Option Value of Cash*

Jialin Yu
Department of Finance and Economics
Graduate School of Business
Columbia University†

July 21, 2009

Abstract

This paper uses a dynamic model of heterogeneous beliefs (where investors agree to disagree) to study the positive price-volume correlation during a housing downturn. It shows: (i) beliefs may diverge, which prevents some pessimists from buying; (ii) in the case that beliefs cross (i.e., buyers become more optimistic than the sellers), home sales occur but are delayed due to the buyers’ option to sell cash higher (using house as numeraire) if the downturn worsens. Such option to wait also has implications for the velocity of money during deflation, troubled assets in the crisis since 2007, IPO waves, and fire sales.

*I thank Patrick Bolton, Ron Kaniel, Martin Oehmke, Guillaume Plantin, Wenlan Qian, Tano Santos, Suresh Sundaresan, Neng Wang, Wei Xiong, and seminar participants at Columbia Business School, Florida State University, National University of Singapore International Conference on Finance, UC Davis Napa Conference, University of Michigan Mitsui Symposium for helpful comments. Yang Chen provided excellent research assistance. Mathematica code to replicate the calculations in this paper can be found at http://www.columbia.edu/~jy2167.

†Address: 421 Uris Hall, 3022 Broadway, New York, NY 10027, USA. Phone: (212) 854-9140. Email: jy2167@columbia.edu.
1 Introduction

In recent years, the U.S. home sales dropped alongside home prices. According to the National Association of Realtors, existing home sales in the US is 24% lower in 2008 compared to 2006. Meanwhile, the S&P/Case-Shiller home price index, which tracks changes in the value of the residential real estate market in 20 metropolitan regions across the United States, show a home price decline of 26% from January 2006 to December 2008. Such positive price-volume correlation exists in other samples. Stein (1995), using data going back as far as 1968, also finds that home prices are correlated with trading volumes.

To understand why the home sales dry up in a housing downturn, this paper uses a dynamic model of heterogeneous beliefs to study trading in the housing market. In this model, home buyers and sellers have different priors regarding the severity of the housing slump at the start of a downturn and Bayesian update their beliefs based on common observations of the state of the housing market. In another word, the investors agree to disagree (Aumann (1976)). Potential trading opportunity arrives when beliefs cross, i.e., when a buyer becomes more optimistic than a seller regarding the fundamental value of a house.

The model points out two reasons that can reduce trading volume. First, for some buyers and sellers, beliefs may not cross and may instead diverge. I.e., the buyers become increasingly more pessimistic relative to the sellers. Such divergence is seemingly contradictory to the prediction from Bayesian learning. Bayesian learning implies that the parameter estimates will increasingly be determined by the data, which implies convergent estimates in large sample. The explanation lies in the generally nonlinear relation between price and parameter. In this model, convergence occurs for the belief parameter, which is the probability that the downturn ends. However, the fundamental value relates to the expected length of the downturn, which is the inverse of the recovery probability. In a prolonged downturn, Bayesian investors lower their recovery probability towards zero. This, under certain conditions, leads to divergence in perceived fundamental values. Such divergence in fundamental values precludes some pessimistic investors from buying or lending at a low mortgage rate.

For other investors, belief crossing happens. This includes the interesting case where the buyer is more experienced (i.e., the buyer has a more precise prior than the seller). When the downturn
persists, both the buyer and the seller revise down their perceived fundamental values. However, the revision is slower for the buyer if she has a sharper prior. In an extreme case, if the buyer’s prior is infinitely precise (i.e., the buyer knows the true recovery probability), the buyer’s belief does not change and belief crossing occurs when the seller becomes sufficiently pessimistic. This can capture the bottom fishing behavior by some sophisticated investors who hold cash and wait to buy houses at distressed prices.

After the beliefs cross, will the buyers (who are now more optimistic than the sellers) buy immediately? Interestingly, the answer is no. This is the other reason that reduces trading volume. The delayed buying is due to “heads I win” (when the downturn worsens, the buyers can buy at bargain prices) and “tails I don’t lose” (when the downturn ends, holding cash does not incur an economic loss relative to buying immediately at perceived fair price). Such option value of cash is consistent with the anecdote that “cash is king” and the occurrence of cash hoarding in a down market. Calibration shows that the option can result in substantial delays in a buyer’s purchase. The belief dispersion also prevents competition (among sellers) from eliminating the option value.\(^1\) The degree of competition is not solely determined by the amount of house supply relative to the amount of cash held by all buyers. Rather, belief dispersion plays an important role. Wider belief dispersion implies the total cash is stretched thinner, which reduces competition per unit of belief dispersion and allows longer delay. Therefore, belief dispersion amplifies the “cash-in-the-market” pricing in Allen and Gale (1994).

Such delay can be costly to a home seller who demands immediacy, such as a homeowner who is relocating for a new job. To attract buyers, the seller needs to cut the house price to compensate the buyer’s option value of cash. Alternatively, the seller may decide not to give up the new job and not move at all, which can also be costly. The total cost to a homeowner is the minimum of the option value of cash and the cost of giving up the job offer. Calibration shows that the option value of cash can be a substantial fraction of the house value. Since a house is often the largest asset in a household, the option value of cash can inflict potentially large cost to a homeowner who needs to move.

The price-volume relation induced by the option value of cash can extend beyond the housing

\(^1\)See Grenadier (2002), Lambrecht and Perraudin (2003), and Kondor (2007) for the effect of competition on option when beliefs are homogeneous.
market. Potential applications to the velocity of money during deflation, the troubled assets in the crisis since 2007, and IPO waves are discussed. The option value of cash also extends the fire sale in Shleifer and Vishny (1992) to less specialized assets.

The literature on the price-volume relation in the housing market has largely focused on the sellers. Stein (1995) and Genesove and Mayer (1997) show that the downpayment requirement makes a homeowner more reluctant to sell at a loss, which can imply less home sales. Genesove and Mayer (2001) document the loss aversion of homeowners as an explanation to the positive price-volume correlation in the housing market. By focusing on the option value to wait of the buyers, the current paper complements the existing literature that focuses on house sellers.

Interestingly, the option value of cash in downturns relates to the speculative bubble seen in booms. Harrison and Kreps (1978), Morris (1996), and Scheinkman and Xiong (2003) show that an asset can be bid higher by speculators in anticipation of selling it to a “greater fool” in the future. Here, using the house as numeraire, cash is overvalued by homebuyers in anticipation of selling cash higher in the future (i.e., when the house market deteriorates further, cash is worth more using house as numeraire). The key ingredients shared by this paper and the speculative bubble literature are belief crossing and the short-sales constraint of the overvalued asset. In the current paper, the overvalued asset is cash. Short-sales constraint in cash implies that investors cannot borrow money unlimitedly to buy a house. This is not unrealistic—the house price drop since 2007 coincides with an economy-wide deleveraging process. The belief dispersion also implies high mortgage cost to borrow from pessimists. The existence of the option does not rely on short-sales constraint of houses. However, whether houses can be shorted determines how the option value of cash manifests. When the houses cannot be shorted as assumed in the model, the option value is not directly manifested in the house price. Rather, the option manifests as delays in the buyers’ purchases. Such prediction of delay is new to the speculative bubble literature.

Heterogeneous investor models are useful for the study of trading. Heterogeneity is modeled in this paper by heterogeneity in beliefs, which allows tractable dynamics from Bayesian learning. Nonetheless, the option of holding cash can apply to other heterogeneities in preferences, wealth fluctuations, user costs, or other constraints, as long as such heterogeneities generate belief crossing. Heterogeneous beliefs in this paper come from heterogeneous priors. Since a nationwide house price slump like the one since 2007 is unprecedented in the past 120 years, attributing belief dispersion
to differences in priors is likely realistic.2 Investors have few experiences with similar events. This prevents learning from completely eliminating differences in priors. Heterogeneous beliefs can alternatively come from asymmetric information, which is also an important component in the market microstructure literature (e.g., Glosten and Milgrom (1985) and Kyle (1985)). To focus on its main contribution, this paper assumes away asymmetric information along with other important issues such as mortgage financing, taxes, etc. On the other hand, it shows that the option value of cash does not rely on these other mechanisms.

Section 2 presents a model of heterogeneous beliefs. Section 3 discusses the model implications to housing and other markets. Section 4 concludes. The appendix contains the proofs.

