
SYSTEMS OPTIMIZATION LABORATORY
DEPARTMENT OF MANAGEMENT SCIENCE AND ENGINEERING

STANFORD UNIVERSITY
STANFORD, CALIFORNIA, USA

MINOS 5.51 USER’S GUIDE

by

Bruce A. Murtagh† and Michael A. Saunders‡

TECHNICAL REPORT SOL 83-20R

December 1983
Revised September 23, 2003

Copyright c© 1983–2002 Stanford University

†Graduate School of Management, Macquarie University, Sydney, NSW, Australia
(bruce.murtagh@gsm.mq.edu.au).

‡Dept of Management Science and Engineering, Terman Building, Stanford University, Stanford,
CA 94305-4026, USA (saunders@stanford.edu).

Research and reproduction of this report were supported by the Department of Energy contract
DE-AM03-76SF00326, PA No. DE-AT03-76ER72018; National Science Foundation grants MCS-
7926009, ECS-8012974 and CCR-9988205; the Office of Naval Research contracts N00014-75-C-0267
and N00014-02-1-0076; and the Army Research Office contract DAAG29-81-K-0156.

Any opinions, findings, and conclusions or recommendations expressed in this publication are those
of the authors and do not necessarily reflect the views of the above sponsors.

Reproduction in whole or in part is permitted for any purposes of the United States Government.

ii

Contents

Preface to MINOS 5.51 vii

Preface to MINOS 5.0 xv

1 Introduction 3
1.1 Linear Programming . 4
1.2 Problems with a Nonlinear Objective . 5
1.3 Problems with Nonlinear Constraints . 7
1.4 Problem Formulation . 9
1.5 Restrictions . 10
1.6 Storage . 10
1.7 Files . 11
1.8 Input Data Flow . 11
1.9 Multiple SPECS Files . 12
1.10 Internal Modifications . 13

2 User-written Subroutines 15
2.1 Subroutine funobj . 15
2.2 Subroutine funcon . 17
2.3 Constant Jacobian Elements . 19
2.4 Subroutine matmod . 19
2.5 Warm and Hot Starts . 22
2.6 Subroutine matcol . 23

3 The SPECS File 25
3.1 SPECS File Format . 26
3.2 Options for the MPS File . 27
3.3 Options for Linear Programmming . 30
3.4 Options for All Problems . 31
3.5 Options for Nonlinear Objectives . 35
3.6 Options for All Nonlinear problems . 36
3.7 Options for Nonlinear Constraints . 41
3.8 Options for Input and Output . 45

4 MPS Files 49
4.1 MPS File Headers . 49
4.2 The NAME Header . 50
4.3 The ROWS Section . 50
4.4 The COLUMNS Section . 51
4.5 The RHS Section . 52

