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An algorithm is described for solving large-scale nonlinear programs whose objective and
constraint functions are smooth and continuously differentiable. The algorithm is of the
projected Lagrangian type, involving a sequence of sparse, linearly constrained subproblems
whose objective functions inclade a modified Lagrangian term and a modified quadratic
penalty function.

The algorithm has been implemented in a general purpose FORTRAN program called
MINOS/AUGMENTED. Some aspects of the implementation are described, and com-
putational results are given for some nontrivial test problems.

The system is intended for use on problems whose Jacobian matrix is sparse. (Such
problems usually include a large set of purely linear constraints.) The bulk of the data for a
prublem may be assembled using a standard linear-programming matrix generator. Function
and gradient values for nonlinear terms are supplied by two user-written subroutines.

Future applications could inciude some of the problems that are currenily being solved in
industry by the method of successive linear programming (SLP). We would expect the rate of
convergence and the attainable accuracy to be better than that achieved by SLP, but
comparisons are not yet available on problems of significant size.

One of the largest nonlinear programs solved by MINOS/AUGMENTED involved about
850 constraints and 4000 variables, with a nonlinear objective function and 32 nonlinear
constraints. From a cold start, about 6000 iterations and 1 hour of computer time were
required on a DEC VAX 11/780.

Key words: Large-scale Optimization, Optimization Software, Nonlinear Programming,
Projected Lagrangian. -

1. Imtroduction

The work reported here was prompted by consideration of various ways to
extend the linearly constrained optimization code MINOS [35, 36, 52] to prob-
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lems containing both linear and nonlinear constraints. In particular, we are
concerned with large, sparse problems, in the sense that each variable is
invoived in relatively few constraints.

Ignoring sparsity for the moment, consider the model problem

minimize f°(x),

subjectto f(x)=0, l=x=<u (1.1}
where the functions of x are assumed to be twice differentiable with bounded
Hessians. For this problem, the algorithm presented here would solve a

sequence of linearly constrained subproblems of the following form: given xy, A

and p,
minimize L(x, xi, As, 0), (1.2a)

subjectto f=0, I=x=<u (1.2b)
where the objective function is a modified augmented Lagrangian, and f is the

linear approximation to f(x) at the point x,. These quantities are defined as
follows:

LG, %o Aw p) = X)) = A - H+3p(f = DTS- ),
F=f+TGx—x)

where fi and J, are the constraint vector and Jacobian matrix evaluated at x.

Our approach is based on the algorithm given by Robinson [45]. When applied

to problem (1.1), Robinson’s algorithm would solve a sequence of subproblems
of the form (1.2), except that the penalty term involving p would not be present.
If x, and A, are taken to be the solution and corresponding Lagrange multipliers
for the previous subproblem, Robinson has shown for the case p =0 that the
sequence {(x., A,)} will converge under certain circumstances to a solution of the
original problem, and that the rate of convergence will be quadratic. A case for
which convergence can be expected from an arbitrary starting point is when the
modified Lagrangian L(x, x,A4, 0) is convex. In general, however, convergence
may not occur unless the initial point (x;, Ao} is sufficiently close to the desired
solution.

In order to allow convergence from a wider range of starting points, Rosen
[48] proposed a two-phase algorithm in which a penalty function is first used to
locate a point in a neighborhood of the solution. For the model problem, Phase |
of Rosen’s method would involve solving the problem

minimize f°(x)+3pf'f, (1.3a)
subjectto I=x=<u (1.3b)
for some choice of p. (Phase 2 is then Robinson’s method.} The general
constraints are not linearized in Phase 1; they appear only in the objective

function (1.3a). However, any that are known to be linear would be included in
(1.3b). A linearly constrained optimizer is therefore needed in both phases.

>
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" This method depends heavily on a good choice for the penalty parameter p. If
p is too large, the Phase 1 subproblem may be difficult and expensive to solve.
Conversely, if p is too small, the point obtained from Phase 1 may be too far
from the desired solution for Robinson’s method to converge.

To overcome these difficulties, Best et al. [9] have recently proposed an
algorithm similar to Rosen’s, in which provision is made to return to Phase 1
with an increased p if it is determined that Robinson’s method is not converging.
Under certain weak assumptions they are then able to guarantee convergence to
a Kuhn-Tucker point for the original problem.

As an alternative to the two-phase approach, the method we propose uses
subproblem (1.2) throughout. The penalty term is chosen to ensure that the
Hessian of L(x, x;,As, p) is positive definite within an appropriate subspace. It
also inhibits large discrepancies between f and f, thereby discouraging large
changes in x in each subproblem if the nonlincarities are such that the linearized
constraints have little meaning far from the peint of linearization.

As in Rosen’s method, we depend rather heavily on making a good choice for
p. Heuristically, we increase p whenever it seems necessary to prevent non-
convergence. More rigorously, we develop a mechanism for deciding when to
reduce p to zero, in order to benefit from Robinson’s method’s quadratic
convergence.

The reason for choosing the modified quadratic penalty function in (1.2a),
rather than the conventional ipfTf, will become clear when sparsity is rein-
troduced (Section 3.1).

1.1. Other approaches

One of the few general-purpose methods for large-scale nonlinear programs is
the method of approximation programming [23]. This is now often called
successive linear programming (SLP), and has been implemented in various
forms, typically in conjunction with an existing mathematical programming (MP)
system (for example, [4-7]). As the name implies, the method involves a
sequence of linear subproblems. These can be formulated and solved using all of
the facilities provided by the MP system. Clearly this carries many advantages.

One difficulty with SLP is that the solution to an L.P subproblem is unlikely to
provide a good approximation to a nonlinear solution, since the latter is normally
not at a vertex of the (linearized) constraint set. The bounds on the variables
must therefore be manipulated between subproblems, and the methods for doing
this tend to be heuristic.

An algorithm based on successive quadratic programs has been implemented
for large problems by Escudero [16]. Again this takes advantage of many of the
facilities in an existing MP system. GRG [1,2,30] is the only other general-
purpose algorithm we know of that has been applied to large-scale problems with
s0me success,
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1.2, Use of MINOS

For a certain class of objective functions, the deveilopment of MINOS has
opened the way to solving large, linearly constrained problems quite efficiently.
Hence, for iarge versions of problem (1.1} involving a sparse Jacobian matrix
and many purely linear constraints, it is natural to apply MINOS to the
corresponding subproblems (1.2). The resulting system is called MINOS/AUG-
MENTED [37]. Our aim is to describe the algorithm used and some details of its
practical implementation, and to discuss its performance on some nontrivial

" problems.

Note that the Lagrangian and penalty terms in (1.2a) require continual evalua-
tion of the nonfinear constraint functions during the solution of the sub-
problems. In some cases this may be expensive. MINOS/AUGMENTED there-
fore allows the option of setting A, = 0 and p =0, so that only the true objective
f'(x) remains in (1.2a). Some results obtained using this option are also reported.