2 The model

2.1 Assumptions

The model is in continuous time with infinite horizon. There is a risk-free asset (cash) and a risky asset (house). The risk-free term structure is flat at rate r. There are K homogeneous units of houses outstanding in the economy. A larger or better house may be viewed as having multiple such units. Each unit of house generates rental income of $d_t dt$ between time t and $t + dt$, where dt denotes an infinitesimal period. The rent switches between two regimes,

\[
d_t = \begin{cases}
D & \text{in normal market} \\
D - \delta & \text{in downturn}
\end{cases}
\]

where $0 < \delta \leq D$. Time $t = 0$ is the beginning of the downturn. The regimes are time-varying according to the following transition probability matrix

\[
\begin{array}{c|cc}
 & \text{Normal at } t + dt & \text{Downturn at } t + dt \\
\hline
\text{Normal at } t & 1 & 0 \\
\text{Downturn at } t & \lambda dt & 1 - \lambda dt \\
\end{array}
\]

(1)

2 Home prices since 1890 are available from Robert Shiller’s website.
where λ is the recovery intensity which governs the transition probability from downturn to normal state.\footnote{Such transition probability relates to the concept of hazard rate and has also been used to study crashes, currency de-pegs, or defaults. See Duffie and Singleton (2003) and Yu (2007) for additional details.} Given λ, the downturn is expected to last $1/\lambda$. For simplicity, the normal state is absorbing—once the downturn ends, the regime stays at the normal state. This does not qualitatively affect the results, which are predictions during the downturn.

Investors do not observe λ, though they observe the current and past realized regimes (rental income is observable). Investors learn λ via Bayesian learning.\footnote{Different from Barberis, Shleifer, and Vishny (1998), investors in the current paper use the correct model to update their beliefs.} Each investor’s prior of λ is assumed to come from the class of Gamma distributions, denoted by $\text{Gamma}(a, b)$ where the parameters $a > 1$ and b may differ across investors to reflect differences of opinion. A Gamma distribution $\text{Gamma}(a, b)$ has two parameters.\footnote{The probability density function of $\text{Gamma}(a, b)$ at λ is $\lambda^{a-1}e^{-\lambda b}a^{a}/\Gamma(a)$. $\Gamma(a) \equiv \int_0^\infty t^{a-1}e^{-\lambda t}dt$ is the Gamma function (see Lebedev and Silverman (1972) for additional details).} a and b are, respectively, the shape and scale parameters.

To simplify notation during Bayesian updating, Gamma distribution in this paper is expressed in terms of the inverse scale. I.e., $\text{Gamma}(a, b)$ in this paper is equivalent to the typical definition of Gamma distribution with parameters a and $1/b$. Gamma distributions are commonly used to model wait time and allow a rich set of possibilities. For example, they include the exponential and χ^2 distributions as special cases.\footnote{$\text{Gamma}(1, \lambda)$ gives the exponential distribution with parameter λ. $\text{Gamma}(v/2, 1/2)$ is the χ^2 distribution with degree of freedom v.} Gamma priors allow closed-form solutions to the model. Section 2.6.7 discusses extensions to other distributions.

The beliefs are common knowledge, i.e., investors agree to disagree as in Aumann (1976). Investors are risk neutral and maximize expected discounted life-time income.

Assumption 1 (Optimists). There is a continuum of investors who collectively hold the K units of houses at the beginning of downturn. They are referred to as sellers in the paper. Each seller is identical and has prior $\text{Gamma}(a, b)$ at $t = 0$.

The assumption of homogeneous sellers simplifies the illustration and allows the focus on the option value of cash held by buyers. Extension to heterogeneous sellers is discussed in Section 2.6.6.

Assumption 2 (Pessimists). There is a continuum of investors indexed by $i \in [0, 1]$ who hold cash at the beginning of the downturn $t = 0$. They are referred to as buyers in the paper. Each buyer
has sufficient capital to buy M units of houses. $M > K$, i.e., buyers collectively can absorb all the housing supply.

The buyers’ beliefs will be specified later.

2.2 Bayesian updating and the fundamental value

This section collects several useful results regarding Bayesian updating under Gamma priors and the resulting formula for the fundamental value of houses.

Lemma 1 (Bayesian updating). For an investor whose prior of λ is $\text{Gamma}(a, b)$, the posterior after Δ periods of downturn is $\text{Gamma}(a, b + \Delta)$.

Lemma 2 (Properties of Gamma distribution). If λ is distributed $\text{Gamma}(a, b)$, $E(\lambda) = a / b$, $\text{Var}(\lambda) = a / b^2$. When $a > 1$, the expected length of downturn is finite and given by $E[1/\lambda] = b/(a - 1)$.

Lemmas 1 and 2 imply that, as the downturn lengthens, the posterior becomes more precise and expects lower λ. Figure 1 illustrates several examples of the Gamma probability density function. For an investor with prior $\text{Gamma}(20, 19)$, the belief peaks at $\lambda = 1$ and expects the downturn to last one year. The prior of $\text{Gamma}(20, 19)$ is more precise than the $\text{Gamma}(2, 1)$ prior, which also expects a one-year bear market. If the prior is $\text{Gamma}(2, 1)$, the posterior becomes $\text{Gamma}(2, 3)$ after observing two more periods of downturn. The Bayesian learning has two effects. First, lower λ is considered more likely after longer downturn. Second, the posterior becomes more precise after more observations.

During the downturn, the fundamental value of a unit of house given λ is the net present value (NPV)

$$NPV(\lambda) = \int_0^\infty e^{-rt}Ddt - \int_0^\infty \left(\int_0^t e^{-rs}\delta ds\right)\lambda e^{-\lambda t}dt$$

$$= \frac{D}{r} - \frac{\delta}{r + \lambda}$$

which is the fundamental value during the normal state minus the expected total losses during the downturn.
For an investor with belief $\text{Gamma} (a, b)$ regarding λ, the fundamental value of a unit of house is obtained by integrating (2) over the belief,

$$V (a, b) = E_{\text{Gamma}(a,b)} [\text{NPV} (\lambda)]$$

$$= D \left[\frac{1}{r} - \frac{\delta}{D} \cdot b \cdot e^{rb} \cdot a^{-1} \Gamma (1 - a, rb) \right]$$

$$\approx \frac{D}{r} - \delta \cdot \frac{b}{a - 1} \quad \text{when } r \text{ is small.}$$

(3) gives an exact formula and an approximation for $V (a, b)$. The exact formula involves the incomplete gamma function $\Gamma (\cdot, \cdot)$, which is well defined if the second argument is positive and can be evaluated numerically to arbitrary precision.7 Therefore, the exact valuation formula is essentially in closed form. The last step in (3) follows because, when r is small, the expected loss during the downturn is determined by the expected length of downturn ($b / (a - 1)$ by Lemma 2).

The propositions in this paper are proved using the exact as opposed to the approximate formula for $V (a, b)$ unless “r is small” is explicitly stated. All the figures in this paper use the exact formula.

2.3 Cases of initial conditions

Consider any two investors i and j and their Bayesian priors regarding λ at time $t = 0$. Assuming without loss of generality that investor i is more optimistic in the sense that $E_i (\lambda) > E_j (\lambda)$. The subscript specifies the investor whose belief is used to compute the expectation. There are three possibilities: (1) $\text{Var}_i (\lambda) = \text{Var}_j (\lambda)$ in which case both investors have the same prior precision measured by prior variances; (2) $\text{Var}_i (\lambda) > \text{Var}_j (\lambda)$; (3) $\text{Var}_i (\lambda) < \text{Var}_j (\lambda)$. In case (2), investor i begins with less precise prior. It will be shown later that, as a result, her belief turns more pessimistic faster than investor j when bad news came in. After sufficiently many bad news, investor i, who has less precise prior, becomes more pessimistic than investor j. This corresponds to case (3) with the labels of i and j reversed. Therefore, case (3) is subsumed by case (2). The rest of this paper will focus on cases (1) and (2) in sections 2.4 and 2.5, respectively.

7Specifically, $\Gamma (x, y) \equiv \int_y^{\infty} t^{x-1} e^{-t} dt$. The software Mathematica can compute the incomplete gamma function to arbitrary precision using its command Gamma[\cdot,\cdot]. See Lebedev and Silverman (1972) for additional details on the incomplete gamma function.
2.4 Case 1: Divergence of beliefs regarding fundamental

This section studies those buyers whose prior at time $t = 0$ is $\Gamma(a_P, b_P)$ where a_P and b_P satisfy

$$E_P(\lambda) = \frac{a_P}{b_P} < \frac{a}{b} = E(\lambda) \quad (4)$$
$$Var_P(\lambda) = \frac{a_P}{b_P^2} = \frac{a}{b^2} = Var(\lambda).$$

Recall from Assumption 1 that the sellers’ prior is $\Gamma(a, b)$. Let $V(\cdot, \cdot)$ and $V_P(\cdot, \cdot)$ denote the posterior beliefs about fundamental value (equation (3)) of the sellers and the buyers, respectively.

