You Are What You Bet: Eliciting Risk Attitudes from Horse Races

Pierre-André Chiappori, Amit Gandhi, Bernard Salanié and François Salanié

June 25, 2008
Much empirical work in macroeconomics and finance assumes that they are. Yet there is mounting experimental evidence that risk attitudes are massively heterogeneous:
Barsky et al (QJE 1997) use survey questions, linked to actual behavior; they report $D_1=2$ and $D_9=25$ for relative risk aversion, poorly explained by demographics.
Guiso-Paiella (2003) report similar findings (“massive unexplained heterogeneity”).
On the same survey, Chiappori-Paiella (2007) uses the time dimension and finds RRA index has mean=4.2 and median=1.7.
Can we document this heterogeneity on actual data?
Ideally...

We would observe a large, representative and stable population of people, making a large number of repeated and yet uncorrelated choices in very simple risky situations.
A “win bet” at odds R on horse i buys an Arrow-Debreu asset for state “i wins” with net return R. Very simple model of vertically differentiated varieties:

- at a given price (odds), a horse that is more likely to win is unambiguously better;
- equilibrium prices (odds) reflect the distribution of preferences towards risk and beliefs;
- . . . which can be recovered if it is not too “rich”.

More than 100,000 races are run in the US every year.
Bettors are unlikely to be a representative sample of the US population: “they must love risk since they gamble”: not so obvious; a decision to bet may come from a “utility of gambling”, whereas the choice of what horse to bet on would be guided by risk-averse preferences.

Second problem: stable population? Races are run in very different places at very different times.

- we can control for important observables (demographics of racetrack area, day of week)—just started;
- but not for characteristics of individual bettors;
- so we need to control for voluntary participation → (mostly) left for further work.
Assume a population of bettors, stable in time (given some observed characteristics omitted in these slides); and look at win bets. A given bettor θ with beliefs p_θ values a 1 bet that

- wins (net) R with probability p_θ
- loses 1 with probability $(1 - p_\theta)$

as $W(p_\theta, R, \theta)$. e.g., with expected utility theory (EUT), u rebased at current wealth:

$$W(p_\theta, R, \theta) = p_\theta u(R, \theta) + (1 - p_\theta) u(-1, \theta).$$

or, for Cumulative Prospect Theory (CPT) with no betting as reference point:

$$W(p_\theta, R, \theta) = G(p_\theta, \theta) u_+(R, \theta) + H(1 - p_\theta, \theta) u_-(1 - 1, \theta).$$

Can we recover uniquely the distribution of θ in the population?
The Parimutuel System

All money bet is given to the winners (apart from “track take”). Therefore returns depend directly on bets; so we also have market shares:
in race m for each horse i

$$s_i^m(R_i^m + 1) = 1 - t^m$$

where s_i is market share of i and t^m is track take, so:

$$s_i^m = \frac{1}{R_i^m + 1} \cdot \frac{1}{\sum_{j=1}^{N} \frac{1}{R_j^m + 1}}$$

which we denote $S_i(R^m)$.

Pierre-Andrée Chiappori, Amit Gandhi, Bernard Salanié and Francois Salanié
You Are What You Bet: Eliciting Risk Attitudes from Horse Races
In the parimutuel system, odds reflect market shares. But do they reflect “true” probabilities? Let true probabilities be \(t = (p_1, \ldots, p_n) \), and each bettor has an information partition on the set of possible \(t \)’s; Gandhi (2008): if

- the distribution of bettors is atomless
- every possible winner is desirable if its return is large enough
- for every \(t \neq t' \), there exists a bettor who can distinguish \(t \) and \(t' \)

then there is a unique REE with returns \(R_1, \ldots, R_n \) that fully reveal \(t \).
(How we get there is a mystery, as always!)
The Data

Our data is a large number of races $m = 1, \ldots, M$

Data on a race m consists of

- a number of horses n^m
- a vector of odds R^m_i for $i = 1, \ldots, n^m$
- the index f^m of the horse that won race m;
- some covariates X^m (omitted in what follows).
Empirical Strategy

