
RANDOMIZED ALGORITHMS FOR LARGE-SCALE STRONGLY

OVER-DETERMINED LINEAR REGRESSION PROBLEMS

A DISSERTATION

SUBMITTED TO THE INSTITUTE FOR

COMPUTATIONAL AND MATHEMATICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Xiangrui Meng

June 2014



 

 

 

 

 

 

 

 

 

 

 

 

 

                                                      http://creativecommons.org/licenses/by-nc/3.0/us/

 

 

 

This dissertation is online at: http://purl.stanford.edu/zn852mp0462

 

© 2014 by Xiangrui Meng. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
Noncommercial 3.0 United States License.

ii

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://purl.stanford.edu/zn852mp0462


I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Michael Saunders, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Margot Gerritsen

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Michael Mahoney

Approved for the Stanford University Committee on Graduate Studies.

Patricia J. Gumport, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in 
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii



Abstract

In the era of big data, distributed systems built on top of clusters of commodity hardware provide

cheap and reliable storage and scalable data processing. With cheap storage, instead of storing only

currently relevant data, most people choose to store data as much as possible, expecting that its

value can be extracted later. In this way, exabytes (1018) of data are being created on a daily basis.

However, extracting value from big data requires scalable implementation of advanced analytical

algorithms beyond simple data processing, e.g., regression analysis and optimization. Many tradi-

tional methods are designed to minimize floating-point operations, which is the dominant cost of

in-memory computation on a single machine. In a distributed environment, load balancing and com-

munication including disk and network I/O can easily dominate computation. These factors greatly

increase the complexity and challenge the way of thinking in the design of distributed algorithms.

Randomized methods for big data analysis have received a great deal of attention in recent years

because they are generally faster and simpler to implement than traditional methods, it is easier to

distribute the work, and they sometimes have theoretically provable performance. In this work, we

are most interested in random projection and random sampling algorithms for `2 regression and its

robust alternative, `1 regression, with strongly rectangular data. Random projection and random

sampling are used to create preconditioned systems that are easier to solve or sub-sampled problems

that provide relative-error approximations. Our main result shows that in near input-sparsity time

and only a few passes through the data we can obtain a good approximate solution, with high

probability. Our theory holds for general p ∈ [1, 2], and thus we formulate our results in `p.

In the first chapter, we introduce `p regression problems and `p-norm conditioning, as well as

traditional solvers for `p regression problems and how they are affected by the condition number.

The second chapter describes the solution framework, where we discuss how ellipsoidal rounding

and subspace embedding are connected to `p regression and develop faster rounding and embedding

algorithms via random projection and random sampling. Chapter 3 describes a parallel solver

named LSRN for strongly over- or under-determined linear least squares (`2 regression), and Chapter

4 establishes the theory for `p subspace embedding and its application to `p regression.

iv



Acknowledgments

This thesis summarizes my work at Stanford University as a Ph.D. student at Institute for Compu-

tational and Mathematical Engineering (ICME). It couldn’t be done without the financial support

and the academic advice and assistance I received during my Ph.D. study.

The very first funding came from my parents, who had been supporting my education since

my kindergarten. The money was well spent on the one way ticket that substantially changed

my life. My first year was generously supported by ICME’s department fellowship. In my second

and third years, I worked under the Computational Approaches to Digital Stewardship (CADS)

grant from the Library of Congress. Support for my fourth and fifth years was provided by the

U.S. Army Research Laboratory, through the Army High Performance Computing Research Center,

Cooperative Agreement W911NF-07-0027 and by NSF grant DMS-1009005.

I’d like to thank the members of my thesis committees. Art Owen, Walter Murray, Margot

Gerritsen, Michael Mahoney (MM), and Michael Saunders (MS) attended my defense and gave me

useful feedback that helped improve my thesis and extend the work. Margot, MM, and MS proofread

drafts of this thesis and provided valuable input, from thesis organization to sentence punctuation.

I’m very grateful for the time each member spent to make this thesis better. It is really fortunate to

have MS as my adviser and MM as my co-adviser for the thesis work. If there were an alternative

title for my thesis, it would be “A Tale of Two Michaels”.

Graduating from the ICME program won’t be possible for me without Brian Tempero and

Indira Choudhury. Brian ensures that every desktop and server is running without any problem,

while Indira constantly checks that every student is on track with the program.

Amin Saberi and Margot led the CADS program, a collaboration between ICME and the Library

of Congress, where I had chance to apply my knowledge to some real-world datasets. I really enjoyed

the time I spent on digging into the American Memory archive. What made the mining process

more enjoyable was the companion of several friends from Stanford – Farnaz Ronaghi, Ying Wang,

and David Gleich. With them, generating new ideas is never a difficult task. The summer times at

Washington D.C. are always good to remember, apparently not because of the weather.

David and Paul Constantine organized the first ICME MapReduce workshop. At that one-

day workshop, I implemented a sampling-based `1 regression solver, which was my first hands-on

experience with MapReduce and the start of the numerical part of this thesis. Now, developing and

implementing scalable algorithms for massive datasets becomes my main interest and daily work. I

v



feel very fortunate to have been introduced into this world of big data.

I want to thank my family members, especially my parents and my wife, for their endless support

and encouragement. I also want to thank some of my friends at ICME: Huang-Wei Chang, Young-

soo Choi, Sohan Dharmaraja, Xiaoye Jiang, Mikhail Kapralov, Sang-Yun Oh, Ying Wang, Xianyi

Zeng, and icme-sharedmem.stanford.edu, the shared memory machine that ran my numerical

experiments fast and accurately.

vi



Contents

Abstract iv

Acknowledgments v

1 Introduction 1

1.1 Notation conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 `p regression problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Strongly rectangular data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 `p-norm condition number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Traditional solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Solvers for linear least squares . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.2 Solvers for `p regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Rounding and Embedding 10

2.1 Ellipsoidal rounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Subspace embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Subspace-preserving embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Fast ellipsoidal rounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Fast subspace embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.1 `2 subspace embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.2 Low-distortion `1 subspace embeddings . . . . . . . . . . . . . . . . . . . . . 23

2.6 Subspace-preserving sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7 Application to `p regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 `2 Regression 31

3.1 Randomized methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Preconditioning for linear least squares . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Algorithm LSRN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

vii



3.3.2 Theoretical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.3 Approximate rank-deficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.4 Running time complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Tikhonov regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5.1 Implementation and system setup . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5.2 κ(AN) and number of iterations . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5.3 Tuning the oversampling factor γ . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5.4 Solution accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5.5 Dense least squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.6 Sparse least squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5.7 Real-world problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.8 Scalability and choice of iterative solvers on clusters . . . . . . . . . . . . . . 52

3.5.9 Comparison with Coakley et al. . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 `p Regression 55

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Low-distortion `1 embedding in input-sparsity time . . . . . . . . . . . . . . . . . . . 56

4.2.1 Proof of Theorem 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Application to `1 regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Low-distortion `p embedding in input-sparsity time . . . . . . . . . . . . . . . . . . . 64

4.5 Improving the embedding dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Bibliography 70

viii



List of Tables

1.1 Stongly rectangular datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 `p conditioning via ellipsoidal rounding . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 LS solvers and their properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Comparing LSRN’s solution accuracy to DGELSD. DGELSD’s solution is denoted by

x∗, and LSRN’s denoted by x̂. The metrics are computed using quad precision. We

show the average values of those metrics from 50 independent runs. LSRN should be

accurate enough for most applications. . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Real-world problems and corresponding running times in seconds. DGELSD doesn’t

take advantage of sparsity, with its running time determined by the problem size.

Though SPQR may not output min-length solutions to rank-deficient problems, we

still report its running times (marked with “ ∗”). Blendenpik either doesn’t apply to

rank-deficient problems or runs out of memory (OOM). LSRN’s running time is mainly

determined by the problem size and the sparsity. . . . . . . . . . . . . . . . . . . . . 51

3.4 Test problems on the Amazon EC2 cluster and corresponding running times in sec-

onds. When we enlarge the problem scale by a factor of 10 and increase the number

of cores accordingly, the running time only increases by a factor of 50%. It shows

LSRN’s good scalability. Though the CS method takes more iterations, it is faster

than LSQR by saving communication cost. . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Running times (in seconds) on full-rank dense over-determined problems of size 106×
n, where n ranges from 1000 to 4000. LSRN is slightly slower than CRT11 when

n = 1000 and becomes faster when n = 2000, 3000, and 4000, which is consistent

with our theoretical analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

ix



List of Figures

3.1 Left: κ+(A) vs. κ(AN) for different choices of r and s. A ∈ R104×103

is ran-

domly generated with rank r ∈ {800, 1000} and effective condition number κ+(A) ∈
{102, 103, . . . , 108}. For each (r, s) pair, we take the largest value of κ(AN) in 10

independent runs for each κ+(A) and plot them using circle marks. The estimate

(1 +
√
r/s)/(1−

√
r/s) is drawn using a solid line for each (r, s) pair. Right: number

of LSQR iterations vs. r/s. The number of LSQR iterations is merely a function of

r/s, independent of the condition number of the original system. . . . . . . . . . . . 46

3.2 The overall running time of LSRN and the running time of each LSRN stage with

different oversampling factor γ for a randomly generated problem of size 105 × 103.

For this particular problem, the optimal γ that minimizes the overall running time

lies in [1.8, 2.2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Running times on m × 1000 dense over-determined problems with full rank (left)

and on 1000 × n dense under-determined problems with full rank (right). On the

problem of size 106 × 103, we have Blendenpik > DGELSD > LSRN > DGELSY in

terms of speed. On under-determined problems, LAPACK’s performance decreases

significantly compared with the over-determined cases. Blendenpik’s performance

decreases as well, while LSRN doesn’t change much. . . . . . . . . . . . . . . . . . . . 49

3.4 Running times on m × 1000 dense over-determined problems with rank 800 (left)

and on 1000× n dense under-determined problems with rank 800 (right). LSRN takes

advantage of rank deficiency. We have LSRN > DGSLS/DGELSD > DGELSY in

terms of speed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Running times on m × 1000 sparse over-determined problems with full rank (left)

and on 1000 × n sparse under-determined problems with full rank (right). DGELS-

D/DGELSY and Blendenpik perform almost the same as in the dense case. SPQR

performs very well for small and medium-scaled problems, but it runs slower than the

dense solver Blendenpik on the problem of size 106×103. LSRN starts to lead as m goes

above 105, and it leads by a huge margin on the largest one. The under-determined

case is very similar to its over-determined counterpart. . . . . . . . . . . . . . . . . 51

x



3.6 Left: Comparison of the spectrum of A and GA for both CRT11 and LSRN (rescaled

by 1/
√
s for better alignment, where s = n + 4 for CRT11 and s = 2n for LSRN) and

the cutoff values in determining the effective rank of A. Right: Zoomed in to show

that the effective rank estimated by CRT11 is 47, while LSRN outputs the correct effect

rank, which is 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 The CDFs (F (t)) of |Xp/2|p for p = 1.0 (bottom, i.e., red or dark gray), 1.1, . . . , 2.0

(top, i.e., yellow or light gray), where Xp ∼ Dp and the scales of the axes are chosen

to magnify the upper (as t→∞) and lower (as t→ 0) tails. These empirical results

suggest |Xp1/2|p1 � |Xp2/2|p2 for all 1 ≤ p1 ≤ p2 ≤ 2. . . . . . . . . . . . . . . . . . 65

xi



Chapter 1

Introduction

Analyzing data sets of billions of records has now become a regular task in many companies and

institutions, where regression problems are ubiquitous, and the fast computation of their solutions

on big data platforms is of interest in many large-scale applications. Most traditional algorithms are

designed to run on a single machine, focusing on minimizing the number of floating-point operations

(FLOPs). However, in a distributed environment, communication cost may become dominant. What

is more, if the data cannot fit into memory, we have to scan the records from secondary storage,

e.g., hard disk, which makes each pass through the data associate with huge I/O cost. In this work,

we are most interested in the `2 regression problem and its robust alternative, the `1 regression

problem, with strongly rectangular data. We show that, with randomized algorithms, it is possible

to compute a good approximate solution in only a few passes. Our theory holds for general p ∈ [1, 2],

and thus we formulate our results in `p.

1.1 Notation conventions

We briefly list the notation conventions we follow in this work:

• We use uppercase letters to denote matrices and constants, e.g., A, R, C, etc.

• We use lowercase letters to denote vectors and scalars, e.g., x, b, p, m, n, etc.

• We use ‖ · ‖p to denote the `p norm of a vector, ‖ · ‖2 the spectral norm of a matrix, ‖ · ‖F the

Frobenius norm of a matrix, and | · |p the element-wise `p norm of a matrix.

• We use uppercase calligraphic letters to denote point sets, e.g., A for the linear subspace

spanned by A’s columns, C for a convex set, and E for an ellipsoid, except that O is used for

big O-notation.

• The “̃ ” accent is used for sketches of matrices, e.g., Ã, the “∗” superscript is used for indicating

optimal solutions, e.g., x∗, and the “̂ ” accent is used for estimates of solutions, e.g., x̂.

1



CHAPTER 1. INTRODUCTION 2

1.2 `p regression problems

In this work, a parameterized family of linear regression problems that is of particular interest is the

`p regression problem.

Definition 1 (`p regression). Given a matrix A ∈ Rm×n, a vector b ∈ Rm, and p ∈ [1,∞], the

`p regression problem specified by A, b, and p is the following optimization problem:

minimizex∈Rn ‖Ax− b‖p, (1.1)

where the `p norm of a vector x is ‖x‖p = (
∑
i |xi|p)

1/p
, defined to be maxi |xi| for p =∞. We call

the problem strongly over-determined if m� n, and strongly under-determined if m� n.

Special cases include the `2 regression problem, also known as linear least squares (LS), and the

`1 regression problem, also known as least absolute deviations (LAD) or least absolute errors (LAE).

The latter is of particular interest as a robust regression technique, in that it is less sensitive to the

presence of outliers than the former.

In Chapter 3, we consider high-precision solving of LS problems that are strongly over- or under-

determined, and possibly rank-deficient. In particular, we wish to develop randomized algorithms

to accurately solve the LS problem

minimizex∈Rn ‖Ax− b‖2. (1.2)

If we let r = rank(A) ≤ min(m,n), recall that if r < n (the LS problem is under-determined or rank-

deficient), then (1.2) has an infinite number of minimizers. In that case, the set of all minimizers

is convex and hence has a unique element having minimum length. On the other hand, if r = n

so the problem has full rank, there exists only one minimizer to (1.2) and hence it must have the

minimum length. In either case, we denote this unique min-length solution to (1.2) by x∗, and we

are interested in computing x∗ in this work. That is,

x∗ = arg min ‖x‖2 subject to x ∈ arg min
z
‖Az − b‖2. (1.3)

For general p ∈ [1,∞], denote X ∗ the set of optimal solutions to (1.1). Let x∗ ∈ X ∗ be an

arbitrary optimal solution, and f∗ = ‖Ax∗ − b‖p be the optimal objective value. In Chapter 4, we

focus on finding a relative-error approximation, in terms of the objective value, to the general `p

regression problem (1.1).

Definition 2 (Relative-error approximation). Given an error parameter ε > 0, x̂ ∈ Rn is a (1 + ε)-

approximate solution to the `p regression problem (1.1) if and only if

f̂ = ‖Ax̂− b‖p ≤ (1 + ε)f∗.

In order to make our theory simpler and our algorithms more concise, we use an equivalent



CHAPTER 1. INTRODUCTION 3

m n
SNP num. of SNPs (107) num. of subjects (103)

TinyImages num. of images (108) num. of pixels in each image (103)
PDE num. of degrees of freedom num. of time steps

sensor network size of sensing data num. of sensors
NLP num. of words and n-grams num. of documents

tick data num. of ticks num. of stocks

Table 1.1: Stongly rectangular datasets

formulation of (1.1) in our analysis:

minimizex∈Rn ‖Ax‖p
subject to cTx = 1.

(1.4)

This formulation of `p regression, which consists of a homogeneous objective and an affine con-

straint, can be shown to be equivalent to the formulation of (1.1). In particular, the “new” A is A

concatenated with −b, and c is a vector with a 1 at the last coordinate and zeros elsewhere to force

the last element of any feasible solution to be 1. We note that the same formulation is also used by

[57] for solving unconstrained convex problems in relative scale.

1.2.1 Strongly rectangular data

Strongly rectangular data arises in many fields. Table 1.1 lists a few examples:

• In genetics, single nucleotide polymorphisms (SNPs) are very important in the study of human

health. There are roughly 10 known million SNPs in the human genome.1 However, there are

at most a few thousand subjects for a study of a certain type of disease, due to the high cost

of determination of genotypes and limited number of target subjects.

• The continuous growth of Internet brings us more strongly rectangular datasets. In Chapter 3,

we use an image dataset called TinyImages [66], which contains 80 million images of size 32×32,

collected from Internet.

• In spatial discretization of high-dimensional partial differential equations (PDEs), the num-

ber of degrees of freedom grows exponentially as dimension increases. For 3D problems, it

is common that the number of degrees of freedom reaches 109, for example, by having a

1000× 1000× 1000 discretization of a cubic domain. However, for a time-dependent problem,

time stays one-dimensional. Though depending on spatial discretization (e.g., the Courant-

Friedrichs-Lewy condition for hyperbolic PDEs), the number of time steps is usually much less

than the number of degrees of freedoms in spatial discretization.

1http://ghr.nlm.nih.gov/handbook/genomicresearch/snp

http://ghr.nlm.nih.gov/handbook/genomicresearch/snp


CHAPTER 1. INTRODUCTION 4

• In geophysical applications, especially in seismology, the number of sensors is much less than

the number of data points each sensor collects. For example, Werner-Allen et al. [70] de-

ployed three wireless sensors to monitor volcanic eruptions. In 54 hours, each sensor sent back

approximately 20 million packets.

• In natural language processing (NLP), the number of documents is much less than the number

of n-grams, which grows geometrically as n increases.

• In high-frequency trading, the number of relevant stocks is much less than the number of ticks,

changes to the best bid and ask.

There are certainly many other examples, but those above should be adequate to demonstrate a

broad range of applications involving strongly rectangular data.

1.2.2 `p-norm condition number

`p regression problems are closely related to the concept of condition number. For linear systems

and least squares problems, the `2-norm condition number is already a well-established term.

Definition 3 (`2-norm condition number). Given a matrix A ∈ Rm×n with full column rank, let

σmax
2 (A) be the largest singular value and σmin

2 (A) be the smallest singular value of A. The `2-norm

condition number of A is defined as κ2(A) = σmax
2 (A)/σmin

2 (A). For simplicity, we use κ2, σmin
2 ,

and σmax
2 when the underlying matrix is clear from context.

For general `p norm, we state here two related notions of condition number and then a lemma

that characterizes the relationship between them.

Definition 4 (`p-norm condition number (Clarkson et al. [20])). Given a matrix A ∈ Rm×n and

p ∈ [1,∞], let

σmax
p (A) = max

‖x‖2≤1
‖Ax‖p and σmin

p (A) = min
‖x‖2≥1

‖Ax‖p.

Then, we denote by κp(A) the `p-norm condition number of A, defined to be:

κp(A) = σmax
p (A)/σmin

p (A).

For simplicity, we use κp, σmin
p , and σmax

p when the underlying matrix is clear.

Definition 5 ((α, β, p)-conditioning (Dasgupta et al. [24])). Given a matrix A ∈ Rm×n and p ∈
[1,∞], let ‖ · ‖q be the dual norm of ‖ · ‖p. Then A is (α, β, p)-conditioned if (1) |A|p ≤ α, and (2)

for all z ∈ Rn, ‖z‖q ≤ β‖Az‖p. Define κ̄p(A), the (α, β, p)-condition number of A, as the minimum

value of αβ such that A is (α, β, p)-conditioned. We use κ̄p for simplicity if the underlying matrix

is clear.

Lemma 1 (Equivalence of κp and κ̄p (Clarkson et al. [20])). Given a matrix A ∈ Rm×n and

p ∈ [1,∞], we always have

n−|1/2−1/p|κp(A) ≤ κ̄p(A) ≤ nmax{1/2,1/p}κp(A).



CHAPTER 1. INTRODUCTION 5

Proof. To see the connection, recall that

|A|p =

 n∑
j=1

‖Aej‖pp

1/p

≤

 n∑
j=1

(σmax
p ‖ej‖2)p

1/p

= n1/pσmax
p ,

and that

‖Ax‖p ≥ σmin
p ‖x‖2 ≥ nmin{1/p−1/2,0}σmin

p ‖x‖q, ∀x ∈ Rn .

Thus, A is (n1/pσmax
p , 1/(nmin{1/p−1/2,0}σmin

p ), p)-conditioned and κ̄p(A) ≤ nmax{1/2,1/p}κp(A). On

the other hand, if A is (α, β, p)-conditioned, we have, for all x ∈ Rn,

‖Ax‖p ≤ |A|p‖x‖q ≤ nmax{1/2−1/p,0}α · ‖x‖2,

and

‖Ax‖p ≥ ‖x‖q/β ≥ nmin{1/2−1/p,0}/β · ‖x‖2.

Thus, κp(A) ≤ n|1/p−1/2|αβ.

The `p-norm condition number of a matrix can be arbitrarily large. Given the equivalence

established by Lemma 1, we say that A is well-conditioned in the `p norm if κp or κ̄p = O(poly(n)),

independent of m. We see in the following sections that the condition number plays a very important

part in the analysis of traditional algorithms.

1.3 Traditional solvers

1.3.1 Solvers for linear least squares

Least squares is a classic problem in linear algebra. It has a long history, tracing back to Gauss, and

it arises in numerous applications. A detailed survey of numerical algorithms for least squares is

certainly beyond the scope of this work. In this section, we briefly describe some well-known direct

methods and iterative methods that compute the min-length solution to a possibly rank-deficient

least squares problem, and refer readers to Björck [9] for additional details.

Direct methods

It is well known that the min-length solution of a least squares problem can be computed using

the singular value decomposition (SVD). Let A = UΣV T be the compact SVD, where U ∈ Rm×r,
Σ ∈ Rr×r, and V ∈ Rn×r, i.e., only singular vectors corresponding to the non-zero singular values are

calculated. We have x∗ = V Σ−1UTb. The matrix V Σ−1UT is the Moore-Penrose pseudoinverse of

A, denoted by A†, which is defined and unique for any matrix. Hence we can simply write x∗ = A†b.

The SVD approach is accurate and robust to rank-deficiency.

Another way to solve a least squares problem is using complete orthogonal factorization. If

we can find orthonormal matrices Q ∈ Rm×r and Z ∈ Rn×r, and a matrix T ∈ Rr×r, such that



CHAPTER 1. INTRODUCTION 6

A = QTZT, then the min-length solution is given by x∗ = ZT−1QTb. We can treat SVD as a special

case of complete orthogonal factorization. In practice, complete orthogonal factorization is usually

computed via rank-revealing QR factorizations, making T a triangular matrix. The QR approach is

less expensive than SVD, but it is slightly less robust at determining the rank.

A third way to solve a least squares problem is by computing the min-length solution to the

normal equation ATAx = ATb, namely

x∗ = (A
T
A)†A

T
b = A

T
(AA

T
)†b. (1.5)

It is easy to verify the correctness of (1.5) by replacing A by its compact SVD UΣV T. If r =

min(m,n), a Cholesky factorization of either ATA (if m ≥ n) or AAT (if m ≤ n) solves (1.5) nicely.

If r < min(m,n), we need the eigensystem of ATA or AAT to compute x∗. The normal equation

approach is the least expensive among the three direct approaches we have mentioned, but it is also

the least accurate one, especially on ill-conditioned problems. See Chapter 5 of Golub and Van Loan

[33] for a detailed analysis.

For sparse least squares problems, by pivoting A’s columns and rows, we may find a sparse

factorization of A, which is preferred to a dense factorization for more efficient storage. For sparse

direct methods, we refer readers to Davis [26].

Iterative methods

Instead of direct methods, we can use iterative methods to solve (1.2). If all the iterates {x(k)} are in

range(AT) and if {x(k)} converges to a minimizer, it must be the minimizer having minimum length,

i.e., the solution to (1.3). This is the case when we use a Krylov subspace method starting with a

zero vector. For example, the conjugate gradient (CG) method on the normal equation leads to the

min-length solution (see Paige and Saunders [60]). In practice, CGLS [38], LSQR [61] are preferable

because they are equivalent to applying CG to the normal equation in exact arithmetic but they are

numerically more stable. Other Krylov subspace methods such as LSMR [32] can also solve (1.2) as

well. The Chebyshev semi-iterative method [34] can also be modified to solve LS problems.

Importantly, however, it is in general hard to predict the number of iterations for CG-like meth-

ods. The convergence rate is affected by the condition number of ATA. A classical result [46, p.187]

states that

‖x(k) − x∗‖ATA
‖x(0) − x∗‖ATA

≤ 2

(√
κ(ATA)− 1√
κ(ATA) + 1

)k
, (1.6)

where ‖z‖ATA = zTATAz = ‖Az‖2 for any z ∈ Rn, and where κ(ATA) is the condition number of

ATA under the 2-norm. Estimating κ(ATA) is generally as hard as solving the LS problem itself,

and in practice the bound does not hold in any case unless reorthogonalization is used. Thus, the

computational cost of CG-like methods remains unpredictable in general, except when ATA is very

well-conditioned and the condition number can be well estimated.



