrast mechanisms and the relative strengths of each imaging modality. Lab shows imaging and anatomy in real time. Recommended: basic biology, physics, and math.
3 units, Aut (Gold, K. Pauly)

RAD 221. Introduction to Radiologic Anatomy—Basic human anatomy through imaging examinations including radiography, computed tomography, ultrasound, and magnetic resonance imaging. How to recognize normal anatomy on imaging studies, spatial relationships, and three-dimensional thinking. Case studies of pathology.
2 units, Aut (Gold, Staff)

RAD 222. Multi-modality Molecular Imaging in Living Subjects—(Same as BIOE 222.) The molecular and cellular bases of life from an engineering perspective considering metabolism, information flow and feedback, signal transduction, and means for engineering these processes. Clinical motivations and practical applications.
4 units, Aut (Gambhir)

RAD 226. In Vivo Magnetic Resonance Spectroscopy and Imaging—Collections of identical independent nuclear spins are described by the classical vector model of magnetic resonance imaging (MRI); however, interactions among spins, as occur in many in vivo processes, require a more complete description. Physics and engineering principles of these in vivo magnetic resonance phenomena with emphasis on current research questions and clinical applications. Topics: quantum mechanical description of magnetic resonance, density matrix theory, product operator formalism, relaxation theory and contrast mechanisms, spectroscopic imaging, spectral editing, and multinuclear studies. Prerequisites: EE 369B or familiarity with magnetic resonance, working knowledge of linear algebra.
3 units, Win (Spielman)

RAD 227. Functional MRI Methods—(Same as BIOPHYS 227.) Functional magnetic resonance neuroimaging, including data acquisition, analysis, and experimental design. Journal club sections, Cognitive neuroscience and clinical applications. Prerequisites: basic physics, mathematics. Recommended: neuroscience.
3 units, Aut (Glover)

RAD 299. Directed Reading—Prerequisite: consent of instructor.
1-18 units, Aut, Win, Spr, Sum (Staff)

GRADUATE PROGRAMS

DOCTOR OF PHILOSOPHY

University requirements for the Ph.D. are described in the “Graduate Degrees” section of this bulletin.

The graduate program in Structural Biology leads to the Ph.D. degree. The department also participates in the Medical Scientists Training Program in which individuals are candidates for both Ph.D. and M.D. degrees.

The graduate program is intended to prepare students for careers as independent investigators in cell and molecular biology. The principal requirement of a Ph.D. degree is the completion of research constituting a complete list of subject codes, see Appendix.

The department offers course work and opportunities for research in structural biology. Courses fall into two categories: (1) a series of quarter courses that treat topics of current interest in structural biology and biophysics at an advanced level; and (2) INDE 216, Cells to Tissues, a course for medical students that includes lectures on structure-function relationships of mammalian cells and tissues and a lab on medical histology.

The emphasis of research in the department is on understanding fundamental cellular processes in terms of the structure and function of biological macromolecules and their assemblies. Techniques used include standard methods of biochemistry, cell culture, single-molecule fluorescence spectroscopy, genetic engineering, and three dimensional structure determination by x-ray diffraction, nuclear magnetic resonance spectroscopy and electron microscopy, coupled with the development of computational methods.

The requirements and recommendations for the Ph.D. degree include:

1. Training in physics or chemistry equivalent to that of an undergraduate physics or chemistry major at Stanford.
2. Completion of the following background courses or their equivalents at other institutions:
 a) CHEM 131, 171, 173, and 175
 b) BIOC 200, 201
3. Completion of the following courses or their equivalents:
 a) SBIO 241 and 242
 b) At least four additional graduate level courses in physical or biological science
 c) MED 255
4. Opportunities for teaching are available during the first nine quarters at the discretion of the advising committee.
5. The student must prepare a dissertation proposal defining the research to be undertaken including methods of procedure. This proposal should be submitted by Winter Quarter of the third year, and it must be approved by a committee of at least three members including the principal research adviser and at least one member from the Department of Structural Biology. The candidate must defend the dissertation proposal in an oral examination. The dissertation reading committee normally evolves from the dissertation proposal review committee.
6. The student must present a Ph.D. dissertation as the result of independent investigation and expressing a contribution to knowledge in the field of structural biology.

7. The student must pass the University oral examination, taken only after the student has substantially completed the research. The examination is preceded by a public seminar in which the research is presented by the candidate.

Applicants to the program should have a bachelor’s degree and should have completed at least a year of course work in biology, mathematics, organic chemistry, physical chemistry, and physics. Application forms must be received by the Department of Structural Biology no later than September 15 for fall admission and February 15 for spring admission.

Current topics of research in the department lie in the areas of gene expression; theoretical, crystallographic, and genetic analysis of protein structure; and cell-cell interaction. See http://med.stanford.edu/structuralbio/ for further information.

COURSES

Course and lab instruction in the Department of Structural Biology conforms to the “Policy on the Use of Vertebrate Animals in Teaching Activities,” the text of which is available at http://www.stanford.edu/dept/DoR/rph/8-2.html.

SBIO 199. Undergraduate Research
1-3 units, Aut, Win, Spr, Sum (Staff)

SBIO 201. Advanced Immunology I
(Enroll in MI 211, IMMUNOL 201.)
3 units, Win (Chien, Staff)

SBIO 228. Computational Structural Biology
(Same as BIOPHYS 228.) Online class. Interatomic forces and interactions such as electrostatics and hydrophobicity, and protein structure in terms of amino acid properties, local chain conformation, secondary structure, domains, and families of folds. How protein motion can be simulated. Bioinformatics introduced in terms of methods that compare proteins via their amino acid sequences and their three-dimensional structures. Structure prediction via simple comparative modeling. How to detect and model remote homologues. Predicting the structure of a protein from knowledge of its amino acid sequence.
3 units, Aut, Spr (Levitt)

SBIO 229. The Eukaryote Chromosome
The principles of chromosome structure and function including the structure, dynamics, and topological forms of DNA; units and hierarchies of DNA coiling in chromosomes; centromeres, telomeres, and basis of chromosome maintenance and sorting in mitosis; mechanism of gene activation with particular regard to enhancer, promoter, and terminator sequences; basis of sequence-specific protein-DNA interaction; and organization and assembly of the cell nucleus. Prerequisite: knowledge of basic biochemistry and cell biology.
3 units, Spr (Kornberg)

SBIO 241. Biological Macromolecules
The physical and chemical basis of macromolecular function. The forces that stabilize biopolymers with three-dimensional structures and their functional implications. Thermodynamics, molecular forces, and kinetics of enzymatic and diffusional processes, and relationship to their practical application in experimental design and interpretation. Biological function and the level of individual molecular interactions and at the level of complex processes. Case studies. Prerequisite: BIOC 200 or equivalent.
3-5 units, Aut (Puglisi, Weis, Block, Herschlag, Ferrell, McKay, Pande, Garcia)

SBIO 242. Methods in Molecular Biophysics
The potential utility of physical approaches to research, and how to evaluate literature that incorporates these methods. Experimental methods in molecular biology from theoretical and practical standpoints. Emphasis is on x-ray diffraction and nuclear magnetic resonance spectroscopy. Additional topics include fluorescence spectroscopy, circular dichroism, calorimetry, and separation methods.
3 units (Weis, Puglisi) not given 2005-06

SBIO 274. Topics in Nucleic Acid Structure and Function — Principles of nucleic acid structure and function. Methods for investigating nucleic acid structure. Limited to graduate students and postdoctoral fellows in structural biology. Prerequisite: consent of instructor.
2 units, Aut (Staff).

SBIO 299. Directed Reading — Prerequisite: consent of instructor.
1-18 units, Aut, Win, Spr, Sum (Staff)

SBIO 399. Individual Research — Investigations sponsored by individual faculty members. Prerequisite: consent of instructor.
1-18 units, Aut, Win, Spr, Sum (Staff)

Surgery

The following courses are open to undergraduates. For graduate and Medical School course offerings, see http://med.stanford.edu/.

Courses given in Surgery have the subject code SURG. For a complete list of subject codes, see Appendix.

COURSES

SURG 67Q. Medical Experience in Foreign Lands — Stanford Introductory Seminar. Preference to sophomores.
3 units, Win (Chase, Wang)

SURG 68Q. Current Concepts in Transplantation — Stanford Introductory Seminar. Preference to sophomores. Can tissues and organs be grown in a laboratory for transplantation to humans? Biological aspects of cell and organ transplantation, including issues that arise in the media. Diseases for which transplantation is a treatment, the state of the art in human transplantation, transplantation of animal tissue into humans (xenotransplantation), development of new tissue and organs in the laboratory (tissue engineering and cloning), and development of drugs and biological strategies to promote long-term survival of the tissue or organ (tolerance). Team-taught; sources include popular and scientific literature and presentations. WRITE-2
3 units, Spr (Krams, Martinez)

SURG 69Q. It’s All in the Head: Understanding Diversity, Development, and Deformities of the Face — (S,Sem)
3-4 units, Win (Helms)

SURG 101. Regional Study of Human Structure — Lectures in regional anatomy, dissection of the human body. The anatomy of the area through the dissection process. Enrollment limited to 32.
5 units, Win (Dolph, Gosling)

SURG 199. Undergraduate Research
1-18 units, Aut, Win, Spr, Sum (Staff)

SURG 223. Basic Emergency Care/Travel and Wilderness Medicine — Wilderness-related illnesses and injuries; framework for dealing with emergencies in the backcountry. Hands-on workshops. Topics include high altitude medicine, diving medicine, hypothermia, snake and spider envenomations, search and rescue, and travel medicine. Open to all students.
4 units, Spr (Weiss, Staff)

SURG 267. International Health — Fundamental issues in public health with an international perspective. Topics include: Colonialism and Development, Reproductive Health, Women’s Health Issues, Environmental Health, Maternal Child Health, Primary Health Care and its Evolution, Health Policy, Infectious Disease, Human Rights and Social Justice. Speakers from UCSF and Berkeley School of public health.
1 unit, Spr (Staff)
STANFORD INTRODUCTORY SEMINARS

Participating Faculty: Over 200 faculty from more than 60 departments take part in Introductory Seminars programs. See faculty listings in each department’s section of this bulletin for pertinent information.

SIS Offices: 4th Floor, Sweet Hall, 590 Escondido Mall
Mail Code: 94305-3091
Phone: (650) 723-4338
Email: fsp@vpue.stanford.edu
Web Site: http://introsems.stanford.edu/

Stanford Introductory Seminars provide opportunities for first- and second-year students to work closely with faculty in an intimate and focused setting. These courses aim to intensify the intellectual experience of the freshman and sophomore years by allowing students to work with faculty members in a small-group setting; introducing students to the variety and richness of academic topics, methods, and issues which lie at the core of particular disciplines; and fostering a spirit of mentorship between faculty and students. See “Freshman and Sophomore Programs” in the Undergraduate Education section of this bulletin for more information.

COURSES

SOPHOMORE COLLEGE

Sophomore College offers sophomores the opportunity to study intensively in small groups with Stanford faculty for several weeks before the beginning of Autumn Quarter. It is a chance for students to immerse themselves in a subject and collaborate with peers, upper-class sophomore college assistants, and faculty in constructing a community of scholars. Students are also encouraged to explore the full range of Stanford’s academic resources in workshops and individually. At its best, Sophomore College is characterized by an atmosphere of intense academic exploration. Each Sophomore College course enrolls 12 to 14 students, who live together in a Stanford residence and receive 2 units of academic credit for the work done in the course. Eligible students have been enrolled for no more than three academic quarters, have completed at least 36 units of academic work by the end of the Spring Quarter preceding the college, are sophomores in the Autumn Quarter during which the college is offered, and are in good academic standing. Students must also have an on-campus housing assignment for the ensuing academic year. Transfer students are not eligible. Admitted students who are found to have academic standing problems after the completion of Spring Quarter may have their admission revoked. Tuition, room, the remainder of board costs, books, and class-required travel are covered by Sophomore College. Each student pays a $500 fee toward the cost of board; this fee is included in the Autumn Quarter University bill. Students are also responsible for travel to campus, phone, network activation, and other personal expenses. Courses are announced in March; applications are due in April. For more information or to apply, see http://soco.stanford.edu/. September 2005 courses are listed here.

ANTHROPOLOGICAL SCIENCES

ANTHSCI 10SC. Darwin, Evolution, and Galápagos — Lessons from the study of flora and fauna in Galápagos from Darwin’s time to today. Adaptation, sexual selection, speciation, and adaptive radiation. The challenges the Galápagos Islands pose for conservation.
2 units, Aut (Durham)

BIOLOGICAL SCIENCES

BIOSCI 10SC. Natural History, Marine Biology, and Research — The biology of Monterey Bay and the coastal mountains and redwood forests of Big Sur. Literary, artistic, and political history. Topics: conservation, sanctuary, and stewardship of the oceans and coastal lands. Meetings with conservationists, authors, environmentalists, politicians, land-use planners, lawyers, scientists, and educators.
2 units, Aut (Thompson)

CIVIL AND ENVIRONMENTAL ENGINEERING

CEE 10SC. Green Buildings — What makes a building green and why the study of such buildings is an important, emerging field. Greenness has to do with efficient use of energy, water, and construction materials to provide healthful and enjoyable spaces in which to live and work. Focus is on energy efficiency and architectural features that enable a building to provide a significant fraction of its own heating, cooling, and electrical needs.
2 units, Aut (Masters)

COMPUTER SCIENCE

CS 10SC. The Intellectual Excitement of Computer Science — Intellectual tradition of computer science. Topics include analysis of algorithms, computability, cryptography, hardware design, and artificial intelligence.
2 units, Aut (Roberts)

DRAMA

DRAMA 10SC. Social Protest Drama and the Politics of Hip Hop Performance — Theater as a social weapon. Focus is on the 60s and 70s. How performances were shaped by their time and whether they transcend their historic context. Chicano and Black social protest theater. Past versus contemporary uses of social protest performance. Potential of Hip Hop performance as mechanism of social protest. Assignments include creating a social protest manifesto and a performance piece.
2 units, Aut (H. Elam)

ECONOMICS

ECON 11SC. The Reform of Social Security — The largest U.S. federal government program in the context of individual and national saving, its current structure, and reform alternatives. Demographics, finance, investments, taxes, labor supply, and the life-cycle model of consumption and saving. The rate of return on private equities, the performance of mutual funds, and the impact of fertility, mortality, productivity growth, and immigration.
2 units, Aut (Shoven)

ENGLISH

ENGLISH 13SC. Learning Theater: From Audience to Critic at the Oregon Shakespeare Festival — Ten days and six plays at the Oregon Shakespeare Festival in Ashland. Details of the plays, interpretation, production, and acting, and their value as entertainment and challenge.
2 units, Aut (Friedlander, Paulson)

ENGLISH 15SC. Mixed Race in the New Millennium — Current controversies over mixed race identification. Political and aesthetic implications. Literary and pop cultural images in literature, performance, the Internet, and visual media. Legal leverage and national recognition gained in the last decade. Organizations, web sites, and affinity and advocacy groups, and their rhetoric and graphics.
2 units, Aut (M. Elam)

ETHICS IN SOCIETY

ETHICSCS 10SC. The Meaning of Life: Moral and Spiritual Inquiry through Literature — Short novels and plays as the basis for reflection on ethical values and life’s purpose. Why are people here? What is the balance between work and personal life? What can death teach about life? What is the meaning of success, and the nature of love? How free are people to seek their destinies? What obligations does one have to others?
2 units, Aut (McLennan)
GEOLGICAL AND ENVIRONMENTAL SCIENCES
GES 12SC. Environmental and Geological Field Studies in the Rocky Mountains — Geologic origin from three billion years ago to the recent, paleoclimatology and glacial history, long- and short-term carbon cycle and global climate change, and environmental issues related to changing land-use patterns and increased demand for natural resources. Small groups analyze data to prepare reports and maps.
 2 units, Aut (Chamberlain)

GERMAN LITERATURE
GERLIT 12SC. Ghost Stories: Why the Dead Return and What They Want from Us — Anxiety about mortality and wisdom about the cultural place of the past in the enduring genre of the ghost story from classical literature to popular film. Memory and regret, mourning and forgetting. Classic authors such as Hoffmann, Poe, James, Joyce, and Ibsen, and more recent authors such as Paul Auster, Marie Darrieusse, Catherine Lim, and Toni Morrison.
 2 units, Aut (Berman)

HISTORY
HISTORY 14SC. Homelessness in America — The historical, social science, social commentary, and policy literature on poverty and homelessness. How students can make societal contributions through public service component at a local shelter for homeless families.
 2 units, Aut (Camarillo)

HISTORY 15SC. Early Russian Culture: Belief and Lived Experience — Russia, from 1400 to 1700, as a non-secular society. Sources include icons, frescoes, saints’ lives, handbooks of social ethics, political theory, court cases, and folklore. The difficulty of studying lived experience. Medieval worldviews, the place of religion in premodern life, and the tensions between official culture and actual practice.
 2 units, Aut (Kollmann)

HISTORY 16SC. Spinning the Western Past: Washington, D.C., and the Manufacturing of American Memory — The capital’s status as a repository of American memory and factory for an official version of the American past; its peculiar relation to the American West. The creation, meanings, contestations, and implications of this official mobilization of history. Projects using the new Museum of the American Indian, the Smithsonian, paintings and sculptures at the Capitol and other public buildings, and interviews.
 2 units, Aut (White)

MECHANICAL ENGINEERING
ME 11SC. The Art and Science of Measuring Fluid Flows — The roles of fluid flows in natural systems such as swimming protozoa and planet-forming nebulae, and technologies such as biomolecular assay devices and jet engines. The analytical background for fluid sciences. Phenomena such as shock waves and vortex formation that create flow patterns while challenging engineers. Visualization and measurement techniques to obtain full-field flow pattern information. The physics behind these technologies. Field trips; lab work.
 2 units, Aut (Eaton)

MUSIC
MUSIC 10SC. Sound, Digital Sound, and Massive Sound Media — Principles of sound production, hearing, and digital audio. Given the use of audio streaming and compression, and reliance on loudspeakers for the consumption of sound, are all aspects of sound being preserved? Team assignments in sound analysis, music recording, and instrument, and an individual topic for a web-based report.
 2 units, Aut (Chafe)

POLITICAL SCIENCE
POLISCI 10SC. American Foreign Policy in the 21st Century — The substance of U.S. foreign policy, and the political considerations that influence the making and conduct of American diplomacy. Topics include the prospects for conflict and cooperation among the great powers, regional security, peacekeeping and peacemaking, international terrorism, the proliferation of weapons of mass destruction, the global economy, and the domestic politics of U.S. foreign policy.
 2 units, Aut (Blacker)

POLISCI 12SC. Race, Ethnicity, and the Future of California — California is now the most racially and ethnically diverse state in the nation. The challenges facing Californians in light of population trends. How has public policy responded? Focus is on population growth, education, immigration, political participation, and economic growth. Preparation of a policy proposal to the California governor.
 2 units, Aut (Fraga)

POLISCI 15SC. Constitutionalism — How does a constitution differ from other law? How are written constitutions different from unwritten constitutions? What are the functions performed by constitutions in different countries? What is the role of judicial review? Materials organized historically and comparatively, and include the English and S. African constitutions, and the ongoing EU constitutional convention.
 2 units, Aut (Casper)

POLISCI 16SC. How European Empires Shaped the Modern World — How the postcolonial world is influenced by European occupation. Why were Europeans so extroverted? How did Europe govern overseas territories for so long? The movement to political independence. Moral evaluation of the colonial project. Primary documents, historical overviews, and works analyzing imperialism, colonialism, and nationalism.
 2 units, Aut (Abernethy)

RELIGIOUS STUDIES
RELIGST 12SC. Just Who Are We? Science Fiction and the Futuristic Self — In alternate worlds, souls migrate, minds enter machines, and machines become human: the ethical implications of such possibilities. Changing perceptions of the self and what they mean for allocating the rights of personhood. Sources include Isaac Asimov, Frank Herbert, Orson Scott Card, Sheri Tepper, Greg Bear, and C. J. Cherryh. Literature, film, and philosophy.
 2 units, Aut (Gelber)
FRESHMAN SEMINARS AND SOPHOMORE SEMINARS AND DIALOGUES

Freshman and Sophomore Seminars and Dialogues are offered in many disciplines throughout the academic year. Freshman preference seminars are given for 3-4 units to a maximum of 16 students, and generally meet twice weekly. Although preference for enrollment is given to freshmen, sophomores and first-year transfer students may participate on a space-available basis and with the consent of the instructor. Sophomore preference seminars and dialogues, similarly, give preference to sophomores and first-year transfer students, but freshmen may participate on a space-available basis and with the consent of the instructor. Sophomore preference seminars are given for 3-5 units to a maximum of 14 students, while sophomore preference dialogues take the form of a directed reading, and are given for 1-2 units to a maximum of 5 students.

All seminars require a brief application. See the Time Schedule, the Stanford Introductory Seminars course catalogue published each September, or http://introsems.stanford.edu/. Due dates for 2005-06 applications for both freshman and sophomore preference courses are: Autumn Quarter, 5 p.m., September 23; Winter Quarter, noon, December 9; Spring Quarter, noon, March 17.

For course descriptions, see course listings in the teaching department section of this bulletin. F = preference to freshmen; S = preference to sophomores; Dial = dialogue; Sem = Seminar.

AERONAUTICS AND ASTRONAUTICS

AA 113N. Structures: Why Things Don’t (and Sometimes Do) Fall Down — (F,Sem) GER:DB-EngrAppSci
3 units, Win (Springer)

AA 115N. The Global Positioning System: Where on Earth are We, and What Time is It? — (F,Sem) GER:DB-EngrAppSci
3 units, Aut (Enge)

3 units, Aut (Kenny, Springer)

AMERICAN STUDIES

AMSTUD 68N. Mark Twain and American Culture — (F,Sem) GER:DB-Hum
4 units, Aut (Fishkin)

AMSTUD 114Q. Visions of the 1960s — (S,Sem) GER:DB-Hum, EC-AmerCul
5 units, Aut (Gillam)

ANESTHESIA

ANES 113Q. Disease-Oriented Approach to Human Physiology — (S,Sem)
3 units, Spr (Rosenthal)

ANTHROPOLOGICAL SCIENCES

ANTHSCI 50Q. Language and the Brain — (S,Sem)
5 units, Spr (Fox)

APPLIED PHYSICS

APPPHYS 79Q. Energy Choices for the 21st Century — (S,Sem)
3 units, Aut (Fox, Geballe)

ART AND ART HISTORY

ARTHIST 61Q. Comics: A Lively Art — (S,Sem)
4 units, Aut (Bukatman)

FILMSTUD 10Q. Comics: A Lively Art — (S,Sem)
5 units, Win (Bukatman)

BIOCHEMISTRY

BIOC 118Q. Genomics, Bioinformatics, and Medicine — (S,Sem) GER:DB-EngrAppSci
3 units, Spr (Braultag)

BIOENGINEERING

BIOE 70Q. Medical Device Innovation — (S,Sem)
3 units, Spr (Doshi, Mandato)

BIOLOGICAL SCIENCES

BIOSCI 6N. Climate Change: Drivers, Impacts, and Solutions — (F,Sem) GER:DB-NatSci
3 units, Win (Field)

BIOSCI 10N. Light and Life — (F,Sem)
3 units, Aut (Elrad)

BIOSCI 13N. Environmental Problems and Policy — (F,Sem) GER:DB-NatSci
3 units, Spr (Ehrlich)

BIOSCI 16N. Island Ecology — (S,Sem) GER:DB-NatSci
3 units, Spr (Vitousek)

BIOSCI 17N. Light, Pigments, and Organisms — (F,Sem) GER:DB-NatSci
3 units, Win (Elrad, Zare)

BIOSCI 19N. Diversity, Gender, and Sexuality — (F,Sem) GER:DB-NatSci, EC-Gender
3 units, Win (Roughgarden)

BIOSCI 22N. Infection, Immunity, and Global Health — (S,Sem) GER:DB-NatSci
3 units, Spr (Jones)

BIOSCI 26N. Maintenance of the Genome — (F,Sem) GER:DB-NatSci
3 units, Spr (Hanawalt)

BIOSCI 28N. Molecular Basis of Cancer — (S,Sem) GER:DB-NatSci
3 units, Win (Fang)

BIOSCI 31Q. Ants: Behavior, Ecology, and Evolution — (S,Sem)
3 units, Spr (Gordon)

BIOSCI 35N. Nobel Prize Winning Research in Biology and Medicine — (F,Sem)
3 units, Spr (Shen)

BIOSCI 106Q. The Heart of the Matter — (S,Sem) GER:DB-NatSci
3 units, Win (Myers, Simon)

CHEMICAL ENGINEERING

CHEMENG 60Q. Environmental Regulation and Policy — (S,Sem) GER:DB-EngrAppSci
3 units, Aut (Robertson, Libicki)

CHEMENG 70Q. Masters of Disaster — (S,Sem) GER:DB-EngrAppSci
3 units, Aut (Robertson, Moalli)

CHEMISTRY

CHEM 17N. Light, Pigments, and Organisms — (F,Sem) GER:DB-NatSci
3 units, Win (Elrad, Zare)

CHEM 22N. Naturally Dangerous — (F,Sem)
2 units, Spr (Collman)

CHEM 23N. Chemistry and Biology in Biotechnology — (F,Sem) GER:DB-NatSci
3 units, Aut (Khosla)

CHEM 24N. Nutrition and History — (F,Sem)
2 units, Spr (Huestis)

CHEM 27N. Lasers: The Light Fantastic — (F,Sem) GER:DB-NatSci
3 units, Win (Moerner)

CIVIL AND ENVIRONMENTAL ENGINEERING

4 units, Aut (Walters)
CEE 46Q. Fail Your Way to Success—(S,Sem) GER:DB-EngAppSci
3 units, Spr (Clough)

CEE 51Q. Pangea, Germs, and Arsenic—(S,Sem) GER:DB-NatSci
3 units, Win (Brown, Spormann, Ernst)

CEE 80N. The Art of Structural Engineering—(F,Sem) GER:DB-EngAppSci
4 units, Win (Billington)

CLASSICS ART/ARCHAEOLOGY
CLASSART 21Q. Eight Great Archaeological Sites in Europe—(S,Sem) GER:DB-Hum
3-5 units, Aut (Shanks)

CLASSICS GENERAL
CLASSGEN 3N. Introduction to the Writing Systems of Ancient Egypt—(F,Sem)
3-4 units, Spr (Manning)

CLASSGEN 22N. Technologies of Civilization: Writing, Number, Money—(F,Sem) GER:DB-Hum
3-4 units, Spr (Netz)

CLASSGEN 27N. The Invention of Travel, Ancient and Modern—(F,Sem) GER:DB-Hum
4-5 units, Win (Ceserani)

CLASSGEN 33N. Women Poets in Antiquity—(F,Sem)
3-5 units, Win (Peponi)

CLASSGEN 50N. Journeys of the Mind—(F,Sem) GER:DB-Hum
3-4 units, Win (Braund)

COMMUNICATION
COMM 118Q. Theories of Film Practice—(S,Sem) WRITE-2
4 units, Win (Breitrose)

COMM 123N. Documentary Film: Voice and Vision—(F,Sem)
4 units, Aut (Krawitz)

COMM 123Q. Autobiographical Storytelling in Documentary Film—(S,Dial)
2 units, Win (Krawitz)

COMPARATIVE LITERATURE
COMPLIT 10N. Shakespeare and Performance—(F,Sem) GER:DB-Hum, EC-Gender
3 units, Spr (Parker)

COMPLIT 20N. Travel: Real and Imagined Worlds—(F,Sem) GER:DB-Hum
3-4 units, Win (Boyí)

COMPLIT 11Q. Shakespeare, Playing, Gender—(S,Sem) GER:DB-Hum, EC-Gender
3 units, Win (Parker)

COMPLIT 40N. Reading Across Literature—(F,Sem) GER:DB-Hum, EC-GlobalCom
5 units, Spr (Palumbo-Liu)

COMPLIT 41Q. Ethnicity and Literature—(S,Sem) GER:DB-Hum, EC-AmerCul
3-5 units, Win (Palumbo-Liu)

COMPLIT 50N. Journeys of the Mind—(F,Sem) GER:DB-Hum
3-4 units, Spr (Nightingale)

COMPARATIVE MEDICINE
COMPMED 81N. Comparative Anatomy and Physiology of Mammals—(F,Sem)
3 units, Win (Boley)

COMPMED 85N. Animal Models in Biomedical Research—(F,Sem)
3 units, Win (Green, Tobwani)

COMPUTER SCIENCE
CS 26N. Motion Planning for Robots, Digital Actors, and Other Moving Objects—(F,Sem) GER:DB-EngAppSci
3 units, Spr (Latombe)

CS 54N. Great Ideas in Computer Science—(F,Sem) GER:DB-EngAppSci
3 units, Win (Roberts)

3 units, Aut (Boneh)

CS 73N. Business on the Information Highways—(F,Sem)
3 units, Spr (Wiederhold, Barr, Tessler)

CS 74N. Digital Dilemmas—(F,Sem) GER:DB-EngAppSci
3 units, Aut (Dill)

CULTURAL AND SOCIAL ANTHROPOLOGY
CASA 9N. The Anthropology of Food—(F,Sem)
3-4 units, Spr (Gupta)

DRAMA
DRAMA 11N. The Dancing Couple as a Lens on American Culture, 1890-1950—(F,Sem)
4 units, Aut (Ross, Powers)

DRAMA 17N. From Inside the First World: Women of Color Playwrights Re-mapping the U.S.—(F,Sem) GER:DB-Hum, EC-AmerCul
3 units, Aut (Moraga)

DRAMA 180Q. Noam Chomsky: The Drama of Resistance—(S,Sem) GER:DB-Hum
3 units, Win (Rehm)

DRAMA 188Q. From Brecht to Müller: German Theater and Performance since World War II—(S,Sem)
3-5 units, Aut (Weber)

DRAMA 189Q. Mapping and Wrapping the Body—(S,Sem) GER:DB-Hum
3 units, Aut (Eddelman)

ECONOMICS
ECON 11N. Understanding the Welfare System—(S,Sem)
2 units, Aut (MaCurdy)

ECON 93Q. Global Capital Markets—(S,Sem)
3 units, Win (Marotta)

EDUCATION
EDUC 92Q. Leadership, Ethics, and the Law—(S,Sem)
3-5 units, Aut (Davis)

EDUC 95Q. Exploring School Reforms—(S,Dial)
2 units, Win (Tyack)

ELECTRICAL ENGINEERING
EE 14N. Things about Stuff—(F,Sem) GER:DB-EngAppSci
3 units, Aut (Lee)

EE 15N. The Life of an Engineering Project—(F,Sem) GER:DB-EngAppSci
3 units, Win (Goldsmith, Le)
EE 16N. From Science Fiction to Science and Engineering — (F,Sem)
GER:DB-EngrAppSci
3 units, Aut (Vuckovic)

EE 17N. Engineering the Micro and Nano Worlds: From Chips to Genes — (F,Sem) GER:DB-EngrAppSci
3 units, Spr (Maluf, Pease)

ENGLISH

ENGLISH 54N. Orwell: Literature and Political Engagement — (F,Sem) GER:DB-Hum
3 units, Spr (Woloch)

ENGLISH 56N. Mixed Race in the New Millennium — (F,Sem) GER:DB-Hum
3 units, Aut (H. Elam)

ENGLISH 65N. Contemporary Women Fiction Writers — (F,Sem) GER:DB-Hum
3 units, Spr (Tallent)

ENGLISH 68N. Mark Twain and American Culture — (F,Sem) GER:DB-Hum
4 units, Aut (Fishkin)

ENGLISH 70N. Shakespeare on Film — (F,Sem) GER:DB-Hum
3 units, Win (Riggs)

ENGLISH 73N. Conflict and Resolution in the Novel — (F,Sem) GER:DB-Hum
3 units, Win (Shloss)

ENGLISH 82Q. Shakespeare’s Plays — (S,Sem) GER:DB-Hum
5 units, Win (Rebholtz)

ENGLISH 83Q. Playwriting: A Workshop in Craft — (S,Sem) GER:DB-Hum
4 units, Aut (DiPirro)

ENGLISH 86N. Wicked Witches of the West and their Children: Dangerous Women in Greek and Shakespearean Tragedy — (F,Sem) GER:DB-Hum, EC-Gender
3 units, Aut (Friedlander)

ENGLISH 87Q. The Graphic Novel: Literature Lite? — (S,Sem) GER:DB-Hum
5 units, Win (Lunsford)

FRENCH GENERAL

FRENGEN 20N. Travel: Real and Imagined Worlds — (S,Sem) GER:DB-Hum
3-4 units, Win (Boyi)

FRENGEN 47Q. Albert Camus: Novelist and Philosopher — (F,Sem) GER:DB-Hum
4 units, Spr (Apostolidès)

FRENGEN 190Q. Parisian Cultures of the 19th and Early 20th Centuries — (S,Sem) GER:DB-Hum
4 units, Spr (Bertrand)

GENETICS

GENE 104Q. Law and the Biosciences — (S,Sem) WRITE-2
3 units, Spr (Greely)