2, Brief description of MINOS

MINOS is a particular implementation of Woife's reduced-gradient algorithm
[54]. It is designed to solve large problems with nonlinear objective functions,
expressed in the following standard form:

minimize f'(x}+c¢'x +d"y, (2.1a)
subject to A[;] =b, (2.1b)
15{"]5.; 2.1¢)

y

where A is m by n, m < n, and the variables are partitioned into ‘nonlinear’ and
‘linear’ variables x and y respectively. (This standard form is a slight generaliza-
tion of the one normally used for linear programming problems; it emphasizes
the fact that nonlinearities often involve just a few of the variables. The concept
of linear and nonlinear variables was introduced by Griffith and Stewart [23] in
1961.)

For numerous practical reasons the last m columns of A form the identity
matrix I, and the last m components of y are the usual logical (*slack’ or
*surplus’) variables.

MINOS uses an ‘active constraint’ strategy, with the general constraints and
some portion of the bound constraints being active at any given time. Thus if A
is partitioned as [B S N] where N is a set of ‘nonbasic’ columns, the active
constraints are always of the form

™

N mme L e e eENee g
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The first part of this equation is equivalent to

while the second part reading xy = by indicates that the nonbasic variables xy
are being held equal to one or other of their bounds. (The components of by
came from ! or u as appropriate and the partition [xp, x5, xy] is some per-
mutation of [x, y].)

The remaining columns of A are partitioned into ‘basic’ and ‘superbasic’ sets
B and S, such that the basis matrix B is square and nonsingular. The cor-
responding basic and superbasic variables xp and xs are free to vary between
their bounds during the next iteration.

It can readily be shown that an optimal solution of the above form exists for
which the number of superbasic variables is less than or equal to the number of
nonlinear variables. This point is discussed later in a more general context
(Sections 3.1 and 3.2).

2.1. Some aspects of the algorithm used in MINOS

The operators

. [B S N -B"'S
0

will be useful for descriptive purposes. The active constrainis (2.2) are of the
form A% = b, and Z happens to satisfy AZ =0.

Under suitable conditions a feasible descent direction p may be obtained from
the equations

Z'GZps= — ZTg, p = Zps

(see Gill and Murray [18]), where g is the gradient of the objective function
(2.1a). Thus, if the reduced gradient Z7g is nonzero and if the reduced Hessian
Z'GZ is positive definite (or if any positive definite matrix is used in place of
ZTGZ), then the point x -+ ap lies on the active constraints and some scalar a >0
exists for which the objective function has a lower value than at the point x.
Other matrices Z exist satisfying AZ = 0, but the form chosen above, together
with a sparse LU factorization of B, allows efficient computation of the
products Z'g and Zps. (Neither B™' nor Z is computed.) A positive-definite
approximation to Z'GZ is maintained in the form R'R where R is upper
triangular. Quasi-Newton updates to R iead to superlinear convergence.
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. Let the gradient of the objective function be partitioned as [gs, gs» gnl If @
satisfies

B'm=gs
it is easily seen that the reduced gradient is

ZTg = gs— S™m.

Hence in linear programming terminology the reduced gradient is obtained by
‘pricing’ the superbasic columns S. This is a cheap operation once # has been
computed.

Likewise for p we have R"Rps = — Z"g and then

PB —B ~1Sps
p=|Ps |=2Zps= ps )
PN 0
so most of the work lies in solving Bpg = — Sps. (The value py = 0 indicates that

no change will be made to the current nonbasic variables. As long as the reduced
gradient Z'g is nonzero, only the variables in [B S] are optimized. If any such
variables encounter an upper or lower bound they are moved into N and the
partition [B S] is suitably redefined.)

Note that if the reduced gradient does prove to be zero (Z"g = 0), the reduced
objective has reached its optimal value. If we compute o = gy — N'# (i.e., the
usual pricing of nonbasic columns) we then have

BT ['ﬂ'] - 1 4:]
ST o Bs |»
NT I en

so that = and o are exact Lagrange multipliers for the current active con-
straints. The components of ¢ indicate whether any nonbasic variables should
be released from their bounds. If so, one or more are moved from N into S and
optimization continues for the new set [B S]. If not, an optimum has been
obtained for the original problem.

In practice, optimization for each [BS] will be curtailed when Z'g is
sufficiently small, rather than zero. In this case o will be just an approximation
to the Lagrange multipliers for the general constraints. The accuracy of o will
depend on the size of | Z"g| and on the condition number of the current basis B.

2.2. Key points

The algorithm implemented in MINOS provides a natural extension of linear
programming technology to problems whose objective function is nonlinear. If
the number of nonlinear variables is moderate (or more precisely, if the number
of superbasic variables and hence the dimension of R is moderate), then the
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work per iteration is not substantlally greater than for one iteration of the
revised simplex method on the same data

Ll [

Here we assume that the cost of evaluating the objective function and its
gradient is moderate compared to manipulation of a sparse factorization of the
basis matrix B. At the same time it is important that the step-size a be
determined efficiently, The linesearch procedure used in MINOS/AUG-
MENTED is that of [19, 21], in the form of subroutine GETPTC. This employs
cubic interpolation with safeguards, and -allows the user to control the accuracy
of the search by means of a parameter ETA, where 0.0 =ETA < 1.0. Even with a
relatively accurate search (e.g., ETA =0.01), the number of function and
gradient evaluations required is typically very few (usually 1, 2 or 3 per search).
This is increasingly beneficial for the algorithm discussed next, where the
objective function is modified to include an arbitrary number of nonlinear
functions.

3. Extension to nonlinear constraints

3.1. Statermient of the problem

It is assumed that the nonlirearly constrained problem can be expressed in the

following standard form:

minimize f°(x)+¢"x +d"y, (3.1a)
subjectto  f(x)+ Ay =b; (m, rows), (3.1b)
Axx + Ag)' =pb, (m; I'OWS), (310)
ts[’y‘]su, m = m +my (3.1d)

where f(x) = [fi(x), ..., f™(x)]". The first n, variables x are again called ‘non-
linear variables’. They occur nonlinearly in either the objective function or the
first m; constraints. There may be purely linear constraints, (3.1c). As before, a
full set of slack variables is included as the last 1 components of the ‘linear
variables’ y, so that general equality and inequality constraints can be accom-
modated in (3.1b, ¢) by means of suitable bounds in (3.1d).

We shall assume that the functions f'(x) are twice continuously differentiable
with gradients g‘(x) and bounded Hessians G'(x),i =0, 1, ..., m;. We shall also
assume that the 1st and 2nd order Kuhn-Tucker conditions hold for a local
minimum x* with corresponding Lagrange multipliers A*.

The standard form above is essentially the same as the one adopted by Griffith
and Stewart [23]. Clearly, if the nonlinear variables x are given fixed values, the

e
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problem reduces to a linear program in y. Beale [6, 7] points ocut that it can be
usefu! to partition the variables further, such that the problem reduces to a linear
program when just some of the nonlinear variables are given fixed values.
Without loss of generality, x and f(x) can be expressed in the form

x=[5] f@=fe+ A 62

where the vector f(x™) and the matrix A(x") depend only on x. The objective
function can be partitioned similarly. The extent to which an optimal solution
deviates from a normal ‘basic solution’ is then bounded by the dimension of x¥
rather than the dimension of x. Although we do not exploit such structure
explicitly, it is important to be aware that reai-life models often arise in this
form. Hence, a model expressed in the simpler standard form (3.1) may not be as
nonlinear as it looks. This is fortunate, and we bear it in mind in formulating the
subproblem below,

The partitioning algorithms of Benders [8] and Rosen [46] were designed for
problems in the form (3.1) and (3.2) respectively (see Lasdon [29, Ch. 7]). With
certain restrictions, (3.2) also resembles the ‘variable coefficients’ form- of
Wolfe’s generalized linear program [14, Ch. 22].

