Leverage and Beliefs: Risk Taking and Personal Experience in Collateralized Lending Transaction on the Amsterdam Stock Market, 1770-1775

Peter Koudijs*
Hans-Joachim Voth++

1 July 2013

INCOMPLETE AND PRELIMINARY – PLEASE DO NOT QUOTE

What determines leverage and the appetite for risk in financial markets? We examine a sample of collateralized lending contracts secured against stock. We focus on a period of financial distress: An investor syndicate speculating in English stocks went bankrupt. Using hand-collected data from the Dutch stock market in the 1770s, we examine changes in lending behavior as a result of being exposed to potential (but no actual) losses. Before the distress episode, financiers that lent to the ill-fated syndicate are indistinguishable from the rest. Afterwards, they behave differently – they lend with much higher haircuts. Only lenders exposed to the failed syndicate altered their behavior. The differential change is remarkable since none of the lenders suffered actual losses – all investors were repaid in full. Interest rates were also unaffected; the market balanced solely through the increase in collateral requirements. Our findings are consistent with a heterogeneous-beliefs-interpretation of leverage.

* The authors would like to thank seminar participants at CREI Barcelona, Stanford, University of Chicago and UC Berkeley, and at the BGSE Summer Forum for the feedback. We are especially grateful to Ran Abramitzky, Vicente Cuñat, Darrell Duffie, Jordi Gali, Mariassunta Giannetti, Francisco Perez Gonzales, Filippo Ippolitto, Dirk Jenter, Gregor Matvos, Stefan Nagel, Luigi Pascali, Enrico Perrotti, Jose Luis Peydro, Giacomo Ponzetto, Michael Roberts, David Romer, and Amit Seru for valuable comments and suggestions. Daphne Acoca and Tim Kooymans provided excellent research assistance. All errors are our own.

Stanford GSB and NBER, koudijs@stanford.edu

++ Universitat Pompeu Fabra, CREI, ICREA and CEPR, jvoth@crei.cat
“One can only hope that reality will become more fashionable now people are learning their lessons” (De Koopman January 1773, p. 310)

In modern financial markets, leverage is often procyclical – but the factors driving leverage cycles are poorly understood. When the stock market crashed after Lehman’s bankruptcy in 2008, “haircuts” increased sharply and the volume of collateralized lending collapsed (Gorton and Metrick 2010; Krishnamurty et al. 2012). Changes in repo haircuts were an integral element in driving the leverage cycle for financial assets. This illustrates a more general tendency for lending standards to be low in good times, and to increase in bad times (Adrian and Shin 2010). Thus, pro-cyclical “leverage cycles” may amplify asset price swings.

This paper demonstrates that personal experiences can lead to procyclical leverage in financial markets. Using hand-collected data on loan conditions from the notary archives, we examine an 18th century distress episode of a group of Amsterdam stock market investors – the Seppenwolde syndicate. They had speculated on rising prices in East India stock, using collateralized borrowing (through contracts akin to modern margin lending). During the resolution of the Seppenwolde bankruptcy, lenders who had funded the syndicate’s positions were at risk of significant financial losses. In the end, they escaped without losing a penny.

Aggregate leverage in the Amsterdam stock market declined after the Seppenwolde bankruptcy because lenders tightened collateral requirements. Remarkably, only lenders who had been exposed to the stricken syndicate changed their lending behavior: Before the meltdown in the market for East India stock, their collateral requirements had been largely indistinguishable from the rest of the financier population. Suddenly, after the Seppenwold bankruptcy, the difference in lending

1 The difference between the market value of the asset and the loan value in the lending agreement.
standards became large. Lenders involved with the stricken syndicate only extended loans with markedly higher haircuts (Figure 1) – with the average rising from 20 to almost 30% within six months. Other lenders – not at risk of personal losses – continued business as usual, and even lent at slightly lower haircuts. The aggregate tightening of collateral requirements in Amsterdam after Christmas 1772 is fully explained by lenders to the stricken syndicate becoming more cautious.²

We interpret these findings in the light of the Geneakoplos (2003) model of repo lending. He argues that repos reflect investor heterogeneity: Investors who are optimistic about future values of a risky asset borrow, while pessimists lend.³ In equilibrium, speculation in risky securities is financed by contracts with minimal risk for the lenders. Fluctuations in haircuts reflect changes in the perceived riskiness of assets or shifts in investor characteristics, such as the share of optimists/pessimists.⁴

The distress episode in the Amsterdam stock market in December 1772 allows us to test the Geneakoplos model directly. By only affecting one set of investors – and hence, potentially, lenders – it increased investor heterogeneity. We interpret the differential impact on collateral requirements as evidence in favor of the heterogeneous belief model of repo lending. Having only narrowly escaped from losses, affected lenders became more pessimistic; consistent with Geneakoplos (2003), they charged higher

² Interest rates on loans extended by both groups of lenders remained unchanged.
³ In the Geneakoplos (2003) model, agents with more optimistic beliefs want to lever up to invest in the asset. Pessimistic agents are not willing to hold the asset directly, but are willing to lend to the optimists. The equilibrium contract turns out to be risk free. The haircut is set such that even in the worst possible state of the world, lenders are fully repaid.
⁴ Simsek (2012) uses a Geneakoplos-style model to analyse the effects of various types of disagreement between optimists and pessimists.
haircuts. Because this shift in lender behavior affected aggregate leverage, it suggests that shifts in beliefs among pessimists are sufficient to generate pro-cyclical leverage.

These findings are all the more striking because other factors cannot explain the procyclical behavior of haircuts in our case. First, securities lending market of the 1770’s featured a very low degree of intermediation. 95% of lending was done directly between borrowers and lenders. Loss spirals of intermediaries, which may have played an important role in the recent crisis (Brunnermeier and Pedersen 2005; Adrian and Shin 2010), were unimportant. Instead, the price fall was probably exogenous, driven by the arrival of negative news about fundamentals. Lenders at risk of losing money then reduced the riskiness of their lending by raising collateral requirements. Despite the decline in effective funding for speculators, there were no further price declines – no “loss spiral” followed the sharp shift in haircuts. Also, because lenders did not suffer any actual loss, the increase in haircuts cannot reflect an increase in (wealth-dependent) risk aversion. Finally, increases in haircuts were not driven by regulatory constraints, such as VAR limits, which can lead to cascading fire sales (Brunnermeier and Pedersen 2009). All of this leads us to conclude that heterogeneous updating of beliefs alone may be sufficient to induce leverage cycles.

Our research relates to earlier work on the effects of personal experience on investor behavior, and on the determinants of heterogeneous beliefs more generally. Differences in beliefs can be important for asset pricing (Miller 1977; Harrison and Kreps 1978;)

7 Below, we present a model in which a change in risk attitudes amongst part of the lenders will affect borrowing rates. In a nutshell, the intuition is as follows: The 18th century market for repos was highly decentralized. Borrowers had to search for potential lenders. Who they were matched with depended to a large extent on whoever happened to have cash available for a loan. This will have conferred substantial market power on lenders.

8 For a historical example, cf. Schnabel and Shin (2004).
Jarrow 1980; Hong and Stein 2007). Where these differences come from is an area of active research interest. Agents may have access to different information sets – perhaps as a result of word-of-mouth effects –, or different beliefs as a result of their own experiences (Greenwood and Nagel 2009; Brunnermeier 2001; Hong, Kubik, and Stein 2005a; Piketty 1995). Social networks can shape investor attitudes (Hong, Kubik, and Stein 2005b) and attitudes more generally (Acemoglu and Jackson 2011); social capital can boost trust in the stock market (L. Giiso, Sapienza, and Zingales 2008a). Personal experience may also be a prime determinant of risk-taking: Malmendier and Nagel (2011) argue that investors who came off age during the Great Depression under-invested in equities all their lives. Guiso, Sapienza, and Zingales (2011) argue that the 2008 financial crisis induced a big change in risk appetite, and provide experimental evidence along the same lines. In the same spirit, Heath and Tversky (1991) show that the willingness to take risks declines sharply with trust in one’s own judgement. More generally, our works connects with research on the determinants of attitudes and beliefs.

Our paper also relates to the historical literature on financial markets in general, and on individual behaviour in financial markets in times of distress. Neal was among the first to examine the London and Amsterdam markets in conjunction, and to analyze the movements of shares co-listed on both. Quinn and Roberds (2006) describe the financial markets of the Dutch Republic and the role of the Bank of Amsterdam in maintaining liquidity. White and Rappoport (1994) extract indicators of growing anxiety from margin loan conditions prior to the 1929 crash; Shin and Schnabel (2004) show how asset linkages between markets become tighter in times of crisis. Temin and Voth (2004) show how investors profited from the South Sea bubble, by “riding” it.

We proceed as follows. Section I discusses the historical background and goes into the details of the 18th century secured lending contracts. In addition, we provide more information about the events in 1772. Section II lays out a simple model of secured lending. Section III describes our data. Section IV presents the main empirical results, and section V considers a variety of extensions and robustness checks. Section VI concludes.

I. Historical Background

In this section, we first summarize the main characteristics of the collateralized lending contracts drawn up by notaries in 18th century Amsterdam. We then describe how the market for these loans operated in normal times. To understand the crisis that hit the Seppenwolde syndicate in late 1772, we explain briefly the travails that beset the East India Company at this time. Finally, we describe the investment syndicate’s bankruptcy and how the authorities dealt with the crisis, as well as subsequent developments in the market for collateralized loans.

I.A. Collateralized Lending in 18th century Amsterdam

The market for secured lending (“beleeningen”) in 18th century Amsterdam was well developed. It can be traced back to the early days of trading in Dutch East India Company stock during the early 17th century (Gelderblom and Jonker 2004, p. 661). By the 1640s, lending against stock had developed into a mature and standardized market (Petram 2011). From the 18th century onwards, English securities were used as collateral as well, including the stock of the British East India Company (EIC).

Secured lending agreements in 18th century Amsterdam are similar to today’s margin debt – a form of borrowing collateralized by the asset purchased. Appendix A provides the transcript of a typical contract. A borrower borrowed a sum of money and in return
posted collateral, in our case English securities. In the 18th century, shares did not exist in a physical form; ownership took the form of an entry in the equity ledger of the company. For secured lending, the security in question was transferred from the account of the borrower to that of the lender. When the loan expired and the lender was repaid, the share was transferred back to the borrower. This is very similar to today’s margin loan agreements. Each contract stipulated an interest rate, the size of the loan and the amount of collateral. The haircut is defined as the margin or the fraction of the value of the collateral that was not financed with the loan. The standard period for a secured loan contract was 6 months, with a small fraction of contracts running for 3 or 12 months. Contracts were often extended beyond the maturity of the original lending contract.

If the stock price fell below a pre-established limit, the lender was entitled to additional margin. The contracts specified critical price points at which additional collateral had to be posted or part of the loan had to be repaid. For example, suppose that at the time a loan contract was signed the price of the underlying stock was 220. Further suppose that the haircut was 25% (i.e. the value of the loan was 165). If the stock price fell below 200, the borrower had to either repay 10 or post the equivalent in stock. As a result, the haircut would be restored to 22.5%. With any additional price decline of at least 10, additional margin had to be posted.

This example also shows that the initial haircut can be disaggregated into two components. The first element is the “distance to margin call”, in this case the difference between 220 and 200, or 9% of the value of the collateral. The second element is the “distance to loss”, in this case 200 to 165 or 16% of the value of the collateral. If margin calls were honored, the “distance to loss” increased by 10 the moment the price fell below 200.
If the borrower defaulted and was not able to meet margin calls, or was not able to repay the loan by the end of the contract, the lender had to right to liquidate the borrower’s position. The collateral was already in the lender’s name and he could sell it right away. Other creditors could not lay claim to this collateral. The lender was only entitled to the principal value of the loan and accrued interest. Any surplus left after liquidation was to be remitted to the borrower. In case the proceeds from the sale turned out to be insufficient to repay the loan and accrued interest, the borrower was held personally liable for the residual. This residual claim was not senior to any other claims on the debtor’s estate.

The 18th century market for collateralized lending was highly decentralized, and dominated by direct lending between borrowers and borrowers. Only around 5% of transactions featured financial intermediaries. Transactions involved large sums of money; lenders had a strong interest not to keep such amounts idle in their bank accounts. When a borrower was looking for a loan, he or she searched for potential counterparties. The eventual lender typically had the required amount of money available at the right point in time. Most of the time, lending contracts corresponded to arm’s length transactions. Borrowers and lenders were generally not related through family ties or business connections (as far as can be ascertained from the – admittedly imperfect – documentary records). They also typically did not interact repeatedly.

I.C The EIC in 1772

The distress episode we study occurred immediately after Christmas 1772. EIC stock prices had been falling for some time (see Figure 2 for EIC stock prices between 1723 and 1794). The EIC’s problems originated in Bengal where the company held large possessions. In 1757 the British had defeated the local rulers and in 1765 the EIC gained

10 This is similar to today’s automatic stay exemptions.
11 In this sense, this market is different from peer-to-peer lending networks, such as prosper.com, where personal relationships play an important role (Freedman and Jin 2008).
control over the *diwani*, the local taxes. This proved to be a windfall for the company. Dividends were raised and the EIC stock price increased from about 170% to 270%. However, the (military) expenses made by the Company increased substantially. In addition, eventually, revenues fell. The company started to squeeze the local population even harder than before. This contributed to the infamous Bengali famine of 1769-1773, which, apart from killing millions of people, also led to a deterioration of the Company’s financial position. Nevertheless, the company refused to scale back dividends, even increasing them to the legal maximum of 12.5% per annum in March 1771. Financial shortfalls of the Company were financed through credit. Local company men in India borrowed heavily through short term bills (drawn on the Company in London) and at home the Bank of England granted the company substantial loans. Information about the worsened state of the Company was kept secret. Company directors, many of them holding large positions of EIC stock and afraid of the consequences for stock prices, were unwilling to reduce dividends. Eventually, matters came to a head. During the summer of 1772 the EIC had trouble rolling over its debt and in September 1772 the Company was finally forced to scale back its dividends. News leaked out before the official announcement was made and stock prices plummeted in September. After this, more bad news surfaced and stock prices kept falling. In the end the government intervened, placing the Company under more direct control through the Regulating Act of 1773 (Sutherland 1952). EIC stock prices stayed at a permanently lower level.