Proposition 1. When equation (4) holds,

- (Initial disagreement) If r is sufficiently small, $V(a, b) > V(a_P, b_P)$ at time $t = 0$.
- (Belief updating) After Δ periods of downturn, the sellers and the buyers believe that the fundamental value is $V(a, b + \Delta)$ and $V(a_P, b_P + \Delta)$, respectively.
- (Initial divergence in valuation) For given Δ, if r is sufficiently small,

$$V(a_P, b_P + \Delta) - V(a_P, b_P) < V(a, b + \Delta) - V(a, b) < 0. \quad (5)$$

- (Eventual convergence in valuation) $\lim_{\Delta \to \infty} V(a, b + \Delta) = \lim_{\Delta \to \infty} V(a_P, b_P + \Delta) = (D - \delta) / r$.

(5) is interesting in showing the fundamental value believed by the buyers may diverge from that of the sellers, even controlling for their prior precisions. This is seemingly opposite of the Bayesian learning prediction that posteriors converge after common observations (Savage (1972)).\(^8\)

What explains the difference? To see the intuition, (2) shows that, given recovery intensity, the difference in beliefs of fundamental value between the seller and the buyer is

$$\left(\frac{1}{r + \lambda_P} - \frac{1}{r + \lambda}\right) \delta \approx \left(\frac{1}{\lambda_P} - \frac{1}{\lambda}\right) \delta \quad (6)$$

\(^8\)Though see Acemoglu, Chernozhukov, and Yildiz (2009) regarding the fragility of asymptotic agreement under small perturbations to Bayesian learning.
when r is small. λ and λ_P denote, respectively, recovery intensity in the eyes of the seller and the buyer. When the downturn persists, both investors’ posteriors converge as predicted by Bayesian learning. However, the posteriors regarding recovery intensity converge towards zero which can lead to divergence in (6) under certain conditions. I.e., even if the posteriors become very close, the valuation difference in (6) can be large if both investors believe the recover intensity is close to zero.

Proposition 1 proves for the case when r is small. Does it work for realistic r? Further, Proposition 1 shows that eventually the beliefs regarding fundamental value converge after an infinite amount of observation, which is consistent with Bayesian learning. Therefore, the divergence in beliefs regarding fundamental value lasts only a finite amount of time. How long can the divergence last? Both questions are useful for assessing the empirical relevance of Proposition 1. Figure 2 shows that Proposition 1 can apply under reasonable value of r (0.5% per month). In Figure 2, the priors are such that the sellers (buyers) initially expect the downturn to last 1 month (6 months). This translates into a small difference in believed fundamental value at $t = 0$: 199.12 for the sellers and 197.52 for the buyers. The proportional difference is less than 1%. The difference increases to over 10% two years into the downturn (182.67 for the seller and 164.10 for the buyer). Eventually, the difference converges back to zero. However, the convergence does not begin until after a long time (about 50 years and the difference peaks at over 25%). That the divergence can be so large and last for so long implies that these buyers characterized by Proposition 1 can often ruled out as meaningful buyers in practice. Therefore, such buyers are eliminated from the group of potential buyers in section 2.5 below.

2.5 Case 2: Option value of cash and delayed purchase

This section studies the case where the sellers at less precise priors at time $t = 0$. It will be shown that belief crossing occurs in this case. I.e., the sellers’ belief of fundamental value becomes lower than that of buyers after a string of bad news. With such belief crossing, the buyers will contemplate buying houses from the sellers and this section studies the timing of such purchase.

9Proposition 1 is conditioning on being in the downturn. Therefore, the beliefs do not exhibit the “eternal switching” in Morris (1996).

10Proposition 1 shows only that these buyers will not buy based on buy-and-only consideration. However, it can also be shown that these buyers will not buy for short-term profit (see Proposition 2 and the discussion following it).
Assumption 3 (Pessimists’ beliefs). The prior of a buyer $i \in [0, 1]$ at the beginning of the downturn $t = 0$ is $\text{Gamma}(a_L, b_L + ig)$ where $g > 0$ captures belief dispersion among pessimists. Further,

$$a_L > a, \quad \frac{b_L}{a_L - 1} > \frac{b}{a - 1}. \quad (7)$$

The buyers are assumed to have heterogeneous beliefs. Recall from Lemma 2 that, for an agent with belief $\text{Gamma}(x, y)$, increasing x (y) makes the agent more optimistic (pessimistic) holding everything else constant. Therefore, the buyer $i = 0$ is the most optimistic buyer. And $i = 1$ corresponds to the most pessimistic buyer. Assumption 3 rules out those buyers with priors as in Section 2.4. Assumption 3 ensures that at time $t = 0$, the buyers have more pessimistic and more precise priors than the seller, as shown in the lemma below.

Lemma 3. Under Assumptions 1–3, at the beginning of the downturn $t = 0$,

$$\text{Var}_i(\lambda) < \text{Var}(\lambda) \quad \text{for any } i \in [0, 1]$$

where Var_i and Var denote the variance implied by priors of the buyer i and the sellers, respectively. Further, when r is sufficiently small,

$$V(a_L, b_L + ig) < V(a, b) \quad \text{for any } i \in [0, 1]$$

where $V(\cdot, \cdot)$ is the belief of fundamental value in equation (3). Recall that the sellers’ prior is $\text{Gamma}(a, b)$ at $t = 0$.

The buyers in this section can be interpreted as experienced investors who are initially pessimistic and hold cash waiting for the opportunity of bottom fishing when the downturn progresses. Intuitively, the sharper priors of the buyers induce slower belief updating than the sellers. This leads to the possibility of belief crossing. In an extreme case, if a buyer’s belief is infinitely precise (i.e., the buyer knows the recovery intensity), the belief does not change with new observations. Therefore, when the sellers become sufficiently pessimistic, belief crossing occurs. Assumption 3 also implies that a more pessimistic buyer stays more pessimistic relative to a more optimistic buyer during the downturn, as shown in the following lemma.
Lemma 4. For any two buyers $i < j$, the expected length of the downturn is smaller for i than j at any point in time during the downturn.

Therefore, belief crossing occurs between the sellers and buyers, but not among the buyers in this model. Such layering of the buyers not only simplifies the analysis, but also can capture the various potential real estate investors such as individuals looking for primary residence/second home/investment properties, institutions including hedge funds, private equity funds, or other entities, etc. These investors, for various reasons, may buy under different scenarios. The modeling choice of heterogeneous beliefs can capture actual disagreements among these investors, but it may also serve as a parsimonious way to capture other differences in incentives, required rates of return, etc.

When the downturn progresses, the sellers gradually revise downward their belief of the fundamental value. Eventually, belief crossing occurs when the sellers’ belief of fundamental drops below that of buyer $i = 0$. If the downturn persists, the sellers’ belief will cross below that of more pessimistic buyers. After beliefs cross, the buyer value the house higher from a buy-and-hold perspective than the sellers. Will the buyers buy? If so, when will they buy? This paper shows next that the answer to the first question is, perhaps naturally, yes. However, the answer to the second question is different from “buy as soon as beliefs cross.”

Before the sellers sell out of their house holdings, the sellers remain the marginal investor and the house price tracks the sellers’ belief of fundamental value. For a buyer, this induces a dichotomy between buy-and-hold and short-term returns, which is documented in the following proposition.

Proposition 2. Let $\Gamma(\alpha, \beta)$ and $\Gamma(A, B)$ denote, respectively, the belief of sellers (marginal investor) and a buyer at some point in time during the downturn. The buyer’s instantaneous expected return from housing investing is above the cost of capital r if

$$\frac{A}{B} \geq \frac{\alpha}{\beta}. \quad (8)$$

Further, when r is sufficiently small, the house price is below the buyer’s buy-and-hold valuation if

$$\frac{A}{B} \geq \frac{\alpha}{\beta} - \left(\frac{1}{\beta} - \frac{1}{B} \right).$$
Note that $B > \beta$ because of (7). Therefore, for the buyer, there is a parameter region where,

\[
\frac{\alpha}{\beta} - \left(1 - \frac{1}{B}\right) < \frac{A}{B} < \frac{\alpha}{\beta}.
\]

(9)

The intuition of the dichotomy between long-term buy-and-hold return and short-term return is that a buyer’s buy-and-hold return is determined only by the her own belief of the fundamental. However, the short-term expected return depends also on the house price fluctuation, which is affected by the sellers’ belief.

In the situation described by (9), the house price is already below the buyer’s buy-and-hold valuation. However, the buyer prefers to delay buying because the short-term expected return is too low. This is because, if the downturn persists, the sellers’ belief of fundamental drops faster than the buyer’s belief. This, to a buyer, creates an option to buy at a price below fundamental worth waiting for.