3.2, The linearized subproblem

The solution process consists of a sequence of major iterations, each one
involving a linearization of the nonlinear constraints at some point x, cor-
responding to a first-order Taylor’s series approximation:

Fi(x) = fi(x) + g' ()" (x — 1) + Oflx —
We thus define
e, x) = FO0) + T () (x — x2),
or
f = fi + Ju(x — x) 3.3)

where J(x) is the m, X n; Jacobian matrix whose ijth element is afY/3x. We then
see that

f-f=0F~f)—JTix—-x)

consists of the higher order (‘nonlinear’) terms in the Taylor’s expansion of f(x)
about the point x;. '

At the kth major iteration of our algorithm, the following linearly constrained
subproblem is formed:

minimize L(x, y, xi, Ag, p) = f(x) + cix +dTy - AT -
®7 +1p(f - HTF -, (3.42)
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subject to  f+ Auy = by, ‘ (3.4b)
' Azx + A3y = bz, (3.40)
| < [’y‘] <u (3 4d)

The objective function L is a modified augmented Lagrangian, in which f - fis
used in place of the conventional constraint violation, f+ A,y — b;. The partial
derivatives are

3L _ %)+ e = U = 1A = p( - ) (3.5)

and 9L/dy = d. We see that the nonlinearities in L involve x but not y, which
means that the subproblem has the same nonlinear variables as the original
problem. Further, if the functions are written in the form (3.2} above, f(x) is by
definition a linear function of x“, and so f — f is identically zero when x" is held
fixed. Thus, in Beale’s generalized sense, L is effectively nonlinear in xN alone.
The dimension of the reduced Hessian for the subproblem is therefore bounded
in a way that is consistent with the nonlinearity of the original problem. This
property seems highly desirable.

The modified Lagrangian was used by Robinson [45] with p =0. The use of a
penalty term to ensure the augmented Lagrangian maintains a positive-definite
Hessian in the appropriate subspace was suggested by Arrow and Solow [3] and

adopted later by, among others, Hestenes [25] and Poweil [39] in their sequential’

unconstrained procedures, and by Sargent and Murtagh [50] in conjunction with
their ‘variable-metric projection’ algorithm involving a sequence of linearized
constraints. To our knowledge, the modified penalty function has not been used
elsewhere. Note that it is identical to the conventional penalty function in the
subspace defined by the linearized constraints.

A potential disadvantage of the quadratic penalty function has been pointed
out by Greenberg [22], namely, that it destroys separability if any fi(x) is the
sum of two or more separable functions. This means that the subproblems can
be solved by a separable programming code only in the case where each
Fi(x) = f'(x;) for some j, or in the convex programming case where the penalty
term is not required anyway.

3.3. Choice of A

The choice A, =0, p = 0 corresponds to simple sequential linearization of the
nonlinear constraints, with no additional terms to f%(x) in the objective function.
We shall call this the Newton strategy, although it should not be confused with
applying Newton’s method to the Kuhn-Tucker equations for a solution of (3.1).
This simplified procedure does converge in certain cases, particularly if the
solution is at a vertex (e.g., reverse-convex programs [47, 33, 26]).

LRI TR T
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Ideally, A, should be as close as possible to A¥*, but of course the optimal
multipliers are normally unknown. The simplest choice is Ay = A, the muitipliers
corresponding to linearized constraints at the solution of the previous sub-
problem. As we shall see, this choice is the best of several alternatives. For
convenience suppose there are no lingar constraints, so that A=mx is the
solution of BT# = gz at the end of the previous major iteration. We know that &
also satisfies ST = g5 (at least to within the convergence tolerance used for the
subproblem). We thus have

BT c__ |88
[ST]A h [gs]
and it is immaterial which variables are in B and which are in S. Now g is zero
for all slack variables and it follows immediately that A; = 0 if the ith linearized
constraint is inactive. The choice A, = A therefore ensures that an apparently
inactive nonlinear constraint will be excluded from the Lagrangian term Aj(f —
f) in the next subproblem. This is a desirable property.

It may seem that a better approximation to A* could be obtained by evaluating
the new Jacobian J(£) which is required anyway for the next subproblem. Let
the resulting ‘new’ [B S] be denoted by [B S1. One possibility is to define A, as
the solution of the least-squares problem

BT, _[s

[§T]A N [85]
where the rhs is still the ‘old’ gradient vector for the previous augmented
Lagrangian. However, this least-squares problem would be very expensive to
solve for large problems. Furthermore it is not guaranteed that A; =0 would
result where desired.

A cheaper alternative would be to solve B™@ = gp and take A, = 47, but then

A; = 0 for inactive constraints would be assured only if the corresponding slack

variable happened to be basic and not superbasic.
If the new B is to be used, the method of Sargent and Murtagh [50] shows that

BT\ =gy +[1 00]GLAx

would produce the correct multipliers for the solution of the new subproblem if
the original objective and constraints were quadratic and G, was an adequate
approximate to the Hessian of the new Lagrangian. (See equation (12) in [35].)
However, this again is not a practical alternative for large problems.

3.4. Choice of p

It is well known that x* need not be a local minimum of the Lagrangian
function (with p = 0). If we assume that J(x*) is of full rank, then A* exists and
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is such that
L(x,A)=f'x)}+c¢Tx +dTy — AT[f + Ay — b))

is stationary at (x*, A*), but L(x*, A*) may well display negative curvature in x at
x*,

The most that can be said [55] is that, if we consider the constraints satisfied at
x* as equalities and ignore the inactive ones, then a necessary (sufficient)
condition that x* is a local minimum is

*T§£ * Oy Ky =
Z(x™) ax(.vc LAY =0
and
2
2G4 25 (%, AMZ (e

is positive semidefinite (positive definite}, where Z(x*) is as defined in (2.3) using
J(x*) in the appropriate part of A.

Thus if we restrict our search to the linearly constrained subspace defined by
Z(x*) we do indeed seek a minimum of the Lagrangian, and we may expect that
when x, is sufficiently close to x* for J(x,) to be close to J(x*} we may minimize
(3.4a) with p =0. This is confirmed by Robinson’s theorem on quadratic con-
vergence [45].

Difficulty arises when x, is far removed from x*, since the linearized con-
straints may define a subspace where perhaps a saddle-point would be closer to
x* than a minimum would be. Successive minima of (3.4) with p=0 may
therefore fail to converge to x*. The addition of a penalty term p[f ~ f'[f — f]
- imposes the correct curvature properties on (3.4a) for a sufficiently large p > 0.

For general nonconvex problems it is not practical to determine a priori what
the appropriate order of magnitude p should be (indeed, p = 0 is often adequate
even in the nonconvex case). The more important consideration is when to
reduce p to zero, for we know that there is a radius of convergence around
(x*, A*) within which Robinson’s theorem holds for p =0, and we can then
expect a quadratic rate of convergence.