[Figure 2 about here]

I.D. Events after Christmas 1772

In 1771, a group of Dutch financiers around the brothers Van Seppenwalde took a large long position in EIC stock in 1771. At that point the EIC price had fallen from a level of
270% in 1768 to about 220%.12 Not knowing what was happening behind the scenes in London, the consortium speculated on a rebound in stock prices. It used the Amsterdam market for securitized lending to finance its positions. These were considerable, totaling almost 6% of all outstanding stock. In addition to EIC stock, the consortium also held a significant position in Bank of England stock. Table 1 gives an overview of the participants of the consortium and their holdings right before Christmas 1772.13 Backing the consortium were two old and famous merchant bankers, Clifford and Sons and Abraham ter Borch and Sons, who provided a large share of the equity necessary to finance these positions (Wilson 1966; SAA, ‘Stukken betreffende’; Sautijn Kluit 1865; NA, Staal van Piershil, 386, 396; OSA 3710; GAR, 90, 56).14

[Table 1 about here]

The price fall of EIC stock devastated the consortium’s position in the second half of 1772. Most secured loans had been contracted while the EIC price stood around 220%. The covenants stipulated that if the price fell below 200%, additional collateral had to be posted. With every additional price fall of 10%, margins had to be replenished. When, in the second half of 1772, the price of EIC fell first below 200%, 190% and 180%, the consortium managed to meet these additional margin calls (SAA, 5075, 10,593 -- 10,613; NA, Staal van Piershil, 381; GAR, 90, 52). However, when the EIC stock price finally fell below 170% after Christmas 1772, the consortium’s equity had been wiped out. No

12 In the 18th century prices were quoted as percentage of nominal (face) value.
13 The consortium was led by Hermanus and Johannes van Seppenwolde, two brothers who had been prominent citizens in the town of Leiden. Pieter van Peene was from Leiden as well and lent out large sums of money without security to the Van Seppenwoldes (SAA, Tex en Bondt, **). He was involved in share trading as well. Finally, Clifford en Chevalier was a small banker’s firm associated with Clifford and Sons; Willem Clifford was a senior partner in Clifford and Chevalier and a junior partner at Clifford en Clifford en Zoonen, Elias (1903).
14 It is unclear why the consortium decided to take such a large speculative position. It has been argued in the historical literature that Clifford, Clifford and Chevalier and Abraham ter Borch and sons had suffered substantial losses in the provision of credit to plantation holders in the Dutch Caribbean. From this perspective, their involvement in EIC stock might be seen as a gamble for resurrection. Others have suggested that the consortium attempted to “pump and dump” the stock.
further margin calls could be honored. All firms involved, including the two big players in the background, Clifford and Ter Borch, “broke” and went bankrupt.

From December 28 onwards a multitude of "insinuaties", or official payment orders were issued, requiring the borrowers to post the additional margin (Van Den Brink, 10,602, see also Wilson 1966). Since these calls could not be met, lenders had the right to sell the collateral as quickly as they could, thereby recouping the value of the loan and any interest payments that still had to be made. Any profits above the value of the loans would accrue to the consortium; losses would be the problem of the lenders. Figure 3 shows the timing of these transactions (as far as they could be reconstructed). The gray bars indicate the time the official payment orders were issued; the black bars indicate actual transactions. There was a significant lag between these two, indicating that sales were delayed. Most transactions were completed by the end of January 1773.

[Figure 3 about here]

Figure 4 presents the distributions of the ‘surplus’ on these loans (the difference between the value of the collateral and the loan), right after the issuing of margin calls on December 29th and after the actual liquidation of the underlying collateral. Around the time of the margin calls the median surplus was around 10%. Since many transactions were delayed, and prices after Christmas 1772 kept falling, the surplus at liquidation was generally lower. Nonetheless, it was always positive. In other words, lenders did not lose any money on the loans to the consortium.15

15 The surplus at the time of liquidation could not be reconstructed for every single loan contract. However, the finding that no single lender actually suffered any losses is corroborated by other evidence. For one of the members of the consortium (Johannes van Seppenwolde) the exact details of his (bankrupt) estate survive (SAA 30269, 347). This document lists all assets and liabilities of Van Seppenwolde after the events of Christmas 1772. The overview is complete, including everything from real estate to unpaid attorney fees, rent and even the use of a carriage. Loan transactions on the collateral of English securities all ended up on the asset side: Van Seppenwolde was owed (instead of owing) money since the collateral had been liquidated at a small profit. Two entries on the liability side were the result of losses from
It is unclear why lenders were waiting for a number of weeks to liquidate the collateral. At best, lenders could hope for the return of their principal back. They had no upside from higher prices in the future, and instead would lose if prices fell even further. Figure 4 suggests that a large fraction of lenders only sold when they got close to losing money. It is possible that liquidity on the Amsterdam exchange had initially dried up. Figure 3 provides some support for this interpretation; it shows that EIC prices in Amsterdam were significantly below those in London. Since there was normally a close relationship between the two prices, driven by the possibility of arbitrage, this suggests local selling pressure. Limited liquidity may have made it difficult to sell the securities. However, most lenders could afford to sell at a discount of up to 10% without losing a penny. This would suggest that the market had come to a virtual standstill.\footnote{Alternatively, there may have been some coordination on part of the lenders to avoid a general fire sale. In response to the official margin call reminders, the consortium often asked the lender to postpone selling the collateral “because of the circumstances” (“…vermits de omstandigheden […] hij vriendelijk versogt eenige tijd stil te zitten”) (SAA, Van Den Brink, 10,602).}

At the same time, haircuts in Amsterdam increased. The market exhibited a “leverage cycle” similar to the one observed after the recent credit crisis (Geneakoplos 2009; Adrian and Shin 2010). Figure 2, panel (B) shows that right after Christmas 1772 haircuts for loans collateralized with EIC stock shot up from about 22 to more than 30%. Thereafter, collateral requirements remained high. Average haircuts increased from about 20.7 to 24.0 % between the period 1770-1772 and 1773-1775 (t-stat of 3.35).

These events were extensively covered in the press. On December 29, the periodical \textit{De Koopman} reported a scarcity of buyers on the exchange. It explicitly mentioned that

secured lending, but these were related to loans on the collateral of claims on plantation holders in the Dutch Caribbean, not to English securities.
margin calls had been issued and that collateral would have to be sold. In addition, secured loans were difficult to obtain, “only on additional security” (De Koopman, p. 295). On January 3, the Koopman mentioned that many more margin calls had to be met and more selling was imminent. Reflecting on developments in the market, the periodical expressed the hope that “reality will become more fashionable now people are learning these specific lessons” (De Koopman, p. 310). In mid-January it was reported that “bargains were to be had on the exchange” (De Koopman, p. 338).

The events after Christmas 1772 led to more turmoil on the Amsterdam exchange. The bankruptcy of old and renowned banks increased counterparty risk; credit in Amsterdam, often in the form of short term bills, dried up (SAA, Beelenkamer, 1; Sautijn Kluit 1865; Wilson 1966). Nonetheless, the Amsterdam market calmed down relatively quickly. On January 14, 1773 the Amsterdam city government set up a public discount facility where, on the security of domestic government bonds and non-perishable goods, anyone could borrow money. The facility was hardly used; of the total available credit of 2 to 3 million guilders only f. 335 thousand was lent out (SAA, Beelenkamer, 1 and 5). The official records mention that the gesture of setting up the facility alone had restored the ‘general credit’. After the discount facility was set up, no more defaults occurred (SAA, Beelenkamer, 1).

How unusual was the behavior of the EIC stock price in 1772? We measure returns as the log difference of prices over a six-month period, the standard term for secured loan contracts:

\[r = \ln \left(\frac{p_t}{p_{t-6}} \right) \].

Table 2 gives descriptive statistics for three time periods – the years from the beginning of our sample in 1723 to the first half of 1772, prior to the distress period; an event window during which the Seppenwolde episode occurred; and the full sample from 1723 to 1794.

17 "de gemoederen op de beurs aan t bedaeren zijn geraakt, na de opening van de commissie, jaselfs sodanig dat er geen ophouding van betaling meer plaats heeft gehad."
On average, East India stock appreciated by half a percent over a six-month horizon during the half-century from 1723 to 1772. Returns during the Seppenwolde episode were dramatically lower, with prices declining by an average of 3.4 percent over the average six month period between the beginning of 1770 and January 1773. The standard deviation is only slightly higher, but skewness is markedly more negative for the sample including the first week of 1773. The maximum loss over a six-month horizon increased from 25.6 to 35.8 percent. Figure 5 compares the distributions.

The shift in distributions during the distress period markedly increased the weight in the left “tail”. Prior to the second half of 1772, priced dipped by 20% or more in only 1.1 percent of all cases. Since average haircuts were 20%, this implies that in only one out of 100 lending events, the collateral values fell below the value of a loan. During the period 1770-1/1773, this frequency increased to over 7 percent.

I.E Lender characteristics
Who were the lenders that provided funds for the market in secured loans? In general, they were rich individuals from the merchant and regent class who had largely withdrawn from active trade and had become “rentiers”. We reconstruct the background of most lenders from Elias (1903), who provides a detailed genealogical study of the Amsterdam regent class. Table 3 presents key characteristics, separated for lenders who did and did not lend to the consortium. Note that the categories of Table 3 are partially overlapping so that the percentages do not add up to 100%. Only around half of the lenders were involved in commercial activities. The other half were full time
rentiers. Around a third of the lenders worked for the government or in the judiciary. Another third were members of the nobility – which usually indicated that an ancestor had made enough money to purchase a noble title. Around a fifth of lenders was female; these were wealthy widows or spinsters. Finally, a small fraction of lenders were specialists, i.e. individuals or firms who both lent and borrowed in this market. This group for example featured the (Portuguese Jewish) brokerage firm of David Pereira and Sons.

Lenders who financed the stricken Seppenwolde consortium were very similar to the rest. They were slightly more likely to be active in commerce, although the difference is not statistically significant. A lower fraction was active in government or the judiciary, but this difference is also not significant.

[Table 3 about here]

II. Model

In this section we set up a simple partial equilibrium model of haircuts based on Geneakoplos (2003) and Simsek (2010) featuring heterogeneous beliefs. The aim is to analyze the impact of a differential shock to beliefs on haircuts and interest rates. We analyze the simple case where borrowers’ beliefs (the agents taking a position in the market) remain unchanged, but the beliefs of the lenders diverge. More specifically, a fraction of the lenders becomes more pessimistic than before. Section II.A discusses a simple collateralized lending contract. Section II.B describes the impact of such “heterogeneous pessimism”.

II.A Simple collateralized lending contract
In our economy there is a single asset that is in elastic supply. Its price is normalized to 1. There are two periods. In the first period agents can buy the asset and in the second period the asset pays a return \(\bar{r} \). There are two agents: an optimist and a pessimist. Both are risk neutral. These agents disagree about the distribution of \(\bar{r} \). For simplicity we assume that there is a good and a bad state that can occur with equal likelihood. The optimist and pessimist agree that in a good state the asset will pay out \(\bar{r} > 0 \). They disagree about the payout in the bad state; the pessimist believes that the asset will pay out \(r^p < 0 \), optimists believe the payout will be \(r^o \); \(r^p > r^o \). Expected returns are such that the optimist would like to buy the asset, whereas the pessimist does not.

\[
E^o[r] = \frac{1}{2} \bar{r} + \frac{1}{2} r^o > 0
\]

(1)

\[
E^p[r] = \frac{1}{2} \bar{r} + \frac{1}{2} r^p < 0
\]

(2)

The optimist’s and pessimist’s capital is limited and given by \(c_o \) and \(c_p \). The risk free rate is normalized to 0. Crucially, there are shorting constraints in the model. In addition, the contract space is constrained to simple, non-contingent, debt contracts.

What is the equilibrium? The optimist expects a positive return and would like to go long in the asset. He would like to use his full capital \(c_o \). In addition, he would like to lever up as much as he can. The pessimist does not want to buy the asset at the current price. Because of the shorting constraint he cannot go short. He does have the possibility to lend out its capital \(c_p \) to the optimist who can use this to buy more of the asset. For simplicity we assume that when the optimist and pessimist bargain over the terms of the loan, the optimists holds all the bargaining power. In other words, in equilibrium the pessimist will be indifferent between earning the risk free rate on his capital and lending to the optimist.

Proposition 1: In equilibrium the pessimist will loan \(b \) to the optimist on the collateral of the asset. The optimist will invest \(c_o + b \). If the pessimist’s capital \(c_p \) is sufficiently big,
the unique optimal contract features the largest possible loan that is still risk free from the pessimist's perspective.

Proof: start with the equilibrium contract. The size of the loan b is set such that in the bad state of the world, as perceived by the pessimist, the return on the asset is just sufficient to repay the loan. The interest rate will equal the risk free rate which is set to 0.

\[
(b^* + c_o)(1 + r^p) = b^* \tag{3}
\]

\[
\frac{c_o}{b^* + c_o} = -r^p \tag{4}
\]

where $\frac{c_o}{b + c_o}$ is the haircut and $b^* = c_o \frac{1 + r^p}{-r^p}$ is the optimal size of the loan. The borrower's profit can be expressed as

\[
[E[\pi]_o | b = b^*] = (b^* + c_o)E^o[r]
\]

It is optimal for the borrower to borrow up to b^*; he can borrow at the risk free rate while making an expected profit of $E^{o}[r]$. It is also optimal for the borrower to limit borrowing to b^* and keep the contract risk free. The intuition for this result is as follows. In case of a risky contract the pessimist expects to be repaid a relatively small amount in the bad state. He will want to be compensated in the good state with a risk premium. The optimist expects the payments in the bad state to be considerable. From his perspective, payments in the good state are therefore disproportionally high. It turns out that he therefore strictly prefers to stick to the risky contract.

More formally, consider $b > b^*$. Define ρ as the risk premium charged in the good state. It can be shown that for the pessimist to earn zero expected returns the risk premium is set as follows
\[
\rho = 1 - (1 + r^p) \frac{b + c_o}{b} \tag{6}
\]

We consider two cases:

(1) The optimist does not expect to default in the bad state; \(b = \bar{b}\) so that
\[
\bar{b} (1 + \rho) < \left(\bar{b} + c_o\right) (1 + r^o)
\]
This means that the optimist’s expected profits are given by
\[
\mathbb{E}[\Pi^o \mid b = \bar{b}] = \bar{b} (E^o [r] - \rho) + c_o E^o [r]
\tag{7}
\]
The difference between (7) and (5) is given by
\[
\left(\bar{b} - b^*\right) E^o [r] - \rho \bar{b}
\tag{8}
\]
Plugging in for \(\bar{\rho}\) and \(b^*\) it can be shown that expression (8) is equivalent to
\[
\left(\bar{b} - b^*\right) \left(E^o [r] + r^p\right) < 0
\tag{9}
\]

(2) The optimist does expect to default in the bad state; \(b = \tilde{b}\) so that
\[
\tilde{b} (1 + \rho) > \left(\tilde{b} + c_o\right) (1 + r^o)
\]
In this case the optimists expected profits are given by
\[
\mathbb{E}[\Pi^o \mid b = \tilde{b}] = \frac{1}{2} \left[\left(\tilde{b} + c_o\right) r^o - \tilde{b} \bar{\rho}\right] - \frac{1}{2} c_o
\tag{10}
\]
The difference between (10) and (5) is given by
\[
\left(\tilde{b} - b^*\right) \bar{\rho} - \rho \tilde{b} - c_o - (b^* + c_o) r^o
\tag{11}
\]
Plugging in for \(\bar{\rho}\) and \(b^*\) it can be shown that expression (11) is equivalent to
\[
\left(\tilde{b} - b^*\right) E^p [r] - c_o \left(1 - \frac{r^o}{r^p}\right) < 0
\tag{12}
\]
Q.E.D.
This optimal contract uniquely determines the interest rate and the haircut. The interest rate is set to the risk free rate and the haircut is given by $-\hat{r}^p$.