In essence, beliefs cross twice here. First, the beliefs regarding buy-and-hold value cross. Then, the beliefs regarding instantaneous return cross. The buyer prefers to wait until the beliefs regarding instantaneous return cross, at which point the house price is sufficiently distressed that additional waiting risks losing the profit (when the recovery takes place). Alternatively, competition from other buyers may prevent waiting until the ideal entry condition (8) is met. Such effect from competition on option exercise is consistent with Grenadier (2002), Lambrecht and Perraudin (2003), and Kondor (2007). Interestingly, different from these studies, the differences-of-opinion that generate the option value of holding onto cash also hinder the competition from more pessimistic buyers.

That belief dispersion hinders competition is formalized in the following proposition.

Proposition 3. For a buyer i, let $j(i)$ refer to the buyer whose buy-and-hold valuation equals the house price at the same time when i’s instantaneous expected return from buying a house equals r. Those buyers in the range $(i, j(i))$ find house price attractive from a buy-and-hold perspective before buyer i finds house price attractive based on instantaneous return. The buyers $(i, j(i))$ can potentially compete and interfere with i’s waiting until instantaneous return is attractive. When r is sufficiently small,

\[
j(i) = i + \frac{b_L - b}{a - 1} + \frac{i}{a - 1}.
\]
Buyers \((i, j(i))\) collectively have capital \((j(i) - i) M\). For the most optimistic buyer \(i = 0\), the total amount of potential competition is

\[
j(0) M = \frac{bL - b M}{a - 1} g.
\] (10)

Irrespective of the total capital \(M\), the buyer \(i = 0\) can wait until instantaneous return is attractive if the belief dispersion \(g \to \infty\). On the contrary, when belief dispersion disappears \((g \to 0)\), a house is purchased immediately after price equals buy-and-hold valuation.

Belief dispersion affects competition. \(M/g\) in (10) is the competitive capital per unit of belief dispersion. Even if the capital is plenty, larger belief dispersion implies that the capital is spread thinner. This effectively reduces competition and exacerbates delay in purchase. Such belief dispersion amplifies the “cash-in-the-market” pricing in Allen and Gale (1994).

Combining Proposition 2 and 3 characterizes the timing of house purchases. Note that Proposition 3 places only an upper bound on the competition by assuming that the competitors step in at their buy-and-hold valuations even though these competitors themselves may prefer to wait. The equilibrium timing of purchase is shown below in Proposition 4.

Proposition 4 (Equilibrium: delayed house purchase). When \(r\) is sufficiently small, the time \(t(i)\) when buyers \(i \in [0, K/M]\) buys a house is

\[
t(i) = n(i) + \min(t^*_1(i), t^*_2(i))
\]

where

\[
n(i) = \frac{(a - 1) bL - b(aL - 1)}{aL - a} + \frac{a - 1}{aL - a} i g
\]

\[
t^*_1(i) = \frac{bL - b}{aL - a} + \frac{i}{aL - a} g
\]

\[
t^*_2(i) = g \frac{a - 1}{aL - a} \left(\frac{K}{M} - i \right).
\]

\(n(i)\) is the time when the house price reaches \(i\)’s buy-and-hold valuation. \(t^*_1\) is the wait time until the instantaneous expected return becomes attractive. \(t^*_2\) is the time before competition absorbs all the supply of houses. \(n, t^*_1, t^*_2\), and hence \(t\) are increasing in \(g\) (longer delay when beliefs are more
Figure 3 visualizes the equilibrium. At the start of the downturn, the most optimistic buyer \(i = 0 \) values a house for buy-and-hold purpose at $196.11, just slightly below the seller’ belief of $196.13 regarding the house fundamental. The house price equals the sellers’ belief of fundamental until all sellers sell their houses. Belief crossing occurs between the sellers and buyer \(i = 0 \) occurs almost immediately into the downturn. However, due to the option value of waiting, buyer 0 does not buy until 3.24 months into the downturn at which point the house price is $188.05 and buyer 0’s buy-and-hold valuation is $194.78. Buyer \(i = 0 \) delays for about 3 months. Similarly, the house price drops to the buy-and-hold valuation of buyer \(i = 0.1 \) at 10.94 months into the downturn (at this time, the house price is $175.19). However, the buyer \(i = 0.1 \) does not step in until month 25.45 when all remaining buyers swarm in together. This is a delay of over a year. At the entry time month 25.45, the buy-and-hold valuation of buyer \(i = 0.1 \) is $171.16, which is substantially above the house price of $159.06. Intuitively, more pessimistic buyers can afford to delay longer because they perceive a bigger chance of buying at bargain prices when the downturn continues.

Without the threat of competition, buyer \(i = 0.1 \) would have liked to wait even longer. Due to competition, those buyers \(i \geq 0.084 \) buy at the same time (25.45 months into the downturn) and, by doing so, absorb all the houses from the sellers. Among the buyers, the most pessimistic one \(i = 0.2 \) buys immediately when the house price drops the buy-and-hold valuation. However, none of the other buyers step in immediately after their buy-and-hold valuations exceed the house price.

The delay can reduce house transactions substantially. The second plot in Figure 3 shows the cumulative fraction of houses sold over time. The plot shows two cases: the equilibrium in Proposition 4 and the case assuming buyers do not wait and step in as soon as the house price reaches the buy-and-hold valuations. Unlike Proposition 4 where the equilibrium is characterized in closed form when \(r \) is small, Figure 3 plots the exact equilibrium numerically. The first sale does not even occur until 3.24 months into the downturn. Without waiting, the buyers would have already acquired 18% of the total house supply from the sellers by this time. One year into the downturn, only 17% of the houses are bought by the buyers compared to 54% without waiting. At the two-year point, more than 60% of the houses is still left with the sellers while, without waiting, the buyers would have absorbed over 95% of the houses.
Knowing the optimal entry time \(t(i) \) of each buyer from Proposition 4, the option value of cash can be explicitly calculated. Let \(\pi(i, t) \) denote the expected profit per unit of house for buyer \(i \) at time \(t \). At the actual entry time \(t(i) \), the profit is the difference between the buy-and-hold valuation and the house price,

\[
\pi(i, t(i)) = V(a_L, b_L + ig + t(i)) - V(a, b + t(i)).
\] (11)

Prior to entry, the expected profit needs to be discounted for both the time value of money and the probability of recovery. I.e., for \(t < t(i) \),

\[
\pi(i, t) = \pi(i, t(i)) e^{-r(t(i)-t) P (\text{downturn lasts till } t(i))}
\]

where the probability is taken under buyer \(i \)'s posterior at time \(t \). The following proposition provides a closed-form expression of the expected profit.

Proposition 5. For a buyer \(i \in [0, K/M] \), when \(r \) is sufficiently small, the expected profit from waiting is

\[
\pi(i, t) = \pi(i, t(i)) e^{-r(t(i)-t)} \left(\frac{b_L + ig + t}{b_L + ig + t(i)} \right)^{a_L}
\] (12)

per unit of house at time \(t \leq t(i) \). \(t(i) \) is the optimal entry time by buyer \(i \) in Proposition 4. \(\pi(i, t(i)) \) is the profit upon entry, which is characterized in closed form in (11) and (3).

Figure 4 plots the expected profit (12) from optimally exercising the option of holding onto cash. For a given buyer, the expected profit increases over time due to less discount of time value of money and probability of recovery. At a given time in the downturn, the expected profit is hump shaped across potential buyers. Because more pessimistic buyers perceive a smaller probability of recovery, they tend to wait longer to buy at more distressed prices. This tends to increase the expected profit. However, for very pessimistic buyers, the threat of competition from other buyers dominates. This tends to decrease the expected profit. The last buyer \(i = 0.2 \) cannot afford to delay at all and has an expected profit of zero.

Each buyer buys when the house price drops to the buy-and-hold value minus the expected profit from optimal waiting in (12), instead of when the house price drops to the buy-and-hold
value. This is illustrated in first plot in Figure 3 for buyer $i = 0$. The buyer $i = 0$ buys at about 3 months into the downturn and gets a profit of about $6.7, which is the difference between the house price and the buy-and-hold value.

2.5.1 Cost to the sellers of the option value of cash

The option value for buyers to hold onto cash leads to a delay in house sale. However, no cost to sellers from such delay has been explicitly modeled so far. It is conceivable that sometimes a seller may prefer to sell a house quickly. For example, a homeowner may decide to take a job in a different town and hopes to sell the house before moving. In this case, delay in house sale can be costly. If the homeowner is unwilling to cut the price to compensate buyers’ option value of cash, the homeowner may be stuck with the house for a while and have to incur additional costs to hire a third party to manage the house after the homeowner moves. If this is undesirable, the homeowner may choose to turn down the new job and not move at all, which can also be costly.