Two parameters we can monitor at the solution (£, A) to each linearized
subproblem are the constraint violation or ‘row error’,

52y + Ary = bil| = IF (&) — F(&) — F (£ %),

and the change in multiplier estimates, |A — A¢l. The question that arises is
whether these can be used to provide adequate measures of convergence toward
x*,

For simplicity, consider the equality-constrained problem

Py: minimize f%x),
subject to  f(x)=10
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where the functions of x are twice continually differentiable with bounded
Hessians. We shall assume that at some point x* the Jacobian J(x*) is of full
rank, there exists a A* such that 3f%éx = J(x*)"A%*, and the reduced Hessian
Z(x¥)T92L(x*, A*)/ax*Z(x*) is positive definite (i.e., the sufficiency conditions
are satisfied for x* to be a local optimum).

Theorem 1. Let (xi, Ax) be an approximate solution to Py and let (3, A) be a
solution to the linearized subproblem

S minimize  f%x)— AT - )+ - HTE- P,
subject to  f(x, x.) = 0.
If A-Ac=¢ and f(2)= e, then (%, A) is also a solution to the perturbed
problem
P minimize f°(x)+ (€, + pex) (f — N,
subjectto  f(x)= €

for sufficiently small e; and e,.

Proof. If (%, A) is a solution of S; we must have f=0and
2@ - (F - TN+ p(J — R -H=TIA

where J; is the Jacobian at x, but J, f and f are evaluated at £ Adding (J — J,)™A
to both sides and inserting the expressions for €, and e; gives

@+ - T e+ plf ~ ) e = J™x

which shows that (£, A) also satisfies the conditions for a stationary point of P;.
Now it can be shown that the Hessians for the Lagrangian functions of S, and P,
differ only by the amount p(f —JO)T(J = J,) at the solution of Py, which is of
order pllAx|? where Ax, = £ — x. Hence for sufficiently small €,, €; and Ax;, if
the reduced Hessian of S, is positive definite at £, then by continuity the reduced
Hessian of P, will also be positive definite, thus satisfying the sufficiency
conditions for a local minimum of P; at %.

It is of interest to examine the corresponding result for the conventional
penalty term.

Theorem 2. Let (x,, Ay) be an approximate solution to Py and let (%, A) be a
solution to the linearized subproblem

S,: minimize  f°(x) - AT~ )+ Lof"F,
subject to f(x, x)=40.

If A-A =€ and f(&)= e, then (%, A) is also a solution to the perturbed
problem
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P;: minimize  f°(x) + €[(f — f) + pelf,
subjectto  f(x) = e..

Proof. Analogous to the proof of Theorem 1.

Again it follows that if €, and €; are sufficiently small, (£, A) will be within the
radius of convergence of Robinson’s theorem and p can safely be reduced to
zero. A point of interest is that problem P, appears to be less sensitive than P; to
deviations from its optimum. Thus, let Ax be an arbitrary small change to the

solution £ of P,. The objective function for P, then differs from the true -

objective f°(x) by an amount

5= (& +pe)'f— ),
18] = (Jeill + plleOlAx]?.

For P, the analogous deviation is

8= €l(f — ) + peif
= €l(f — ) + pel(f + JAx + Ol x|,

184 = (leil + plledpOllaxl? + pllel’ + ol el Ax].

Since 8, is of order ||Ax| while 3, is of order ||Ax], it appears that the modified
penalty term in S; has a theoretical advantage over the conventional penalty
term of S,.

3.5. Summary of procedure

The cycle of major iterations can be described as follows:

Step 0. Set k=0. Choose some initial estimates xo, yo and Ay Specify a
penalty parameter p =0 and a convergence tolerance ¢, > 0.

Step 1. (a) Given xi, yi, Ax and p, solve the linearly constrained subproblem
(3.4) to obtain new quantities X1, yx+1 and & (where 7 is the vector of Lagrange
multipliers for the subproblem).

(b) Set A+ = the first m; components of .

Step 2. (a) Test for convergence (see Section 4.8). If optimal, exit.

(b) If

IF(ee) + Avyiar = Billf(1+{Exirs, B ]} < €
and

fss = A1+ M) = &,

then set p = 0.
(c) Relinearize the constraints at xg,..
(d) Set k =k + 1 and repeat from Step 1.

TR
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This procedure would not be complete without an algorithm for increasing the
penalty parameter in certain circumstances. In Step 2(b) of the present im-
plementation, we raise p by some factor if the relative change in A, proves to be

_very large.

4. Computer implementation

4.1. Sparse matrices

Using equation (3.3), the lincarized constraints (3.4b) can be expressed in the
form:

Jxt+Ay=b+hx—fi 4.1)

where fi = f(x¢). The terms on the right-hand side of (4.1) are constant and
become part of ‘b*, the current right-hand side. The set of linear constraints
‘Ax = b’ for each major iteration is thus of the form:

e IR e (4.2)

The major implication of A being large and sparse is that efficient methods are
available for forming and updating an LU factorization of the basis matrix B (cf.
(2.2)). (In particular, a ‘bump and spike’ algorithm [24] is used to preserve
sparsity at each refactorization of B. This occurs at the start of every re-
linearization and occasionally thereafter as necessary. At each intervening
change of basis the LU factors are updated using the scheme described by
Saunders [51] to preserve both sparseness and numerical stability.)

4.2. Infeasible subproblems

One of the difficulties with sequential linearization is that some of the
linearized subproblems may prove to be infeasible. In particular, the point [xy, y:]
used to define subproblem k is usually not a feasible point for the subproblem.
However, it will typically be feasible for the previous subproblem (and possibly
optimal). This can be used to advantage in the manner suggested by Powell [41].
Thus we write the linearized constraints (4.1) in the form

ka +A1y - b] +Ikxk _.fk + '}’q (43)

where yq is a perturbation to the right-hand side. If [x;, y] is the final feasible
point from subproblem k —1, we can show that it will also be feasible with
respect to the new linearized constraints (4.3) if y =1 and ¢ = f(x)— f(xk, Xi—1).
(Thus q is the value of f— f at the end of the previous major iteration.)

In MINOS/AUGMENTED the right-hand side of (4.3) is initialized with v = 0.
If the subproblem proves to be infeasible we add 3q to the right-hand side and

TaE -
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continue the solution process. If there is still no feasible solution we add ig, iq
and so on. This simulates the sequence of values y =3, 3, %, ... tending to 1 as
desired.

If the above procedure fails after 10 modifications, or if it is not applicable
(e.g., when k = 0 or the previous subproblem was infeasible), a new linearization
is requested as long as at least one minor iteration has been performed.
Otherwise the algorithm is terminated with the assumption that the original
problem itself is infeasible.

In [48], Rosen guards against infeasible subproblems by linearizing perhaps
only some of the nonlinear constraints, namely those that have been active or
reasonably close to active at any earlier stage. This alternative could be
implemented in MINOS/AUGMENTED by adjusting the bounds on the slack
variables associated with the linearized constraints.

4.3. User options

Various implementation options are discussed in the following sections. Capi-
talized keywords at the head of each section illustrate the input data needed to
select any particular option. Fuller details are given in the user’s manual [37].