GENE 106Q. The Heart of the Matter — (S,Sem) GER:DB-NatSci
3 units, Win (Myers, Simoni)

GENE 109Q. Genomics: A Technical and Cultural Revolution — (S,Sem)
3 units, Win (Altman)

GEOLOGICAL AND ENVIRONMENTAL SCIENCES

GES 43N. Environmental Problems — (F,Sem) GER:DB-NatSci
3 units, Win (Loague)

GES 45N. The Ocean Around Us — (F,Sem)
3 units, Aut (Paytan)

GES 48N. Volcanoes of the Eastern Sierra Nevada — (F,Sem)
2 units, Spr (Mahood)

GES 50Q. The Coastal Zone Environment — (S,Sem) GER:DB-NatSci
3 units, Win (Ingle)

GES 51Q. Pangea, Germs, and Arsenic — (S,Sem) GER:DB-NatSci
3 units, Win (Brown, Spormann, Ernst)

GES 52Q. Geologic Development of California — (S,Sem) GER:DB-NatSci
5 units, Spr (Ernst)

GES 53Q. In the Beginning: Theories of the Origin of the Earth, Solar System, and Universe — (S,Sem) GER:DB-NatSci
3 units, Win (McWilliams)

GES 54Q. California Landforms and Plate Tectonics — (S,Sem) GER:DB-NatSci
3 units, Aut (Miller)

3 units, Spr (Bird)

GES 56Q. Changes in the Coastal Ocean: The View From Monterey and San Francisco Bays — (S,Sem) GER:DB-NatSci
3 units, Spr (Dunbar)

GES 57Q. How to Critically Read and Discuss Scientific Literature — (S,Sem)
3 units, Win (Paytan)

GEOPHYSICS

GEOPHYS 30Q. The 1906 San Francisco Earthquake — (S,Dial)
2 units, Win (Beroza)

3 units, Aut (Zebker)

GERMAN GENERAL

GERGEN 104Q. Resistance Writings in Nazi Germany — (S,Sem) GER:DB-Hum
3 units, Aut (Bernhardt)

GERGEN 121N. Memory and the Modernist Novel — (F,Sem) GER:DB-Hum
4 units, Spr (Douvaldzi)

GERGEN 122N. Virtue and Terror: Kant, Rousseau, and the French Revolution — (F,Sem)
4-5 units, Win (Strum)

GERMAN LITERATURE

GERLIT 123N. The Brothers Grimm and Their Fairy Tales — (F,Sem) GER:DB-Hum, WIM
4 units, Spr (Robinson)

GERLIT 133Q. Modernism and Fiction — (S,Sem) GER:DB-Hum
4 units, Aut (Berman)

HEALTH RESEARCH AND POLICY

HRP 89Q. Introduction to Crosscultural Issues in Medicine — (S,Sem)
3 units, Win (Corso)

HISTORY

HISTORY 20N. Early Modern European Views of Eastern Europe and Russia — (F,Sem) GER:DB-Hum, EC-GlobalCom, WRITE-2
5 units, Spr (Kollmann)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Term</th>
<th>Credits</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HISTORY 30N</td>
<td>Fiction and English Society</td>
<td>(F,Sem)</td>
<td>4 units</td>
<td>Win (Stansky)</td>
</tr>
<tr>
<td>HISTORY 32N</td>
<td>The English Revolution</td>
<td>(F,Sem)</td>
<td>4-5 units</td>
<td>Spr (Como)</td>
</tr>
<tr>
<td>HISTORY 36N</td>
<td>Gay Autobiography</td>
<td>(F,Sem)</td>
<td>4 units</td>
<td>Spr (Robinson)</td>
</tr>
<tr>
<td>HISTORY 44N</td>
<td>The History of Women and Gender in Science</td>
<td>(F,Sem)</td>
<td>4 units</td>
<td>Win (Schiebinger)</td>
</tr>
<tr>
<td>HISTORY 48Q</td>
<td>South Africa: Contested Transitions</td>
<td>(S,Sem)</td>
<td>3 units</td>
<td>Win (Samoff)</td>
</tr>
<tr>
<td>HISTORY 49N</td>
<td>The Slave Trade</td>
<td>(F,Sem)</td>
<td>4 units</td>
<td>Win (Roberts)</td>
</tr>
<tr>
<td>HISTORY 53N</td>
<td>Reflections on the American Condition: American History through Literature</td>
<td>(F,Sem)</td>
<td>4 units</td>
<td>Aut (Kennedy)</td>
</tr>
<tr>
<td>HISTORY 62N</td>
<td>The Atomic Bomb in Policy and History</td>
<td>(F,Sem)</td>
<td>4-5 units</td>
<td>Win (Bernstein)</td>
</tr>
<tr>
<td>HISTORY 86Q</td>
<td>Why They Do or Do Not Hate Us: Political Islam and the New Global Economy</td>
<td>(S,Dial)</td>
<td>2 units</td>
<td>Aut (Beinin)</td>
</tr>
<tr>
<td>HISTORY 90Q</td>
<td>Buddhist Political and Social Theory</td>
<td>(S,Sem)</td>
<td>3 units</td>
<td>Aut (Mancall)</td>
</tr>
<tr>
<td>HUMBIO 87Q</td>
<td>Women and Aging</td>
<td>(S,Sem)</td>
<td>3 units</td>
<td>Win (Winograd)</td>
</tr>
<tr>
<td>HUMBIO 88Q</td>
<td>Neuroethics: Neurotechnology, Free Will, and the Privacy of Human Thought</td>
<td>(S,Sem)</td>
<td>3 units</td>
<td>Win (Winograd)</td>
</tr>
<tr>
<td>HUMBIO 89Q</td>
<td>The Eye and the Implications of Vision</td>
<td>(S,Sem)</td>
<td>3 units</td>
<td>Win (Winograd)</td>
</tr>
<tr>
<td>HUMBIO 91Q</td>
<td>Neuroethology: The Neural Control of Behavior</td>
<td>(S,Sem)</td>
<td>3 units</td>
<td>Aut (R. Fernald)</td>
</tr>
<tr>
<td>HUMBIO 92Q</td>
<td>International Women’s Health and Human Rights</td>
<td>(S,Sem)</td>
<td>3 units</td>
<td>Aut (Mancall)</td>
</tr>
<tr>
<td>HUMBIO 94Q</td>
<td>The Nation’s Health</td>
<td>(S,Sem)</td>
<td>3 units</td>
<td>Aut (G. Heller)</td>
</tr>
<tr>
<td>HUMBIO 95Q</td>
<td>Gender, Culture, and HIV/AIDS</td>
<td>(S,Sem)</td>
<td>3 units</td>
<td>Aut (Weyant)</td>
</tr>
<tr>
<td>HUMBIO 96Q</td>
<td>The Death Penalty: Policy, Philosophy, and Controversy</td>
<td>(S,Sem)</td>
<td>3-4 units</td>
<td>Spr (Abrams)</td>
</tr>
<tr>
<td>HUMBIO 97Q</td>
<td>Sport, Exercise, and Health: Exploring Sports Medicine</td>
<td>(S,Sem)</td>
<td>3 units</td>
<td>Spr (Matheson)</td>
</tr>
<tr>
<td>HUMBIO 98Q</td>
<td>The Alien Tort Claims Act of 1789</td>
<td>(S,Sem)</td>
<td>3 units</td>
<td>Aut (Rosencranz)</td>
</tr>
<tr>
<td>HUMBIO 99Q</td>
<td>Becoming a Doctor: Readings from Medical School, Medical Training, Medical Practice</td>
<td>(S,Sem)</td>
<td>3 units</td>
<td>Aut (Zaroff)</td>
</tr>
<tr>
<td>ITALIAN GENERAL</td>
<td>Imagining Italy</td>
<td>(F,Sem)</td>
<td>3-4 units</td>
<td>Win (Springer)</td>
</tr>
<tr>
<td>JAPANESE GENERAL</td>
<td>Japanese Horror: The Trope of the Vengeful Ghost</td>
<td>(F,Sem)</td>
<td>4 units</td>
<td>Spr (Reichert)</td>
</tr>
<tr>
<td>LINGUISTICS</td>
<td>Mind the Linguist!</td>
<td>(F,Sem)</td>
<td>3-4 units</td>
<td>Win (Winograd)</td>
</tr>
<tr>
<td>LINGUIST 32N</td>
<td>The Language of Advertising</td>
<td>(S,Sem)</td>
<td>3 units</td>
<td>Win (Sells)</td>
</tr>
<tr>
<td>LINGUIST 47N</td>
<td>Languages, Dialects, Speakers</td>
<td>(F,Sem)</td>
<td>3 units</td>
<td>Win (�)</td>
</tr>
<tr>
<td>MANAGEMENT SCIENCE AND ENGINEERING</td>
<td>International Environmental Policy</td>
<td>(S,Sem)</td>
<td>3 units</td>
<td>Win (Winograd)</td>
</tr>
<tr>
<td>MATHEMATICS</td>
<td>Capillary Surfaces: Explored and Unexplored Territory</td>
<td>(S,Sem)</td>
<td>3-5 units</td>
<td>Win (Winograd)</td>
</tr>
<tr>
<td>ME 12N</td>
<td>The Jet Engine</td>
<td>(F,Sem)</td>
<td>3 units</td>
<td>Win (Eaton)</td>
</tr>
<tr>
<td>ME 13N</td>
<td>Designing the Human Experience</td>
<td>(S,Sem)</td>
<td>3-4 units</td>
<td>Spr (Abrams)</td>
</tr>
<tr>
<td>ME 15N</td>
<td>The Science and Engineering of Sports Equipment</td>
<td>(F,Sem)</td>
<td>3 units</td>
<td>Aut (Kenny, Springer)</td>
</tr>
<tr>
<td>ME 16N</td>
<td>The Science of Flames</td>
<td>(F,Sem)</td>
<td>3 units</td>
<td>Win (Mitchell)</td>
</tr>
<tr>
<td>ME 18Q</td>
<td>Creative Teams and Individual Development</td>
<td>(S,Sem)</td>
<td>3 units</td>
<td>Aut (Wilde)</td>
</tr>
</tbody>
</table>
ME 19N. Robotics—(F,Sem) GER:DB-EngrAppSci
3 units, Win (Niemeyer)

ME 24N. Designing the Car of the Future—(F,Sem) GER:DB-EngrAppSci
3 units, Aut (Gerdes)

MEDICINE
MED 70Q. Cancer and the Immune System—(S,Sem) WRITE-2
3 units, Spr (Negrin)

MED 88Q. Dilemmas in Current Medical Practice—(S,Sem)
3 units, Aut (Croke, Jones)

MED 93Q. The AIDS Epidemic: Biology, Behavior, and Global Responses—(S,Sem)
3 units, Aut (Katzenstein)

MED 94Q. Hormones, Health, and Disease—(S,Sem)
3 units, Win (Feldman)

MED 120Q. Pathophysiology and Treatment Aspects of Diseases of the Heart and Blood Vessels—(S,Sem)
3 units, Spr (Stertzer)

MICROBIOLOGY AND IMMUNOLOGY
MI 25N. Modern Plagues—(F,Sem) WRITE-2
3 units, Spr (Boothroyd)

MOLECULAR AND CELLULAR PHYSIOLOGY
MCP 100Q. The Hippocampus as a Window to the Mind—(S,Sem)
3 units, Spr (Madison)

MUSIC
MUSIC 11N. A View from the Podium: The Art of Conducting—(F,Sem) GER:DB-Hum
3 units, Aut (Cai)

MUSIC 13Q. Classical Music and Politics: Western Music in Modern China—(S,Sem) GER:DB-Hum, EC-GlobalCom
3 units, Spr (Cai)

MUSIC 15Q. Topics in American Music—(S,Sem) GER:DB-Hum, EC-AmerCul
3 units, Win (A. Cohen)

4 units, Spr (Sano, Uyechi)

MUSIC 36Q. Shakespeare’s Songbook to Purcell’s Musical Theatre—(S,Sem)
3 units, Aut (Houle)

NEUROSURGERY
NSUR 61Q. Bio-computation and Design—(S,Sem)
4 units, Spr (Shahidi)

PATHOLOGY
PATH 103Q. Leukocyte Migration—(S,Dial)
1 unit, Aut (Michie)

PATH 105Q. Final Analysis: The Autopsy as a Tool of Medical Inquiry—(F, Sem)
3 units, Spr (Regula)

PEDIATRICS
PEDS 80Q. Growth: A Measure of Health and Disease in Individuals and Societies—(S,Sem)
3-5 units, Aut (Wilson)

PEDS 82Q. Impact of Molecular Biology and Genetics on the Practice of Medicine—(S,Sem)
3 units, Aut (Fechner)

PEDS 111Q. Issues of Race and Ethnicity in the Health of Children—(S,Sem)
3-4 units, Aut (Burgos)

PETROLEUM ENGINEERING
3 units, Spr (Orr)

PHILOSOPHY
PHIL 12N. Being at Home as an Ethical Concept—(F,Sem) GER:DB-Hum
3 units, Aut (Moravcsik)

PHIL 13N. What is Truth?—(F,Sem) GER:DB-Hum
3 units, Spr (Mints)

PHIL 15N. Freedom, Community, and Morality—(F,Sem) GER:DB-Hum
3 units, Win (Friedman)

PHIL 16N. Values and Objectivity—(F,Sem) GER:DB-Hum
3 units, Win (Ryckman)

PHYSICS
3 units, Aut (Shenker)

PHYSICS 45N. Advanced Topics in Light and Heat—(F,Sem)
1 unit, Aut (Greven)

PHYSICS 63N. Applications of Electromagnetism—(F,Sem)
1 unit, Win (Kapitulnik)

PHYSICS 80N. The Technical Aspects of Photography—(F,Sem)
3 units, Win (Osheroff)

3 units, Win (Dimopoulos)

PHYSICS 87N. The Physics of One: Nanoscale Science and Technology—(F,Sem)
3 units, Aut (Manoharan)

POLITICAL SCIENCE
POLISCI 15N. Explaining Ethnic Violence—(F,Sem)
5 units, Spr (Fearon)

POLISCI 23N. Public Opinion and American Foreign Policy—(S,Sem)
5 units, Win (Sniderman)

POLISCI 32Q. Politics through Literary Lenses—(S,Sem) GER:DB-Hum
3 units, Win (Hansot)

POLISCI 41N. Comparative Public Opinion and Political Behavior—(S,Sem)
5 units, Spr (Sniderman)

POLISCI 45N. Civil War Narratives—(F,Sem) GER:DB-SocSci
5 units, Aut (Laitin)

PORTUGUESE LITERATURE
PORTLIT 193Q. Spaces and Voices of Brazil through Films—(S,Sem)
3-4 units, Aut (Wiedemann)
PSYCH 72Q. Traumatic Stress — (S,Sem) WRITE-2
3 units, Spr (Koopman)

PSYC 73Q. The Four Faces of Evil: Pathways in and out of Delinquency and Crime — (S,Sem)
3 units, Win (Steiner)

PSYC 76Q. Neurobiology of Mood, Temperament, and Creativity — (S,Sem) WRITE-2
4 units, Win (Ketter)

PSYC 111Q. Madness and the Womb: Mental Illness in Women through the Centuries — (S,Sem)
3 units, Win (Rasgon, Williams)

PSYCHOLOGY

PSYCH 7Q. Language Acquisition — (S,Sem)
3 units, Aut (A. Fernald)

PSYCH 11N. Origin of Mental Life — (F,Sem) GER:DB-SocSci
3 units, Spr (Markman)

PSYCH 12N. Self Theories — (F,Sem) GER:DB-SocSci
3 units, Aut (Dweck)

PSYCH 13N. Culture and Social Relationships — (F,Sem) GER:DB-SocSci
3 units, Win (Tsai)

PSYCH 19N. Memory and Brain — (F,Sem)
3 units, Win (Wagner)

RELIGIOUS STUDIES

RELIGST 2N. Prophecy and Politics in America: The Thought of Abraham Joshua Heschel and Martin Luther King, Jr. — (F,Sem)
GER:DB-Hum, EC-AmerCul
3 units, Spr (Eisen)

RELIGST 3N. Chinese Religious Classics — (F,Sem) GER:DB-Hum, EC-GlobalCom
4 units, Win (Yearley)

RELIGST 5N. Three Sacred Stories of Judaism, Christianity, and Islam — (F,Sem) GER:DB-Hum, EC-GlobalCom
3 units, Aut (Gregg)

RELIGST 6N. The Life of the Buddha — (F,Sem) GER:DB-Hum, EC-GlobalCom
4 units, Spr (Zimmermann)

SCIENCE, TECHNOLOGY, AND SOCIETY

STS 101Q. Technology in Contemporary Society — (S,Sem) GER:DB-SocSci
4 units, Aut (McGinn)

SLAVIC GENERAL

SLAVGEN 13N. Russia, Russian, Russians — (F,Sem) GER:DB-Hum
3-4 units, Win (Schupbach)

SLAVGEN 77Q. Russia’s Weird Classic: Nikolai Gogol — (S,Sem) GER:DB-Hum
3 units, Aut (Fleishman)

SOCIOLOGY

SOC 22N. The Roots of Social Protest — (F,Sem)
3 units, Aut (Olzak)

SOC 25N. Understanding the Sixties — (F,Sem)
3 units, Win (McAdam)

SOC 26N. The Changing American Family — (F,Sem)
3 units, Aut (Rosenfeld)

SOC 45Q. Understanding Race and Ethnicity in American Society — (S,Sem) GER:DB-SocSci
5 units, Aut (Snipp)

SOC 46N. Race, Ethnic, and National Identities: Imagined Communities — (F,Sem)
3 units, Spr (Rosenfeld)

SPANISH LITERATURE

SPANLIT 101N. Visual Studies and Chicana/o Art — (F,Sem) GER:DB-Hum, EC-AmerCul
3-5 units, Win (Yarbro-Bejarano)

SPANLIT 111N. Contemporary Spain: The Challenge of Change — (F,Sem) GER:DB-Hum
4 units, Aut (Haro)

SPANLIT 114N. Lyric Poetry — (F,Sem)
3-5 units, Win (Predmore)

SPANLIT 115N. Growing up Bilingual — (F,Sem) GER:EC-AmerCul
3-5 units, Aut (Valdés)

SPANLIT 165Q. Machado, Jiménez, Lorca: An Exploration of Self and Society in 20th-Century Spanish Lyric Poetry — (S,Sem)
3-5 units, Win (Predmore)

SPANLIT 178N. From Inside the First World: Women of Color Playwrights Re-mapping the U.S. — (F,Sem) GER:DB-Hum, EC-AmerCul
3 units, Aut (Moraga)

SPECIAL LANGUAGES

SPECLANG 198Q. Modern Greece in Film and Literature — (S,Sem) GER:DB-Hum, EC-GlobalCom
3-5 units, Aut (Prionas)

STATISTICS

STATS 47N. Breaking the Code? — (F,Sem) GER:DB-Math
3 units, Win (Holmes)

SURGERY

SURG 69Q. It’s All in the Head: Understanding Diversity, Development, and Deformities of the Face — (S,Sem)
3-4 units, Win (Helms)

SURG 67Q. Medical Experience in Foreign Lands — (S,Sem)
3 units, Win (Chase, Wang)

SURG 68Q. Current Concepts in Transplantation — (S,Sem) WRITE-2
3 units, Spr (Krams, Martinez)
The primary mission of the Stanford Institute for Economic Policy Research (SIEPR) is to encourage and support research on economic policy issues in areas such as economic growth, technology policies, environmental and telecommunication regulation, tax reform, international trade, and monetary policy. SIEPR pursues four interrelated goals in support of this mission: (1) facilitating graduate student and faculty research on economic policy issues; (2) building a community of scholars conducting policy research; (3) disseminating research findings broadly; and (4) linking academics at Stanford with decision makers in business and government.

SIEPR is a University-wide research institute, involving economists from the schools of Business, Engineering, Law, Humanities and Sciences, as well as the Hoover Institution and the Institute for International Studies. Affiliated faculty and students maintain appointments in their home departments while working on SIEPR projects. In addition, scholars visiting from other institutions may apply for affiliation with SIEPR.

Much of the research at SIEPR takes place in its three research centers and six programs. The Stanford Center for International Development (SCID; Roger G. Noll, Director) fosters research on the economic problems of developing economies and economics in transition, as well as analyzing the political aspects of economic policy reform and historical episodes of reform. For more information about this center call (650) 725-8730. The Center on Employment and Economic Growth (CEEG; Tim Bresnahan, Director) is focusing on the relationship between long-term economic growth, the economic success of individuals and families in their jobs and careers, and the role played by higher education and how it can supply workers and technology in the work force. The program on regulation is part of this center. The Center for Public and Private Finance (CPPF; John B. Shoven and Michael J. Boskin, co-Directors) encompasses work on macroeconomics and monetary policy, tax and budget policy, and finance.

Separate research programs within SIEPR and their directors are the California Policy Program (Thomas MaCurdy); the Energy, Natural Resources, and the Environment Program (James L. Sweeney); the Knowledge Networks and Institutions for Innovation Program (Paul A. David); the Program on the Japanese Economy (Masahiko Aoki); and the Program on Market Design (Susan Athey and Paul Milgrom).

The Stanford Institute for the Environment helps societies around the world learn how to meet the demands of their populations for energy, food, water, and other vital needs while protecting the ability of the planet to meet the needs of people today and in the future. SIE brings together faculty, staff, and students from the seven schools and other institutes and centers at Stanford to conduct interdisciplinary research, education, and outreach to promote an environmentally sound and sustainable world. Through its work at the intersection of science, technology, and policy, and health, business, and the humanities, SIE fosters creative, working solutions to environmental challenges; works with public and private leaders to ensure the implementation of these solutions; trains and educates the next generation of environmental leaders and problem solvers; and engages the broader community to increase public understanding of environmental problems and solutions. The Institute currently concentrates its work in four focus areas: energy and global climate systems; freshwater; land use and conservation; and oceans and estuaries.

ACADEMIC PROGRAMS AND CENTERS, AND INDEPENDENT RESEARCH LABORATORIES, CENTERS, AND INSTITUTES

Vice Provost and Dean of Research and Graduate Policy and Dean of the Independent Laboratories, Centers, and Institutes: Arthur Bienenstock

Associate Dean of Research: Ann M. Arvin

Associate Dean of Graduate Policy: Gail Mahood

Independent Research Laboratories, Centers, and Institutes perform multidisciplinary research that extends beyond the scope of any one of the University’s organized schools.

The following laboratories, centers, and institutes report to the Vice Provost and Dean of Research and Graduate Policy:

- Stanford Institute for Economic Policy Research
- Geballe Laboratory for Advanced Materials
- Edward L. Ginzton Laboratory
- Global Climate and Energy Program
- W. W. Hansen Experimental Physics Laboratory
- Stanford Humanities Center
- Stanford Institute for the Environment
- Stanford Center for Innovations in Learning
- Stanford Institute for International Studies
- Kavli Institute for Particle Astrophysics and Cosmology
- Center for the Study of Language and Information
- Stanford Program for Bioengineering, Biomedicine, and Biosciences (BioX)
- Stanford Institute for the Quantitative Study of Society
- The Hoover Institution on War, Revolution and Peace and the Stanford Linear Accelerator Center (SLAC) report to the President and Provost. SLAC is independently operated under a contract with the Department of Energy.

Following is a description of the activities of these organizations and other academic programs and centers, including research activities, and where applicable, courses offered.

STANFORD INSTITUTE FOR ECONOMIC POLICY RESEARCH

Director: John B. Shoven

Deputy Director: Gregory Rosston

Institute Office: 579 Serra Mall

Phone: (650) 725-1874

Web Site: http://siepr.stanford.edu
GEBALLE LABORATORY FOR ADVANCED MATERIALS

Director: Malcolm R. Beasley
Web Site: http://www-lam.stanford.edu

The Geballe Laboratory for Advanced Materials (GLAM) is an Independent Laboratory that reports to the Dean of Research. The Laboratory supports the research activities of a number of faculty members from the departments of Applied Physics, Chemical Engineering, Chemistry, Electrical Engineering, Materials Science and Engineering, Mechanical Engineering, and Physics. The multidisciplinary foundations of faculty, students, and research provide a dynamic academic environment for a broad spectrum of scientific research areas including high temperature superconducting materials and devices, mesoscopic devices, magnetic recording and storage media materials, electronic materials, opto-electronic materials, nanoscale materials and phenomena, nanoprobe devices, highly correlated electronic systems, computational materials science, condensed matter theory and physics, polymeric and biological materials, crystal growth, and thin film synthesis of complex oxides.

GLAM also provides advanced materials characterization and synthesis facilities for its members as well as for the Stanford materials research community at large. They include a focused ion beam (FIB), scanning electron microscopy (SEM), scanning probe microscopy (SPM), transmission electron microscopy (TEM), x-ray diffraction analysis (XRD), and x-ray photoelectron spectroscopy (XPS) for characterization and thin film deposition capabilities for synthesis of materials. These facilities are managed by professional staffs who also conduct research and development of new tools and techniques in areas related to advanced materials synthesis and characterization.

The Geballe Laboratory for Advanced Materials is housed in the Moore Materials Research Building and McCullough Building complex.

EDWARD L. GINZTON LABORATORY

Director: David A. B. Miller
Web Site: http://www.stanford.edu/group/ginzton/

The Ginzton Laboratory houses the research activities of a number of faculty members from the departments of Applied Physics, Electrical Engineering, and Mechanical Engineering. The multidisciplinary foundations of faculty, students, and research provide a dynamic academic environment for scientific research in the fields of photonic science and engineering, quantum science and engineering, and nanoscience and engineering, including fiber optics, laser physics and applications, mesoscopic devices, microelectromechanical and microacoustic devices and systems, optoelectronic devices and systems, photonics, nanophotonics and photonic crystals, scanning optical microscopy, quantum cryptography and computing, tunneling and force microscopy, and ultrafast and nonlinear optics.

W. W. HANSEN EXPERIMENTAL PHYSICS LABORATORY (HEPL)

Director: Robert L. Byer
Web Site: http://hepl.stanford.edu/

HEPL is an independent laboratory celebrating over 50 years of fundamental science and engineering research. HEPL faculty and students are engaged in research in accelerator physics, astrophysics, dark matter in the universe, free electron lasers, fundamental tests of relativity in space, gamma ray observations, gravitational wave detection, quantum condensed matter, and space based solar physics studies. Many of the programs involve satellite-based studies in fundamental physics and engineering.

HOOVER INSTITUTION ON WAR, REVOLUTION AND PEACE

Director: John Raisian
Web Site: http://www-hoover.stanford.edu/

The Hoover Institution, founded in 1919 by Stanford alumnus Herbert Hoover, is a public policy research center devoted to the advanced study of politics, economics, and political economy, both domestic and foreign, as well as international affairs. Hoover fellows are the foundation of the research program. This varied and distinguished community of scholars strives to conceive and disseminate ideas defining a free society within the framework of three programs:

- American Institutions and Economic Performance focusing on interrelationships of U.S. political and legal institutions and economic activity, often referred to as political economy.
- Democracy and Free Markets focusing on political economy in countries around the world.
- International Rivalries and Global Cooperation focusing on interrelationships among countries, examining issues of foreign policy, security, and trade.

By collecting knowledge, generating ideas, and disseminating both, the Institution seeks to secure and safeguard peace, improve the human condition, and limit government intrusion into the lives of individuals, all of which are consistent with three prominent values: peace, personal freedom, and the safeguards of the American system.

STANFORD HUMANITIES CENTER

Director: John Bender
Associate Director: Elizabeth S. Wahl
External Faculty Fellows: Carlo Caballero (Music, University of Colorado), Johannes Fabian (Anthropology, University of Amsterdam), Sabine Frühstück (East Asian Languages and Cultural Studies, University of California, Santa Barbara), Steven Justice (English, University of California, Berkeley), Wendy Larson (East Asian Languages, University of Oregon), Jennifer Roberts (Art History, Harvard University), Robert Royalty (Philosophy and Religion, Wabash College), Steven Yao (English, Hamilton College)
Associate Fellow: Judith Lichtenberg (Philosophy, University of Maryland)

Humanities and International Studies Fellows: Marines Fornerino (Political Science, Universidad del Zulia, Venezuela), Alla Kassianova (International Relations, Tomsk State University, Russia)

Internal Faculty Fellows: Keith Michael Baker (History), David Holloway (History), Yoshiko Matsumoto (Asian Languages), Purnima Mankekar (Cultural and Social Anthropology), Robert Polhemus (English), Bryan Wolf (Art and Art History), Arnold Zwicky (Linguistics)

Geballe Dissertation Graduate Student Fellows: Ashwini Deo (Linguistics), Marcus Folch (Classics), Joanna Kleineitjew (English), Ya Chen Maya Ma (Art and Art History), Jehangir Malegam (History), Christen Smith (Cultural and Social Anthropology), Blake Stevens (Music), Roberta Strippoli (Asian Languages)

Web Site: http://shc.stanford.edu/
The Stanford Humanities Center promotes research and education in the humanities at Stanford and nationwide. In particular, it stresses work of an interdisciplinary nature, accomplished through the following programs: one-year residential fellowships for Stanford faculty, faculty members from other institutions, and Stanford graduate and undergraduate students; public presentations such as lectures, conferences, and publications; and a research workshop program sponsored by the Mellon Foundation that brings faculty and graduate students together regularly to advance ongoing research on topics of interdisciplinary interest.

Fellows are selected on the basis of an open competition. They pursue their own research and participate in a weekly seminar at the center throughout the year. Faculty fellows also contribute to the intellectual life of the Stanford community through activities such as giving departmental courses, participating in ongoing research workshops, or organizing conferences. Courses given by fellows in 2005-06 follow.

COURSES

ENGLISH
ENGLISH 300. The Pearl Poet
5 units, Win (Justice)

LINGUISTICS
LINGUIST 218. Seminar in Morphosyntax: A Cabinet of Curiosities
2-4 units, Aut (Zwicky)

STANFORD CENTER FOR INNOVATIONS IN LEARNING

Directors: Stig Hagstrom, Roy Pea
Executive Director: Sam Steinhardt
Center Offices: Wallenberg Hall (Building 160)
Web Site: http://scil.stanford.edu

The Stanford Center for Innovations in Learning (SCIL) conducts scholarly research to advance the science, technology, and practice of learning and teaching from early childhood through postsecondary education. The Center brings together teachers, scholars, and students from around the world to study how to improve formal and informal learning across cultural boundaries.

Established in 2002, SCIL is housed in the renovated Wallenberg Hall, a state-of-the-art testing ground for technology applications in the classroom. With the support of SCIL technical and advisory staff, more than 70 professors and instructors have taught courses in Wallenberg Hall.

SCIL provides an environment for conducting research and testing applications at the intersection of learning sciences, design, and technology. SCIL researchers focus on issues in learning and teaching, and on the ways in which innovative uses of technology can address those issues. Research projects typically involve collaboration among faculty, senior staff members, students from multiple disciplines, and scholars from other institutions and countries.

SCIL programs are multidisciplinary and collaborative in nature and include the recently launched LIFE Center (Learning in Informal and Formal Environments), a research endeavor funded by the National Science Foundation in 2004. Researchers in the LIFE Center are working toward the development of an integrated multidisciplinary science of learning. Engaging more than 40 faculty members and researchers from the learning sciences, psychology, education, communications, computer science, and developmental, cognitive, and social neuroscience, LIFE is a collaboration with the University of Washington and SRI International.

Media X, the industry-affiliates program that SCIL jointly sponsors with the Center for the Study of Language and Information (CSLI), brings together University faculty conducting interactive technology research with organizations committed to technical advancement and innovation.

In addition to its research work, SCIL provides year-round technical and advisory support to University instructors.

CENTER FOR THE INTERDISCIPLINARY STUDY OF SCIENCE AND TECHNOLOGY

Center Director: Michael Friedman, Robert McGinn
Executive Committee: Keith Baker, Paula Findlen, Michael Friedman, Robert McGinn, Eric Roberts
Phone: (650) 725-0119; 725-0714
Web Site: http://cisst.stanford.edu

The Center for the Interdisciplinary Study of Science and Technology (CISST) brings together faculty, undergraduate and graduate programs, and research initiatives concerned with understanding science and technology in an interdisciplinary context. It is concerned equally with the historical, philosophical, and cultural study of science, technology, and medicine, and with critical analysis of issues raised by scientific and technological innovations in contemporary society. CISST houses two major programs: HPST (History and Philosophy of Science and Technology) and STS (Science, Technology, and Society); see their respective sections in this bulletin for their programs. CISST also sponsors visiting scholars, postdoctoral researchers, workshops, and speakers, providing a bridge between the humanities and social sciences, and the sciences and engineering.

At the undergraduate level, CISST houses STS, an undergraduate major that grants both B.A. and B.S. degrees. The STS major is designed to foster understanding of issues raised by the natures, consequences, and social shaping of technology and science in the contemporary world. To this end, the STS curriculum combines interdisciplinary, humanistic, and social scientific studies of science and technology in society with attainment of either technical literacy or fundamental understanding in some area of engineering or science. CISST also offers an honors program in STS that is open not only to STS majors but also to students in other majors who wish to pursue a senior honors project that addresses a research question arising from the relations among science, technology and society. Prospective majors or honors students should consult the STS section in this bulletin.