To model such cost to the sellers, assume that, between time 0 and Δ, a total of $N(\Delta)$ sellers are randomly selected to receive job offers. The job offers, if accepted, require moving. $N(\Delta)$ is random and distributed according to a Poisson distribution with parameter $m\Delta$.11 The sellers are assumed to know m (i.e., they can assess the likelihood of themselves receiving another job offer). The property of Poisson distribution implies that, at time $t = 0$, the expected number of sellers who receive job offers before time $t = \Delta$ is $m\Delta$ which increases with Δ.

Let us first analyze the cost for the homeowner who is offered a job at time $t = 0$. Assuming the most optimistic buyer $i = 0$ has a belief of fundamental value lower than but very close to the seller’s belief of fundamental value, the seller needs to compensate the buyer’s option value of cash by cutting the house price by an amount of approximately $\pi(0,0)$ ($\pi(\cdot)$ has a closed-form expression in (12)). Assume further that it costs the homeowner C if she chooses to turn down the job offer and does not move.12 The homeowner will choose to cut the house price and take a loss of $\pi(0,0)$ if $C > \pi(0,0)$ and will turn down the job offer if $C \leq \pi(0,0)$ and suffer the cost C. The total cost is

$$\min(\pi(0,0), C).$$

11The probability $P(N(\Delta) = x) = \exp(-m\Delta)(m\Delta)^x/x!$.

12C could represent the (discounted) cost of staying with a less desirable job for a while, for example.
and can be as high as the option value of cash \(\pi(0,0) \). In the example Figure 3, it can be calculated that \(\pi(0,0) = 2.63 \). The seller and the buyer \(i = 0 \) believe the fundamental value if a house is $196.13 and $196.11 at \(t = 0 \), respectively. To attract the buyer, the seller would have to cut the house by $2.65 which is roughly equal to the option value of cash \(\pi(0,0) \) for buyer \(i = 0 \). This price cut is equivalent to about 1.4% of the seller’s buy-and-hold valuation $196.13, and is nontrivial given that house is the largest tangible asset for many households.

In this setting, the cost of delay decreases as the downturn progresses. When the market price drops below the buyer’s buy-and-hold valuation, the buyer has partially captured the gains to wait and therefore requires less price discount from the market price. However, the cost may not decrease over time if the job offers arrive in a lumpy way. In general, when a positive mass of households want to sell, they need to cut the price to not only meet the buyers’ buy-and-hold valuation but also compensate the buyers’ gains from waiting. Therefore, the cost to sellers is again related to the option value of cash, similar to (13). Figure 4 shows that some buyers perceive the option value of cash to be close to $15 (the house price is always less than $200 in the example), which can imply potentially large cost to a homeowner who needs to sell at a bad time. Lumpy arrival of job offers is not explicitly modeled here because, anticipating such probability, sellers will lower their buy-and-hold valuation ex-ante. This makes closed-form solutions difficult to obtain yet does not appear to offer additional insight on the buyers’ option value of cash. Further, when the job offer arrives, the household’s ex-ante buy-and-hold valuation is sunk and does not affect the moving/staying decision, which remains similar to (13).

2.6 Discussions and extensions

2.6.1 Speculation

Section 2.5 shows that the buyers do not step in immediately after the house price drops to the buy-and-hold valuations. Rather, the buyers buy when the house price drops to the buy-and-hold valuation minus the option value of cash. Such option value of cash, interestingly, relates to the speculative bubble typically associated with boom times. For example, Harrison and Kreps (1978), Morris (1996), and Scheinkman and Xiong (2003) show a speculative bubble when a speculator bids up the price of an asset in anticipation of selling it to a “greater fool” in the future. The
option value to wait in the current paper can be viewed as a bubble in cash when the buyers hope to sell cash higher (using house as numeraire) in the future when the housing slump worsens. Due to heterogeneous beliefs, competition does not eliminate the bubble, which is similar to Abreu and Brunnermeier (2003) though the current paper does not depart from common knowledge.

The key ingredient shared by the current paper and this speculative bubble literature is (1) belief crossing: the sellers (who are initially more optimistic) become more pessimistic than the buyers; (2) short-sales constraint. Note that, in the current paper, it is the short-sales constraint in cash (instead of house) that matters. Since private investors cannot print money, this short-sales constraint is equivalent to a constraint on leverage. I.e., investors cannot borrow unlimitedly to buy house, which is not unreasonable if the housing slump co-exist with an economy-wide deleveraging process. Further, the belief dispersion that generates the option value also constrains borrowing, see Section 2.6.2.

Different from this speculative bubble literature, the option value is not directly manifested in the house price. Recall that, in Section 2.5, the house price tracks the buy-and-hold valuation of the sellers (who are the marginal investors) before the buyers absorb the entire housing supply. The option value perceived by the buyers does not appear in the price, because individual houses are difficult to short. Instead, the option value manifests as delay in house sales. Such delay due to the option value of cash is a new addition to the speculative bubble literature.

2.6.2 Can the buyers borrow?

If the potential buyers can borrow to buy houses, the option value of cash can be eroded due to increased competition (higher M in Proposition 4). However, the differences of opinion that generate the option value of cash also limit borrowing. From whom can a buyer borrow? Pessimistic lenders are reluctant to lend because the buyer appears to be buying a overvalued house. Optimistic lenders likely prefer to buy themselves to capture the surplus from purchase.

\footnote{Though see Cao and Ou-Yang (2005) who show that short-sales constraint need not be essential for a speculative bubble when investors are risk averse.}
2.6.3 House supply

The house supply is fixed in the model. Since housing construction tends to drop during housing market downturn albeit with a lag, the supply is unlikely to increase substantially. On the contrary, homeowners may have less incentive to maintain their houses. Therefore, the quality-adjusted house supply may decrease. The reduced supply can reduce the option value to wait due to increased competition among buyers (lower K in Proposition 4). However, short of a drastic decline in house supply, the option value of cash will not be eroded much, particularly to the more optimistic buyers (those with lower i in Proposition 4).

2.6.4 User costs

Section 2.5 does not explicitly model user costs. I.e., the analysis is based on profit net of user costs. To a homeowner, the user costs can include repair costs, property taxes, etc. See Poterba (1984) for more details on user costs. When different investors have different user costs (e.g., different tax statuses), they have different buy-and-hold valuations holding everything else the same. Time-series variations in the user costs in Poterba (1984) can lead to house valuation changes that differ across investors. Such differences are parsimoniously captured by the differences-of-opinion model in Section 2.5.

2.6.5 Short sales

Individual houses are difficult to short. However, as discussed in Section 2.6.1, it is the short-sales constraint of cash that is essential for the option value to wait. Short-sales constraint in house implies the option value manifests as delay in sales rather than lower price. In markets other than housing, shorting is sometimes feasible. When short sales are allowed, the option value manifests directly as lower asset price (i.e., higher price of cash when the asset in consideration is numeraire). It can be shown that allowing shorting of the asset results in an equilibrium resembling predatory trading in Brunnermeier and Pedersen (2005). Specifically, some potential buyers may even short at a price below their belief of the fundamental. This equilibrium is observationally similar to that in Brunnermeier and Pedersen (2005) except that the predators here are not strategic. These results are suppressed and are available from the author.
2.6.6 Seller heterogeneity

Section 2.5 assumes homogeneity among the sellers to focus on the option value of cash for buyers. When the sellers are heterogeneous, there can also be an option value to delay sales for the sellers. This is similarly due to belief crossing. Consider a seller and a buyer whose have the same buy-and-hold valuation. If the seller holds on to the house, the outcome next period is “heads I win” (when the downturn ends) or “tails you lose” (when the downturn persists, the buyer who has more precise belief becomes more optimistic than the seller and creates an opportunity for the seller to sell at a price above seller’s belief of fundamental). This option value of delaying sale is absent when the sellers are homogeneous due to competition (see Proposition 3). The option value raises the sellers’ reservation value to sell, consistent with the speculative bubble literature discussed in Section 2.6.1. The equilibrium can be solved similarly to the one in Section 2.5. A seller’s reservation value to sell equals the buy-and-hold value plus the option value to hold onto the house. A buyer’s reservation value to buy equals the buy-and-hold value minus the option value of cash. Trade occurs when the reservation values cross instead of when the beliefs regarding buy-and-hold value cross. A closed-form equilibrium is, however, difficult to obtain. Therefore, seller heterogeneity is not explicitly modeled.