4.4. Subroutines CALCFG and CALCON

VERIFY OBJECTIVE GRADIENT
VERIFY CONSTRAINT GRADIENTS

As in the linearly constrained version of MINOS, a user-written subroutine
CALCFG is required to calculate the objective function f°(x) and its gradient.
The Lagrangian terms in (3.4a} are calculated internally.

The user also supplies a subroutine CALCON to define the constraint vector
f(x) and the current Jacobian J(x). The nonzeros in J are returned column-wise
in an output vector and must be in the same order as the corresponding entries in
the MPS file (see below).

Subroutine CALCON is called every time the constraints are linearized. It is
also called one or more times each line search (except with the Newton
strategy), to allow computation of (3.4a) and (3.5). The expense of evaluating the
constraints and their gradients should therefore be taken into account when
specifying the linesearch accuracy.

Note that every function and Jacobian element is computed in every call to
CALCON. Although some of these values may effectively be wasted (e.g. if
some of the constraints are a long way from being active), the resulting
simplicity of the subroutine from the user’s point of view cannot be overem-
phasized.

Since the programming of gradients is notoriously prone to error, the VERIFY
option is an essential aid to the user. This requests a check on the output from
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CALCFG and/or CALCON, using finite differences or f°(x) of f(x) along the
coordinate directions. The check is performed at the first feasible point obtained
(where feasibility is with respect to the first linearized subproblem). This point
will not satisfy the nonlinear constraints in general, but at least it will satisfy the
linear constraints and the upper and lower bounds on x. Hence it is usually
possible to avoid singularities in the nonlinear functions, both in the gradient
check and in subsequent iterations.

4.5. Jacobian option
JACOBIAN = SPARSE or DENSE

The submatrices A,, Az, A; and vectors b, b, in (4.2) are constant data and so
may be entered using a standard MPS input file, as in linear programming,
whereby only the nonzero coefficients and their row locations are entered
column-by-column. Since we envisage that the Jacobian submatrix J will also be
large and sparse we use the same scheme for recording the row and column
locations of the nonzeros. Thus (with JACOBIAN = SPARSE) the sparsity
pattern of J is entered as part of the MPS file. The corresponding numerical
values in the MPS file may be genuine coefficients (if they are constant) or else
dummy values, such as zero. Each call to subroutine CALCON subsequently
replaces all dummy entries by their actual value at the current point x. }

Of course the intention here is to allow use of standard matrix generators to
specify as much of the constraint matrix as possible. Pinpointing the nonzeros of
J by name rather than number has the usual advantages, and in subroutine
CALCON some code of the form

LIAC=LJAC+1
G(LIAC) = ---

is usually adequate to define the next nonzero in a column of the Jacobian,
without explicit reference to any row or column numbers. Nevertheless, the user
is effectively required to give the sparsity pattern twice (in the MPS file and in
CALCON), and it is essential that mismatches be avoided. At present the
VERIFY option is the only aid to detecting incompatibility.

In the interest of simplicity, the option JACOBIAN = DENSE allows J to be
treated as a dense matrix. In this case the MPS file need not specify any
¢lements of J, and subroutine CALCON can use assignment statements of the
form G(I,J)=--- to specify J; by row and column number. The danger of
mismatches is thereby eliminated, but the storage requirements may be excessive
for large problems. It may also give rise to an unnecessarily large ‘bump’ in the
basis factorizations.
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4.6. Partial completion
COMPLETION = PARTIAL or FULL

Partial completion is a compromise between the two extremes of relinearizing
after each linesearch and solving each subproblem to high accuracy (full
completion).

The idea of attaining only partial completion at each major iteration can be
accommodated effectively via the convergence tolerances. Following Gill and
Murray [20], MINOS uses relatively loose tolerances for minimizing the reduced
objective, until it appears that the optimal partition [B S N] has been identified.
The partial completion option is effected by terminating a major iteration at this
stage.

Otherwise for full completion the normal optimization procedure is continued
using tighter tolerances to measure the change in x, the size of the reduced
gradient (|Z7g[/fl=r|), etc. This usually gives only small changes in x and =
without changing the partition [BS N].

An alternative means for achieving partial completion for early major itera-
tions is via the MINOR ITERATIONS limit {(see Section 4.8).

4.7. Lagrangian option, penalty parameter
Newton strategy: LAGRANGIAN NO
PENALTY PARAMETER 0.0

With this option the constraint functions and gradients are evaluated only once
per major iteration.

Augmented Lagrangian: LAGRANGIAN YES
PENALTY PARAMETER p (p=0)

Here the constraints and Jacobian are evaluated as often as the objective.
Evaluation of the augmented Lagrangian and its gradient with p > 0 is negligibly
more expensive than with p =0,

4.8. Convergence conditions

MAJOR ITERATIONS 60
MINOR ITERATIONS 40
RADIUS OF CONVERGENCE e (=107
ROW TOLERANCE & (=107

Apart from terminating within each major iteration, we also need a terminating
condition for the cycle of major iterations (Step 2(a), Section 3.5).

The point [xy, yi] is assumed to be a solution to the nonlinearly constrained
problem (3.1} if both the following conditions are satisfied:
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(D [xe 3] satisfies the nonlinear constraints (3.1b) to within a predefined error
tolerance, i.e.,

||f(xk) + Ay — billi(1+ [[x, yedl) = e

(2) [x«, y.] satisfies the first-order Kuhn-Tucker conditions for a solution to the
linearized problem,

The tolerance parameter ¢, is specified by the user, and was set equal to 107
for most of the test problems described in the subsequent sections.

If the partial completion option is used, then once these two criteria are
satisfied, a switch to full completion is invoked to obtain an accurate sclution for
the current subproblem, as well as for any possible further linearizations.

The error tolerance e, is used to define a radius of convergence about (x*, A %)
within which Robinson’s theorem is assumed to hold. If the row error defined
above and the relative change in Lagrange multipliers between successive
subproblems are both less than e, in magnitude, then the penalty term is dropped
(i-e. p is set to 0.0).

The MINOR ITERATIONS limit is used to terminate each linearized sub-
problem when the number of linesearches becomes excessive. The limit of 40
was used in most of the numerical experiments. A much smaller number would
result in more frequent use of expensive housekeeping operations such as the
refactorization of B. Similarly a much larger number may be wasteful; if
significant changes to x have occurred, then a new linearization is appropriate,
while if there has been little progress, then updating the Lagrangian information
gives some hope of more rapid progress. _

It must be noted that for some choices of xq, Ay and p the sequence of major
iterations may not converge. The MAJOR ITERATIONS limit provides a
safeguard for such circumstances.

For a discussion of linearly constrained Lagrangian methods and their draw-
backs see Wright [55, pp. 137-147].

In the present implementation of MINOS/AUGMENTED, if convergence
does not occur, the only recourse is to restart with a different (xy, Ap) or a larger
value for the penalty parameter p (or both).

5. Test problems

Most of the test examples reported here appear in the published literature. The
last two examples are new and are described in detail. They can be made
arbitrarily large by increasing one parameter.

5.1. Colville No. 2

This well known problem is one of the more testing of the Colville series of
problems [12] and has been used frequently to compare different algorithms [2,



————e

102 B.A. Murtagh and M. A, Saunders/Sparse nonlinear constraints

17, 45, 50]. It has a cubic objective function and 15 quadratic constraints. Even
in this small problem the variables can be partitioned into linear and nonlinear
sets, of dimension 10 and 5 respectively.