CISST also publishes a selection of undergraduate research papers in STS in our electronic undergraduate journal, Techne (http://www.stanford.edu/group/STS/techne).

At the graduate level, CISST houses an interdisciplinary graduate program, the Program in History and Philosophy of Science and Technology (HPST), jointly administered by the History and Philosophy departments; it involves faculty and students in these and other departments in the humanities. Prospective students interested in applying to the graduate program should consult the “History and Philosophy of Science and Technology” section of this bulletin, and the admissions requirements of the department in which they wish to apply for a M.A. or a Ph.D.
STANFORD INSTITUTE FOR INTERNATIONAL STUDIES (SIIS)

Director: Coit Blacker
Web Site: http://siis.stanford.edu

The Stanford Institute for International Studies promotes individual and collaborative research on contemporary, policy-relevant issues that are international and interschool in character. Working in partnership with the seven schools at Stanford (Business, Earth Sciences, Education, Engineering, Humanities and Sciences, Law, and Medicine) and with the Hoover Institution, SIIS fosters excellence in research and teaching across disciplinary, school, and national boundaries. The priority areas of research are in the fields of international and regional peace and security; economic development and political change in East and Southeast Asia; the global environment challenge; and the delivery of health care in a comparative perspective.

Opportunities for undergraduate research include the Goldman Interschool Honors Program in Environmental Science, Technology, and Policy, and the CISAC Interschool Honors Program in International Security. The institute manages 10 undergraduate and graduate fellowship programs.

The constituent centers and programs within SIIS include the Asia-Pacific Research Center, the Center on Democracy, Development and the Rule of Law, the Center for Environmental Science and Policy, the Center for Health Policy, the Center for International Security and Cooperation, the European Forum, and the Stanford Japan Center—Research.

In the areas of public service and outreach, SIIS administers the Stanford Program on International and Cross-Cultural Education (SPICE), which develops internationally-oriented curricula for use by public school teachers.

The SIIS central office is located at 100 Encina Hall, telephone (650) 723-4581. For more information about particular SIIS programs, contact the programs directly (area code 650):

Center on Democracy, Development and the Rule of Law, 724-7197, http://cdrl.stanford.edu/, Michael McFaul, Director

Center for Environmental Science and Policy (CESP), 725-2066, http://cesp.stanford.edu/, Walter P. Falcon, Stephen Schneider, Co-Directors

Center for Health Policy (CHP), 723-1020, http://chp.cor.stanford.edu/, Alan M. Garber, M.D., Director

Stanford Program on International and Cross-Cultural Education (SPICE), http://spice.stanford.edu/, 723-1116

COURSES

IIS 195. Interschool Honors Program in Environmental Science, Technology, and Policy — Students from the schools of Humanities and Sciences, Engineering, and Earth Sciences analyze important problems in a year-long small group seminar. Combines research methods, oral presentations, preparation of an honors thesis by each student, and where relevant, field study. May be repeated for credit.

1-9 units, Aut, Win, Spr (Naylor, Falcon, Vitousek, Freyberg)

INTERSCHOOL HONORS PROGRAM IN INTERNATIONAL SECURITY

The Center for International Security and Cooperation (CISAC) coordinates a University-wide interschool honors program in international security. Students selected for the honors program fulfill individual department course requirements, attend a year-long seminar on international security research, and produce an honors thesis with policy implications. In order to qualify for the program, students must demonstrate sufficient depth and breadth of international security course work. Ideally, applicants to the program should have taken POLISCI 114S, International Security in a Changing World, MS&E 193, Technology and National Security, POLISCI 110B, Strategy, War, and Politics, and at least one related course such as ECON 150/PUBLPOL 104, Economic Policy Analysis, STS 110/MS&E 197/PUBLPOL 103B, Ethics and Public Policy, SOC 160, Formal Organizations, PUBLPOL 102/SOC 166, Organizations and Public Policy, and POLISCI 114T, Major Issues in International Conflict Management.

Information about and applications to this program may be obtained from the Center for International Security and Cooperation, E201 Encina Hall East, telephone (650) 723-0126.

COURSES

IIS 199. Interschool Honors Program in International Security — Students from different schools meet in a year-long seminar to discuss, analyze, and conduct research on international security. Combines research methods, policy evaluation, oral presentation, and preparation of an honors thesis by each student.

9-15 units, Aut, Win, Spr (Sagan, Cuellar, Kapur)

UNDERGRADUATE PROGRAMS

INTERSCHOOL HONORS PROGRAM IN ENVIRONMENTAL SCIENCE, TECHNOLOGY, AND POLICY

The Center for Environmental Science and Policy (CESP) coordinates a University-wide interschool honors program in environmental science, technology, and policy. Undergraduates planning to participate in the honors program are required to pursue studies in environmental sciences, technology, and policy, with a concentration in a single discipline. After completion of the prerequisite units, students join small group honors seminars to work with specific faculty members in the environmental field on an honors thesis that incorporates both scientific principles and the policy aspects of selected environmental issues.

Courses in environmental studies appear under the course listings of the schools of Earth Sciences, Engineering, and Humanities and Sciences. Information about and applications to this program may be obtained from CESP, E401 Encina Hall East; telephone (650) 723-5697.
CENTER FOR THE STUDY OF LANGUAGE AND INFORMATION (CSLI)

Director: Byron Reeves
Executive Director: Keith Devlin
Center Offices: Cordura Hall
Mail Code: 94305-4115
Web Site: http://www-csli.stanford.edu/

CSLI supports research at the intersection of the social and computing sciences. It is an interdisciplinary endeavor, bringing researchers together from academe and industry in the fields of artificial intelligence, computer science, engineering, linguistics, logic, education, philosophy, and psychology. CSLI’s researchers are united by a common interest in communication and information processing that ties together people and interactive technology.

The technologies of interest at CSLI are at the cutting edge of the information revolution. They include natural language processing, voice user interfaces, ubiquitous computing, collaborative work environments, handheld devices, information appliances, automatic language translation, conversational interfaces, machine learning, intelligent agents, electronic customer relationship management, and distance learning applications.

A primary goal of CSLI is to have a substantial and long-term intellectual impact on the academic and business communities involved with interactive technology. Our industry research partners and sponsors have a broad and facilitated access to ideas, faculty, students, and laboratories. Partners can share in the intellectual property of CSLI, and in the governance committees of the Center that establish research directions and funding priorities. CSLI accelerates knowledge transfer to products and services by involving executives and researchers in Stanford classrooms.

CSLI partners can meet Stanford students studying in over 20 different degree programs across campus.

Course work related to the research at CSLI can be found in the “Program in Symbolic Systems” section of this bulletin.

STANFORD INSTITUTE FOR THE QUANTITATIVE STUDY OF SOCIETY (SIQSS)

Director: Norman H. Nie
Center Offices: 417 Galvez Mall, Encina Hall West, first floor
Web Site: http://www.stanford.edu/group/siqss

Founded in 1998, the Stanford Institute for the Quantitative Study of Society (SIQSS) is a multidisciplinary research institute affiliated with Stanford University’s Office of Research and Graduate Policy. The Institute is devoted to producing and sponsoring high-quality empirical social science research about the nature of society and social change.

The central mission of SIQSS is to provide social knowledge for the larger society and to develop the empirical social sciences as a primary tool for understanding social reality. SIQSS seeks to fulfill this mission by undertaking large-scale, socially relevant, theoretically important, and methodologically sound social research. Examples of projects under way include unintended consequences of information and technology in society; education and its social outcomes; conducting the 2000 census under adversity; and an online scholarly journal, IT & Society at http://www.stanford.edu/group/siqss/itandsociety/.

Scholars participating in SIQSS research programs and activities are drawn from diverse disciplines throughout Stanford University and from other academic institutions. SIQSS currently supports quantitative research through the following: long-term institute-initiated research programs, Stanford faculty research grants and student research assistantships, Stanford faculty fellows, interdisciplinary seminars, and the American Empirical Series.

INSTITUTE FOR RESEARCH ON WOMEN AND GENDER

Director: Londa Schiebinger
Web Site: http://irwg.stanford.edu

Founded in 1974, the Institute for Research on Women and Gender is the nation’s oldest organization devoted to research on gender issues across the disciplines. Working with the media, policy makers, and university administrations, the Institute also serves as a conduit to put research into action. The Institute sponsors faculty research, interdisciplinary research seminars, and conferences that examine gender issues in all fields of study, with an emphasis in the next several years on women and gender in science and engineering.

SOCIAL SCIENCE HISTORY INSTITUTE (SSHI)

Director: Stephen Haber
Institute Office: 450 Serra Mall, Room 19
Web Site: http://sshi.stanford.edu

The goal of Social Science History Institute is to re-engineer the manner in which students in social science departments learn about historical institutions and data, and the manner in which students in history and related disciplines are trained in social science methods. Historians and social scientists share many of the same substantive interests (for example, the development of economies, political systems, and social structures), but they approach them with different and complementary methods and bodies of evidence. There is, however, a great deal of potential for historians and social scientists to draw on the strengths of each other’s methods to improve their own work and to foster increased interaction among the various disciplines that employ history as a laboratory to operationalize social science theories. The Social Science History Institute seeks to realize this potential by transplanting state-of-the-art research methods from classics, economics, history, political science, and sociology across the boundaries of each discipline. Toward this end, SSHI offers conferences and research support for faculty and graduate students.

STANFORD LINEAR ACCELERATOR CENTER (SLAC)

Director: Jonathan Dorfan
Web Site: http://www.slac.stanford.edu/

The Stanford Linear Accelerator Center is devoted to two major areas of research: theoretical and experimental elementary particle physics, particle astrophysics, cosmology, accelerator and beam physics, and detector instrumentation; and photon science based on the use of SPEAR3, an electron storage ring which produces intense beams of synchrotron radiation in the vacuum ultraviolet and x-ray wavelengths for research in biology, chemistry, material science, environmental science, medical science, and many areas of applied physics.
SLAC is located on 425 acres of Stanford property west of the main campus and is operated under a contract with the United States Department of Energy. A major new initiative, the Kavli Institute for Particle Astrophysics and Cosmology, is located on the SLAC campus. The Linac Coherent Light Source (LCLS), a state-of-the-art instrument for research in the photon sciences, and the Ultrafast Science Center are currently under construction on the SLAC campus.

SLAC is operated by Stanford as a national facility allowing qualified scientists from Stanford and other universities and research centers worldwide to participate in the research programs. Graduate students at Stanford may carry out Ph.D. research with members of the SLAC faculty; graduate students from other universities also participate in the research programs of visiting groups.

Research assistantships are available for qualified Stanford students by arrangement with individual faculty members. There are also opportunities for summer employment in the research groups at the center. Students interested in research in the areas of high energy physics, particle astrophysics, and accelerator physics should first contact Professor Rafe H. Schindler at the SLAC Graduate Studies Office. Students interested in research opportunities in photon science and SPEAR 3 should see http://www-ssrl.slac.stanford.edu.

STANFORD SYNCHROTRON RADIATION LABORATORY (SSRL)

Director: Keith O. Hodgson
Web Site: http://www-ssrl.slac.stanford.edu

SSRL, a division of the Stanford Linear Accelerator Center, is a National User Facility which provides synchrotron radiation, a name given to x-rays or light produced by electrons circulating in a storage ring at nearly the speed of light. These extremely bright x-rays can be used to investigate forms of matter ranging from objects of atomic and molecular size to man-made materials with unusual properties. The obtained information and knowledge is of great value to society, with impact in areas such as the environment, future technologies, health, and national security. Many of its 20 faculty hold joint appointments with campus departments.

SSRL has research programs in materials science, chemistry, structural biology, and ultrafast science, as well as accelerator physics and development of advanced sources of synchrotron radiation, especially ultra short pulse, x-ray free electron lasers. The lab is interdisciplinary with graduate students actively pursuing degrees from Stanford campus departments that include Applied Physics, Chemical Engineering, Chemistry, Earth Sciences, Electrical Engineering, Materials Science and Engineering, Physics, and Structural Biology.

Students interested in working at the facility should contact a member of the SSRL faculty, one of the assistant directors, or other members of the Stanford faculty who use SSRL in their research programs; see http://www-ssrl.slac.stanford.edu/faculty/.
During regular academic sessions, both libraries are open Monday through Thursday from 8 a.m. to 12 midnight, Friday from 8 a.m. to 6 p.m., Saturday from 9 a.m. to 9 p.m. (Meyer is open 1 p.m. to 9 p.m. on Saturday), and Sunday from 12 noon to 12 midnight. Library hours information, including hours for holidays, intersessions, and other libraries on campus, is available on the web at http://library.stanford.edu/libraries_/collections/Sarles_locations.html.

These libraries can seat more than 2,000 readers at one time in a variety of seating arrangements: carrels, lounge areas, tables, computer workstations, individual studies, and group study rooms. Readers can connect their laptops to the campus network in most library locations.

Major service units housed throughout Green Library include: the Information Center; the Humanities and Area Studies Reading Room; the Jonsson Social Sciences Reading Room; Foreign Language and Area Collections; Access Services; Current Periodicals, Newspapers, Media and Microtexts; and the Interlibrary Services Office. Green Library also houses reserves for most graduate and undergraduate courses in the humanities and social sciences, the Department of Special Collections, and the University Archives.

Throughout Green and Meyer, there are photocopy machines, telephones, and computers providing access to the online library catalog and the wealth of electronic resources available to the Stanford community.

BRANCH LIBRARIES

Humanities and Social Sciences Branch Libraries include the Art and Architecture Library, Cubberley Education Library, Music Library, and Archive of Recorded Sound.

LIBRARIES—COORDINATES

J. Hugh Jackson Library, Graduate School of Business
Director: Kathy Long

Lane Medical Library
Director: Debra Ketchell

Crown Law Library
Director: Paul Lomio

Stanford Linear Accelerator Center Library
Director of Technical Information Services: Patricia Kreitz

HOOVER INSTITUTION ON WAR, REVOLUTION AND PEACE

Director: John Raisian
Web Site: http://www-hoover.stanford.edu/hila/

Since its founding by Herbert Hoover in 1919 as a special collection dealing with the causes and consequences of World War I, the Hoover Institution has become an international center for documentation, research, and publication on political, economic, social, and educational change in the 20th and 21st centuries.

The Hoover Library and Archives include one of the largest private archives in the world and have outstanding area collections on Africa, East Asia, Eastern Europe, Russia and the former Soviet Union, Latin America, the Middle East, North America, and Western Europe.

Holdings include government documents, files of newspapers and serials, manuscripts, memoirs, diaries, and personal papers of men and women who have played significant roles in the events of these centuries, the publications of societies and of resistance and underground movements, and the publications and records of national and international bodies, both official and unofficial, as well as books and pamphlets, many of them rare and irreplaceable. The materials are open to all Stanford students, faculty, and staff, to scholars from outside the University, and to the public at large.

INFORMATION TECHNOLOGY SYSTEMS AND SERVICES (ITSS)

Web Site: http://itss.stanford.edu

ITSS provides University leadership in the area of information technology. ITSS services can be divided into four categories:

- Computing and communication infrastructure capable of supporting the instructional, learning, research, and business activities of the University. This infrastructure includes campus-wide data, voice, and video communication facilities, and the distributed computing environment. These services tend to be less visible to end-users, but are the foundation upon which information technology services are delivered.
- Academic computing services to support instruction, research and learning activities. These include the Sweet Hall computing cluster and servers that support instructional computing.
- Business and administrative computing facilities to support administrative information systems. These include core business systems, such as student information, fund raising, general ledger, accounts payables, and payroll.
- Services and technical support for departmental networks and computing environments. These services include departmental consulting, training and support for office and departmental support staff, and technical support to manage departmental computing environments.

Daily operations at Stanford rely upon the hundreds of applications and miles of wiring for data and phone services that ITSS maintains and supports. It is expected that phones will ring, computers interconnect, and systems function. ITSS directs its energies toward ensuring that the infrastructure and applications portfolio meet current needs and to ensure that future needs will be met as well; improvements are made to wiring, more storage is added to servers, applications are changed to meet new requirements, out-of-date services are removed and new ones replace them. Running, maintaining, and continually improving these services, and doing it cost effectively, is the core business of Information Technology Systems and Services.

For more details about ITSS and its services, see http://itss.stanford.edu. For more information about the variety of information technology resources available at Stanford, see http://compcomm.stanford.edu. For assistance with technology services at Stanford, contact the Stanford IT Help Desk by phoning (650) 725-HELP(4357) or submit a request through http://helpsu.stanford.edu.
THE CONTINUING STUDIES PROGRAM

Dean and Associate Provost: Charles Junkerman
Program Offices: 482 Galvez Mall
Mail Code: 94305-6079
Phone: (650) 725-2650; Fax: (650) 725-4248
Email: continuingstudies@stanford.edu
Web Site: http://continuingstudies.stanford.edu

The Continuing Studies Program provides adults from Stanford and the surrounding communities the opportunity to take classes on a part-time basis for intellectual enrichment, both personal and professional. Courses and events are offered in all four academic quarters, with over 350 courses planned for the 2005-06 academic year.

The faculty are primarily drawn from the ranks of the University’s distinguished professoriate. The program presents a wide variety of courses, with a central concentration in the liberal arts, including literature, history, art and architecture, and music.

Tuition discounts are available to University employees, Stanford students and faculty, Stanford Alumni Association members, educators, and those over age 65.

For a course catalogue, contact the Continuing Studies Program by mail, phone, or email as above.

The Continuing Studies Program also administers the Master of Liberal Arts Program and Summer Session.

MASTER OF LIBERAL ARTS PROGRAM

Associate Dean and Director: Linda Paulson
Participating Faculty: David Abernethy (Political Science), Clifford Barnett (Anthropology), Russell Berman (Comparative Literature and German), Marc Bertrand (French, emeritus), Eavan Boland (English), John Bravman (Material Sciences and Engineering), Bliss Carnochan (English), Clayborn Carson (History), Wanda Corn, (Art and Art History), George Dekker (English), Carol Delaney (Anthropology), Jerry Dorfman (Hoover Institute and Political Science), Arnold Eisen (Religious Studies), Michele Elam (English), Martin Evans (English), Anne Fernald (Psychology), Paula Findlen (History), Luis Fraga (Political Science), John Prencero (French and Italian), Larry Friedlander (English), Kenneth Fields (English), Hester Gelber (Religious Studies), Albert Gelpi (English), Barbara Gelpi (English), Monika Greenleaf (Slavic Languages), Robert Gregg (Religious Studies), Tom Grey (Music), Hans Ulrich Gumbrecht (French and Italian), Van Harvey (Religious Studies), Stephen Hinton (Music), Charles Junkerman (Continuing Studies Program), Nancy Kollmann (History), Marsh McCall (Classics), Robert McGinn (Management Science and Engineering, and Science, Technology, and Society), Mark Mancall (History), Joseph Manning (Classics), Diane Middlebrook (English), Thomas Moser (English), David Palumbo-Liu (Comparative Literature), Linda Paulson (English), Denis Phillips (Education, and, by courtesy, Philosophy), Jack Rakove (History), Ronald Rebolz (English), Rush Rehm (Drama), John Rick (Anthropological Sciences), John Rickford (Linguistics), Paul Robinson (History), Ramón Saldívar (English), Paul Seaver (History), Thomas Sheehan (Religious Studies), Robert Siegel (Microbiology and Immunology), Stephen Stedman (Stanford Institute for International Studies, and, by courtesy, Political Science), Thomas Wasow (Linguistics), Lee Yearley (Religious Studies), Erinle Young (Center for Biomedical Ethics), Steven Zipperstein (History)

Program Offices: 482 Galvez Mall
Mail Code: 94305-6079
Phone: (650) 725-0061
Email: mlaprogram@stanford.edu
Web Site: http://mla.stanford.edu

Program Description—The Master of Liberal Arts (MLA) program aims to provide a flexible, interdisciplinary program for returning adult students who seek a broad education in the liberal arts. The underlying premise of the MLA program is that knowledge gained through an interdisciplinary course of study leads to intellectual independence and satisfaction not always found in discipline-based programs of study. The goals of the MLA program are to develop advanced critical thinking, to foster intellectual range and flexibility, and to cultivate an individual’s ability to find the connections among different areas of human thought: art, history, literature, music, philosophy, political science, science, and theology.

The program is designed with part-time students in mind: seminars meet in the evening, and students complete the degree in 4-5 years. All master’s seminars are taught by members of the Stanford faculty. Seminar size is limited to 20 students.

Degree Requirements—Candidates for the MLA degree must complete a minimum of 50 units of course work with at least a grade point average of 3.3 (B+). These units must include a three quarter foundation course (equal to 12 units total), one 4-unit core introductory seminar for second-year students, at least seven 4-unit MLA seminars, and a 4-unit master’s thesis. The remaining 2 units of required courses may be fulfilled by additional MLA seminars, relevant Continuing Studies Program course offerings, or by a summer session at Oxford. Students must also fulfill distribution requirements by taking at least 2 units of credit in each of the following areas: humanities; social science or social policy; and science, engineering, or medicine.

Foundation Course—During the Autumn, Winter, and Spring following admission to the program, there is a three quarter foundation course required of all students. The purpose of this course is to lay the groundwork for the interdisciplinary, intercultural studies the student will shortly undertake. The foundation course will introduce students to the broad framework of history, literature, philosophy, political science, and art.

Core Seminar—During the first quarter of the second year, new students take the core introductory seminar, The Plague: An Introduction to Interdisciplinary Graduate Study. This seminar aims to prepare students for interdisciplinary graduate work at Stanford. Students concentrate on writing a critical graduate paper, conducting library research, presenting the results of their research, and productively participating in a collaborative seminar.

MLA Seminars—Students are required to take at least seven MLA seminars of four units each. Each year, at least nine seminars are offered in the MLA program. Each MLA course requires a substantial seminar paper. Students are encouraged to use these papers as a way to investigate new fields of interest, as well as a way to develop different perspectives on issues in which they have an ongoing interest.

Master’s Thesis—The MLA program culminates in the master’s thesis. Students approaching the end of the program write a thesis, approximately 75-100 pages in length, that evolves out of work they have pursued during their MLA studies. The thesis is undertaken with the prior approval of the MLA program, and under the supervision of a Stanford faculty member. During the process of writing the thesis, students are members of a work-in-progress group, which meets regularly to provide peer critiques, motivation, and advice. Each student presents the penultimate draft of the thesis to a colloquium of MLA faculty and students, in preparation for revising and submitting the final draft to the adviser and to the MLA program.

Enrollment Requirements—MLA students must enroll for each academic year from the time of original matriculation until conferral of the degree. To remain active, students must either: (a) complete a minimum of two courses (eight units) in one academic year, defined as from the beginning of Autumn Quarter through the end of the following Summer Quarter
Quarter; or (b) be actively working on their theses and regularly attend a minimum of three-quarters of the work-in-progress meetings from the time the student enrolls in work-in-progress through graduation.

Timeline for completion — All requirements for the Master of Liberal Arts degree must be completed within five years after the student’s first term of enrollment in the program. If extraordinary circumstances prevent completion within five years, a student may submit a written petition for a maximum one-year extension to the Associate Dean and Director. This petition is reviewed by a committee which makes a recommendation to the Director; the final decision is at the discretion of the Director. To be considered, the petition must be submitted on or before May 1 of the student’s fifth year in the program.

Registration — Master of Liberal Arts students register for courses online through the Continuing Studies web site.

COURSES

101A. Foundations I — Required for first-year MLA students.
4 units, Aut (Steidle)

101B. Foundations II — Required for first-year MLA students.
4 units, Win (Steidle)

101C. Foundations III — Required for first-year MLA students.
4 units, Spr (Berman)

102. The Plague: An Introduction to Interdisciplinary Graduate Study
4 units, Aut (Paulson)

222. The Harlem Renaissance
4 units, Aut (Elam)

223. Modernism and Post-Modernism
4 units, Aut (Berman)

224. Contemporary Fictions
4 units, Win (Berman)

225. Belief and Doubt in the British Enlightenment
4 units, Win (Carnochan)

226. English Society and Culture in the Age of Shakespeare
4 units, Win (Seaver)

227. The Historical Jesus
4 units, Win (Sheehan)

228. Russia Encounters the West
4 units, Spr (Kollman)

229. Shakespeare and Music
4 units, Spr (Grey)

230. The Science of Stuff
4 units, Spr (Bravman)

231. Negotiating for the UN
4 units, Spr (Stedman)

232. Love and Death in the Middle Ages
4 units, Sum (Gelber)

233. Shakespeare through Performance VIII
4 units, Sum (Friedlander)

SUMMER SESSION

Associate Dean: Patricia Brandt
Director of Admission and Student Services: Teresa Nishikawa
Program Offices: 482 Galvez Mall
Mail Code: 94305-6079
Phone: (650) 723-3109; Fax: (650) 725-6080
Email: summersession@stanford.edu
Web Site: http://summer.stanford.edu

Students attending Stanford Summer Session are enrolled in either a regular degree program, the Summer Visitor Program, or Summer College program for High School Students.

The regular degree program is for students who are candidates for a Stanford degree and who are continuing their academic work in Summer Quarter. Degree-seeking Stanford students should indicate on Axess during Spring Quarter that they intend to register for Summer Quarter. Separate application is not required.

The Summer Visitor Program is for students who are not presently candidates for a Stanford degree. It is open to students who are currently enrolled in or have graduated from another college or university. Qualified high school students who have completed at least their sophomore year may be admitted to the Summer College program.

Students in Summer Session, in general, enjoy the privileges of students in the regular degree programs except that work completed cannot be applied toward a Stanford degree or credential until the student has been admitted to regular standing. Admission as a summer visitor does not imply later admission to matriculated status. However, should the visitor matriculate at a later date through normal admission procedures, the summer work may, in most cases, be applied toward the requirements for a Stanford degree or credential.

For more information, contact Summer Session by email, mail, phone, or fax using the listings above. Information is updated annually in January and may also be found online at http://summer.stanford.edu.
UNDERGRADUATE EDUCATION

Vice Provost for Undergraduate Education: John Bravman
Web Site: http://undergrad.stanford.edu/

As the chief academic officer for undergraduate education, the Vice Provost initiates policies and programs, assesses and manages continuing programs, oversees curricular innovation, and coordinates the undergraduate activities of the three Schools (Humanities and Sciences, Earth Sciences, and Engineering) which offer undergraduate majors and minors. The Center for Teaching and Learning, Diversity Outreach, Freshman and Sophomore Programs, the Freshman Dean’s Office, Introduction to Humanities, New Student Orientation/Approaching Stanford, Program in Writing and Rhetoric, Stanford Writing Center, Undergraduate Advising, Undergraduate Research Programs, and Writing in the Major report to the Vice Provost of Undergraduate Education.

CENTER FOR TEACHING AND LEARNING

Associate Vice Provost for Undergraduate Education and Director: Michele Marincovich
Senior Associate Director (Science and Engineering): Robyn Wright Dunbar
Associate Director (Humanities): Mariatte Denman
Associate Director (Social Sciences and Technology): Marcelo Clerici-Arias
Academic Technology Specialist: Jeremy Sabol
Assistant Director for Academic Support: Adina Glickman
Administrators: Sruthi Naidu, Cristen Osborne, Linda Salser
Oral Communication Program Director: Doree Allen
Lecturers: Thomas Freeland, Jennifer Hennings, James Milojkovic, Joyce Moser, James Wagstaffe, Randall A. Williams

Department Offices: Sweet Hall, 4th floor
Mail Code: 94305-3087
Center Phone: (650) 723-1326
Email: TeachingCenter@stanford.edu
Web Site: http://ctl.stanford.edu

The Center for Teaching and Learning is a university-wide resource on effective teaching and public speaking for faculty, lecturers, and teaching assistants and on both effective learning and public speaking for undergraduates and graduate students.

SERVICES TO UNDERGRADUATES AND GRADUATE STUDENTS

CTL provides a wide range of resources for students who want to enhance their study approaches and clarify their learning strategies. Through courses, individual counseling, and workshops, CTL helps students build skills that are the foundation for continuous improvement and lifelong learning.

Free tutoring is available to undergraduates in several introductory subjects. See http://tutoring.stanford.edu for details on where and when tutors can be found. Students interested in and qualified for tutoring may apply to be tutors and, if accepted, may take CTL’s course on tutoring; the application process takes place in February.

SERVICES TO FACULTY, LECTURERS, AND TEACHING ASSISTANTS

CTL provides the Stanford community with services and resources on effective teaching. Our goals are: to identify and involve successful teachers who are willing to share their talents with others; to provide those who are seeking to improve their teaching with the means to do so; to acquaint the Stanford community with important innovations and new technologies for teaching; to prepare new teachers for their responsibilities; to contribute to the professional development of teaching assistants; to expand awareness of the role of teaching at research universities; and to increase the rewards for superior teaching.

CTL also has responsibility for helping teaching assistants (TAs) with their preparation for and effectiveness in teaching, and for helping departments with designing effective TA training programs. Programs include: videotaping, microteaching, and consultation; small group and other forms of mid-quarter evaluation; workshops and lectures; a handbook on teaching and a library of teaching materials; quarterly teaching orientations; an informative quarterly newsletter; and work with individuals, groups, and departments on their specific needs. For further details, see CTL’s teaching handbook or the CTL brochure, both available by calling (650) 723-1326, or see http://ctl.stanford.edu.

For questions or requests, email TeachingCenter@stanford.edu.

ORAL COMMUNICATION PROGRAM

The Oral Communication Program at CTL provides opportunities for undergraduates and graduate students to develop or improve their oral communication skills. Courses and workshops offer a comprehensive approach to speech communication, including training in the fundamental principles of public speaking and the effective delivery of oral presentations. The goal is to enhance students’ general facility and confidence in oral expression. The program also provides innovative, discipline-based instruction to help students refine their personal speaking styles in small groups and classroom settings. Those interested in individualized instruction or independent study are invited to visit the program’s Speaking Center in Sweet Hall, where trained student tutors, multimedia, and instructional resource materials are available on an ongoing basis. To schedule an appointment, see http://speakinghelp.stanford.edu. For further details, call (650) 725-4149 or 723-1326 or see http://ctl.stanford.edu.

COURSES

All courses listed with CTL promote acquisition of public speaking skills and/or teaching excellence.

CTL 53. Working Smarter—College-level strategies and skills in time management, reading, speaking, writing, and test preparation. Students explore learning preferences to develop strategies in different academic settings.

2 units, Spr (Allen, Hennings)

CTL 56. Building a Successful Academic Career—For freshmen in expanded advising programs. Techniques for honing academic skills for college, and applying those skills to better define intellectual identity in academic pursuits.

1 unit (Williams) not given 2005-06

CTL 60/160. Investigating Stanford’s Treasures—Private tours some of Stanford’s greatest resources led by Stanford experts; students interview the experts and introduce them to the class at the site. One hour of class discussion per week. Treasures may include Jasper Ridge Biological Reserve, Memorial Church, Special Collections, and the Martin Luther King, Jr., Papers Project.