2.6.7 Alternative belief distributions

Sections 2.4 and 2.5 use Gamma priors to obtain closed-form solutions. The tractability is due to Gamma distribution being the conjugate prior of exponential distributions (the length of the downturn is exponentially distributed here), which allows Bayesian updating in closed form. However, the intuition applies more generally. Specifically, similar results are obtained from a discrete-time transition matrix (instead of the continuous-time transition matrix (1)) and priors from the class of Beta distributions (the conjugate prior of Bernoulli transition probability in discrete time). These results are omitted for brevity.

Information theory also suggests that the result can extend to other distributions.\(^1\)\(^4\) Let \(f_1(\lambda)\) and \(f_2(\lambda)\) be the probability density function (pdf) of the priors of \(\lambda\) for a buyer and a seller, respectively. In Sections 2.4 and 2.5, \(f_1\) and \(f_2\) are from the Gamma distributions. In general,

\(^{14}\)See Pierce (1980) for an introduction to information theory.
the difference between the two priors can be measured by the relative entropy (also known as the information divergence, or the Kullback-Leibler distance)

\[
\text{entropy} (f_1, f_2) = \int f_1 (\lambda) \log \frac{f_1 (\lambda)}{f_2 (\lambda)} d\lambda.
\] (14)

The entropy is always non-negative and equals zero if and only if the two densities are the same. Let \(f_1 \) be the pdf of \(\text{Gamma} (a_L, b_L + \Delta) \) and \(f_2 \) be the pdf of \(\text{Gamma} (a, b + \Delta) \). These are the posteriors of the buyer and the seller at time \(t = \Delta \) in Sections 2.4 and 2.5 (buyer \(i = 0 \) in Section 2.5). Given the Gamma posteriors,

\[
\frac{\partial}{\partial \Delta} \text{entropy} (f_1, f_2) = \frac{(b_L - b)}{(b + \Delta) (b_L + \Delta)} (a_L b - ab_L + (a_L - a) \Delta).
\]

It can be calculated that the parameter region (4) for the no belief-crossing case in Section 2.4 corresponds to \(\frac{\partial}{\partial \Delta} \text{entropy} (f_1, f_2) > 0 \), i.e., a monotonically divergent entropy. On the other hand, for the belief crossing case in Section 2.5, (7) implies

\[
\frac{\partial}{\partial \Delta} \text{entropy} (f_1, f_2) = \begin{cases} < 0 & \text{if } \Delta < \Delta^* = \frac{a_L b - ab_L}{a_L - a} \\ \geq 0 & \text{if } \Delta \geq \Delta^* \end{cases}.
\]

Therefore, the entropy first converge towards zero and then diverge. The time \(\Delta^* \) when the entropy reaches its minimum corresponds exactly to the time when buyer \(i = 0 \) buys (i.e., \(\Delta^* = t(0) \) in Proposition 2.5). At the time when buyer \(i = 0 \) buys, her expected instantaneous return based on her posterior expectation of \(\lambda \) equals that of the seller. However, the entropy at this minimum is still above 0. This is because their posteriors differ in higher order moments which are ignored when investors are risk neutral. The mapping to entropy and information theory in general suggests that the option value derived from belief crossing can extend to other belief distributions.\(^{15}\)

2.6.8 Multiple inferences

Sections 2.4 and 2.5 involve inference regarding the recovery intensity. Investors may need to infer additional unobservable variables. For example, there may be more than two regimes. Increasing

\(^{15}\)The entropy (14) is not symmetric between \(f_1 \) and \(f_2 \). However, the analysis is similar using \(\text{entropy} (f_2, f_1) \) or a symmetric version \(\text{entropy} (f_1, f_2) + \text{entropy} (f_2, f_1) \).
the number of regimes allows finer approximation of the continuous state of the housing market. Alternatively, the recovery intensity may be time varying and investors need to infer not only the level but also the rate of change of the recovery intensity, etc. If investors who are optimistic in recovery intensity are also optimistic in the other unobservable variables, the additional inferences exacerbate belief dispersion and its effect. On the contrary, if investors who are optimistic in recovery intensity are pessimistic in the other unobservable variables, the optimism and pessimism cancel out and belief dispersion is smaller. In general, more layers of inference allow more room for potential disagreement hence the mechanism studied in this paper.

2.6.9 Alternative preferences

Sections 2.4 and 2.5 simplify the analysis by assuming risk neutrality. Risk aversion or Knightian uncertainty (e.g., Epstein and Wang (1994)) can affect the buyers’ valuations. Risk averse can also affect the timing of belief crossing, see Section 2.6.7. However, the option value of cash in Section 2.5 can remain as long as beliefs (adjusted for risk/uncertainty aversion) cross.

3 Model implications

3.1 Price-volume correlation in the housing market

Section 2.5 implies that home sales are slower during housing market downturn due to the option value for the buyers to delay. This is consistent with the recent housing market dynamics. According to the National Association of Realtors, the median (mean) sales price of existing homes in the US dropped 11% (10%) between 2006 and 2008. The S&P/Case-Shiller home price index, which tracks changes in the value of the residential real estate market in 20 metropolitan regions across the United States, show a home price decline of 26% from January 2006 to December 2008. The trading volume drops alongside the price decline. Existing home sales in the US is 24% lower in 2008 compared to 2006. Stein (1995), using data going back as far as 1968, also finds that home prices are correlated with trading volumes.

Stein (1995) shows that the downpayment requirement can imply a seller is reluctant to move, which can also generate delay in home sales. The current paper, on the other hand, focuses on
buyers.16 It is likely that the sellers and the buyers are two sides of the same puzzle and both help explain the positive price-volume correlation in real estate markets.

3.2 Deflation and the velocity of money

The positive price-volume correlation from the option value of cash may extend beyond house purchases. For example, if deflationary expectation sets in for (some) consumers, these consumers may delay purchase of consumption goods even if immediate consumption brings positive consumer surplus. Instead, these consumers may prefer to wait and hope to buy at a bargain if the price drops further. Holding everything else constant, such delay leads to lower velocity of money, which parallels the lower transaction volume in the housing market setting. The velocity of money is an important variable relating to both inflation and aggregate transactions. During the Great Depression, the consumer price index for all urban consumers (CPI-U series compiled by the Bureau of Labor Statistics) drops 23\% from the beginning of 1929 to the end of 1932. Meanwhile, the velocity of money falls about 35\% from 1929 to 1932 (see Chart 58 on page 641 of Friedman and Schwartz (1971)). Using a longer sample, Friedman and Schwartz (1971) (page 597) find that “Throughout almost the whole period from the Civil War through World War II, velocity ... tended to decline relative to its trend during the contraction phase of a cycle”. Although many macroeconomic events occur during an economic downturn, the drop in the velocity of money is consistent with the prediction from the option value of holding onto cash.

3.3 Price-volume correlation in the asset market

The option value of cash can also provide an explanation to why volume dries up in a down market for certain assets. Recall the key ingredients to generate the option are short-sales constraint in cash (i.e., a constraint on leverage), short-sales constraint in the asset in consideration (which generates the delay), and differences of opinions. This section discusses several markets where the option value of cash may likely emerge.

16Though the current paper can also speak to the sellers, see Section 2.6.6.
3.3.1 Troubled assets in the crisis since 2007

During the financial crisis since 2007, the banks are stuck with the alphabet soup of troubled assets for a long time. These troubled assets include for example the mortgage-backed securities (MBS), collateralized debt obligations (CDO), etc. These assets are difficult to short in general. They are also difficult to value, which likely results in differences of opinion regarding their payoffs. The economy is also under a deleveraging process during the crisis. An option value of cash can arise under these conditions. The predicted delay in sales is consistent with the slow pace at which these assets are unloaded, subject to the caveat that many other forces are also in play during the crisis. Similar to the case of homeowners in Section 2.5.1, such delay from the option value of cash is costly to the banks, which are left vulnerable to potential runs (Diamond and Dybvig (1983)). The option value of cash can be reduced if the government purchases some of the troubled asset. Less troubled asset increases the competition among potential buyers (i.e., lower K implies less delay for some buyers in Proposition 4). This can have implications on interventions such as the Troubled Asset Relief Program (TARP).\footnote{In October 2008, the U.S. signed into law a bill authorizing the Treasury department to purchase as much as $700 billion in troubled assets.} However, such intervention should also be weighed against taxes used to finance the intervention, incentive issues, etc., which are beyond the scope of this paper.