CHAPTER 1. INTRODUCTION 7

1.3.2 Solvers for `p regression

While `2 regression can be solved with direct methods such as SVD and QR, the solution of general

`p regression has to rely on iterative methods due to the lack of analytical solution. `1 and `∞

regression problems can be formulated as linear programs and solved by linear programming solvers,

and general `p regression problems can be formulated as convex programs and hence solved by

general convex solvers. This, however, comes at the cost of increased complexity, compared to

the `2 case. For example, it is easy to see that all `p regression problems are convex due to the

convexity of vector norms. Therefore, standard convex solvers, e.g., gradient-based methods [54],

interior-point methods (IPMs) [71], and interior-point cutting-plane methods (IPCPMs)[52] can be

used to solve `p regression problems. Discussing those convex solvers is beyond the scope of the

work. We refer readers to the monographs mentioned above or Boyd and Vandenberghe [12] for a

general introduction.

When p = 1 or ∞, the problem is still convex but not smooth. Subgradient methods [19] or

gradient methods with smoothing [55] can be used to handle non-smoothness, while another solution

is via linear programming. An `1 regression problem specified by A ∈ Rm×n and b ∈ Rm is equivalent

to the following linear program:

minimize 1Tmy+ + 1Tmy−

subject to Ax− b = y+ − y−,

y+, y− ≥ 0, y+, y− ∈ Rm, x ∈ Rn,

and an `∞ regression problem specified by A and b is equivalent to the following:

minimize y

subject to − y ≤ Ax− b ≤ y,

y ∈ R, x ∈ Rn,

where 1m ∈ Rm indicates a vector of length m with all ones. We omit the proofs for brevity, as

they can be found in standard textbooks of convex optimization. As a linear programming problem,

an `1 or `∞ regression problem can be solved by any linear programming solver, using the simplex

method [23] or IPMs.

Similar to the case for least squares, the condition number affects the performance of `p regression

solvers, e.g., on the convergence rate for subgradient [19] or gradient method [56], on the search of

an initial feasible point for IPMs [68], and on the initial search region for ellipsoid methods and

IPCPMs [52]. Generally speaking, a smaller conditioning number makes the problem easier to solve.

Another popular way to solve `p regression problems is via iteratively re-weighted least squares

(IRLS) [39], which solves a sequence of weighted least squares problems and makes the solutions

converge to an optimal solution of the original `p regression problem. At step k, it solves the following



CHAPTER 1. INTRODUCTION 8

weighted least squares problem:

x(k+1) = arg min
x∈Rn

‖W (k)(Ax− b)‖2,

where W (k) is a diagonal matrix with positive diagonals w
(k)
i , i = 1, . . . ,m. Let W (0) be an identity

matrix and choose

w
(k)
i = |aTi x(k) − bi|p−2, i = 1, . . . ,m, k = 1, . . . .

until {x(k)} converges. The choice of w
(k)
i is often smoothed to avoid dividing by zero in practice. It

is not hard to show that if {x(k)} converges, it converges to an optimal solution of the `p regression

problem. However, the convergence theory of IRLS only exists under certain assumptions and the

convergence rate is much harder to derive. See Burrus [15] for a survey of related work.

1.4 Preconditioning

Although for an arbitrary matrix A ∈ Rm×n with full column rank, its condition numbers κp(A)

and κ̄p(A) can be arbitrarily large, we can often find a matrix R ∈ Rn×n such that AR−1 is well-

conditioned. Then the `p regression problem (1.4) is equivalent to the following well-conditioned

problem:

minimizey∈Rn ‖AR−1y‖p,

subject to cTR−1y = 1.
(1.7)

It is easy to see that if y∗ is an optimal solution to (1.7), x∗ = R−1y is an optimal solution to (1.4),

and vice versa. However, (1.7) may be easier to solve than (1.4) because of better conditioning. This

procedure is called preconditioning.

Since we want to reduce the condition number of the problem via preconditioning, it is natural

to ask what the best outcome would be in theory. Recall that we define two condition numbers in

Section 1.2.2. For the `p-norm condition number κp, we have the following existence result.

Lemma 2. Given a matrix A ∈ Rm×n with full column rank and p ∈ [1,∞], there exist a matrix

R ∈ Rn×n such that κp(AR
−1) ≤ n1/2.

This is a direct consequence of John’s theorem [41] on ellipsoidal rounding of centrally symmetric

convex sets. We discuss ellipsoidal rounding in more details in Section 2.1, where we show the

connection between ellipsoidal rounding and preconditioning. For the (α, β, p)-condition number κ̄p,

we have the following lemma.

Lemma 3. Given a matrix A ∈ Rm×n with full column rank and p ∈ [1,∞], there exist a matrix

R ∈ Rn×n such that κ̄p(AR
−1) ≤ n.

Proof. This is derived from Auerbach’s lemma.



CHAPTER 1. INTRODUCTION 9

Lemma 4. (Auerbach’s lemma [6]) Let (A, ‖ · ‖) be a n-dimensional normed vector space. There

exists a basis {e1, . . . , en} of A, called Auerbach basis, such that ‖ek‖ = 1 and ‖ek‖∗ = 1 for

k = 1, . . . , n, where {e1, . . . , en} is a basis of A∗ dual to {e1, . . . , en}.

Let R be the matrix such that U = AR−1 is an Auerbach basis of Ap = (A, ‖ · ‖p), the subspace

spanned by A’s columns paired with the `p norm. By definition,

|U |p =

 n∑
j=1

‖uj‖pp

1/p

= n1/p,

where uj is the j-th column of U . Let U∗ be the matrix whose columns u∗1, . . . , u
∗
n form the dual

Auerbach basis to {u1, . . . , un}. By definition, ‖u∗j‖q = 1, j = 1, . . . , n, and |U∗|q = n1/q, where

‖ · ‖q is the dual norm of ‖ · ‖p, i.e., 1/p+ 1/q = 1. Then, for any z ∈ Rn, we have

‖Uz‖p
‖z‖q

= max
w∈Rn

|〈U∗w,Uz〉|
‖U∗w‖q‖z‖q

≥ 1

|U∗|q
max
w∈Rn

|〈w, z〉|
‖w‖p‖z‖q

= n−1/q,

where the equality 〈U∗w,Uz〉 = 〈w, z〉 comes from the duality. Therefore, we have α ≤ n1/p,

β ≤ n1/q, and hence κ̄p(AR
−1) ≤ αβ ≤ n1/p+1/q = n.

Lemmas 2 and 3 are both existence results. Unfortunately, no polynomial-time algorithm is

known that can provide such preconditioning for general matrices (except the case when p = 2). In

the next chapter, we discuss two practical approaches for `p-norm preconditioning: via ellipsoidal

rounding and via subspace embedding, as well as subspace-preserving sampling algorithms built on

top of them.



Chapter 2

Rounding and Embedding

For any matrix A ∈ Rm×n with full column rank, Theorems 2 and 3 show that there always exist

a preconditioner matrix R ∈ Rn×n such that AR−1 is well-conditioned. In this chapter, we discuss

practical algorithms to find such a matrix and show the trade-offs between speed and conditioning

quality. The algorithms fall into two families: ellipsoidal rounding and subspace embedding. And

we present them roughly in the order of speed, from slow ones to fast ones. Note that we assume

m � poly(n) and hence mn2 � mn + poly(n). If A is sparse, we assume that mn � nnz(A).

We also show that, bypassing preconditioning, subspace embedding directly relates to `p regression,

when the `p norms of the entire subspace of vectors can be well preserved.

2.1 Ellipsoidal rounding

In this section, we are interested in the ellipsoidal rounding of a centrally symmetric convex set and

its application to `p-norm preconditioning.

Definition 6 (Ellipsoidal rounding). Let C ⊆ Rn be a convex set that is full-dimensional, closed,

bounded, and centrally symmetric with respect to the origin. An ellipsoid E(0, E) = {x ∈ Rn | ‖Ex‖2 ≤
1} is a κ-rounding of C if it satisfies E/κ ⊆ C ⊆ E, for some κ ≥ 1, where E/κ means shrinking E
by a factor of 1/κ.

Finding an ellipsoidal rounding with a small κ factor for a given convex set has many applications

such as computational geometry [8], convex optimization [45], and computer graphics [11]. The `p-

norm condition number κp naturally connects to ellipsoidal rounding. Let C = {x ∈ Rn | ‖Ax‖p ≤ 1}
and assume that we have a κ-rounding of C: E = {x | ‖Rx‖2 ≤ 1}. This implies

‖Rx‖2 ≤ ‖Ax‖p ≤ κ‖Rx‖2, ∀x ∈ Rn .

If we let y = Rx, then we get

‖y‖2 ≤ ‖AR−1y‖p ≤ κ‖y‖2, ∀y ∈ Rn .

10



CHAPTER 2. ROUNDING AND EMBEDDING 11

κ time num. passes

[19, 24] (n(n+ 1))1/2 O(mn5 logm) O(n3L)
[20] 2n O(mn3 logm) O(nL)
[51] 2n|2/p−1|+1 O(mn2 logm) 1

Table 2.1: `p conditioning via ellipsoidal rounding

Therefore, we have κp(AR
−1) ≤ κ. So a κ-rounding of C leads to a κ-conditioning of A. Recall

the well-known result due to John [41] that for a centrally symmetric convex set C there exists

a n1/2-rounding, where the result is sharp, and that such rounding is given by the Löwner-John

(LJ) ellipsoid of C, i.e., the minimal-volume ellipsoid containing C, which leads to Lemma 2 in the

previous chapter. Unfortunately, finding an n1/2-rounding is a hard problem. No constant-factor

approximation in polynomial time is known for general centrally symmetric convex sets, and hardness

results have been shown [45]. For polynomial-time algorithms, the best κ that we are aware of is

(n(n+1))1/2, while polynomial algorithms with better κ have been proposed for special convex sets,

for example, the convex hull of a finite point set [43] and the convex set specified by the matrix

`∞ norm [56]. To state algorithmic results, suppose that C is described by a separation oracle and

that we are provided an ellipsoid E0 that gives an L-rounding for some L ≥ 1. In this case, we can

find a (n(n + 1))1/2-rounding in polynomial time, in particular, in O(n4 logL) calls to the oracle;

see Lovász [45, Theorem 2.4.1]. This result was used by Clarkson [19] and by Dasgupta et al. [24]

for `p regression. In these work, only O(n)-rounding is actually needed instead of (n(n + 1))1/2-

rounding. In Section 2.4, we follow the same construction as in the proof of Lovász [45], but we

show that it is much faster (in O(n2 logL) calls to the oracle) to find a slightly worse 2n-rounding

of a centrally symmetric convex set in Rn that is described by a separation oracle. The trade-offs

between rounding quality and running time are also discussed in Section 2.4.

2.2 Subspace embedding

Denote A ⊂ Rm the subspace spanned by A’s columns. A subspace embedding of A into Rs

with s > 0 is a structure-preserving mapping φ : A ↪→ Rs, where the meaning of “structure-

preserving” varies depending on the application. In this section, we are interested in low-distortion

linear embeddings of the normed vector space Ap = (A, ‖ · ‖p), the subspace A paired with the `p

norm ‖ · ‖p.

Definition 7 (`p subspace embedding). Given a matrix A ∈ Rm×n and p ∈ [1,∞], Φ ∈ Rs×m is a

low-distortion embedding of Ap if s = O(poly(n)), independent of m, and there exist σmin
Φ > 0 and

κΦ > 0 such that

σΦ · ‖Ax‖p ≤ ‖ΦAx‖p ≤ κΦσΦ · ‖Ax‖p, ∀x ∈ Rn .

We call Φ a low-distortion subspace embedding of Ap if the distortion of the embedding κΦ =

O(poly(n)), independent of m.

Low-distortion subspace embeddings can be used for `p-norm preconditioning. For example,



CHAPTER 2. ROUNDING AND EMBEDDING 12

given a low-distortion embedding matrix Φ of Ap with distortion κΦ, let R be the “R” matrix from

the QR decomposition of ΦA. Then, the matrix AR−1 is well-conditioned in the `p norm. To see

this, note that we have

‖AR−1x‖p ≤ σΦκΦ‖ΦAR−1x‖p ≤ σΦκΦs
max{0,1/p−1/2} · ‖ΦAR−1‖2

= σΦκΦs
max{0,1/p−1/2} · ‖x‖2, ∀x ∈ Rn,

where the first inequality is due to low distortion and the second inequality is due to the equivalence

of vector norms. By similar arguments, we can show that

‖AR−1x‖p ≥ σΦ · ‖ΦAR−1‖p ≥ σΦs
min{0,1/p−1/2} · ‖ΦAR−1x‖2

= σΦs
min{0,1/p−1/2} · ‖x‖2, ∀x ∈ Rn .

Hence, by combining these results, we have κp(AR
−1) ≤ κΦs

|1/p−1/2| = O(poly(n)), i.e., the matrix

AR−1 is well-conditioned in the `p norm.

Instead of QR factorization, ellipsoidal rounding can be used to obtain the preconditioner matrix

R. To see this, let R be the matrix obtained by applying Corollary 1 to ΦA. We have

‖AR−1x‖p ≤ σΦκΦ · ‖ΦAR−1x‖p ≤ 2nσΦκΦ‖x‖2, ∀x ∈ Rn,

where the second inequality is due to the ellipsoidal rounding result, and

‖AR−1x‖p ≥ σΦ‖ΦAR−1x‖p ≥ σΦ‖x‖2, ∀x ∈ Rn .

Hence κp(AR
−1) ≤ 2nκΦ = O(poly(n)) and AR−1 is well-conditioned.

Comparing the QR approach and the ellipsoidal rounding approach of obtaining the precondi-

tioner matrix R, we see there are trade-offs between running times and conditioning quality. QR

takes O(sn2) time, which is faster than fast ellipsoidal rounding that takes O(sn3 log s) time. How-

ever, the latter approach might provide better conditioning quality when 2n < s|1/p−1/2|. We note

that those trade-offs are not important in theory as long as both take O(poly(n)) time and provide

O(poly(n)) conditioning, independent of m, but they do affect the performance in practice.

In this section, we only show that how subspace embedding connects to preconditioning assuming

that an embedding matrix is given. Because subspace embedding is the main ingredient of this work,

we devote Section 2.5 to a detailed study of subspace embedding algorithms.

2.3 Subspace-preserving embedding

Rather than preconditioning, a special family of subspace embedding has a more direct connection

with `p regression, called subspace-preserving embedding.

Definition 8 (Subspace-preserving embedding). Given an n-dimensional subspace Ap ⊂ Rm with



CHAPTER 2. ROUNDING AND EMBEDDING 13

p ∈ [1,∞] and ε ∈ (0, 1), an embedding Π : Rm ↪→ Rs is a subspace-preserving embedding of Ap if

(1− ε) · ‖y‖p ≤ ‖Πy‖p ≤ (1 + ε) · ‖y‖p, ∀y ∈ Ap .

Given a subspace-preserving embedding with distortion (1 ± ε), Clarkson et al. [20] show that

it is straightforward to compute a 1+ε
1−ε -approximate solution to an `p regression problem using the

constrained formulation (1.4).

Lemma 5. Given an `p regression problem specified by A ∈ Rm×n and p ∈ [1,∞) using the con-

strained formulation (1.4), let Φ be a (1±ε)-distortion embedding of Ap, and x̂ be an optimal solution

to the reduced-sized problem mincT x=1 ‖ΦAx‖p. Then x̂ is a 1+ε
1−ε -approximate solution to the original

problem.

Proof. It is easy to see that x̂ is a feasible solution to the original problem and

‖Ax̂‖p ≤ (1 + ε)‖ΦAx̂‖p ≤ (1 + ε)‖ΦAx∗‖p ≤
1 + ε

1− ε
‖Ax∗‖p,

where the first and third inequalities are due to the distortion of the subspace embedding and the

second inequality is due to the optimality of x̂. Hence, x̂ is a 1+ε
1−ε -approximate solution to the original

`p regression problem.

Therefore, an `p regression problem can be approximated by solving a reduced-sized `p regres-

sion problem obtained from subspace-preserving embedding. We show in later sections that such

embeddings can be obtained directly for `2 and via random sampling for general `p.

2.4 Fast ellipsoidal rounding

We follow the same construction as in the proof of Lovász [45], but we show that it is much faster

to find a (slightly worse) 2n-rounding of a centrally symmetric convex set in Rn that is described by

a separation oracle.

Theorem 1 (Fast ellipsoidal rounding). Given a centrally symmetric convex set C ⊆ Rn, which

is centered at the origin and described by a separation oracle, and an ellipsoid E0 centered at the

origin such that E0/L ⊆ C ⊆ E0 for some L ≥ 1, it takes at most 3.15n2 logL calls to the oracle and

additional O(n4 logL) time to find a 2n-rounding of C.

Proof. For completeness, we state the following lemma, which is from [65] and which we use in the

proof of this theorem.

Lemma 6. (Todd [65]) Given an ellipsoid E = {u ∈ Rn |uTE−1u ≤ 1} where E ∈ Rn×n is

symmetric positive-definite and K = {u ∈ Rn | − β(gTEg)1/2 ≤ gTu ≤ β(gTEg)1/2} for some



CHAPTER 2. ROUNDING AND EMBEDDING 14

g ∈ Rn, the minimum-volume ellipsoid that contains E ∩ K is given by

E+ =

E if β ≥ n−1/2

{u ∈ Rn |uTE−1
+ u ≤ 1} if 0 < β < n−1/2,

where

E+ = δ

(
E − σ (Eg)(Eg)T

gTEg

)
,

δ =
n(1− β2)

n− 1
, σ =

1− nβ2

1− β2
.

When β < n−1/2, we have

|E+|
|E|

= n1/2

(
n

n− 1

)(n−1)/2

β(1− β2)(n−1)/2.

Now we proceed with the main part of the proof. We construct a sequence of ellipsoids E1, E2, . . .,
all centered at the origin, such that Ek ⊇ C and |Ek|/|Ek−1| < e3/8/2, k = 1, 2, . . ., and thus this

sequence must terminate in

log(L−n)/ log(e3/8/2) < 3.15n logL

steps. Suppose we have Ek ⊇ C centered at the origin. Determine all the extreme points of Ek
along its axes. Let these points be ±xk,i, i = 1, . . . , n, and then check whether 1

2
√
n
xk,i ∈ C for

i = 1, . . . , n. If all these points are in C, so is their convex hull, denoted by H. Apparently, 1
2
√
n
Ek is

the LJ ellipsoid of H, and hence shrinking 1
2
√
n
Ek by a factor 1√

n
makes it contained in H ⊆ C. We

have 1
2nEk ⊆ C ⊆ Ek. Now suppose that 1

2
√
n
xk,ik /∈ C for some ik and the separation oracle returns

Kk = {x ∈ Rn | − 1 ≤ gTk x ≤ 1} such that C ⊆ Kk but 1
2
√
n
xk,ik /∈ Kk. Let Ek+1 be the LJ ellipsoid

of Ek ∩Kk ⊇ C, which must be centered at the origin. Lemma 6 gives analytic formulas of Ek+1 and

|Ek+1|/|Ek|. Adopting the notation from Lemma 6, let Ek = {x ∈ Rn |xTE−1
k x ≤ 1} and we have

(gTk Ekgk)1/2 =

[
gTk

(
n∑
i=1

xk,ix
T
k,i

)
gk

]1/2

≥ |gTk xk,ik | > 2
√
n.

The last inequality comes from the fact that 1
2
√
n
xk,ik /∈ Kk. Therefore, we have β = (gTk Ekgk)−1/2 <

1
2
√
n

, and

|Ek+1|
|Ek|

<
1

2

(
1 +

3

4n− 4

)(n−1)/2

< e3/8/2.

Thus, our construction is valid. For each step, it takes at most n calls to the separation oracle.

Therefore, we need at most 3.15n2 logL calls to find a 2n-rounding of C. Computing the extreme



CHAPTER 2. ROUNDING AND EMBEDDING 15

points of Ek requires an eigendecomposition, which takes O(n3) time. Hence the total cost to find

a 2n-rounding is 3.15n2 logL calls and additional O(n4 logL) time. We note that rank-one updates

can be used for computing the eigendecomposition of Ek for efficiency. See Gu and Eisenstat [35].

Applying Theorem 1 to the convex set C = {x | ‖Ax‖p ≤ 1}, with the separation oracle described

via a subgradient of ‖Ax‖p and the initial rounding provided by the “R” matrix from the QR

decomposition of A, we improve the running time of the algorithm used by Clarkson [19] and by

Dasgupta et al. [24] from O(mn5 logm) to O(mn3 logm) while maintaining an O(n)-conditioning.

Corollary 1. Given a matrix A ∈ Rm×n with full column rank, it takes at most O(mn3 logm) time

to find a matrix R ∈ Rn×n such that κp(AR
−1) ≤ 2n.

Proof. This is a direct consequence of Theorem 1. We present the proof for the case p < 2. The

proof for the case p > 2 is similar. Let C = {x ∈ Rn | ‖Ax‖p ≤ 1}. For any z /∈ C, define

K(z) = {x ∈ Rn | − 1 ≤ g(z)Tx ≤ 1}. We have K(z) ⊇ C and z /∈ K(z), which gives the separation

oracle. Let A = QR0 be A’s QR factorization. We have,

‖R0x‖2 = ‖Ax‖2 ≤ ‖Ax‖p ≤ n1/p−1/2‖Ax‖2 = n1/p−1/2‖R0x‖2, ∀x ∈ Rn,

which means E0 = E(0, R−1
0 ) gives an n1/p−1/2-rounding of C. Applying Theorem 1, we can find a

2n-rounding of C in at most 3.15n2 log(m1/p−1/2) calls to the separation oracle. Let E = E(0, E) be

the ellipsoid that gives such rounding. We have

‖y‖2 ≤ ‖AEy‖p ≤ 2n‖y‖2, ∀y ∈ Rn .

The QR factorization takes O(mn2) time. Each call to the separation oracle takes O(mn) time.

Computing the extreme points of an ellipsoid takes O(n3) time. In total, we need O(mn3 logm) time.

The algorithm of Corollary 1 for computing a 2n-conditioning is not immediately applicable to

very large matrices, which are usually distributively stored on secondary storage, since each call to

the oracle requires a pass through the data. We can group n calls together within a single pass,

but we would still need O(n logm) passes. We present a deterministic single-pass conditioning

algorithm that balances the cost-performance trade-off to provide a 2n|2/p−1|+1-conditioning of A.

See Algorithm 1. Our main result for Algorithm 1 is given in the following lemma.

Lemma 7. Algorithm 1 is a 2n|2/p−1|+1-conditioning algorithm and it runs in O((mn2 +n4) logm)

time.

Proof. We show the proof for p ∈ [1, 2), while the proof for p ∈ [2,∞] follows similar arguments.

The idea is to use block-wise reduction in `2 norm and apply fast rounding to a small problem. The

tool we need is simply the equivalence of vector norms. Let C = {x ∈ Rn | ‖Ax‖p ≤ 1}, which is

convex, full-dimensional, bounded, and centrally symmetric. Adopting notation from Algorithm 1,



CHAPTER 2. ROUNDING AND EMBEDDING 16

Algorithm 1 A single-pass conditioning algorithm.

Input: A ∈ Rm×n with full column rank and p ∈ [1,∞].
Output: A non-singular matrix E ∈ Rn×n such that

‖y‖2 ≤ ‖AEy‖p ≤ 2n|2/p−1|+1‖y‖2, ∀y ∈ Rn.

1: Partition A along its rows into sub-matrices of size n2 × n, denoted by A1, . . . , AM .
2: For each Ai, compute its economy-sized SVD: Ai = UiΣiV

T
i .

3: Let Ãi = ΣiV
T
i for i = 1, . . . ,M ,

C̃ =

x ∈ Rn
∣∣∣∣∣∣
(

M∑
i=1

‖Ãix‖p2

)1/p

≤ 1

 , and Ã =

(
Ã1

.

.

.

ÃM

)
.

4: Compute Ã’s SVD: Ã = Ũ Σ̃Ṽ T .
5: Let E0 = E(0, E0) where E0 = nmax{1/p−1/2,0}Ṽ Σ̃−1.
6: Compute an ellipsoid E = E(0, E) that gives a 2n-rounding of C̃ starting from E0 that gives an

(Mn2)|1/p−1/2|-rounding of C̃.
7: Return nmin{1/p−1/2,0}E.

we first have

n1−2/pC̃ ⊆ C ⊆ C̃

because for all x ∈ Rn,

‖Ax‖pp=
M∑
i=1

‖Aix‖pp≤n2−p
M∑
i=1

‖Aix‖p2=n2−p
M∑
i=1

‖Ãix‖p2

and

‖Ax‖pp =

M∑
i=1

‖Aix‖pp ≥
M∑
i=1

‖Aix‖p2 =

M∑
i=1

‖Ãix‖p2.