(a) Feasible starting point.

{(b) Infeasible starting point.

5.2. Colville No. 3

This problem has a quadratic objective function of five variables and three
quadratic constraints. It also has upper and lower bounds on all the variables,
and upper and lower limits on the constraints. These can be accommodated
effectively by using the BOUNDS and RANGES options in the MPS file; the
BOUNDS option allows variables to be nonbasic at their upper or lower bound,
and the RANGES option assigns both upper and lower bounds to the slack
variables associated with the constraints (thus allowing the right-hand side to
range between bounds),

(a) Feasible starting point,

(b) Infeasible starting point,

5.3. Coluille No. 8

This is a typical process design problem, where some of the variables are
determined by solving nonlinear equations. It has 3 independent variables and 7
constraints.

5.4. Powell’s problem [40]

This has 5 variables and 3 constraints. Although small, this is a good test
problem as the nonlinearities in the constraints are quite significant.

minimize exp(x;xzx;x4Xs},

subject to xi+xi+xi+xi+xi=10,
X2X3 = 5X4Xs =,
X1+ x3 =—1,

Starting point: (-2, 2,2, -1, —1).

3.5. Power scheduling

This is a comparatively large test problem reported recently by Biggs and
Laughton [10], with 79 variables and 91 constraints (all nonlinear). It also has
upper and lower bounds on some of the variables. Although all the variables and
constraints are nonlinear, the linearized constraint matrix J¢ (4.3) is quite sparse,
with on average a little under 6 nonzero row entries per column. Treating it as a
dense matrix could result in a ‘bump’ of 79 columns, which is clearly undesir-
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able. A number of minor discrepancies between Biggs and Laughton’s paper and
the original statement of the problem [53] were resolved by using the original
data.

5.6. Launch vehicle design

This problem appears in Bracken and McCormick’s book on nonlinear pro-
gramming applications [11] and also appears in [49]. There are 12 linear con-
straints and 10 nonlinear constraints, and the Jacobian of the nonlinear con-
straints is quite sparse (density 23%), yielding an overall matrix density of 15%.
All 25 variables are nonlinear.

5.7. Quartic with quartic consiraints

This problem appears in Pierre and Lowe [38]. Only a few terms are quartic,
the remainder being predominantly quadratic. It has 20 variables (all nonlinear)
and 17 constraints, 13 of which are nonlinear.

5.8. Dembo No. 7

This is one of Dembo’s set of 8 Geometric Programming test problems [15]; in
particular, it required the most computation time in Dembo’s results. Other
authors have reported difficulty with the problem [13, 42]. There are 16 variables
(all nonlinear) and 19 general constraints (11 of them nonlinear). The solution has
a few primal and dual degeneracies, but it is essentially at a vertex of the
constraint space (i.e., a vertex of the final linearization),

5.9. Wright No. 4 [55]

This is a highly nonlinear non-convex problem for which four local minima
have been determined.
minimize  (x;— 1)* + (x; = x2)* + (%2 — x3)* + (x3 = x4)* + (% x5)%,
subjectto x;+x3+x3=2+3V2,
Xa— X3+ x4 = =2+2V2,
XiXs5= 2.
Starting points:
(@ (1,1, L1,1,
(b) 2,2,2,2,2),
(C) (— Il, 3: —%! _29 _3),
(d) (—1’ 2: 1, —2, _2)s
(e) (-2,-2,-2,-2,-2).
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Local optima:
x*(1) = (1.11663, 1.22044, 1.53779, 1.97277, 1.79110),
x*(2) = (—2.79087, —3.00414, 0.205371, 3.87474, —0.716623),
x*(3) = (—1.27305, 2.41035, 1.19486, —0.154239, —1.57103),
x*(4) = (—0.703393, 2.63570, —0.0963618, —1.79799, —2.84336).

5.10. Wright No. 2 [55]
This is another highly nonlinear example.

minimize 10x,%; — 6x3x3 + x2x7 + 9 sin{xs — x3) + xx2x3,
subject to xI+x3+x3+x2+x%=20,

i txxs =-2,

x3x,+ 10x,x5 = 5.

Starting points:
(@ (1,1,1,1, 1),
(b) (1.091, —3.174, 1.214, —1.614, 2.134).

_ Local optima;

x*(1) = (—0.0814522, 3.69238, 2.48741, 0.377134, 0.173983),

x*(2) = (1.47963, —2.63661, 1.05468, —1.61151, 2.67388).
With the barrier trajectory algorithm, Wright [55] obtained convergence to x*(1)
from (a} and convergence to x*(2) from (b). Note that starting point (b) was

originally chosen to cause difficulty for the barrier algorithm and other methods
that retain feasibility throughout.

5.11. Optimal control

This problem investigates the optimal control of a spring, mass and damper
system. It is adapted from [44]. While it is acknowledged that there may be
simpler ways of solving the problem by taking specific advantage of the nature
of the constraints, it serves the present purpose of providing a large, sparse test
problem.

T
minimize f(x,y, u) = %E;xi,
1=

subject to  x,. =x, + 0.2y,
Ve = ¥ — 0.01y2— 0.004x, + 0.21,
—02=u, =02
w=-10
x0=10,3=0,y7r =0.
Starting point: x, =0, yy=-1,t=1,..., T.
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For the results below we set T = 100, There are thus 202 nonlinear variables
(xt, ¥, £ =0, ..., 100} and 100 linear variables (#, t =0, ..., 99). There are also 100
quadratic constraints and 100 linear constraints. Note that the nonlinear con-
straints are very sparse, with only 4 nonzeros per row.

The solution is dominated to a large extent by the lower bound on y,; the
optimal y, decreases with increasing ¢ and remains at —1.0 from ¢ =20 to t = 40,
and then increases again, goes slightly positive and settles to 0.0 at £ = 100. The
corresponding values of x; can be calculated directly from the linear constraint
Xe+1= X + 0.2y The optimal value of the objective is Jjx|* = 1186.382.

5.12. Economic growth model (Manne [31])

This is a model for optimizing aggregate consumption over time. The variables
are C, I, and K, which represent consumption, investment and capital in time
period t fort=1,.., T.

Utility function:

T
maximize Y, 8 log. C..
t=1

Nonlinear constraints:
eKi=C+1, 1=t=T
Linear constraints:
Kay=K/+IL 1=t<T,
~gKr = Ir.
Bounds:
Ki=Iy+ K,
K=+ K
Ci=0Cy
L=zl
I =(1.04YL,
Data:
B =0.95, b =0.25, g =0.03,
Co=10.95, Is=0.05, Ky,=3.0,
B =B' except Br=pB"/(1-p),
a; = a(l+ )" where a = (Co+ Ip)/K{.

With b in the range [0, 1], this is a convex program with separable nonlinear
functions. It should therefore be a useful test problem for more specialized
convex programming algorithms.
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For test purposes we have used T = 100, which gives a problem with 200
general constraints and 30{ variables. The optimal value of the utility function is
9.287547. All general constraints are active at the solution, and the first 74 upper
bounds on I, are also active.