II.B Heterogeneous pessimism

We now analyze what happens in this economy if there are multiple optimists and pessimists and some pessimists become more pessimistic than others. For simplicity we consider the case of two optimists and two pessimists. The optimists are identical and the same as before. The two pessimists differ in terms of beliefs: one of them is the same as before, the other grows more pessimistic; $\hat{r}^p < r^p < r^o$.

Pessimists and optimists are matched randomly. In other words, a borrower has an equal probability of being matched to a more or less pessimistic lender. For simplicity we assume that the least pessimistic lender’s capital is just sufficient to satisfy a single borrower’s demand for a loan. Otherwise assumptions are the same as before.

In a simple static setting it is easy to show that there will be two different contracts. Both will be risk-free from the pessimists’ perspective and they will feature haircuts $-\hat{r}^p$ and $-\hat{r}^p$; with $-\hat{r}^p < -r^p$. Interest rates will be identical and set equal to risk free rate.

III. Data

Data on secured loan contracts was collected from the archives of various Amsterdam notaries. Appendix A presents a sample contract. Additional information was collected from the notary archives in the form of “insinuaties” (the official notifications of margin calls), and accounts of settlement which give information about the

18 The most important archive is the one of Daniel van den Brink; Wilson (1966) was the first scholar to use this archive extensively.
liquidation of collateral. Finally, we collected information from various documents in a number of private archives, offering more insight into the liquidations (see figure 3). Lender and borrower characteristics were reconstructed from a genealogical study of Amsterdam regent families (Elias 1903).

Table 4 summarizes the basic features of our data. We have information on 425 lending transactions where English stocks served as collateral. The lenders overwhelmingly came from the upper strata of Dutch society – mayors, noblemen, rich merchants and widows. The average loan value was 29,000 guilders, and the average value of collateral was 36,000 guilders. At the time, a skilled laborer could earn 1.40 guilders per day; buildings along Amsterdam’s most famous canal (the Heerengracht) cost around 10,000 guilders (De Vries and Van der Woude, graph 12.1; Roosegaarde Bisschop, 1976).

[Table 4 about here]

For a lender to lose money in a collateralized lending transaction, two things had to happen in sequence: (1) borrowers did not respond to margin calls and (2) the collateral value fell below the size of the loan. To mitigate risk, lenders could increase the distance to loss, or ask for margin more quickly. We show that in both dimensions, lenders exposed to the Seppenwolde brothers changed their behavior – while the rest largely continued to lend as before.

Lenders on average imposed a 20 percent haircut – loans were typically worth 80 percent of the value of stock used as collateral. Our identification strategy crucially relies on the fact that creditors of the Seppenwolde brothers were broadly similar from other lenders, that lending behavior prior to the distress event was identical, and that only investors who were personally faced with possible losses on collateral changed their lending behavior.
IV. Empirical Analysis

In this section, we present the main empirical results. We show how much haircuts changed after 1772, and how this change in behavior arose. The following section then examines the robustness of our findings. Asset returns in East India stock during the period when the Seppenwolde brothers went bankrupt had been extreme, and highly unusual compared with the behavior of the stock prior to 1772. Our model predicts that the market should return to balance through changes in haircuts, and not in interest rates.

IV. A. Haircuts
Former Seppenwolde creditors tightened their standards after Christmas 1772, while other lenders continued as before. As a first pass, we calculate averages of haircuts for exposed and unexposed lenders, before and after Christmas 1772. To capture differences in loan size, averages are weighed by the size of the collateral. Table 5 summarizes the results. Those not exposed to Seppenwolde lent at virtually the same rate before Christmas 1772 as the unexposed; thereafter, the difference rises to 7 percent. Exposed lenders raise their haircuts from 20.7 to 26.1 percent; unexposed ones lower theirs (in a way that is not statistically significant) from 21.1 to 19.3 percent. The difference-in-difference is 7.3%, equivalent to approximately a one-third rise relative to the initial haircuts imposed by Seppenwolde creditors before the distress episode.

[Table 5 about here]

In Figure 6, we show the full distribution of haircuts for exposed and unexposed lenders, before and after the crisis episode. The left panel depicts the distribution of haircuts for all lenders unaffected by the distress episode, before and after Christmas.
1772. The modal haircut for both periods is 20%. In the right panel, we plot the
distributions for those affected by the Seppenwolde episode. Here, a distinct shift to the
right is clearly visible, with the mode increasing from 20% to 25%. After December 1772,
many lenders insisted on 30% or more; previously, very few had lent at a rate above
30%.

[Figure 6 about here]

In Table 6, we analyze the effect of almost losing money in the Seppenwolde
transactions on haircuts econometrically. We estimate the following equation:

\[\text{Haircut}_{it} = \beta_1 \text{Exposed}_i + \beta_2 \text{Exposed}_i \cdot \text{Post1772}_t + \beta_3 \text{nonEIC} + \varepsilon_{it} + \xi_{it} \]

where \(\varepsilon_{it} \) includes year dummies and in a number of specifications, we use lender and
borrower family/firm fixed effects\(^{19}\). \(\xi_{it} \) is the error term.

We first pool observations from all types of collateral, and control for asset type
separately in our regressions. In addition, observations are weighed by the size of the
collateral. In col 1, we report pooled OLS results with standard errors clustered at the
lender level (while including year dummies). Those who were exposed to the
consortium on average initially lent with smaller haircuts, but the difference is small
and insignificant. Lending against collateral other than the EIC took also place with
markedly lower haircuts. This reflects lower risks. The variable of main interest is the

\(^{19}\) Lender family fixed effects are defined by lenders who are first degree relatives. Borrower family/firm
fixed effects refer to lenders who either linked through participation in the same firm or are first degree
relatives. We opt for using firm/family fixed effects rather than individual fixed effects to save degrees of
freedom. The underlying assumption is that unobservables should be identical for first degree relatives or
members of the same firm. In the latter case it is impossible to distinguish individual from firm
transactions. When individual fixed effects are included, the coefficient estimate on the interaction term
slightly increases or stays the same. However, standard errors increase as well.
interaction of being exposed with the post-1772 dummy (coefficient β_2). This shows the average change in haircuts after the default of the Seppenwolde syndicate for lenders who almost lost money. The estimated shift is upwards by 7.6 percentage points, and the coefficient is significant at the 1 percent level. Relative to the pre-crisis average of 21.9 percent, this is a dramatic change. In col 2, we add borrower and lender type dummies to account for the changing composition of the sample. The estimated coefficient is now 6.9 percent, somewhat smaller than before, but still highly significant.

In cols 3 to 5 we include lender and borrower family/firm fixed effects. The panel is unbalanced and these fixed effects should control for changes in the composition of lenders and/or borrowers in the sample. In addition they should capture unobservables on the lender/borrower level. Table 6 reports the number of observations had we run a balanced panel. The inclusion of fixed effects implies an effective loss of observations that is quite significant. The fixed effect estimates should therefore be interpreted as robustness checks rather than benchmark estimates. In col 3, we use lender family fixed effects and borrower type dummies. This yields a coefficient of 6.1 percent, significant at the 10% level. In col 4, we use borrower family/firm fixed effects and lender type dummies; the coefficient on the interaction term falls to 4.0 percent, but is still significant at the 10% level. In the final column, we include both borrower and lender family/firm fixed effects, to capture changes in lending rates that come from compositional change in the pool of both debtors and creditors. The coefficient of the interaction effect is now somewhat larger at 6.3 percent, again significant at the 10% level.

TABLE 6 ABOUT HERE

We also examine the potential role of differential pre-crisis trends. Figure 8 plots trends over time, for the exposed and unexposed lenders. It shows clearly that there is no
difference in trends before Christmas 1772; it is only thereafter that haircuts diverge substantially.

IV.B. Interest rates

Next, we examine if interest rates changed in response to the Seppenwolde crisis. Did the pricing of loans shift at the same time as the size of haircuts – and in the same differential manner? In table 7, we use the same specifications as before, using interest rates on loan contracts as the dependent variable.

Table 7 shows that non-EIC stock attracted lower interest rates, but the difference is small – between 8 and 10 basis points. The model in section II predicts that the market should balance through changes in collateral requirements, not interest rates. We examine if this is true in our case. In a number of specifications we find that lenders exposed to the syndicate initially charged somewhat higher interest rates both before and after the event. In col (1), the effect is statistically significant but economically small – the estimated coefficient implies a difference of 8 basis points. When we control for lender and borrower type dummies the coefficient falls to about 5 basis points and becomes statistically insignificant.

The crucial variable for our analysis is the interaction of the post-1772 and the exposed dummy. There is no significant differential change in interest rates charged after 1772. In the benchmark estimates of columns 1 and 2 it is slightly negative, implying that exposed lenders charged lower interest rates after Christmas 1772. However, the coefficient is always economically small and never significant. This implies that interest rates were not used by exposed lenders to adjust for increases in perceived risk.

[Table 7 about here]
IV. C. Lender and borrower characteristics – Interaction effects over time

In this subsection, we further explore the impact of lender and borrower characteristics on haircuts. While important in their own right, we find that they cannot explain the shift in collateral requirements observed after Christmas 1772.

Observable lender characteristics

So far, we have used lender type dummies or fixed effects to control for unobserved heterogeneity. However, the effect of characteristics may not be constant over time. Lenders who were exposed to the consortium may have been differentially affected by events after Christmas 1772. For example, if one type of lender had more exposure to the Seppenwolde brothers – say, those active in commerce – and their business was adversely affected by the turmoil of early 1773, then this could explain changes in haircuts. To control for this, we interact observable lender characteristics such as occupation, status or gender (see Table 3) with the post-event dummy. The estimates are presented in Table 8. All estimates include lender and borrower type dummies (coefficients unreported). Estimated separately, we find that merchants lent at somewhat higher haircuts after 1772, while noblemen lent against slightly lower collateral values relative to asset prices; there is no significant interaction effect between the post-1772 dummy and the regent, gender and specialist dummies. In column 6 we estimate the impact of these interaction effects jointly.\(^{20}\) Crucially, the coefficient on the interaction between exposed and the post-event dummy is virtually the same as in the benchmark estimates of Table 6 (comparable estimates are in column 2: 6.6%) and even slightly increases in the full specification of col 6.

\(^{20}\) Because of the collinearity we cannot precisely estimate the individual contributions of these additional interaction effects.
Concentrated lending

In Table 9 we examine the interaction effect with the concentration of lending before the events of Christmas 1772. One might worry that the interaction effect between the exposed and post-event dummies is driven by the breakdown of relationship lending. If a lot of borrowing in the Amsterdam collateralized lending market took place through well-established networks, the collapse of a large group of borrowers would have led to a decline in “intermediation capital” (Bernanke 1992). In that case, lenders would have needed to screen out new borrowers, using (initially) higher haircuts as a result. In appendix C, we provide additional evidence that relationship lending was not an important feature of the Amsterdam collateralized loan market. Here, we show that changes in haircuts over time – for the exposed lenders – are probably not explained by the destruction of “relationship capital”.

We start with the assumption that lenders that are heavily invested in a particular client relationship will have more concentrated portfolios. We then estimate the following equation

\[\text{[impute in very final version using Word 2010]} \]

where \(\bar{\epsilon}_{it} \) includes both time and lender fixed effects. \(\xi_{it} \) is a random error. \(\beta_4 \) captures whether lenders exposed to the default episode increased haircuts more if they had engaged in more relationship lending before Christmas 1772. Table 9 (col 2) shows that this is not the case; if anything a higher degree of concentration before Christmas 1772 (more relationship lending) leads to lower haircuts. This is effect is not statistically significant.\(^{21}\)

\[\text{[Table 9 about here]} \]

\(^{21}\) There might be a worry that there is too little variation in the Herfindahl index to tightly estimate the effect. Figure 10 presents the distribution of Herfindahl indices for exposed lenders. It is clear that there is sufficient variation to estimate the effect.
EIC factor

The EIC’s stock price fall after September 1772 is behind the crisis episode we examine. It is natural to ask whether the effect that we identify is driven by the default of the Seppenwalde consortium or if it is instead reflects changes in the EIC stock prices. For example, it is possible that individuals who lent to the consortium overall had strong exposure to EIC stock (through other portfolio holdings) or to other counterparties with this exposure. Then, changes in haircuts could reflect an attempt to manage this risk, rather than the shock of the consortium’s default.

To investigate this issue we estimate the following equation

\[\text{Haircut}_{i,t} = \beta_1 \text{Exposed}_i \times \text{EICprice}_t + \beta_2 \text{Exposed}_i \times \text{Post1772}_t + \beta_3 \text{EICprice}_t + \epsilon_{i,t} + \xi_{i,t} \]

where \(\epsilon_{i,t} \) includes both year and lender fixed effects and \(\xi_{i,t} \) is a random error. This equation tests whether exposed lenders in general charge higher haircuts when EIC prices are lower. Results are presented in table 11.

Col 1 only includes the interaction between the exposed dummy and the EIC stock price. The economic size of the coefficient is relatively small and statistically insignificant. The average EIC price during 1770-1772 was 212%; for 1773-1775 it was 155%. This general fall in prices of 57% corresponds to exposed lenders increasing haircuts by 1.8% \((0.57 \times 0.033)\). This is less than a third of the impact of the interaction effect with the post-1772 dummy (Table 10, col 2).

Col 2 includes both interaction effects to perform a horserace: what has more explanatory power the post-1772 dummy or overall changes in the price of EIC stock? The estimates clearly show that the interaction effect with the post-1772 dummy is considerably stronger; it shows an effect of 6.8% higher haircuts. The coefficient on the interaction between exposed and the EIC price is now wrongly signed. Overall, these
results suggest that EIC stock prices have no additional predicative power above and beyond the post-event dummy.

[Table 10 about here]

Observable borrower characteristics

In Table 11 (cols 1 – 4), we repeat the exercise of Table 8 with observable borrower characteristics. The intuition is similar. We already controlled for borrower type dummies or fixed effects in our main estimation. The limitation of this approach is that some borrowers may have been differently affected by the events after Christmas 1772. By interacting observable borrower characteristics with the post-event dummy we can control for this factor. We distinguish between merchants, specialists – who both borrow and lend in this markets – and Jewish borrowers. Throughout we include borrower (and lender) type dummies. None of the interaction effects correlates with haircuts to a significant extent, except for Jewish borrowers. These on average saw lower haircuts after 1772. In all specifications (cols 1 – 4), the coefficient on the main variable of interest – the interaction between exposed and the post-1772 dummy is largely unaffected, ranging from 6.6% to 7.7%.