Next we prove that E0 gives an (Mn2)1/p−1/2-rounding of C̃. For all x ∈ Rn, we have

M∑
i=1

‖Ãix‖p2 ≤
M∑
i=1

‖Ãix‖pp = ‖Ãx‖pp ≤ (Mn)1−p/2‖Ãx‖p2 = (Mn)1−p/2‖Σ̃Ṽ Tx‖p2,

and

M∑
i=1

‖Ãix‖p2 ≥ np/2−1
M∑
i=1

‖Ãix‖pp = np/2−1‖Ãx‖pp ≥ np/2−1‖Ãx‖p2 = np/2−1‖Σ̃Ṽ Tx‖p2.

Then by choosing E0 = n1/p−1/2Ṽ Σ̃−1, we get

‖E−1
0 x‖2 ≤ (

M∑
i=1

‖Ãix‖p2)1/p ≤ (Mn2)1/p−1/2‖E−1
0 x‖2

for all x ∈ Rn and hence E0 gives an (Mn2)1/p−1/2-rounding of C̃. Since n1−2/pC̃ ⊆ C ⊆ C̃, we



CHAPTER 2. ROUNDING AND EMBEDDING 17

know that any 2n-rounding of C̃ is a 2n · n2/p−1 = 2n2/p-rounding of C. Therefore, Algorithm 1

computes a 2n2/p-conditioning of A. Note that the rounding procedure is applied to a problem of

size Mn × n ≈ m/n × n. Therefore, Algorithm 1 only needs a single pass through the data, with

O((mn2 + n4) logm) FLOPs.

Remark. Solving the rounding problem of size m/n × n requires O(m) RAM, which might be

too much for large-scale problems. In such cases, we can increase the block size from n2 to, for

example, n3. This gives us a 2n|3/p−3/2|+1-conditioning algorithm that only needs O(m/n) RAM

and O((mn+n4) logm) FLOPs for the rounding problem. The proof follows similar arguments. We

can also replace SVD by the fast `2 subspace embedding we introduce in next section, which reduces

the overall running time to O((mn + n4) log(mn)). However, it would lead to a non-deterministic

result. How to balance those trade-offs depends on the underlying application.

2.5 Fast subspace embedding

Subspace embedding is the main ingredient of this work. Subspace embedding algorithms are crit-

ical building blocks for developing improved random sampling and random projection algorithms

for common linear algebra problems. Usually, a subspace embedding algorithm is a randomized

algorithm with a certain chance of failure. By “failure”, we mean that it fails to produce an em-

bedding with expected properties. There are many properties of interest in the analysis of subspace

embedding algorithms. For example, given a subspace embedding algorithm, we may want to know:

a) whether it is oblivious (independent of the input subspace), b) the time and storage it needs

to construct an embedding, c) the time and storage to apply the embedding to an input matrix,

d) the failure rate, e) the embedding dimension, f) the distortion of the embedding, as well as how

to balance the trade-offs among those properties. We note that some of them may not be important

for theoretical analysis but still affect practical performance.

Because `2 space has some nice theoretical properties compared to other `p spaces, e.g., self-dual,

which lead to better embedding algorithms and simpler analysis, we discuss `2 subspace embeddings

first, followed by general `p subspace embeddings and subspace-preserving sampling. At the end

of this section, we show that instead of using subspace embedding for preconditioning, we can use

them for solving `p regression problems via random sampling.

2.5.1 `2 subspace embeddings

`2 subspace embedding is closely related to the Johnson-Lindenstrauss (J-L) lemma.

Lemma 8 (Johnson-Lindenstrauss lemma [42]). Given ε ∈ (0, 1), a point set X of N points in Rm,

there is a linear map φ : Rm ↪→ Rs with s = C logN/ε2, where C > 0 is a global constant, such that

(1− ε)‖x− y‖2 ≤ ‖φ(x)− φ(y)‖2 ≤ (1 + ε)‖x− y‖2, ∀x, y ∈ X .

We say a mapping has J-L property if it satisfies the above condition with a constant probability.



CHAPTER 2. ROUNDING AND EMBEDDING 18

The original proof of the J-L lemma is done by constructing a projection from Rm to a randomly

chosen s-dimensional subspace. Basically, the projection is represented by a random orthonormal

matrix in Rs×m. In [40], Indyk and Motwani show that a matrix whose entries are independent

random variables drawn from the standard normal distribution scaled by s−1/2 also satisfies the J-L

property, which simplifies the construction of a J-L transform. Later, Achlioptas [1] show that the

random normal variables can be replaced by random signs, and moreover, we can zero out approx-

imately 2/3 of the entries with proper scaling while still maintaining the J-L property. The latter

approach allows faster construction and projection with less storage, though still at the same order

as the random normal projection. The breakthrough is from Ailon and Chazelle [2]. They con-

struct so-called fast Johnson-Lindenstrauss transform (FJLT), which is a product of three matrices

Φ = PHD, where P ∈ Rs×m is a sparse J-L transform with approximately O(s log2N) nonzeros,

H ∈ Rm×m is a normalized Walsh-Hadamard matrix, and D ∈ Rm×m is a diagonal matrix with its

diagonals drawn independently from {−1, 1} with probability 1/2. Because multiplying H with a

vector can be done in O(m logm) time using a FFT-like algorithm, it reduces the projection time

from O(sm) to O(m logm). This FJLT construction is further simplified by Ailon and Liberty [3, 4].

The J-L lemma applies to an arbitrary set of N vectors in Rm. By using an ε-net argument and

triangle inequality, Sarlós [63] shows that a J-L transform can also preserve the Euclidean geometry

of an entire n-dimensional subspace of vectors in Rm, with embedding dimension O(n log(n/ε)/ε2).

Lemma 9 (Sarlós [63]). Let A be an arbitrary n-dimensional subspace of Rm and 0 ≤ ε, δ < 1. If

Φ is a J-L transform from Rm to O(n log(n/ε)/ε2 · f(δ)) dimensions for some function f . Then

Pr(∀x ∈ A : |‖x‖2 − ‖Φx‖2| ≤ ε‖x‖2) ≥ 1− δ.

This result applies to any J-L transform. However, for some J-L transforms, we are able to obtain

more refined results by bounding the spectral norm of (ΦU)T (ΦU)− I, where U is an orthonormal

basis of A2. For example, if ‖(ΦU)T (ΦU)− I‖ ≤ ε, for any x ∈ A2, we have

|‖Φx‖22 − ‖x‖22| = |(Ux)T ((ΦU)T (ΦU)− I)(Ux)| ≤ ε‖Ux‖22 = ε‖x‖22,

and hence

|‖Φx‖2 − ‖x‖2| ≤
ε‖x‖22

‖Φx‖2 + ‖x‖2
≤ ε‖x‖2.

We show some results following this approach. First consider the a random normal matrix, which

has the following concentration result on its extreme singular values.

Lemma 10. (Davidson and Szarek [25]) Consider an s × n random matrix G with s > n, whose

entries are independent random variables following the standard normal distribution. Let the singular

values be σ1 ≥ · · · ≥ σn. Then for any t > 0,

max
{

Pr(σ1 ≥
√
s+
√
n+ t),Pr(σn ≤

√
s−
√
n− t)

}
< e−t

2/2. (2.1)



CHAPTER 2. ROUNDING AND EMBEDDING 19

Using this concentration result, we can easily present a better analysis of random normal pro-

jection than in Lemma 9.

Lemma 11. Given an n-dimensional subspace A2 ∈ Rm and ε, δ ∈ (0, 1), let G ∈ Rs×m be a random

matrix whose entries are independently drawn from the standard normal distribution. There exist

s = O((
√
n+ log(1/δ))2/ε2) such that, with probability at least 1− δ, we have

(1− ε)‖x‖2 ≤ ‖s−1/2Gx‖2 ≤ (1 + ε)‖x‖2, ∀x ∈ A2 .

Proof. Let U be an orthonormal basis of A2. Because G’s entries are i.i.d. normal variables, G1 =

GU ∈ Rs×n is also a random matrix with i.i.d. normal entries. Applying Lemma 10, we get for any

t > 0,

max
{

Pr(σ1(G1) ≥
√
s+
√
n+ t), Pr(σn(G1) ≤

√
s−
√
n− t)

}
< e−t

2/2.

It is easy to derive that if s ≥ 6(
√
n+t)2

ε2 and t =
√

2 log(2/δ) for some δ ∈ (0, 1),

Pr(‖s−1 ·GT1 G1 − I‖2 > ε) < δ,

which concludes the proof because ‖s−1 ·GT1 G1 − I‖2 ≤ ε implies that G preserves the `2 norms of

the entire subspace of vectors with distortion 1± ε.

Another example is from Tropp [67], who proves that a variant of the FJLT, named subsampled

randomized Hadamard transform (SRHT) can preserve the geometry of an entire `2 subspace of

vectors by using a matrix Chernoff inequality to bound ‖(ΦU)T (ΦU)− I‖2.

Definition 9 (SRHT, Tropp [67]). An SRHT is an s×m matrix of the form

Φ =

√
m

s
RHD,

where

• D ∈ Rm×m is a diagonal matrix whose entries are independent random signs,

• H ∈ Rm×m is a Walsh-Hadamard matrix scaled by m−1/2,

• R ∈ Rs×m restricts an n-dimensional vector to s coordinates, chosen uniformly at random.

Lemma 12 (Tropp [67]). Fix an m × n matrix U with orthonormal columns, and draw a random

s×m SRHT matrix Φ where the embedding dimension s satisfies

4
(√

n+
√

8 log(mn)
)2

log(n) ≤ s ≤ m.

Then, except with probability O(n−1),

0.40 ≤ σn(ΦU) and σ1(ΦU) ≤ 1.48.



CHAPTER 2. ROUNDING AND EMBEDDING 20

Dense J-L transforms, e.g., random normal projection and its variants, use matrix-vector mul-

tiplication for the embedding. Given a matrix A ∈ Rm×n, computing Ã = ΦA takes O(nnz(A) · s)
time when Φ is a dense matrix of size s ×m and nnz(A) is the number of non-zero elements in A.

Fast J-L transforms, e.g, FJLT and SRHT, use FFT-like algorithms for the embedding, which lead

to O(m logm) time for each projection. Hence, computing Ã = ΦA takes O(mn logm) time when

Φ is a fast J-L transform. Though called “fast”, a fast transform might be slower than a dense

transform when nnz(A) = O(m) or A’s columns are distributively stored that slows down FFT-like

algorithms. We explore more along this direction in Chapter 3.

Given the long history of development, it is a significant result when Clarkson and Woodruff [21]

developed an algorithm for the `2 subspace embedding that runs in input-sparsity time, i.e., in

O(nnz(A)) time. Surprisingly, their construction is exactly the CountSketch matrix in the data

stream literature [18], which is an extremely simple and sparse matrix. It can be written as the

product of two matrices Φ = SD ∈ Rs×m, where S ∈ Rs×m has each column chosen independently

and uniformly from the s standard basis vectors of Rs and D ∈ Rm×m is a diagonal matrix with

diagonal entries chosen independently and uniformly from ±1.

Theorem 2 (Clarkson and Woodruff [21]). Given an n-dimensional subspace A ⊂ Rm and ε ∈ (0, 1),

there is s = O((n/ε)4 log2(n/ε)) such that with probability at least 0.9,

(1− ε)‖x‖2 ≤ ‖Φx‖2 ≤ (1 + ε)‖x‖2, ∀x ∈ A,

where Φ is the CountSketch matrix described above.

Their proof is done by decoupling A into two orthogonal subspaces, called “heavy” and “light”

based on the row norms of U , an orthonormal basis of A. Therefore any x ∈ A can be written as

the sum of two vectors x = xH + xL, where xH belongs to the heavy subspace and xL belongs to

the light. For any x ∈ A, we have

‖Φx‖22 = ‖ΦxH‖22 + ‖ΦxL‖22 + 2(ΦxH)TΦxL.

They show that each term can be bounded separately to get the 1 ± ε distortion on the entire

subspace of vectors. We refer readers to [21] for more details of the proof. Here, we present an

improved result for the input-sparsity time (1 ± ε)-distortion embedding of [21]. In particular, for

the same embedding procedure, we obtain improved bounds for the embedding dimension with a

much simpler analysis. Our proof is similar to the proofs of Lemmas 11 and 12. See also Nelson and

Nguyen [53] for a similar result with a slightly better constant.

Theorem 3 (Input-sparsity time embedding for `2). Given an n-dimensional subspace A ⊂ Rm

and any δ ∈ (0, 1), let s = (n2 + n)/(ε2δ). Then, with probability at least 1− δ,

(1− ε)‖x‖2 ≤ ‖Φx‖2 ≤ (1 + ε)‖x‖2, ∀x ∈ A,

where Φ is the CountSketch matrix.



CHAPTER 2. ROUNDING AND EMBEDDING 21

Proof. Let the m×n matrix U be an orthonormal basis for the range of the m×n matrix A. Rather

than proving the theorem by establishing that

(1− ε)‖Uz‖2 ≤ ‖ΦUz‖2 ≤ (1 + ε)‖Uz‖2

holds for all z ∈ Rn, as is essentially done in, e.g., [30] and [21], we note that UTU = In, and we

directly bound the extent to which the embedding process perturbs this product. To do so, define

X = (ΦU)T (ΦU) = UTDTSTSDU.

That is,

xkl =

s∑
i=1

 m∑
j=1

sijdjujk

 m∑
j=1

sijdjujl

 , k, l ∈ {1, . . . , n},

where sij is the (i, j)-th element of S, dj is the j-th diagonal element of D, and ujk is the (j, k)-th

element of U . We use the following facts in the proof:

E[dj1dj2 ] = δj1j2 ,

E[si1j1si2j2 ] =


1
s2 if j1 6= j2,

1
s if i1 = i2, j1 = j2,

0 if i1 6= i2, j1 = j2.

We have,

E[xkl] =
∑
i

∑
j1,j2

E[sij1dj1uj1k · sij2dj2uj2l] =
∑
i

∑
j

E[sijujkujl] =
∑
j

ujkujl = δkl,

and we also have

E[x2
kl] = E


∑

i

∑
j

sijdjujk

∑
j

sijdjujl

2


=
∑
i1,i2

E

∑
j

si1jdjujk

∑
j

si1jdjujl

∑
j

si2jdjujk

∑
j

si2jdjujl


=
∑
i1,i2

∑
j1,j2,j3,j4

E[si1j1dj1uj1k · si1j2dj2uj2l · si2j3dj3uj3k · si2j4dj4uj4l]



CHAPTER 2. ROUNDING AND EMBEDDING 22

=
∑
i1,i2

∑
j

E[si1jujk · si1jujl · si2jujk · si2jujl]

+
∑
j1 6=j2

E[si1j1uj1k · si1j1uj1l · si2j2uj2k · si2j2uj2l]

+
∑
j1 6=j2

E[si1j1uj1k · si1j2uj2l · si2j1uj1k · si2j2uj2l]

+
∑
j1 6=j2

E[si1j1uj1k · si1j2uj2l · si2j2uj2k · si2j1uj1l]


=
∑
j

u2
jku

2
jl +

∑
j1 6=j2

uj1kuj1luj2kuj2l +
1

s

∑
j1 6=j2

u2
j1ku

2
j2l +

1

s

∑
j1 6=j2

uj1kuj2luj2kuj1l

=

∑
j

ujkujl

2

+
1

s


∑

j

u2
jk

∑
j

u2
jl

+

∑
j

ujkujl

2

− 2
∑
j

u2
jku

2
jl


=

1 + 2
s (1− ‖U∗k‖44) if k = l,

1
s (1− 2〈U2

∗k, U
2
∗l〉) if k 6= l.

Given these results, it is easy to obtain that

E[‖X − I‖2F ] =
∑
k,l

E[(xkl − δkl)2] =
2

s

(∑
k

(1− ‖U∗k‖44) +
∑
k<l

(1− 2〈U2
∗k, U

2
∗l〉)

)

≤ n2 + n

s
.

For any δ ∈ (0, 1), set s = (n2 + n)/(ε2δ). Then, by Markov’s inequality,

Pr[‖X − I‖F ≥ ε] = Pr[‖X − I‖2F ≥ ε2] ≤ n2 + n

ε2s
= δ.

Therefore, with probability at least 1− δ, we have ‖X − I‖2 ≤ ‖X − I‖F ≤ ε, which implies

(1− ε)‖Uz‖2 ≤ ‖ΦUz‖2 ≤ (1 + ε)‖Uz‖2, ∀z ∈ Rn,

which is equivalent to the result stated in the theorem.

The construction of Φ in this theorem is the same as the construction in Clarkson and Woodruff [21].

For them, s = O((n/ε)4 log2(n/ε)) in order to achieve (1± ε) distortion with a constant probability.

Theorem 3 shows that it actually suffices to set s = O((n2 + n)/ε2), and, surprisingly, the proof is

rather simple. We note that the improved result of Theorem 3 propagate to related applications,

e.g., to the `2 regression problem, the low-rank matrix approximation problem, and the problem of

computing approximations to the `2 leverage scores as considered in [21].



CHAPTER 2. ROUNDING AND EMBEDDING 23

Remark. It is easy to see that computing ΦA takes O(nnz(A)) time. The O(nnz(A)) running

time is indeed optimal, up to constant factors, for general inputs. Consider the case when A has

an important row ai such that A becomes rank-deficient without it. Thus, we have to observe ai

in order to compute a low-distortion embedding. However, without any prior knowledge, we have

to scan at least a constant portion of the input to guarantee that ai is observed with a constant

probability, which takes O(nnz(A)) time. Also note that this optimality result applies to general `p

norms.

2.5.2 Low-distortion `1 subspace embeddings

General `p subspace embedding is quite different from `2 subspace embedding. We elaborate the

differences in Chapter 4, while in this section we briefly introduce some existing results on `1 subspace

embedding. For `1, the first question to ask is whether there exist a J-L transform equivalent. This

question is answered by Charikar and Sahai [17]. However, the answer is negative.

Lemma 13 (Charikar and Sahai [17]). There exists a set of O(m) points in `m1 such that any linear

embedding into `s1 has distortion at least
√
m/s. The trade-off between dimension and distortion for

linear embeddings is tight up to a logarithmic factor. There exists a linear embedding of any set of

N points in `m1 to `s
′

1 where s′ = O(s logN) and the distortion is O(
√
m/s).

This result shows that linear embeddings are particularly bad in `1, compared to the J-L lemma

for `2. To obtain a constant distortion, we need s ≥ Cm for some constant C. So the embedding

dimension cannot be independent of m. However, the negative result is obtained by considering ar-

bitrary point sets. In many applications, we are dealing with structured point sets, e.g., vectors from

a low-dimensional subspace. Sohler and Woodruff [64] give the first linear oblivious embedding of a

n-dimensional subspace of `m1 into `
O(n logn)
1 with distortion O(n log n), where both the embedding

dimension and the distortion are independent of m.

Lemma 14 (Cauchy transform (CT), Sohler and Woodruff [64]). Let A1 be an arbitrary n-dimensional

linear subspace of `m1 . Then there is an s0 = s0(n) = O(n log n) and a sufficiently large constant

C0 > 0, such that for any s with s0 ≤ s ≤ nO(1), and any constant C ≥ C0, if Φ ∈ Rs×m is a

random matrix whose entries are choose independently from the standard Cauchy distribution and

are scaled by C/s, then with probability at least 0.99,

‖x‖1 ≤ ‖Φx‖1 ≤ O(n log n) · ‖x‖1, ∀x ∈ A1 .

The proof is by constructing tail inequalities for the sum of half Cauchy random variables. We

refer readers to [64] for more details. We note that the construction here is quite similar to the

construction of the dense Gaussian embedding in Lemma 11. The differences are that a) Cauchy

random variables replace standard normal random variables, b) larger embedding dimension does

not always lead to better distortion, c) the failure rate becomes harder to control. We show the

underlying connection between Gaussian distribution and Cauchy distributions in Chapter 4.



CHAPTER 2. ROUNDING AND EMBEDDING 24

As CT is the `1 counterpart of the dense Gaussian transform, the Fast Cauchy Transform (FCT)

proposed by Clarkson et al. [20] is the `1 counterpart of FJLT. This FCT construction first pre-

processes by a deterministic low-coherence matrix, then rescales by Cauchy random variables, and

finally samples linear combinations of the rows. Then, we construct Φ as

Φ = 4BCH,

where

• B ∈ Rs×2m has each column chosen independently and uniformly from the s standard basis

vectors for Rs; for α sufficiently large, we set the parameter s = αn log(n/δ), where δ ∈ (0, 1)

controls the probability that our algorithm fails and α is a suitably large constant,

• C ∈ R2m×2m is a diagonal matrix with diagonal entries chosen independently from a Cauchy

distribution,

• H ∈ R2m×m is a block-diagonal matrix comprised of m/t blocks along the diagonal. Each

block is the 2t × t matrix Gs =
(
Ht
It

)
, where It is the t × t identity matrix, and Ht is the

normalized Hadamard matrix. (For simplicity, we assume t is a power of two and m/t is an

integer.)

H =


Gs

Gs
. . .

Gs

 .

Heuristically, the effect of H in the above FCT construction is to spread the weight of a vector,

so that Hy has many entries that are not too small. This means that the vector CHy comprises

Cauchy random variables with scale factors that are not too small; and finally these variables are

summed up by B, yielding a vector BCHy, whose `1 norm won’t be too small relative to ‖y‖1.

Lemma 15 (Fast Cauchy Transform (FCT), Clarkson et al. [20]). There is a distribution (given by

the above construction) over matrices Φ ∈ Rs×n, with s = O(n log n+ n log(1/δ)), such that for an

arbitrary (but fixed) A ∈ Rm×n, and for all x ∈ Rn, the inequalities

‖Ax‖1 ≤ ‖ΦAx‖1 ≤ κ‖Ax‖1

hold with probability 1− δ, where

κ = O
(
n
√
t

δ
log(sn)

)
.

Further, for any y ∈ Rn, the product Φy can be computed in O(n log s) time.

Setting δ to a small constant, since
√
t = s3 and s = O(n log n), it follows that κ = O(n4 log4 n) in

the above theorem. We note that the result is different from how FJLT compares to dense Gaussian



CHAPTER 2. ROUNDING AND EMBEDDING 25

transform. FJLT is faster than the dense Gaussian transform while both provide the same order of

distortion, but FCT becomes faster than the dense Cauchy transform at the cost of worse distortion.

In Chapter 4, we follow this line of work and develop low-distortion `p subspace embedding

algorithms in input-sparsity time for p ∈ [1, 2), the `p equivalent of the input-sparsity time `2

embedding proposed by Clarkson and Woodruff [21].

2.6 Subspace-preserving sampling

All of the linear subspace embedding algorithms mentioned in previous sections are oblivious, i.e.,

independent of the input subspace. Since oblivious embedding is not a hard constraint for the `p

regression problems we are interested in, would non-oblivious embeddings be able to give better

performance?

Clarkson [19] first shows that the `1 subspace embedding can be done by weighted sampling

of the coordinates. The weighted sampling is done after preprocessing, including preconditioning

using ellipsoidal rounding. Sampled coordinates are chosen with probabilities that depend on the

`1 norms of the rows of the preconditioned matrix. Moreover, the resulting sample has each coor-

dinate weighted by the reciprocal of its sampling probability. Different from oblivious `1 subspace

embeddings, the sampling approach can achieve a much better distortion.

Lemma 16 (Clarkson [19]). Given an n-dimensional subspace A1 ⊂ Rm and ε, δ ∈ (0, 1), it takes

O(mn5 logm) time to compute a diagonal matrix S ∈ Rm×m with O(n3.5 log(n/(δε))/ε2) non-zero

diagonals such that, with probability at least 1− δ,

(1− ε)‖y‖1 ≤ ‖Sy‖1 ≤ (1 + ε)‖y‖1, ∀y ∈ A1 .

Therefore, to estimate the `1 norms of any vector from a n-dimensional subspace of Rm, we

only need to compute the weighted sum of the absolute values of a few coordinates of this vector.

This subset of the sampled coordinates is called a coreset for the `1 norm estimation problem. The

existence of coresets has many applications, especially in large-scale data analysis, for example,

clustering [14] and set covering [13]. A similar sampling algorithm for the `2 norm is developed by

Drineas et al. [30]. The algorithm of [30] relies on the estimation of the row norms of an orthonormal

basis of the subspace. The results for `1 and `2 are generalized to `p by Dasgupta et al. [24], where

this family of sampling algorithms are called subspace-preserving sampling.

Theorem 4 (Subspace-preserving sampling, Dasgupta et al. [24]). Given an n-dimensional subspace

Ap ⊂ `mp represented by a matrix A ∈ Rm×n and p ∈ [1,∞), ε ∈ (0, 1/7), and δ ∈ (0, 1), choose

s ≥ 16(2p + 2)κ̄pp(A)(n log(12/ε) + log(2/δ))/(p2ε2),



CHAPTER 2. ROUNDING AND EMBEDDING 26

and construct a sampling matrix S ∈ Rm×m with diagonals

sii =

1/p
1/p
i with probability pi,

0 otherwise,
i = 1, . . . ,m,

where

pi ≥ min
{

1, s · ‖ai‖pp/|A|pp
}
, i = 1, . . . ,m.