The availability of analyst forecasts allows an examination of the belief divergence prediction in Section 2.4 for bank stocks during the crisis. Specifically, analyst target price forecast history is obtained from Bloomberg on Oct 28, 2008 for the five largest commercial banks and five largest investment banks according to equity market capitalization at the end of 2006. The ten companies include Bank of America, Citigroup, JPMorgan Chase, Wachovia, Wells Fargo, Bear Stearns, Goldman Sachs, Lehman Brothers, Merrill Lynch, and Morgan Stanley. Target price forecasts are assumed to reveal analysts’ beliefs regarding stock valuations (target prices are shown to be informative by Brav and Lehavy (2003) and Asquith, Mikhail, and Au (2005)). There are 51 unique analysts and 213 unique analyst-company pairs.\footnote{Bloomberg provides, for each stock, a list of analysts currently following the stock. However, this list does not include analysts who provided forecasts in the past but subsequently dropped coverage. This affects especially Bear Stearns (taken over by JPMorgan Chase in March 2008) and Lehman Brothers (filed for Chapter 11 bankruptcy protection in September 2008). To reduce the effect from dropped coverage, we search in Bloomberg for an analyst’s past coverage of all ten stocks as long as the analyst is currently covering at least one of the ten stocks. Bloomberg archives each analyst’s forecast history, including forecasts before coverage drop. This mitigates the effect of dropped coverage because an analyst covering one financial company likely covers some other financial companies, too.} Each analyst on average covers 4 companies...
and each financial stock on average has forecasts from 21 analysts. The data contain 4,824 target price forecasts during the sample period of 2003-2008 (1,298 forecasts in 2007 and 1,374 forecasts in 2008). Bloomberg provides a variable “Period” indicating the horizon of the target price forecasts. Among the 1,982 non-missing horizon indicators, 94% (1,864 observations) are one-year target prices. Those target prices for other horizons are excluded. If the horizon indicator is missing (2,842 observations), the target price forecast is included since it is likely a one-year forecast, judging from observations with non-missing horizon indicator. Due to the stock price fluctuation, the same target price issued at different time can have different implications (e.g., a target price of $40 issued when the stock price is $35 differs from another forecast of the same target price issued when the stock price is $45). Correspondingly, Bloomberg provides the date of the analyst report and the closing stock price on the same day. We construct the scaled target price forecast for stock \(s \) on day \(\tau \) by analyst \(i \) as

\[
F_{s,\tau,i} = \frac{\text{Target price}_{s,\tau,i}}{\text{Close}_{s,\tau}}.
\]

Such scaling by market price is consistent with Dokko and Edelstein (1989) and Brav and Lehavy (2003). It represents the rate of return implied by the target price. The resulting data contain monthly scaled target prices for the ten companies. If an analyst issues multiple forecasts for the same company in a month, only the last forecast before month end is used. Analysts do not issue forecasts in all months. When an analyst does not issue forecast in a month, his most recent forecast in the past is assumed to be in effect for that month.\(^{19}\) For each stock at the end of 2006, we sort analysts into two groups based on their scaled target price. Those analysts whose forecasts are below (equal to or above) the median are classified as pessimists (optimists). There are a total of 20 groups: one optimist group and one pessimist group for each stock. If an analyst covers multiple stocks, it is possible that she is in the optimist group for one stock yet in the pessimist group for another stock. The classification remains fixed during the rest of the sample period.\(^{20}\) Let \(F_{s,\tau,g} \) denote the average of the scaled price targets across analysts in group \(g \) (\(g \) refers to optimist group or pessimist group) for stock \(s \) in month \(\tau \). The following regression examines the belief dynamics

\(^{19}\)The 25%, 50%, and 75% quantiles of days between successive forecasts are 9, 21, and 49 calendar days respectively. The results are similar if forecasts older than 1 or 3 months are excluded. These results are omitted for brevity and are available from the author.

\(^{20}\)Forecasts of Bear Stearns are included up to February 2008 and forecasts of Lehman Brothers are included up to August 2008, one month before their restructuring events. The result is similar if Bear Stearns and Lehman Brothers are excluded.
during 2007-08.

\[
F_{s,\tau,g} = \sum_{t=\text{Dec}2006}^{\text{Sep}2008} \beta_t \times \text{PESSIMIST}_{s,g} \times \text{MONTHDUMMY}_t \\
+ \sum_{t=\text{Dec}2006}^{\text{Sep}2008} \alpha_t \times \text{MONTHDUMMY}_t + \varepsilon_{s,\tau,g}
\]

(15)

where the dummy variable \text{PESSIMIST}_{s,g} equals 1 (0) for the pessimist (optimist) group of stock \(s \). The month dummy \text{MONTHDUMMY}_t equals 1 if the forecast month equals \(t \) and 0 otherwise. \(t \) ranges from December 2006 to September 2008. The coefficients \(\beta_t \) are the objects of interest, which measure the valuation difference between pessimists and optimists. Figure 5 shows a time-series plot of the \(\beta \) estimates in 2007-08. In early 2007, before the financial crisis becomes headline, the valuation difference between optimists and pessimists shrinks over time. This convergence is consistent with the prediction from Bayesian learning based on common information. However, the beliefs diverge after the crisis starts, consistent with the prediction in Section 2.4.\footnote{As a robustness check, the analysis is repeated on data one year earlier. I.e., optimists/pessimists are classified at the end of 2005 and held fixed during 2006. In this case, valuation convergence is observed throughout 2006. Unlike the belief dynamics during the crisis in 2007-08, there is no valuation divergence in 2006. Therefore, the belief dynamics in 2007-08 are unlikely driven by seasonality (e.g., Hong and Yu (2008)).}

The valuation discount \(\beta \) is statistically significant during the crisis until June 2008. After June 2008, the estimates become noisier though the point estimates indicate even wider divergence (the statistical significance is suppressed and available from the author). Note that the belief divergence during 2007-08 holds on average. Among individual analysts, belief crossing discussed in Section 2.5 occurs in that some initial optimists subsequently become more pessimistic than some initial pessimists.

3.3.2 IPO waves

It is known that the number of initial public offerings (IPOs) change over time. For example, Pástor and Veronesi (2005) document that 845 firms went public in the US in 1996, yet only 87 IPOs in 2002. The option value of cash can have implications on why IPOs dry up in a down market: buyers may prefer to wait hoping the prices drop even further and hence are less eager to buy immediately. The conditions for the option value of cash are likely met in the case of IPOs. There can be substantial disagreement regarding newly listed firms, as argued by Morris (1996).
sales constraint naturally holds for firms yet to be listed. The size of an IPO is likely small relative to the amount of available capital, so competition among buyers may reduce the option value of cash (see Proposition 4). However, firms listed at adjacent times may be similar (Jovanovic and Rousseau (2001)). For example, many IPOs around year 2000 are related to information technology. Such similarity reduces competition among buyers because a buyer who misses out on an IPO may get another chance for an IPO of a similar company. Such similarity can also imply less perfect diversification, which can deter buyers from taking excessive leverage.

3.4 Fire sale

Shleifer and Vishny (1992) show that specialized asset can generate fire sale. This is because when a distressed firm needs to sell assets (say a farmer tries to sell the land), its industry peers (neighboring farmers) are likely experiencing problems, too. The option value of cash can extend such fire sale to assets that are less specialized. As discussed in Section 2.5.1, a seller needs to cut the price to compensate a buyer’s option value of cash, which can manifest as a fire sale.

4 Conclusion

This paper provides a dynamic model of heterogeneous beliefs to illustrate two reasons that lead to less home sales in a housing downturn. First, the beliefs of homeowners and some potential buyers may diverge, which keeps the pessimistic buyers on the sideline. Further, in the case when the buyers become more optimistic than the homeowners, this paper shows that there is an option value of holding cash, which can result in significant delays in home sales. Such option value of cash can potentially inflict large cost to a homeowner that demands immediacy in home sales. Such option to wait also has implications for the velocity of money during deflation, troubled assets in the crisis since 2007, IPO waves, and fire sales.

References

Acemoglu, Daron, Victor Chernozhukov, and Muhamet Yildiz, 2009, Fragility of asymptotic agreement under Bayesian learning, working paper.

Cao, H. Henry, and Hui Ou-Yang, 2005, Bubbles and panics in a frictionless market with heterogeneous expectations, working paper.

Appendix Proofs

Proof of Lemma 1 and 2: This lemma follows from the Bayes rule by noticing the probability of staying in the downturn is $e^{-\lambda t}$ over a period of length t. The expected values are from integration over the Gamma distribution function. \[\square \]

Proof of Proposition 1: When $r \downarrow 0$, (3) implies

$$V(a, b) - V(a_P, b_P) = \delta \cdot \left(\frac{b_P}{a_P - 1} - \frac{b}{a - 1} \right).$$

The assumption in equation (4) implies $b > b_P$ which, together with $\frac{a}{\hat{b}} > \frac{a_P}{b_P}$ assumed in (4), further implies $a > a_P$ and $\frac{a-1}{b} > \frac{a_P-1}{b_P}$. Therefore, $V(a, b) > V(a_P, b_P)$.