iii

4.6 The RANGES Section (Optional) . 53

4.7 The BOUNDS Section (Optional) . 54

4.8 Comments . 56

4.9 Restrictions and Extensions in MPS Format . 56

5 Basis Files 57

5.1 NEW and OLD BASIS Files . 57

5.2 PUNCH and INSERT Files . 59

5.3 DUMP and LOAD Files . 61

5.4 Restarting Modified Problems . 62

6 Output 65

6.1 The PRINT file . 65

6.1.1 The major iteration log . 65

6.1.2 The minor iteration log . 67

6.1.3 Crash statistics . 70

6.1.4 Basis factorization statistics . 70

6.1.5 EXIT conditions . 72

6.1.6 Solution output . 76

6.2 The SOLUTION file . 79

6.3 The SUMMARY file . 79

7 Subroutine minoss 81

7.1 Subroutine minoss . 81

7.2 Subroutine mispec . 86

7.3 Subroutines miopt, miopti, mioptr . 86

7.4 Example Use of minoss . 88

7.5 MINOS(IIS): Debugging Infeasible Models . 97

8 Library Subroutines 99

8.1 Subroutine mititle . 99

8.2 Subroutine mistart . 99

8.3 Subroutine micore . 100

8.4 Subroutine minos . 101

8.5 Subroutine micmps . 101

8.6 Subroutine micjac . 102

8.7 Subroutine mirmps . 103

8.8 Subroutine miwmps . 105

9 Examples 107

9.1 Linear Programming . 108

9.2 Unconstrained Optimization . 110

9.3 Linearly Constrained Optimization . 111

9.4 Nonlinearly Constrained Optimization . 115

9.5 Use of Subroutine MATMOD . 130

9.6 Things to Remember . 132

iv

A System Information 137
A.1 Distribution Files . 137
A.2 Source Files . 138
A.3 COMMON Blocks . 139
A.4 Subroutine Structure . 139
A.5 Matrix Data Structure . 140

v

vi

Preface to MINOS 5.51

This manual is a revision of the 1983 MINOS 5.0 User’s Guide. The main changes implemented in
MINOS 5.51 are summarized here.

1. MINOS is now callable as a subroutine (see Chapter 7). The stand-alone form of MINOS

reads constraint data from an MPS file, whereas subroutine minoss has the same information
passed to it as parameters. In these notes the term MINOS usually refers to both cases, but
occasionally we need to distinguish between them.

2. Upper and lower case may be used in the Specs file. Numerical values may contain up to 16
characters. For example,

Iterations limit 2000

Lower bound -1.23456E+07

3. The default values of some options have changed as follows:

Print level 0

Print frequency 100 (alias Log frequency)

Summary frequency 100

Hessian dimension 50

Superbasics limit 50

Crash option 3 (new default and new meaning)

Scale option 2 for LP, 1 for NLP

Factorize frequency 100 for LP, 50 for NLP

LU Factor tolerance 100.0 for LP, 5.0 for NLP

LU Update tolerance 10.0 for LP, 5.0 for NLP

Partial price 10 for LP, 1 for NLP

Check frequency 60

Penalty parameter 1.0 is equivalent to old default

4. Derivative level 0 requests a function-only search, even if funobj and funcon compute all
gradients. The linesearch calls these routines with mode = 0, not mode = 2. An extra call
with mode = 2 is needed after the search, but the net cost may be less if gradients are very
expensive (e.g., if the user is estimating them by differences).

5. funobj and funcon may now return mode = −1 to mean “My nonlinear function is unde-
fined here”. During normal iterations, this signals the linesearch to try again with a shorter
steplength.

Previously, if funobj or funcon returned mode < 0, it meant “Please terminate”. To request
termination now, set mode ≤ −2.

vii

6. Crash option 2 and 3 have been altered. The Crash procedure chooses a triangular basis
from various rows and columns of (A I). In some cases it is called more than once as follows:

Crash option 0 chooses the all-slack basis B = I.
Crash option 1 calls Crash once, looking at all rows and columns.
Crash option 2 calls Crash twice, looking at linear rows first.

Nonlinear rows are treated at the start of Major 2.
Crash option 3 (default) calls Crash three times, looking at linear

equality rows first, then linear inequalities, then
nonlinear rows (if any) at the start of Major 2.

7. For problems with many degrees of freedom (lots of superbasic variables), experience suggests
the following. Up to a certain point, it is best to provide a full triangular matrix R for the
“reduced Hessian approximation” used by the quasi-Newton algorithm. For example,

Hessian dimension 1000

Superbasics limit 1000

would be suitable for most practical models. However, if the number of superbasic variables
does reach 1000, considerable computation is needed to update the 500,000 elements of the
dense matrix R.

For more extreme cases it may be better to work with a smaller matrix R:

Hessian dimension 100 or 200

Superbasics limit 5000

(e.g., for optimization with many variables and few constraints). The number of iterations
and function calls will increase substantially. The functions and gradients should therefore be
cheap to evaluate.