Then, with probability at least 1− δ,

(1− ε)‖y‖p ≤ ‖Sy‖p ≤ (1 + ε)‖y‖p, ∀y ∈ Ap .

If the matrix A is explicitly given, computing the sampling probabilities takes O(nnz(A)) time,

constructing the sampling matrix S takes O(m) time, and computing Sy for any y ∈ Ap only takes

O(s) time (assuming random access to y’s elements). The running time seems to be very promising.

However, the sampling complexity s depends on κ̄p(A), the condition number of A, which could

be arbitrarily large. To control the sample size, preconditioning is necessary. That is, finding a

matrix R ∈ Rn×n such that κ̄p(AR
−1) = O(poly(n)), which could be done by the preconditioning

algorithms introduced in Section 1.4. Assume that such a preconditioner matrix R is given and let

U = AR−1. The sampling matrix obtained by applying Theorem 4 to U also works for A because

A and U share the same subspace, while the sample size is now bounded by O(poly(n) log(1/ε)/ε2).

However, computing the row norms of U takes O(nnz(A)·n) time because of computing AR−1, which

is much more expensive than computing the row norms of A that takes O(nnz(A)) time. Clarkson

et al. [20] improve this running time by estimating the row norms of AR−1 instead of computing

them exactly to define importance sampling probabilities.

Lemma 17 (Fast subspace-preserving sampling (Clarkson et al. [20])). Given a matrix A ∈ Rm×n,

p ∈ [1,∞), ε > 0, and a matrix R ∈ Rn×n such that AR−1 is well-conditioned, it takes O(nnz(A) ·
logm) time to compute a sampling matrix S ∈ Rs

′×m (with only one nonzero element per row) with

s′ = O(κ̄pp(AR
−1)n|p/2−1|+1 log(1/ε)/ε2) such that with a constant probability,

(1− ε)‖Ax‖p ≤ ‖SAx‖p ≤ (1 + ε)‖Ax‖p, ∀x ∈ Rn .

Proof. Instead of computing U = AR−1 explicitly, we compute Ũ = A(R−1G), where G ∈ Rn×l is a

random matrix whose entries are i.i.d. standard normal variables scaled by l−1/2 with l = O(logm)

such that by the J-L lemma, with a constant probability, e.g., 0.99, we have the following

1

2
‖ui‖2 ≤ ‖ũi‖2 ≤

3

2
‖ui‖2, i = 1, . . . ,m. (2.2)

Note that computing Ũ takes O(nnz(A) · logm) time. Let s be the sampling complexity required by

Theorem 4 for U = AR−1 and set s′ = 3pn|p/2−1|s. Define sampling probabilities based on the `2



CHAPTER 2. ROUNDING AND EMBEDDING 27

row norm estimates:

pi = min

{
1, s′ · ‖ũi‖p2∑m

j=1 ‖ũi‖
p
2

}
, i = 1, . . . ,m.

We have pi ≥ s‖ui‖pp/|U |pp for i = 1, . . . ,m because

‖ũi‖p2∑m
j=1 ‖ũi‖

p
2

≥ 3−p
‖ui‖p2∑m
j=1 ‖ui‖

p
2

≥ 3−pn−|p/2−1| ‖ui‖pp∑m
j=1 ‖ui‖

p
p

= 3−pn−|p/2−1| ‖ui‖
p
p

|U |pp
,

where the first inequality is due to (2.2) and the second inequality is due to the equivalence of vector

norms. Therefore, the sampling probabilities {pi} meet the requirement in Theorem 4 and hence

the sampling matrix constructed based on them is a subspace-preserving sampling matrix with a

constant probability.

We note that the speed-up comes at the cost of increased sampling complexity, which does not

affect the theory much because the sampling complexity is still O(poly(n) log(1/ε)/ε2). In practice,

it might be worth computing U = AR−1 and its row norms explicitly to obtain a smaller sample size.

One should be aware of this trade-off when implementing a subspace-preserving sampling algorithm.

2.7 Application to `p regression

As mentioned in Section 1.4, subspace embedding algorithms can be used for creating preconditioner

matrices for traditional solvers. Indeed, (1 ± ε)-distortion subspace embedding algorithms can be

used directly to approximate `p regression problems, and this is the main application of subspace

embedding in [19, 30, 24]. In these work, an approximate solution to an `p regression problem

specified by A ∈ Rm×n and b ∈ Rm is computed in several steps:

1. compute a preconditioner matrix R for A,

2. compute a constant-factor approximate solution xC ,

3. construct a sampling matrix S based on sampling probabilities depending on AR−1 and the

residual b−AxC such that

‖S(Ax− b)‖p ≤ (1 + ε)‖Ax− b‖p, ∀x ∈ Rn,

4. solve the subsampled problem x̂ = arg minx∈Rn ‖S(Ax− b)‖p, which is a (1 + ε)-approximate

solution to the original problem because

‖S(Ax̂− b)‖p ≤ ‖S(Ax∗ − b)‖p ≤ (1 + ε)‖Ax∗ − b‖p.

We refer readers to the corresponding work for more details. Actually, with constrained formula-

tion (1.4) and the result from Lemma 5, the step of computing the constant-factor approximate



CHAPTER 2. ROUNDING AND EMBEDDING 28

solution becomes unnecessary and it is straightforward to compute a 1+ε
1−ε -approximate solution to

an `p regression problem. The simplified procedure has the following steps:

1. compute a preconditioner matrix R for A,

2. construct a sampling matrix S based on sampling probabilities depending on AR−1 such that

‖SAx‖p ≤ (1 + ε)‖Ax‖p, ∀x ∈ Rn,

3. solve the sub-sampled problem x̂ = arg mincT x=1 ‖SAx‖p, which is a 1+ε
1−ε -approximate solution

to the original problem.

Recall that for `2, J-L transforms can provide subspace embeddings with distortion (1 ± ε),

and for general `p with p ∈ [1,∞), subspace-preserving sampling algorithms can provide subspace

embeddings with distortion (1 ± ε). Therefore, an `p regression problem can be approximated by

solving a reduced-sized `p regression problem obtained from subspace-preserving embedding.

2.8 Summary

By combining the tools we have introduced in this chapter and traditional solvers in the previous

chapter, we can propose several approaches to compute a (1 ± ε)-approximate solution to an `p

regression problem, which are reflected in the literature. For `2, we might use

1. a stable direct method

e.g., SVD or complete orthogonal factorization [33],

2. preconditioning + an unstable direct method

e.g., preconditioning via Gaussian transform + the normal equation approach [22],

3. preconditioning + an iterative methods

e.g., preconditioning via FJLT + LSQR [7, 62],

4. subspace-preserving embedding + solving the reduced-sized problem

e.g., input-sparsity time embedding + (FJLT + SVD) [21],

5. preconditioning + subspace-preserving sampling + solving the subsampled prob-

lem

e.g., preconditioning via FJLT + subspace-preserving sampling + SVD [31].

In the third approach, if we use SRHT (Lemma 12) to create a preconditioned system with condition

number bounded by a small constant and then use LSQR to solve the preconditioned problem

iteratively, the total running time would be O(mn log(m/ε) + n3 log n), where O(mn log(m)) comes

from SRHT, O(n3 log n) from computing the preconditioner matrix, and O(mn log(1/ε)) from LSQR

iterations. Then, in the fourth approach, if we use the input-sparsity time algorithm from Clarkson



CHAPTER 2. ROUNDING AND EMBEDDING 29

and Woodruff [21] for embedding and the SRHT + LSQR approach above to solve the reduced-

sized problem, the total running time would be just the number of nonzeros in A plus a low-degree

polynomial of n/ε.

Theorem 5 (Fast `2 regression). With a constant probability, a (1 + ε)-approximate solution to an

`2 regression problem specified by A ∈ Rm×n using the constrained formulation can be computed in

O(nnz(A) + n3 log(n/ε)/ε2) time.

Proof. The proof is basically combining Theorem 3 with the result of the SRHT + LSQR approach.

First compute a (1± ε
4 )-distortion embedding Φ ∈ Rs×m in O(nnz(A)) time with embedding dimen-

sion s = O(n2/ε2), with a small failure rate, then compute a (1 ± ε
6 )-approximate solution to the

reduced-sized problem specified by ΦA using SRHT + LSQR, which takes O(sn log(s/ε)+n3 log n) =

O(n3 log(n/ε)/ε2) time with a small failure rate. The solution x̂ is a (1 + ε)-approximate solution to

the original problem because x̂ is feasible and

‖Ax̂‖2 ≤
1

1− ε/4
‖ΦAx̂‖2 ≤

(1 + ε/6)

1− ε/4
‖ΦAx∗‖2

≤ (1 + ε/6)(1 + ε/4)

1− ε/4
‖Ax∗‖2 ≤ (1 + ε)‖Ax∗‖2.

Hence x̂ is a (1 + ε)-approximate solution with a constant probability.

Hence, under the assumption that m ≥ poly(n) and ε is fixed, this particular combination would

become the best approach proposed. However, we note that there are various trade-offs among

those approaches. For instance, there are trade-offs between running time and conditioning quality

in preconditioning, and there are trade-offs between embedding dimension/sample size and failure

rate in embedding/sampling. It is indeed hard to tell which approach is the best without a least

squares problem given. In Chapter 3, we develop a randomized least squares solver following the

third approach using Gaussian transform and LSQR or the Chebyshev semi-iterative method, and

we show practical trade-offs on different problem types and computing platforms.

For `p, we might use

1. a second-order method

e.g., IPMs,

2. preconditioning + a first-order method

e.g., preconditioning via ellipsoidal rounding + accelerated gradient descent [56],

3. preconditioning + subspace-preserving sampling + solving the subsampled prob-

lem

e.g., preconditioning via ellipsoidal rounding + subspace-preserving sampling + an IPM [19,

24], preconditioning via subspace embedding + subspace-preserving sampling + an IPM [64,

20].



CHAPTER 2. ROUNDING AND EMBEDDING 30

If we take the first approach and use a second-order method, the expected running time isO(m3/2n2) [58],

which is not favorable for strongly over-determined problems due to the possibly very large m3/2

factor. If we take the second approach and use a first-order method to solve the preconditioned

problem, for each iteration we have to make one pass through the entire matrix data, which might

involve huge communication cost when the data is stored distributively on secondary storage. There-

fore, reducing the number of iterations becomes crucial for solving large-scale `p regression problems

along this approach. Lastly, if we take the third approach, as mentioned in Section 2.7, only a

subsampled problem of size O(poly(n/ε)) × n needs to be solved to obtain a (1 + ε)-approximate

solution, which takes O(poly(n/ε)) time. Conditioning via FCT takes O(mn logm) time, and fast

subspace-preserving sampling takes O(nnz(A) · logm) time. Hence, the best combination we have

introduced so far takes O(mn logm + poly(n/ε)) time. In Chapter 4, we develop input-sparsity

time `p subspace embedding algorithms for p ∈ [1, 2), and hence reduce the total running time to

O(nnz(A) · logm+ poly(n/ε)), which is optimal up to a log factor. Again, there are many trade-offs

among those approaches. For example, the third approach is good if we only need low-precision

solutions. If we need more accurate solutions, we have to solve really large subsampled problems

due to the poly(1/ε) factor in sample size, which might be infeasible in practice.



Chapter 3

`2 Regression

In this chapter, we consider high-precision solving of linear least squares (LS) problems that are

strongly over- or under-determined, and possibly rank-deficient. In particular, given a matrix A ∈
Rm×n and a vector b ∈ Rm, where m� n or m� n and we do not assume that A has full rank, we

wish to develop randomized algorithms to accurately solve the problem (same as (1.2)):

minimizex∈Rn ‖Ax− b‖2.

If we let r = rank(A) ≤ min(m,n), then recall that if r < n (the LS problem is under-determined

or rank-deficient), then (1.2) has an infinite number of minimizers. In that case, the set of all

minimizers is convex and hence has a unique element having minimum length. On the other hand,

if r = n so the problem has full rank, there exists only one minimizer to (1.2) and hence it must

have the minimum length. In either case, we denote this unique min-length solution to (1.2) by x∗,

and we are interested in computing x∗ in this work. That is,

x∗ = arg min ‖x‖2 subject to x ∈ arg min
z
‖Az − b‖2. (3.1)

LS problems arise in numerous applications, and the demand for faster LS solvers will continue to

grow in light of new data applications and as problem scales become larger and larger.

We describe an LS solver called LSRN for these strongly over- or under-determined, and possibly

rank-deficient, systems. LSRN uses random normal projections to compute a preconditioner matrix

such that the preconditioned system is provably extremely well-conditioned. Importantly for large-

scale applications, the preconditioning process is embarrassingly parallel, and it automatically speeds

up with sparse matrices and fast linear operators. LSQR [61] or the Chebyshev semi-iterative (CS)

method [34] can be used at the iterative step to compute the min-length solution within just a few

iterations. We show that the latter method is preferred on clusters with high communication cost.

Because of its provably-good conditioning properties, LSRN has a fully predictable run-time per-

formance, just like direct solvers, and it scales well in parallel environments. On large dense systems,

LSRN is competitive with LAPACK’s DGELSD for strongly over-determined problems, and it is much

31



CHAPTER 3. `2 REGRESSION 32

faster for strongly under-determined problems, although solvers using fast random projections, like

Blendenpik [7], are still slightly faster in both cases. On sparse systems without simple sparsity

patterns, LSRN runs significantly faster than competing solvers, for both the strongly over- or under-

determined cases.

In section 1.3.1 we describe existing deterministic LS solvers and recent randomized algorithms

for the LS problem. In section 3.2 we show how to do preconditioning correctly for rank-deficient

LS problems, and in section 3.3 we introduce LSRN and discuss its properties. Section 3.4 describes

how LSRN can handle Tikhonov regularization for both over- and under-determined systems, and in

section 3.5 we provide a detailed empirical evaluation illustrating the behavior of LSRN.

3.1 Randomized methods

In 2007, Drineas, Mahoney, Muthukrishnan, and Sarlós [31] introduced two randomized algorithms

for the LS problem, each of which computes an approximate solution x̂ in O(mn log(n/ε)+n3/ε) time

such that ‖Ax̂− b‖2 ≤ (1 + ε)‖Ax∗ − b‖2 given ε > 0. Both of these algorithms apply a randomized

Hadamard transform to the columns of A, thereby generating a problem of smaller size, one using

uniformly random sampling and the other using a sparse random projection. They proved that, in

both cases, the solution to the smaller problem leads to relative-error approximations of the original

problem. The algorithms are suitable when low accuracy is acceptable, but the ε dependence quickly

becomes the bottleneck otherwise. Using those algorithms as preconditioners was also mentioned in

[31]. This work laid the ground for later algorithms and implementations.

Later, in 2008, Rokhlin and Tygert [62] described a related randomized algorithm for over-

determined systems. They used a randomized transform named SRFT that consists of m random

Givens rotations, a random diagonal scaling, a discrete Fourier transform, and a random sampling.

They considered using their method as a preconditioning method, and they showed that to get

relative precision ε, only O(n log(1/ε)) samples are needed. In addition, they proved that if the

sample size is greater than 4n2, the condition number of the preconditioned system is bounded

above by a constant. Although choosing this many samples would adversely affect the running time

of their solver, they also illustrated examples of input matrices for which the 4n2 sample bound was

weak and for which many fewer samples sufficed.

Then, in 2010, Avron, Maymounkov, and Toledo [7] implemented a high-precision LS solver,

called Blendenpik, and compared it to LAPACK’s DGELS and to LSQR without preconditioning.

Blendenpik uses a Walsh-Hadamard transform, a discrete cosine transform, or a discrete Hartley

transform for blending the rows/columns, followed by a random sampling, to generate a problem

of smaller size. The R factor from the QR factorization of the smaller matrix is used as the pre-

conditioner for LSQR. Based on their analysis, the condition number of the preconditioned system

depends on the coherence or statistical leverage scores of A, i.e., the maximal row norm of U , where

U is an orthonormal basis of range(A). We note that a solver for under-determined problems is also

included in the Blendenpik package.

In 2011, Coakley, Rokhlin, and Tygert [22] described an algorithm that is also based on random



CHAPTER 3. `2 REGRESSION 33

normal projections. It computes the orthogonal projection of any vector b onto the null space of

A or onto the row space of A via a preconditioned normal equation. The algorithm solves the

over-determined LS problem as an intermediate step. They show that the normal equation is well-

conditioned and hence the solution is reliable. Unfortunately, no implementation was provided. For

an over-determined problem of size m × n, the algorithm requires applying A or AT 3n + 6 times,

while LSRN needs approximately 2n + 200 matrix-vector multiplications under the default setting.

Asymptotically, LSRN becomes faster as n increases beyond several hundred. See section 3.3.4 for

further complexity analysis of LSRN.

All the approaches mentioned in this section assume that A has full rank, and for those based on

iterative solvers, none provides a tight upper bound on the condition number of the preconditioned

system with O(n) sample size (and hence the number of iterations). For LSRN, Theorem 6 ensures

that the min-length solution is preserved, independent of the rank, and Theorems 8 and 9 provide

bounds on the condition number and number of iterations, independent of the spectrum of A. In

addition to handling rank-deficiency well, LSRN can even take advantage of it, resulting in a smaller

condition number and fewer iterations.

Some prior work on the LS problem has explored “fast” randomized transforms that run in

roughly O(mn logm) time on a dense matrix A, while the random normal projection we use in LSRN

takes O(mn2) time. Although this could be an issue for some applications, the use of random normal

projections comes with several advantages. First, if A is a sparse matrix or a linear operator, which

is common in large-scale applications, then the FFT-based fast transforms are no longer “fast”.

Second, the random normal projection is easy to implement using threads or MPI, and it scales well

in parallel environments. Third, the strong symmetry of the standard normal distribution helps give

the strong high probability bounds on the condition number in terms of sample size. These bounds

depend on nothing but s/r, where s is the sample size. For example, if s = 4r, Theorem 8 ensures

that, with high probability, the condition number of the preconditioned system is less than 3.

This last property about the condition number of the preconditioned system makes the number of

iterations and thus the running time of LSRN fully predictable like for a direct method. It also enables

use of the CS method, which needs only one level-1 and two level-2 BLAS operations per iteration,

and is particularly suitable for clusters with high communication cost because it doesn’t have vector

inner products that require synchronization between nodes. Although the CS method has the same

theoretical upper bound on the convergence rate as CG-like methods, it requires accurate bounds on

the singular values in order to work efficiently. Such bounds are generally hard to come by, limiting

the popularity of the CS method in practice, but they are provided for the preconditioned system

by our Theorem 8, and we do achieve high efficiency in our experiments.

3.2 Preconditioning for linear least squares

In light of (1.6), much effort has been made to transform a linear system into an equivalent system

with reduced condition number. This preconditioning, for a square linear system Bx = d of full



CHAPTER 3. `2 REGRESSION 34

rank, usually takes one of the following forms:

left preconditioning M
T
Bx = M

T
d,

right preconditioning BNy = d, x = Ny,

left and right preconditioning M
T
BNy = M

T
d, x = Ny.

Clearly, the preconditioned system is consistent with the original one, i.e., has the same x∗ as the

unique solution, if the preconditioners M and N are nonsingular.

For the general LS problem (1.3), more care should be taken so that the preconditioned system

has the same min-length solution as the original one. For example, if we apply left preconditioning

to the LS problem minx ‖Ax− b‖2, the preconditioned system becomes minx ‖MTAx−MTb‖2, and

its min-length solution is given by

x∗left = (M
T
A)†M

T
b.

Similarly, the min-length solution to the right preconditioned system is given by

x∗right = N(AN)†b.

The following lemma states the necessary and sufficient conditions for A† = N(AN)† or A† =

(MTA)†MT to hold. Note that these conditions holding certainly imply that x∗right = x∗ and x∗left =

x∗, respectively.

Lemma 18. Given A ∈ Rm×n, N ∈ Rn×p and M ∈ Rm×q, we have

1. A† = N(AN)† if and only if range(NNTAT) = range(AT),

2. A† = (MTA)†MT if and only if range(MMTA) = range(A).

Proof. Let r = rank(A) and UΣV T be A’s compact SVD as in section 1.3.1, with A† = V Σ−1UT.

Before continuing our proof, we reference the following facts about the pseudoinverse:

1. B† = BT(BBT)† for any matrix B,

2. For any matrices B and C such that BC is defined, (BC)† = C†B† if (i) BTB = I or

(ii) CCT = I or (iii) B has full column rank and C has full row rank.

Now let’s prove the “if” part of the first statement. If range(NNTAT) = range(AT) = range(V ), we

can find a matrix Z with full row rank such that NNTAT = V Z. Then,

N(AN)† = N(AN)
T
(AN(AN)

T
)† = NN

T
A
T
(ANN

T
A
T
)†

= V Z(UΣV
T
V Z)† = V Z(UΣZ)† = V ZZ†Σ−1U

T
= V Σ−1U

T
= A†.

Conversely, if N(AN)† = A†, we know that range(N(AN)†) = range(A†) = range(V ) and hence

range(V ) ⊆ range(N). Then we can decompose N as (V Vc)
(
Z

Zc

)
= V Z + VcZc, where Vc is



CHAPTER 3. `2 REGRESSION 35

orthonormal, V TVc = 0, and
(
Z

Zc

)
has full row rank. Then,

0 = N(AN)† −A† = (V Z + VcZc)(UΣV
T
(V Z + VcZc))

† − V Σ−1U
T

= (V Z + VcZc)(UΣZ)† − V Σ−1U
T

= (V Z + VcZc)Z
†Σ−1U

T − V Σ−1U
T

= VcZcZ
†Σ−1U

T
.

Multiplying by V T

c on the left and UΣ on the right, we get ZcZ
† = 0, which is equivalent to ZcZ

T = 0.

Therefore,

range(NN
T
A
T
) = range((V Z + VcZc)(V Z + VcZc)

T
V ΣU

T
)

= range((V ZZ
T
V
T

+ VcZcZ
T

cV
T

c )V ΣU
T
)

= range(V ZZ
T
ΣU

T
)

= range(V ) = range(A
T
),

where we used the facts that Z has full row rank and hence ZZT is nonsingular, Σ is nonsingular,

and U has full column rank.

To prove the second statement, let us take B = AT. By the first statement, we know B† =

M(BM)† if and only if range(MMTBT) = range(BT), which is equivalent to saying A† = (MTA)†MT

if and only if range(MMTA) = range(A).

Although Lemma 18 gives the necessary and sufficient condition, it does not serve as a practical

guide for preconditioning LS problems. In this work, we are more interested in a sufficient condition

that can help us build preconditioners. To that end, we provide the following theorem.

Theorem 6. Given A ∈ Rm×n, b ∈ Rm, N ∈ Rn×p, and M ∈ Rm×q, let x∗ be the min-length

solution to the LS problem minx ‖Ax − b‖2, x∗right = Ny∗ where y∗ is the min-length solution to

miny ‖ANy − b‖2, and x∗left be the min-length solution to minx ‖MTAx−MTb‖2. Then,

1. x∗right = x∗ if range(N) = range(AT),

2. x∗left = x∗ if range(M) = range(A).

Proof. Let r = rank(A), and let UΣV T be A’s compact SVD. If range(N) = range(AT) = range(V ),

we can write N as V Z, where Z has full row rank. Therefore,

range(NN
T
A
T
) = range(V ZZ

T
V
T
V ΣU

T
) = range(V ZZ

T
ΣU

T
)

= range(V ) = range(A
T
).

By Lemma 18, A† = N(AN)† and hence x∗left = x∗. The second statement can be proved by similar

arguments.



CHAPTER 3. `2 REGRESSION 36

3.3 Algorithm LSRN

In this section we present LSRN, an iterative solver for solving strongly over- or under-determined

systems, based on “random normal projection”. To construct a preconditioner we apply a trans-

formation matrix whose entries are independent random variables drawn from the standard normal

distribution. We prove that the preconditioned system is almost surely consistent with the original

system, i.e., both have the same min-length solution. At least as importantly, we prove that the

spectrum of the preconditioned system is independent of the spectrum of the original system; and we

provide a strong concentration result on the extreme singular values of the preconditioned system.

This concentration result enables us to predict the number of iterations for CG-like methods, and

it also enables use of the CS method, which requires an accurate bound on the singular values to

work efficiently.

3.3.1 The algorithm

Algorithm 2 shows the detailed procedure of LSRN to compute the min-length solution to a strongly

over-determined problem, and Algorithm 3 shows the detailed procedure for a strongly under-

determined problem. We refer to these two algorithms together as LSRN. Note that they only

use the input matrix A for matrix-vector and matrix-matrix multiplications, and thus A can be a

dense matrix, a sparse matrix, or a linear operator. In the remainder of this section we focus on

analysis of the over-determined case. We emphasize that analysis of the under-determined case is

quite analogous.