The belief updating follows from Lemma 1. After Δ periods of continuous downturn, the investor with prior $\text{Gamma}(a, b)$ updates her belief to $\text{Gamma}(a, b + \Delta)$, and the valuation change is

$$V(a, b + \Delta) - V(a, b) = \delta \cdot \left(\frac{b}{a - 1} - \frac{b + \Delta}{a - 1} \right) = -\delta \cdot \frac{\Delta}{a - 1}$$

when r is sufficiently small. Both investors revise down their valuations after observing a prolonged downturn, but the seller revises less since $a > a_P > 1$.

The eventual convergence in valuation occurs because, as the downturn persists, asymptotically both buyers and sellers believe they will never get out of the downturn, hence both value the asset at $(D - \delta) / r$. Mathematically, it is because the limit of $b^a e^{rb} r^{a-1} \Gamma (1 - a, rb)$ in (3) is $1/r$ when $b \uparrow \infty$. \[\square \]

Proof of Lemma 3: (7) implies $\frac{a_L}{b_L} < \frac{a}{\bar{b}}$ and $\frac{a_L}{b_L^2} < \frac{a}{\bar{b}^2}$. Therefore,

$$\text{Var}_i (\lambda) = \frac{a_L}{(b_L + i g)^2} < \frac{a}{\bar{b}^2} = \text{Var} (\lambda).$$

When r is sufficiently small, (3) implies that

$$V(a_L, b_L + ig) - V(a, b) = \delta \left(\frac{b}{a - 1} - \frac{b_L + ig}{a_L - 1} \right) < 0$$

32
where the last step follows from (7).

Proof of Lemma 4: A buyer i’s posterior is $\text{Gamma} (a_L, b_L + ig + \Delta)$ after Δ periods of bear market. The expected length of bear market is $(b_L + ig + \Delta) / (a_L - 1)$, which is increasing in i.

Proof of Proposition 2: The buyer’s expected instantaneous payoff

$$
(D - \delta) \, dt + \int \left[(\lambda dt) \frac{D}{r} + (1 - \lambda dt) V(\alpha, \beta + dt) \right] f_{\text{Gamma}(A,B)}(\lambda) \, d\lambda
$$

$$
= (D - \delta) \, dt + \frac{D}{r} \left(\frac{\alpha}{\beta} \right) \, dt + \left(1 - \frac{\alpha}{\beta} \right) V(\alpha, \beta + dt)
$$

(17)

where f is the posterior probability density of recovery intensity of the buyer. When the recovery occurs, price moves to D/r. Otherwise, the price reflects the sellers’ valuation before they sell all the houses. The sellers (marginal investors) belief the expected instantaneous payoff is

$$
(D - \delta) \, dt + \frac{D}{r} \left(\frac{\alpha}{\beta} \right) \, dt + \left(1 - \frac{\alpha}{\beta} \right) V(\alpha, \beta + dt)
$$

(18)

where, due to time consistency of Bayesian learning, the marginal investor’s expected return is r (intuitively this is because a seller’s buy-and-hold and short-term returns are both determined by the seller’s belief hence both expected returns are consistent with each other). Therefore, the buyer’s expected instantaneous return is higher than r if and only if $\frac{A}{B} \geq \frac{\alpha}{\beta}$.

When r is sufficiently small, (3) implies that the sellers’ valuation is below that of the buyer if

$$
\frac{\beta}{\alpha - 1} \geq \frac{B}{A - 1}.
$$

Proof of Proposition 3: After n-periods into the downturn, the buyer i’s posterior is $\text{Gamma} (a_L, b_L + ig + n)$ and the sellers’ posterior is $\text{Gamma} (a, b + n)$. By proposition 2, i buys for the long term if

$$
\frac{b + n}{a - 1} = \frac{b_L + ig + n}{a_L - 1}.
$$

(19)

If he waits t more periods until the instantaneous return is attractive, the entry time satisfies

$$
\frac{a_L}{b_L + ig + n + t} = \frac{a}{b + n + t}.
$$

(20)
Let \(j \) be the buyer whose buy-and-hold valuation at time \(n + t \) equals market price, similar to (19),

\[
\frac{b + n + t}{a - 1} = \frac{b_L + jg + n + t}{a_L - 1}.
\]

(21)

Eliminating \(n \) and \(t \) from the above three equations yields

\[
j - i = \frac{b_L - b}{a - 1} \frac{1}{g} + \frac{i}{a - 1}.
\]

Proof of Proposition 4: The buyer \(i = K/M \) who buys the last unit of house will buy as soon as his buy-and-hold valuation is reached. For investor \(i < K/M \), his buy-and-hold entry time \(n \) and desired wait time \(t^*_i \) until the instantaneous expected return equals \(r \) can be solved from (19) and (20). However, all the houses may have been liquidated by the time \(t^*_i \). Therefore, investor \(i \) must step in before the last buyer \(K/M \) does. The time until \(K/M \) steps in (which is \(t^*_{2} \)) can be calculated from (19) and (21) (specifically, solve for \(t \) by setting \(j = K/M \) in the two equations).

Proof of Proposition 5: Assuming the posterior regarding recovery intensity \(\lambda \) is \(\text{Gamma} (A, B) \) at time \(t \), the probability of no recovery before \(t (i) \) is

\[
\int e^{-\lambda(t(i)-t)} f_{\text{Gamma}(A,B)} (\lambda) \, d\lambda = \left(\frac{B}{B + t (i) - t} \right)^A
\]

where, given intensity \(\lambda \), \(e^{-\lambda(t(i)-t)} \) is the probability of no recovery between \(t \) and \(t (i) \). \(f_{\text{Gamma}(A,B)} (\cdot) \) denotes the probability density function of \(\text{Gamma} (A, B) \) distribution. The proposition follows because the posterior of buyer \(i \) at time \(t \) is \(\text{Gamma} (a_L, b_L + ig + t) \).
This figure shows the probability density functions of three Gamma distributions: Gamma(20, 19), Gamma(2, 1), and Gamma(2, 3). Gamma(2, 3) is the Bayesian posterior after observing two periods of bear market of an investor with prior Gamma(2, 1).
This figure shows the valuations of the pessimist and the optimist when the bear market persists. The optimist’s prior of recovery intensity is $\text{Gamma}(2, 1)$ and the pessimist’s prior is $\text{Gamma}(9/8, 3/4)$. $r = 0.5\%$ monthly. The dividend is $D = 1$ and $D - \delta = 1/10$ in the normal and bear market, respectively. The first plot shows the valuations of the pessimist and the optimist during the first two years of the bear market. The second plot shows the valuation discount of the pessimist relative to the optimist up to 200 years into the bear market.
This figure illustrates the delay in buyers’ purchases. The sellers’ prior is $\text{Gamma}(26/25, 1)$. The buyers’ priors are $\text{Gamma}(3, 9 + g_i)$ for $i \in [0, 1]$. $g = 500$. Each buyer can buy $M = 5$ units of houses. The total supply of houses is normalized to $K = 1$. $r = 0.5\%$ monthly. The dividend is $D = 1$ and $D - \delta = 1/10$ in normal and bear markets, respectively. The first plot shows the house price, along with the buy-and-hold valuations of buyers $i = 0, 0.1,$ and 0.2. Also shown is the reservation value of buyer $i = 0$, which is the buy-and-hold value minus the option value of waiting in (12). The buyers absorb all the house after buyer $i = 0.2$ buys. At time 0, the most optimistic buyer $i = 0$ values the house at $\$196.11$, just below the sellers’ valuation of $\$196.13$. Also shown are the equilibrium entry times for $i = 0$, and for $i \in [0.084, 0.2]$ who buy at the same time. The second plot compares the equilibrium cumulative fraction of houses sold to the hypothetical cumulative liquidation when buyers do not wait and buy as soon as the house price drops to the buy-and-hold values.
Figure 4: Option value

This figure plots the expected profit per share (12) from optimally exercising the option to delay purchase for buyers $i \in [0, 0.2]$ at different points in time before exercise. The parameters are the same as those in Figure 3.
Figure 5: Belief dynamics for ten major financial stocks during 2007-08

The first plot shows the performance of S&P 500 index and an equal-weighted index of ten financial stocks in 2007-2008 (both indices normalized to 1 at the end of 2006). The ten stocks include Bank of America, Citigroup, JPMorgan Chase, Wachovia, Wells Fargo, Bear Stearns, Goldman Sachs, Lehman Brothers, Merrill Lynch, and Morgan Stanley. The second plot shows β_t in regression (15) which is the time series of the valuation discount of pessimistic analysts relative to optimistic analysts. Optimists and pessimists are classified at the end of 2006 and held fixed during 2007-2008. The analyst valuation is defined as the analyst target price forecast divided by the stock close price on the day of analyst report.