1-2 units, Aut (Moser)

2 units, Spr (Allen, Hennings)
CTL 115/215. Voice Workshop—Focus is on breath, voice production, expansion of vocal range and stamina, and clarity of articulation. Geared toward public speaking including presentations, lectures, and job talks. May be taken in conjunction with CTL 117.
1-2 units, Aut, Win, Spr (Freeland)

CTL 116A. The Language of Film Noir: From Bogart to Pulp Fiction—The quintessential American film genre which combined femmes fatales, anti-heroes, lost dreams, violence, and a distinct style of expression. Film viewings, student oral presentations, and analyses of films.
1-2 units, Win (Moser)

CTL 116B. Screwballs and the Language of Laughter: American Comic Film from Chaplin to Present—A sampling of American comic masterpieces including silent movies, 30s screwball films, and works by Billy Wilder, Woody Allen, and contemporary film makers. Film viewings, student oral presentations, and analyses of films.
1-2 units (Moser) alternate years, given 2006-07

CTL 117/217. The Art of Effective Speaking—The principles and practice of effective oral communication. Through formal and informal speaking activities, students develop skills framing and articulating ideas through speech. Strategies for speaking extemporaneously, preparing and delivering multimedia presentations, formulating persuasive arguments, refining critical clarity of thought, and enhancing general facility and confidence in oral self-expression.
3 units, Win, Spr (Freeland, Allen)

CTL 118. Public Speaking: Romancing the Room—A practical approach to the art of public speaking. Emphasis is on developing skills in speech types including impromptu, personal experience, interviewing, demonstration, persuasive, and special occasion. Materials include videotape, texts of famous speeches, and a final dinner program of speeches. Students evaluate presentations by others. $55 materials fee.
3 units, Sum (Wagstaffe)

CTL 119. Oral Communication Tutor Training Practicum—Seminar. For students with a strong background in public speaking who wish to train as public speaking tutors for CTL’s Oral Communication Program. Readings, exercises, and supervised teaching refine speaking skills. Preparation to serve as a peer tutor in a variety of academic disciplines. Prerequisite: consent of instructor.
1-3 units, Aut (Allan, Hennings)

CTL 120. Peer Tutor Training—Goal is to help students become effective peer tutors for course material already mastered by articulating aims; developing practical tutoring skills including strategies for drop-in sessions; observing experienced tutors; discussing reading assignments; role playing; and reflecting on experiences as a peer tutor intern. Prerequisite: consent of instructor.
1 unit, Aut (Glickman)

CTL 125. From the Page to the Stage: The Performance of Literature—The oral interpretation of literature as performance art and mode of literary analysis. Focus is on contemporary and local expression including topics such as the Spoken Word Collective at Stanford, the ensemble performance of short works of fiction by San Francisco’s Word for Word Performing Arts Company, and the storytelling art of Awele Makeba which combines theater, oral history, and music. No performance experience necessary.
3 units (Allen) not given 2005-06

CTL 130. Beyond Stereotype Threat: Claiming a Rightful Place in an Academic Community—(Same as PSYCH 125.) Stereotype threat as mitigating the quality of a student’s test performance; its impact on academic success at Stanford. How to reduce the impact of stereotype threat on Stanford students.
2 units, Win (Glickman)

CTL 175. Intertextuality, Interpretation, and Performance—Literary and performance theories from the late 20th century to the present. The performative link between writing and speech. Students apply theories in critical writings, performances, and intertextual assemblages. How to find and refine one’s own voices in writing and vocality.
4 units, Spr (Freeland)

CTL 177. Performance of Power: Oratory and Authority from the Ancient World to the Postmodern—Speech as action has long been seen as essential to leadership. Theories and examples of oratory, from Aristotle to George W. Bush, assessing each as model of voice-activated authority. The impact of mass media technologies as they transform the public space of oratory. Offered only once, either Autumn or Winter.
4 units, Aut (Freeland)

CTL 199/299. Independent Study—Special study under lecturer direction, usually leading to a written report or an oral presentation. Prerequisite: consent of instructor.
1-3 units, Aut, Win, Spr, Sum (Staff)

CTL 201. Science Course Design—(Same as GES 201.) For students interested in an academic career and who anticipate designing science courses at the undergraduate or graduate level. Goal is to apply research on science learning to the design of effective course materials. Topics include syllabus design, course content and format decisions, assessment planning and grading, and strategies for teaching improvement.
2-3 units, Aut (Wright-Dunbar)

2 units, Spr (Allen, Hennings)

CTL 219. Oral Communication for Graduate Students—Graduate student speaking activities such as teaching (delivering lectures, guiding discussion, and facilitating small groups), professional presentations and conference papers, and preparing for oral exams and defenses. In-class projects, discussion, and individual evaluation assist students in developing effective techniques for improving oral communication skills.
1-3 units, Sum (Freeland)

CTL 225. Teaching Development Series—Teaching and academic career topics from CTL’s workshops series. Documented participation in a minimum of 10 hours required for credit. Offerings vary quarterly. See http://ctl.stanford.edu for current information. May be repeated for credit. Prerequisite: consent of instructor.
1 unit, Aut, Win, Spr, Sum (Staff)

FRESHMAN AND SOPHOMORE PROGRAMS

Assistant Vice Provost and Program Director: Sharon Palmer
Associate Director and Academic Technology Specialist: Dena DeBry
Assistant to the Dean of Freshman-Sophomore and Potter Colleges: Jenise Christensen
Academic Technology Specialist: Carlos Seligo
Oral Communication Lecturer: Joyce Moser
Administrators: Gari Gene, Mona Kitasoe, Jasmine Lu, Gary Matsumura

Department Offices: Sweet Hall, 4th floor
Phone: (650) 723-4338
Email: tsp@vpue.stanford.edu
Web Site: http://spf.stanford.edu/

Freshman and Sophomore Programs (FSP), a division of the office of the Vice Provost for Undergraduate Education, sponsors and supports Freshman-Sophomore and Potter Colleges, as well as Stanford Introductory Seminars, including Freshman Seminars, Sophomore Seminars and Dialogues, and Sophomore College. FSP also coordinates initiatives
that encourage faculty and students to build on relationships formed in introductory seminars by forming ongoing mentoring and research partnerships based on their shared intellectual interests. PSP is located on the fourth floor of Sweet Hall. For detailed information, see the web site or contact the office.

FRESHMAN-SOPHOMORE COLLEGE AND POTTER COLLEGE

The Freshman-Sophomore College at Sterling Quad is a residence for approximately 180 freshmen and sophomores interested in broad intellectual exploration of the liberal arts and sciences. Potter College is designed to create an interdisciplinary community of upper-class students engaged in intellectual exploration with a focus on writing, public speaking, honors, and research.

STANFORD INTRODUCTORY SEMINARS

Stanford Introductory Seminars (SIS) provide opportunities for first- and second-year students to work closely with faculty in an intimate and focused setting. These courses aim to intensify the intellectual experience of the freshman and sophomore years by allowing students to work with faculty members in a small group setting; introducing students to the variety and richness of academic topics, methods, and issues which lie at the core of particular disciplines; and fostering a spirit of mentorship between faculty and students. Over 200 faculty from more than 60 departments take part in the introductory seminars programs. The courses are given department credit and most count towards an eventual major in the field. Most also fulfill General Education Requirements (GERs).

Some faculty who have taught Freshman Seminars or Sophomore College volunteer to continue working with their students through a formal advising relationship during the students’ sophomore year.

FRESHMAN SEMINARS AND SOPHOMORE SEMINARS AND DIALOGUES

Freshman Seminars and Sophomore Seminars and Dialogues are offered in many disciplines throughout the academic year. Freshman preference seminars are typically given for 3–4 units to a maximum of 16 students, and generally meet twice weekly. Although preference for enrollment is given to freshmen, sophomores and first-year transfer students may participate on a space-available basis and with the consent of the instructor. Sophomore preference seminars and dialogues give preference to sophomores and first-year transfer students, but freshmen may participate on a space-available basis and with the consent of the instructor. Sophomore preference seminars are given for 3–5 units to a maximum of 14 students, while sophomore preference dialogues take the form of a directed reading, and are given for 1–2 units to a maximum of 5 students. All seminars require a brief application. For a list of introductory seminars offered in 2005-06, see the “Stanford Introductory Seminars” section of this bulletin. For an application or more information see the SIS annual course catalogue, published each September, or http://introsems.stanford.edu/.

SOPHOMORE COLLEGE

Sophomore College offers sophomores the opportunity to study intensively in small groups with Stanford faculty for several weeks before the beginning of Autumn Quarter. Students immerse themselves in a subject and collaborate with peers, upper-class sophomore assistants, and faculty in constructing a community of scholars. They are also encouraged to explore the full range of Stanford’s academic resources in workshops and individually. At its best, Sophomore College is characterized by an atmosphere of intense academic exploration. Each Sophomore College course enrolls twelve to fourteen students, who live together in a Stanford residence and receive two units of academic credit. Eligible students will have been enrolled for no more than three academic quarters; be sophomores in the Autumn Quarter during which the college is offered; be in good academic standing; and have completed at least 36 units of academic work by the end of the Spring Quarter preceding the college. Students must also have an on-campus housing assignment for the ensuing academic year. Transfer students are not eligible. Admitted students who are found to have academic standing problems after the completion of Spring Quarter may have their admission revoked. Tuition, room, the remainder of board costs, and class-required travel are covered by Sophomore College. Each student pays a $500 fee toward the cost of board; this fee is included in the Autumn Quarter University bill. Students are also responsible for travel to campus, phone, network activation one-time fee, and other personal expenses. Courses are announced in March, and applications are due in April. For a list of Sophomore College Seminars offered, please see the SIS section in this Bulletin. For more information or to apply, see the Sophomore College web site at http://soco.stanford.edu/.

FRESHMAN DEAN’S OFFICE

Assistant Vice Provost and Dean of Freshmen and Transfer Students: Julie Lythcott-Haims

Web Site: http://frosh.stanford.edu/

The Freshman Dean’s Office, a division of VPUE, is the primary resource for helping new undergraduates make the transition to Stanford. Programs under its umbrella include Approaching Stanford, New Student Orientation, Freshman and Transfer Advising, Expanded Advising Programs, and Frosh Council. Offices are located on the first floor of Sweet Hall and in 123 Meyer Library; phone (650) 72-FROSH (3-7674) and (650) 723-2426, or email frosh@stanford.edu. New students and their parents are encouraged to contact the Freshman Dean’s Office.

UNDERGRADUATE ADVISING

Faculty Director: Steven Zipperstein

Director: D. E. Lorraine Sterritt

Senior Associate Director: Roland Hsu

Program Offices: Sweet Hall, 1st floor

Phone: (650) 723-2426

Web Site: http://uap.stanford.edu/

The Office of Undergraduate Advising Programs (UAP) coordinates advising for students who have not declared a major. Freshmen are assigned to academic advisers according to their residence and their preliminary academic interest. Some freshmen receive enhanced academic support through participation in Expanded Advising Programs (EAP). Most sophomores who are undecided about their majors continue to work with their advisers from the first year. Some sophomores participate in the Sophomore Mentoring Program (SMP), which matches faculty mentors with students who have shared intellectual interests through a freshman seminar or sophomore college class. By the end of the sophomore year, undergraduates must declare a major. In junior and senior years, students are advised by faculty from the major department or program.

The UAP coordinates with faculty, staff, and students (peer mentoring staff) to address students’ intellectual and developmental goals. The UAP staff includes professional advisers in Sweet Hall, Wilbur and Florence Moore residence halls, and the Arillaga Family Recreation Center who meet with students individually to set academic goals and to devise strategies for achieving those goals. The staff also coordinates a comprehensive array of academic advising programs and services designed to support and supplement the undergraduate curriculum.

The UAP staff of professional advisers provides advising to all students, freshmen through seniors. These UAP advisers offer students help when the academic adviser is unavailable or when additional advice is needed. Professional staff work closely with academic departments to identify and support students with potential academic difficulty and who do not meet requirements for good academic standing. Other UAP services include: assistance with curriculum planning; help with choosing a major; information on designing an individually designed major (IDM); academic and personal counseling related to academic performance; advice regarding
plans to attend graduate or professional school; referrals to tutoring and learning skills, the Office of Accessible Education, and Counseling and Psychological Services. Reference guides to graduate and professional schools are available. The UAP is open Monday through Friday, 8:00 a.m. to 5:00 p.m. Students may make appointments or drop in to see an adviser.

UNDERGRADUATE RESEARCH PROGRAMS

Director: Susie Brubaker-Cole
Associate Director for Honors Writing Programs: Hilton Obenize
Associate Directors for Student Services: Renee Courey, Brian Thomas
Program Office: Sweet Hall, fourth floor
Web Site: http://urp.stanford.edu

Undergraduate Research Programs (URP), a division of the office of the Vice Provost for Undergraduate Education (VPUE), seeks to foster undergraduate participation in the creation of new knowledge at Stanford. URP sponsors and supports a broad range of programs that encourage undergraduates to work closely and individually with faculty on research, advanced scholarship, and creative projects. Programs are designed to serve students who are new to research, as well as those with considerable research experience who are able to take on advanced, independent projects.

STUDENT GRANT PROGRAMS

URP offers research grants to currently registered Stanford undergraduates. Grants support faculty-mentored research projects, and are typically used to pay for the research supplies, travel, and room and board associated with such projects. For the 2005-06 academic year, students have access to five grant programs:

- **Quarterly Grants** provide for student projects that explore a topic of interest or contribute to the development of future intellectual pursuits. They are often used for smaller projects, preliminary research, and follow-up expenses associated with larger projects. Applications are considered in Autumn, Winter, and Spring quarters, and are usually due the fourth week of each quarter.

- **Major Grants** support larger projects that will normally span several quarters. Funded projects typically culminate in an honors thesis or some other substantial capstone product that demonstrates a focused and intellectually rigorous perspective on the topic of interest. Major Grant proposals are subjected to an intensive review process that includes critical input from faculty in the appropriate departments. Applications are considered only in the spring, and are usually due the first week of the spring quarter.

- **Chappell Lougee Scholarships** are available to sophomores pursuing projects in the humanities and social sciences. In addition to receiving a grant, recipients become members of a research and mentoring community that includes special events, preparation for a capstone project or honors, and fellowships and graduate school advising. Applications are usually due in the last week of classes in the Autumn Quarter.

- **Angel Grants** assist students in producing a finished public creative work such as an art exhibit, film, stage production, or concert. There is no deadline; applications are accepted on a rolling basis.

- **Conference Travel Grants** support students who have been invited to present their research at a professional or scholarly conference. The grants fund travel expenses to and from the conference, and normal conference registration. Students demonstrating financial need may also include conference-associated food and lodging in their budget. These applications are accepted on a rolling basis.

The application for any student grant consists of (1) a student-authored project proposal, including a line-item budget, and (2) a letter of support written by a qualifying member of the Stanford faculty. URP may also consult student transcripts as well as outside faculty reviewers. Proposals are judged on intellectual significance, rigor and feasibility of project design, and evidence of student preparedness.

Major Grant and Chappell Lougee Scholarship recipients may include a stipend within their budget if they are dedicating full-time to their project over the Summer Quarter. These students may also request additional funding to help meet the Financial Aid Office’s expected student contribution.

URP also provides considerable advising support for students considering a research grant. URP staff members offer proposal writing and project design consultation as well as advice on administrative policies. Students can view sample proposals at the URP office. For more information on student grant programs, see the URP web site at http://urp.stanford.edu/.

DEPARTMENTAL AND FACULTY-SPONSORED RESEARCH OPPORTUNITIES

DEPARTMENTAL AND RESEARCH CENTER PROGRAMS

Departments, interdisciplinary programs, and Stanford research centers may apply through the URP office for VPUE Departmental Grants for Undergraduate Research to support programs that provide undergraduates with close mentorship and training in scholarship and research. Typically, departments pair students with a faculty member or faculty-led research group according to their mutual scholarly interests. Students conduct substantive, directed research on a particular aspect of the faculty’s research project, and they meet frequently with their faculty mentors to discuss progress and future directions for the project. The official request for proposals may be found on the faculty resources section of the URP web pages. Students should check with URP staff to determine which departments and centers currently sponsor research programs.

FACULTY GRANTS FOR UNDERGRADUATE INDEPENDENT STUDY AND RESEARCH

Individual faculty members may also apply through the URP office for VPUE Faculty Grants for Undergraduate Research. Faculty Grants provide funding for undergraduates to work closely with faculty on a directed research project. Typical student research activities include conducting literature reviews, developing and conducting research surveys, collecting and analyzing data, aiding in the development of course materials, and conducting laboratory experiments. Faculty determine student participation in this program, so students should contact departments and faculty for more information. Faculty may obtain the official request for proposals on the faculty resources section of the URP web site.

SUMMER RESEARCH COLLEGE

Summer Research College (SRC) is a residential program directed by URP for students engaged in faculty-mentored research endeavors on campus over the summer.

SRC aims to foster close intellectual and social contact among students and faculty in an interdisciplinary residential community. During the day, students work with their faculty advisers or research groups campus-wide. In the evenings and on weekends, they have opportunities to share in research discussions, dinners with faculty guests, social and cultural activities, and other informal gatherings with fellow researchers.

SRC is not a source of funding for student research; it is a residential program intended to enrich undergraduates’ summer research experience. Residents of SRC obtain funding through URP and non-URP funding programs. For more information about SRC, including registration procedures and college policies, see the URP web site at http://urp.stanford.edu.
HONORS PROGRAMS

Qualified undergraduates are encouraged to participate in honors programs offered by departments and interdisciplinary programs. These capstone programs, usually completed in the senior year, provide opportunities for students to engage in advanced research, analysis, and articulation with faculty guidance. Honors programs may require in-depth research or field work with an extended written thesis, laboratory work accompanied by a report, or a creative project. Some honors programs require a public oral and visual presentation of the project’s results. Each department and interdisciplinary program develops its own requirements for entry into its program and criteria for honors projects. Some honors programs require students to be majors, while other programs are available to any undergraduate with relevant preparation. Students are urged to check with each department and program to determine eligibility and other requirements. The URP sponsors the Golden and Firestone Honors Awards in recognition of the most exceptional student honors theses.

HONORS WRITING PROGRAMS

In addition to thesis writing support organized by departments and programs, URP offers writing consultation in the form of workshops during seminars, as well as consultation with graduate student assistants and faculty providing writing support for different honors programs. Students writing honors theses can also obtain individual editorial consultation at the URP Office. Editorial support is also offered for other advanced writing needs, such as revision of a paper for publication in a professional journal, and personal statements and essays for master’s and doctoral programs, and for national fellowship competitions (see Fellowships and Graduate School Applications Services below).

HONORS COLLEGE

The Honors College brings students writing honors theses to campus in September before the start of the regular school year for a program of group and major-based activities. By concentrating solely on the thesis for nearly three weeks, Honors College participants begin the senior year with a serious commitment to independent scholarship in an atmosphere of shared intellectual purpose. The college sponsors crossdisciplinary forums, such as writing workshops and methodology panels, as well as residential activities, such as cultural and social outings, and a celebratory concluding event to which students invite their research advisors. Students participating in Honors College receive room and board, and special access to computers.

FELLOWSHIPS AND GRADUATE SCHOOL APPLICATIONS SERVICES

URP staff provide practical advice to Stanford undergraduates and recent graduates on how to prepare and apply for master’s and doctoral programs. Along with the Overseas Resource Center, URP staff help students to compete for merit scholarships and post-baccalaureate fellowships. The URP offers workshops and individual consultations on choosing a graduate school and fellowship program, writing personal statements, soliciting letters of recommendation, and speaking in interviews. The URP office also administers campus nomination competitions for the Goldwater, Udall, Beinecke, Center for the Study of the Presidency, Jack Kent Cooke, Carnegie, and Truman scholarships.

STUDENT DISABILITY RESOURCE CENTER (SDRC)

The SDRC coordinates academic and other accommodations for undergraduates and graduate students who with disabilities including mobility impairments, chronic illness, sensory disabilities, learning disabilities, and psychological disabilities. The center’s goal is to enable students with disabilities to participate fully in the educational experience at Stanford while meeting the academic standards maintained by the university.

In accordance with the provisions of the Americans with Disabilities Act of 1990 and Section 504 of the Rehabilitation Act of 1973, the SDRC offers an array of accommodations and auxiliary aids and services to students with documented disabilities. Direct support services include, but are not limited to note-taking, Brailing, oral or sign language interpretation, stenocaptioning, books on tape or electronic text, examination accommodations, and special housing arrangements. During the academic year, the SDRC runs a golf cart service called DisGo Cart for use by students who have temporary and permanent mobility impairments or who use a wheelchair. To arrange for an on-campus ride call 725-2484 (5-CHUG).

ASSISTIVE LEARNING TECHNOLOGY CENTER (ALTEC)

ALTeC is the technology arm of the OAE. It provides resources to make information technology and education more accessible for those with disabilities, such as accessible PC and Mac computer workstations, speech recognition and screen reading software, alternative input devices, and numerous non-computer accommodations.
SCHWAB LEARNING CENTER

The Schwab Learning Center offers enhanced services specifically for students with learning differences (LD) and attention deficit hyperactivity disorder (ADHD). Among these services are screening assessments for learning differences, individual learning strategy sessions, and tutoring in various academic disciplines.

CENTER FOR UNIVERSAL DESIGN IN EDUCATION

Application of the principles of universal design for instruction (UDI) represents a new approach to teaching that promotes proactive design and use of inclusive instructional practices that benefit all students. The center seeks to advance the development of instructional methods, tools, and strategies that are flexible, customizable, and accessible to students from different backgrounds, learning styles, abilities, and disabilities in a variety of learning contexts.

CAREER DEVELOPMENT CENTER

Center Office: 563 Salvatierra Walk
Web Site: http://cardinalcareers.stanford.edu

Counseling Services — Monday, Tuesday, Wednesday, and Friday, 9 a.m. to 12 noon, 1 p.m. to 5 p.m., Thursday, 9 a.m. to 12 noon, 1 p.m. to 6 p.m.; (650) 725-1789.

Employment Services — Monday to Friday, 8:15 a.m. to 4:30 p.m.; (650) 723-9014.

Reference File Services — Monday to Friday, 9 a.m. to 12 noon, 1 p.m. to 3 p.m.; (650) 723-1548.

The Career Development Center (CDC) offers a wide range of services from counseling, workshops, and presentations to on-campus recruiting, job/internship databases, reference file services, library resources, and alumni networking, to help students make informed decisions and to plan for life after Stanford.

Services are open to undergraduates and graduate students, and all students are encouraged to visit in person or via the web. Programs and services are free to students; limited services are available to alumni and student spouses and domestic partners.

The following suggestions may assist in approaching and using the CDC to best benefit:

- Visit early in a Stanford career.
- Gather general career information through the career resource library, jobs/internship database, handouts, and alumni network.
- Inquire about individual counseling for all stages of career planning and development.
- Participate in workshops and other programs to clarify career goals.
- Use the Cardinal Recruiting Program as a convenient way to interview with employers; or use the Reference File Service to ease the management of applications for graduate school or employment.

COMMUNITY CENTERS

There are six ethnic and community centers that support students who seek services associated with a particular group or community. Each center has its own site and professional staff who advise and counsel students. In addition, the centers sponsor programs throughout the year that foster intellectual, personal, and cultural growth. Detailed information is available on the following web sites:

- Asian American Activities Center: http://www.stanford.edu/group/a3c/
- Black Community Services Center: http://www.stanford.edu/dept/BCSC/
- El Centro Chicano: http://www.stanford.edu/dept/elcentro/
- LGBT Community Resources Center: http://www.stanford.edu/QR/
- Native American Cultural Program: http://www.stanford.edu/dept/nacc/
- Women’s Center: http://www.stanford.edu/group/womenscntr/

GRADUATE LIFE OFFICE

Graduate Life Office: Escondido Village Office, 859 Escondido Road
Graduate Community Center: 750 Escondido Road

Web Site: http://glo.stanford.edu

The Graduate Life Office (GLO) works with students on and off campus and with student groups, including Community Associates (student residence staff), the Graduate Student Programming Board, and the Graduate Student Council, to create an inclusive environment through programs in the residences and campus-wide. The recently constructed Graduate Community Center (GCC) serves as a centrally-located focal point for meetings and activities in the graduate community.

The GLO staff also works with individual students who need information and support or who may be experiencing personal difficulties. Staff members are knowledgeable about and have access to support and resources available throughout the University.

HAAS CENTER FOR PUBLIC SERVICE

The Haas Center for Public Service connects academic study with community and public service to strengthen communities and develop effective public leaders. The Center aspires to develop aware, engaged, and thoughtful citizens who contribute to the realization of a more just and humane world.

To accomplish these objectives, the center collaborates with associated units at Stanford to implement programs in five areas of work. Through the center’s fellowship programs, undergraduates perform summer internships in nonprofit organizations, foundations and government agencies locally, nationally, and internationally. Postgraduate fellowships allow graduating seniors to work with a mentor in a nonprofit or public agency for a year. With support from the center, Stanford faculty members have created service-learning courses that involve Stanford students in providing direct service and community-based research efforts in collaboration with local schools and other partner agencies. The center’s Public Service Scholars Program supports seniors writing honors theses that combine academic research with public service. Faculty from Stanford’s School of Education collaborate with center staff to provide curriculum guidance and training for tutors and mentors at nearby schools, and courses and a lecture series on public leadership. A leadership development program brings students together with community and public leaders to enhance students’ skills. Another program trains Stanford students to bring results of scientific research to neighboring schools. The federally-supported Community Service Work-Study program, administered in conjunction with the University’s Financial Aid Office, allows students to satisfy work-study obligations year-round by working in community organizations and public agencies. Center staff provide leadership development through training, advising, and resources to Stanford in Government, Alternative Spring Break, and other student groups engaged in service.

The Haas Center also houses associated programs, including: Stanford in Washington (a unit of the School of Humanities and Sciences); the Institute for Diversity in the Arts (a program of the Committee on Black Performing Arts and the Drama department); and Volunteers in Asia (VIA), a nonprofit cultural and educational exchange program.

Students interested in public service fellowships, service-learning courses, community-based research, public and community service
BECHTEL INTERNATIONAL CENTER

Web Site: http://www.stanford.edu/dept/icenter/

The Bechtel International Center (I-Center) is a meeting place for students and senior research scholars at Stanford from throughout the world and for internationally oriented U.S. students, faculty, and short-term visitors on the campus. Through a variety of social, cultural, and educational programs, I-Center facilities are utilized to acquaint students and scholars with the life of the University and the community, and to bring them together in activities of mutual interest.

I-Center services include advisers, working closely with the University’s academic departments, include advising foreign students and scholars on matters such as immigration, referrals to counselors in personal matters relating to academic performance, psychological and cultural adjustment, promoting cultural exchanges, and advising spouses and families about opportunities and resources in the community.

The Overseas Resources Center, within the I-Center, provides the following services: advising on scholarships for study and research overseas, information on non-Stanford study abroad and passport photos, international student ID cards, and youth hostel membership cards.

JUDICIAL AFFAIRS AND STUDENT CONDUCT

In March 1996, President Gerhard Casper convened the Committee of 15 and requested a review of the student judicial system at the University under the then-existing Legislative and Judicial Charter of 1968. During the following year, the Committee of 15 conducted an extensive review of the existing charter and process and drafted a new charter to take its place. The Student Judicial Charter of 1997 was approved by the Associated Students of Stanford University, the Senate of the Academic Council, and the President of the University during Spring Quarter 1996-97 and Autumn Quarter 1997-98, replacing the earlier charter and becoming effective in January 1998. Cases of alleged violations of the University’s Honor Code, Fundamental Standard, and other student conduct policies now proceed through an established student judicial process based upon the Student Judicial Charter of 1997, which can be found in its entirety at the University’s Office of Judicial Affairs web site at http://judicialaffairs.stanford.edu. The web site also contains the policies, rules, and interpretations, as well as the University’s Student Conduct Penalty Code, applicable to those students found responsible for violating the Honor Code, the Fundamental Standard, or other University policy or rule.

When a violation of the Fundamental Standard, Honor Code, or other University policy or rule governing student conduct is alleged, or whenever a member of the University community believes such a violation has occurred, he or she should contact the Office of Judicial Affairs, at Tresidder Memorial Union, 2nd floor, phone (650) 725-2485, fax (650) 736-0247, or email judicial.affairs@stanford.edu.

The primary codes of conduct for students are the Fundamental Standard and Honor Code.

THE FUNDAMENTAL STANDARD

Students at Stanford are expected to know, understand, and abide by the Fundamental Standard, which is the University’s basic statement on behavioral expectations articulated in 1896 by Stanford’s first President, David Starr Jordan, as follows:

“Students are expected to show both within and without the University such respect for order, morality, personal honor, and the rights of others as is demanded of good citizens. Failure to do this will be sufficient cause for removal from the University.”

Actions that have been found to be in violation of the Fundamental Standard include:

- Physical Assault
- Property Damage
- Forgery
- Theft
- Sexual harassment or other sexual misconduct
- Misrepresentation in seeking financial aid, University housing, University meals, or other University benefits
- Driving on campus while under the influence of alcohol
- Misuse of computer equipment or email
- Sending threatening or obscene messages

There is no standard penalty which applies to violations of the Fundamental Standard. Penalties range from a formal warning to expulsion. Each case is fact specific; considerations include the nature and seriousness of the offense, the motivation underlying the offense, and precedent in similar cases.

THE HONOR CODE

The Honor Code is the University’s statement on academic integrity. It is essentially the application of the Fundamental Standard to academic matters. Provisions of the Honor Code date from 1921, when the honor system was established by the Academic Council of the University Faculty at the request of the student body and with the approval of the President. The Honor Code reads:

“A. The Honor Code is an undertaking of the students, individually and collectively:

1) that they will not give or receive aid in examinations; that they will not give or receive unpermitted aid in class work, in the preparation of reports, or in any other work that is to be used by the instructor as the basis of grading;

2) that they will do their share and take an active part in seeing to it that others as well as themselves uphold the spirit and letter of the Honor Code.

“B. The faculty on its part manifests its confidence in the honor of its students by refraining from proctoring examinations and from taking unusual and unreasonable precautions to prevent the forms of dishonesty mentioned above. The faculty will also avoid, as far as practicable, academic procedures that create temptations to violate the Honor Code.

“C. While the faculty alone has the right and obligation to set academic requirements, the students and faculty will work together to establish optimal conditions for honorable academic work.”

Examples of conduct that have been found to be in violation of the Honor Code include:

- Copying from another’s examination paper or allowing another to copy from one’s own paper
- Unpermitted collaboration
- Plagiarism
- Revising and resubmitting a quiz or exam for regrading without the instructor’s knowledge and consent
- Representing as one’s own work the work of another
- Giving or receiving aid on an academic assignment under circumstances in which a reasonable person should have known that such aid was not permitted

internships for youth and education, or service organization leadership development should visit the Haas Center, see http://haas.stanford.edu, or call (650) 723-0992.
For more information please see the Interpretations and Applications of the Honor Code at: http://www.stanford.edu/dept/vpsa/judicialaffairs/guiding/honorcode.int.htm. The standard penalty for a first offense is a one quarter suspension from the University and 40 hours of community service. In addition, many faculty members issue a “No Pass” for the course in which the violation occurred.

OFFICE OF RESIDENTIAL EDUCATION

Web Site: http://www.stanford.edu/dept/resed/

The Office of Residential Education is responsible for developing the policies, programs, and staffing which support the intellectual, educational, and community-building activities in student residences. The Residential Education program provides Stanford undergraduates with a small community experience within a large research university. Programs extend the classroom into the residences and complement the academic curriculum with activities and experiences essential to students’ preparation for life in a global society. An extensive network of staff, including many that live in the residence halls, supports students during their undergraduate careers.

OFFICE OF STUDENT ACTIVITIES

Web site: http://www.stanford.edu/dept/OSA/

The Office of Student Activities supports student activities, nearly 600 student organizations, the ASSU, and sororities and fraternities through such as publications, workshops, one-on-one consultation, and major event planning support. The OSA also provides fundraising expertise for student groups and leadership opportunities for students.

VOLUNTARY STUDENT ORGANIZATIONS

At its March 1963 meeting, the Board of Trustees adopted the following policy:

“Students are encouraged to study, discuss, debate, and become knowledgeable about contemporary affairs. Expressing opinions or taking positions with respect to these matters is up to the individual students or to volunteer groups of students so constituted that they are authorized to speak for their members. This is not a function of student government at Stanford.

“3. All students are required to become members of the Associated Students of Stanford University, which represents them with respect to student affairs on the Stanford campus. The student government, under this policy, is not authorized to speak for students on other matters.

“4. Under such regulations as may be established from time to time by the President of the University, students may form voluntary organizations constituted to speak for their members with respect to matters outside the scope of student government, provided such organizations clearly identify themselves and, in any public statements, make it clear that they do not represent or speak for the University or the Associated Students.

“Any questions concerning the interpretation and application of this policy shall be resolved by the President of the University.”

Voluntary student organizations are those organizations: (1) in which membership is not mandatory and is nondiscriminatory, (2) in which membership is both open and limited to current Stanford students registered in a degree-granting program, (3) in which students make all organizational decisions, and (4) whose purposes and procedures are consistent with the goals and standards of the University. In order to use University facilities, the Stanford name, or to receive ASSU funding, all voluntary student organ-

izations must register with the University through the Office of Student Activities on the second floor of Tresidder Memorial Union.

As a condition of registration, each voluntary student organization must file and have approved each of the following:

1. A statement of purpose and organizational constitution.
2. A statement about membership eligibility.
3. Clear procedures for officer elections.
4. Identification of the authorized representative of the group, who must be a currently registered student, and at least five active members in the organization who are currently registered students.

Each voluntary student organization must renew its registration with the University annually, early in Autumn Quarter, by submitting new registration materials.

If a voluntary student organization that is registered with the University seeks to use University facilities for meetings open to more than its own members and to specifically invited guests, such meetings shall be subject to the regulations of the Committee on Public Events. All organization events held in University facilities must receive event approval from the Office of Student Activities and Stanford Events.

A voluntary student religious organization may hold open meetings in University facilities only with the approval of the Office of the Dean of the Chapel.

A registered voluntary student organization may advocate publicly a position on a public issue, provided the organization clearly identifies itself, and provided such an organization in any public statement makes clear it does not represent or speak for the University or for the Associated Students.

No student group may use University space or facilities or receive other University support for purposes of supporting candidates for public office. Groups may use public places such as White Plaza for tables, speeches, and similar activities; may have intermittent use of on-campus meeting rooms; and may request to reserve auditoriums and similar space for public events including speeches by political candidates as long as all University guidelines are followed.

TRESIDDER MEMORIAL UNION

Tresidder Memorial Union (TMU) is a center of community activity on the Stanford campus. It houses a variety of food services; meeting rooms for special occasions; a ticket office, a campus information center; branch offices and ATMs for the Stanford Federal Credit Union, and Wells Fargo; ATMs for Bank of America; a fitness center; and a hair styling shop. Tresidder Express carries groceries, magazines, and sundries.

TMU is also the home of the Associated Students of Stanford University (ASSU), the Dean of Students Affairs Office, Judicial Affairs, and the Office of Student Activities.

VADEN HEALTH CENTER

Center Office: 866 Campus Drive
Web Site: http://vaden.stanford.edu

The Allene G. Vaden Health Center strictly protects the confidentiality of information obtained in medical care and counseling.