Algorithm 2 LSRN (computes x̂ ≈ A†b when m� n)

1: Choose an oversampling factor γ > 1 and set s = dγne.
2: Generate G = randn(s,m), i.e., an s-by-m random matrix whose entries are independent random

variables following the standard normal distribution.
3: Compute Ã = GA.
4: Compute Ã’s compact SVD Ũ Σ̃Ṽ T, where r = rank(Ã), Ũ ∈ Rs×r, Σ̃ ∈ Rr×r, Ṽ ∈ Rn×r, and

only Σ̃ and Ṽ are needed.
5: Let N = Ṽ Σ̃−1.
6: Compute the min-length solution to miny ‖ANy − b‖2 using an iterative method. Denote the

solution by ŷ.
7: Return x̂ = Nŷ.

3.3.2 Theoretical properties

The use of random normal projection offers LSRN some nice theoretical properties. We start with

consistency.

Theorem 7. In Algorithm 2, we have x̂ = A†b almost surely.



CHAPTER 3. `2 REGRESSION 37

Algorithm 3 LSRN (computes x̂ ≈ A†b when m� n)

1: Choose an oversampling γ > 1 and set s = dγme.
2: Generate G = randn(n, s), i.e., an n-by-s random matrix whose entries are independent random

variables following the standard normal distribution.
3: Compute Ã = AG.
4: Compute Ã’s compact SVD Ũ Σ̃Ṽ T, where r = rank(Ã), Ũ ∈ Rn×r, Σ̃ ∈ Rr×r, Ṽ ∈ Rs×r, and

only Ũ and Σ̃ are needed.
5: Let M = Ũ Σ̃−1.
6: Compute the min-length solution to minx ‖MTAx−MTb‖2 using an iterative method, denoted

by x̂.
7: Return x̂.

Proof. Let r = rank(A) and UΣV T be A’s compact SVD. We have

range(N) = range(Ṽ Σ̃−1) = range(Ṽ )

= range(Ã
T
) = range(A

T
G
T
) = range(V Σ(GU)

T
).

Define G1 = GU ∈ Rs×r. Since G’s entries are independent random variables following the standard

normal distribution and U is orthonormal, G1’s entries are also independent random variables fol-

lowing the standard normal distribution. Then given s ≥ γn > n ≥ r, we know G1 has full column

rank r with probability 1. Therefore,

range(N) = range(V ΣG
T

1) = range(V ) = range(A
T
),

and hence by Theorem 6 we have x̂ = A†b almost surely.

A more interesting property of LSRN is that the spectrum (the set of singular values) of the

preconditioned system is solely associated with a random matrix of size s × r, independent of the

spectrum of the original system.

Lemma 19. In Algorithm 2, the spectrum of AN is the same as the spectrum of G†1 = (GU)†,

independent of A’s spectrum.

Proof. Continue to use the notation from the proof of Theorem 7. Let G1 = U1Σ1V
T

1 be G1’s

compact SVD, where U1 ∈ Rs×r, Σ1 ∈ Rr×r, and V1 ∈ Rr×r. Since range(Ũ) = range(GA) =

range(GU) = range(U1) and both Ũ and U1 are orthonormal matrices, there exists an orthonormal

matrix Q1 ∈ Rr×r such that U1 = ŨQ1. As a result,

Ũ Σ̃Ṽ
T

= Ã = GUΣV
T

= U1Σ1V
T

1 ΣV
T

= ŨQ1Σ1V
T

1 ΣV
T
.

Multiplying by ŨT on the left of each side, we get Σ̃Ṽ T = Q1Σ1V
T

1 ΣV T. Taking the pseudoinverse

gives N = Ṽ Σ̃−1 = V Σ−1V1Σ−1
1 QT

1. Thus,

AN = UΣV
T
V Σ−1V1Σ−1

1 Q
T

1 = UV1Σ−1
1 Q

T

1 ,



CHAPTER 3. `2 REGRESSION 38

which gives AN ’s SVD. Therefore, AN ’s singular values are diag(Σ−1
1 ), the same as G†1’s spectrum,

but independent of A’s.

We know that G1 = GU is a random matrix whose entries are independent random variables

following the standard normal distribution. The spectrum of G1 is a well-studied problem in random

matrix theory, and in particular the properties of extreme singular values have been studied. See

Lemma 10. With the aid of Lemma 10, it is straightforward to obtain the concentration result of

σ1(AN), σr(AN), and κ(AN) as follows.

Theorem 8. In Algorithm 2, for any α ∈ (0, 1−
√
r/s), we have

max
{
P
(
σ1(AN) ≥ 1

(1−α)
√
s−
√
r

)
,P
(
σr(AN) ≤ 1

(1+α)
√
s+
√
r

)}
< e−α

2s/2 (3.2)

and

P

(
κ(AN) =

σ1(AN)

σr(AN)
≤

1 + α+
√
r/s

1− α−
√
r/s

)
≥ 1− 2e−α

2s/2. (3.3)

Proof. Set t = α
√
s in Lemma 10.

In order to estimate the number of iterations for CG-like methods, we can now combine (1.6)

and (3.3).

Theorem 9. In exact arithmetic, given a tolerance ε > 0, a CG-like method applied to the pre-

conditioned system miny ‖ANy − b‖2 with y(0) = 0 converges within (log ε − log 2)/ log(α +
√
r/s)

iterations in the sense that

‖ŷCG − y∗‖(AN)T(AN) ≤ ε‖y
∗‖(AN)T(AN) (3.4)

holds with probability at least 1− 2e−α
2s/2 for any α ∈ (0, 1−

√
r/s), where ŷCG is the approximate

solution returned by the CG-like solver and y∗ = (AN)†b. Let x̂CG = NŷCG be the approximate

solution to the original problem. Since x∗ = Ny∗, (3.4) is equivalent to

‖x̂CG − x∗‖ATA ≤ ε‖x
∗‖ATA, (3.5)

or in terms of residuals,

‖r̂CG − r∗‖2 ≤ ε‖b− r∗‖2, (3.6)

where r̂CG = b−Ax̂CG and r∗ = b−Ax∗.

If n is large and thus s is large, we can set α very small but still make 1−2e−α
2s/2 very close to 1.

Moreover, the bounds in (3.3) and (1.6) are not tight. These facts allow us to ignore α in a practical

setting when we solve a large-scale problem. For example, to reach precision ε = 10−14, it is safe in

practice to set the maximum number of iterations to (log ε − log 2)/ log
√
r/s ≈ 66/ log(s/r) for a

numerically stable CG-like method, e.g., LSQR. We verify this claim in section 3.5.2.



CHAPTER 3. `2 REGRESSION 39

In addition to allowing us to bound the number of iterations for CG-like methods, the result given

by (3.2) also allows us to use the CS method. This method needs only one level-1 and two level-2

BLAS operations per iteration; and, importantly, because it doesn’t have vector inner products that

require synchronization between nodes, this method is suitable for clusters with high communication

cost. It does need an explicit bound on the singular values, but once that bound is tight, the CS

method has the same theoretical upper bound on the convergence rate as other CG-like methods.

Unfortunately, in many cases, it is hard to obtain such an accurate bound, which prevents the CS

method becoming popular in practice. In our case, however, (3.2) provides a probabilistic bound with

very high confidence. Hence, we can employ the CS method without difficulty. For completeness,

Algorithm 4 describes the CS method we implemented for solving LS problems. For discussion of

its variations, see Gutknecht and Rollin [36].

Algorithm 4 Chebyshev semi-iterative (CS) method (computes x ≈ A†b)
1: Given A ∈ Rm×n, b ∈ Rm, and a tolerance ε > 0, choose 0 < σL ≤ σU such that all non-zero

singular values of A are in [σL, σU ] and let d = (σ2
U + σ2

L)/2 and c = (σ2
U − σ2

L)/2.
2: Let x = 0, v = 0, and r = b.

3: for k = 0, 1, . . . ,
⌈
(log ε− log 2) / log σU−σL

σU+σL

⌉
do

4: β ←


0 if k = 0,
1
2 (c/d)2 if k = 1,

(αc/2)2 otherwise,

α←


1/d if k = 0,

d− c2/(2d) if k = 1,

1/(d− αc2/4) otherwise.

5: v ← βv +ATr
6: x← x+ αv
7: r ← r − αAv
8: end for

3.3.3 Approximate rank-deficiency

Our theory above assumes exact arithmetic. For rank-deficient problems stored with limited preci-

sion, it is common for A to be approximately but not exactly rank-deficient, i.e., to have small but

not exactly zero singular values. A common practice to handle approximate rank-deficiency is to set

a threshold and treat as zero any singular values smaller than the threshold. (This is called truncated

SVD.) In LAPACK, the threshold is the largest singular value of A multiplied by a user-supplied

constant, called RCOND. Let A ∈ Rm×n with m� n be an approximately rank-k matrix that can

be written as Ak + E, where k < n and Ak is the best rank-k approximation to A. For simplicity,

we assume that a constant c > 0 is known such that σ1 ≥ σk � cσ1 � σk+1 = ‖E‖2. If we take

the truncated SVD approach, c can be used to determine the effective rank of A, and the solution

becomes x∗ = A†kb. In LSRN, we can perform a truncated SVD on Ã = GA, where the constant c

is used to determine the effective rank of Ã, denoted by k̃. The rest of the algorithm remains the

same. In this section, we present a sufficient condition for k̃ = k and analyze the approximation

error of x̂, the solution from LSRN. For simplicity, we assume exact arithmetic and exact solving of



CHAPTER 3. `2 REGRESSION 40

the preconditioned system in our analysis. Recall that in LSRN we have

Ã = GA = GAk +GE,

where G ∈ Rs×m is a random normal projection. If γ = s/n is sufficiently large, e.g., 2.0, and n is

not too small, Lemma 10 implies that there exist 0 < q1 < q2 such that, with high probability, G

has full rank and

q1‖Gw‖2 ≤ ‖w‖2 ≤ q2‖Gw‖2, ∀w ∈ range(A). (3.7)

Theorem 10. If (3.7) holds, σk+1 < cσ1q1/q2, and σk > cσ1(1 + q2/q1), we have k̃ = k, so that

LSRN determines the effective rank of A correctly, and

‖x̂− x∗‖2 ≤
6‖b‖2

(σkq1/q2)(σkq1/q2 − σk+1)
· σk+1.

Proof. (3.7) implies

σ1(Ã) = max
‖x‖2≤1

‖Ãx‖2 ≤ max
‖x‖2≤1

‖Ax‖2/q1 ≤ σ1/q1, (3.8)

σ1(Ã) = max
‖x‖2≤1

‖Ãx‖2 ≥ max
‖x‖2≤1

‖Ax‖2/q2 ≥ σ1/q2, (3.9)

and hence σ1/q2 ≤ σ1(Ã) ≤ σ1/q1. Similarly, we have ‖GE‖2 = σ1(GE) ≤ σk+1/q1. Let Ãk be Ã’s

best rank-k approximation and ŨkΣ̃kṼ
T
k be its SVD. We have

σk+1(Ã) = ‖Ãk − Ã‖2 ≤ ‖GAk − Ã‖2 = ‖GE‖2 ≤ σk+1/q1. (3.10)

Note that range(Ak) ⊂ range(A). We have

σk(GAk) = min
v∈range((GAk)T ),‖v‖2=1

‖GAkv‖2 ≥ min
v∈range(ATk ),‖v‖2=1

‖Akv‖2/q2 = σk/q2,

where range((GAk)T ) = range(ATk ) because G has full rank. Therefore,

σk(Ã) = σk(Ãk) ≥ σk(GAk)− ‖Ãk −GAk‖2 ≥ σk/q2 − σk+1/q1. (3.11)

Using the assumptions σk+1 < cσ1q1/q2 and σk > cσ1(1 + q2/q1), and the bounds (3.8)–(3.11), we

get

cσ1(Ã) ≥ cσ1/q2 > σk+1/q1 ≥ σk+1(Ã),

and

σk(Ã) ≥ σk/q2 − σk+1/q1 > σk/q2 − cσ1/q2 ≥ cσ1/q1 ≥ cσ1(Ã).

Thus if we use c to determine the effective rank of Ã, the result would be k, the same as the effective

rank of A.



CHAPTER 3. `2 REGRESSION 41

Following the LSRN algorithm, the preconditioner matrix is N = ṼkΣ̃−1
k . Note that AN has full

rank because k = rank(N) ≥ rank(AN) ≥ rank(GAN) = rank(Ũk) = k. Therefore, LSRN’s solution

can be written as

x̂ = N(AN)†b = (ANN†)†b = (AṼkṼ
T
k )†b.

For the matrix AṼkṼ
T
k , we have the following bound on its k-th singular value:

σk(AṼkṼ
T
k ) = min

v∈range(Ṽk),‖v‖2=1
‖AṼkṼ Tk v‖2 ≥ q1 min

v∈range(ÃTk ),‖v‖2=1
‖GAṼkṼ Tk v‖2

≥ q1 min
v∈range(ÃTk ),‖v‖2=1

‖Ãkv‖2 = σkq1/q2 − σk+1.

The distance between Ak and AṼkṼ
T
k is also bounded:

‖Ak −AṼkṼk
T ‖2 ≤ q2‖GAk − ÃṼkṼk

T ‖2 ≤ q2

(
‖GAk − Ã‖2 + ‖Ã− ÃṼkṼ Tk ‖2

)
≤ 2q2‖GAk − Ã‖2 ≤ 2q2‖GE‖2 ≤ 2σk+1q2/q1.

For perturbation of a pseudoinverse, Wedin [69] shows that if rank(A) = rank(B),

‖B† −A†‖2 ≤ 3‖A†‖2‖B†‖2‖A−B‖2.

Applying this result, we get

‖x∗ − x̂‖2 ≤ ‖A†k − (AṼkṼ
T
k )†‖2‖b‖2 ≤ 3‖A†k‖2‖(AṼkṼ

T
k )†‖2‖Ak −AṼkṼ Tk ‖2‖b‖2

≤ 6‖b‖2
(σkq1/q2)(σkq1/q2 − σk+1)

· σk+1.

Thus, x̂ is a good approximation to x∗ if σk+1 = ‖E‖2 is sufficiently small.

Theorem 10 suggests that, to correctly determine the effective rank, we need σk and σk+1 well-

separated with respect to the distortion q2/q1 introduced by G. For LSRN, q2/q1 is bounded by a

small constant with high probability if we choose the oversampling factor γ to be a moderately large

constant, e.g., 2. We note that the distortion of the random normal projection used in Coakley

et al. [22] is around 1000, which reduces the reliability of determining the effective rank of an

approximately rank-deficient problem. We verify this claim empirically in section 3.5.9.

Remark Theorem 10 assumes that G has full rank and subspace embedding property (3.7). It

is not necessary for G to be a random normal projection matrix. The result also applies to other

random projection matrices satisfying this condition, e.g., the randomized discrete cosine transform

used in Blendenpik [7].



CHAPTER 3. `2 REGRESSION 42

3.3.4 Running time complexity

In this section, we discuss the running time complexity of LSRN. Let’s first calculate the computa-

tional cost of LSRN (Algorithm 2) in terms of floating-point operations (flops). Note that we need

only Σ̃ and Ṽ but not Ũ or a full SVD of Ã in step 4 of Algorithm 2. In step 6, we assume that the

dominant cost per iteration is the cost of applying AN and (AN)T. Then the total cost is given by

sm× flops(randn) for generating G

+ s× flops(ATu) for computing Ã

+ 2sn2 + 11n3 for computing Σ̃ and Ṽ [33, p. 254]

+ Niter × (flops(Av) + flops(ATu) + 4nr) for solving min
y
‖ANy − b‖2,

where lower-order terms are ignored. Here, flops(randn) is the average flop count to generate a sample

from the standard normal distribution, while flops(Av) and flops(ATu) are the flop counts for the

respective matrix-vector products. If A is a dense matrix, then we have flops(Av) = flops(ATu) =

2mn. Hence, the total cost becomes

flops(LSRNdense) = smflops(randn) + 2smn+ 2sn2 + 11n3 +Niter × (4mn+ 4nr).

Comparing this with the SVD approach, which uses 2mn2 + 11n3 flops, we find LSRN requires more

flops, even if we only consider computing Ã and its SVD. However, the actual running time is not

fully characterized by the number of flops. It is also affected by how efficiently the computers can

do the computation. We empirically compare the running time in section 3.5. If A is a sparse

matrix, we generally have flops(Av) and flops(ATu) of order O(m). In this case, LSRN should run

considerably faster than the SVD approach. Finally, if A is an operator, it is hard to apply SVD,

while LSRN still works without any modification. If we set γ = 2 and ε = 10−14, we know Niter ≈
100 by Theorem 9 and hence LSRN needs approximately 2n + 200 matrix-vector multiplications.

Note that the randomized LS solver proposed by Coakley et al. [22] requires 3n + 6 matrix-vector

multiplications. Thus, it requires more matrix-vector multiplications than LSRN when n is beyond a

few hundred.

One advantage of LSRN is that the stages of generating G and computing Ã = GA are embar-

rassingly parallel. Thus, it is easy to implement LSRN in parallel. For example, on a shared-memory

machine using p cores, the total running time decreases to

Tmt,p
LSRN = Trandn/p+ Tmult/p+ Tmt,p

svd + Titer/p, (3.12)

where Trandn, Tmult, and Titer are the running times for the respective stages if LSRN runs on a single

core, Tmt,p
svd is the running time of SVD using p cores, and communication cost among threads is

ignored. Hence, multi-threaded LSRN has very good scalability with near-linear speedup on strongly

over- or under-determined problems.

Alternatively, let us consider a cluster of size p using MPI, where each node stores a portion



CHAPTER 3. `2 REGRESSION 43

of rows of A (with m � n). Each node can generate random samples and do the multiplication

independently, and then an MPI Reduce operation is needed to obtain Ã. Since n is small, the

SVD of Ã and the preconditioner N are computed on a single node and distributed to all the other

nodes via an MPI Bcast operation. If the CS method is chosen as the iterative solver, we need one

MPI Allreduce operation per iteration in order to apply AT. Note that all the MPI operations that

LSRN uses are collective. If we assume the cluster is homogeneous and has perfect load balancing,

the time complexity to perform a collective operation should be O(log p). Hence the total running

time becomes

Tmpi,p
LSRN = Trandn/p+ Tmult/p+ Tsvd + Titer/p+ (C1 + C2Niter)O(log p), (3.13)

where C1 corresponds to the cost of computing Ã and broadcasting N , and C2 corresponds to the

cost of applying AT at each iteration. Therefore, the MPI implementation of LSRN still has good

scalability as long as Tsvd is not dominant, i.e., as long as Ã is not too big. Typical values of n (or

m for under-determined problems) in our empirical evaluations are around 1000, and thus this is

the case.

3.4 Tikhonov regularization

We point out that it is easy to extend LSRN to handle certain types of Tikhonov regularization, also

known as ridge regression. Recall that Tikhonov regularization involves solving the problem

minimize
1

2
‖Ax− b‖22 +

1

2
‖Wx‖22, (3.14)

where W ∈ Rn×n controls the regularization term. In many cases, W is chosen as λIn for some

value of a regularization parameter λ > 0. It is easy to see that (3.14) is equivalent to the following

LS problem, without any regularization:

minimize
1

2

∥∥∥∥∥
(
A

W

)
x−

(
b

0

)∥∥∥∥∥
2

2

. (3.15)

This is an over-determined problem of size (m+n)×n. If m� n, then we certainly have m+n� n.

Therefore, if m � n, we can directly apply LSRN to (3.15) in order to solve (3.14). On the other

hand, if m � n, then although (3.15) is still over-determined, it is “nearly square” in the sense

that m + n is only slightly larger than n. In this regime, random sampling methods and random

projection methods like LSRN do not perform well. In order to deal with this regime, note that (3.14)

is equivalent to

minimize
1

2
‖r‖22 +

1

2
‖Wx‖22

subject to Ax+ r = b,



CHAPTER 3. `2 REGRESSION 44

where r = b− Ax is the residual vector. (Note that we use r to denote the matrix rank in a scalar

context and the residual vector in a vector context.) By introducing z = Wx and assuming that W

is non-singular, we can re-write the above problem as

minimize
1

2

∥∥∥∥∥
(
z

r

)∥∥∥∥∥
2

2

subject to
(
AW−1 Im

)(z
r

)
= b,

i.e., as computing the min-length solution to

(
AW−1 Im

)(z
r

)
= b. (3.16)

Note that (3.16) is an under-determined problem of size m × (m + n). Hence, if m � n, we have

m � m + n and we can use LSRN to compute the min-length solution to (3.16), denoted by
(
z∗

r∗

)
.

The solution to the original problem (3.14) is then given by x∗ = W−1z∗. Here, we assume that

W−1 is easy to apply, as is the case when W = λIn, so that AW−1 can be treated as an operator.

The equivalence between (3.14) and (3.16) was first established by Herman, Lent, and Hurwitz [37].

In most applications of regression analysis, the amount of regularization, e.g., the optimal reg-

ularization parameter, is unknown and thus determined by cross-validation. This requires solving

a sequence of LS problems where only W differs. For over-determined problems, we only need to

perform a random normal projection on A once. The marginal cost to solve for each W is the

following: a random normal projection on W , an SVD of size dγne × n, and a predictable number

of iterations. Similar results hold for under-determined problems when each W is a multiple of the

identity matrix.

3.5 Numerical experiments

We implemented our LS solver LSRN and compared it with competing solvers: DGELSD/DGELSY

from LAPACK [5], spqr solve (SPQR for short) from SuiteSparseQR [26, 27], and Blendenpik [7].

Table 3.1 summarizes the properties of those solvers. It is impossible to compare LSRN with all the

LS solvers. We choose solvers from LAPACK and SuiteSparseQR because they are the de facto

standards for dense and sparse problems, respectively. DGELSD takes the SVD approach, which

is accurate and robust to rank deficiency. DGELSY takes the orthogonal factorization approach,

which should be almost as robust as the SVD approach but less expensive. SPQR uses multifrontal

sparse QR factorization. With the “min2norm” option, it computes min-length solutions to full-rank

under-determined LS problems. However, it doesn’t compute min-length solutions to rank-deficient

problems. Note that the widely used MATLAB’s backslash calls LAPACK for dense problems and



CHAPTER 3. `2 REGRESSION 45

Table 3.1: LS solvers and their properties.

solver
min-len solution to taking advantage of

under-det? rank-def? sparse A operator A
DGELSD/DGELSY yes yes no no

SPQR yes no yes no
Blendenpik yes no no no

LSRN yes yes yes yes

SuiteSparseQR for sparse problems1. But it doesn’t call the functions that return min-length solu-

tions to rank-deficient or under-determined systems. We choose Blendenpik out of several recently

proposed randomized LS solvers, e.g., [62] and [22], because a high-performance implementation is

publicly available and it is easy to adapt it to use multi-threads. Blendenpik assumes that A has

full rank.

3.5.1 Implementation and system setup

The experiments were performed on either a local shared-memory machine or a virtual cluster

hosted on Amazon’s Elastic Compute Cloud (EC2). The shared-memory machine has 12 Intel

Xeon CPU cores at clock rate 2GHz with 128GB RAM. The virtual cluster consists of 20 m1.large

instances configured by a third-party tool called StarCluster2. An m1.large instance has 2 virtual

cores with 2 EC2 Compute Units3 each. To attain top performance on the shared-memory machine,

we implemented a multi-threaded version of LSRN in C, and to make our solver general enough

to handle large problems on clusters, we also implemented an MPI version of LSRN in Python

with NumPy, SciPy, and mpi4py. Both packages are available for download4. We use the multi-

threaded implementation to compare LSRN with other LS solvers and use the MPI implementation

to explore scalability and to compare iterative solvers under a cluster environment. To generate

values from the standard normal distribution, we adopted the code from Marsaglia and Tsang [48]

and modified it to use threads; this can generate a billion samples in less than two seconds on the

shared-memory machine. We compiled SuiteSparseQR with Intel Threading Building Blocks (TBB)

enabled, as suggested by its author. We also modified Blendenpik to call multi-threaded FFTW

routines. Blendenpik’s default settings were used. All the solvers were linked against the BLAS

and LAPACK libraries shipped with MATLAB R2011b. So, in general, this is a fair setup because

all the solvers can use multi-threading automatically and are linked against the same BLAS and

LAPACK libraries. The running times were measured in wall-clock times.

1As stated by Tim Davis, “SuiteSparseQR is now QR in MATLAB 7.9 and x = A\b when A is sparse and
rectangular.” http://www.cise.ufl.edu/research/sparse/SPQR/

2http://web.mit.edu/stardev/cluster/
3“One EC2 Compute Unit provides the equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon

processor.” http://aws.amazon.com/ec2/faqs/
4http://www.stanford.edu/group/SOL/software/lsrn.html

http://www.cise.ufl.edu/research/sparse/SPQR/
http://web.mit.edu/stardev/cluster/
http://aws.amazon.com/ec2/faqs/
http://www.stanford.edu/group/SOL/software/lsrn.html


CHAPTER 3. `2 REGRESSION 46

10
2

10
3

10
4

10
5

10
6

10
7

10
8

2

4

6

8

10

12

14

16

κ
+
(A)

κ(
A

N
)

 

 

r =  800, s = 1500
r =  800, s = 2000
r =  800, s = 4000
r = 1000, s = 1500
r = 1000, s = 2000
r = 1000, s = 4000

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
20

40

60

80

100

120

140

160

180

r/s

nu
m

be
r 

of
 L

S
Q

R
 it

er
at

io
ns

 

 

κ
+
(A) = 100

κ
+
(A) = 1000

κ
+
(A) = 10000

κ
+
(A) = 100000

κ
+
(A) = 1000000

κ
+
(A) = 10000000

κ
+
(A) = 100000000

theoretical upper bound

Figure 3.1: Left: κ+(A) vs. κ(AN) for different choices of r and s. A ∈ R104×103

is randomly
generated with rank r ∈ {800, 1000} and effective condition number κ+(A) ∈ {102, 103, . . . , 108}.
For each (r, s) pair, we take the largest value of κ(AN) in 10 independent runs for each κ+(A) and
plot them using circle marks. The estimate (1 +

√
r/s)/(1 −

√
r/s) is drawn using a solid line for

each (r, s) pair. Right: number of LSQR iterations vs. r/s. The number of LSQR iterations is
merely a function of r/s, independent of the condition number of the original system.