In col 5 we take the analysis one step further by including borrower-time fixed effects. This specification should fully control for changes in borrower characteristics. Effectively, we are identifying off those borrowers who borrowed from both exposed and non-exposed lenders after Christmas 1772. The estimate of the interaction effect between the exposed and post-event dummies is statistically significant at the 1% level and the economic effect (5.6%) is very similar to the benchmark estimate of Table 6 (col 2). Admittedly, we are only using a limited number of data points to arrive at this estimate. Only 3 borrowers were sufficiently active after Christmas 1772 to borrow from multiple lenders. In total, these borrowers signed 18 collateralized lending contracts
after Christmas 1772, roughly equally split between exposed and non-exposed lenders (11 vs 7). This constitutes a quarter of all available observations after Christmas 1772.

In col 6 we further investigate the impact of relationship lending. We examine the effect of whether a borrower was “new” (i.e. has no observed transactions in the dataset before Christmas 1772). The data suggest that there was a slight penalty for new borrowers: they had to put up more collateral on average and haircuts were on average 2% higher. This effect is not statistically significant though. More importantly, the interaction effect between the exposed and post-1772 dummies is unaffected. In other words, the differential impact on haircuts after Christmas 1772 is not driven by the “screening out” of new borrowers.

[Table 11 about here]

V. Extensions

In this subsection, we examine extensions of our basic statistical exercise. We first examine how long the differential impact on haircuts is visible in our data. We then look at which element of overall haircut changes was responsible for our results. We also analyze if exposed lenders adjusted their lending on any other margin, i.e. whether they were less likely to lend after Christmas 1772, whether they lent out less and whether their loan portfolios became more diversified.

V. A. Effect on haircuts – further analysis

Duration of effects

How permanent is the differential impact on haircuts? Or in other words: how long does it take for the differences of beliefs of exposed and non-exposed lenders to
converge? In Table 12, we add time elapsed since the crisis to our regression. Specifically we run the following regression

...[to be added last minute in Word 2010]

where “time since event” has a value of zero before Christmas 1772 and afterwards simply counts the time that has elapsed – in fractions of the calendar year. In this specification, the interaction between the post-1772 and exposed dummies captures the instantaneous differential impact on haircuts (beta2). The interaction between the exposed dummy and “time since event” measures the degree to which haircuts converge afterwards (beta4). For example, if we are interested in how much differential impact there still is after 6 months, we can subtract 0.5* beta4 from beta2.

The estimates predict that within 2 years the impact of the treatment dissipates. However, since the number of observations falls over time, the decline in haircuts is not tightly estimated and not significant at standard confidence levels.

[Table 12 about here]

Disaggregation of haircut components

The change in the haircut we document can be disaggregated into two parts – the difference between the price at which a contract is signed and the pre-agreed level when a margin call is triggered, and the difference between the trigger level and the value of the loan. In Table 13, we analyze the shift in the haircut for its two components separately.

In panel A, we examine the difference between market price and the trigger level for a margin call. The lenders who were exposed to the default increased the trigger level
substantially, by 4-5 percent – very close to the change in the overall collateral requirements. In panel B, we analyze the distance to loss, the difference between the margin trigger and the value of the loan. Here, there are only relatively small and mostly insignificant effects – lenders adjusted the risk profile of their lending by demanding margin earlier, and keeping the value of the loan overall lower relative to the market value at the time of signing.

[Table 13 about here]

V. B. Different margins of adjustment

Attrition
To what extent did the exposed lenders exit the sample after the events of Christmas 1772? We might expect that affected lenders left the sample at a higher rate than those not affected. We test this, we relate the reoccurrence of a lender after 1772 to whether a lender was exposed to the Seppenwolde consortium or not. More precisely, we compare the rates of attrition between exposed and non-exposed lenders. Results are presented in Table 14. All the estimated coefficients are positive, but they mostly not well-estimated. If we found strong and significant coefficients, then we would know that the measured shift in haircuts is a lower bound of the change in lender behaviour. After controlling for the overall importance of individual lenders (as measured by their total lending behavior before Christmas 1772), we do not find a statistically significant difference between both rates of attrition. This result is robust to different specifications (OLS, probit and logit).

[Table 14 about here]

Total lending
Did lending volume per lender change as a result of the Seppenwolde episode? Table 15 examines total lending volume per lender. We analyze both total lending (cols 1 – 3) and lending excluding loans made to the Seppenwolde consortium (all before Christmas 1772) (cols 4 – 6). Those who were exposed lent more than the rest before the crisis, on average. Lending against assets other than the EIC was also associated with higher lending volume. There is no clear result for changes over time – average lenders lent more according to specifications 1, 2, 4 and 5, but less when we add lender fixed effects (col 3). None of these factors is significant.

The statistical results suggest that those affected by the Seppenwolde crisis reduced their lending thereafter. Especially in the fixed effect estimate of col 3, this increase seems to have been by a quantitatively considerable margin. When we exclude loans made to the Seppenwolde consortium, the treatment effect is reduced but is still negative. None of these estimates is statistically significant.

To sum up, the results suggest that lenders affected by the bankruptcy may have reduced risk by lowering their total exposure to the collateralized loan market, but we cannot be sure that the result is not driven by random variation in our data.

Concentration of lending
Lenders could experience losses because their counterparty failed to pay, or because collateral was insufficient. The first risk can be mitigated by lending to a wider range of counterparties. We calculate the concentration of each lender’s portfolios before and after the distress period as the Herfindahl index of loan concentration. The higher the Herfindahl index, the greater the risk of a single counterparty exposing the lender to losses. About half of all lenders only lent to a single counterparty at any one point in
time. The rest diversified significantly, with more than a fifth spreading risk substantially (H≤0.5).

In Table 16, we examine if lenders avoided risk concentration after the 1772 distress period. We find the opposite. The interaction of the exposed and post-event dummies suggests that lending became more concentrated for those that had been exposed to the consortium. This effect is far from statistically significant though. These results are consistent with the interpretation that collateralized loan contracts are set up in such a way that they are (perceived to be) risk free or alternatively that the only risk that matters is fluctuations in the value of the collateral. If that is the case diversification will not reduce the riskiness of a loan contract.

In line with the predictions of the Geanakoplos model, lenders did not reduce risks by spreading loans over an increased number of counterparties – haircuts were the only relevant margin of adjustment.

[Table 16 about here]

VI. Robustness

In this section we perform a number of robustness checks on the main results.

Excluding the first post-crisis month

When the Seppenwolde brothers went bankrupt, there was substantial uncertainty about the size of their position and the consequences for market prices. Several lenders had now received collateral after margin calls were not met. In addition, there is evidence of more wide-spread stress in the financial sector that was only calmed when the city government introduced a lender-of-last-resort facility in the middle of January
(see historical overview). To examine if our results simply reflect illiquidity and uncertainty during the immediate post-crisis period, we exclude the lending contracts signed in January 1773. Table 17 shows that this only marginally changes the results – we still find an upward shift in the haircut charged by exposed lenders of 4-6 percent. We do lose a number of observations though and the fixed effects specifications become (only borderline) statistically insignificant.

[Table 17 about here]

East India Stock only

In the baseline results, we use lending against all assets in our database – East India stock (EIC), 3% annuities, and Bank of England stock. While we control for compositional change, it is interesting to examine how much of a shift we can find by focusing on EIC stock exclusively (the asset against which the Seppenwolde syndicate predominantly borrowed).

In Table 18, panel A, we show that lending requirements in EIC stock changes in very much the same fashion as in the universe of all assets. In the pooled estimation (col 2), the coefficient suggests a rise in collateral requirements by 6.8 percent. The fixed effect estimates look very similar to the benchmark numbers in Table 7. However, estimates become (borderline) insignificant. This is because with fixed effects, the effective number of observations that can be used to identify the interaction effect is constrained to those that are in the sample before and after 1772. In addition, we lose observations by constraining the sample to EIC transactions.

In panel B, we analyze lending against non-EIC assets only. Due to the limited number of observations, the fixed effect specifications cannot be estimated. The pooled OLS estimates are very similar to those for loan contracts collateralized with EIC stock. For
example, the estimate of the interaction effect in col 2 is 6.6% (versus 6.8% in panel A). Overall, there is no reason to think that the estimated effects in our baseline specification only reflect changes in haircuts in one type of asset.

[Table 18 about here]

Outliers

It is possible that a few, extreme values for the haircuts influence our results. A standard way to deal with this issue is to winsorize the data. We winsorize the top and bottom 5 percent of observations, and re-estimate (see Table 19). The results are largely unchanged. Coefficients are significant throughout, and are statistically indistinguishable from those in the baseline specification. For completeness we do the same for interest rates and reestimate our benchmark results (Table 20 in Appendix B). Again, results are virtually unchanged.

[Table 19 about here]

The final step is to examine the sensitivity of our results to the influence of a single lender or borrower. To this end, we re-estimate the baseline specification (Table 6, col 2), dropping one lender or borrower at a time. Figure 9 panels A-D shows the distribution of coefficients (first row) and t-statistics (second row). The range of estimated coefficients is small, with results ranging from 5.5 to 7.5 percent. The t-statistics never falls below 2. This shows that our results are not driven by a single lender or borrower.

[Figure 9 about here]

VII. Conclusion
Investor heterogeneity and disagreement about asset values has important implications for asset pricing (Harrison and Kreps 1978; Heaton and Lucas 1995; Hong and Stein 2007). They may contribute to momentum, high volatility, the formation of bubbles (Hong, Scheinkman, and Xiong 2006). How different beliefs among investors arise is less clear. Recent research suggests that personal experiences may be an important source of heterogeneous beliefs (Malmendier and Nagel 2011).22

In this paper, we examine a well-identified case of differential learning. We observe lenders in the repo market of 18th century Amsterdam who financed the equity positions of speculators. When an important syndicate of investors went bankrupt, some of these lenders were at risk of losing money – margin calls went unanswered, and the lenders were assigned collateral. Thus, this episode could have spelled heavy losses. In actual fact, the “treated” lenders recovered all of their principal and interest owed. Nonetheless, those who almost lost money sharply increased their collateral requirements. This occurred despite the fact that they actually sustained no losses. Other lenders – unaffected by the bankruptcy – lent as before.

We cannot determine exactly what caused the differential change in behavior. The fact that East India stock was more volatile – and returns more often negative – after 1771 was public information. So was the ill fortune of the Seppenwolde syndicate. Nonetheless, the only investors who changed their behavior were the ones who came close to losing part of their capital. One interpretation is that lenders who were nearly “burnt” raised haircuts because the risk of losses was more salient.23 Alternatively, those exposed to the Seppenwolde consortium could have learnt about their own ability to select good investors, i.e. those who could meet margin calls when asset values

22 A formal model of experience-based belief formation is Piketty (1995).
declined. Both channels would in turn have lead Seppenwolde lenders to update their beliefs about the risks of collateralized lending to a much greater extent than unexposed lenders. Strikingly, the effects we document are visible in the data for as long as we have information on lending contracts after the default episode.

References

Figure 1: Haircuts over time (half-yearly averages)

This figure presents the average haircuts demanded by exposed and non-exposed lenders for every quarter between 1770h1 and 1775h1 (when our data ends). Averages are weighed by the size of the loan transactions (nominal or face value of collateral).

Figure 2: EIC stock price in Amsterdam between 1723 and 1793
The vertical line indicates Christmas 1772. Stock prices are recorded in percentages of the nominal (face) value.

Figure 3: The Crisis after Christmas 1772

Prices EIC stock in Amsterdam and London; margin calls lenders to consortium; subsequent sell-off collateral by lenders. The black vertical line indicates Christmas 1772.

Figure 4: Surplus on loans to consortium
Surplus: difference between value collateral and loan, in fraction of the collateral value

Figure 5: Distribution of EIC returns

Returns calculated over 6 month periods (overlapping). Vertical line indicates the 6 month return over the second half of 1772.
Figure 6: Haircuts before and after Christmas 1772
Not exposed

Figure 7: Interest rates before and after Christmas 1772

Interest rates before and after Christmas 1772, differentiated by exposed and non-exposed lenders
Figure 8: Haircuts over time (half-yearly averages)

This figure presents the average haircuts demanded by exposed and non-exposed lenders for every quarter between 1770h1 and 1775h1 (when our data ends). Averages are weighed by the size of the loan transactions (nominal or face value of collateral). In addition, the figure presents the linear time trend of aggregate haircuts (both for exposed and non-exposed lenders) before and after the events of Christmas 1772.
Estimates and t-statistics of coefficient β_2

$Haircut_{it} = \beta_0 + \beta_1 Exposed_i + \beta_2 Exposed_i \cdot Post1772_t + \beta_3 nonEIC + X_i + \epsilon_t + \xi_{i,t}$

Where X_i includes lender and borrower observables and ϵ_t includes time fixed effects. Coefficients and t-statistics are generated dropping one lender (or borrower) at a time. All estimates include lender fixed effects; lenders that are dropped out of the sample therefore have to be present both before and after Christmas 1772.
Table 1: Positions of the Seppenwolde syndicate, Christmas 1772

<table>
<thead>
<tr>
<th>Member of the Syndicate</th>
<th>Position (nominal)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EIC</td>
</tr>
<tr>
<td>Hermanus van Seppenwolde</td>
<td>£63,600</td>
</tr>
<tr>
<td>Johannes van Seppenwolde</td>
<td>£69,600</td>
</tr>
<tr>
<td>Clifford & Chevalier</td>
<td>£44,500</td>
</tr>
<tr>
<td>Pieter van Peene</td>
<td>£2,000</td>
</tr>
<tr>
<td>Total</td>
<td>£179,700</td>
</tr>
<tr>
<td>Total outstanding</td>
<td>£3,194,080</td>
</tr>
<tr>
<td>% syndicate in total outstanding</td>
<td>5.63%</td>
</tr>
</tbody>
</table>

Av. monthly turnover (1770-1772) £196,967
% syndicate in av. monthly turnover 91.23%

Positions calculated at the end of 1772. Average monthly turnover is based on the turnover in the capital books of the respective companies. Actual market turnover would have been higher if transactions were netted out before mutations in the capital books were made.