For general problems with many degrees of freedom, consider LANCELOT. For large problems
with bound constraints only, consider LBFGS-B or LANCELOT. Both systems are available
via NEOS: http://www.mcs.anl.gov/home/otc/

8. Jacobian = Dense or Sparse is still needed with MPS files, but need not be specified when
subroutine minoss is used.

9. The Minor iterations limit now applies to the feasible iterations in each major iteration. Any
number of (infeasible) minor iterations are allowed while MINOS iterates towards a “feasible
subproblem”.

The first major iteration is special—it stops as soon as the original linear constraints are
satisfied.

For later major iterations, if the log says 50T and the Minor iterations limit is 40, we know
that 10 minor iterations were needed to satisfy the linearized constraints of the subproblem,
and a further 40 were spent optimizing the subproblem before it was terminated by the Minor

iterations limit.

10. Penalty parameter 1.0 is now the default, and it is relative to the old default of 100/m1,
where m1 is the number of nonlinear constraints. Penalty parameter 2.0 means twice the
default value. This makes it easier to experiment with.

11. It is possible to turn off all output to the Print and Summary files. The Print and Summary
options are as follows:

viii

Print file 0 No output to Print file.
> 0 Output to specified file.

Print level 0 One line per major iteration.
> 0 Full output as before.

Print frequency 0 No minor iteration log.
i A minor iteration line every i itns.

Summary file 0 No output to Summary file.
> 0 Output to specified file.

Summary level 0 One line per major iteration.
> 0 More output.

Summary frequency 0 No minor iteration log.
i A minor iteration line every i itns.

12. Cold, Warm and Hot starts may be used when solving a sequence of problems of the same

size.

For stand-alone MINOS, the sequence of problems is defined via the Cycle parameters and the
user routine matmod, which may access the common block

logical gotbas,gotfac,gothes,gotscl

common /cycle1/ gotbas,gotfac,gothes,gotscl

to say whether or not the existing basis, basic factorization, reduced Hessian, and/or scales
should be used to initialize the next solve. If gotbas = .false., Crash will be used to choose
a starting basis. Otherwise, a basis is assumed to be specified by the array hs(*), and some
or all of the other three quantities may be preserved.

For subroutine minoss, these logicals are set if the first parameter start is ’Hot xxx’, where
xxx is any of the letters FHS. See Appendix B.

13. Following the EXIT message, some information is output to the Print file and the Summary

file. Lines of the form

Primal inf (scaled) 444 4.6E-07 Dual inf (scaled) 268 5.2E-06

Primal infeas 412 2.6E-06 Dual infeas 502 9.3E-07

Nonlinear constraint violn 2.5E-14

show the maximum primal and dual infeasibilities before and after scaling, and the associated
variable number. (Variable j is a column xj for 1 ≤ j ≤ n and slack sj−n for n+1 ≤ j ≤ n+m.)

Note that “Primal infeasibility” is the amount by which x and s lie outside their bounds. In
this example, variable 444 lies furthest outside its bounds before the solution is unscaled. More
importantly, variable 412 is the most infeasible in the final solution—it lies outside its bounds
by 2.6e-6. If this seems too large, the Feasibility tolerance would need to be reduced
below the maximum scaled infeasibility 4.6e-7 (or the unscaled value 2.6e-6 if scaling was
not used).

Similarly, variable 502 is the one whose reduced gradient has the “wrong sign” by the largest
amount. If this seems too large, the Optimality tolerance would need to be reduced below
5.2E-06∗norm(pi), where the required norm of π is printed three or one lines above (depending
on whether scaling was used).

Where relevant, the Nonlinear constraint violn line gives the maximum amount by which
any nonlinear constraint value lies outside its bounds in the final unscaled solution.