3.5.2 κ(AN) and number of iterations

Recall that Theorem 8 states that κ(AN), the condition number of the preconditioned system, is

roughly bounded by (1 +
√
r/s)/(1 −

√
r/s) when s is large enough such that we can ignore α in

practice. To verify this statement, we generate random matrices of size 104 × 103 with condition

numbers ranged from 102 to 108. The left figure in Figure 3.1 compares κ(AN) with κ+(A), the

effective condition number of A, under different choices of s and r. We take the largest value of κ(AN)

in 10 independent runs as the κ(AN) in the plot. For each pair of s and r, the corresponding estimate

(1+
√
r/s)/(1−

√
r/s) is drawn in a solid line of the same color. We see that (1+

√
r/s)/(1−

√
r/s) is

indeed an accurate estimate of the upper bound on κ(AN). Moreover, κ(AN) is not only independent

of κ+(A), but it is also quite small. For example, we have (1 +
√
r/s)/(1 −

√
r/s) < 6 if s > 2r,

and hence we can expect super fast convergence of CG-like methods. Based on Theorem 9, the

number of iterations should be less than (log ε − log 2)/ log
√
r/s, where ε is a given tolerance. In

order to match the accuracy of direct solvers, we set ε = 10−14. The right figure in Figure 3.1

shows the number of LSQR iterations for different combinations of r/s and κ+(A). Again, we take

the largest iteration number in 10 independent runs for each pair of r/s and κ+(A). We also draw

the theoretical upper bound (log ε − log 2)/ log
√
r/s in a dotted line. We see that the number of

iterations is basically a function of r/s, independent of κ+(A), and the theoretical upper bound is

very good in practice. This confirms that the number of iterations is fully predictable given γ.



CHAPTER 3. `2 REGRESSION 47

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

5

10

15

20

25

s/n

tim
e 

(s
ec

)

 

 

all
randn
svd
iter
comm
mult

Figure 3.2: The overall running time of LSRN and the running time of each LSRN stage with different
oversampling factor γ for a randomly generated problem of size 105 × 103. For this particular
problem, the optimal γ that minimizes the overall running time lies in [1.8, 2.2].

3.5.3 Tuning the oversampling factor γ

Once we set the tolerance and maximum number of iterations, there is only one parameter left:

the oversampling factor γ. To demonstrate the impact of γ, we fix problem size to 105 × 103 and

condition number to 106, set the tolerance to 10−14, and then solve the problem with γ ranged from

1.2 to 3. Figure 3.2 illustrates how γ affects the running times of LSRN’s stages: randn for generating

random numbers, mult for computing Ã = GA, svd for computing Σ̃ and Ṽ from Ã, and iter for

LSQR. We see that, the running times of randn, mult, and svd increase linearly as γ increases, while

iter time decreases. Therefore there exists an optimal choice of γ. For this particular problem,

we should choose γ between 1.8 and 2.2. We experimented with various LS problems. The best

choice of γ ranges from 1.6 to 2.5, depending on the type and the size of the problem. We also

note that, when γ is given, the running time of the iteration stage is fully predictable. Thus we can

initialize LSRN by measuring randn/sec and flops/sec for matrix-vector multiplication, matrix-matrix

multiplication, and SVD, and then determine the best value of γ by minimizing the total running

time (3.13). For simplicity, we set γ = 2.0 in all later experiments; although this is not the optimal

setting for all cases, it is always a reasonable choice.

3.5.4 Solution accuracy

Under the default settings γ = 2.0 and ε = 10−14, we test LSRN’s solution accuracy on three types

of LS problems: full-rank, rank-deficient, and approximately rank-deficient. LSRN uses the common

approach to determine the effective rank of Ã, whose singular values smaller than RCOND× ‖Ã‖2
are treated as zeros, where RCOND is a user input. A is generated by constructing its SVD. For

full-rank problems, we use the following Matlab script:

U = orth (randn (m, n ) ) ; S = diag ( l inspace (1 , 1/c , n ) ) ; V = orth (randn (n , n ) ) ;



CHAPTER 3. `2 REGRESSION 48

‖x̂‖2−‖x∗‖2
c‖x∗‖2

‖Ax̂−b‖2−‖Ax∗−b‖2
c‖Ax∗−b‖2

‖AT (Ax∗−b)‖2
c

‖AT (Ax̂−b)‖2
c

full-rank -8.5e-14 0.0 3.6e-18 2.5e-17
rank-def -5.3e-14 0.0 8.1e-18 1.5e-17

approx. rank-def 3.1e-12 -8.6e-19 2.0e-17 2.9e-17

Table 3.2: Comparing LSRN’s solution accuracy to DGELSD. DGELSD’s solution is denoted by
x∗, and LSRN’s denoted by x̂. The metrics are computed using quad precision. We show the
average values of those metrics from 50 independent runs. LSRN should be accurate enough for most
applications.

A = U∗S∗V’ ; x = randn (n , 1 ) ;

b = A∗x ; e r r = randn (m, 1 ) ; b = b+0.25∗norm(b)/norm( e r r )∗ e r r ;

For rank-deficient problems, we use:

U = orth (randn (m, r ) ) ; S = diag ( l inspace (1 , 1/c , r ) ) ; V = orth (randn (n , r ) ) ;

The script for approximately rank-deficient problems is the same as the full-rank one except that

S = diag ( [ l inspace (1 , 1/c , r ) , 1e−9 ∗ ones (1 , n−r ) ] ) ;

We choose m = 105, n = 100, r = 80, and c = 106. DGELSD is used as a reference solver with

RCOND set as 10−8. The metrics are relative differences in ‖x‖2 and ‖Ax−b‖2, and ‖AT (Ax−b)‖2,

all scaled by 1/c and computed using quad precision. Table 3.2 lists the average values of those

metrics from 50 independent runs. We see that LSRN is accurate enough to meet the accuracy

requirement of most applications.

3.5.5 Dense least squares

Though LSRN is not designed for dense problems, it is competitive with DGELSD/DGELSY and

Blendenpik on large-scale strongly over- or under-determined LS problems. Figure 3.3 compares the

running times of LSRN and competing solvers on randomly generated full-rank LS problems. We

use the script from section 3.5.4 to generate test problems. The results show that Blendenpik is

the overall winner. The follow-ups are LSRN and DGELSD. We find that the SVD-based DGELSD

actually runs much faster than the QR-based DGELSY on strongly over- or under-determined sys-

tems on the shared-memory machine. It may be because of better use of multi-threaded BLAS,

but we don’t have a definitive explanation. The performance of LAPACK’s solvers decreases signifi-

cantly for under-determined problems. We monitored CPU usage and found that they couldn’t fully

use all the CPU cores, i.e., they couldn’t effectively call multi-threaded BLAS. The performance of

Blendenpik also decreases, while that of LSRN does not change much, making LSRN’s performance

very close to Blendenpik’s.

Remark The performance of DGELSD/DGELSY varies greatly, depending on the LAPACK im-

plementation. When we use the LAPACK library shipped with MATLAB R2010b, The DGELSD

from it takes near 150 seconds to solve a 106×103 LS problem, which is slower than LSRN. However,

after we switch to MATLAB R2011b, it runs slightly faster than LSRN does on the same problem.



CHAPTER 3. `2 REGRESSION 49

10
4

10
5

10
6

10
0

10
1

10
2

10
3

m

tim
e 

(s
ec

)

 

 

DGELSY
LSRN
DGELSD
Blendenpik

10
4

10
5

10
6

10
0

10
1

10
2

10
3

n

tim
e 

(s
ec

)

 

 

DGELSY
DGELSD
LSRN
Blendenpik

Figure 3.3: Running times on m× 1000 dense over-determined problems with full rank (left) and on
1000×n dense under-determined problems with full rank (right). On the problem of size 106× 103,
we have Blendenpik > DGELSD > LSRN > DGELSY in terms of speed. On under-determined
problems, LAPACK’s performance decreases significantly compared with the over-determined cases.
Blendenpik’s performance decreases as well, while LSRN doesn’t change much.

LSRN is also capable of solving rank-deficient problems, and in fact it takes advantage of any

rank-deficiency (in that it finds a solution in fewer iterations). Figure 3.4 shows the results on over-

and under-determined rank-deficient problems generated the same way as in previous experiments,

except that we set r = 800. Blendenpik is not included because it is not designed to handle rank

deficiency. DGELSY/DGELSD remains the same speed on over-determined problems as in full-rank

cases, and runs slightly faster on under-determined problems. On the problem of size 106 × 103,

DGELSD spends 99.5 seconds, almost the same as in the full-rank case, while LSRN’s running times

reduce to 95.0 seconds, from 109 seconds on its full-rank counterpart.

We see that, for strongly over- or under-determined problems, DGELSD is the fastest and most

reliable routine among the LS solvers provided by LAPACK. However, it (or any other LAPACK

solver) runs much slower on under-determined problems than on over-determined problems, while

LSRN works symmetrically on both cases. Blendenpik is the fastest dense least squares solver in our

tests. Though it is not designed for solving rank-deficient problems, Blendenpik should be modi-

fiable to handle such problems following Theorem 6. We also note that Blendenpik’s performance

depends on the distribution of the row norms of U . We generate test problems randomly so that

the row norms of U are homogeneous, which is ideal for Blendenpik. When the row norms of U are

heterogeneous, Blendenpik’s performance may drop. See Avron, Maymounkov, and Toledo [7] for a

more detailed analysis.

3.5.6 Sparse least squares

In LSRN, A is only involved in the computation of matrix-vector and matrix-matrix multiplications.

Therefore LSRN accelerates automatically when A is sparse, without exploring A’s sparsity pattern.



CHAPTER 3. `2 REGRESSION 50

10
4

10
5

10
6

10
−1

10
0

10
1

10
2

10
3

m

tim
e 

(s
ec

)

 

 

DGELSY
DGELSD
LSRN

10
4

10
5

10
6

10
0

10
1

10
2

10
3

n

tim
e 

(s
ec

)

 

 

DGELSY
DGELSD
LSRN

Figure 3.4: Running times on m × 1000 dense over-determined problems with rank 800 (left) and
on 1000× n dense under-determined problems with rank 800 (right). LSRN takes advantage of rank
deficiency. We have LSRN > DGSLS/DGELSD > DGELSY in terms of speed.

SPQR requires explicit knowledge of A’s sparsity pattern to obtain a sparse QR factorization. LA-

PACK does not have any direct sparse LS solver, and Blendenpik utilizes fast transforms, which

assume that the input matrix is dense.

We generated sparse LS problems using MATLAB’s “sprandn” function with density 0.01 and

condition number 106. All problems have full rank. Figure 3.5 shows the results. DGELS-

D/DGELSY and Blendenpik basically perform the same as in the dense case. For over-determined

problems, we see that SPQR handles sparse problems very well when m < 105. As m goes larger, it

becomes harder to analyze A’s sparsity pattern in order to create a sparse QR factorization. SPQR

runs even longer than DGELSD when m ≥ 3× 105. LSRN becomes the fastest solver among the five

when m ≥ 105. It takes only 27.4 seconds on the over-determined problem of size 106 × 103. On

large under-determined problems, LSRN still leads by a huge margin.

LSRN makes no distinction between dense and sparse problems. The speedup on sparse problems

is due to faster matrix-vector and matrix-matrix multiplications. Hence, although no test was

performed, we expect a similar speedup on fast linear operators as well. Also note that, in the

multi-threaded implementation of LSRN, we use a näıve multi-threaded routine for sparse matrix-

vector and matrix-matrix multiplications, which is far from optimized and thus leaves room for

improvement.

3.5.7 Real-world problems

In this section, we report results on some real-world large data problems. The problems are sum-

marized in Table 3.3, along with running times. DGELSY is not included in this test due to its

inferiority to DGELSD.

landmark and rail4284 are from the University of Florida Sparse Matrix Collection [28]. landmark



CHAPTER 3. `2 REGRESSION 51

10
4

10
5

10
6

10
−1

10
0

10
1

10
2

10
3

m

tim
e 

(s
ec

)

 

 

DGELSY
SPQR
DGELSD
Blendenpik
LSRN

10
4

10
5

10
6

10
−1

10
0

10
1

10
2

10
3

10
4

n

tim
e 

(s
ec

)

 

 

DGELSY
DGELSD
SPQR
Blendenpik
LSRN

Figure 3.5: Running times on m × 1000 sparse over-determined problems with full rank (left) and
on 1000 × n sparse under-determined problems with full rank (right). DGELSD/DGELSY and
Blendenpik perform almost the same as in the dense case. SPQR performs very well for small and
medium-scaled problems, but it runs slower than the dense solver Blendenpik on the problem of size
106 × 103. LSRN starts to lead as m goes above 105, and it leads by a huge margin on the largest
one. The under-determined case is very similar to its over-determined counterpart.

Table 3.3: Real-world problems and corresponding running times in seconds. DGELSD doesn’t
take advantage of sparsity, with its running time determined by the problem size. Though SPQR
may not output min-length solutions to rank-deficient problems, we still report its running times
(marked with “ ∗”). Blendenpik either doesn’t apply to rank-deficient problems or runs out of
memory (OOM). LSRN’s running time is mainly determined by the problem size and the sparsity.

matrix m n nnz rank cond DGELSD SPQR Blendenpik LSRN

landmark 71952 2704 1.15e6 2671 1.0e8 18.64 4.920∗ - 17.89
rail4284 4284 1.1e6 1.1e7 full 400.0 > 3600 505.9 OOM 146.1

tnimg 1 951 1e6 2.1e7 925 - 510.3 72.14∗ - 41.08
tnimg 2 1000 2e6 4.2e7 981 - 1022 168.6∗ - 82.63
tnimg 3 1018 3e6 6.3e7 1016 - 1628 271.0∗ - 124.5
tnimg 4 1019 4e6 8.4e7 1018 - 2311 371.3∗ - 163.9
tnimg 5 1023 5e6 1.1e8 full - 3105 493.2 OOM 197.6



CHAPTER 3. `2 REGRESSION 52

originated from a rank-deficient LS problem. rail4284 has full rank and originated from a linear

programming problem on Italian railways. Both matrices are very sparse and have structured pat-

terns. Though SPQR runs extremely fast on landmark, it doesn’t guarantee to return the min-length

solution. Blendenpik is not designed to handle the rank-deficient landmark, and it unfortunately

runs out of memory (OOM) on rail4284. LSRN takes 17.55 seconds on landmark and 136.0 seconds

on rail4284. DGELSD is slightly slower than LSRN on landmark and much slower on rail4284.

tnimg is generated from the TinyImages collection [66], which provides 80 million color images

of size 32× 32. For each image, we first convert it to grayscale, compute its two-dimensional DCT

(Discrete Cosine Transform), and then only keep the top 2% largest coefficients in magnitude. This

gives a sparse matrix of size 1024 × 8e7 where each column has 20 or 21 nonzero elements. Note

that tnimg doesn’t have apparent structured pattern. Since the whole matrix is too big, we work

on submatrices of different sizes. tnimg i is the submatrix consisting of the first 106 × i columns of

the whole matrix for i = 1, . . . , 80, where empty rows are removed. The running times of LSRN are

approximately linear in n. Both DGELSD and SPQR are slower than LSRN on the tnimg problems.

More importantly, their running times show that DGELSD and SPQR do not have linear scalability.

Blendenpik either doesn’t apply to the rank-deficient cases or runs OOM.

We see that, though both methods taking advantage of sparsity, SPQR relies heavily on the

sparsity pattern, and its performance is unpredictable until the sparsity pattern is analyzed, while

LSRN doesn’t rely on the sparsity pattern and always delivers predictable performance and, moreover,

the min-length solution.

3.5.8 Scalability and choice of iterative solvers on clusters

In this section, we move to the Amazon EC2 cluster. The goals are to demonstrate that (1) LSRN

scales well on clusters, and (2) the CS method is preferred to LSQR on clusters with high com-

munication cost. The test problems are submatrices of the tnimg matrix in the previous section:

tnimg 4, tnimg 10, tnimg 20, and tnimg 40, solved with 4, 10, 20, and 40 cores respectively. Each

process stores a submatrix of size 1024 × 1e6. Table 3.4 shows the results, averaged over 5 runs.

Ideally, from the complexity analysis (3.13), when we double n and double the number of cores, the

increase in running time should be a constant if the cluster is homogeneous and has perfect load

balancing (which we have observed is not true on Amazon EC2). For LSRN with CS, from tnimg 10

to tnimg 20 the running time increases 27.6 seconds, and from tnimg 20 to tnimg 40 the running

time increases 34.7 seconds. We believe the difference between the time increases is caused by the

heterogeneity of the cluster, because Amazon EC2 doesn’t guarantee the connection speed among

nodes. From tnimg 4 to tnimg 40, the problem scale is enlarged by a factor of 10 while the running

time only increases by a factor of 50%. The result still demonstrates LSRN’s good scalability. We also

compare the performance of LSQR and CS as the iterative solvers in LSRN. For all problems LSQR

converges in 84 iterations and CS converges in 106 iterations. However, LSQR is slower than CS.

The communication cost saved by CS is significant on those tests. As a result, we recommend CS as

the default LSRN iterative solver for cluster environments. Note that to reduce the communication

cost on a cluster, we could also consider increasing γ to reduce the number of iterations.



CHAPTER 3. `2 REGRESSION 53

Table 3.4: Test problems on the Amazon EC2 cluster and corresponding running times in seconds.
When we enlarge the problem scale by a factor of 10 and increase the number of cores accordingly,
the running time only increases by a factor of 50%. It shows LSRN’s good scalability. Though the
CS method takes more iterations, it is faster than LSQR by saving communication cost.

solver Ncores matrix m n nnz Niter Titer Ttotal

LSRN w/ CS
4 tnimg 4 1024 4e6 8.4e7

106 34.03 170.4
LSRN w/ LSQR 84 41.14 178.6
LSRN w/ CS

10 tnimg 10 1024 1e7 2.1e8
106 50.37 193.3

LSRN w/ LSQR 84 68.72 211.6
LSRN w/ CS

20 tnimg 20 1024 2e7 4.2e8
106 73.73 220.9

LSRN w/ LSQR 84 102.3 249.0
LSRN w/ CS

40 tnimg 40 1024 4e7 8.4e8
106 102.5 255.6

LSRN w/ LSQR 84 137.2 290.2

n = 1000 n = 2000 n = 3000 n = 4000
CRT11 98.0 327.7 672.3 1147.9
LSRN 101.1 293.1 594.0 952.2

Table 3.5: Running times (in seconds) on full-rank dense over-determined problems of size 106 × n,
where n ranges from 1000 to 4000. LSRN is slightly slower than CRT11 when n = 1000 and becomes
faster when n = 2000, 3000, and 4000, which is consistent with our theoretical analysis.

3.5.9 Comparison with Coakley et al.

Coakley et al. [22] introduced a least squares solver, referred to as CRT11, based on preconditioned

normal equation, where the preconditioning matrix is computed via a random normal projection G,

with G ∈ R(n+4)×m. We implemented a multi-threaded version of CRT11 that shares the code base

used by LSRN and uses O(m + n2) RAM by computing in blocks. In this section, we report some

comparison results between CRT11 and LSRN.

It is easy (and we omit details) to derive the time complexity of CRT11, which requires applying

A or AT 3n+ 6 times, while from section 3.3.4 we know that LSRN needs roughly 2n+ 200 matrix-

vector multiplications under the default setting. So LSRN is asymptotically faster than CRT11 in

theory. We compare the running times of LSRN and CRT11 on dense strongly over-determined least

square problems, where m is fixed at 106 while n ranges from 1000 to 3000, and A has full rank.

The test problems are generated the same way as in section 3.5.5. We list the running times in

Table 3.5, where we see that LSRN is slightly slower than CRT11 when n = 1000 and becomes faster

when n = 2000, 3000, and 4000.

Hardware limitations prevented testing larger problems. We believe that the difference should

be much clearer if A is an expensive operator, for example, if applying A or AT requires solving a

partial differential equation. Based on the evaluation result, we would recommend CRT11 over LSRN

if n ≤ 1000, and LSRN over CRT11 otherwise.

In [22], the authors showed that, unlike the original normal equation approach, CRT11 is very

reliable on a broad range of matrices because the condition number of the preconditioned system



CHAPTER 3. `2 REGRESSION 54

10 20 30 40 50 60 70 80 90 100
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

i

σ
i

 

 

σ(A)
σ(GA) (LSRN)
σ(GA) (CRT11)
LSRN cutoff value
CRT11 cutoff value

45 46 47 48 49 50 51 52

10
−7

10
−6

i

σ
i

 

 

σ(A)
σ(GA) (LSRN)
σ(GA) (CRT11)
LSRN cutoff value
CRT11 cutoff value

Figure 3.6: Left: Comparison of the spectrum of A and GA for both CRT11 and LSRN (rescaled by
1/
√
s for better alignment, where s = n+ 4 for CRT11 and s = 2n for LSRN) and the cutoff values in

determining the effective rank of A. Right: Zoomed in to show that the effective rank estimated by
CRT11 is 47, while LSRN outputs the correct effect rank, which is 50.

is not very large (≈ 1000). This is true for full-rank matrices. However, the authors did not show

how CRT11 works on approximately rank-deficient problems. Based on our analysis in section 3.3.3,

we need σk and σk+1 well-separated with respect to the distortion introduced by G in order to

determine the effective rank correctly. In LSRN we choose G ∈ R2n×m, which leads to a small

constant distortion (with high probability), while in CRT11 we have G ∈ R(n+4)×m, which leads to

a relatively large distortion. It suggests CRT11 might be less reliable than LSRN in estimating the

rank of an approximately rank-deficient problem. To verify this, we use the following Matlab script

to generate a test problem:

sigma = [ ones (1 , n /4) , 1/kappa∗ones (1 , n /4) , e∗ones (1 , n / 2 ) ] ;

U = orth (randn (m, n ) ) ; A = U∗diag ( sparse ( sigma ) ) ;

where we choose m = 10000, n = 100, κ = 106, and e = 10−7. Thus we have A’s effective

rank k = 50, σ1(A) = 1, σk = 10−6, and σk+1 = 10−7. To estimate the effective rank, we set

c =
√
σkσk+1/σ1 = 10−6.5, and singular values of Ã = GA that are smaller than cσ1(Ã) are treated

as zeros. Figure 3.6 compares the singular values of A and GA for both CRT11 and LSRN (rescaled

by 1/
√
s for better alignment, where s = n+ 4 for CRT11 and s = 2n for LSRN). We see that CRT11

introduces more distortion than LSRN to the spectrum of A. In this example, the rank determined

by CRT11 is 47, while LSRN outputs the correct effective rank. We note that LSRN is not risk-free for

approximately rank-deficient problems, which still should have sufficient separation between σk and

σk+1. However, it is more reliable than CRT11 on approximately rank-deficient problems because of

less distortion introduced by G.



Chapter 4

`p Regression

From the analysis in Section 2.7, we see that a low-distortion `p subspace embedding is a fundamental

building block (and very likely a bottleneck) for (1± ε)-distortion `p subspace embeddings, as well

as for a (1 + ε)-approximation to an `p regression problem. In this chapter we show that, given

a matrix A ∈ Rm×n with m � n and a p ∈ [1, 2), with a constant probability we can construct

a low-distortion embedding matrix Φ ∈ Rpoly(n)×m that embeds Ap, the `p subspace spanned by

A’s columns, into (RO(poly(n)), ‖ · ‖p). The distortion of our embeddings is only O(poly(n)), and

we can compute ΦA in O(nnz(A)) time, i.e., input-sparsity time. Our result generalizes the input-

sparsity time `2 subspace embedding proposed by Clarkson and Woodruff [21] (see Theorem 3 for a

simpler and improved analysis of their construction). These input-sparsity time `p embeddings are

optimal, up to constants, in terms of their running time; and the improved running time propagates

to applications such as (1 ± ε)-distortion `p subspace embedding and relative-error `p regression,

our main interest in this work. Via the subspace-preserving sampling procedure, we show that a

(1± ε)-distortion embedding of Ap into RO(poly(n)) can be computed in O(nnz(A) · logm) time, and

we also show that a (1 + ε)-approximate solution to the `p regression problem minx∈Rn ‖Ax − b‖p
can be computed in O(nnz(A) · logm + poly(n) log(1/ε)/ε2) time. Moreover, we can improve the

embedding dimension or equivalently the sample size to O(n3+p/2 log(1/ε)/ε2) without increasing

the complexity.