Table 2: Descriptive statistics, EIC stock returns over 6 month periods (overlapping)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Prior to distress 1723-1772*</th>
<th>Distress period 1770-73**</th>
<th>Full 1723-1794</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.0051</td>
<td>-0.034</td>
<td>0.0028</td>
</tr>
<tr>
<td>Median</td>
<td>0.0068</td>
<td>-0.019</td>
<td>0.0053</td>
</tr>
<tr>
<td>σ</td>
<td>0.089</td>
<td>0.108</td>
<td>0.089</td>
</tr>
<tr>
<td>Skewness</td>
<td>0.248</td>
<td>-0.49</td>
<td>-0.07</td>
</tr>
<tr>
<td>Maximum loss</td>
<td>-0.256</td>
<td>-0.358</td>
<td>-0.358</td>
</tr>
<tr>
<td>% of observations with loss > 0.2</td>
<td>0.011</td>
<td>0.075</td>
<td>0.022</td>
</tr>
</tbody>
</table>

* first half
** first week of 1773
Table 3: Lender characteristics: exposed vs non-exposed

<table>
<thead>
<tr>
<th></th>
<th>Exposed</th>
<th></th>
<th></th>
<th>Non-exposed</th>
<th></th>
<th></th>
<th>Linear</th>
<th>Logit</th>
<th>Probit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>N</td>
<td>Mean</td>
<td>N</td>
<td>Linear</td>
<td>Logit</td>
<td>Probit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Merchant</td>
<td>50.4%</td>
<td>119</td>
<td>38.2%</td>
<td>34</td>
<td>-1.253</td>
<td>-1.225</td>
<td>-1.231</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Regent</td>
<td>28.0%</td>
<td>132</td>
<td>40.0%</td>
<td>40</td>
<td>1.437</td>
<td>1.260</td>
<td>1.253</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Noble</td>
<td>29.4%</td>
<td>136</td>
<td>31.0%</td>
<td>42</td>
<td>0.190</td>
<td>0.726</td>
<td>0.722</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Female</td>
<td>19.9%</td>
<td>136</td>
<td>21.4%</td>
<td>42</td>
<td>0.221</td>
<td>0.277</td>
<td>0.276</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Specialist</td>
<td>3.7%</td>
<td>136</td>
<td>2.4%</td>
<td>42</td>
<td>-0.405</td>
<td>-0.661</td>
<td>-0.692</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General characteristics of lenders who did or did not lend to the Van Seppenwolde consortium (exposed vs non-exposed). E.g. 50.4% of lenders who lent to the consortium were merchants. Because of overlapping categories the percentages do not sum up to 100. Merchant – active in commercial activities; regent – member of (local) government or the judiciary; specialist – lender who also borrows. T-statistics refer to simple t-tests on the equality of means of the two different sub-samples and t-statistics calculated in a Logit and Probit setup.

Table 4: Descriptive statistics loan contracts

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real value of collateral (guilders)</td>
<td>418</td>
<td>36,271</td>
<td>27,734</td>
<td>4,782</td>
<td>238,058</td>
</tr>
<tr>
<td>Nominal (face) value of collateral</td>
<td>420</td>
<td>1,910</td>
<td>1,608</td>
<td>300</td>
<td>15,000</td>
</tr>
<tr>
<td>(Pound Sterling)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loan value (guilders)</td>
<td>422</td>
<td>28,969</td>
<td>23,244</td>
<td>2,200</td>
<td>210,000</td>
</tr>
<tr>
<td>Haircut</td>
<td>418</td>
<td>0.205</td>
<td>0.059</td>
<td>0.080</td>
<td>0.550</td>
</tr>
<tr>
<td>Interest rate (in %)</td>
<td>420</td>
<td>3.63</td>
<td>0.30</td>
<td>2.50</td>
<td>4.00</td>
</tr>
<tr>
<td>Distance to margin call</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance to loss</td>
<td>405</td>
<td>0.103</td>
<td>0.060</td>
<td>-0.013</td>
<td>0.425</td>
</tr>
<tr>
<td>non-EIC (BoE, SSC, 3% annuities)</td>
<td>405</td>
<td>0.102</td>
<td>0.042</td>
<td>-0.055</td>
<td>0.310</td>
</tr>
</tbody>
</table>

Table 5: Simple difference-in-difference estimate – EIC stock only

<table>
<thead>
<tr>
<th></th>
<th>Before Christmas 1772</th>
<th>After Christmas 1772</th>
<th>∆</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not exposed</td>
<td>0.211</td>
<td>0.193</td>
<td>-0.018</td>
</tr>
<tr>
<td>Exposed</td>
<td>0.207</td>
<td>0.261</td>
<td>0.054***</td>
</tr>
<tr>
<td>∆</td>
<td>-0.004</td>
<td>0.069***</td>
<td>0.072***</td>
</tr>
</tbody>
</table>

Average haircuts on EIC stock, differentiated by exposed and non-exposed lenders, before and after Christmas 1772. Haircuts are calculated as the fraction of the collateral value that is not financed with a loan. Exposed lenders are those who were forced to liquidate collateral after the events of Christmas 1772. Observations refer to new contracts. Averages are weighed by the nominal (face) value of the collateral. The simple diff-in-diff estimate is in bold in the lower right corner. *** indicates significance at the 1% level.
Table 6: Haircut change – benchmark estimates

<table>
<thead>
<tr>
<th></th>
<th>(1) Pooled OLS</th>
<th>(2) Pooled OLS</th>
<th>(3) FE</th>
<th>(4) FE</th>
<th>(5) FE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposed</td>
<td>-0.005</td>
<td>-0.003</td>
<td>0.017</td>
<td>-0.000</td>
<td>0.028</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.005)</td>
<td>(0.014)</td>
<td>(0.006)</td>
<td>(0.013)**</td>
</tr>
<tr>
<td>Exposed * Post 1772</td>
<td>0.076</td>
<td>0.066</td>
<td>0.061</td>
<td>0.040</td>
<td>0.063</td>
</tr>
<tr>
<td></td>
<td>(0.022)**</td>
<td>(0.023)**</td>
<td>(0.036)*</td>
<td>(0.024)*</td>
<td>(0.036)*</td>
</tr>
<tr>
<td>non-EIC</td>
<td>-0.059</td>
<td>-0.056</td>
<td>-0.049</td>
<td>-0.052</td>
<td>-0.047</td>
</tr>
<tr>
<td></td>
<td>(0.006)**</td>
<td>(0.006)**</td>
<td>(0.011)**</td>
<td>(0.008)**</td>
<td>(0.014)**</td>
</tr>
<tr>
<td>Lender merchant</td>
<td>0.007</td>
<td>0.004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.007)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lender regent</td>
<td>-0.005</td>
<td>-0.004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.006)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lender noble</td>
<td>0.003</td>
<td>0.004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.006)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lender female</td>
<td>-0.007</td>
<td>-0.003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.007)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lender specialist</td>
<td>-0.012</td>
<td>-0.007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.007)*</td>
<td>(0.009)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borrower merchant</td>
<td>-0.039</td>
<td>-0.042</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.016)**</td>
<td>(0.022)*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borrower specialist</td>
<td>-0.004</td>
<td>-0.018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.017)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borrower Jewish</td>
<td>0.050</td>
<td>0.047</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.011)**</td>
<td>(0.015)**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.219</td>
<td>0.245</td>
<td>0.235</td>
<td>0.211</td>
<td>0.174</td>
</tr>
<tr>
<td></td>
<td>(0.006)**</td>
<td>(0.017)**</td>
<td>(0.026)**</td>
<td>(0.012)**</td>
<td>(0.036)**</td>
</tr>
<tr>
<td>Year dummies</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Lender FE</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Borrower FE</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>N</td>
<td>418</td>
<td>387</td>
<td>418</td>
<td>387</td>
<td>418</td>
</tr>
<tr>
<td>N (if balanced)</td>
<td></td>
<td></td>
<td>166</td>
<td>77</td>
<td>33</td>
</tr>
<tr>
<td># lenders</td>
<td>177</td>
<td>152</td>
<td>177</td>
<td>152</td>
<td>177</td>
</tr>
<tr>
<td># borrowers</td>
<td>72</td>
<td>70</td>
<td>72</td>
<td>70</td>
<td>72</td>
</tr>
<tr>
<td>R^2</td>
<td>0.334</td>
<td>0.440</td>
<td>0.632</td>
<td>0.659</td>
<td>0.802</td>
</tr>
</tbody>
</table>

Regression estimates for all English securities. Observations refer to new contracts and are weighted by the nominal (face) value of the collateral. Haircuts are calculated as the fraction of the collateral value that is not financed with a loan. Exposed lenders are those who were forced to liquidate collateral after the events of Christmas 1772. The interaction between the exposed and the post-1772 dummies captures the diff-in-diff effect. Lender and borrower fixed effects refer to fixed effects on the family/firm level. Robust standard errors (clustered at the lender level) are reported in parentheses. * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$
Table 7: Interest rates – benchmark estimates

<table>
<thead>
<tr>
<th></th>
<th>(1) Pooled OLS</th>
<th>(2) Pooled OLS</th>
<th>(3) FE</th>
<th>(4) FE</th>
<th>(5) FE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposed</td>
<td>0.072</td>
<td>0.048</td>
<td>-0.116</td>
<td>0.074</td>
<td>-0.152</td>
</tr>
<tr>
<td></td>
<td>(0.036)**</td>
<td>(0.034)</td>
<td>(0.048)**</td>
<td>(0.041)*</td>
<td>(0.057)***</td>
</tr>
<tr>
<td>Exposed * Post 1772</td>
<td>-0.049</td>
<td>-0.034</td>
<td>-0.077</td>
<td>0.035</td>
<td>0.073</td>
</tr>
<tr>
<td></td>
<td>(0.099)</td>
<td>(0.099)</td>
<td>(0.130)</td>
<td>(0.113)</td>
<td>(0.219)</td>
</tr>
<tr>
<td>non-EIC</td>
<td>-0.078</td>
<td>-0.093</td>
<td>-0.084</td>
<td>-0.104</td>
<td>-0.078</td>
</tr>
<tr>
<td></td>
<td>(0.036)**</td>
<td>(0.034)**</td>
<td>(0.050)*</td>
<td>(0.049)**</td>
<td>(0.053)</td>
</tr>
<tr>
<td>Lender merchant</td>
<td>0.126</td>
<td>0.090</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.057)**</td>
<td>(0.063)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lender regent</td>
<td>-0.016</td>
<td>-0.017</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.044)</td>
<td>(0.050)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lender noble</td>
<td>0.024</td>
<td>0.027</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.045)</td>
<td>(0.047)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lender female</td>
<td>0.027</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.049)</td>
<td>(0.043)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lender specialist</td>
<td>-0.023</td>
<td>-0.024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.032)</td>
<td>(0.041)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borrower merchant</td>
<td>-0.141</td>
<td>-0.060</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.084)*</td>
<td>(0.088)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borrower specialist</td>
<td>-0.080</td>
<td>-0.096</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.043)*</td>
<td>(0.066)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borrower Jewish</td>
<td>0.018</td>
<td>-0.016</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.035)</td>
<td>(0.046)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>3.527</td>
<td>3.637</td>
<td>3.739</td>
<td>3.559</td>
<td>3.879</td>
</tr>
<tr>
<td></td>
<td>(0.036)***</td>
<td>(0.096)***</td>
<td>(0.102)***</td>
<td>(0.071)***</td>
<td>(0.177)***</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(1) Pooled OLS</th>
<th>(2) Pooled OLS</th>
<th>(3) FE</th>
<th>(4) FE</th>
<th>(5) FE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year dummies</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Lender FE</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Borrower FE</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>
| N(
| if balanced panel)| 418 | 386 | 418 | 386 | 418 |
| # lenders | 177 | 152 | 177 | 152 | 177 |
| # borrowers | 72 | 70 | 72 | 70 | 72 |
| R² | 0.511 | 0.564 | 0.744 | 0.699 | 0.836 |

Regression estimates for all English securities. Observations refer to new contracts and are weighted by the nominal (face) value of the collateral. Exposed lenders are those who were forced to liquidate collateral after the events of Christmas 1772. The interaction between the exposed and the post-1772 dummies captures the diff-in-diff effect. Lender and borrower fixed effects refer to fixed effects on the family/firm level. Robust standard errors (clustered at the lender level) are reported in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01
Table 8: Haircuts and lender characteristics

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposed</td>
<td>-0.002</td>
<td>-0.003</td>
<td>-0.003</td>
<td>-0.003</td>
<td>-0.003</td>
<td>-0.003</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.005)</td>
<td>(0.004)</td>
<td>(0.005)</td>
<td>(0.005)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>Exposed * Post 1772</td>
<td>0.062</td>
<td>0.068</td>
<td>0.062</td>
<td>0.064</td>
<td>0.065</td>
<td>0.061</td>
</tr>
<tr>
<td></td>
<td>(0.021)***</td>
<td>(0.023)***</td>
<td>(0.023)***</td>
<td>(0.022)***</td>
<td>(0.023)***</td>
<td>(0.021)***</td>
</tr>
<tr>
<td>non-EIC</td>
<td>-0.055</td>
<td>-0.056</td>
<td>-0.056</td>
<td>-0.056</td>
<td>-0.056</td>
<td>-0.056</td>
</tr>
<tr>
<td></td>
<td>(0.006)***</td>
<td>(0.006)***</td>
<td>(0.006)***</td>
<td>(0.006)***</td>
<td>(0.006)***</td>
<td>(0.006)***</td>
</tr>
<tr>
<td>Merchant * Post 1772</td>
<td>0.033</td>
<td></td>
<td></td>
<td></td>
<td>0.022</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.019)***</td>
<td></td>
<td></td>
<td></td>
<td>(0.063)</td>
<td></td>
</tr>
<tr>
<td>Regent * Post 1772</td>
<td>-0.015</td>
<td></td>
<td></td>
<td></td>
<td>0.008</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.017)</td>
<td></td>
<td></td>
<td></td>
<td>(0.056)</td>
<td></td>
</tr>
<tr>
<td>Noble * Post 1772</td>
<td></td>
<td>-0.040</td>
<td></td>
<td>-0.026</td>
<td></td>
<td>-0.029</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.019)***</td>
<td></td>
<td>(0.029)</td>
<td></td>
<td>(0.023)</td>
</tr>
<tr>
<td>Female * Post 1772</td>
<td></td>
<td></td>
<td></td>
<td>-0.026</td>
<td></td>
<td>-0.002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.029)</td>
<td></td>
<td>(0.053)</td>
</tr>
<tr>
<td>Specialist * Post 1772</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.005</td>
<td>-0.005</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.047)</td>
<td>(0.041)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.241</td>
<td>0.243</td>
<td>0.239</td>
<td>0.244</td>
<td>0.245</td>
<td>0.239</td>
</tr>
<tr>
<td></td>
<td>(0.018)***</td>
<td>(0.017)***</td>
<td>(0.017)***</td>
<td>(0.017)***</td>
<td>(0.017)***</td>
<td>(0.018)***</td>
</tr>
<tr>
<td>Year dummies</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Lender & borrower observables</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>(N)</td>
<td>387</td>
<td>387</td>
<td>387</td>
<td>387</td>
<td>387</td>
<td>387</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.448</td>
<td>0.442</td>
<td>0.452</td>
<td>0.443</td>
<td>0.440</td>
<td>0.453</td>
</tr>
<tr>
<td># lenders</td>
<td>152</td>
<td>152</td>
<td>152</td>
<td>152</td>
<td>152</td>
<td>152</td>
</tr>
</tbody>
</table>