Suppose (for simplicity) all races have exactly n horses and we observe an infinity of races, so that for every possible vector of odds $R = (R_1, \ldots, R_{n-1})$

- we can estimate $p_i(R)$ for $i = 1, \ldots, n - 1$ by the proportion of such races won by horse i:

$$p_i(R) \approx \frac{\sum_{R^m = R} (f^m = i)}{\sum_{R^m = R} 1}.$$

- we know that by definition,

$$S_i(R) = \Pr\left(\{\theta \mid W(p_i(R), R_i, \theta) \geq W(p_j(R), R_j, \theta) \quad \forall j\}\right). \quad (E)$$
Assume that Θ is a subset of \mathbb{R}, and that $n \geq 4$. We impose a single-crossing condition:

Condition (SC): each $W(., ., \theta)$ is increasing in p and R, and the marginal rate of substitution W'_R/W'_p increases in θ. (SC) means that larger θ’s prefer longer odds: e.g. for expected utility,

$$\frac{pW'_p}{W'_R} = \frac{u}{u'_R} = \text{fear-of-ruin},$$

so (SC) says that *fear-of-ruin* decreases in θ. (SC) is **much too strong:** e.g. if Joe is more risk-averse than Jim on favorites, he also is on outsiders. But it makes things simpler at this early stage... (and decreasing risk-aversion implies decreasing fear-of-ruin).
From now on, look at the equivalent problem: θ is uniformly distributed on $[0, 1]$, we look for the master function W.

Theorem:
- the data uniquely identify $W(., \theta)$ for $\theta > 1/n$;
- the assumption of (one-dimensional heterogeneity + (SC)) is testable.
- restrictions about the W functions are too.
Intuition

Given (SC), if we order odds as $R_1 \leq \ldots \leq R_n$ then the set of θ’s who bet on horse i is some interval

$$\Theta_i(R) = [\theta_{i-1}(R), \theta_i(R)]$$

where $\theta_0(R) = 0, \theta_n(R) = 1$ and for $i = 1, \ldots, n-1,$

$$W(p_i(R), R_i, \theta_i(R)) = W(p_{i+1}(R), R_{i+1}, \theta_i(R)) \quad (l_i).$$

With θ uniform on $[0, 1]$, we can estimate the $\theta_i(R)$’s using

$$S_i(R) = \theta_i(R) - \theta_{i-1}(R)$$

Note that since horse 1 is by definition the favorite, his market share is larger than $1/n$, so $\theta_1 > 1/n$ always.
... the market share of a horse maps into the set of preferences that choose it
... under our assumptions this set maps into an interval of \mathbb{R}
... and we know the measure of all such intervals, essentially all intervals in $(1/n, 1)$
... and we apply the theorem in the title.
The indifference condition

\[W(p_i(R), R_i, \theta_i(R)) = W(p_{i+1}(R), R_{i+1}, \theta_i(R)) \quad (I_i). \]

can be rewritten as

\[p_{i+1}(R) = \Gamma(W(p_i(R), R_i, \theta_i(R)), R_{i+1}, \theta_i(R)) \quad (J_i). \]

So \(p_{i+1}(R) \) depends on its \(n \) arguments (and \(i \), and \(n \)) only through the 4 numbers

\[p_i(R), R_i, R_{i+1}, \theta_i(R). \quad (IC) \]
Testable: that only 4 of the n arguments matter,
+ separability implications,
+ monotonicity implications,
and more implications if we restrict admissible V’s (e.g. expected utility.)