MEDICAL SERVICES

Medical Services (650-498-2336, ext. 1) is the first stop for diagnosis and treatment of illness, injury, and ongoing conditions, as well as preventive counseling and education. Services (without charge) include:

• Medical appointments in general medicine and sports medicine
• Medical advice for routine concerns

VADEN HEALTH CENTER: 866 Campus Drive
Web Site: http://vaden.stanford.edu

The Allene G. Vaden Health Center strictly protects the confidentiality of information obtained in medical care and counseling.

MEDICAL SERVICES

Medical Services (650-498-2336, ext. 1) is the first stop for diagnosis and treatment of illness, injury, and ongoing conditions, as well as preventive counseling and education. Services (without charge) include:

• Medical appointments in general medicine and sports medicine
• Medical advice for routine concerns

VADEN HEALTH CENTER: 866 Campus Drive
Web Site: http://vaden.stanford.edu

The Allene G. Vaden Health Center strictly protects the confidentiality of information obtained in medical care and counseling.

MEDICAL SERVICES

Medical Services (650-498-2336, ext. 1) is the first stop for diagnosis and treatment of illness, injury, and ongoing conditions, as well as preventive counseling and education. Services (without charge) include:

• Medical appointments in general medicine and sports medicine
• Medical advice for routine concerns

VADEN HEALTH CENTER: 866 Campus Drive
Web Site: http://vaden.stanford.edu

The Allene G. Vaden Health Center strictly protects the confidentiality of information obtained in medical care and counseling.

MEDICAL SERVICES

Medical Services (650-498-2336, ext. 1) is the first stop for diagnosis and treatment of illness, injury, and ongoing conditions, as well as preventive counseling and education. Services (without charge) include:

• Medical appointments in general medicine and sports medicine
• Medical advice for routine concerns

VADEN HEALTH CENTER: 866 Campus Drive
Web Site: http://vaden.stanford.edu

The Allene G. Vaden Health Center strictly protects the confidentiality of information obtained in medical care and counseling.

MEDICAL SERVICES

Medical Services (650-498-2336, ext. 1) is the first stop for diagnosis and treatment of illness, injury, and ongoing conditions, as well as preventive counseling and education. Services (without charge) include:

• Medical appointments in general medicine and sports medicine
• Medical advice for routine concerns

VADEN HEALTH CENTER: 866 Campus Drive
Web Site: http://vaden.stanford.edu

The Allene G. Vaden Health Center strictly protects the confidentiality of information obtained in medical care and counseling.

MEDICAL SERVICES

Medical Services (650-498-2336, ext. 1) is the first stop for diagnosis and treatment of illness, injury, and ongoing conditions, as well as preventive counseling and education. Services (without charge) include:

• Medical appointments in general medicine and sports medicine
• Medical advice for routine concerns

VADEN HEALTH CENTER: 866 Campus Drive
Web Site: http://vaden.stanford.edu

The Allene G. Vaden Health Center strictly protects the confidentiality of information obtained in medical care and counseling.

MEDICAL SERVICES

Medical Services (650-498-2336, ext. 1) is the first stop for diagnosis and treatment of illness, injury, and ongoing conditions, as well as preventive counseling and education. Services (without charge) include:

• Medical appointments in general medicine and sports medicine
• Medical advice for routine concerns

VADEN HEALTH CENTER: 866 Campus Drive
Web Site: http://vaden.stanford.edu

The Allene G. Vaden Health Center strictly protects the confidentiality of information obtained in medical care and counseling.

MEDICAL SERVICES

Medical Services (650-498-2336, ext. 1) is the first stop for diagnosis and treatment of illness, injury, and ongoing conditions, as well as preventive counseling and education. Services (without charge) include:

• Medical appointments in general medicine and sports medicine
• Medical advice for routine concerns

VADEN HEALTH CENTER: 866 Campus Drive
Web Site: http://vaden.stanford.edu

The Allene G. Vaden Health Center strictly protects the confidentiality of information obtained in medical care and counseling.

MEDICAL SERVICES

Medical Services (650-498-2336, ext. 1) is the first stop for diagnosis and treatment of illness, injury, and ongoing conditions, as well as preventive counseling and education. Services (without charge) include:

• Medical appointments in general medicine and sports medicine
• Medical advice for routine concerns

VADEN HEALTH CENTER: 866 Campus Drive
Web Site: http://vaden.stanford.edu

The Allene G. Vaden Health Center strictly protects the confidentiality of information obtained in medical care and counseling.
• Referral to specialists, primarily at Stanford Hospital and Clinics and Menlo Medical Clinic.
• Additional services (fees may apply): allergy injections, immunizations, travel services, physical exams for employment and scholarships, HIV testing, laboratory, X-rays, pediatric immunizations (academic year only), drug screening (academic year only).
• Pharmacy (650-498-2336, ext. 3) and physical therapy (650-723-3195) are available on site.

COUNSELING AND PSYCHOLOGICAL SERVICES (CAPS)

CAPS (650-723-3785) helps students who experience a wide variety of personal, academic, and relationship concerns. Services (without charge) include:
• Evaluation and brief counseling, including personal, couples and group therapy. Students requesting or requiring longer, ongoing therapy incur fees.
• Workshops and groups that focus on students’ social, personal, and academic effectiveness.
• Crisis counseling for urgent situations 24 hours a day.
• Consultation and outreach to faculty, staff, and student organizations.

YWCA SEXUAL ASSAULT CENTER AT STANFORD

The YWCA Sexual Assault Center at Stanford assists students, staff, faculty, and other Stanford campus affiliates who are victims of sexual assault. Located on the first floor of Vaden Health Center, it is open by appointment or drop-in office hours, Monday and Wednesday, 2:00-4:00 PM, and Tuesday and Thursday, 3:00-5:00 PM. The center also can be reached at its 24-hour telephone line (650) 725-9955.

HEALTH PROMOTION SERVICES

Health Promotion Services (650-723-0821) educates and supports students to help them make informed, healthy decisions about their lifestyle and behavior. Services include:
• Individual preventive counseling and resource referral concerning nutrition, weight management, eating and body image, alcohol, tobacco and other drug use, sexual assault and harassment, relationships, intimacy and gender issues, and sexual health.
• Health education speakers, programs, events and workshops at student residences, community centers, student organizations, and for new students (such as Real World: Stanford).
• Academic courses and internships.
• Student groups and volunteer opportunities including Peer Health Educators and anonymous HIV testing and counseling.

HEALTH INSURANCE

All registered students are required to have health insurance. Call (650) 723-2135 for more information. Cardinal Care, a University-sponsored plan for students, fulfills this requirement. Insured by The Chickering Group, an Aetna Company (medical), and ValueOptions (mental health), Cardinal Care features comprehensive, worldwide coverage. Services by referral at Stanford University Medical Center, and lowest costs when one initiates care at Vaden Health Center. Health insurance for spouses, domestic partners and children is available. Options for voluntary dental insurance are offered.

OTHER SERVICES AND PROGRAMS

BOOKSTORE

Web Site: http://www.stanfordbookstore.com

Organized in 1897, Stanford Bookstore, (650) 329-1217, located at 519 Lasuen Mall, provides a diverse selection of books, course materials, and supplies to the students, faculty, staff, and community in and surrounding Stanford. The bookstore carries over 120,000 titles, including a wide selection of books written by Stanford authors, making it one of the largest bookstores in the nation. The bookstore also carries a complete selection of Stanford logo apparel, gifts and souvenirs, periodicals, and a café that provides an enhanced shopping experience. The Computer Store, in the main branch, sells academically priced computer hardware and software. Other services include shipping of purchases, gift certificates, book buyback, fax service, postage stamp sales, an ATM machine, and Enterprise Rent-A-Car hotline. There are five branches in addition to the Stanford Bookstore that also serve the community: the Stanford Professional Bookstore Palo Alto, (650) 614-0280, which carries medical and technical books, supplies, stationery, medical instruments, bestsellers, and clothing; The Track House Sports Shop, (650) 327-8870, at the corner of Campus Drive and Galvez Street; Tresidder Express convenience store in Tresidder Union; the Stanford Shop, (650) 614-0295, at the Stanford Shopping Center; and the Bookshop, (650) 725-2775, at the Cantor Center for the Arts.

STANFORD CONFERENCE SERVICES

A conference is defined as any student or adult group that convenes for part of a day (including a luncheon), overnight, or for several days, outside the regular or summer academic sessions for registered students.

To make arrangements for holding a new conference from June 18 through Labor Day, contact Conference Services at (650) 723-3126, email conferenceinquiries@stanford.edu. For conferences occurring immediately after Labor Day through June 17, contact Non-Academic Facilities Scheduling in the Office of the University Registrar, (650) 723-6755, or email reg-events@stanford.edu. Policies concerning conferences are the responsibility of the offices of the President and the Provost.

External organizations interested in meeting at Stanford must obtain sponsorship from a University department. Conferences initiated by University departments or external organizations must demonstrate consistency with the University’s academic mission. The sponsoring department submits its proposal to the Director of Conferences for review in terms of available facilities and for the approval of the President’s Office.

On-campus residential housing and dining services are normally available from the Sunday following Commencement through Labor Day. Assistance with arrangements for tables, chairs, audiovisual aids, signage, and other equipment may be made through Conference Services. For more information, see http://conference.stanford.edu. During the academic year, housing arrangements for University-sponsored visitors can be made through the SLAC Guest House; see http://slacguesthouse.stanford.edu.
O Superintendent Ombuds: David Rasch
O Ombuds Office: Building 310, Room 104, Main Quad
O Phone: (650) 723-3682
O Email: rasch@stanford.edu
O Web Site: http://www.stanford.edu/dept/ocr/ombuds/
O School of Medicine Ombuds: Martha Mckee
O Email: marta.mcke@stanford.edu

The charge to the Ombuds office at Stanford is: “The Ombudsperson’s task is to protect the interests and rights of members of the Stanford community from injustices or abuses of discretion, from gross inefficiency, from unnecessary delay and complication in the administration of University rules and regulations, and from inconsistency, unfairness, unresponsiveness, and prejudice in the individual’s experience with University activities. The Ombudsperson’s office exists to receive, examine, and channel the complaints and grievances of members of the Stanford community, and to secure expeditious and impartial redress.”

Any troublesome matter in the University community may be discussed in confidence with the University Ombuds. Services of the office are available to students, staff, and faculty.

Although possessing no decision making authority, the Ombuds has wide powers of inquiry. The Ombuds refers matters to the proper person or office expeditiously and also provides conflict resolution services. For the role of the office of the Ombuds in cases of sexual harassment, see the “Non-Academic Regulations” section of this bulletin.

POLICE SERVICES
Department Office: Corner of Campus Drive and Serra Street
Phone: (650) 723-9633
Web Site: http://police.stanford.edu

The Stanford Department of Public Safety is a full service police department that operates 24 hours a day, 7 days a week. For police, fire, or ambulance response, dial 9-1-1, or 9-9-1-1 from a University phone. Emergency assistance can also be obtained by using one of the nearly 100 Blue Emergency Phone Towers strategically placed around campus.

The department is comprised of the following divisions:

The Field Services Division consists of sworn and non-sworn officers who patrol the campus and respond to calls for service. Sworn officers receive their police powers through the Santa Clara County Sheriff’s Office. Sworn officers have the legal authority to stop vehicles, make arrests, and enforce all laws. Non-sworn officers assist the sworn officers with security patrols, evidence collection, crime prevention presentations, and other assigned tasks.

Community Service Division: Community Service Officers (CSOs) enforce the parking rules and regulations on campus, and provide traffic control at special events, construction zones, and accident scenes. CSOs also provide building security during emergency or critical incidents.

The Support Services Division provides logistical, technical, and accounting support to the department. Special events are handled through this division as well. Special Events Personnel (SEPs) provide security at campus events including athletic events, concerts, student-sponsored events, and dignitary visits. SEPs are available for hire by groups needing security at their University events. Contact the special events office at (650) 723-4924, or email event_security@stanford.edu, for more information.

The Administrative Support Division supports the department through training, recruiting, payroll, human resources, and other business functions.

For additional safety information or to view the yearly crime statistics, see the Stanford Safety and Security Almanac, available free from Public Safety, or see http://police.stanford.edu.

OFFICE FOR RELIGIOUS LIFE

Phone: (650) 723-1762
Web Site: http://religiouslife.stanford.edu

The Office for Religious Life in Memorial Church nurtures spiritual, religious, and ethical life for the Stanford University community and beyond. Multifaith exploration and dialogue, central in Stanford’s history from its founding, is a vital part of both its ethos and education.

The Deans for Religious Life oversee and provide support for Stanford Associated Religious (S.A.R.), approximately thirty religious organizations invited to offer their spiritual services to the campus. The deans are committed to welcoming students of all genders and sexual orientations, all religious and non-religious traditions, and all cultural backgrounds. They strive to ensure that students, faculty and staff find lively, thoughtful and supportive contexts on Stanford’s campus, in which to pursue their spiritual journeys.

STANFORD ALUMNI ASSOCIATION

Web Site: http://www.stanfordalumni.org
Phone: (800) 786-2586 or (650) 723-2021

Established in 1892 by members of Stanford’s first graduating class, the Stanford Alumni Association oversees alumni activities and services, including reunions/homecoming, campus conferences, regional and class programming and events, Stanford Magazine, a web site, enrichment education, faculty-led travel, and alumni networking, mentoring, and volunteering.

The Stanford Alumni Association Student Outreach department provides students with networking forums, celebratory and social events, and awards to assist in meeting the needs of college life and transitions after graduation. The Alumni Association seeks to foster classmate and student/alumni connections and develop programs that leverage a community of 200,000 students, alumni, and faculty worldwide. Networking programs include Student-Alumni Connection Lunches and Dinners that take place at alumni homes and businesses and an Alumni Speaker Series that brings successful alumni to campus for conversations about how Stanford has impacted their lives. Award programs include: the J.E. Wallace Sterling Award which recognizes a graduating senior who has demonstrated service to the university and potential for continued service to the University; the Robert L. Pierce Memorial Award which provides funding to a student or student group for a creative project that serves the student community; and Cardinal Class Core, a program for graduating seniors who have demonstrated outstanding leadership and involvement as students and plan to become active alumni volunteers. Celebratory events include a Homecoming Tailgate for students and pre-Commencement events for graduating seniors including Senior Send-Off, Senior Dinner on the Quad, Senior Class Day Luncheon, and The Night Before Party.

STANFORD EVENTS

Stanford Events supports the mission and goals of Stanford University through open engagement of the campus community and the worldwide public. The department has three divisions: Public Events, Stanford Lively Arts, and the Stanford Ticket Office.

Public Events oversees, advises, and produces University events and ceremonies as designated by the President’s office such as: Commencement, Baccalaureate, the University President’s inaugurations, New Student Orientation Convocation, Community Day/Founders’ Celebration, and other high-profile university events. This division also serves in an advisory capacity to the schools, departments, and student groups on campus, and oversees University policy and procedure regarding campus
events. The Public Events office has final approval authority of Stanford facility and open space use for non-academic public events on campus. Information about University event planning, policies, procedures, and University facilities can be found at http://stanfordevents.stanford.edu, or (650) 723-2551.

Stanford Lively Arts, the University’s presenting program, annually brings to campus a full season of music, dance, and theater by world-famous artists and exceptional newcomers. It further research and creativity through world premiers, unique collaborations, and commissions. In addition to on-stage performances, Lively Arts extends and supplements the academic life of the University through master classes, extended residencies, workshops, lectures and demonstrations, and group discussions. Internationally acclaimed artists perform serious work with Stanford students in classrooms as well as in residence halls. Discounts on performances are available for faculty, staff, and students. For tickets and more information, see http://livelyarts.stanford.edu, or call (650) 725-ARTS (2787).

Stanford Ticket Office provides ticketing services for the arts and entertainment events of Stanford University. Tickets for Stanford Lively Arts, Stanford music and drama departments, Stanford Jazz Workshop/Festival, and the ASSU Concert Network are among the event tickets that are available through this office. For more information, see http://tickets.stanford.edu, or call (650) 725-ARTS (2787).

AWARDS AND HONORS

FACULTY AND STAFF AWARDS

KENNETH M. CUTHERBERTSON AWARD

The Kenneth M. Cuthbertson Award was established in 1981 for recognition of exceptional service to Stanford University. It was established by members of the faculty who wish to remain anonymous. All members of the Stanford community are eligible for the award; the sole criterion is the quality of the contribution that the recipients have made to the University. The award provides a way of honoring members of the staff and faculty for their efforts on behalf of the University.

Ordinarilly, one award is made each year. The award was first presented in 1981 to the person for whom it is named. Kenneth M. Cuthbertson was one of the early architects of Stanford’s long-term financial planning and fundraising program. His service to Stanford has set an enduring standard for those who will come after him. The award is made annually at the University Commencement Ceremony.

LOYD W. DINKELSPIEL AWARDS

The Lloyd W. Dinkelspiel Awards recognize distinctive and exceptional contributions to undergraduate education at Stanford University. The two principal awards are made to the faculty or staff members adjudged to have made the most distinctive contribution to the development and enrichment of undergraduate education in its broadest sense. Two awards are also made to graduating seniors who combine academic achievement with effective contributions to undergraduate student life. Preference is given to service in the School of Humanities and Sciences in the area of liberal education. The awards are made from an endowment fund established in memory of Lloyd W. Dinkelspiel, a Stanford alumnus and trustee. The awards are made annually at the University Commencement Ceremony.

WALTER J. GORES AWARDS

The Walter J. Gores Faculty Achievement Awards for excellence in teaching were established by bequest of Walter J. Gores, Stanford Alumnus of the Class of 1917 and a professor at the University of Michigan for 30 years. Teaching is understood in its broadest sense and includes, in particular, lecturing, leading discussions, tutoring, and advising at the undergraduate or professional levels. Any member of the teaching staff of the University is eligible for an award, including all faculty of professorial rank, instructors, lecturers, teaching fellows, and teaching and course assistants. Ordinarily, awards are made to a senior faculty member (associate or full professor) or senior lecturer; a junior faculty member or member of the teaching staff; and a teaching assistant (graduate or undergraduate student). The awards are made annually at the University Commencement Ceremony.

ALLAN COX MEDAL FOR FACULTY EXCELLENCE FOSTERING UNDERGRADUATE RESEARCH

The Allan Cox Medal for Faculty Excellence Fostering Undergraduate Research is awarded annually to a faculty member who has established a record of excellence directing undergraduate research over a number of years. It may also go to a faculty member who has done an especially outstanding job with just one or two undergraduates who demonstrated superior work. The medal was established in memory of the former professor of Geophysics and Dean of the School of Earth Sciences, a strong supporter of faculty-student research collaboration.

HERBERT HOOVER MEDAL FOR DISTINGUISHED SERVICE

David Starr Jordan’s firm belief that every academic degree should represent work actually done in or under the direction of the institution granting it has meant that, since its founding, Stanford has awarded no honorary degrees. As a means of recognizing extraordinary individuals who deserve special acknowledgment, the Stanford Alumni Association in 1962 voted to establish the Herbert Hoover Medal for Distinguished Service. The name pays tribute to the former President’s example of service to his University, to his country, and to the cause of world humanitarianism. Indeed, Mr. Hoover was the first award recipient. The gold medal is presented following selection by an anonymous committee appointed by the Chair of the Board of Directors of the Alumni Association. There have been 11 honorees.

STUDENT AWARDS

BOOTE PRIZE FOR EXCELLENCE IN WRITING

Awarded during the freshman year, the Boothe Prize recognizes excellence in writing. Students are selected for this honor on the basis of essays written for courses fulfilling the Introduction to the Humanities or Writing and Rhetoric requirements. The prize is named for Mr. and Mrs. D. Power Boothe, Jr., whose gifts to the University reflect their interest in the humanities.

PRESIDENT’S AWARD FOR ACADEMIC EXCELLENCE IN THE FRESHMAN YEAR

The President’s Award honors students who have exceptionally distinguished academic records that exemplify a strong program of study in the freshman year. Students eligible for the award normally have completed Writing and Rhetoric and Introduction to the Humanities requirements during their first year at Stanford.

DEANS’ AWARD FOR ACADEMIC ACHIEVEMENT

The Deans of Earth Sciences, Engineering, and Humanities and Sciences recognize from five to ten undergraduate students each year for their academic endeavors. Honorees are cited for noteworthy accomplishments which represent more than a high grade point average or success in course work. Faculty nominate students who have exceptional tangible achievements in classes or independent research, national academic competitions, a presentation or publication for a regional or national audience, or exceptional performance in the creative arts.

FIRESTONE MEDAL FOR EXCELLENCE IN RESEARCH

The Firestone Medal is awarded to seniors in recognition of excellence in undergraduate research. Departments in the School of Humanities and
EXCHANGE PROGRAMS AND CROSS-ENROLLMENT AGREEMENTS

Stanford has exchange programs and cross-enrollment agreements with a number of other colleges and universities. The purpose of these programs and agreements is to offer Stanford students courses and training that are not available in the Stanford curriculum.

EXCHANGE PROGRAMS UNDERGRADUATE

Stanford has exchange programs with four colleges and universities that allow students to exchange schools for a quarter/semester or for a year, depending on the school. These programs are best suited to students in their junior year, when the major area of study has been determined.

Stanford students register for zero units at Stanford during the quarter(s) in which they are attending another college or university and pay the regular Stanford tuition. Courses taken at the other institution are treated as transfer credit back to Stanford. Students should contact the External Credit Evaluation section of the Office of the University Registrar to determine whether the courses taken through an exchange program may qualify for credit toward a Stanford degree. Only the number of units accepted in transfer, not the course titles or the grades received, are recorded on the Stanford transcript.

Exchange programs are currently available at three historically black institutions: Howard University in Washington D.C.; and Morehouse College and Spelman College in Atlanta, Georgia. The exchange program at Dartmouth College in Hanover, New Hampshire, focuses on Native American Studies. Further information is available at the Undergraduate Advising Center.

GRADUATE

The Exchange Scholar Program is open to doctoral students in the fields of humanities, social sciences, and sciences who have completed one full year of study at one of the participating institutions. These students may apply to study at Stanford for a maximum of one academic year to take advantage of particular educational opportunities not available on the home campus. The participating institutions are Brown University, University of Chicago, Columbia University, Cornell University, Harvard University, Massachusetts Institute of Technology, Princeton University, University of Pennsylvania, and Yale University. Further information on the program may be obtained from the Office of the University Registrar, or the graduate dean’s office at participating institutions. Some institutions may place restrictions on specific departments.

Stanford also has separate exchange programs with the University of California, Berkeley, and the University of California, San Francisco. Further information may be obtained at the Office of the University Registrar.

CROSS-ENROLLMENT AGREEMENTS FOR ROTC

Stanford has cross-enrollment agreements for the Reserve Officers’ Training Corps (ROTC) with the Navy and Marine Corps ROTC program at the University of California at Berkeley, the Army ROTC program at Santa Clara University, and the Air Force ROTC program at San Jose State University. The purpose of these agreements is to allow Stanford students to engage in military training while working on their degrees from Stanford. Courses taken in ROTC programs are offered by and through UC Berkeley, Santa Clara, and San Jose State. The courses do not qualify to be used towards the 12-unit requirement for full-time registration status or satisfactory academic progress requirements for Stanford undergraduates. Certain ROTC courses may be eligible to be used as transfer credit if they qualify under Stanford’s transfer credit practices.
Normally, students who participate in ROTC training complete a four-year course of instruction at the respective institution that consists of two years of basic courses during the freshmen and sophomore years, and an advanced course of instruction during the junior and senior years. Students who accept ROTC scholarships are generally subject to a service obligation, depending on the regulation of the particular service.

Stanford students who are enrolled in ROTC programs under the cross-enrollment agreements are eligible to compete for scholarships to include full tuition and a monthly stipend (Navy and Air Force), or other varying amounts (Army). Students normally compete for national scholarships as high school seniors, although current Stanford students may be eligible to enroll in ROTC on a non-scholarship basis. Non-scholarship ROTC students are eligible to compete for scholarships, and individual services may offer additional scholarship programs to current qualifying undergraduate and graduate students. Interested students should contact the appropriate military professor at the host institution to obtain information on these programs and to initiate application procedures (see below).

Students who satisfactorily complete an ROTC program and are awarded a Stanford degree qualify for a commission as a Second Lieutenant in the U.S. Army, an Ensign in the U.S. Navy, a Second Lieutenant in the U.S. Marines, or a Second Lieutenant in the U.S. Air Force.

For questions concerning the ROTC programs, Stanford students should consult one of the following: Air Force ROTC, San Jose State University, San Jose, CA 95192-0051, telephone (408) 924-2960; Army ROTC, Department of Military Science, Santa Clara University, Santa Clara, CA 95053, telephone (408) 554-6836; Naval ROTC, 152 Hearst Gym, University of California, Berkeley, CA 94720-3640, telephone (510) 642-7602.

COURSES

AIR FORCE ROTC

The following are offered by San Jose State University:

AS 001A,B. The Foundation of the United States Air Force — Freshman year. Introduces students to the Air Force and AFROTC. The characteristics, missions, and organization of the Air Force. Officership and professionalism, career opportunities, military customs and courtesies, and communication skills. Required leadership lab.

AS 002A,B. The Evolution of the United States Air and Space Power — Sophomore year. Air and space power through historical study and analysis. The capabilities, function, and doctrinal employment of aerospace forces. Emphasis is on oral and written communication skills. Required leadership lab.

AS 131A,B. Air Force Leadership Studies — Junior year. Leadership, management fundamentals, professional knowledge, Air Force personnel system, ethics, and communication skills. Application-level knowledge of skills required of junior Air Force officer through case studies, practical exercises, and seminar discussion. Required leadership lab. Prerequisites: AS 001A,B, AS 002A,B, or as determined by department chair.

AS 141A. National Security Affairs — Senior year. The national security process, international and regional relations, advanced leadership ethics, and Air Force doctrine with focus on the military as a profession, officership, military justice, civilian control of the military, and current issues affecting military professionalism. Required leadership lab. Pre- or corequisites: AS 131A, or as determined by department chair.

AS 141B. Preparation for Active Duty — Senior year. The role of the Air Force officer in contemporary society emphasizing skills to facilitate a smooth transition from civilian to military life. Required leadership lab. Pre- or corequisites: AS 131A,B, or as determined by department chair.

Leadership Laboratory (LLAB) — Mandatory. Hands-on. Drill and ceremony; Air Force customs and courtesies; leadership and follower-ship skills. Guest speakers.

ARMY ROTC

FRESHMAN YEAR

MILS 11. Basic Leadership I: Introduction to Leading Organizations — Taught on Stanford campus. The Army’s theory of leadership through the primary field manual on leadership plus supplementary readings as assigned. Basic soldier skills. The Army’s physical fitness program. One 60-minute class per week; three 3-hour leadership labs required. One weekend field exercise away from the University.

MILS 12. Basic Leadership II: Leadership Theory — Taught on Stanford Campus. Review Army leadership theory from MILS 11 and survey other leadership theories. Comparative leadership theory. The Army’s formal ethical decision making process. Effective communication techniques. One 60-minute class per week. Three 3-hour leadership labs required. One evening military formal dinner.

MILS 13. History of Military Leadership — Taught on Stanford campus. How leadership is a central factor in preparing for and winning battles. How leaders succeed or fail. Leadership principles to train, prepare for, and conduct military operations. One 60-minute class per week. Three 3-hour leadership labs required. One weekend field training exercise away from the University.

SOPHOMORE YEAR

MILS 21. Basic Leadership III: Leadership in Practice — Taught on Stanford campus. Army leadership theory. Case studies of leadership. How personal leadership is critical to the success or failure of an organization. Ethical organizational climate. One 60-minute class per week. Five 3-hour labs per quarter. One weekend field training exercise away from the University.

MILS 22. Battle Analysis — Taught on Stanford campus. Analysis of military battles to understand the reasons for success or failure of both leaders and units in the battles. The principles of war, the role played by formal tactics in battle, the role of weapons systems and their improvements, and the role of leaders. Battles may include examples from the classical period, the American Civil War, WW II, and a modern American battle. One 60-minute class per week. Five 3-hour labs per quarter. One evening military formal dinner.

MILS 23. Troop Leading Procedures — Taught on Stanford campus. Plans and orders that enable small units to complete assigned tasks. Formal military decision making process. Planning techniques used to develop orders. Briefing plans and decisions. Review of basic soldier skills. One 60-minute class per week. Five 3-hour labs per quarter. One field training exercise away from the University.

JUNIOR YEAR

MILS 131. Leading Small Organizations I — Taught at Santa Clara University. Troop leading procedures and military decision making process in small unit planning and preparation. Advanced planning techniques and writing formal orders. Emphasis is on developing advanced skills needed for Army ROTC National Advanced Leader Camp. Three 60-minute classes or two 90-minute classes per week. Five 3-hour labs per quarter. One field training exercise away from the university. Prerequisites: MILS 11, 12, 13, 21, 22, and 23, or consent of department chair.

MILS 132. Leading Small Organizations II — Taught at Santa Clara University. How small organization leaders exercise control of their organizations. Emphasis is on planning strategies, problem solving, practical exercises, and preparation for the Army ROTC National Advanced Leadership Camp. Army risk assessment and risk management doctrine. Three 60-minute classes or two 90-minute classes per week. Five 3-hour labs per quarter. One evening military formal dinner. Prerequisite: MILS 131, or consent of department chair.
MILS 133. Leading Small Organizations III — Taught at Santa Clara University. Small unit tactical proficiency. Troop leading procedures and the military decision making process in the preparation of Patrol OPORD’s. How to call for, adjust, and integrate indirect fires into a scheme of maneuver. Conditions and procedures utilized at advance camp to prepare cadets to render optimal performance in the camp environment. Three 60-minute classes or two 90-minute classes per week. Five 3-hour labs per quarter. One field training exercise away from the University. Prerequisite: MILS 132, or consent of department chair.

SENIOR YEAR

MILS 141. Leadership Capstone I: Staff Management — Taught at Santa Clara University. First course in the Capstone to the Army ROTC program. Management of a small Army organization, the Army ROTC cadet battalion, through regular formal meetings and briefings. Assignment to an actual staff or leadership position within the battalion organization. Depending on the position assigned, students are responsible for management areas including budget, logistics, personnel, public affairs, training, and organization operations. Students must show proficiency in understanding Army leadership principles and methods as well as planning and procedures for leading small organizations. Two 90-minute seminars per week. Five 3-hour labs per quarter. One weekend field training exercise away from the University. Prerequisite: MILS 133, or consent of department chair.

MILS 142. Leadership Capstone II: Military Ethics — Taught at Santa Clara University. Second course in the Capstone to the Army ROTC program. Management of the Army ROTC cadet battalion. New position assignments. Introduction to just war theory. Two 90-minute seminars per week. Five 3-hour labs per quarter. One evening military formal dinner. Prerequisite: MILS 141.

MILS 143. Leadership Capstone III: Transition to Lieutenant — Taught at Santa Clara University. Final course in the Capstone to the Army ROTC program. The moral employment of forces and weaponry. Goal is to ensure a smooth transition into the Army as a second lieutenant. Two 90-minute seminars per week. Five 3-hour labs per quarter. One weekend field training exercise away from the University. Prerequisite: MILS 142.

NAVAL ROTC

The Department of Naval Science at UC Berkeley offers programs of instruction for men and women leading to active duty reserve commissions in the U.S. Navy or U.S. Marine Corps. Navy option students enrolled in one of the four-year programs normally complete the following courses during the first two years. Students should consult http://navsci.berkeley.edu/ for more information and changes to course offerings.

NS 1. Introduction to Naval Science — Freshman year.

NS 2. Sea Power and Maritime Affairs — Freshman year.

NS 3. Leadership and Management — Sophomore year.

NS 10. Ship Systems — Sophomore year.

NS 12A. Navigation and Naval Operations I — Junior year.

NS 12B. Navigation and Naval Operations II — Junior year.

NS 401. Naval Ship Systems — Senior year.

NS 412. Leadership and Ethics — Senior year.

In addition to the above courses, Navy option ROTC students are required to participate in weekly professional development laboratories (drill) at UC Berkeley and complete a number of other courses at Stanford including one year of calculus, physics, and English, and one quarter of computer science, and military history or national security policy.

In lieu of NS 401, NS 10, NS 12A and NS 12B, Marine option students participate in Marine Seminars and complete MA 154, History of Littoral Warfare, and MA 20, Evolution of Warfare, or a designated equivalent course. Marine option students also participate in the weekly professional development laboratories.
Nonacademic Regulations

STatement of Nondiscriminatory Policy

Stanford University admits students of either sex and any race, color, religion, sexual orientation, or national and ethnic origin to all the rights, privileges, programs, and activities generally accorded or made available to students at the University. It prohibits discrimination, including harassment, against students on the basis of sex, race, age, color, disability, religion, sexual orientation, national and ethnic origin, and any other characteristic protected by applicable law in the administration of its educational policies, admissions policies, scholarships and loan programs, and athletic and other University-administered programs. The following person has been designated to handle inquiries regarding this policy: the Special Counselor to the President for Campus Relations, Building 170, Main Quad, Stanford University, Stanford, CA 94305-2100; (650) 725-8395 (voice), (650) 723-1216 (TTY), (650) 725-3577 (fax).