Pooled OLS estimates for all English securities. Observations refer to new contracts and are weighted by the nominal (face) value of the collateral. Haircuts are calculated as the fraction of the collateral value that is not financed with a loan. Exposed lenders are those who were forced to liquidate collateral after the events of Christmas 1772. The interaction between the exposed and the post-1772 dummies captures the diff-in-diff effect. Lender and borrower observables are as in Table 6. Merchant – active in commerce; regent – member of (local) government or judiciary; specialist – lenders also active as borrower. Robust standard errors (clustered at the lender level) are reported in parentheses. * \(p < 0.10 \), ** \(p < 0.05 \), *** \(p < 0.01 \)
<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposed</td>
<td>-0.002</td>
<td>0.022</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.012)**</td>
</tr>
<tr>
<td>Exposed * Post 1772</td>
<td>0.056</td>
<td>0.075</td>
</tr>
<tr>
<td></td>
<td>(0.028)**</td>
<td>(0.056)</td>
</tr>
<tr>
<td>non-EIC</td>
<td>-0.056</td>
<td>-0.055</td>
</tr>
<tr>
<td></td>
<td>(0.006)**</td>
<td>(0.006)**</td>
</tr>
<tr>
<td>Herfindahl (pre-event)</td>
<td>0.006</td>
<td>0.028</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.014)**</td>
</tr>
<tr>
<td>Herfindahl (pre-event) * Post 1772</td>
<td>-0.030</td>
<td>-0.011</td>
</tr>
<tr>
<td></td>
<td>(0.036)</td>
<td>(0.070)</td>
</tr>
<tr>
<td>Herfindahl (pre-event) * Exposed</td>
<td>-0.037</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.017)**</td>
<td></td>
</tr>
<tr>
<td>Herfindahl (pre-event) * Exposed * Post 1772</td>
<td>-0.022</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.088)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.244</td>
<td>0.228</td>
</tr>
<tr>
<td></td>
<td>(0.017)**</td>
<td>(0.018)**</td>
</tr>
<tr>
<td>Year dummies</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Lender & borrower observables</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>N</td>
<td>384</td>
<td>384</td>
</tr>
<tr>
<td>R^2</td>
<td>0.443</td>
<td>0.452</td>
</tr>
<tr>
<td># lenders</td>
<td>149</td>
<td>149</td>
</tr>
</tbody>
</table>

Pooled OLS estimates for all English securities. Observations refer to new contracts and are weighted by the nominal (face) value of the collateral. Haircuts are calculated as the fraction of the collateral value that is not financed with a loan. Exposed lenders are those who were forced to liquidate collateral after the events of Christmas 1772. The interaction between the exposed and the post-1772 dummies captures the diff-in-diff effect. The Herfindahl index (0-1) measures the concentration of a lender’s portfolio before Christmas 1772. The double interaction between Herfindahl and Post 1772 captures whether all lenders with higher degrees of concentration charged higher haircuts after Christmas 1772. The triple interaction between Herfindahl, the Exposed and Post 1772 captures whether exposed lenders with a higher degree of concentration adjusted haircuts more. Lender and borrower observables are as in Table 6. Robust standard errors (clustered at the lender level) are reported in parentheses. * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$
Table 10: EIC factor

<table>
<thead>
<tr>
<th></th>
<th>(1) Pooled OLS</th>
<th>(2) Pooled OLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposed</td>
<td>0.003</td>
<td>-0.009</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.008)</td>
</tr>
<tr>
<td>Exposed * EIC price</td>
<td>-0.033</td>
<td>0.047</td>
</tr>
<tr>
<td></td>
<td>(0.030)</td>
<td>(0.038)</td>
</tr>
<tr>
<td>EIC price</td>
<td>0.049</td>
<td>-0.015</td>
</tr>
<tr>
<td></td>
<td>(0.029)*</td>
<td>(0.035)</td>
</tr>
<tr>
<td>Exposed * Post 1772</td>
<td></td>
<td>0.068</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.035)*</td>
</tr>
<tr>
<td>Constant</td>
<td>0.245</td>
<td>0.252</td>
</tr>
<tr>
<td></td>
<td>(0.022)***</td>
<td>(0.023)***</td>
</tr>
<tr>
<td>Year dummies</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Lender observables</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>N</td>
<td>288</td>
<td>288</td>
</tr>
<tr>
<td>R^2</td>
<td>0.320</td>
<td>0.332</td>
</tr>
<tr>
<td># lenders</td>
<td>127</td>
<td>127</td>
</tr>
</tbody>
</table>

Pooled OLS regression estimates for EIC stock only. Observations refer to new contracts and are weighted by the nominal (face) value of the collateral. Haircuts are calculated as the fraction of the collateral value that is not financed with a loan. Exposed lenders are those who were forced to liquidate collateral after the events of Christmas 1772. The interaction between the exposed and the post-1772 dummies captures the diff-in-diff effect. EIC prices are in fractions of the nominal (face) value. Average price before Christmas 1772 2.12, after Christmas 1772 1.55. Lender observables are as in table 6. Robust standard errors (clustered at the lender level) are reported in parentheses. * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$
Table 11: Haircuts and borrower characteristics

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposed</td>
<td>-0.003</td>
<td>-0.003</td>
<td>-0.004</td>
<td>-0.003</td>
<td>-0.001</td>
<td>-0.003</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.005)</td>
<td>(0.005)</td>
<td>(0.004)</td>
<td>(0.006)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>Exposed * Post 1772</td>
<td>0.067</td>
<td>0.066</td>
<td>0.076</td>
<td>0.077</td>
<td>0.056</td>
<td>0.061</td>
</tr>
<tr>
<td></td>
<td>(0.023)**</td>
<td>(0.024)**</td>
<td>(0.023)**</td>
<td>(0.025)**</td>
<td>(0.024)**</td>
<td>(0.026)**</td>
</tr>
<tr>
<td>non-EIC</td>
<td>-0.056</td>
<td>-0.056</td>
<td>-0.056</td>
<td>-0.057</td>
<td>-0.051</td>
<td>-0.056</td>
</tr>
<tr>
<td></td>
<td>(0.006)**</td>
<td>(0.006)**</td>
<td>(0.006)**</td>
<td>(0.006)**</td>
<td>(0.008)**</td>
<td>(0.006)**</td>
</tr>
<tr>
<td>Merchant * Post 1772</td>
<td>0.002</td>
<td></td>
<td></td>
<td></td>
<td>0.038</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.048)</td>
<td></td>
<td></td>
<td></td>
<td>(0.050)</td>
<td></td>
</tr>
<tr>
<td>Specialist * Post 1772</td>
<td></td>
<td>-0.038</td>
<td></td>
<td></td>
<td>-0.032</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.024)</td>
<td></td>
<td></td>
<td>(0.022)</td>
<td></td>
</tr>
<tr>
<td>Jewish * Post 1772</td>
<td></td>
<td>-0.056</td>
<td></td>
<td></td>
<td>-0.056</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.025)**</td>
<td></td>
<td></td>
<td>(0.025)**</td>
<td></td>
</tr>
<tr>
<td>New</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.019</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.022)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.245</td>
<td>0.241</td>
<td>0.236</td>
<td>0.242</td>
<td>0.207</td>
<td>0.247</td>
</tr>
<tr>
<td></td>
<td>(0.016)**</td>
<td>(0.018)**</td>
<td>(0.019)**</td>
<td>(0.015)**</td>
<td>(0.012)**</td>
<td>(0.016)**</td>
</tr>
<tr>
<td>Year dummies</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Lender & borrower observables</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>Borrower-time FE</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>N</td>
<td>387</td>
<td>387</td>
<td>387</td>
<td>387</td>
<td>387</td>
<td>387</td>
</tr>
<tr>
<td>R^2</td>
<td>0.440</td>
<td>0.447</td>
<td>0.458</td>
<td>0.464</td>
<td>0.691</td>
<td>0.443</td>
</tr>
<tr>
<td># groups (borrowers)</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
</tbody>
</table>

Pooled OLS estimates for all English securities (col 5 fixed effects). Observations refer to new contracts and are weighted by the nominal (face) value of the collateral. Haircuts are calculated as before. Exposed lenders are as defined before. The interaction between the exposed and the post-1772 dummies captures the diff-in-diff effect. Lender and borrower observables are as in Table 6. Merchant – primary activity commerce; specialist – borrower also active as lenders. Borrower time FE: time is defined as before/after Christmas 1772. New – borrower not active before Christmas 1772. Robust standard errors (clustered at the lender level) are reported in parentheses. * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$
Table 12: Haircuts and time since event

<table>
<thead>
<tr>
<th></th>
<th>(1) Pooled OLS</th>
<th>(2) Pooled OLS</th>
<th>(3) FE</th>
<th>(4) FE</th>
<th>(5) FE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposed</td>
<td>-0.005</td>
<td>-0.003</td>
<td>-0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.005)</td>
<td>(0.006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposed * Post 1772</td>
<td>0.097</td>
<td>0.086</td>
<td>0.086</td>
<td>0.054</td>
<td>0.101</td>
</tr>
<tr>
<td></td>
<td>(0.030)***</td>
<td>(0.033)***</td>
<td>(0.046)*</td>
<td>(0.030)*</td>
<td>(0.045)**</td>
</tr>
<tr>
<td>Time since event</td>
<td>-0.001</td>
<td>0.023</td>
<td>0.008</td>
<td>-0.065</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>(0.058)</td>
<td>(0.059)</td>
<td>(0.066)</td>
<td>(0.058)</td>
<td>(0.073)</td>
</tr>
<tr>
<td>Exposed * time since event</td>
<td>-0.051</td>
<td>-0.041</td>
<td>-0.051</td>
<td>-0.031</td>
<td>-0.058</td>
</tr>
<tr>
<td></td>
<td>(0.044)</td>
<td>(0.044)</td>
<td>(0.045)</td>
<td>(0.042)</td>
<td>(0.048)</td>
</tr>
<tr>
<td>non-EIC</td>
<td>-0.058</td>
<td>-0.055</td>
<td>-0.047</td>
<td>-0.053</td>
<td>-0.046</td>
</tr>
<tr>
<td></td>
<td>(0.006)***</td>
<td>(0.007)***</td>
<td>(0.012)***</td>
<td>(0.008)***</td>
<td>(0.014)***</td>
</tr>
<tr>
<td>Constant</td>
<td>0.218</td>
<td>0.244</td>
<td>0.243</td>
<td>0.212</td>
<td>0.460</td>
</tr>
<tr>
<td></td>
<td>(0.007)***</td>
<td>(0.018)***</td>
<td>(0.026)***</td>
<td>(0.012)***</td>
<td>(0.032)***</td>
</tr>
<tr>
<td>Year dummies</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Lender FE</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Borrower FE</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Lender observables</td>
<td>N</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borrower observables</td>
<td>N</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>418</td>
<td>387</td>
<td>418</td>
<td>387</td>
<td>418</td>
</tr>
<tr>
<td>N (if balanced panel)</td>
<td>166</td>
<td>77</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0.334</td>
<td>0.440</td>
<td>0.632</td>
<td>0.659</td>
<td>0.802</td>
</tr>
<tr>
<td># groups (lenders)</td>
<td>177</td>
<td>152</td>
<td>177</td>
<td>152</td>
<td>177</td>
</tr>
<tr>
<td># groups (borrowers)</td>
<td>72</td>
<td>70</td>
<td>72</td>
<td>70</td>
<td>72</td>
</tr>
</tbody>
</table>

Regression estimates for all English securities. Observations refer to new contracts and are weighted by the nominal (face) value of the collateral. Haircuts are calculated as the fraction of the collateral value that is not financed with a loan. Exposed lenders are those who were forced to liquidate collateral after the events of Christmas 1772. The interaction between the exposed and the post-1772 dummies captures the diff-in-diff effect. ‘Time since event’ is measured in years. The interaction between the exposed and ‘time since event’ dummies captures the reversion of the treatment effect. For example, in column 3 the immediate treatment effect on haircuts is .08 and decreases by .04 every year. Lender and borrower observables are as in table 6. Lender and borrower fixed effects are at the family/firm level. Robust standard errors (clustered at the lender level) are reported in parentheses. * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$.
Table 13: Disaggregation of haircut components

<table>
<thead>
<tr>
<th></th>
<th>(1) Pool OLS</th>
<th>(2) Pool OLS</th>
<th>(3) FE</th>
<th>(4) FE</th>
<th>(5) FE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel (A): Distance to margin call</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposed</td>
<td>-0.009</td>
<td>-0.005</td>
<td>-0.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.006)</td>
<td>(0.006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposed * Post 1772</td>
<td>0.063</td>
<td>0.042</td>
<td>0.039</td>
<td>0.028</td>
<td>0.046</td>
</tr>
<tr>
<td></td>
<td>(0.023)***</td>
<td>(0.024)*</td>
<td>(0.036)</td>
<td>(0.028)</td>
<td>(0.043)</td>
</tr>
<tr>
<td>non-EIC</td>
<td>-0.036</td>
<td>-0.029</td>
<td>-0.029</td>
<td>-0.027</td>
<td>-0.031</td>
</tr>
<tr>
<td></td>
<td>(0.006)***</td>
<td>(0.006)***</td>
<td>(0.009)***</td>
<td>(0.007)***</td>
<td>(0.011)***</td>
</tr>
<tr>
<td>Constant</td>
<td>0.131</td>
<td>0.167</td>
<td>0.167</td>
<td>0.116</td>
<td>0.069</td>
</tr>
<tr>
<td></td>
<td>(0.006)***</td>
<td>(0.014)***</td>
<td>(0.020)***</td>
<td>(0.009)***</td>
<td>(0.026)***</td>
</tr>
<tr>
<td>R^2</td>
<td>0.135</td>
<td>0.293</td>
<td>0.630</td>
<td>0.534</td>
<td>0.804</td>
</tr>
</tbody>
</table>