14. The printed solution and Solution file treat 0.0, 1.0, -1.0 specially. In particular, a dot (.)
means 0.0, not “Same as the line above”!

ix

15. In the Fortran source code, integer*2 has been changed to integer*4 throughout, to allow
solution of arbitrarily large problems. This change is reversible. (The variable nwordh must
be set appropriately in subroutine m1init.) If integer*2 is used, the maximum number of
rows is 16383.

16. In source file mi10*.for, subroutine mifile defines some “hard-wired” file numbers and opens
most files by calling m1open. Some of the file numbers and open statements may need to be
altered to suit your system.

17. The first two lines of Old Basis and New Basis files accommodate larger problems than in
MINOS 5.1.

New SPECS file keywords

All of the following keywords are new except the first. Crash options 2 and 3 now have a different
effect and option 4 is not defined.

Crash option i Default = 3

Except on restarts, a Crash procedure is used to select an initial basis from certain rows and columns
of the constraint matrix (A I). The Crash option i determines which rows and columns of A are
eligible initially, and how many times Crash is called. Columns of I are used to pad the basis where
necessary.

i = 0 The initial basis contains only slack variables: B = I.

1 Crash is called once, looking for a triangular basis in all rows and columns of A.

2 Crash is called twice (if there are nonlinear constraints). The first call looks for a triangular
basis in linear rows, and the first major iteration proceeds with simplex iterations until the
linear constraints are satisfied. The Jacobian is then evaluated for the second major iteration
and Crash is called again to find a triangular basis in the nonlinear rows (retaining the current
basis for linear rows).

3 Crash is called up to three times (if there are nonlinear constraints). The first two calls treat
linear equalities and linear inequalities separately. As before, the last call treats nonlinear rows
at the start of the second major iteration.

If i ≥ 1, certain slacks on inequality rows are selected for the basis first. (If i ≥ 2, numerical
values are used to exclude slacks that are close to a bound.) Crash then makes several passes through
the columns of A, searching for a basis matrix that is essentially triangular. A column is assigned
to “pivot” on a particular row if the column contains a suitably large element in a row that has not
yet been assigned. (The pivot elements ultimately form the diagonals of the triangular basis.) For
remaining unassigned rows, slack variables are inserted to complete the basis.

Defaults

When minoss is in use, call miopt(’Defaults’) causes all MINOS options to be set to their default
values.

Expand frequency i Default = 10000

This option is part of an anti-cycling procedure designed to guarantee progress even on highly
degenerate problems [GMSW89].

x

For linear models, the strategy is to force a positive step at every iteration, at the expense of
violating the bounds on the variables by a small amount. Suppose that the Feasibility tolerance

is δ. Over a period of i iterations, the tolerance actually used by MINOS increases from 0.5δ to δ
(in steps of 0.5δ/i).

For nonlinear models, the same procedure is used for iterations in which there is only one su-
perbasic variable. (Cycling can occur only when the current solution is at a vertex of the feasible
region.) Thus, zero steps are allowed if there is more than one superbasic variable, but otherwise
positive steps are enforced.

Increasing i helps reduce the number of slightly infeasible nonbasic basic variables (most of which
are eliminated during a resetting procedure). However, it also diminishes the freedom to choose a
large pivot element (see Pivot tolerance).

LU density tolerance r1 Default = 0.6
LU singularity tolerance r2 Default = ǫ2/3 ≈ 10−11

The density tolerance r1 is used during LU factorization of the basis matrix. Columns of L and
rows of U are formed one at a time, and the remaining rows and columns of the basis are altered
appropriately. At any stage, if the density of the remaining matrix exceeds r1, the Markowitz
strategy for choosing pivots is altered to reduce the time spent searching for each remaining pivot.
Raising the density tolerance towards 1.0 may give slightly sparser LU factors, with a slight increase
in factorization time.

The singularity tolerance r2 helps guard against ill-conditioned basis matrices. When the basis
is refactorized, the diagonal elements of U are tested as follows: if |Ujj | ≤ r2 or |Ujj | < r2 maxi |Uij |,
the j-th column of the basis is replaced by the corresponding slack variable. (This is most likely to
occur after a restart, or at the start of a major iteration.)