Americans with Disabilities Act/Rehabilitation Act Grievance Procedure

For information concerning policies and procedures for students with disabilities, see http://www.stanford.edu/dept/ocr/access/student.html, or the ADA Section 504 Compliance Officer, Diversity and Access Office, Building 310, Main Quad, Mail Code 2100, (650) 723-0755 (Voice), (650) 723-1216 (TTY), (650) 723-1791 (Fax); see also the Student Disability Resource Center at http://www.stanford.edu/group/DRC/.

Policy

The following is quoted from the policy:

I. Policy

Stanford University, in compliance with state and federal laws and regulations, including the Americans with Disabilities Act of 1990 (ADA) and Section 504 of the Rehabilitation Act of 1973 (Section 504), does not discriminate on the basis of disability in administration of its education-related programs and activities, and has an institutional commitment to provide equal educational opportunities for disabled students who are otherwise qualified.

Students who believe they have been subjected to discrimination on the basis of disability, or have been denied access to services or accommodations required by law, have the right to use this grievance procedure.

II. Applicability

The grievance procedure set forth below is applicable to undergraduate and graduate students of the University. In general, it is designed to address disputes concerning the following:

A. Disagreements regarding a requested service, accommodation, or modification of a University practice or requirement;
B. Inaccessibility of a program or activity;
C. Harassment or discrimination on the basis of disability;
D. Violation of privacy in the context of disability.

For disputes regarding certain specific academic accommodations or modification of academic requirements (such as reduction in the number of academic course units taken quarterly or yearly, requests for substitution of courses, or issues relating to academic standing), the alternate procedure set forth in Section V (C) of the Stanford University Policy and Procedure for Student Requests for Services and Accommodations should be followed. For questions regarding which procedure is applicable, contact the Compliance Officer at the Diversity and Access Office.

These two sets of procedures supplement the Statement on Student Academic Grievance Procedures (set forth in the Stanford Bulletin) for disability-related grievances.

III. Compliance Officers

Stanford University’s Compliance Officers are responsible for administering this grievance procedure as well as ensuring compliance with applicable laws. Rosa González is the designated Compliance Officer Diversity and Access Office, located in Building 310 in the Main Quad, (650) 723-0755 (Voice), (650) 723-1216 (TTY), (650) 723-1791 (Fax).

Additional Compliance Officers may be designated from time to time by the Provost from those faculty and staff members knowledgeable concerning disability issues and the legal mandates of state and federal disability statutes.

IV. Informal Resolution—Second Review

A. Prior to initiating the formal complaint procedure set forth below, and as a prerequisite to it, the student shall contact the Compliance Officer for assistance in resolving the matter informally within seven calendar days of the determination communicated by the DRC (if there was such a determination).

If the Compliance Officer is not successful in quickly achieving a satisfactory resolution (that is, generally within seven calendar days), the Compliance Officer will take the steps described in subparagraph ‘B’ below.

B. Second Review Panel: in accordance with the dispute resolution procedures outlined in Section VII of the Stanford University Policy and Procedure for Student Requests for Services and Accommodations, the Compliance Officer will convene an ad-hoc second review panel to review the issue(s) raised. The panel will consist of the following (or their designees): the Compliance Officer reviewing the request, the Director of the DRC, the Dean of Students, and (depending upon the issues) such other academic or administrative personnel as may be appropriate. This panel will review the request, investigate, and attempt to resolve the issues within seven calendar days of the request for or initiation of a second review. No formal report need be issued by the panel, but the panel will document the outcome of its review in a letter to the student. If the student is not satisfied with the panel’s disposition of the matter, the student may file a formal complaint in accordance with the procedure described below.

V. Formal Complaint

If the procedure set forth above for informal resolution does not yield a successful resolution, then the student may file a formal complaint in the following manner:

A. When to File Complaint: complaints shall be filed within ten calendar days of the end of the informal resolution process described above.
B. What to File: a complaint must be in writing and include the following:
 1. The grievant’s name, address, email address, and phone number
 2. A full description of the problem
 3. A statement of the remedy requested
 4. A copy of the letter from the Second Review Panel setting forth the outcome of the informal grievance procedure described above
C. Where to File Complaint: the complaint shall be filed with the Compliance Officer at the Diversity and Access Office, Building 310, Main Quad, Mail Code 2100; (650) 723-1791 (Fax).
D. Notice of Receipt: upon receipt of the complaint, the Compliance Officer reviews the complaint for timeliness and appropriateness for this grievance procedure, and provides the grievant with written notice acknowledging its receipt.
E. Investigation: the Compliance Officer or his or her designee (hereafter collectively referred to as the “grievance officer”) shall promptly initiate an investigation. In undertaking the investigation, the grievance officer may interview, consult with and/or request a written response to the issues raised in the grievance from any individual the grievance officer believes to have relevant information, including faculty, staff, and students.
F. Representation: the grievant and the party against whom the grievance is directed shall have the right to have a representative. The party shall indicate whether he or she is to be assisted by a representative and, if so, the name of that representative. For purposes of this procedure, an attorney is not an appropriate representative.
G. Findings and Notification: upon completion of the investigation, the grievance officer will prepare and transmit to the student, and to the
party against whom the grievance is directed, a final report containing a summary of the investigation, written findings, and a proposed disposition. This transmission will be expected within 45 calendar days of the filing of the formal complaint. The deadline may be extended by the Compliance Office for good cause. The final report shall also be provided, where appropriate, to any University officer whose authority will be needed to carry out the proposed disposition or to determine whether any personnel action is appropriate.

H. Final Disposition: the disposition proposed by the grievance officer shall be put into effect promptly. The grievant or any party against whom the grievance or the proposed disposition is directed may appeal. The appeal to the Provost (as set forth below) will not suspend the implementation of the disposition proposed by the grievance officer, except in those circumstances where the Provost decides that good cause exists making the suspension of implementation appropriate.

VI. Urgent Matters
Whenever the application of any of the time deadlines or procedures set forth in this grievance procedure creates a problem due to the nature of the complaint, the urgency of the matter, or the proximity of the upcoming event, the Compliance Officer will, at the request of the grievant, determine whether an appropriate expedited procedure can be fashioned.

VII. Remedies
Possible remedies under this grievance procedure include corrective steps, actions to reverse the effects of discrimination or to end harassment, and measures to provide a reasonable accommodation or proper ongoing treatment. As stated above, a copy of the grievance officer’s report may, where appropriate, be sent to University officer(s) to determine whether any personnel action should be pursued.

VIII. Appeal
Within ten calendar days of the issuance of the final report, the grievant or the party against whom the grievance is directed may appeal to the Provost the grievance officer’s determination.

An appeal is taken by filing a written request for review with the Compliance Officer at the Diversity and Access Office, Building 310, Room 112, Mail Code 2100; (650) 725-1791 (Fax).

The written request for review must specify the particular substantive and/or procedural basis for the appeal, and must be made on grounds other than general dissatisfaction with the proposed disposition. Furthermore, the appeal must be directed only to issues raised in the formal complaint as filed or to procedural errors in the conduct of the grievance procedure itself, and not to new issues.

The Compliance Officer shall forward the appeal to the Provost, and also provide copies to the other party or parties. The review by the Provost or his or her designee normally shall be limited to the following considerations:

1. Were the proper facts and criteria brought to bear on the decision or, conversely, were improper or extraneous criteria brought to bear on the decision?
2. Were there any procedural irregularities that substantially affected the outcome?
3. Given the proper facts, criteria, and procedure, was the decision a reasonable one?

A copy of the Provost’s written decision will be expected within 30 calendar days of the filing of the appeal and shall be sent to the parties, the Compliance Officer and, if appropriate, to the University officer whose authority will be needed to carry out the disposition. The deadline may be extended by the Provost for good cause. The decision of the Provost on the appeal is final.

TITLE IX OF THE EDUCATION AMENDMENTS OF 1972

It is the policy of Stanford University to comply with Title IX of the Education Amendment of 1972 and its regulations, which prohibit discrimination on the basis of sex. The Title IX Compliance Officer is the Special Counselor to the President for Campus Relations and has been appointed to coordinate the University’s efforts to comply with the law. Anyone who believes that, in some respect, Stanford is not in compliance with Title IX and its regulations should contact the Title IX Compliance Officer, the Special Counselor to the President for Campus Relations, Building 170, Main Quad, Stanford University, Stanford, CA 94305-2100; (650) 725-8395 (voice), (650) 723-1216 (TTY), (650) 725-3577 (fax). Grievance procedures to address complaints of discrimination on the basis of sex are set forth in the “Student Non-Academic Grievance section” below.

STUDENT GRIEVANCES

A Stanford undergraduate or graduate student who believes that he or she has been subject to an improper decision on an academic matter may file a grievance pursuant to the Statement on Academic Grievance Procedures (see the “Academic Policies and Statements” section of this bulletin). For other types of grievances, students should review the section that follows on the Student Non-Academic Grievance Procedure, and consult concerning applicable procedures with the the Special Counselor to the President for Campus Relations, Building 170, Main Quad, Stanford University, Stanford, CA 94305-2100; (650) 725-8395 (voice), (650) 723-1216 (TTY), (650) 725-3577 (fax).

STUDENT NON-ACADEMIC GRIEVANCE PROCEDURE

POLICY

The following is quoted from the policy:

1. Applicability

a. It is perhaps inevitable in any university that some students may at times feel improperly treated, and that concerns about unfairness (including potential discrimination and harassment) may also at times arise.

In this regard (and although this grievance procedure is not limited to concerns of discrimination), Stanford University’s Statement of Non-Discriminatory Policy provides in part: “Stanford University admits students of either sex and any race, color, religion, sexual orientation, or national and ethnic origin to all the rights, privileges, programs, and activities generally accorded or made available to students at the University. It prohibits discrimination, including harassment, against students on the basis of sex, race, age, color, disability, religion, sexual orientation, national and ethnic origin, and any other characteristic protected by applicable law in the administration of its educational policies, admission policies, scholarships and loan programs, and athletic and other University-administered programs.”

b. At Stanford, there are a number of grievance procedures through which students can raise and seek redress for what they believe to be unfair, improper or discriminatory decisions, actions, or treatment. For example:

1. If the matter involves an academic decision, the Student Academic Grievance Procedure may be the applicable procedure.
2. If the matter involves a disability-related concern, the Student ADA/Section 504 Grievance Procedure may be applicable.
3. If the matter involves a student-athlete and his or her sport, the Student-Athlete Grievance Procedure may be applicable.

The purpose of the Student Non-Academic Grievance Procedure is to provide a process for students to seek resolution of disputes and grievances that may not fall within the scope of one of the other grievance processes, including those which may arise in a student’s capacity as a student-employee.
d. This procedure is available to undergraduate and graduate students at Stanford University. It is designed to address individual decisions or individual actions that affect the grievant personally in his or her capacity as a student. This is not a grievance procedure to address the concerns of student groups. Similarly and as a general proposition, dissatisfaction with a departmental, school or University policy or practice of broad or general application is not grounds for a grievance under this procedure; the Special Counselor to the President for Campus Relations may, in his or her discretion, entertain an appeal in exceptional circumstances, such as where (for example) the policy or practice is alleged to be contrary to law.

e. The Special Counselor to the President for Campus Relations, who is also responsible for ensuring the University’s compliance with applicable anti-discrimination laws including Title IX of the Education Amendments of 1972, is responsible for administering this Student Non-Academic Grievance Procedure.

1. The Special Counselor may be contacted at: Special Counselor to the President for Campus Relations, Building 170, Main Quad, Stanford University, Stanford, CA 94305-2100; (650) 725-8395 (voice), (650) 723-1216 (TTY), (650) 725-3577 (fax); http://www.stanford.edu/dept/ocr/.

2. The Special Counselor in his or her sole discretion can decide whether to refer a grievance brought under this procedure to another grievance process. In cases involving allegations of sexual harassment in particular, the Special Counselor may wish to consult with the Director of the Sexual Harassment Policy Office as to the most appropriate way to proceed; see Section 5.d below. In cases involving student employment, the Special Counselor may wish to consult with the University’s Department of Human Resources.

2. Informal Resolution

a. As a general proposition (and although particular circumstances may warrant an exception), the student should first discuss the problem and seek a solution with the individual(s) most directly involved.

b. If no resolution results (or if circumstances make discussion inappropriate with the person most directly involved), the student should then consult with the individual at the next (higher) administrative level in the department, school, residence or University administrative unit. Serious efforts should be made to resolve the issue locally at an informal level without resort to a formal grievance; such efforts may continue even after the formal process is underway.

3. Formal Grievance

a. If informal means of resolution prove inadequate, the student should set forth in writing the substance of the complaint, the grounds for it and the evidence on which it is based, and the efforts taken to date to resolve the matter. It is at this stage that the complaint becomes a formal grievance.

b. The grievance document should be submitted to the Special Counselor. A grievance should be filed in a timely fashion, i.e., normally within thirty days of the end of the academic quarter in which the action that is the subject of the grievance occurred. A delay in filing a grievance may be grounds for rejection of that grievance.

c. The Special Counselor shall promptly initiate a review, which should normally be completed within sixty days. The Special Counselor may attempt to resolve the matter informally, and may refer the matter (or any part of it) to a grievance officer or other designee, who will look into and/or address the matter as the Special Counselor directs. The Special Counselor may also, in appropriate cases, remand the matter to the appropriate administrator (including to the administrative level at which the grievance arose) for further consideration.

d. In undertaking this review, the Special Counselor, his or her designee, or the grievance officer may request a response to the issues raised in the grievance from any individuals believed to have information the reviewer considers relevant, including faculty, staff and students.

e. The Special Counselor (or his or her designee) shall issue his or her decision in writing, and take steps to initiate such corrective action as is called for (if any). Conduct meriting discipline shall be brought to the attention of the appropriate disciplinary process.

4. Appeal

a. If the student is dissatisfied with the disposition by the Special Counselor (or his or her designee), he or she may appeal to the Provost (Office of the President and Provost, Building 10, Stanford, CA 94305-2061; phone (650) 725-4074; fax (650) 725-1347. The appeal should be filed in writing with the Provost within ten days of the issuance of the decision by the Special Counselor (or his or her designee); a delay in filing the appeal may be grounds for rejection of that appeal.

b. The Provost may attempt to resolve the matter informally, and may refer the matter (or any part of it) to a grievance appeal officer, who will review the matter at the Provost’s direction. The Provost may also, in appropriate cases, remand the matter to the appropriate administrator (including to the administrative level at which the grievance arose) for further consideration.

c. The Provost should normally complete his or her review of the appeal and issue his or her decision in writing within thirty days. That decision is final.

5. General Provisions

a. Time Guidelines—The time frames set forth herein are guidelines. They may be extended by the Special Counselor or Provost, as applicable, in his or her discretion for good cause.

b. Advisers—A student initiating or participating in a grievance under this procedure may be accompanied by an adviser in any discussion with the Special Counselor, the Provost or their designees, or a grievance or grievance appeal officer under this procedure; any adviser must be a current Stanford faculty, staff member or student.

c. Ombuds—Students should be aware that the University Ombuds (http://www.stanford.edu/dept/ocr/ombuds/) and the School of Medicine’s Ombuds (http://www.med.stanford.edu/ombuds/) are available to discuss and advise on any matters of University concern and frequently help expedite resolution of such matters. Although they have no decision making authority, the Ombuds’ Offices have wide powers of inquiry.

d. Sexual Harassment—For further information and resources concerning sexual harassment, students should refer to the webpage of the Sexual Harassment Policy Office at http://harass.stanford.edu.

e. NoRetaliation—Stanford University prohibits retaliation or reprisals against individuals based on their pursuit in good faith of a grievance under this procedure, or their participation in good faith in the grievance process.

OWNERSHIP AND USE OF STANFORD NAME AND TRADEMARKS

Stanford registered marks, as well as other names, seals, logos, and other symbols and marks that are representative of Stanford, may be used solely with permission of Stanford University. Items offered for sale to the public bearing Stanford’s names and marks must be licensed. For complete text of the currently applicable policy, including the University officers authorized to grant permission to use the Stanford name and marks, see Administrative Guide Memo 15.5, Ownership and Use of Stanford Name and Trademarks at http://adminguide.stanford.edu/15_5.pdf.

COPYRIGHT

Copyright laws protect original works of authorship and give the owners of copyrights the exclusive right to do and to authorize others to do certain things in regard to a copyrighted work, including: make copies, distribute the work, display or perform the work publicly, and create derivative works. Copyright laws apply to nearly all forms of captured content,
including traditional works like books, photographs, music, drama and sculpture. The laws also adapt to changes in technologies, and include in their scope modern forms of works like motion pictures, electronic media, software, multimedia works and some databases. Registration is not required to obtain a copyright, so if in doubt, assume a copyright applies.

Unless an exception to the copyright owner’s exclusive rights applies, you must obtain permission from the copyright owner to copy, distribute, display or perform a copyrighted work in any medium for any purpose. Be especially mindful of copyright principles when using the Internet. Just because a work is posted on the Internet does not mean that the owner of the copyright has given you permission to use it. And, you should not be posting material onto the Internet without copyright clearance.

Stanford has licenses with many publishers, which licenses permit copying of materials in accordance with the educational, research or administrative functions of the University. In addition, there are four major exceptions to the copyright owner’s exclusive rights, which permit copying without permission under limited circumstances. These are: the fair use exception, the library exception, the face-to-face teaching exception, and the distance-learning exception. For a more detailed explanation of these exceptions, the copyright laws and Stanford’s copyright policies, please review the Provost’s Copyright Reminder, http://www.stanford.edu/dept/ucomm/provost/copyright_reminder.html. It is each person’s responsibility to be aware of and abide by copyright law; violation may result in civil or criminal liability, and constitutes grounds for University discipline, up to and including discharge, dismissal and expulsion.

PEER-TO-PEER FILE SHARING

The use of file-sharing networks and software to download and share copyrighted works like software, music, movies, television programs, and books can violate copyright laws. Both the person who makes an illegal copy of a copyrighted work available and the person who receives or downloads an illegal copy have violated the law and Stanford policies. Under the Digital Millennium Copyright Act (DMCA), copyright owners are entitled to notify Internet service providers, such as Stanford, that IP addresses linked to the Stanford network are sharing copies of music and videos without authorization. The law requires the University to respond to such complaints by eliminating access to the infringing materials, and may further require Stanford to identify students, faculty, staff, or others who have violated copyright laws. The University will terminate access and will provide information as required by law. Furthermore, the University also will suspend or terminate computer access to the Stanford network, including termination of the SUNet ID, to members of the community who continue to violate copyright laws. Finally, the University will take action through the student, employee, or faculty disciplinary processes if necessary. For more information about file-sharing, please refer to Residential Computing’s online resource, File-Sharing and Copyright Law at http://rescomp.stanford.edu/info/dmca/.

DOMESTIC PARTNERS

In October 1990, Stanford University adopted a domestic partners policy. This policy, which implements the University’s nondiscrimination policy, makes services that have historically been available to married students available on an equal basis to students with same-sex or opposite-sex domestic partners. These services include access to student housing, a courtesy ID that provides access to University facilities, and the ability to purchase medical care at Vaden Health Service. A domestic partnership is defined as an established long-term partnership with an exclusive mutual commitment in which the partners share the necessities of life and ongoing responsibility for their common welfare.

SEXUAL HARASSMENT AND CONSENSUAL SEXUAL OR ROMANTIC RELATIONSHIPS

SUMMARY

Stanford University strives to provide a place of work and study free of sexual harassment, intimidation or exploitation. Where sexual harassment is found to have occurred, the University will act to stop the harassment, prevent its recurrence, and discipline and/or take other appropriate action against those responsible.

POLICY

The following is quoted from the policy:

1. In General
 a. Applicability and Sanctions for Policy Violations — This policy applies to all students, faculty and staff of Stanford University, as well as to others who participate in Stanford programs and activities. Its application includes Stanford programs and activities both on and off-campus, including overseas programs. Individuals who violate this policy are subject to discipline up to and including discharge, expulsion, and/or other appropriate sanction or action.
 b. Respect for Each Other — Stanford University strives to provide a place of work and study free of sexual harassment, intimidation or exploitation. It is expected that students, faculty, staff and other individuals covered by this policy will treat one another with respect.
 c. Prompt Attention — Reports of sexual harassment are taken seriously and will be dealt with promptly. The specific action taken in any particular case depends on the nature and gravity of the conduct reported, and may include intervention, mediation, investigation and the initiation of grievance and disciplinary processes as discussed more fully below. Where sexual harassment is found to have occurred, the University will act to stop the harassment, prevent its recurrence, and discipline and/or take other appropriate action against those responsible.
 d. Confidentiality — The University recognizes that confidentiality is important. Sexual harassment advisers and others responsible to implement this policy will respect the confidentiality and privacy of individuals reporting or accused of sexual harassment to the extent reasonably possible. Examples of situations where confidentiality cannot be maintained include circumstances when the University is required by law to disclose information (such as in response to legal process) and when disclosure is required by the University’s outweighing interest in protecting the rights of others.
 e. Protection Against Retaliation — Retaliation and/or reprisals against an individual who in good faith reports or provides information in an investigation about behavior that may violate this policy are against the law and will not be tolerated. Intentionally making a false report or providing false information, however, is grounds for discipline.
 f. Relationship to Freedom of Expression — Stanford is committed to the principles of free inquiry and free expression. Vigorous discussion and debate are fundamental to the University, and this policy is not intended to stifle teaching methods or freedom of expression generally, nor will it be permitted to do so. Sexual harassment, however, is neither legally protected expression nor the proper exercise of academic freedom; it compromises the integrity of the University, its tradition of intellectual freedom and the trust placed in its members.

2. What Is Sexual Harassment?

Unwelcome sexual advances, requests for sexual favors, and other visual, verbal or physical conduct of a sexual nature constitute sexual harassment when:

- Unwelcome sexual advances, requests for sexual favors, and other visual, verbal or physical conduct of a sexual nature constitute sexual harassment when:

...
a. It is implicitly or explicitly suggested that submission to or rejection of the conduct will be a factor in academic or employment decisions or evaluations, or permission to participate in a University activity; or

b. The conduct has the purpose or effect of unreasonably interfering with an individual’s academic or work performance or creating an intimidating or hostile academic, work or student living environment.

Determining what constitutes sexual harassment depends upon the specific facts and the context in which the conduct occurs. Sexual harassment may take many forms—subtle and indirect, or blatant and overt. For example,

- It may be conduct toward an individual of the opposite sex or the same sex.
- It may occur between peers or between individuals in a hierarchical relationship.
- It may be aimed at coercing an individual to participate in an unwanted sexual relationship or it may have the effect of causing an individual to change behavior or work performance.
- It may consist of repeated actions or may even arise from a single incident if sufficiently egregious.

The University’s Policy on Sexual Assault (see Guide Memo 23.3, Sexual Assault, http://adminguide.stanford.edu/23_3.pdf) may also apply when sexual harassment involves physical contact.

3. What To Do About Sexual Harassment

Individuals seeking further information are directed to the following resources:

- The Sexual Harassment Policy Office (Main Quad, Bldg. 310, Room 104; (650) 723-1583 or 327-8259; email: harass@stanford.edu for information, consultation, advice, or to lodge a complaint. Note that anonymous inquiries can be made to the SHPO by phone during business hours.
- Any designated Sexual Harassment Adviser or resource person listed in 3.a or 5.a.

The following are the primary methods for dealing with sexual harassment at Stanford. They are not required to be followed in any specific order. However, early informal methods are often effective in correcting questionable behavior.

a. Consultation—Consultation about sexual harassment is available from the Sexual Harassment Policy Office, Sexual Harassment Advisers (including residence deans), human resources officers, employee relations specialists, counselors at Counseling and Psychological Services (CAPS) or the Help Center, chaplains at Memorial Church, ombudspersons and others. A current list of Sexual Harassment Advisers is available from the Sexual Harassment Policy Office and at http://harass.stanford.edu/index.html#Advisers. Consultation is available for anyone who wants to discuss issues related to sexual harassment, whether or not “harassment” actually has occurred, and whether the person seeking information is a complainant, a person who believes his or her own actions may be the subject of criticism (even if unwarranted), or a third party.

Often there is a desire that a consultation be confidential or “off the record.” This can usually be achieved when individuals discuss concerns about sexual harassment without identifying the other persons involved, and sometimes even without identifying themselves. Confidential consultations about sexual harassment also may be available from persons who, by law, have special professional status, such as:

- Counselors at Counseling and Psychological Services (CAPS), http://caps.stanford.edu/
- Counselors at the Help Center, http://www.stanford.edu/dept/helpcenter/
- Chaplains at Memorial Church

- The University Ombudsperson, http://www.stanford.edu/dept/ocr/ombudsperson/
- The Medical Center Ombudsperson, http://www.med.stanford.edu/ombuds/

In these latter cases, the level of confidentiality depends on what legal protections are held by the specific persons receiving the information and should be addressed with them before specific facts are disclosed. For more information see http://harass.stanford.edu/SHisources.html#CONRESOURCES.

For further information on confidentiality, see Section 1(d) above.

b. Direct Communication—An individual may act on concerns about sexual harassment directly, by addressing the other party in person or writing a letter describing the unwelcome behavior and its effect and stating that the behavior must stop. A Sexual Harassment Adviser can help the individual plan what to say or write, and likewise can counsel persons who receive such communications. Reprisals against an individual who in good faith initiates such a communication violate this policy.

c. Third Party Intervention—Depending on the circumstances, third party intervention in the workplace, student residence or academic setting may be attempted. Third party intervenors may be the Sexual Harassment Advisers, human resources professionals, the ombudspersons, other faculty or staff, or sometimes mediators unrelated to the University.

When third party intervention is used, typically the third party (or third parties) will meet privately with each of the persons involved, try to clarify their perceptions and attempt to develop a mutually acceptable understanding that can insure that the parties are comfortable with their future interactions. Other processes, such as a mediated discussion among the parties or with a supervisor, may also be explored in appropriate cases.

Possible outcomes of third party intervention include explicit agreements about future conduct, changes in workplace assignments, substitution of one class for another, or other relief, where appropriate.

d. Formal Grievance, Appeal, and Disciplinary Processes—Grievance, appeal, or disciplinary processes may be pursued as applicable.

1. Grievances and Appeals—The applicable procedure depends on the circumstances and the status of the person bringing the charge and the person against whom the charge is brought. Generally, the process consists of the individual’s submission of a written statement, a process of fact-finding or investigation by a University representative, followed by a decision and, in some cases, the possibility of one or more appeals, usually to Stanford administrative officers at higher levels. The relevant procedure (see below) should be read carefully, since the procedures vary considerably.

If the identified University fact-finder or grievance officer has a conflict of interest, an alternate will be arranged, and the Director of the Sexual Harassment Policy Office or the Director of Employee and Labor Relations can help assure that this occurs.

In most cases, grievances and appeals must be brought within a specified time after the action complained of. While informal resolution efforts will not automatically extend the time limits for filing a grievance or appeal, in appropriate circumstances the complainant and the other relevant parties may mutually agree in writing to extend the time for filing a grievance or appeal.

A list of the established grievance and appeal procedures is located at http://hrweb.stanford.edu/ehr/policies/list_grievance_procedures.html. Copies may also be obtained from the Sexual Harassment Policy Office, http://www.stanford.edu/group/SexHarass.

Copies of the following may be obtained from Employee and Labor Relations, 651 Serra Street:
• “Solving Workplace Problems at Stanford: Understanding the Staff Dispute Resolution Policy” (also at http://hrweb.stanford.edu/forms/staffresolution.pdf)
• “Solving Workplace Problems at Stanford: Information for Academic Staff – Librarians and Academic Staff – Research Associates”
• “The Dispute Resolution Process (A User’s Guide)”

2. Disciplinary Procedures—In appropriate cases, disciplinary procedures may be initiated. The applicable disciplinary procedure depends on the status of the individual whose conduct is in question. For example, faculty are subject to the Statement on Faculty Discipline http://www.stanford.edu/dept/provost/faculty/policies/handbook/ch4.html#statementonfacultydiscipline and students to the Fundamental Standard. For additional information related to student judicial affairs, see http://www.stanford.edu/dept/vpsa/judicialaffairs/

The individuals referenced in this section are available to discuss these options and differing methods for dealing with sexual harassment.

4. Procedural Matters
a. Investigations—If significant facts are contested, an investigation may be undertaken. The investigation will be conducted in a way that respects, to the extent possible, the privacy of all of the persons involved. In appropriate cases, professional investigators may be asked to assist in the investigation. The results of the investigation may be used in the third party intervention process or in a grievance or disciplinary action.

b. Recordkeeping—The Sexual Harassment Policy Office will track reports of sexual harassment for statistical purposes and report at least annually to the University President concerning their number, nature and disposition. The Sexual Harassment Policy Office may keep confidential records of reports of sexual harassment and the actions taken in response to those reports, and use them for purposes such as to identify individuals or departments likely to benefit from training so that training priorities can be established. No identifying information will be retained in cases where the individual accused was not informed that there was a complaint.

c. Indemnification and Costs—The question sometimes arises as to whether the University will defend and indemnify a Stanford employee accused of sexual harassment. California law provides, in part, “An employer shall indemnify [its] employee for all that the employee necessarily expends or loses in direct consequence of the discharge of his [or her] duties as such” The issue of indemnification depends on the facts and circumstances of each situation. Individuals who violate this policy, however, should be aware that they and/or their schools, institutes, or other units may be required to pay or contribute to any judgments, costs and expenses incurred as a result of behavior that is wrongful and/or contrary to the discharge of the employee’s duties. In general, see Administrative Guide Memo 15.7 (http://adminguide.stanford.edu/15_7.pdf).

5. Resources for Dealing with Sexual Harassment
a. Advice — Persons who have concerns about sexual harassment should contact the Sexual Harassment Policy Office, any Sexual Harassment Adviser at http://harass.stanford.edu/index.html#Advisers or one of the other individuals listed below. Reports should be made as soon as possible: the earlier the report, the easier it is to investigate and take appropriate remedial action. When reports are long delayed, the University will try to act to the extent it is reasonable to do so, but it may be impossible to achieve a satisfactory result after much time has passed.

Likewise, anyone who receives a report or a grievance involving sexual harassment should promptly consult with the Sexual Harassment Policy Office or with a Sexual Harassment Adviser.

There are a number of individuals specially trained and charged with specific responsibilities in the area of sexual harassment. In brief, they are:

• Sexual Harassment Advisers (http://harass.stanford.edu/index.html#Advisers) serve as resources to individuals who wish to discuss issues of sexual harassment, whether because they have been harassed or because they want information about the University’s policy and procedures. There is usually at least one Adviser assigned to each of the schools at the University and to each large work unit; most of the residence deans also have been appointed as Sexual Harassment Advisers. Advisers are also authorized to receive complaints.

• The Director of the Sexual Harassment Policy Office is responsible for the implementation of this policy. The Director’s Office also provides advice and consultation to individuals when requested; receives complaints and coordinates their handling; supervises the other Advisers; encourages and assists prevention education for students, faculty and staff; keeps records showing the disposition of complaints; and generally coordinates matters arising under this policy. Because education and awareness are the best ways to prevent sexual harassment, developing awareness, education and training programs and publishing informational material are among the most important functions of the Sexual Harassment Policy Office (http://harass.stanford.edu).

• As stated above, individuals with concerns about sexual harassment may also discuss their concerns informally with psychological counselors (for example through CAPS or the HELP Center), chaplains (through the Memorial Chapel), or University or Medical School ombudspersons. For more information, see http://harass.stanford.edu/Shissues.html#CONRESOURCES.

b. External Reporting — Sexual harassment is prohibited by state and federal law. In addition to the internal resources described above, individuals may pursue complaints directly with the government agencies that deal with unlawful harassment and discrimination claims, e.g., the U.S. Equal Employment Opportunity Commission (EEOC), the Office for Civil Rights (OCR) of the U.S. Department of Education, and the State of California Department of Fair Employment and Housing (DFEH). These agencies are listed in the Government section of the telephone book. A violation of this policy may exist even where the conduct in question does not violate the law.

6. Consensual Sexual or Romantic Relationships
a. In General — There are special risks in any sexual or romantic relationship between individuals in inherently unequal positions, and parties in such a relationship assume those risks. In the University context, such positions include (but are not limited to) teacher and student, supervisor and employee, senior faculty and junior faculty, mentor and trainee, adviser and advisee, teaching assistant and student, coach and athlete, and the individuals who supervise the day-to-day student living environment and student residents. Because of the potential for conflict of interest, exploitation, favoritism, and bias, such relationships may undermine the real or perceived integrity of the supervision and evaluation provided, and the trust inherent particularly in the teacher-student context. They may, moreover, be less consensual than the individual whose position confers power or authority believes. The relationship is likely to be perceived in different ways by each of the parties to it, especially in retrospect.

Moreover, such relationships may harm or injure others in the academic or work environment. Relationships in which one party is in a position to review the work or influence the career of the other may provide grounds for complaint by third parties when that relationship gives undue access or advantage, restricts opportunities, or creates a perception of these problems. Furthermore, circumstances may change, and conduct that was previously welcome may become unwelcome. Even when both parties have consented at the outset to
a romantic involvement, this past consent does not remove grounds for a charge based upon subsequent unwelcome conduct.