4.1 Preliminaries

To state our results, we assume that we are capable of computing a (1 + ε)-approximate solution to

an `p regression problem of size m′ × n for some ε > 0, as long as m′ is independent of m. Let us

denote the running time needed to solve this smaller problem by T p(ε;m′, n). In theory, we have

T p(ε;m′, n) = O((m′n2 + poly(n)) log(n′/ε)) for general p (see, e.g., Mitchell [52]).

Our analysis relies heavily on the property of stable distributionss and some related tail inequal-

ities.

55



CHAPTER 4. `p REGRESSION 56

Stable distributions. The properties of p-stable distributions are essential for constructing input-

sparsity time low-distortion `p subspace embeddings.

Definition 10 (p-stable Distribution). A distribution D over R is called p-stable if for any l real

numbers a1, . . . , al we have
l∑
i=1

aiXi '

(
l∑
i=1

|ai|p
)1/p

X,

where Xi
iid∼ D and X ∼ D. By “X ' Y ”, we mean X and Y have the same distribution.

By a result due to Lévy [44], it is known that p-stable distributions exist for p ∈ (0, 2]; and

from Chambers et al. [16], it is known that p-stable random variables can be generated efficiently,

thus allowing their practical use. Let us use Dp to denote the “standard” p-stable distribution, for

p ∈ [1, 2], specified by its characteristic function ψ(t) = e−|t|
p

. It is known that D1 is the standard

Cauchy distribution, and that D2 is the Gaussian distribution with mean 0 and variance 2.

Tail inequalities. We note two inequalities from Clarkson et al. [20] regarding the tails of the

Cauchy distribution.

Lemma 20 (Cauchy Upper Tail Inequality). For i = 1, . . . , l, let Ci be l (not necessarily inde-

pendent) standard Cauchy variables, and γi > 0 with γ =
∑
i γi. Let X =

∑
i γi|Ci|. For any

t > 1,

Pr[X > tγ] ≤ 1

πt

(
log(1 + (2lt)2)

1− 1/(πt)
+ 1

)
.

For simplicity, we assume that l ≥ 3 and t ≥ 1, and then we have Pr[X > tγ] ≤ 2 log(lt)/t.

Lemma 21 (Cauchy Lower Tail Inequality). For i = 1, . . . , l, let Ci be independent standard Cauchy

random variables, and γi ≥ 0 with γ =
∑
i γi. Let X =

∑
i γi|Ci|. Then, for any t > 0,

log Pr[X ≤ (1− t)γ] ≤ −γt2

3 maxi γi
.

We also note the following result about Gaussian variables. This is a direct consequence of

Maurer’s inequality ([49]), and we use it to derive lower tail inequalities for p-stable distributions.

Lemma 22 (Gaussian Lower Tail Inequality). For i = 1, . . . , l, let Gi be independent standard

Gaussian random variables, and γi ≥ 0 with γ =
∑
i γi. Let X =

∑
i γi|Gi|2. Then, for any t > 0,

log Pr[X ≤ (1− t)γ] ≤ −γt2

6 maxi γi
.

4.2 Low-distortion `1 embedding in input-sparsity time

Here is our main result for input-sparsity time low-distortion subspace embeddings for `1.



CHAPTER 4. `p REGRESSION 57

Theorem 11 (Low-distortion embedding for `1). Given A ∈ Rm×n with full column rank, let

Φ = SC ∈ Rs×m, where S ∈ Rs×m has each column chosen independently and uniformly from the

s standard basis vectors of Rs, and where C ∈ Rm×m is a diagonal matrix with diagonals chosen

independently from the standard Cauchy distribution. Set s = ωn5 log5 n with ω sufficiently large.

Then with a constant probability, we have

1/O(n2 log2 n) · ‖Ax‖1 ≤ ‖ΦAx‖1 ≤ O(n log n) · ‖Ax‖1, ∀x ∈ Rn .

In addition, ΦA can be computed in O(nnz(A)) time.

The construction of the `1 subspace embedding matrix is different from its `2 norm counterpart

(Theorem 3) only by the diagonal elements of D (or C): whereas we use ±1 for the `2 norm, we

use Cauchy variables for the `1 norm. Although our simpler direct proof leads to a better result

for `2 subspace embedding, the technique used in the proof of Clarkson and Woodruff [21], which

splits coordinates into “heavy” and “light” sets based on the leverage scores, highlights an important

structural property of `2 subspace: that only a small subset of coordinates can have large `2 leverage

scores. (We note that the technique of splitting coordinates is also used by Ailon and Liberty [4]

to get an unrestricted fast Johnson-Lindenstrauss transform; and that the difficulty in finding and

approximating the large-leverage directions was—until recently [47, 29]—responsible for difficulties

in obtaining fast relative-error random sampling algorithms for `2 regression and low-rank matrix

approximation.) An analogous structural fact holds for `1 and other `p spaces. Using this property,

we can construct novel input-sparsity time `p subspace embeddings for general p ∈ [1, 2).

4.2.1 Proof of Theorem 11

The proof of Theorem 11 uses the technique of splitting coordinates, the fact that the Cauchy

distribution is 1-stable, and the upper and lower tail inequalities regarding the Cauchy distribution

from Lemmas 20 and 21.

We start with the following result, which establishes the existence of the so-called Auerbach’s

basis of a d-dimensional normed vector space. For our proof, we only need its existence and not an

algorithm to construct it.

Auerbach’s lemma (Lemma 4) implies that a (n, 1, 1)-conditioned basis matrix of A1 exists,

which is denoted by U throughout the proof. By definition, U ’s columns are unit vectors in the

`1 norm (thus |U |1 = n, where recall that | · |1 denotes the element-wise `1 norm of a matrix) and

‖x‖∞ ≤ ‖Ux‖1, ∀x ∈ Rn. Denote by uj the j-th row of U , j = 1, . . . ,m. Define vj = ‖uj‖1 the `1

leverage scores of A. We have
∑
j vj = |U |1 = n. Let τ > 0 to be determined later, and define two

index sets H = {j | vj ≥ τ} and L = {j | vj < τ}. It is easy to see that |H| ≤ n
τ where | · | is used to

denote the size of a finite set, and ‖vL‖∞ ≤ τ where

vLj =

vj , if j ∈ L

0, otherwise
, j = 1, . . . ,m.



CHAPTER 4. `p REGRESSION 58

Similarly, when an index set appears as a superscript, we mean zeroing out elements or rows that

do not belong to this index set, e.g., vL and UL. Define

Y = {y ∈ Rm | y = Ux, ‖x‖∞ = 1, x ∈ Rn}.

For any y = Ux ∈ Y , we have ‖y‖1 = ‖Ux‖1 ≥ ‖x‖∞ = 1,

|yj | = |uTj x| ≤ ‖uj‖1‖x‖∞ = vj , j = 1, . . . ,m,

and thus ‖y‖1 ≤ ‖v‖1 = n. Define Y L = {y ∈ Y | ‖yL‖1 ≥ 1
2‖y‖1} and Y H = Y \Y L. Given S,

define a mapping φ : {1, . . . ,m} → {1, . . . , s} such that sφ(j),j = 1, j = 1, . . . ,m, and split L into

two subsets: L̂ = {j ∈ L |φ(j) ∈ φ(H)} and L̄ = L\L̂. Consider these events:

• EU : |ΦU |1 ≤ ω1n log n for some ω1 > 0.

• EL: ‖SvL‖∞ ≤ ω2/(n log n) for some ω2 > 0.

• EH : φ(j1) 6= φ(j2), ∀ j1 6= j2, j1, j2 ∈ H.

• EC : minj∈|H| |cj | ≥ ω3/(n
2 log2 n) for some ω3 > 0.

• E L̂: |ΦU L̂|1 ≤ ω4/(n
2 log2 n) for some ω4 > 0.

Recall that we set s = ωn5 log5 n in Theorem 11. We show that, with ω sufficiently large and proper

choices of ω1, ω2, ω3, and ω4, the event EU leads to an upper bound of ‖Φy‖1 for all y ∈ range(A),

EU and EL lead to a lower bound of ‖Φy‖1 for all y ∈ Y L with probability at least 0.9, and EH , E L̂,

and EC together imply an lower bound of ‖Φy‖1 for all y ∈ Y H .

Lemma 23. Provided EU , we have

‖Φy‖1 ≤ ω1n log n · ‖y‖1, ∀y ∈ range(A).

Proof. For any y ∈ range(A), we can find an x such that y = Ux. Then,

‖Φy‖1 = ‖ΦUx‖1 ≤ |ΦU |1‖x‖∞ ≤ |ΦU |1‖Ux‖1 ≤ ω1n log n · ‖y‖1.

Lemma 24. Provided EL, for any fixed y ∈ Y L, we have

log Pr

[
‖Φy‖1 ≤

1

4
‖y‖1

]
≤ −n log n

24ω2
.

Proof. Let z = Φy. We have,

|zi| =

∣∣∣∣∣∣
∑
j

sijcjyj

∣∣∣∣∣∣ '
∑

j

sij |yj |

 |c̃i| �
∑

j

sij |yLj |

 |c̃i| := γ̃i|c̃i|,



CHAPTER 4. `p REGRESSION 59

where {c̃i} are independent Cauchy variables. Let γ̃ =
∑
i γ̃i = ‖yL‖1. Since |y| ≤ v, we have

γ̃i ≤ ‖SvL‖∞. By Lemma 21,

log Pr

[
X ≤ ‖y

L‖1
2

]
≤ −‖yL‖1

12‖SvL‖∞
.

By assumption EL and ‖yL‖1 ≥ 1
2‖y‖1 ≥

1
2 , we obtain the result.

Lemma 25. Assume both EU and EL. If ω1 and ω2 satisfy

n log (6n(1 + 4ω1n log n))− n log n

24ω2
≤ log δ

for some δ ∈ (0, 1) regardless of n, then, with probability at least 1− δ, we have

‖Φy‖1 ≥
1

8
‖y‖1, ∀y ∈ Y L.

Proof. Set ε = 1/(2 + 8ω1n log n) and create an ε-net Y Lε ⊆ Y L such that for any y ∈ Y L, we can

find a yε ∈ Y Lε such that ‖y − yε‖1 ≤ ε. Since ‖y‖1 ≤ n for all y ∈ Y L, there exists such an ε-net

with at most (3n/ε)n elements (Bourgain et al. [10]). By Lemma 24, we can apply a union bound

for all the elements in Y Lε :

Pr[‖Φyε‖1 ≥
1

4
‖yε‖1, ∀yε ∈ Y Lε ] ≥ 1−

(
3n

ε

)n
e−

n logn
24ω2 = 1− en log 3n

ε −
n logn
24ω2 ≥ 1− δ.

For any y ∈ Y L, we have, noting that y − yε ∈ range(A),

‖Φy‖1 ≥ ‖Φyε‖1 − ‖Φ(y − yε)‖1 ≥
1

4
‖yε‖1 − ω1n log n · ‖y − yε‖1

≥ 1

4
‖y‖1 −

(
1

4
+ ω1n log n

)
ε ≥ 1

8
‖y‖1.

So we establish a lower bound for all y ∈ Y L.

Lemma 26. Provided EH and E L̂, if ω3 > 4ω4, we have

‖Φy‖1 ≥
ω4

n2 log2 n
‖y‖1, ∀y ∈ Y H .

Proof. For any y = Ux ∈ Y H , we have,

‖Φy‖1 ≥ ‖Φ(yH + yL̂)‖1 ≥ ‖ΦyH‖1 − ‖ΦU L̂x‖1,

≥
∑
j∈H
|cj ||yj | − |ΦU L̂|1‖x‖∞ ≥ min

j∈H
|cj |‖yH‖1 − |ΦU L̂|1

≥
(

ω3

2n2 log2 n
− ω4

n2 log2 n

)
‖y‖1 ≥

ω4

n2 log2 n
· ‖y‖1,



CHAPTER 4. `p REGRESSION 60

which creates a lower bound for all y ∈ Y H .

We continue to show that, with ω sufficiently large, by setting τ = ω1/4/(n log2 n) and choosing

ω1, ω2, ω3, and ω4 properly, we have each event with probability at least 1− 0.08 = 0.92 and thus

Pr[EU ∩EL ∩EH ∩E L̂ ∩EC ] ≥ 0.6.

Moreover, the condition in Lemma 25 holds with δ = 0.1, and the condition in Lemma 26 holds.

Therefore, Φ = SC has the desired property with probability at least 0.5, which would conclude the

proof of Theorem 11.

Lemma 27. With probability at least 0.92, EU holds with ω1 = 500(1 + logω).

Proof. With S fixed, we have,

|ΦU |1 = |SCU |1 =

n∑
k=1

s∑
i=1

|
m∑
j=1

sijcjujk| '
n∑
k=1

s∑
i=1

m∑
j=1

(|sijujk|) |c̃ik|,

where {c̃ik} are dependent Cauchy random variables. We have

n∑
k=1

s∑
i=1

m∑
j=1

|sijujk| =
n∑
k=1

m∑
j=1

|ujk| = |U |1 = n.

Apply Lemma 20,

Pr[|ΦU |1 ≥ tn |S] ≤ 2 log(snt)

t
.

Setting ω1 = 500(1 + logω) and t = ω1 logm, we have

2 log(snt)

t
=

2 log(ωω1n
6 log5 n)

ω1 logm
≤ 0.08.

We assume that logm ≥ 1 and logω ≥ 1.

Lemma 28. For any δ ∈ (0, 0.1), if s ≥ n/τ , we have,

Pr
[
‖SvL‖∞ ≥

(
1 + 2 log

n

δτ

)
· τ
]
≤ δ.

Proof. Let Xij = sijv
L
j . We have E[Xij ] = vLj /s, E[X2

ij ] = (vLj )2/s, and 0 ≤ Xij ≤ vLj ≤ τ . Fixed

i, Xij are independent, j = 1, . . . ,m. By Bernstein’s inequality,

log Pr

∑
j

Xij ≥
‖vL‖1
s

+ t

 ≤ −t2/2
‖vL‖22/s+ τt/3

≤ −t2/2
τ(‖vL‖1/s+ t/3)

≤ −t
2/(2τ)

n/s+ t/3
.

where we use Holder’s inequality: ‖vL‖22 ≤ ‖vL‖1‖vL‖∞ ≤ nτ . To obtain a union bound for all i



CHAPTER 4. `p REGRESSION 61

with probability 1− δ, we need

−t2/(2τ)

n/s+ t/3
+ log s ≤ log δ.

Given δ < 0.1, it suffices to choose s = n/τ and t = 2 log(n/(δτ))τ . Note that ‖vL‖1/s ≤ ‖v‖1/s = τ .

We have

Pr
[
‖SvL‖∞ ≥

(
1 + 2 log

n

δτ

)
· τ
]
≤ δ.

Increasing s decreases the failure rate, so it holds for all s ≥ n/τ .

Lemma 29. With probability at least 0.92, EL holds with ω2 = (15 + logω)/ω1/4.

Proof. By Lemma 28, with probability at least 0.92, EL holds with

ω2 =
1 + 2 log ω1/4n2 log2 n

0.08

ω1/4 log n
≤ 15 + logω

ω1/4
.

Lemma 30. With the above choices of ω1 and ω2, the condition in Lemma 24 holds with δ = 0.1

for sufficiently large ω.

Proof. With ω1 = 500(1 + logω), and ω2 = (15 + logω)/ω1/4, the first term in

n log (6n(1 + 4ω1n log n))− n log n

24ω2

increases much slower than the second term as ω increases, while both are of order n log n. Therefore,

if ω is sufficiently large, the condition holds with δ = 0.1.

Lemma 31. If ω ≥ 160, event EH holds with probability at least 0.92.

Proof. Given j1, j2 ∈ H and j1 6= j2, let Xj1j2 = 1 if φ(j1) = φ(j2) and Xj1j2 = 0 otherwise. It is

easy to see that Pr[Xj1j2 = 1] = 1
s . Therefore,

Pr[EH ] ≥ 1−
∑
j1<j2

Pr[Xj1j2 = 1] ≥ 1− |H|
2

s
≥ 1− n2

sτ2
≥ 1− 1

ω1/2
.

It suffices to have ω ≥ 160.

Lemma 32. With probability at least 0.92, event EC holds with ω3 = 1/(8ω1/4).

Proof. Let c be a Cauchy variable. We have

Pr[|c| ≤ t] =
2

π
tan−1t ≤ 2t

π
.



CHAPTER 4. `p REGRESSION 62

|H| is at most n/τ = ω1/4n2 log2 n. Then

Pr[EC ] ≥ 1− |H| · Pr

[
|c| < ω3

n2 log2 n

]
≥ 1− ω1/4n2 log2 n · 2ω3

πn2 log2 n
.

Therefore, ω3 = 1/(8ω1/4) would suffice.

Lemma 33. With probability at least 0.92, event E L̂ holds with ω4 = 25000(1 + logω)/ω3/4. Thus

with ω sufficiently large and the above choice of ω3, the condition in Lemma 26 ω3 > 4ω4 holds.

Proof. We have,

E[|U L̂|1] =
|H|
s
|UL|1 ≤

ω1/4n2 log2 n

ωd5 log5 n
· n =

1

ω3/4n2 log3 n
.

By Markov’s inequality,

Pr

[
|U L̂|1 ≥

25

ω3/4n2 log3 n

]
≤ 0.04.

Assume that |U L̂|1 ≤ 25
ω3/4n2 log3 n

. Similar to the proof of Lemma 27, we have

|ΦU L̂|1 =

n∑
k=1

∑
i∈φ(H)

|
∑
j

sijcju
L̂
jk| '

n∑
k=1

∑
i∈φ(H)

∑
j

sij |uL̂jk|

 |c̃ik|,
where {c̃ik} are dependent Cauchy variables. Apply Lemma 20,

Pr[|ΦU L̂| ≥ |U L̂|t] ≤ 2 log(|H|nt)
t

.

It suffices to choose t = 1000(1 + logω) log n to make the RHS less than 0.04. So with probability

at least 0.92, we have E L̂ holds with ω4 = 25000(1 + logω)/ω3/4.

Remark. As mentioned above, the O(nnz(A)) running time is optimal. Whether the distortion

O(n3 log3 n) is optimal is still an open question. However, for the same construction of Φ, we can

provide a “bad” case that provides a lower bound. Choose A =
(
In 0

)T
. Suppose that s is

sufficiently large such that with an overwhelming probability, the top d rows of A are perfectly

hashed, i.e., ‖ΦAx‖1 =
∑n
k=1 |ck||xk|, ∀x ∈ Rn, where ck is the k-th diagonal of C. Then, the

distortion of Φ is maxk≤d |ck|/mink≤d |ck| ≈ O(n2). Therefore, at most an O(n log3 n) factor of the

distortion is due to artifacts in our analysis.



CHAPTER 4. `p REGRESSION 63

4.3 Application to `1 regression

Our input-sparsity time `1 subspace embedding of Theorem 11 improves the O(nnz(A) · n log n)-

time embedding by Sohler and Woodruff [64] and the O(mn logm)-time embedding of Clarkson et

al. [20]. In addition, by combining Theorem 11 and Lemma 17, we can compute a (1± ε)-distortion

embedding in O(nnz(A) · logm) time, i.e., in nearly input-sparsity time.

Theorem 12 (Fast `1 subspace-preserving embedding). Given A ∈ Rm×n, it takes O(nnz(A)·logm)

time to compute a sampling matrix S ∈ Rs×m, where s = O(poly(n) · log(1/ε)/ε2), such that with a

constant probability, S embeds A1 into (Rs, ‖ · ‖1) with distortion 1± ε.

Our improvements in Theorems 11 and 12 also propagate to related `1-based applications, in-

cluding the `1 regression and the `1 subspace approximation problem considered in [64, 20]. As

before, only the regression improvement is stated here explicitly. For completeness, we present in

Algorithm 5 our algorithm for solving `1 regression problems in nearly input-sparsity time.

Algorithm 5 Fast `1 regression approximation in O(nnz(A) · logm+ poly(n) log(1/ε)/ε2) time

Input: A ∈ Rm×n with full column rank, b ∈ Rm, and ε ∈ (0, 1/2).
Output: A (1 + ε)-approximation solution x̂ to minx∈Rn ‖Ax− b‖1, with a constant probability.
1: Let Ā =

(
A b

)
and denote Ā1 the `1 subspace spanned by A’s columns and b.

2: Compute a low-distortion embedding Φ ∈ RO(poly(n))×m of Ā1 (Theorem 11).

3: Compute R̄ ∈ R(n+1)×(n+1) from ΦĀ such that ĀR̄−1 is well-conditioned (QR or Corollary 1).

4: Compute a (1± ε/4)-distortion embedding S ∈ RO(poly(n) log(1/ε)/ε2)×m of Ā1 (Lemma 17).
5: Compute a (1 + ε/4)-approximate solution x̂ to minx∈Rn ‖SAx− Sb‖1.

Corollary 2 (Fast `1 regression). With a constant probability, Algorithm 5 computes a (1 + ε)-

approximate solution to an `1 regression problem in O(nnz(A) · logm+T 1(ε; poly(n) log(1/ε)/ε2, n))

time.

Proof. By Theorem 11 and Lemma 17, we know that Steps 2 and 4 of Algorithm 5 succeed with a

constant probability. Conditioning on this event, we have

‖Ax̂− b‖1 ≤
1

1− ε/4
‖SAx̂− Sb‖1 ≤

1 + ε/4

1− ε/4
‖SAx∗ − Sb‖1

≤ (1 + ε/4)2

1− ε/4
‖Ax∗ − b‖1 ≤ (1 + ε)‖Ax∗ − b‖1,

where the last inequality is due to ε < 1/2. By Theorem 11, Step 2 takes O(nnz(A)) time, and

Step 3 takes O(poly(n)) time because ΦA has O(poly(n) rows. Then, by Lemma 17, Step 4 takes

O(nnz(A) · logm) time, and Step 5 takes T 1(ε/4;O(poly(n) · log(1/ε)/ε2), d) time. Thus, the total

running time of Algorithm 5 is as stated.



CHAPTER 4. `p REGRESSION 64

4.4 Low-distortion `p embedding in input-sparsity time

In this section, we use the properties of p-stable distributions to generalize the input-sparsity time

`1 subspace embedding to `p norms, for p ∈ (1, 2). Generally, Dp does not have explicit PDF/CDF,

which increases the difficulty for theoretical analysis. Indeed, the main technical difficulty here is

that we are not aware of `p analogues of Lemmas 20 and 21 that would provide upper and lower

tail inequality for p-stable distributions. (Indeed, even Lemmas 20 and 21 were established only

recently [20].)

Instead of analyzing Dp directly, for any p ∈ (1, 2), we establish an order among the Cauchy

distribution, the p-stable distribution, and the Gaussian distribution, and then we derive upper and

lower tail inequalities for the p-stable distribution similar to the ones we used to prove Theorem 11.

We state these technical results here since they are of independent interest.

Lemma 34. For any p ∈ (1, 2), there exist constants αp > 0 and βp > 0 such that

αp|C| � |Xp|p � βp|G|2,

where C is a standard Cauchy variable, Xp ∼ Dp, G is a standard Gaussian variable. By “X �
Y ” we mean Pr[X ≥ t] ≥ Pr[Y ≥ t], ∀t ∈ R, i.e., FX(t) ≤ FY (t), ∀t ∈ R, where F (·) is the

corresponding CDF.

Proof. First, we know that

Pr[|Xp|p ≥ t] = Pr[|Xp| ≥ t1/p] = 2 · Pr[Xp ≥ t1/p].

Next, we state the following lemma, which is due to Nolan [59].

Lemma 35. (Nolan [59, Thm. 1.12]) Let X ∼ Dp with p ∈ [1, 2). Then as x→∞,

Pr[X > x] ∼ cpx−p,

where cp = sin πp
2 · Γ(p)/π.

By Lemma 35, it follows that, as t→∞,

Pr[|Xp|p ≥ t] ∼ 2cpt
−1.

For the Cauchy distribution, we have

Pr[|C| ≥ t] = 1− 2

π
tan−1t =

2

π
tan−1 1

t
∼ 2

π
· t−1.

Hence, there exist α′p > 0 and t1 > 0 such that for all t > t1,

Pr[α′p|C| ≥ t] ≥ Pr[|Xp|p ≥ t].



CHAPTER 4. `p REGRESSION 65

10
−3

10
−2

10
−1

10
0

10
1

0.00063662

0.00636599

0.063451

0.5

0.936549

0.993634

0.999363

t

F
(t

)

Figure 4.1: The CDFs (F (t)) of |Xp/2|p for p = 1.0 (bottom, i.e., red or dark gray), 1.1, . . . , 2.0
(top, i.e., yellow or light gray), where Xp ∼ Dp and the scales of the axes are chosen to magnify the
upper (as t→∞) and lower (as t→ 0) tails. These empirical results suggest |Xp1/2|p1 � |Xp2/2|p2
for all 1 ≤ p1 ≤ p2 ≤ 2.