It should be mentioned that specialized methods are known to economists for
solving this problem, with and without the upper bounds (‘absorptive capacities’)
on the variables I, However, in more practical circumstances the model would
be imbedded in a much larger mode! for which an analytical solution is not
known. If the larger model contains no additional nonlinearities, the per-
formance of MINOS/AUGMENTED should degrade only in proportion to the
problem size.

6. Resulis and discussion

MINOS/AUGMENTED is implemented in standard FORTRAN. Various
options can be selected at run-time by means of a SPECS file, and initial vectors
Xo, yo, and Ay can be specified in the MPS file containing the constraint data.

For the present results, some components of x, were specified to match the
given starting point, if any. (The corresponding variables were initially super-
basic at the specified values.) Any remaining variables in {x,, yo] were subjected
to a normal CRASH start, in which a triangular basis is selected from the
associated columns of the Jacobian matrix. (The resulting initial values for these
variables are not predictable.) The default value A, =0 was used. The following
parameter values were also specified:

LINESEARCH PARAMETER ETA =0.1  (moderately accurate search),

RADIUS OF CONVERGENCE =0.01 (e in Section 3.5),
ROW TOLERANCE =10"% (e in Section 4.8),
MINOR ITERATIONS LIMIT =40 (not active on small examples).

Run-times are reported below in order to allow comparison among various
algorithmic options. For the Lagrangian algorithm, the item labeled ‘Functions’
means the number of times the objective and the constraints and all of their
gradients were evaluated. For the Newton procedure, ‘Functions’ means the
number of times the objective and its gradient were evaluated; the number of
constraint and Jacobian evaluations is equal to the number of major iterations.

6.1. Problems 5.1-5.8

These examples were solved on a CDC Cyber 70. In all cases, convergence
was obtained with zero penalty parameter p. The results are summarized in
Table 1. In general the partial completion option converged more rapidly than
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full completion. However, Example 5.4 illustrates that fewer major iterations are
likely if subproblems are solved accurately once the correct subspace has been
identified. This was observed in several other cases and is probably explained by
the discussion of Ay in Section 3.3. In terms of total run-time the Newton
strategy was often superior, but it failed to converge on Problems 5.4 and 5.5.
This deficiency becomes more prominent in the examples below.

Problem 5.8 was run with two different MINOR ITERATIONS limits (3 and
40, which could have been 3 and 15 without altering the comparison). The results
illustrate that terminating major iterations early can sometimes help rather than
hinder.

6.2. Problems 5.9-5.12

The results for these examples were obtained on an IBM 370/168 using the
FOrRTRAN H Extended (Enhanced) compiler with full optimization (OPT(3)).
Computation was performed in double precision, but the constraint data were
stored in single precision, including J, in the linearization of f(x). This limits the
achievable constraint error to about 107, but that is usually adequate in practice.
Full completion was used throughout.

Problem 5.9 (Wright No. 4)

This highly nonlinear problem illustrates the difficulties discussed in Section
3.4 when no penalty term is used. The Newton stratcgy and the Lagrangian
algorithm with p = 0 both gave rise to subproblems which changed radically each
major iteration.

The results using the Lagrangian algorithm with p = 10 and p = 100 are shown
in Table 2.

Infeasible subproblems were encountered with starting point (e) using the
penalty parameter p = 10, but the procedure discussed in Section 4.6 success-
fully overcame this difficulty. Case (e) was also the only one for which the larger
p was important in stabilizing progress from the starting point to the solution.

6.3. Problem 5.10 (Wright No. 9)

Again the Newton strategy and the Lagrangian algorithm with p = 0 failed to
converge. Results for the Lagrangian algorithm with p =10 and p =100 are
shown in Table 3.

A value of p =10 is almost too low for starting point (b), the subproblem
solutions changing radically as they did for p = 0, but finally converging to a new
local optimum, x*(3) = (-0.07427, —3.69170, 2.48792, 0.37693, 0.18446)".

In general the results for these last two problems are inferior to those obtained
by Murray and Wright [34, 55] with their trajectory algorithms, in terms of total
function evaluations. However, the difference is less than a factor of 4 in all
cases, and averaged 2.2 over the seven starting points.
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Table 3
Results for Test Problem 5.10 (Wright No. 9)

Starting point (a) (b)

o 100 10 160 10
Major itns 12 9 5 9
Total itns 92 71 32 201
Functions 183 146 61 386
Solution x*(1) ¥ x*(2) x*(3)
Table 4

Results for Test Problem 5.11 (optimal

control)

Method N L{p=0

Major itns 6 6

Total itns 254 247

Functions 213 203

Time (s) 10.55 11.56

6.4. Problem 5.11 (Opiimal control)

Despite the large size of this problem both the Newton strategy and the
Lagrangian algorithm with p =0 converged rapidly. Recall that procedure N
evalvuates the constraint functions only once per major iteration {in this case 6
times compared to 203 times for procedure L). If f(x) were more costly to
compute, the time advantage would be that much greater. The Lagrangian
algorithm displayed insensitivity to nonzero values of p in the range 0.01-10.0,
taking the same iterations and calculations as shown in Table 4.

6.5. Problem 5.12 (Economic growth)

On this example the Newton strategy led to oscillation and no convergence.
The Lagrangian algorithm did converge rapidly with p = 0. Without the upper
bounds I, =(1.04)'I, it required 11 major iterations, 355 minor iterations, 859
function calculations and 34.3 seconds, and there were 99 superbasic variables at
the optimal solution. However when these bounds were imposed, the optimal
number of superbasics was only 25 and convergence was obtained in 7 major
iterations, 183 minor iterations, 497 function calculations and 11.9 seconds. This
illustrates the gains that are made when the presence of constraints reduces the
dimensionality of the optimal subspace.

As an experiment on the effect of p on the rate of convergence the problem
was solved several times with different values of p in the range 107* =p =1.0.
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Fig. 1. Solution of Problem 5.12 (Economic growth) using various values for the penalty parameter

p- The constraint violation, logwllf(x}+ Aty — bi. is plotted against minor iteration number. Dots
signify the end of each major iteration.

(The tolerance €. for dropping p was set to zero, thus forcing p to stay constant
for each run.) The results are shown in Fig. 1. This is a plot of minor iterations
versus log of the constraint violation or ‘row error’, logylf(x)+ Ay — by,
immediately following relinearization. The dots represent the end of each major
iteration. Initially these occur every 40 iterations (the MINOR ITERATIONS
limit) but later subproblems were solved accurately before the limit was reached.
In fact the number of minor iterations reduces rapidly to only one or two per
subproblem as convergence is approached. This behavior was also observed in
all of the preceding examples.

It can be seen that higher values of p give lower row errors at the end of the
first major iteration (as we would expect), but they lead to consistently slower
convergence. It is interesting to note that rapid convergence does occur ulti-
mately in all cases (except for p = 1.0 which was terminated after 500 iterations).
However, this is not until the correct active constraints have been identified, by
which time x; is very close to the optimum and the penalty term is having a
negligible effect on the Lagrangian and its reduced gradient.

These results confirm that the benefit of Robinson’s proof of guadratic
convergence for the case p = 0 cannot be realized unless p is actually reduced to
Zero as soon as precautions allow.