Where such a relationship exists, the person in the position of greater authority or power will bear the primary burden of accountability, and must ensure that he or she—and this is particularly important for teachers—does not exercise any supervisory or evaluative function over the other person in the relationship. Where such recusal is required, the recusing party must also notify his or her supervisor, department chair or dean, so that such chair, dean or supervisor can exercise his or her responsibility to evaluate the adequacy of the alternative supervisory or evaluative arrangements to be put in place. Staff members may notify their local human resources officers. To reiterate, the responsibility for recusal and notification rests with the person in the position of greater authority or power. Failure to comply with these recusal and notification requirements is a violation of this policy, and therefore grounds for discipline.

b. With Students—At a university, the role of the teacher is multifaceted, including serving as intellectual guide, counselor, mentor and advisor; the teacher’s influence and authority extend far beyond the classroom. Consequently and as a general proposition, the University believes that a sexual or romantic relationship between a teacher and a student, even where consensual and whether or not the student would otherwise be subject to supervision or evaluation by the teacher, is inconsistent with the proper role of the teacher, and should be avoided. The University therefore very strongly discourages such relationships.

7. Policy Review and Evaluation

This policy went into effect on October 6, 1993, and was amended on November 30, 1995, and on May 30, 2002. It is subject to periodic review, and any comments or suggestions should be forwarded to the Director of the Sexual Harassment Policy Office.

RESOURCES

The following is a summary of resources concerning sexual harassment available to members of the Stanford Community:

A brochure containing the policy, a list of current sexual harassment advisers, confidential resources, and other helpful information is available online at http://harass.stanford.edu, and in printed form from the Sexual Harassment Policy Office at (650) 723-1583, Building 310, Main Quad, Room 104, MC: 2100. Copies of the University policy on sexual assault, which complements this sexual harassment policy, as well as all other documents mentioned in this section, are also available at the Sexual Harassment Policy Office. All faculty, staff, and students who have questions regarding this policy and its enforcement can consult with a Sexual Harassment Adviser or can be directed to the local Personnel Officer or Regional Human Resources Manager. Faculty members should contact their dean or department chair, and students should contact the Special Counselor and Dean of Student Affairs.

Sexual Harassment Policy Office—telephone: (650) 723-1583; email: Haras@stanford.edu.
Director: Laraine Zappert (Clinical Professor, Psychiatry and Behavioral Sciences)
Assistant Director: Nanette Andrews

SEXUAL ASSAULT

SUMMARY

The following summarizes the policy on Sexual Assault and provides information on resources available to members of the Stanford community.

55Background—Stanford University’s policy and procedures on sexual harassment are published in Administrative Guide Memo 23.2 and are republished annually in the Stanford Bulletin and elsewhere. The University’s Policy on Sexual Assault supplements them, describing Stanford University’s policy and procedures specifically concerning sexual assault. That policy has been enacted by Stanford University in accordance with California State Law, Assembly Bill 3098, Postsecondary Education: Student Safety, July, 1990.

Definition—For the purposes of the policy, “sexual assault” includes, but is not limited to, rape, forced sodomy, forced oral copulation, rape by a foreign object, sexual battery, or threat of sexual assault.

Policy—Sexual assault by force or coercion, including deliberate coercion through the use of drugs or alcohol, is absolutely unacceptable at Stanford University. Any member of the Stanford community who commits sexual assault at or on the grounds of the University, or at any of the University’s off-campus facilities or activities, or at the facilities or activities of any affiliated student organization, will face maximal institutional sanctions, in addition to any prosecutions external authorities may undertake. Stanford University is committed to providing information on services, resources, and treatment available to victims of sexual assault.

Notification—With the consent of the victim, charges of sexual assault received by University offices or personnel shall be communicated promptly to the Department of Public Safety, 711 Serra Street, telephone 9-911 for emergency response or (650) 723-9633 during normal business hours, or, in the case of a student, to the sexual assault response team at YWCA Sexual Assault Center at Stanford at Vaden Health Service, 866 Campus Drive, telephone 725-9955.

Legal Reporting Requirements—Health care professionals are expected to fulfill legally mandated reporting requirements.

Emergency Services Available to Victims—Victims of sexual assault are urged to seek immediate attention from emergency police, medical, and counseling services. On the Stanford campus and in the immediate vicinity, the following provide 24-hour response and will arrange for police assistance, medical assistance, emotional support services, and advocacy and support:

“911” Emergency Network: dial 9-911 from University phones or 911 from outside phones
Santa Clara Valley Medical Center, 751 South Bascom Avenue, San Jose, telephone (408) 885-5000
YWCA Sexual Assault Center at Stanford, for students, at the Vaden Health Service, telephone (650) 725-9955
Stanford University Hospital, 300 Pasteur Drive, Stanford, telephone (650) 723-5111

Non-Emergency Resources—Additional resources for students are available at Vaden Health Service at (650) 723-3785, including short-term counseling, referral to long-term therapy, follow-up pregnancy testing, and testing and treatment for sexually transmitted diseases. Additional services for faculty and staff are available at the University’s HELP Center, Galvez House (723-4577), including general counseling, information, support, and referral. The University ombudsperson (723-3682) is available to all in the Stanford community for general counseling, advice, and advocacy.

Ongoing Case Management Procedures—Both informal procedures and formal grievance procedures for case management of sexual assault charges are given in the University’s policy on Sexual Harassment appearing as Administrative Guide Memo 23.2 and published annually in the Stanford Bulletin. Victims are to be kept informed by those responsible for those procedures of the status of any disciplinary proceedings and the results of any disciplinary action or appeal, providing that the victim agrees in advance, in writing, to treat this information as confidential. The offices of the Dean of Students are available to help student victims deal with academic difficulties that may arise because of the victimization and its impact.
Information Requests and Confidentiality — The University offices responding to charges of sexual assault have established protocols for protecting confidentiality and for handling inquiries from the press, concerned students, and parents.

Information about Options — The University offices responding to charges of sexual assault will inform victims at a minimum, of the options of: criminal prosecution, civil prosecution, the disciplinary process, the appropriate grievance procedure, the availability of mediation, alternative housing assignments, and academic assistance alternatives.

POLITICAL ACTIVITIES

For the complete text of the currently applicable version of this policy, see Administrative Guide Memo 15.1, Political Activities, available at http://adminguide.stanford.edu/15_1.pdf.

SUMMARY

The following summarizes the policy on Political Activities:

Stanford University, as a charitable entity, is subject to federal, state, and local laws and regulations regarding political activities: campaign activities, lobbying, and the giving of gifts to public officials.

While all members of the University community are naturally free to express their political opinions and engage in political activities to whatever extent they wish, it is very important that they do so only in their individual capacities and avoid even the appearance that they are speaking or acting for the University in political matters.

In the limited circumstances where individuals must speak or act on behalf of the University in the political arena, they must do so in accordance with the provisions of this Guide Memo.

POLICY

The following is quoted from the policy:

1. Summary of Legal Requirements and Restrictions
 a. Campaign Activities: contributions of money, goods, or services to candidates for political office and in support of or opposition to ballot measure campaigns are subject to a wide variety of political laws. Depending on the jurisdiction and the campaign, political contributions may be prohibited or limited and, in nearly all cases, are subject to a complicated series of disclosure rules. Because of the University’s tax-exempt status, the University is legally prohibited from endorsing candidates for political office or making any contribution of money, goods, or services to candidates. It is important, therefore, that no person inadvertently cause the University to make such a contribution.

b. Lobbying: lobbying can generally be described as any attempt to influence the action of any legislative body (for example, Congress, state legislatures, county boards, city councils, and their staffs) or any federal, state, or local government agency. Laws regulating lobbying exist at the federal, state, and local levels but can differ widely in scope, depending on the jurisdiction. Some laws, for example, only regulate lobbying of the legislative branch. Others, however, also cover lobbying of administrative agencies and officers in the executive branch (for example, lobbying for federally-funded grants). To one degree or another, however, most lobbying laws require registration and reporting by individuals engaged in attempts to influence governmental action.

Tax-exempt organizations are permitted to lobby, and the University engages in lobbying on a limited number of issues, mostly those affecting education, research, and related activities. There is usually some threshold of time or money spent on lobbying that triggers registration and reporting requirements. Regardless of thresholds, however, no University employee — other than the following individuals, on matters under their jurisdiction — may lobby on behalf of the University without specific authorization:

- President
- Provost
- Deans of the Seven Schools
- Vice Provost and Dean of Research
- Vice President for Business Affairs and Chief Financial Officer
- Vice President for Faculty and Staff Services
- Director of the Stanford Linear Accelerator Center
- Director of the Hoover Institution
- General Counsel
- Director of Government and Community Relations

The Vice Provost and Dean of Research may grant permission to faculty members to lobby on behalf of the University for specific purposes. The Director of Government and Community Relations may grant permission to staff members to lobby on behalf of the University for specific purposes. All lobbying on behalf of the University should be coordinated with the Director of Government and Community Relations.

c. Giving of Gifts to Public Officials and Staff: almost all jurisdictions have strict rules on the extent to which gifts and honoraria may be given to public officials (both elected and non-elected officials and, often, staff). In some cases gifts and honoraria are prohibited; in others they are limited; and in most cases they are subject to detailed disclosure. In addition, in some jurisdictions such as California, gifts to both state and local public officials can result in a public official’s disqualification from participation in any governmental action affecting the interests of the donor. Meals, travel, and entertainment are the most common types of gifts, but gift rules can also apply in cases where public officials attend a reception or receive tickets to sporting or other events.

As a non-profit organization, the University generally does not give gifts to public officials and, in those limited cases where it does give such gifts, it must do so in accordance with all applicable laws and regulations. Therefore, any University employee who, on behalf of the University, wishes to make a gift to a public official must receive prior approval from the Director of Government and Community Relations before making such a gift.

d. Reporting of Political Activities: the University must report most of its political activities above certain thresholds. Therefore, any University employee engaging in such activities on behalf of the University should carefully review the remainder of this Guide Memo and should discuss the relevant activities in advance with the Director of Government and Community Relations.

2. Prohibited and Restricted Political Activities
 a. In General:
 1. No person may, on behalf of the University, engage in any political activity in support of or opposition to ballot measure campaigns. (Including giving or receiving funds or endorsements), nor shall any University resources be used for such purpose.
 2. No person may, on behalf of the University, lobby (or use University resources to lobby) any federal, state, or local legislative or administrative official or staff member unless specifically authorized to do so. Any lobbying activity, even when authorized, must be conducted in compliance with this Guide Memo, other applicable University policies, and applicable law.
 3. No person may, on behalf of the University, give a gift (or use any University resources to give a gift) to any federal, state, or local official or staff member, except in compliance with this Guide Memo, other applicable University policies, and applicable law.
 4. No person supporting candidates for public office or engaging in other political activities may use University space or facilities or receive University support, except in the limited ways described in section 3A, below.
 5. No person may use for lobbying activities federally-funded contract or grant money received by the University.

 Even the foregoing activities that are only restricted, rather than prohibited, may be subject to limitations imposed by law. Therefore, any person engaging in the activity, or contemplating doing so, should consult with the Director of Government and Community Relations.

b. Guidelines for Avoiding Prohibited Partisan Political Activities: the following guidelines should assist in preventing the involvement
or apparent involvement of the University in political activities in support of or opposition to any candidate for elective public office, that is, partisan political activities. Except in the limited circumstances set forth in section 3.b., below:

1. **Use of Name and Seal:** neither the name nor seal of the University or of any of its schools, departments, or institutions should be used on letters or other materials intended for partisan political purposes.

2. **Use of Address and Telephones:** no University office should be used as a return mailing address for partisan political mailings, and telephone service that is paid by the University, likewise, should not be used for partisan political purposes. (Obviously, a student’s dormitory room and telephone service that are personal to the student may be used for these purposes.)

3. **Use of Title:** the University title of a faculty or staff member or other person should be used only for identification and should be accompanied by a statement that the person is speaking as an individual and not as a representative of the University.

4. **Use of Services and Equipment:** University services, such as Interdepartmental Mail; equipment, such as duplicating machines, computers, and telephones; and supplies should not be used for partisan political purposes.

5. **Use of Personnel:** no University employee may, as part of his or her job, be requested to perform tasks in any way related to partisan political purposes.

3. **Permissible Activities**

 a. **In General:** as noted above, the federal, state, and local laws which limit the partisan political activities that can take place in University facilities and with University support in no way inhibit the expression of personal political views by any individual in the University community. Nor do they forbid faculty, students, or staff from joining with others in support of candidates for office or in furtherance of political causes. There is no restriction on discussion of political issues or teaching of political techniques. Academic endeavors which address public policy issues are in no way affected.

 Because the University encourages freedom of expression, political activities which do not reasonably imply University involvement or identification may be undertaken so long as regular University procedures are followed for use of facilities. Examples of permissible activities are:

 1. Use of areas, such as White Plaza, for tables, speeches, and similar activities.

 2. Use of auditoriums for speeches by political candidates, but subject to rules of the Internal Revenue Service, the Federal Election Commission, and the California Fair Political Practices Commission, and other applicable laws. Arrangements must be made with University Events and Services. (See also Guide Memo 82.1, Public Events, for more information.)

 To reiterate, because tax and political compliance laws impose restrictions, and even prohibitions, on certain political activities and on the use of buildings and equipment at a non-profit institution such as the University, any such activities must be in compliance with these legal requirements. Individuals taking political positions for themselves or groups with which they are associated, but not as representatives of the University, should clearly indicate, by words and actions, that their positions are not those of the University and are not being taken in an official capacity on behalf of the University.

 b. **Limited University Political Activities:** limited activities relating to specific federal, state, or local legislation or ballot initiatives are permissible where (1) the subject matter is directly related to core interests of the University’s activities; (2) the President has determined that the University should take a position; and (3) the individuals who speak or write on the University’s behalf are specifically authorized to do so.

4. **Responsibility for Interpretation:** the Director of Government and Community Relations, in consultation with the General Counsel, is the administrative officer responsible for interpretation and application of the above guidelines. Questions on whether planned activities are consistent with the University’s obligations should be directed to the Dean of Students, who will consult with the Director of Government and Community Relations and/or the General Counsel. All other questions on whether planned activities are consistent with the University’s obligations should be addressed directly to the Director of Government and Community Relations or the General Counsel.

CAMPUS DISRUPTIONS

The University’s policy on campus disruption applies to students, faculty, and staff. It is published in its complete form on the Judicial Affairs Office web site at http://www.stanford.edu/dept/vpsa/judicialaffairs/index.html.

POLICY

The following is quoted from the policy:

> Because the rights of free speech and peaceable assembly are fundamental to the democratic process, Stanford firmly supports the rights of all members of the University community to express their views or to protest against actions and opinions with which they disagree.

> All members of the University also share a concurrent obligation to maintain on the campus an atmosphere conducive to scholarly pursuits, to preserve the dignity and seriousness of University ceremonies and public exercises, and to respect the rights of all individuals.

> The following regulations are intended to reconcile these objectives.

> It is a violation of University policy for a member of the faculty, staff, or student body to:

1. Prevent or disrupt the effective carrying out of a University function or approved activity, such as lectures, meetings, interviews, ceremonies, the conduct of University business in a University office, and public events.

2. Obstruct the legitimate movement of any person about the campus or in any University building or facility.

> Members of the faculty, staff, and student body have an obligation to leave a University building or facility when asked to do so in the furtherance of the above regulations by a member of the University community acting in an official role and identifying himself or herself as such; members of the faculty, staff, or student body also have an obligation to identify themselves, when requested to do so by such a member of the University community who has reasonable grounds to believe that the person(s) has violated section (1) or (2) of this policy and who has so informed the person(s).

APPLICATION

The following are examples to illustrate the policy:

The policy has been applied to the following actions: refusal to leave a building which has been declared closed; obstructing the passage into or out of buildings by sitting in front of doorways; preventing University employees from entering their workplace; preventing members of a class from hearing a lecture or taking an examination; preventing the instructor from giving a lecture, by means of shouts, interruptions, or chants; preventing others from hearing a scheduled speaker by means of shouts, interruptions, or chants; refusing to leave a closed meeting when unauthorized to attend; and intruding upon or refusing to leave a private interview.

It should be understood that while the above are examples of extraordinarily disruptive behavior, the application of the policy also takes situational factors into consideration. Thus, for example, conduct appropriate at a political rally might constitute a violation of the Policy on Campus Disruption if it occurred within a classroom.

There is no “ordinary” penalty which attaches to violations of the Policy on Campus Disruption. Each case is fact-specific; considerations would include: the gravity of the offense, and prior similar misconduct. As a general rule, the more serious the offense, the less it matters that the violation had otherwise not done wrong.
USE OF THE MAIN QUADRANGLE AND MEMORIAL COURT

POLICY

The following is quoted from the policy:

The Main Quadrangle and Memorial Court are part of Stanford University’s academic preserve due to their locations at the heart of the campus. To protect and enhance their historic status, University policy limits activities primarily to established or traditional ceremonies and events.

 Unscheduled events or activities are prohibited.

 Requests for waivers to this policy must be submitted in writing to the Director of Public Events. Exceptions may be granted only in extraordinary cases.

RESOURCES

The following is a summary of resources available:

For instructions on use of the Main Quadrangle/Memorial Court, contact the Director of University Public Events at (650) 723-2551, http://stanfordevents.stanford.edu/. Note that other venues on campus (such as White Plaza) are made available for events other than scheduled “established or traditional ceremonies and events” including those that may involve amplified sound. For further information on the use of such other venues, contact the Office of Student Activities at (650) 723-2733, http://www.stanford.edu/dept/OSA/.

NOISE AND AMPLIFIED SOUND

POLICY

The following is quoted from the policy:

Stanford is not only an academic institution but a residential community as well. It is the responsibility of all faculty, students, and staff to moderate noise especially during an event or activity held on campus. Supporting the mission of the University and respecting those who are studying, researching, or otherwise carrying out academic-related activities is a Stanford priority. The campus must require a conducive atmosphere to ensure these endeavors are accomplished and supported. Disturbing noise in or around a residence or other campus buildings which infringe on the rights of other residents or members of the University community is considered a violation of this policy. As part of the event planning process, the event sponsor must obtain all appropriate approvals regarding the use of amplified sound during an event or activity.

RESOURCES

Information regarding whether and how the use of amplified sound is permitted is available from the following sources, which must be consulted for prior approval:

b. Registrar’s Scheduling Office: phone (650) 723-6755, or see http://registrar.stanford.edu/event/

PROHIBITION OF THE POSSESSION OF DANGEROUS WEAPONS ON CAMPUS

The University’s policy prohibiting weapons on campus is published in its complete form on the Judicial Affairs Office website http://stanford.edu/dept/vpsa/judicialaffairs/index.html.

POLICY

The following is quoted from the policy:

Except for authorized academic purposes, the knowing possession by any student on any Stanford campus of the following is prohibited: firearms, explosives, or any instrument or weapon of the kind commonly known as blackjack, slingshot, billy club, sandclub, sandbag, or metal knuckles.

Notwithstanding the paragraph above, a student who is a resident of a Stanford campus may store a weapon on such campus if both of the following conditions are met:

1. The student has complied with all state and federal regulations regarding the use and possession of said weapon, or, in the case of a foreign campus, with the laws of the country in which the campus is located.

2. The student stores such weapons with the Stanford Department of Public Safety (SDPS) or, in the case of a foreign campus, in a facility provided by the director of such campus.

Students may remove their weapons from storage only in accordance with regulations established by the SDPS or by the director of the foreign campus at which the weapon is stored. A student who is a resident of a Stanford campus may bring any of the above weapons on campus for purposes of storage only if the student has previously notified the SDPS of the intention to do so, but in no event more than six hours after arrival on the campus. When the student removes the weapon from storage, it must be taken off campus as soon as is practicable, but in no event more than one hour after such removal.

The term “Stanford campus” shall include all the lands and facilities of Leland Stanford Junior University, whether owned or leased, and whether located in the United States or abroad.

CONTROLLED SUBSTANCES AND ALCOHOL

SUMMARY

The following material summarizes the policy on Controlled Substances and Alcohol.

Student conduct is guided by the Fundamental Standard. Implicit in the Standard is the understanding that students are responsible for making their own decisions and accepting the consequences of those decisions.

In order to make informed decisions about alcohol and other drug use, students should educate themselves about the health and safety risks associated with their use, as well as about state and local laws on possessing, serving, and consuming alcohol. It is widely recognized that the misuse and abuse of drugs (“controlled substances”) and the abuse of alcohol are major contributors to serious health problems, as well as to social and civic concerns. Among the health risks associated with the use of illicit drugs and the abuse of alcohol are various deleterious physical and mental consequences including dependency, severe disability, even death. Information concerning the known effects of alcohol and specific drugs is available from the Alcohol and Other Drug Abuse Prevention Program at Vaden Student Health Service.

The goal of this University’s policy is to reduce the abuse and illegal use of alcohol and other drugs, and the human and material costs associated with it. The University, as an educational institution, approaches student conduct issues from a perspective that places emphasis on individual responsibility and development. Education about and prevention of alcohol and other drug-related problems will continue to be the primary emphasis and goal. However, the University expects students, as individuals and as members of groups, to conduct themselves in accordance with this and all other University policies governing student conduct.

* Controlled substances are those defined in 21 U.S.C. 812; they include, but are not limited to, substances as marijuana, heroin, cocaine, and amphetamines.

POLICY

The following is quoted from the policy:

It is the policy of the University to maintain a drug-free workplace and campus. The unlawful manufacture, distribution, dispensation, possession, and/or use of controlled substances or the unlawful possession, use, or distribution of alcohol is prohibited on the Stanford campus, in the
workplace, or as part of any of the University’s activities. The workplace and campus are presumed to include all Stanford premises where the activities of the University are conducted. Violation of this policy may result in disciplinary sanctions up to and including termination of employment or expulsion of students. Violations may also be referred to the appropriate authorities for prosecution.

This policy will be reviewed at least biennially.

APPLICATIONS

The following are examples to illustrate the policy:

No University funds or funds collected by the University may be used in a way that violates the alcohol policy. In student residences, house funds (funds collected by the University Bursar or other University offices) may not be used to buy alcohol because the majority of undergraduates are under the legal drinking age of 21. The decision to use student-collected funds to buy alcohol should be made lawfully, thoughtfully, fairly, and in a way that respects the views of all students. Students must not be required to contribute to a student-collected fund for the purposes of purchasing alcohol. No alcoholic beverages may be served at all-freshman house events in common area spaces (e.g., lounges, hallways, patios/outdoor areas).

Party planners are responsible for planning and carrying out events in compliance with this policy. At least one house or organization officer must assume responsibility for an event’s compliance with the policy, and their names must be made available to Stanford’s Department of Public Safety and the University upon request.

CONSEQUENCES OF VIOLATION

Educational and rehabilitative measures will be the preferred response to infractions of the Policy unaccompanied by more egregious misconduct. Penalties are calibrated according to the severity of the violation. Misbehavior associated with drug or alcohol use and abuse may result in one or more of the following University consequences:

Individuals who violate the University Residence Agreement may lose their University student housing privileges and/or be reported to the Judicial Affairs Office.

Individuals who violate the University’s terms and conditions for student organization recognition as defined in the Student Organization Handbook may be subject to expulsion from the student organization.

Student groups which violate the Policy may face suspension of social privileges, as well as the loss of University recognition, meeting space, and housing or other related privileges.

Students should understand that inebriation is never an excuse for misconduct, that the careless or willful reduction, through the use of alcohol or other intoxicants, of their own ability to think clearly, exercise good judgment, and respond to rational intervention may invoke more stringent penalties than otherwise might be levied.

Penalties will be imposed according to the facts and circumstances of each case. They can be imposed singly or in combination by the Office of Residential Education/Graduate Residences, the Office of Student Activities, the Dean of Students Office, and the Office of Judicial Affairs.

CIVIL LIABILITY

While the law regarding civil liability is complex, it is important to know that under some circumstances party hosts, sponsors, bartenders, or others might be held legally liable for the consequences of serving alcohol to underage drinkers or to obviously intoxicated persons. Social hosts or party planners could be sued and found personally responsible for damages to the injured party(ies) including:

Specific damages. These are damages which are measurable. For example, when bodily injury results in medical expenses or lost wages.

General damages. These are damages which cannot be specifically measured in terms of dollar amount. For example, pain and suffering resulting from bodily injury.

Punitive damages. These are damages which are intended to serve as an example to others and to discourage behavior which is deemed highly undesirable to society.

CRIMINAL LIABILITY

Stanford University is not a sanctuary from the enforcement of state and local laws. Students and others on campus who violate the law may be and have been arrested and prosecuted. Primary responsibility for law enforcement, including that related to alcohol, rests with law enforcement agencies, primarily the Stanford University Department of Public Safety. Uniformed officers who patrol the campus and respond to calls are deputized by the Sheriff of Santa Clara County and are fully empowered and authorized to stop vehicles, make arrests, and enforce all laws. Laws are subject to change; consequently, the following information is illustrative but must not be relied on as a complete and current citing of relevant laws. More information is available at the Stanford Department of Public Safety, 711 Serra Street.

Generally, it is a criminal offense:
1. To provide any alcoholic beverage to a person under 21.
2. To provide any alcoholic beverage to an obviously intoxicated person.
3. For any person under age 21 to purchase alcohol.
4. To be under the influence of alcohol or another drug in a public place and unable to exercise care for one’s own safety or that of others.
5. For persons under 21 to possess alcohol in any public place or any place open to the public (for example, public places in student residences).
6. To operate a motor vehicle while under the influence of alcohol or any other drug. Presumed to be driving under the influence (DUI) with a blood alcohol level (BAL) of 0.08% or higher.
7. To ride a bicycle while under the influence of alcohol, drugs, or both.
8. To have an open container of alcohol in a motor vehicle; and, for persons under 21 to drive a vehicle carrying alcohol or to possess alcohol while in a motor vehicle.
9. To have in one’s possession, or to use, false evidence of age and identity to purchase alcohol.
10. To possess an open container of alcohol in a public place or any place open to the public. Applies in Palo Alto jurisdiction.
11. To be in possession of an unregistered keg. All kegs sold must be registered at the time of purchase. Identification tags must be placed on all kegs in order to allow kegs to be traced if the contents are used in violation of the law.

WHERE TO GET HELP

In the event of a life threatening emergencies call 9-911 from on-campus and 911 from off-campus.

Campus Resources — (Area Code 650) Counseling and Psychological Services, 24 hours (723-3785); The Alcohol and Other Drug Abuse Prevention Program (723-3429); Stanford Alcohol and Drug Treatment Center (723-6682); Al Anon (650) 873-2356 or (408) 379-1051.

Community Resources — Alcoholics Anonymous (650) 592-2364.

HAZING POLICY

Hazing, as defined by California Education Code sections 32050 and 32051, is not permitted at Stanford University. No individual, recognized student organization, club, team, or any other Stanford-affiliated student group shall plan, engage in, or condone hazing activities, on or off the Stanford campus.
DEFINITION OF HAZING

Education Code section 32050 states: “... ‘hazing’ includes any method of initiation or preinitiation into a student organization or any pastime or amusement engaged in with respect to such an organization which causes, or is likely to cause, bodily danger, physical harm, or personal degradation or disgrace resulting in physical or mental harm, to any student or other person attending any ... college, university, or other education institution in this state; but the term ‘hazing’ does not include customary athletic events or other similar contests or competitions.”

Education Code section 32051 states: “No student, or other person in attendance at any ... private ... educational institution, shall conspire to engage in hazing, participate in hazing, or commit any act that causes or is likely to cause bodily danger, physical harm, or personal degradation or disgrace resulting in physical or mental harm to any fellow student or person attending the institution. The violation of this section is a misdemeanor, punishable by a fine of not less than one hundred dollars ($100), nor more than five thousand dollars ($5,000), or imprisonment in the county jail for not more than one year, or both.”

CONSEQUENCES OF A VIOLATION

Stanford University expects its students to conduct themselves in socially responsible and respectful ways. Thus, participation in hazing, either as an individual or as part of any student group, may result in disciplinary action up to and including expulsion, permanent loss of organizational recognition, or loss of eligibility to remain a member of any club, team, or other Stanford-affiliated student group. Consent, implied or expressed, is not a defense to any complaint or charge alleging a hazing violation.

One or more of the following may take institutional disciplinary action: the Organizational Conduct Board; Judicial Affairs; or another University office, such as the Vice Provost for Student Affairs. Institutional action may proceed whether or not a police investigation is undertaken or a criminal charge for hazing is filed by the District Attorney’s Office.

APPLICATIONS

Stanford’s hazing policy is not intended to prohibit student recruitment or new (or continuing) member activities that are positive and educational in nature, designed to instill a group ethos or unity. Its intent is to deter those behaviors that cause or are likely to cause harm to another student.

Some examples of hazing activities or events may be found online at http://osa.stanford.edu/publications/. See sections on hazing in the 2005-06 Student Organization Handbook (http://osa.stanford.edu/publications/soh/) or the Greek Guide (http://osa.stanford.edu/greek/). Questions should be directed to the Office of Student Activities, (650) 723-2733.

SMOKE-FREE ENVIRONMENT

Applicability — This policy applies to all academic and administrative units of Stanford University, including SLAC, and all campus student housing. This policy does not supersede more restrictive policies which may be in force in compliance with federal, state, or local laws or ordinances.

POLICY

The following is quoted from the policy:

1. Policy

It is the policy of Stanford University that the smoking of tobacco products in enclosed buildings and facilities and during indoor or outdoor events (and the selling of tobacco products) on the campus is prohibited.

2. Guidelines

a. Smoking-Prohibited Areas — Specifically, smoking is prohibited in classrooms and offices, all enclosed buildings and facilities, in covered walkways, in University vehicles, during indoor and outdoor athletic events, and during other University sponsored or designated indoor or outdoor events.

b. Ashtrays will not be provided in any enclosed University building or facility.

c. “Smoking Prohibited” signs will be posted.

b. Outdoor Smoking Areas — Smoking is permitted in outdoor areas, except during organized events. Outdoor smoking areas should be located far enough away from doorways, open windows, covered walkways, and ventilation systems to prevent smoke from entering enclosed buildings and facilities. To accommodate faculty, staff, and students who smoke, Vice Presidents, Vice Provosts, and Deans may designate certain areas of existing courtyards and patios as smoking areas in which case ashtrays must be provided. Costs associated with providing designated smoking areas and ashtrays will be absorbed by the specific academic or administrative unit(s).

3. Enforcement — This policy relies on the consideration and cooperation of smokers and non-smokers. It is the responsibility of all members of the University community to observe and follow this policy and its guidelines.

a. Smoking Cessation Information — Smoking cessation programs are available for faculty and staff through the Center for Research in Disease Prevention, and the Health Improvement Program (HIP). Students may contact the Health Promotion Program (HP) through the Student Health Center for smoking cessation information or programs.

b. Repeated Violations — Faculty, staff, and students repeatedly violating this policy may be subject to appropriate action to correct any violation(s) and prevent future occurrences.

4. Implementation and Distribution — Copies of this policy will be disseminated by the Manager of HR Policy/Staff and Labor Relations and the Vice Provost for Student Affairs to all faculty, staff, and students, and to all new members of the University community.

UNIVERSITY STATEMENT ON PRIVACY

Stanford University has an interest in ensuring that the privacy of its students, faculty, and staff is respected, and that no activities interfere with education, research, or residential life.

The University is private property; however, some areas of the campus typically are open to visitors. These areas include White Plaza, public eating areas (such as those at Tresidder Union), outdoor touring areas, and locations to which the public has been invited by advertised notice (such as for public educational, cultural, or athletic events). Even in these locations, visitors must not interfere with the privacy of students, faculty, and staff, or with educational, research, and residential activities. The University may revoke at any time permission to be present in these, or any other areas. Visitors should not be in academic or residential areas unless they have been invited for appropriate business or social purposes by the responsible faculty member, student, or staff member.

No commercial activity, including taking photos or similar audio or visual recordings that are sold to others or otherwise used for commercial purposes, may occur on the campus without the University’s permission. Requests for permission should be submitted to the Director of University Communications or, as appropriate, the Dean of Students, the Department of Athletics, or the Office of Public Events. Recognized student groups and official units of the University will be granted such permission so long as they do not violate privacy or property interests of others; so long as any sale of their products is predominantly on campus to students, faculty, and staff; and so long as they comply with applicable University policies and procedures.

Violaters of this policy may be subject to criminal and/or civil liability, as well as University disciplinary action.
COMPUTER AND NETWORK USAGE

POLICY

The following is quoted from the policy:

Users of Stanford network and computer resources have a responsibility not to abuse the network and resources. This policy provides guidelines for the appropriate and inappropriate use of information technologies.

SUMMARY

The following summarizes the policy on Computer and Network Usage:

In particular, the policy provides that users of University information resources must respect software copyrights and licenses, respect the integrity of computer-based information resources, refrain from seeking to gain unauthorized access, and respect the rights of other computer users.