Panel (B): distance to loss

<table>
<thead>
<tr>
<th></th>
<th>(1) Pool OLS</th>
<th>(2) Pool OLS</th>
<th>(3) FE</th>
<th>(4) FE</th>
<th>(5) FE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposed</td>
<td>0.004</td>
<td>0.002</td>
<td>0.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.005)</td>
<td>(0.006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposed * Post 1772</td>
<td>0.012</td>
<td>0.022</td>
<td>0.025</td>
<td>0.010</td>
<td>0.027</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.012)*</td>
<td>(0.018)</td>
<td>(0.015)</td>
<td>(0.018)</td>
</tr>
<tr>
<td>non-EIC</td>
<td>-0.024</td>
<td>-0.027</td>
<td>-0.020</td>
<td>-0.027</td>
<td>-0.019</td>
</tr>
<tr>
<td></td>
<td>(0.007)***</td>
<td>(0.006)***</td>
<td>(0.008)**</td>
<td>(0.007)***</td>
<td>(0.010)*</td>
</tr>
<tr>
<td>Constant</td>
<td>0.087</td>
<td>0.081</td>
<td>0.088</td>
<td>0.095</td>
<td>0.098</td>
</tr>
<tr>
<td></td>
<td>(0.005)***</td>
<td>(0.017)***</td>
<td>(0.021)***</td>
<td>(0.008)***</td>
<td>(0.026)***</td>
</tr>
<tr>
<td>R^2</td>
<td>0.306</td>
<td>0.390</td>
<td>0.672</td>
<td>0.614</td>
<td>0.825</td>
</tr>
</tbody>
</table>

Regression estimates for all English securities. Haircut = distance to margin call + distance to loss. Observations refer to new contracts and are weighted by the nominal (face) value of the collateral. Exposed lenders are those who were forced to liquidate collateral after the events of Christmas 1772. The interaction between the exposed and the post-1772 dummies captures the diff-in-diff effect. Lender and borrower observables are as in table 6. Lender and borrower fixed effects are at the family/firm level. Robust standard errors (clustered at the lender level) are reported in parentheses. * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$
Table 14: Sample attrition

<table>
<thead>
<tr>
<th></th>
<th>(1) OLS</th>
<th>(2) OLS</th>
<th>(3) Probit</th>
<th>(4) Probit</th>
<th>(5) Logit</th>
<th>(6) Logit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposed</td>
<td>0.087</td>
<td>0.081</td>
<td>0.398</td>
<td>0.366</td>
<td>0.740</td>
<td>0.709</td>
</tr>
<tr>
<td></td>
<td>(0.052)*</td>
<td>(0.052)</td>
<td>(0.244)</td>
<td>(0.247)</td>
<td>(0.460)</td>
<td>(0.470)</td>
</tr>
<tr>
<td>Total lending</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>before Christmas</td>
<td>8.433</td>
<td></td>
<td>28.621</td>
<td></td>
<td></td>
<td>47.953</td>
</tr>
<tr>
<td>1772</td>
<td>(5.769)</td>
<td></td>
<td>(16.356)*</td>
<td></td>
<td></td>
<td>(27.806)*</td>
</tr>
<tr>
<td>Constant</td>
<td>0.098</td>
<td>0.067</td>
<td>-1.296</td>
<td>-1.411</td>
<td>-2.225</td>
<td>-2.436</td>
</tr>
<tr>
<td></td>
<td>(0.033)***</td>
<td>(0.038)*</td>
<td>(0.191)***</td>
<td>(0.209)***</td>
<td>(0.373)***</td>
<td>(0.415)***</td>
</tr>
<tr>
<td>N</td>
<td>174</td>
<td>174</td>
<td>174</td>
<td>174</td>
<td>174</td>
<td>174</td>
</tr>
<tr>
<td>R^2</td>
<td>0.015</td>
<td>0.038</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unit of observation: individual lenders. Sample restricted to lenders present in the repo market before Christmas 1772. Left hand side variable: 1 if lender is present after 1772, 0 if not. We relate this to whether lenders were exposed to the defaulting consortium. Exposed lenders are those who were forced to liquidate collateral after the events of Christmas 1772. Cols (1), (3), and (5) measure the simple degree of attrition, either in fractions still present after 1772 (OLS) or in terms of the probability of returning to the sample after 1772 (probit and logit). The constant measures the degree of attrition for non-exposed lenders. The coefficient on the exposed dummy measures the difference in attrition between exposed and non-exposed. A positive number means that exposed lenders exhibit less attrition. In cols (2), (4) and (6) we condition the degree of attrition on the overall activity of lenders before Christmas 1772. Total lending is measured as £000 of nominal (face) value of collateral. Robust standard errors are reported in parentheses. * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$.
<table>
<thead>
<tr>
<th></th>
<th>Including Van Seppenwolde</th>
<th>Excluding Van Seppenwolde</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) Pooled OLS</td>
<td>(2) Pooled OLS</td>
</tr>
<tr>
<td>Exposed</td>
<td>1.911</td>
<td>2.144</td>
</tr>
<tr>
<td></td>
<td>(0.935)**</td>
<td>(1.166)*</td>
</tr>
<tr>
<td>Post 1772</td>
<td>0.326</td>
<td>0.175</td>
</tr>
<tr>
<td></td>
<td>(0.487)</td>
<td>(0.610)</td>
</tr>
<tr>
<td>Exposed * Post 1772</td>
<td>-1.186</td>
<td>-1.465</td>
</tr>
<tr>
<td></td>
<td>(0.913)</td>
<td>(1.163)</td>
</tr>
<tr>
<td>non-EIC</td>
<td>3.337</td>
<td>3.499</td>
</tr>
<tr>
<td></td>
<td>(1.346)**</td>
<td>(1.700)**</td>
</tr>
<tr>
<td>Constant</td>
<td>2.190</td>
<td>3.050</td>
</tr>
<tr>
<td></td>
<td>(0.462)**</td>
<td>(1.405)**</td>
</tr>
<tr>
<td>Year dummies</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Lender observables</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Lender FE</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>N</td>
<td>202</td>
<td>175</td>
</tr>
<tr>
<td>N (if balanced panel)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0.040</td>
<td>0.080</td>
</tr>
<tr>
<td># lenders</td>
<td>177</td>
<td>152</td>
</tr>
</tbody>
</table>

Regression estimates for total lending at the lender level on the collateral of all English securities. Total lending is calculated before and after Christmas 1772; in £000s of nominal (face) value. Exposed lenders are those who were forced to liquidate collateral after the events of Christmas 1772. The interaction between the post-1772 and the exposed dummies captures the diff-in-diff effect. Lender observables are as in Table 6. Lender fixed effects refer to fixed effects on the family level. Robust standard errors (clustered at the lender level) are reported in parentheses. * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$.
Table 16: Herfindahl index by lender

<table>
<thead>
<tr>
<th></th>
<th>Including Van Seppenwolde</th>
<th></th>
<th>Excluding Van Seppenwolde</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) Pooled OLS</td>
<td>(2) Pooled OLS</td>
<td>(3) FE</td>
<td>(4) Pooled OLS</td>
</tr>
<tr>
<td>Exposed</td>
<td>-0.075</td>
<td>-0.086</td>
<td>-0.175</td>
<td>-0.210</td>
</tr>
<tr>
<td></td>
<td>(0.044)*</td>
<td>(0.049)*</td>
<td>(0.057)**</td>
<td>(0.063)**</td>
</tr>
<tr>
<td>Post 1772</td>
<td>-0.117</td>
<td>-0.139</td>
<td>-0.158</td>
<td>-0.066</td>
</tr>
<tr>
<td></td>
<td>(0.086)</td>
<td>(0.095)</td>
<td>(0.146)</td>
<td>(0.089)</td>
</tr>
<tr>
<td>Exposed * Post 1772</td>
<td>0.043</td>
<td>0.083</td>
<td>0.187</td>
<td>0.142</td>
</tr>
<tr>
<td></td>
<td>(0.111)</td>
<td>(0.122)</td>
<td>(0.202)</td>
<td>(0.116)</td>
</tr>
<tr>
<td>Non-EIC</td>
<td>-0.024</td>
<td>-0.022</td>
<td>-0.127</td>
<td>-0.072</td>
</tr>
<tr>
<td></td>
<td>(0.048)</td>
<td>(0.054)</td>
<td>(0.193)</td>
<td>(0.069)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.866</td>
<td>0.866</td>
<td>0.843</td>
<td>0.819</td>
</tr>
<tr>
<td></td>
<td>(0.036)**</td>
<td>(0.065)**</td>
<td>(0.055)**</td>
<td>(0.043)**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.086)**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.075)**</td>
</tr>
<tr>
<td>Year dummies</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Lender observables</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Lender FE</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>N</td>
<td>202</td>
<td>175</td>
<td>202</td>
<td>128</td>
</tr>
<tr>
<td>N (if balanced panel)</td>
<td></td>
<td></td>
<td></td>
<td>113</td>
</tr>
<tr>
<td>R^2</td>
<td>0.035</td>
<td>0.049</td>
<td>0.917</td>
<td>0.035</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.049</td>
</tr>
<tr>
<td># lenders</td>
<td>177</td>
<td>152</td>
<td>177</td>
<td>113</td>
</tr>
</tbody>
</table>

Regression estimates for Herfindahl indices on the lender level; measured before and after Christmas 1772. The Herfindahl index (0-1) measures the concentration of a lender’s portfolio (loans secured on all English securities); \(H = \sum_{i=1}^{N} s_i^2 \) where \(s_i \) is the share of lending to an individual counterparty. Values close to 0 indicate full diversification; a value of 1 indicates full concentration. Exposed lenders are those who were forced to liquidate collateral after the events of Christmas 1772. The interaction between the exposed and the post-1772 dummies captures the diff-in-diff effect. Lender observables as in table 6. Lender fixed effects on the family level. Robust standard errors (clustered at the lender level) are reported in parentheses. * \(p < 0.10 \), ** \(p < 0.05 \), *** \(p < 0.01 \).
Table 17: Haircuts, excluding January 1773

<table>
<thead>
<tr>
<th></th>
<th>(1) Pooled OLS</th>
<th>(2) Pooled OLS</th>
<th>(3) FE</th>
<th>(4) FE</th>
<th>(5) FE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposed</td>
<td>-0.005 (0.005)</td>
<td>-0.002 (0.005)</td>
<td>-0.001 (0.006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposed * Post 1772</td>
<td>0.068 (0.022)***</td>
<td>0.058 (0.023)**</td>
<td>0.050 (0.035)</td>
<td>0.039 (0.024)</td>
<td>0.060 (0.037)***</td>
</tr>
<tr>
<td>non-EIC</td>
<td>-0.059 (0.006)***</td>
<td>-0.055 (0.007)***</td>
<td>-0.047 (0.012)***</td>
<td>-0.053 (0.008)***</td>
<td>-0.046 (0.014)***</td>
</tr>
<tr>
<td>Constant</td>
<td>0.218 (0.006)***</td>
<td>0.246 (0.016)***</td>
<td>0.245 (0.024)***</td>
<td>0.210 (0.012)***</td>
<td>0.458 (0.034)***</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year dummies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lender FE</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Borrower FE</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Lender observables</td>
<td>No</td>
<td>Yes</td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Borrower observables</td>
<td>No</td>
<td>Yes</td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>N</td>
<td>412</td>
<td>381</td>
<td>412</td>
<td>381</td>
<td>412</td>
</tr>
<tr>
<td>N (if balanced panel)</td>
<td>160</td>
<td>73</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0.299</td>
<td>0.296</td>
<td>0.229</td>
<td>0.706</td>
<td></td>
</tr>
<tr>
<td># lenders</td>
<td>177</td>
<td>152</td>
<td>177</td>
<td>152</td>
<td>177</td>
</tr>
<tr>
<td># borrowers</td>
<td>69</td>
<td>67</td>
<td>69</td>
<td>67</td>
<td>69</td>
</tr>
</tbody>
</table>

Regression estimates for all English securities. Observations refer to new contracts and are weighted by the nominal (face) value of the collateral. Observations for January 1773 are excluded. Haircuts are calculated as the fraction of the collateral value that is not financed with a loan. Exposed lenders are those who were forced to liquidate collateral after the events of Christmas 1772. The interaction between the exposed and the post-1772 dummies captures the diff-in-diff effect. Lender and borrower fixed effects are at the family/firm level. Robust standard errors (clustered at the lender level) are reported in parentheses. * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$
Table 18: Haircuts – different types of collateral

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pooled OLS</td>
<td>Pooled OLS</td>
<td>FE</td>
<td>FE</td>
<td>FE</td>
</tr>
<tr>
<td>Panel (A): EIC only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposed</td>
<td>-0.002</td>
<td>0.000</td>
<td>0.004</td>
<td>-0.000</td>
<td>0.015</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.008)</td>
<td>(0.019)</td>
<td>(0.008)</td>
<td>(0.016)</td>
</tr>
<tr>
<td>Exposed * Post 1772</td>
<td>0.072</td>
<td>0.068</td>
<td>0.074</td>
<td>0.037</td>
<td>0.055</td>
</tr>
<tr>
<td></td>
<td>(0.025)**</td>
<td>(0.028)**</td>
<td>(0.045)</td>
<td>(0.026)</td>
<td>(0.044)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.222</td>
<td>0.240</td>
<td>0.225</td>
<td>0.210</td>
<td>0.169</td>
</tr>
<tr>
<td></td>
<td>(0.006)**</td>
<td>(0.016)**</td>
<td>(0.032)**</td>
<td>(0.013)**</td>
<td>(0.046)**</td>
</tr>
<tr>
<td>N</td>
<td>314</td>
<td>288</td>
<td>314</td>
<td>288</td>
<td>314</td>
</tr>
<tr>
<td>N (if balanced panel)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># lenders</td>
<td>147</td>
<td>127</td>
<td>147</td>
<td>127</td>
<td>147</td>
</tr>
<tr>
<td># borrowers</td>
<td>60</td>
<td>57</td>
<td>60</td>
<td>57</td>
<td>60</td>
</tr>
<tr>
<td>R^2</td>
<td>0.132</td>
<td>0.296</td>
<td>0.561</td>
<td>0.599</td>
<td>0.787</td>
</tr>
</tbody>
</table>

Panel (B): BoE, SSC and 3% Annuities

Exposed	-0.007	-0.005			
	(0.008)	(0.007)			
Exposed * Post 1772	0.102	0.066			
	(0.016)**	(0.027)**			
Constant	0.158	0.226			
	(0.007)**	(0.019)**			
N	104	99			
# lenders	70	64			
# borrowers	27	26			
R^2	0.072	0.284			

Regression estimates for EIC and BoE, SSC and 3% Annuities separately. Observations refer to new contracts and are weighted by the nominal (face) value of the collateral. Haircuts are calculated as the fraction of the collateral value that is not financed with a loan. Exposed lenders are those who were forced to liquidate collateral after the events of Christmas 1772. The interaction between the exposed and the post-1772 dummies captures the diff-in-diff effect. Lender and borrower observables are as in table 6. Lender and borrower fixed effects are at the family/firm level. Due to a limited number of observations the fixed effects models cannot be estimated for the non-EIC securities. Robust standard errors (clustered at the lender level) are reported in parentheses. * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$
Table 19: Haircuts – Winsorized dependent variable