The dotted line in Fig. 1 shows the result for p = 1.0 (the worst case) with e,

-set to 0.01, allowing p to be reset to zero at the start of major iteration 3. (Note
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that on the highly nonlinear Examples 5.9 and 5.10, the same value of €. ensured
that p was not set to zero until a near optimum point was reached. This was the
desired effect since the multiplier estimates A, were changing radically in the
early major iterations.)

It will be seen in Fig. 1 that the row error increases sharply once p is reset to
zero. This is consistent with the algorithm suddenly being free to take a large
step. We could therefore regard the first two major iterations as having served to
verify that the problem is only mildly nonlinear.

6.6. Other results

Successive linear programming (SLP) algorithms have been used in industry
for many years [4, 7, 23] on problems of the type discussed here. Some informal
comparisons [32] on the Colville problems indicate that SLP is likely to require
more iterations and function evaluations than the Lagrangian algorithm given
here. However, it is clearly unwise to draw any firm conclusion from a few small
test cases. We hope that comparison with SLP on a large model will be possible
in the near future.

Generalized reduced-gradient (GRG) algorithms [1] have also been in use for
many years. In particular, the large-scale implementation MINOS/GRG [27, 30]
has been applied to a variant of Manne’s economic growth model (Problem 5.12).
The results reported in [30] show that the GRG algorithm required very many
function evaluations for the case T = 40 (considerably more than the numbers
given above for the Lagrangian algorithm in the larger case T = 100). This is
consistent with GRG’s emphasis on retaining feasibility at the expense of many
short steps that follow the curvature of the constraints.

Table 5
Iterations for air pollution model
Major Iterations to find a Total minor Constraint violation JAres — Al
iteration feasible point for iterations after termination 1+ A
k subproblem S for S of Sy
1 1554 0 0 1554
2 0 1000 0.50 0
3 289 1000 0.27 0.02
4 11 600 0.58 0.28
5 126 626 0.51 0.45
6 12 204 0.29 0.40
7 7 172 0.15 0.49
8 i 167 0.067 0.38
9 4 196 0.022 0.27
10 0 82 0.0035 0.21
11 0 22 0.00041 0.05
12 0 2 0.0000058 0.002
13 0 | — —
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6.7. A practical application

To date, the largest nonlinear programs solved by MINOS/AUGMENTED
have come from an energy production model concerned with air pollution
control [28]. One example of the model involved about 850 constraints and 4150
variables. The objective function was nonlinear in 225 of the variables (a sum of
terms of the form e* and e™%), and 32 of the constraints were quadratic in 78 of
those variables (ellipsoids of the form x"Ex = 8; with E; positive semidefinite).

Some statistics follow for the solution of this problem [28]. A cold start was
used with default values for all parameters, except that the MINOR ITERA-
TIONS limit was set to the unusually high value of 1000.

Major iterations (number of subproblems) 13
Minor iterations 5626
Objective function and gradient evaluations 5955
Constraint function and gradient evaluations 5968
Active nonlinear constraints at optimum 12
Superbasic variables at optimum 18

CPU time on a DEC VAX 11/780 63 minutes

Details for each major iteration are given in Table 5, where S, denotes the kth
subproblem. The high MINOR ITERATIONS limit probably just reduced the
number of major iterations, without having a substantial effect on the total work

“required. The first subproblem was terminated at the first feasible point, since

the limit on minor iterations had then been exceeded. By chance, this point was
also feasible for the original problem. As a result, the penalty parameter p was
then reduced to zero, the ideal value for a convex program such as this. (In
general, however, it seems clear that the criterion for reducing p should not take
effect if the most recent subproblem was terminated short of optimality.)

The next two subproblems were principally concerned with optimizing the
objective function, without much regard for the nonlinear constraints. There-
after, the constraint violation decreased steadily and, ultimately, quadratically.
(The quantity shown is the largest violation, normalized by the size of the
corresponding constraint gradient, [le1{Jis: A/, and by the solution size,
1+ ||[xi, y]|) The Lagrange multiplier estimates converged more slowly as might
be expected, but it is known that this does not inhibit the final rapid convergence
of x.

7. Conclusions

Many real-life optimization problems originate as linear programming models
that are not quite linear; i.e., they contain simple, differentiable functions in the
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constraints and objective, but otherwise the constraint set is large, sparse and
linear. For such problems the Jacobian matrix is also likely to be sparse, and the
strategy of solving a sequence of linearly constrained subproblems has many
advantages. This is clear from the results obtained for the larger test problems
above.

For convex problems the Lagrangian term in the objective of the subproblems
is usnally neccssary to ensure convergence. The Newton strategy performed
adequately without it on some occasions, but in general the saving in run time
will seldom be substantial.

For non-convex problems, both the Lagrangian and the penalty term are
clearly useful but the actual choice of the penalty parameter p remains a critical
decision for the user. In practice, optimization problems are often solved
repeatedly on a production basis. In this situation it is worthwhile experimenting
with different values of the parameters and tolerances (and perhaps with the
Newton strategy). However, the case of an isolated problem with unknown
characteristics is no less important. A conservative (high} value of p is then
virtually mandatory. One of our aims has been to minimize the risk of sub-
sequent slow convergence by determining an opportune time to reduce p to zero.
The analysis in Section 3.4 has suggested a practical procedure for achieving this
aim. In particular, the ‘radius of convergence’ tolerance e (applied to both the
constraint violation and the relative change in the estimates of A} allows early
removal of p in moderately nonlinear cases but otherwise retains it until

convergence to a local solution is imminent.

The results reported here should provide a benchmark for measuring the
performance of other algorithms and their implementations. Clearly no single
algorithm can be expected to perform uniformly better than all others in such a
diverse field as nonlinearly constrained optimization, As it happens,
MINOS/AUGMENTED has proved to be reasonably efficient on small, highly
nonlinear problems, but more imporiantly, it represents an advance in the
development of general-purpose software for large-scale optimization. Future
research could include an investigation of the following:

(a) Comparison with other large-scale algorithms such as SLP.

(b) An algorithm for adjusting the penalty parameter between subproblems.

(c) Alternative means for obtaining multiplier estimates A,.

{(d) Use of a merit function to evaluate the connection between consecutive
subproblems; e.g., to allow interpolation between the points (x, A¢) and
(xi41, Axs1) Of the present algorithm.

{e) Methods for the case where some or all of the gradient functions are not
available.
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Availability

MINOS/AUGMENTED is distributed by the Systems Optimization Labora-
tory, Department of Operations Research, Stanford University, Stanford, CA
94305. Most of the source code is portable and can be installed on any
reasonably large system that includes a FORTRAN IV compiler. The distribution
tape contains source code for most of the current scientific computers. It also
contains some routines [43] to facilitate the solution of sequences of related
problems.

Added in proof

Since this paper was submitted, some particularly successful results have been
obtained on.electric power scheduling (optimal power flow) problems considerably
larger than problem 5.5 above. This is an application where a good starting basis
presents itself naturally. Some approximate statistics for a 600-bus Q-dispatch case
follow [56]: 1200 nonlinear constraints, 1300 variables, 10 000 Jacobian nonzeros;
15 major iterations, 370 minor iterations, 700 function evaluations, 1 hour of CPU
time on a DEC VAX 11/780.
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