This policy covers appropriate use of computers, networks, and information contained therein. As to political, personal and commercial use, the University is a non-profit, tax-exempt organization and, as such, is subject to specific federal, state, and local laws regarding sources of income, political activities, use of property, and similar matters. It also is a contractor with government and other entities, and thus must assure proper use of property under its control and allocation of overhead and similar costs. For these reasons, University information resources must not be used for partisan political activities where prohibited by federal, state, or other applicable laws, and may be used for other political activities only when in compliance with federal, state, and other laws, and in compliance with applicable University policies. Similarly, University information resources should not be used for personal activities not related to appropriate University functions, except in a purely incidental manner. In addition, University information resources should not be used for commercial purposes, except in a purely incidental manner or except as permitted under other written policies of the University or with the written approval of a University officer having the authority to give such approval. Any such commercial use should be properly related to University activities, take into account proper cost allocations for government and other overhead determinations, and provide for appropriate reimbursement to the University for taxes and other costs the University may incur by reason of the commercial use. Users also are required that the .edu domain on the Internet has rules restricting or prohibiting commercial use, and thus activities not appropriately within the .edu domain and which otherwise are permissible within the University computing resources should use one or more other domains, as appropriate.

The University’s Information Security Officer is authorized in certain limited circumstances to inspect or monitor private data (including email), such as when there is a reasonable cause to suspect improper use of computer or network resources.

For further information on the topic of peer-to-peer file sharing, see the section above on Copyright.

CHAT ROOMS AND OTHER FORUMS USING STANFORD DOMAINS OR COMPUTER SERVICES

For a complete text of the currently applicable version of this policy, see Administrative Guide Memo 66, Chat Rooms and Other Forums Using Stanford Domains or Computer Services, available at http://adminguide.stanford.edu/66.pdf.

POLICY

The following is quoted from the policy:

1. Definition

From time to time, University departments, faculty, students and others may host electronic communication forums, such as chat rooms, newsgroups, bulletin boards, or web sites, whereby various parties may contribute their thoughts on various subjects and where such communication is made available for others to read and comment upon. For purposes of this policy, these sites are collectively referred to as forums.

2. Establishment of Forums

a. Connection with University Activities—Forums that either use the Stanford.edu, Stanford.org, or other Stanford domains, or use University computing facilities, should be established only in connection with legitimate activities of the University.

b. University Role—Unless specifically sponsored by an academic administrative unit of the University, the University’s role in connection with these forums will be solely as a passive Internet service provider.

c. Terms of Use—In all cases, as a condition to establishing a forum, forum homepages (where they exist) and each individual forum page should contain a header that states: Subject to Terms of Use and all pages should include a link to the page maintained by the University entitled “Terms of Use.” The URL is http://www.stanford.edu/home/atoz/terms.html.

3. Operation of Forums

All forums shall be operated in compliance with the Terms of Use, as modified from time to time, and the University’s various policies regarding computer facilities and services.

PROTECTION OF CONFIDENTIAL DATA

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chinese Language Courses, see Language Center, 467</td>
<td></td>
</tr>
<tr>
<td>Chinese Literature, see Asian Languages, 268</td>
<td></td>
</tr>
<tr>
<td>see also East Asian Studies, 356</td>
<td></td>
</tr>
<tr>
<td>Civil and Environmental Engineering, 104, 107, 109, 131</td>
<td></td>
</tr>
<tr>
<td>Classics, 299</td>
<td></td>
</tr>
<tr>
<td>Ancient History, Courses in, 307</td>
<td></td>
</tr>
<tr>
<td>and Humanities, Joint Ph.D. in, 304</td>
<td></td>
</tr>
<tr>
<td>Greek, Courses in, 304</td>
<td></td>
</tr>
<tr>
<td>Latin, Courses in, 305</td>
<td></td>
</tr>
<tr>
<td>Club Sports, 273, 277</td>
<td></td>
</tr>
<tr>
<td>Cognitive Science, 481, 560</td>
<td></td>
</tr>
<tr>
<td>Committees,</td>
<td></td>
</tr>
<tr>
<td>Academic Council, 9</td>
<td></td>
</tr>
<tr>
<td>University, 9</td>
<td></td>
</tr>
<tr>
<td>Communication, 309</td>
<td></td>
</tr>
<tr>
<td>Communication Research, Institute for, 313</td>
<td></td>
</tr>
<tr>
<td>Community Centers, 684</td>
<td></td>
</tr>
<tr>
<td>Community Writing Project, 631</td>
<td></td>
</tr>
<tr>
<td>Comparative Literature, 318</td>
<td></td>
</tr>
<tr>
<td>Comparative Medicine, 642</td>
<td></td>
</tr>
<tr>
<td>Comparative Studies in Race and Ethnicity (CSRE), 326</td>
<td></td>
</tr>
<tr>
<td>Compliance with University Policies, 36</td>
<td></td>
</tr>
<tr>
<td>Computational and Mathematical Engineering (CME), 146</td>
<td></td>
</tr>
<tr>
<td>Computer and Network Usage Policy, 705</td>
<td></td>
</tr>
<tr>
<td>Computer Science, 104, 107, 109, 150</td>
<td></td>
</tr>
<tr>
<td>Computer Systems, Electrical Engineering, 167</td>
<td></td>
</tr>
<tr>
<td>Computer Systems Engineering (CSE), 102</td>
<td></td>
</tr>
<tr>
<td>Concurrent Enrollment, 24</td>
<td></td>
</tr>
<tr>
<td>Conduct of Students, see Student Affairs</td>
<td></td>
</tr>
<tr>
<td>Conference Services, 687</td>
<td></td>
</tr>
<tr>
<td>Conferal of Degrees, Graduate, 31</td>
<td></td>
</tr>
<tr>
<td>Conferal of Degrees, Undergraduate, 27</td>
<td></td>
</tr>
<tr>
<td>Construction, Civil Engineering, 132</td>
<td></td>
</tr>
<tr>
<td>Construction Engineering and Management Program (CEM), 132</td>
<td></td>
</tr>
<tr>
<td>Continuing Studies Program, 677</td>
<td></td>
</tr>
<tr>
<td>Controlled Substances and Alcohol, 702</td>
<td></td>
</tr>
<tr>
<td>Copying Printed Material for Teaching and Research, 695</td>
<td></td>
</tr>
<tr>
<td>Coterminal Bachelor’s and Master’s Degrees, 20</td>
<td></td>
</tr>
<tr>
<td>Counseling and Psychological Services (CAPS), 687</td>
<td></td>
</tr>
<tr>
<td>Courses of Instruction, 45</td>
<td></td>
</tr>
<tr>
<td>Cox Medal, Allan, 689</td>
<td></td>
</tr>
<tr>
<td>Creative Writing Fellowships, 374</td>
<td></td>
</tr>
<tr>
<td>Credentials, Public School, 35</td>
<td></td>
</tr>
<tr>
<td>Credit, 23</td>
<td></td>
</tr>
<tr>
<td>Activity Courses, 23</td>
<td></td>
</tr>
<tr>
<td>Advanced Placement, 23</td>
<td></td>
</tr>
<tr>
<td>Internship Guidelines, 23</td>
<td></td>
</tr>
<tr>
<td>Satisfactory/No Credit, 23</td>
<td></td>
</tr>
<tr>
<td>Transfer, 24</td>
<td></td>
</tr>
<tr>
<td>Cross-Enrollment Agreements for ROTC, 690</td>
<td></td>
</tr>
<tr>
<td>Cultural and Social Anthropology, 332</td>
<td></td>
</tr>
<tr>
<td>Culture, Social Relations, and Language, 231</td>
<td></td>
</tr>
<tr>
<td>Cuthbertson Award, Kenneth M., 689</td>
<td></td>
</tr>
<tr>
<td>Dance Division, 346, 351</td>
<td></td>
</tr>
<tr>
<td>Dean of Student Affairs, interim, 683</td>
<td></td>
</tr>
<tr>
<td>Deans’ Award for Academic Achievement, 689</td>
<td></td>
</tr>
<tr>
<td>Dean’s Office, Freshmen, 681</td>
<td></td>
</tr>
<tr>
<td>Departmental Honors Programs, see Department Listings</td>
<td></td>
</tr>
<tr>
<td>Design,</td>
<td></td>
</tr>
<tr>
<td>Art, 255</td>
<td></td>
</tr>
<tr>
<td>Product (Engineering), 102</td>
<td></td>
</tr>
<tr>
<td>Urban Planning and Design Option (Urban Studies), 626</td>
<td></td>
</tr>
<tr>
<td>Design/Construction Integration (CEE), 132</td>
<td></td>
</tr>
<tr>
<td>Developmental Biology, 643</td>
<td></td>
</tr>
<tr>
<td>Dinkelspiel Awards, 689</td>
<td></td>
</tr>
<tr>
<td>Directing (Drama), 343</td>
<td></td>
</tr>
<tr>
<td>Directory, 8</td>
<td></td>
</tr>
<tr>
<td>Board of Trustees, The, 8</td>
<td></td>
</tr>
<tr>
<td>Administrative Organization, 8</td>
<td></td>
</tr>
<tr>
<td>Directory Information, 38</td>
<td></td>
</tr>
<tr>
<td>Disability Act, Americans with, 693</td>
<td></td>
</tr>
<tr>
<td>Disability Resource Center (SDRC), Student, 683</td>
<td></td>
</tr>
<tr>
<td>Doctor of Education, 33, 84</td>
<td></td>
</tr>
<tr>
<td>Doctor of Jurisprudence, 33</td>
<td></td>
</tr>
<tr>
<td>Doctor of Medicine, 33</td>
<td></td>
</tr>
<tr>
<td>Doctor of Musical Arts, 33</td>
<td></td>
</tr>
<tr>
<td>in Composition, 503</td>
<td></td>
</tr>
<tr>
<td>Doctor of Philosophy, 33</td>
<td></td>
</tr>
<tr>
<td>Candidacy Time Limit, 34</td>
<td></td>
</tr>
<tr>
<td>Dissertation, 34</td>
<td></td>
</tr>
<tr>
<td>Doctoral Dissertation Reading Committee, 34</td>
<td></td>
</tr>
<tr>
<td>Foreign Language Requirement, 34</td>
<td></td>
</tr>
<tr>
<td>Ph.D. Minor, 35</td>
<td></td>
</tr>
<tr>
<td>Research Requirement, 34</td>
<td></td>
</tr>
<tr>
<td>Teaching Requirements, 34</td>
<td></td>
</tr>
<tr>
<td>Time Limit, 34</td>
<td></td>
</tr>
<tr>
<td>University Oral Examination, 34</td>
<td></td>
</tr>
<tr>
<td>Doctor of the Science of Law, 33</td>
<td></td>
</tr>
<tr>
<td>Document Fee, 16</td>
<td></td>
</tr>
<tr>
<td>Documentary Film and Video, see Film Studies, 252</td>
<td></td>
</tr>
<tr>
<td>Domestic Partners Policy, 696</td>
<td></td>
</tr>
<tr>
<td>Dormitories, see Residences, 19</td>
<td></td>
</tr>
<tr>
<td>Drama, 343</td>
<td></td>
</tr>
<tr>
<td>Drama and Humanities, Joint Ph.D. Program in, 346</td>
<td></td>
</tr>
<tr>
<td>Dual Bachelor’s Degree and B.A.S. Programs, 20</td>
<td></td>
</tr>
<tr>
<td>Earth, Energy, and Environmental Sciences (EEES), 47</td>
<td></td>
</tr>
<tr>
<td>Earth Sciences, School of, 47</td>
<td></td>
</tr>
<tr>
<td>Earth Systems Program, 49</td>
<td></td>
</tr>
<tr>
<td>East Asian Studies, 353; see also Language Center, 464</td>
<td></td>
</tr>
<tr>
<td>and Business, 355</td>
<td></td>
</tr>
<tr>
<td>and Education, 355</td>
<td></td>
</tr>
<tr>
<td>and Law, 355</td>
<td></td>
</tr>
<tr>
<td>East Asian Studies (Payson J. Treat) Theme House, 266, 354</td>
<td></td>
</tr>
<tr>
<td>Ecology/Evolution Ph.D. Track, 282</td>
<td></td>
</tr>
<tr>
<td>Econometrics, 367</td>
<td></td>
</tr>
<tr>
<td>Economic Development, 365</td>
<td></td>
</tr>
<tr>
<td>Economic History, 366</td>
<td></td>
</tr>
<tr>
<td>Economics, 358</td>
<td></td>
</tr>
<tr>
<td>Economics and Law, Joint Program in, 361</td>
<td></td>
</tr>
<tr>
<td>Economics of Industry, 367</td>
<td></td>
</tr>
<tr>
<td>Economics of Labor, 366</td>
<td></td>
</tr>
<tr>
<td>Ed.D. Degree, 33</td>
<td></td>
</tr>
<tr>
<td>Education, School of, 82</td>
<td></td>
</tr>
<tr>
<td>Educational Specialist (Ed.S.), 33</td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering, 104, 107, 110, 164</td>
<td></td>
</tr>
<tr>
<td>End-Quarter Period Policy Statement, 39</td>
<td></td>
</tr>
<tr>
<td>Energy Science and Technology, 51</td>
<td></td>
</tr>
<tr>
<td>Engineer Degree, 33, 100</td>
<td></td>
</tr>
<tr>
<td>Engineering Geology and Hydrogeology, 56</td>
<td></td>
</tr>
<tr>
<td>Engineering, School of, 99</td>
<td></td>
</tr>
<tr>
<td>Individually Designed Majors, 103</td>
<td></td>
</tr>
<tr>
<td>English, 369</td>
<td></td>
</tr>
<tr>
<td>and American Literature, 373</td>
<td></td>
</tr>
<tr>
<td>and Comparative Literature, 373</td>
<td></td>
</tr>
<tr>
<td>and Humanities, Joint Ph.D. in, 374</td>
<td></td>
</tr>
<tr>
<td>English for Foreign Students, 468</td>
<td></td>
</tr>
<tr>
<td>Enrollment Requirements, 29</td>
<td></td>
</tr>
<tr>
<td>Environment and Resources, Interdisciplinary</td>
<td></td>
</tr>
<tr>
<td>Graduate Program in (IPER), 71</td>
<td></td>
</tr>
<tr>
<td>Environmental and Water Studies (CEE), 132</td>
<td></td>
</tr>
<tr>
<td>Environmental Engineering, 105, 108, 131</td>
<td></td>
</tr>
<tr>
<td>Environmental Sciences, 55</td>
<td></td>
</tr>
<tr>
<td>Epidemiology Program, 644</td>
<td></td>
</tr>
<tr>
<td>Ethics in Society, Program in, 382</td>
<td></td>
</tr>
</tbody>
</table>
Humanities and Sciences, School of, 218
Humanities and the Premedical Sciences, 443
Humanities Center, Stanford, 671
Hydrogeology, 57
ID Cards, 38
 Personal ID Number, 38
 SUNet ID, 38
Immunology Program, 649
Independent Research Laboratories, Centers, and Institutes, 670
Individually Designed Majors (IDMs), Program for, 441
Information Systems (EE), 167
Information Technology Systems and Services (ITSS), 676
Institutional Interruption of Instruction, 18
Institute for International Studies, see Stanford Institute for International Studies (SIIS), 673
Integrated Circuits, Electrical Engineering, 167
Integrated Reservoir Modeling, M.S. in, 77
Integrative/Organismal Ph.D. Track, 282
Intercollegiate Athletics, 273, 276
Interdisciplinary Biosciences, 127
Interdisciplinary Graduate Program in Environment and Resources, IPER, 71
Interdisciplinary Studies in Humanities, 442
International Center, Bechtel, 685
International, Comparative, and Area Studies, Division of, 446
International Economics, 367
International Policy Studies (IPS), 448
International Relations (IR), 452
Internship Guidelines, 23
Interschool Honors Program in Environmental Science, Technology, and Policy, 673
Interschool Honors Program in International Security, 673
Intramural Sports (IM), 273
Introduction to Humanities Program, 459
Italian Language Courses, see Language Center, 471
Italian Section, Department of French and Italian, 395
Italy, Stanford in, 395
Japanese Language Courses, 472
Japanese Studies in Yokohama, Inter-University Center for, 267
Jewish Studies, Program in, 461
Journalism, 311
Judicial Affairs and Student Conduct, 685
Knight Fellowship Program, John S., 309
Korean Language Courses, see Language Center, 471
Korean Literature, see Asian Languages, 265
Kyoto Center for Japanese Studies, 354
Kyoto, Stanford Program in, 510, 515
Laboratory Fee, 16
Land Management, 51
Language Center, 464
 Minor in Middle Eastern Languages, Literatures, and Cultures, 464
Language Requirement for Undergraduates, 23
Lasers and Quantum Electronics (EE), 167
Late Payment Charges, 17
Latin, see Classics
Latin American Studies, Center for, 477
 Summer Internship Grant, 478
Law, School of, 632
Leave of Absence, 18, 37
 Graduate Students, 29
 Refund Schedule, 18
 Reinstatement, Graduate Students, 29
 Undergraduates (including Reinstatement), 37
Libraries and Academic Information Resources, 675
 Libraries-Coordinates, 676
 Linguistics, 479
 and Cognitive Science, 481
 English for Foreign Students, 468
 Literatures, Cultures, and Languages, Division of, 485
Loans, 14
Main Quadrangle and Memorial Court, Use of the, 702
Maison Française, La, 392, 469
Major, the Undergraduate, 24
 Individually Designed, 441
 Limits of, 27
 Multiple, 24
 Requirements, 24
 Secondary, 27
Management Science and Engineering, 105, 108, 110, 181
Manufacturing, Programs in, 109
Materials Science and Engineering, 106, 108, 110, 195
Mathematical and Computational Science, 486
Mathematics, 488
Meal Plans, 16
Mechanical Engineering, 106, 108, 110, 202
Mechanics and Computation (ME), 202
Media Studies, 312
Medical Anthropology and Genetics, 231
Medical Services, see Vaden Health Service, 686
Medicine, School of, 633
Medieval Studies, 496
Microbiology and Immunology, 652
Microwaves, Acoustics, and Optics (EE), 167
Middle Eastern Languages, 466
Midterms, 39
Minimum Progress Requirements for Graduate Students, 30
Minors, Undergraduate, 28
Modern Thought and Language, 374, 498
 and Humanities, Joint Ph.D. Degree in, 499
Molecular and Cellular Physiology, 653
Molecular Pharmacology, 655
Molecular/Cell Ph.D. Track, 281
Morrison Institute for Population and Resource Studies, 556
Multiple Majors, 24
Music, 500
 and Humanities, Joint Ph.D. Degree in, 503
Music Practice Fee, 16
Music, Science, and Technology, 502
Native American Studies, 328
Neurobiology, 656
Neurosciences Program, 657
Noise and Amplified Sound, 702
Nonacademic Regulations, 693
Nonmatriculated Graduate Study, 11
Nonmatriculated Undergraduate Study, 10
Numerical Analysis/Scientific Computation, 152
Obstetrics and Gynecology, 658
Oceans, 51
Office for Accessible Education, 683
Ombuds, 688
Oral Communication Program, 679
Organization, 8
 Academic Council, 9
 Associated Students, 10
 Board of Trustees, 8
Appendix

AXESS SUBJECT CODES

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>African and African American Studies</td>
</tr>
<tr>
<td>AC</td>
<td>Accounting</td>
</tr>
<tr>
<td>AFRICAAM</td>
<td>African and African American Studies</td>
</tr>
<tr>
<td>AFRICAST</td>
<td>African Studies, Center For</td>
</tr>
<tr>
<td>AMELANG</td>
<td>African and Middle Eastern Languages</td>
</tr>
<tr>
<td>AMST</td>
<td>American Studies</td>
</tr>
<tr>
<td>ANES</td>
<td>Anesthesia</td>
</tr>
<tr>
<td>ANTHSCI</td>
<td>Anthropological Sciences</td>
</tr>
<tr>
<td>APPLING</td>
<td>Applied Linguistics</td>
</tr>
<tr>
<td>APPPHYS</td>
<td>Applied Physics</td>
</tr>
<tr>
<td>ARCLGY</td>
<td>Archaeology</td>
</tr>
<tr>
<td>ARTHIST</td>
<td>Art History</td>
</tr>
<tr>
<td>ARTSTUDI</td>
<td>Art Studio</td>
</tr>
<tr>
<td>ASNAMST</td>
<td>Asian American Studies</td>
</tr>
<tr>
<td>ASTRNYM</td>
<td>Astronomy</td>
</tr>
<tr>
<td>ATHLETIC</td>
<td>Athletics, Physical Education and Recreation</td>
</tr>
<tr>
<td>BIOC</td>
<td>Biochemistry</td>
</tr>
<tr>
<td>BIOHOPK</td>
<td>Biological Sciences/Hopkins Marine</td>
</tr>
<tr>
<td>BIOE</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>BIOMEDN</td>
<td>Biomedical Informatics</td>
</tr>
<tr>
<td>BIOPHYS</td>
<td>Biophysics</td>
</tr>
<tr>
<td>BIOSCI</td>
<td>Biological Sciences</td>
</tr>
<tr>
<td>CASA</td>
<td>Cultural and Social Anthropology</td>
</tr>
<tr>
<td>CHEM</td>
<td>Chemistry</td>
</tr>
<tr>
<td>CHEMENG</td>
<td>Chemical Engineering</td>
</tr>
<tr>
<td>CHEMST</td>
<td>Chemical/Engineering</td>
</tr>
<tr>
<td>CHINENG</td>
<td>Chinese General</td>
</tr>
<tr>
<td>CHINLANG</td>
<td>Chinese Language</td>
</tr>
<tr>
<td>CHILIT</td>
<td>Chinese Literature</td>
</tr>
<tr>
<td>CLASSART</td>
<td>Classics Art/Archeology</td>
</tr>
<tr>
<td>CLASSGEN</td>
<td>Classics General</td>
</tr>
<tr>
<td>CLASGK</td>
<td>Classics Greek</td>
</tr>
<tr>
<td>CLASSHIS</td>
<td>Classics History</td>
</tr>
<tr>
<td>CLASSLAT</td>
<td>Classics Latin</td>
</tr>
<tr>
<td>CME</td>
<td>Computational and Mathematical Engineering</td>
</tr>
<tr>
<td>COMM</td>
<td>Communication</td>
</tr>
<tr>
<td>COMPLIT</td>
<td>Comparative Literature</td>
</tr>
<tr>
<td>CPMED</td>
<td>Cancer Prevention</td>
</tr>
<tr>
<td>CS</td>
<td>Computer Science</td>
</tr>
<tr>
<td>CSP</td>
<td>Continuing Studies Program</td>
</tr>
<tr>
<td>CSRE</td>
<td>Comparative Studies in Race and Ethnicity</td>
</tr>
<tr>
<td>CTL</td>
<td>Center for Teaching and Learning</td>
</tr>
<tr>
<td>CTSH</td>
<td>Cardiothoracic Surgery</td>
</tr>
<tr>
<td>DANCE</td>
<td>Dance</td>
</tr>
<tr>
<td>DBIO</td>
<td>Developmental Biology</td>
</tr>
<tr>
<td>DERM</td>
<td>Dermatology</td>
</tr>
<tr>
<td>DLCL</td>
<td>Division of Literatures, Cultures, and Languages</td>
</tr>
<tr>
<td>DRAMA</td>
<td>Drama</td>
</tr>
<tr>
<td>EARTHY</td>
<td>Earth Systems</td>
</tr>
<tr>
<td>EASIAN</td>
<td>East Asian Studies</td>
</tr>
<tr>
<td>ECON</td>
<td>Economics</td>
</tr>
<tr>
<td>EDUC</td>
<td>Education</td>
</tr>
<tr>
<td>EE</td>
<td>Electrical Engineering</td>
</tr>
<tr>
<td>EEES</td>
<td>Earth, Energy, and Environmental Sciences</td>
</tr>
<tr>
<td>EFSLANG</td>
<td>English for Foreign Students</td>
</tr>
<tr>
<td>ENGLISH</td>
<td>English</td>
</tr>
<tr>
<td>ENGR</td>
<td>Engineering</td>
</tr>
<tr>
<td>ETHSC</td>
<td>Ethics in Society</td>
</tr>
<tr>
<td>FEMST</td>
<td>Feminist Studies</td>
</tr>
<tr>
<td>FINANCE</td>
<td>Finance</td>
</tr>
<tr>
<td>FINRENG</td>
<td>French General</td>
</tr>
<tr>
<td>FRENLANG</td>
<td>French Language</td>
</tr>
<tr>
<td>FRENLT</td>
<td>French Literature</td>
</tr>
<tr>
<td>GENE</td>
<td>Genetics</td>
</tr>
<tr>
<td>GEOPHYS</td>
<td>Geophysics</td>
</tr>
<tr>
<td>GERGEN</td>
<td>German General</td>
</tr>
<tr>
<td>GERLANG</td>
<td>German Language</td>
</tr>
<tr>
<td>GERLIT</td>
<td>German Literature</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographical and Environmental Sciences</td>
</tr>
<tr>
<td>GSSBGEN</td>
<td>GSB General and Interdisciplinary</td>
</tr>
<tr>
<td>HISTORY</td>
<td>History</td>
</tr>
<tr>
<td>HPS</td>
<td>History and Philosophy</td>
</tr>
<tr>
<td>HRT</td>
<td>Human Resource Management</td>
</tr>
<tr>
<td>HRP</td>
<td>Health Research and Policy</td>
</tr>
<tr>
<td>HUMBIO</td>
<td>Human Biology</td>
</tr>
<tr>
<td>HUMINTIES</td>
<td>Interdisciplinary Studies in the Humanities</td>
</tr>
<tr>
<td>HUMSCI</td>
<td>Humanities and Sciences</td>
</tr>
<tr>
<td>IEEE</td>
<td>Information, Comparative and Area Studies</td>
</tr>
<tr>
<td>IIM</td>
<td>Introduction to the Humanities</td>
</tr>
<tr>
<td>IS</td>
<td>Stanford Institute for International Studies</td>
</tr>
<tr>
<td>IMMUNOL</td>
<td>Immunology</td>
</tr>
<tr>
<td>INDE</td>
<td>Medicine Interdisciplinary</td>
</tr>
<tr>
<td>INPERREL</td>
<td>Interdisciplinary Program in Environment and Resources</td>
</tr>
<tr>
<td>IPS</td>
<td>International Policy Studies</td>
</tr>
<tr>
<td>ITALGEN</td>
<td>Italian General</td>
</tr>
<tr>
<td>ITALANG</td>
<td>Italian Language</td>
</tr>
<tr>
<td>ITALIT</td>
<td>Italian Literature</td>
</tr>
<tr>
<td>JAPANGEN</td>
<td>Japanese General</td>
</tr>
<tr>
<td>JAPANLIT</td>
<td>Japanese Literature</td>
</tr>
<tr>
<td>JAPANLNG</td>
<td>Japanese Language</td>
</tr>
<tr>
<td>JEWISHST</td>
<td>Jewish Studies</td>
</tr>
<tr>
<td>KORLANG</td>
<td>Korean Language</td>
</tr>
<tr>
<td>LATINAM</td>
<td>Latin American Studies</td>
</tr>
<tr>
<td>LAW</td>
<td>Law</td>
</tr>
<tr>
<td>LINGUIST</td>
<td>Linguistics</td>
</tr>
<tr>
<td>MATH</td>
<td>Mathematics</td>
</tr>
<tr>
<td>MATHSCI</td>
<td>Mathematics Science and Engineering</td>
</tr>
<tr>
<td>MED</td>
<td>Medicine</td>
</tr>
<tr>
<td>MEDGEO</td>
<td>Medical Geography</td>
</tr>
<tr>
<td>MEDVLIST</td>
<td>Medieval Studies</td>
</tr>
<tr>
<td>MGTCON</td>
<td>Economic Analysis and Policy</td>
</tr>
<tr>
<td>ML</td>
<td>Microbiology and Immunology</td>
</tr>
<tr>
<td>MLO</td>
<td>Marketing</td>
</tr>
<tr>
<td>MLA</td>
<td>Master of Liberal Arts</td>
</tr>
<tr>
<td>MPH</td>
<td>Molecular Pharmacology</td>
</tr>
<tr>
<td>MS&E</td>
<td>Management Science and Engineering</td>
</tr>
<tr>
<td>MUS</td>
<td>Music</td>
</tr>
<tr>
<td>NATIVELAM</td>
<td>Native American Studies</td>
</tr>
<tr>
<td>NBIO</td>
<td>Neurobiology</td>
</tr>
<tr>
<td>NEPR</td>
<td>Neurosciences Programs</td>
</tr>
<tr>
<td>NSUR</td>
<td>Neurosurgery</td>
</tr>
<tr>
<td>OB</td>
<td>Organizational Behavior</td>
</tr>
<tr>
<td>OBG</td>
<td>Obstetrics and Gynecology</td>
</tr>
<tr>
<td>OIT</td>
<td>Operations Information and Technology</td>
</tr>
<tr>
<td>OPHT</td>
<td>Ophthalmology</td>
</tr>
<tr>
<td>ORPS</td>
<td>Orthopedic Surgery</td>
</tr>
<tr>
<td>OSTUTL</td>
<td>Stanford in Thailand</td>
</tr>
<tr>
<td>OSPBEIJ</td>
<td>Stanford Program in Beijing</td>
</tr>
<tr>
<td>OSPBER</td>
<td>Stanford Program in Berlin</td>
</tr>
<tr>
<td>OSPFLOR</td>
<td>Stanford Program in Florence</td>
</tr>
<tr>
<td>OSPGEN</td>
<td>Stanford in Geneva</td>
</tr>
<tr>
<td>OSPKYOCT</td>
<td>Kyoto Center for Japanese Studies</td>
</tr>
<tr>
<td>OSPKYOTO</td>
<td>Stanford Program in Kyoto — SCTI</td>
</tr>
<tr>
<td>OSPMOSC</td>
<td>Stanford Program in Moscow</td>
</tr>
<tr>
<td>OSPXFERD</td>
<td>Stanford Program in Oxford</td>
</tr>
<tr>
<td>OSPPARIS</td>
<td>Stanford Program in Paris</td>
</tr>
<tr>
<td>OSPSATGNT</td>
<td>Stanford Program in Santiago</td>
</tr>
<tr>
<td>OTOL</td>
<td>Otolaryngology</td>
</tr>
<tr>
<td>PATH</td>
<td>Pathology</td>
</tr>
<tr>
<td>PEDS</td>
<td>Pediatrics</td>
</tr>
<tr>
<td>PETENCO</td>
<td>Petroleum Engineering</td>
</tr>
<tr>
<td>PHIL</td>
<td>Philosophy</td>
</tr>
<tr>
<td>PICS</td>
<td>Political Issues</td>
</tr>
<tr>
<td>POLECON</td>
<td>Political Economics</td>
</tr>
<tr>
<td>POLSCI</td>
<td>Political Science</td>
</tr>
<tr>
<td>PORTLANG</td>
<td>Portuguese Language</td>
</tr>
<tr>
<td>PORTLIT</td>
<td>Portuguese Literature</td>
</tr>
<tr>
<td>PSYC</td>
<td>Psychiatry</td>
</tr>
<tr>
<td>PSYCH</td>
<td>Psychology</td>
</tr>
<tr>
<td>PUBPOL</td>
<td>Public Policy</td>
</tr>
<tr>
<td>PWR</td>
<td>Program in Writing and Rhetoric</td>
</tr>
<tr>
<td>RAD</td>
<td>Radiology</td>
</tr>
<tr>
<td>RADO</td>
<td>Radiation Oncology</td>
</tr>
<tr>
<td>RH</td>
<td>Russian, East European, and Eurasian Studies</td>
</tr>
<tr>
<td>RELGST</td>
<td>Religious Studies</td>
</tr>
<tr>
<td>SBIOS</td>
<td>Structural Biology</td>
</tr>
<tr>
<td>SIS</td>
<td>Stanford Introductory Seminars</td>
</tr>
<tr>
<td>SLATE</td>
<td>Stanford in Washington</td>
</tr>
<tr>
<td>SLAVGEN</td>
<td>Slavic General</td>
</tr>
<tr>
<td>SLAVLANG</td>
<td>Slavic Language</td>
</tr>
<tr>
<td>SLAVLIT</td>
<td>Slavic Literature</td>
</tr>
<tr>
<td>SLSC</td>
<td>Structured Liberal Education</td>
</tr>
<tr>
<td>SOC</td>
<td>Sociology</td>
</tr>
<tr>
<td>SOPHCOLL</td>
<td>Sophomore College</td>
</tr>
<tr>
<td>SPANLANG</td>
<td>Spanish Language</td>
</tr>
<tr>
<td>SRLIT</td>
<td>Spanish Literature</td>
</tr>
<tr>
<td>SPELANG</td>
<td>Special Language Program</td>
</tr>
<tr>
<td>STATS</td>
<td>Statistics</td>
</tr>
<tr>
<td>STRMG</td>
<td>Strategic Management</td>
</tr>
<tr>
<td>STRM</td>
<td>Strategy, Science, and Technology</td>
</tr>
<tr>
<td>SURG</td>
<td>Surgery</td>
</tr>
<tr>
<td>SYMBSYS</td>
<td>Symbolic Systems</td>
</tr>
<tr>
<td>URBANST</td>
<td>Urban Studies</td>
</tr>
<tr>
<td>UROL</td>
<td>Urology</td>
</tr>
</tbody>
</table>

712