Note that all the p-stable distributions with p ∈ [1, 2] have finite and positive density at x = 0.

Therefore, there exists α′′p > 0 such that for all 0 ≤ t ≤ t1,

Pr[α′′p |C| ≥ t] ≥ Pr[|Xp|p ≥ t].

Let αp = max{α′p, α′′p}. We get αp|C| � |Xp|p. For the Gaussian distribution, we have, as t→∞,

Pr[|G|2 ≥ t] ∼ 2e−t/2t−1/2.

which converges to zero much faster than t−1, so we can apply similar arguments to obtain βp.

Our numerical results suggest that the constants αp and βp are not too far away from 1. See

Figure 4.1, which plots of the CDFs of |Xp/2|p for p = 1, 0, 1.1, . . . , 2.0, based on which we conjecture

|Xp1/2|p1 � |Xp2/2|p2 , for all 1 ≤ p1 ≤ p2 ≤ 2. This implies that 2p−1|C| � |Xp|p and |Xp|p �
2p−2|X2|2 ' 2p−1|G|2, which therefore provides a value for the constants αp and βp.

Lemma 34 suggests that we can use Lemma 20 (regarding Cauchy random variables) to derive

upper tail inequalities for general p-stable distributions and that we can use Lemma 22 (regarding

Gaussian variables) to derive lower tail inequalities for general p-stable distributions. The following

two lemmas establish these results.

Lemma 36 (Upper tail inequality for p-stable distributions). Given p ∈ (1, 2), for i = 1, . . . , l, let

Xi be l (not necessarily independent) random variables sampled from Dp, and γi > 0 with γ =
∑
i γi.



CHAPTER 4. `p REGRESSION 66

Let X =
∑
i γi|Xi|p. Assume that l ≥ 3. Then for any t ≥ 1,

Pr[X ≥ tαpγ] ≤ 2 log(lt)

t
.

Proof. Let Ci = F−1
c (Fp(Xi)), i = 1, . . . , l, where Fc is the CDF of the standard Cauchy distribution

and Fp is the CDF of Dp. Ci follows the standard Cauchy distribution, and, by Lemma 34, we have

αp|Ci| ≥ |Xi|p. Therefore, for any t ≥ 1,

Pr[X ≥ tαpγ] ≤ Pr

[∑
i

γi|Ci| ≥ tγ

]
≤ 2 log(lt)

t
.

The last inequality is from Lemma 20.

Lemma 37 (Lower tail inequality for p-stable distributions). For i = 1, . . . , l, let Xi be independent

random variables sampled from Dp, and γi ≥ 0 with γ =
∑
i γi. Let X =

∑
i γi|ci|. Then,

log Pr[X ≤ (1− t)βpγ] ≤ −γt2

6 maxi γi
.

Proof. Let Gi be independent random variables sampled from the standard Gaussian distribution,

i = 1, . . . , l. By Lemma 34, we have

log Pr[X ≤ βp(1− t)γ] ≤ log Pr

[∑
i

γi|Gi|2 ≤ (1− t)γ

]
.

The lower tail inequality from Lemma 22 concludes the proof.

Given these results, here is our main result for input-sparsity time low-distortion subspace em-

beddings for `p. The proof of this theorem is similar to the proof of Theorem 11, except that we

replace the `1 norm ‖ · ‖1 by ‖ · ‖pp and use the tail inequalities from Lemmas 36 and 37 (rather than

Lemmas 20 and 21).

Theorem 13 (Low-distortion embedding for `p). Given A ∈ Rm×n with full column rank and

p ∈ (1, 2), let Φ = SD ∈ Rs×m where S ∈ Rs×m has each column chosen independently and

uniformly from the s standard basis vectors of Rs, and where D ∈ Rm×m is a diagonal matrix with

diagonals chosen independently from Dp. Set s = ωn5 log5 n with ω sufficiently large. Then with a

constant probability, we have

1/O((n log n)2/p) · ‖Ax‖p ≤ ‖ΦAx‖p ≤ O((n log n)1/p) · ‖Ax‖p, ∀x ∈ Rn .

In addition, ΦA can be computed in O(nnz(A)) time.

Similar to the `1 case, our input-sparsity time `p subspace embedding of Theorem 13 improves the

O(mn logm)-time embedding of Clarkson et al. [20]. Their construction (and hence the construction



CHAPTER 4. `p REGRESSION 67

of [21]) works for all p ∈ [1,∞), but it requires solving a rounding problem of sizeO(m/ poly(n))×n as

an intermediate step, which may become intractable when n is very large in a streaming environment,

while our construction only needs O(poly(n)) storage. By combining Theorem 13 and Lemma 17,

we can compute a (1± ε)-distortion embedding in O(nnz(A) · logm) time.

Theorem 14 ((1 ± ε)-distortion embedding for `p). Given A ∈ Rm×n and p ∈ [1, 2), it takes

O(nnz(A) · logm) time to compute a sampling matrix S ∈ Rs×m with s = O(poly(n) log(1/ε)/ε2)

such that with a constant probability, S embeds Ap into (Rs, ‖ · ‖p) with distortion 1± ε.

These improvements for `p subspace embedding also propagate to related `p-based applications.

In particular, we can establish an improved algorithm for solving the `p regression problem in nearly

input-sparsity time.

Corollary 3 (Fast `p regression). Given p ∈ (1, 2), with a constant probability, a (1+ε)-approximate

solution to an `p regression problem can be computed in

O(nnz(A) · logm+ T p(ε; poly(n) log(1/ε)/ε2, n))

time.

For completeness, we also present a result for low-distortion dense embeddings for `p that the

tail inequalities from Lemmas 36 and 37 enable us to construct.

Theorem 15 (Low-distortion dense embedding for `p). Given A ∈ Rm×n with full column rank and

p ∈ (1, 2), let Φ ∈ Rs×m whose entries are i.i.d. samples from Dp. If s = ωn log n for ω sufficiently

large, with a constant probability, we have

1/O(1) · ‖Ax‖p ≤ ‖ΦAx‖p ≤ O((n log n)1/p) · ‖Ax‖p, ∀x ∈ Rn .

In addition, ΦA can be computed in O(nnz(A) · n log n) time.

Proof. The proof is similar to the proof of Sohler and Woodruff [64, Theorem 5], except that the

Cauchy tail inequalities are replaced by tail inequalities for the stable distributions. For simplicity,

we omit the complete proof but show where to apply those tail inequalities. By Lemma 4, there

exists a (n1/p, 1, p)-conditioned basis matrix of Ap, denoted by U . Thus, |U |pp = n, where recall that

| · |p denotes the element-wise `p norm of a matrix. We have,

|ΦU |pp =

n∑
k=1

‖Φuk‖pp =

n∑
k=1

s∑
i=1

∣∣∣∣∣∣
m∑
j=1

Φijujk

∣∣∣∣∣∣
p

'
n∑
k=1

s∑
i=1

‖uk‖pp|X̃ik|p,

where X̃ik ∼ Dp. Applying Lemma 36, we get ‖ΦU‖pp/s = O(n log n) with a constant probability.

Define Y = {Ux | ‖x‖q = 1, x ∈ Rn}. For any fixed y ∈ Y , we have

‖Φy‖pp =

s∑
i=1

∣∣∣∣∣∣
m∑
j=1

Φijyj

∣∣∣∣∣∣
p

'
s∑
i=1

‖y‖pp|X̃i|p,



CHAPTER 4. `p REGRESSION 68

where X̃i
iid∼ Dp. Applying Lemma 36, we get ‖Φy‖pp/s ≤ 1/O(1) with an exponentially small

probability with respect to s. By choosing s = ωn log n with ω sufficiently large and an ε-net

argument on Y , we can obtain a union lower bound of ‖Φy‖pp on all the elements of Y with a

constant probability. Then,

1/O(1) · ‖y‖pp ≤ ‖Φy‖pp/s ≤ |ΦU |pp‖x‖pq ≤ O(n log n) · ‖Ux‖pp = O(n log n)‖y‖pp, y ∈ Y,

which gives us the desired result.

Remark. The result in Theorem 15 is based on a dense `p subspace embeddings that is analogous

to the dense Gaussian embedding for `2 and the dense Cauchy embedding of [64] for `1. Although

the running time (if one is simply interested in FLOP counts in RAM) of Theorem 15 is somewhat

worse than that of Theorem 13, the embedding dimension and condition number quality (the ratio

of the upper bound on the distortion and the lower bound on the distortion) are much better. Our

numerical implementations, both with the `1 norm [20] and with the `2 norm [50], strongly suggest

that the latter quantities are more important to control when implementing randomized regression

algorithms in large-scale parallel and distributed settings.

4.5 Improving the embedding dimension

In Theorems 11 and 13, the embedding dimension is s = O(poly(n) log(1/ε)/ε2), where the poly(n)

term is a somewhat large polynomial of d that directly multiplies the log(1/ε)/ε2 term. (See the

remark below for comments on the precise value of the poly(n) term.) This is not ideal for the

subspace embedding and the `p regression, because we want to have a small embedding dimension

and a small subsampled problem, respectively. Here, we show that it is possible to decouple the large

polynomial of n and the log(1/ε)/ε2 term via another round of sampling and conditioning without

increasing the complexity. See Algorithm 6 for details on this procedure. Theorem 16 provides our

main quality-of-approximation result for Algorithm 6.

Algorithm 6 Improving the embedding dimension

Input: A ∈ Rm×n with full column rank, p ∈ [1, 2), and ε ∈ (0, 1).

Output: A (1± ε)-distortion embedding S ∈ RO(n3+p/2 log(1/ε)/ε2)×m of Ap.
1: Compute a low-distortion embedding Φ̃ ∈ RO(poly(n))×m of Ap (Theorems 11 and 13).

2: Compute R̃ ∈ Rn×n from Φ̃A such that AR̃−1 is well-conditioned (QR or Corollary 1).

3: Compute a (1± 1/2)-distortion embedding S̃ ∈ RO(poly(n)×m) of Ap (Lemma 17).

4: Compute R ∈ Rn×n such that κp(S̃AR
−1) ≤ 2n (Corollary 1).

5: Compute a (1± ε)-distortion embedding S ∈ RO(n3+p/2 log(1/ε)/ε2)×n of Ap (Lemma 17).

Theorem 16 (Improving the embedding dimension). Given p ∈ [1, 2), with a constant probability,

Algorithm 6 computes a (1 ± ε)-distortion embedding of Ap into (RO(d3+p/2 log(1/ε)/ε2), ‖ · ‖p) in

O(nnz(A) · logm) time.



CHAPTER 4. `p REGRESSION 69

Proof. Each of Steps 1, 3, and 5 of Algorithm 6 succeeds with a constant probability. We can control

the success rate of each by adjusting the constant factor in the embedding dimension, such that all

steps succeed with a constant probability. Conditioning on this event, we have κp(AR
−1) = 6n

because

‖AR−1x‖p ≤ 2‖S̃AR−1x‖p ≤ 4n‖x‖2,

‖AR−1x‖p ≥
2

3
‖S̃AR−1x‖p ≥

2

3
‖x‖2, ∀x ∈ Rn .

By Lemma 1, κ̄p(AR
−1) ≤ 6n1/p+1, and then by Lemma 17, the embedding dimension of S is

O(κ̄pp(AR
−1)n|p/2−1|n log(1/ε)/ε2) = O(n3+p/2 log(1/ε)/ε2).

Then, by applying Theorem 16 to the `p regression problem, we can improve the size of the

subsampled problem and hence the overall running time.

Corollary 4 (Improved fast `p regression). Given p ∈ [1, 2), with a constant probability, a (1 + ε)-

approximate solution to an `p regression problem can be computed in

O(nnz(A) · logm+ T p(ε;n3+p/2 log(1/ε)/ε2, n))

time. The second term comes from solving a subsampled problem of size O(n3+p/2 · log(1/ε)/ε2)×n.

Remark. We have stated our results in the previous sections as poly(n) without stating the value

of the polynomial because there are numerous trade-offs between the conditioning quality and the

running time. For example, let p = 1. We can use a rounding algorithm instead of QR to compute

the R matrix. If we use the input-sparsity time embedding with the O(n)-rounding algorithm of [20],

then the running time to compute the (1± ε)-distortion embedding is O(nnz(A) · logm+n8/ε2) and

the embedding dimension is O(n6.5/ε2) (ignoring log factors). If, on the other hand, we use QR to

compute R, then the running time is O(nnz(A) · logm + n7/ε2) and the embedding dimension is

O(n8/ε2). However, with the result from this section, the running time is simply O(nnz(A) · logm+

poly(n) + T p(ε;n3+p/2/ε2, n)) and the poly(n) term can be absorbed by the nnz(A) term.



Bibliography

[1] D. Achlioptas. Database-friendly random projections. In Proceedings of the 20th ACM

SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS), pages

274–281. ACM, 2001.

[2] N. Ailon and B. Chazelle. Approximate nearest neighbors and the fast Johnson-Lindenstrauss

transform. In Proceedings of the 38th Annual ACM Symposium on Theory of Computing

(STOC), pages 557–563. ACM, 2006.

[3] N. Ailon and E. Liberty. Fast dimension reduction using Rademacher series on dual BCH codes.

Discrete & Computational Geometry, 42(4):615–630, 2009.

[4] N. Ailon and E. Liberty. An almost optimal unrestricted fast Johnson-Lindenstrauss transform.

In Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),

pages 185–191, 2011.

[5] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Green-

baum, S. Hammarling, A. McKenney, et al. LAPACK Users’ Guide, volume 9. Society for

Industrial Mathematics, 1987.

[6] H. Auerbach. On the area of convex curves with conjugate diameters. PhD thesis, University

of Lwów, 1930.

[7] H. Avron, P. Maymounkov, and S. Toledo. Blendenpik: Supercharging LAPACK’s least-squares

solver. SIAM J. Sci. Comput., 32(3):1217–1236, 2010.

[8] Gill Barequet and Sariel Har-Peled. Efficiently approximating the minimum-volume bounding

box of a point set in three dimensions. Journal of Algorithms, 38(1):91–109, 2001.

[9] Å. Björck. Numerical Methods for Least Squares Problems. SIAM, 1996.

[10] J. Bourgain, J. Lindenstrauss, and V. Milman. Approximation of zonoids by zonotopes. Acta

Mathematica, 162:73–141, 1989.

[11] Christian Bouville. Bounding ellipsoids for ray-fractal intersection. In ACM SIGGRAPH Com-

puter Graphics, volume 19, pages 45–52. ACM, 1985.

70



BIBLIOGRAPHY 71

[12] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[13] M. Bădoiu and K. L. Clarkson. Smaller core-sets for balls. In Proceedings of the 14th Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 801–802. SIAM, 2003.

[14] M. Bădoiu, S. Har-Peled, and P. Indyk. Approximate clustering via core-sets. In Proceedings

of the 34th Annual ACM Symposium on Theory of Computing (STOC), pages 250–257. ACM,

2002.

[15] C. S. Burrus. Iterative reweighted least squares, 12 2012. http://cnx.org/content/m45285/1.12/.

[16] J. M. Chambers, C. L. Mallows, and B. W. Stuck. A method for simulating stable random

variables. Journal of the American Statistical Association, 71(354):340–344, 1976.

[17] M. Charikar and A. Sahai. Dimension reduction in the `1 norm. In Proceedings of the 43rd

Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 551–560, 2002.

[18] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data

streams. In Automata, Languages and Programming, pages 693–703. Springer, 2002.

[19] K. L. Clarkson. Subgradient and sampling algorithms for `1 regression. In Proceedings of the

16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 257–266. SIAM,

2005.

[20] K. L. Clarkson, P. Drineas, M. Magdon-Ismail, M. W. Mahoney, X. Meng, and D. P. Woodruff.

The Fast Cauchy Transform and faster robust linear regression. In Proceedings of the 24th

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2013.

[21] K. L. Clarkson and D. P. Woodruff. Low rank approximation and regression in input sparsity

time. In Proceedings of the 45th Annual ACM symposium on Theory of Computing (STOC),

2013.

[22] E. S. Coakley, V. Rokhlin, and M. Tygert. A fast randomized algorithm for orthogonal projec-

tion. SIAM J. Sci. Comput., 33(2):849–868, 2011.

[23] G. B. Dantzig. Linear Programming and Extensions. Princeton University Press, 1998.

[24] A. Dasgupta, P. Drineas, B. Harb, R. Kumar, and M. W. Mahoney. Sampling algorithms and

coresets for `p regression. SIAM J. Comput., 38(5):2060–2078, 2009.

[25] K. R. Davidson and S. J. Szarek. Local operator theory, random matrices and Banach spaces.

In Handbook of the Geometry of Banach Spaces, volume 1, pages 317–366. North Holland, 2001.

[26] T. A. Davis. Direct Methods for Sparse Linear Systems. SIAM, Philadelphia, 2006.

[27] T. A. Davis. Algorithm 915, SuiteSparseQR: Multifrontal multithreaded rank-revealing sparse

QR factorization. ACM Trans. Math. Softw., 38(1), 2011.



BIBLIOGRAPHY 72

[28] T. A. Davis and Y. Hu. The University of Florida sparse matrix collection. ACM Trans. Math.

Softw., 38(1), 2011.

[29] P. Drineas, M. Magdon-Ismail, M. W. Mahoney, and D. P. Woodruff. Fast approximation of

matrix coherence and statistical leverage. In Proceedings of the 29th International Conference

on Machine Learning (ICML), 2012.

[30] P. Drineas, M. W. Mahoney, and S. Muthukrishnan. Sampling algorithms for `2 regression and

applications. In Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA), pages 1127–1136. ACM, 2006.

[31] P. Drineas, M. W. Mahoney, S. Muthukrishnan, and T. Sarlós. Faster least squares approxima-

tion. Numer. Math., 117(2):219–249, 2011.

[32] D. C.-L. Fong and M. Saunders. LSMR: An iterative algorithm for sparse least-squares problems.

SIAM J. Sci. Comput., 33:2950, 2011.

[33] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins Univ Press, third

edition, 1996.

[34] G. H. Golub and R. S. Varga. Chebyshev semi-iterative methods, successive over-relaxation

methods, and second-order Richardson iterative methods, parts I and II. Numer. Math.,

3(1):147–168, 1961.

[35] M. Gu and S. C. Eisenstat. A stable and efficient algorithm for the rank-one modification of

the symmetric eigenproblem. SIAM J. Matrix Anal. Appl., 15(4):1266–1276, 1994.

[36] M. H. Gutknecht and S. Rollin. The Chebyshev iteration revisited. Parallel Comput., 28(2):263–

283, 2002.

[37] G. T. Herman, A. Lent, and H. Hurwitz. A storage-efficient algorithm for finding the regularized

solution of a large, inconsistent system of equations. IMA J. Appl. Math., 25(4):361–366, 1980.

[38] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. J.

Res. Nat. Bur. Stand., 49(6):409–436, 1952.

[39] P. W. Holland and R. E. Welsch. Robust regression using iteratively reweighted least-squares.

Communications in Statistics - Theory and Methods, 6(9):813–827, 1977.

[40] P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the curse of

dimensionality. In Proceedings of the 30th Annual ACM Symposium on Theory of Computing

(STOC), pages 604–613. ACM, 1998.

[41] F. John. Extremum problems with inequalities as subsidiary conditions. In Studies and Essays

presented to R. Courant on his 60th Birthday, pages 187–204, 1948.



BIBLIOGRAPHY 73

[42] W. B. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space.

Contemporary Mathematics, 26(189-206):1, 1984.

[43] L. G. Khachiyan and M. J. Todd. On the complexity of approximating the maximal inscribed

ellipsoid for a polytope. Math. Prog., 61(1):137–159, 1993.

[44] P. Lévy. Calcul des Probabilités. Gauthier-Villars, Paris, 1925.

[45] L. Lovász. An Algorithmic Theory of Numbers, Graphs, and Convexity. SIAM, 1986.

[46] D. G. Luenberger. Introduction to Linear and Nonlinear Programming. Addison-Wesley, 1973.

[47] M. W. Mahoney. Randomized Algorithms for Matrices and Data. Foundations and Trends in

Machine Learning. NOW Publishers, Boston, 2011. Also available at arXiv:1104.5557v2.

[48] G. Marsaglia and W. W. Tsang. The ziggurat method for generating random variables. J. Stat.

Softw., 5(8):1–7, 2000.

[49] A. Maurer. A bound on the deviation probability for sums of non-negative random variables.

J. Inequalities in Pure and Applied Mathematics, 4(1), 2003.

[50] X. Meng, M. A. Saunders, and M. W. Mahoney. LSRN: A parallel iterative solver for strongly

over- or under-determined systems. SIAM J. Sci. Comput., 36(2):95–118, 2014.

[51] Xiangrui Meng and Michael W Mahoney. Robust regression on MapReduce. In Proceedings of

the 30th International Conference on Machine Learning (ICML), 2013.

[52] J. E. Mitchell. Polynomial interior point cutting plane methods. Optimization Methods and

Software, 18(5):507–534, 2003.

[53] J. Nelson and H. Nguyen. OSNAP: Faster numerical linear algebra algorithms via sparser

subspace embeddings. In Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual

Symposium on, pages 117–126. IEEE, 2013.

[54] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course, volume 87.

Springer, 2004.

[55] Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming,

103(1):127–152, 2005.

[56] Y. Nesterov. Rounding of convex sets and efficient gradient methods for linear programming

problems. Optimization Methods and Software, 23(1):109–128, 2008.

[57] Y. Nesterov. Unconstrained convex minimization in relative scale. Mathematics of Operations

Research, 34(1):180–193, 2009.

[58] Y. Nesterov and A. Nemirovsky. Interior Point Polynomial Methods in Convex Programming.

SIAM, 1994.



BIBLIOGRAPHY 74

[59] J. P. Nolan. Stable Distributions - Models for Heavy Tailed Data. Birkhauser, Boston, 2013. In

progress, Chapter 1 online at academic2.american.edu/∼jpnolan.

[60] C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear equations. SIAM

J. Numer. Anal., 12(4):617–629, 1975.

[61] C. C. Paige and M. A. Saunders. LSQR: An algorithm for sparse linear equations and sparse

least squares. ACM Trans. Math. Softw., 8(1):43–71, 1982.

[62] V. Rokhlin and M. Tygert. A fast randomized algorithm for overdetermined linear least-squares

regression. Proc. Natl. Acad. Sci. USA, 105(36):13212–13217, 2008.

[63] T. Sarlós. Improved approximation algorithms for large matrices via random projections. In

Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS),

pages 143–152. IEEE, 2006.

[64] C. Sohler and D. P. Woodruff. Subspace embeddings for the `1-norm with applications. In

Proceedings of the 43rd Annual ACM Symposium on Theory of Computing (STOC), pages

755–764. ACM, 2011.

[65] M. J. Todd. On minimum volume ellipsoids containing part of a given ellipsoid. Mathematics

of Operations Research, pages 253–261, 1982.

[66] A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny images: A large data set for non-

parametric object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell., 30(11):1958–

1970, 2008.

[67] J. A. Tropp. Improved analysis of the subsampled randomized Hadamard transform. Adv.

Adapt. Data Anal., 3(1-2):115–126, 2011.

[68] S. A. Vavasis and Y. Ye. Condition numbers for polyhedra with real number data. Operations

Research Letters, 17(5):209–214, 1995.

[69] P. Wedin. Perturbation theory for pseudo-inverses. BIT Numerical Mathematics, 13(2):217–232,

1973.

[70] Geoffrey Werner-Allen, Jeff Johnson, Mario Ruiz, Jonathan Lees, and Matt Welsh. Monitoring

volcanic eruptions with a wireless sensor network. In Proceeedings of the 2nd European Workshop

on Wireless Sensor Networks, pages 108–120. IEEE, 2005.

[71] Yinyu Ye. Interior Point Algorithms: Theory and Analysis, volume 44. John Wiley & Sons,

2011.


	Abstract
	Acknowledgments
	Introduction
	Notation conventions
	p regression problems
	Strongly rectangular data
	p-norm condition number

	Traditional solvers
	Solvers for linear least squares
	Solvers for p regression

	Preconditioning

	Rounding and Embedding
	Ellipsoidal rounding
	Subspace embedding
	Subspace-preserving embedding
	Fast ellipsoidal rounding
	Fast subspace embedding
	2 subspace embeddings
	Low-distortion 1 subspace embeddings

	Subspace-preserving sampling
	Application to p regression
	Summary

	2 Regression
	Randomized methods
	Preconditioning for linear least squares
	Algorithm LSRN
	The algorithm
	Theoretical properties
	Approximate rank-deficiency
	Running time complexity

	Tikhonov regularization
	Numerical experiments
	Implementation and system setup
	(AN) and number of iterations
	Tuning the oversampling factor 
	Solution accuracy
	Dense least squares
	Sparse least squares
	Real-world problems
	Scalability and choice of iterative solvers on clusters
	Comparison with Coakley et al.


	p Regression
	Preliminaries
	Low-distortion 1 embedding in input-sparsity time
	Proof of Theorem 11

	Application to 1 regression
	Low-distortion p embedding in input-sparsity time
	Improving the embedding dimension

	Bibliography