Identifiable: up to the obvious increasing transformation.
i.e. we recover the distribution (over θ) of the MRS of risk and return (or fear-of-ruin.)
Assume $W(p, R, \theta) = F(pu(R, \theta), \theta)$; then we get

$$p_{i+1}(R) = p_i(R) \frac{u(R_i, \theta_i(R))}{u(R_{i+1}, \theta_i(R))}$$

Thus EUT yields two additional conditions; define

$$\psi_{i+1} = \log \left(\frac{P_{i+1}}{p_i(R)} \right):$$

$$\psi_{i+1} \text{ only depends on } \theta_i(R), R_i \text{ and } R_{i+1} \quad (EU_1)$$

and

$$\frac{\partial^2 \psi_{i+1}}{\partial R_i \partial R_{i+1}} = 0 \quad (EU_2).$$
First specify a flexible functional form for $p_i(R) = P(R_i, (R_i))$:

$$p_i = \frac{e^{q_i}}{\sum_{j=1}^{n} e^{q_j}}$$

with, e.g.

$$q_i(R) = \sum_{k=1}^{K} a_k(R_i, \alpha) T_k(R_i)$$

and

- the T_k’s are symmetric functions—we take $\sum i / (1 + R_i)^k$;
- the a_k’s are estimated at quantiles of R_i and cubically splined.

Then maximize over α the log-likelihood

$$\sum_{m=1}^{M} \log p_{fm}(R^m, \alpha).$$
Estimating Heterogeneous Expected Utility

We use the boundary condition:

\[u(R_{i+1}, \theta_i(R)) = \frac{p_i(R)}{p_{i+1}(R)} u(R_i, \theta_i(R)) ; \]

so we can estimate the vNM utility function “nonparametrically iteratively” for any given \(\theta \):

- start from \(u^1(R, \theta) = 1/(R + 1) \) for instance;
- then

\[u^{m+1}(r, \theta) = E \left(\frac{p_i(R)}{p_{i+1}(R)} u^m(R_i, \theta_i(R)) | R_{i+1} = r, \theta_i(R) = \theta \right) . \]

- renormalize so the average \(u^{m+1} \) is one.
If market shares were equal to probabilities (as they would with risk-neutral bettors) we would have $N_i \equiv 0$, where N_i is the “normalized gain on horse i in its race”:

$$N_i = p_i(R_i + 1) \sum_{j=1}^{n} \frac{1}{R_j + 1}.$$

The favorite-longshot bias is the empirical fact that N_i is larger for favorites than for longshots.
Figure: Normalized Expected Gains
Results with Expected Utility Bettors

Heterogeneous expected utility

- EU homogeneous
- JS2000
- Risk-neutral
- Q1
- Median
- Q3

Figure: Estimated vNM functions

You Are What You Bet: Eliciting Risk Attitudes from Horse Races
What of Risk Aversion?

![Risk premia graph](image)

Figure: Risk premia for an even bet of the size of a bet

- EU homogeneous
- JS2000
- Risk-neutral
- Q1
- Median
- Q3

You Are What You Bet: Eliciting Risk Attitudes from Horse Races

Pierre-André Chiappori, Amit Gandhi, Bernard Salanié and François Salanié
We assumed (translated in the expected utility world)

\[
\frac{u(R, \theta)}{u_R'(R, \theta)}
\]

decreases in \(\theta \) for all \(R \).

We did not impose it for estimation, so we plot it with our estimates.
Fear of ruin

- EU homogeneous
- JS2000
- Risk-neutral
- Q1
- Median
- Q3

Figure: \(\frac{u}{u'} R \) as a function of \(R \)

You Are What You Bet: Eliciting Risk Attitudes from Horse Races
More generally

The identification approach suggests an iterative estimation procedure *that does not rely on preestimating probabilities*: At step s, say we have approximations of probability of winning $p_{i,c}^s$ for each horse i in any race c; Then we update for any horse $j > 1$ in a race d:

$$p_{j,d}^{s+1} = \Pr(i \text{ won race } c| R_{i,c} = R_{j,d}, R_{i-1,c} = R_{j-1,d}, p_{i,c}^s = p_{j,d}^s, \theta_i(R^c) = \theta_j(R^d))$$

(and completing for $j = 1$ by adding-up constraint.)

Remember the equation

$$p_{i+1}(R) = \Gamma(W(p_i(R), R_i, \theta_i(R)), R_{i+1}, \theta_i(R)) \quad (J_i).$$

If the iterations above converge, then they converge to the true probabilities, and the RHS gives us the W function.
To do list

- covariates;
- non-expected utility;
- modelling bettor participation in a particular race.