<table>
<thead>
<tr>
<th></th>
<th>(1) Pooled OLS</th>
<th>(2) Pooled OLS</th>
<th>(3) FE</th>
<th>(4) FE</th>
<th>(5) FE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposed</td>
<td>-0.005</td>
<td>-0.003</td>
<td>-0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.004)</td>
<td>(0.006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposed * Post 1772</td>
<td>0.072</td>
<td>0.064</td>
<td>0.060</td>
<td>0.040</td>
<td>0.059</td>
</tr>
<tr>
<td></td>
<td>(0.020)**</td>
<td>(0.022)**</td>
<td>(0.032)*</td>
<td>(0.022)*</td>
<td>(0.031)*</td>
</tr>
<tr>
<td>Non-EIC</td>
<td>-0.057</td>
<td>-0.054</td>
<td>-0.047</td>
<td>-0.051</td>
<td>-0.045</td>
</tr>
<tr>
<td></td>
<td>(0.006)***</td>
<td>(0.006)***</td>
<td>(0.011)***</td>
<td>(0.008)***</td>
<td>(0.014)***</td>
</tr>
<tr>
<td>Constant</td>
<td>0.219</td>
<td>0.240</td>
<td>0.236</td>
<td>0.214</td>
<td>0.199</td>
</tr>
<tr>
<td></td>
<td>(0.006)***</td>
<td>(0.014)***</td>
<td>(0.022)***</td>
<td>(0.011)***</td>
<td>(0.033)***</td>
</tr>
<tr>
<td>R^2</td>
<td>0.369</td>
<td>0.470</td>
<td>0.677</td>
<td>0.655</td>
<td>0.842</td>
</tr>
<tr>
<td>Year dummies</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Lender FE</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Borrower FE</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Lender observables</td>
<td>N</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borrower observables</td>
<td>N</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>418</td>
<td>387</td>
<td>418</td>
<td>387</td>
<td>418</td>
</tr>
<tr>
<td>N (if balanced panel)</td>
<td>166</td>
<td>77</td>
<td></td>
<td></td>
<td>33</td>
</tr>
<tr>
<td># lenders</td>
<td>177</td>
<td>152</td>
<td>177</td>
<td>152</td>
<td>177</td>
</tr>
<tr>
<td># borrowers</td>
<td>72</td>
<td>70</td>
<td>72</td>
<td>70</td>
<td>72</td>
</tr>
</tbody>
</table>

Regression estimates for all English securities. Observations refer to new contracts. Haircuts are calculated as the fraction of the collateral value that is not financed with a loan. Exposed lenders are those who were forced to liquidate collateral after the events of Christmas 1772. The interaction between the exposed and the post-1772 dummies captures the diff-in-diff effect. Observations are weighted by the nominal (face) value of the collateral; the top and bottom 5% of the haircut distribution are Winsorized. Lender and borrower observables are as in table 6. Lender and borrower fixed effects are at the family/firm level. Robust standard errors (clustered at the lender level) are reported in parentheses. * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$
Appendix A: Sample contract – original and English translation (SAA 10,602, F. 1309)

Heden den 2e November 1772 compareerde voor mij Daniel van den Brink Openbaar Notaris binnen Amsterdam de heer Raphael de Abraham Mendes da Costa, voor en in de naam van zijn Compagnie luidende Abraham de Raphael Mendes da Costa & Co, Kooplieden binnen deeze stadt

en bekende bij deeze wel en deugdelijk schuldig te wezen aan de Heer Ananias Willink, meede Coopman alhier de somma van 24.000 guldens bankgeld spruytende uyt hoofden en ter saake van sodanige somma als de selve den 22e Oktober laatstleden aan syn comp[arants] voorn'[oemde] Compagnie heeft afgeschreven, [...] en welke somma van f. 24.000 Bankgeld hij Comparant in de naam van zijn voorn'[oemde] compagnie aanneemt

en belooft aan voorn'[oemde] Heer Ananias Willink of zijn Co[mpagnies] rechthebbende kosten schadeloos alhier weeder te zullen restitueren en voldoen binnen de tijd van ses maanden te rekenen van den 6 October deesesjaars met den Interest van dien tegens vier percent 't jaar en bij prolongatie gelijke interest

en zulks tot de volle en effectueele betaalinge toe tog de interessen te betaalen ieder 6 maanden des zo zal bij opeischinge of aflossinge den een den ander ses weeken voor de vervaltijd waarschouwent

tot nakominge deezes verbind hij comparant zijn en zijn gemelde Compagnions persoon en goederen als na rechten en specialijk sodanige vijftienhonderd ponden sterling capitaal actien in de d'Oost Indische Compagnie van Engeland als tot London voor rekening van zijn comparants gemelde compagnie als pand ter minnen op de naam en rekening van gemelde H[eer] Ananias Willink zijn getransporteerd [...]

Today, November 2, 1772 appeared before me, Daniel van den Brink, Public Notary in the City of Amsterdam, mr. Raphael de Abraham Mendes da Costa, for and in the name of his company called Abraham de Raphael Mendes da Costa & Co, merchants in this town (hereafter: “the party present”).

And declared to be indebted to mr. Ananias Willink, also merchant in this city for the sum of 24,000 guilders banco, originating from and relating to a withdrawal of such sum on October 22 last in favor of the present party’s said company, and the present party accepting that sum of 24,000 guilders banco in the name of said company.

And promises to said mr Ananias Willink, or his company’s legal representative, to return this sum (including any costs incurred), within the time of six months, counting from October 6 this year, with the interest of 4% annual, and in case of prolongation the same interest.

And [promises] to pay the full and effective payment of the interest every six months

In case that the contract is not prolonged he will be notified 6 weeks in advance.

To honor this agreement, the present party pledges his own body and goods and especially 1500 Pounds Sterling capital in the stocks of the English East India Company, which have been transferred in London from the account of the present party’s company to the account of said mr. Ananias Willink as collateral.

[...]

62
en zulks meede een somma van f. 1500 indien
deselve actien mogten komen te daalen op 180%
en zo vervolgens van 10 tot 10 % om bij
aflossing en voldoeninge van gemelde capitaale
somma gerescontreerd en geluiqideerd te werden,
zullende de interessen van zodaanige restitutione
don te reisteren van dien dag af dat dezelve restitutione geschied is

And he also [promises] to transfer an
amount of 1500 guilders banco if the price
of said stock were to fall below 180% and
similarly with every additional fall of 10%.
Interest payments associated with these
sums of money will be calculated until the
moment the money is effectively
transferred.

en hy comparant belooft meede in de naam van
zyn gemelde Compagnie te zullen goed doen de
provisie en onkosten die hy ’t transporteren van
dezelve Actien aan zijn compagnie zullen komen
tevallen welk transport by aflossinge zal met ten
geschieden door de correspondenten van zijn
comparants gemelde Compagnie.

And he, the party present, promises in the
name of his said Company to pay for the
fees and other costs associated with
transferring the stock to his Company the
moment the loan is repaid, which will be
arranged by the correspondents of the
present party’s said company.

Voorts verklaarde hy Comparant dezelve Heer
Anianas Willink speciaal te authoriseeren en
constitueeren ommeindien zijn comparants
gemelde compagnie in gebreken mogt komen te
blijven de voors[egde] capitaale somma van f.
24000 bankgeld en interessen promptelijk te
betaalen en voldoen ofte […] en meede zo
wanneer bij vermindering der waarde van
voornoemde Actien zijn comparants gemelde
Compagnie op de eerste aanzeegginge ’t surplus
niet kwam te voldoen dezelve actien door een
makelaar albier ofte tot London te mogen
verkopen omme daar uit te vinden ’t geene syn
Ed[ele] uit kragte deezes zal zijn
Competeerende ’t geene hy Comparant in de
naam van zijn voornoemde Compagnie belooft
voor goed vast en van waarde te houden en zoo
wanneer dezelve minder mogten renderen zoo
belooft hij comparant ’t mindere aan zijn
Ed[elte] zullen opleggen en voldoen waar tegens
gemelde Heer Ananias Willink als meerdere aan
zijn comparants gemelde Compagnie zal goed
doen en hij Comparant bekende van syn Ed[ele]
wegens voors[egde] actien een renvers[aal] te
hebben ontvangen

Furthermore, the present party declares
that, in case the present party’s company
defaults on the obligation to repay said sum
of 24,000 guilders banco and associated
interest payments in a timely fashion, or
when he fails (due to the fall in value of said
stocks) to provide additional surplus after a
first instigation, he authorizes mr. Ananias
Willink especially to have the said stock sold
through an official broker, either here or in
London, and to retrieve from the proceeds
the amount of money he is entitled
according to this agreement with the
present party’s company.

In case the sale yields less than the full
amount, the present party promises to make
up the difference. In case it yields more, mr.
Ananias Willink will remit the resulting
surplus.

The party present declares that he has
received a counter-deed in reference to said
stock.

Actum Amsterdam, 2 November 1772

Signed in Amsterdam, November 2, 1772
Table 20: Interest rates – Winsorized dependent variable

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pooled OLS</td>
<td>Pooled OLS</td>
<td>FE</td>
<td>FE</td>
<td>FE</td>
</tr>
<tr>
<td>Exposed</td>
<td>0.064</td>
<td>0.042</td>
<td>-0.111</td>
<td>0.060</td>
<td>-0.162</td>
</tr>
<tr>
<td></td>
<td>(0.035)*</td>
<td>(0.033)</td>
<td>(0.045)**</td>
<td>(0.041)</td>
<td>(0.053)***</td>
</tr>
<tr>
<td>Exposed * Post 1772</td>
<td>-0.019</td>
<td>-0.008</td>
<td>-0.059</td>
<td>0.026</td>
<td>0.070</td>
</tr>
<tr>
<td></td>
<td>(0.077)</td>
<td>(0.077)</td>
<td>(0.086)</td>
<td>(0.080)</td>
<td>(0.165)</td>
</tr>
<tr>
<td>non-EIC</td>
<td>-0.072</td>
<td>-0.087</td>
<td>-0.076</td>
<td>-0.104</td>
<td>-0.076</td>
</tr>
<tr>
<td></td>
<td>(0.036)**</td>
<td>(0.033)**</td>
<td>(0.045)*</td>
<td>(0.049)**</td>
<td>(0.054)</td>
</tr>
<tr>
<td>Constant</td>
<td>3.534</td>
<td>3.617</td>
<td>3.690</td>
<td>3.583</td>
<td>3.620</td>
</tr>
<tr>
<td></td>
<td>(0.033)***</td>
<td>(0.092)***</td>
<td>(0.094)***</td>
<td>(0.070)***</td>
<td>(0.145)***</td>
</tr>
<tr>
<td>R^2</td>
<td>0.464</td>
<td>0.515</td>
<td>0.736</td>
<td>0.659</td>
<td>0.840</td>
</tr>
<tr>
<td>Year dummies</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Lender FE</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Lender FE</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Borrower observables</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Borrower observables</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>N</td>
<td>418</td>
<td>386</td>
<td>418</td>
<td>386</td>
<td>418</td>
</tr>
<tr>
<td>N (if balanced panel)</td>
<td>166</td>
<td>77</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td># lenders</td>
<td>177</td>
<td>152</td>
<td>177</td>
<td>152</td>
<td>177</td>
</tr>
<tr>
<td># borrowers</td>
<td>72</td>
<td>70</td>
<td>72</td>
<td>70</td>
<td>72</td>
</tr>
</tbody>
</table>

Regression estimates for all English securities. Exposed lenders are those who were forced to liquidate collateral after the events of Christmas 1772. The interaction between the exposed and the post-1772 dummies captures the diff-in-diff effect. Panel (A): observations are uniformly weighted. Panel (B): observations are weighted by the nominal (face) value of the collateral; the top and bottom 5% of the distribution are Winsorized. Robust standard errors (clustered at the lender level) are reported in parentheses. * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$
Appendix C: Relationship Lending

To what degree did the Amsterdam market for securities lending feature relationship lending? We start with the null hypothesis that all matches between borrowers and lenders were random and we then check whether the data can reject this null.

We investigate the random matching of lenders and borrowers in the following way. We calculate the Herfindahl index for every lender in our sample based on the activity up to Christmas 1772. The Herfindahl index is calculated as

$$H_i = \sum_j s_{i,j}^2$$

where $s_{i,j}$ is the share of lending by lender i to an individual borrower j. If lending was highly concentrated, we would expect a high Herfindahl index for many lenders. The left panel of figure D1 presents the distribution of these Herfindahl indices for all lenders in our sample. There are two things that merit further discussion. First of all, some lenders only entered into a single transaction before Christmas 1772. As a result they (by definition) have a Herfindahl index of 1. We therefore see a clustering of observations at a value of 1. To illustrate the impact that this has on the distribution, we explicitly differentiate between lenders that entered into one loan contract and those that entered into multiple. For those with more than one loan outstanding, only a small number of lenders have a Herfindahl index of 1. Secondly, the distribution is discontinuous, with zero weight between 0.68 and 1. This is the result of the way a Herfindahl index is constructed and the fact that most lenders only do a few transactions. This does not reflect any unusual characteristics of the data.

We test whether these Herfindahl indices reflect more (or less) concentration than we would expect if all matching between borrowers and lenders had been random. To test this we generate a random distribution of Herfindahl indices. See figure D1 for the exact procedure. The distribution of randomly drawn Herfindahl indices is presented in the right panel of figure D1. The distributions of the actual and random Herfindahl indices look very similar. There are slightly more lenders in the actual sample who had fully concentrated lending portfolios (Herfindahl index of 1) than we would expect if all matching was random. Nevertheless, this difference is small. Statistical tests fail to reject the null hypothesis that the distributions are identical and that matching between borrowers and lenders was random. All in all, the results suggest that relationship lending in the Amsterdam market was limited.
For each lender we calculate the Herfindahl index of its lending before Christmas 1772:

\[H_i = \sum_j s_{i,j}^2 \]

where \(s_{i,j} \) is the share of lending by lender \(i \) to an individual borrower \(j \). In addition, we construct a random distribution of Herfindahl indices. We do this in the following way. We randomly pick a lender from our set of lenders; we determine how many (x) new loan contracts it entered into before Christmas 1772; we randomly draw x counterparties (taking into account that some borrowers are more active than others); and we calculate the resulting Herfindahl index. We do this 10,000 times. The y-axes are aligned to reflect equal fractions. Grey bars reflect lenders who entered into at least 2 transactions. The white bars indicated lenders who only lent out once.

Tests on the equality of the distributions:

<table>
<thead>
<tr>
<th>Test Statistic</th>
<th>Test statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson’s X2</td>
<td>83.8</td>
<td>0.435</td>
</tr>
<tr>
<td>Log likelihood ratio</td>
<td>37.9</td>
<td>0.505</td>
</tr>
<tr>
<td>Number of obs.</td>
<td>178</td>
<td></td>
</tr>
<tr>
<td>Number of unique values</td>
<td>84</td>
<td></td>
</tr>
</tbody>
</table>