In some cases, the Jacobian matrix may converge to values that make the basis exactly singular.
(For example, a whole row of the Jacobian could be zero at an optimal solution.) Before exact
singularity occurs, the basis could become very ill-conditioned and the optimization could progress
very slowly (if at all). Setting r2 = 1.0e-5, say, may help cause a judicious change of basis.

Minor damping parameter r Default = 2.0

This parameter limits the change in x during a linesearch. It applies to all nonlinear problems, once
a “feasible solution” or “feasible subproblem” has been found.

1. A linesearch of the form minimizeα F (x + αp) is performed over the range 0 < α ≤ β, where
β is the step to the nearest upper or lower bound on x. Normally, the first steplength tried is
α1 = min(1, β).

2. In some cases, such as F (x) = aebx or F (x) = axb, even a moderate change in the components
of x can lead to floating-point overflow. The parameter r is therefore used to define a limit
β̄ = r(1 + ‖x‖)/‖p‖, and the first evaluation of F (x) is at the potentially smaller steplength
α1 = min(1, β̄, β).

3. Wherever possible, upper and lower bounds on x should be used to prevent evaluation of non-
linear functions at meaningless points. The Minor damping parameter provides an additional
safeguard. The default value r = 2.0 should not affect progress on well behaved problems, but
setting r = 0.1 or 0.01 may be helpful when rapidly varying functions are present. A “good”
starting point may be required. An important application is to the class of nonlinear least-
squares problems.

4. In cases where several local optima exist, specifying a small value for r may help locate an
optimum near the starting point.

xi

Timing level i Default = 2

i = 0 suppresses timing.
i = 1 times input, solve and output.
i = 2 times input, solve, output, funcon and funobj.

The values i = −1 and −2 are the same as 1 and 2, except the times are not printed at the end.
If you are calling subroutine minoss, you may print the times in your own format by accessing the
following common block:

parameter (ntime = 5)

common /m1tim / tlast(ntime), tsum(ntime), numt(ntime), ltime

where
numt(k) is the number of times clock k has been turned on.
tlast(k) is the time at which clock k was last turned on.
tsum(k) is the total time elapsed while clock k was on.
ltime is the Timing level i.

For k = 1 to 5, clock k times input, solve, output, funcon and funobj respectively. See subroutines
m1time and m1timp for further details. For Timing level 2, MINOS and minoss both call m1time
at the end of a run. This prints the “total time” statistics using a loop of the form

do k = 1, ntime

call m1timp(k, ’Time’, tsum(k))

end do

Algorithmic Changes

1. The linesearch takes shorter steps if funobj or funcon return mode = −1 (mentioned above).

2. “Basis repair” is sometimes invoked at the start of a major iteration, or following a linesearch

failure. A stable, sparse LU factorization of the combined basic/superbasic matrix
(

B S
)

is computed by LUSOL in the form

P

(

BT

ST

)

Q = LU,

where P and Q are permutations and L is well-conditioned. Then P provides a reordering of

the columns of
(

B S
)

that makes the condition of the new B close to optimal.

In the major iteration log, BSswp gives the number of variables that were swapped between B
and S. (Zero means that the current basis was retained. The current reduced Hessian matrix
R is then also retained, to help solve the subproblem more quickly.)

3. The triangular reduced-Hessian matrix R is now stored row-wise instead of column-wise in an
array r(*), because most updating operations traverse the rows of R. This reduces paging on
a machine with virtual memory and improves the use of cache memory when there are many
superbasics and Hessian dimension is large.

4. Nonlinear objective and constraint functions are not evaluated until the linear constraints have
been satisfied (to within the Feasibility tolerance). Previously, any nonlinear constraints
were evaluated at the starting point regardless of feasibility.

5. Gradient checking now takes place after the linear constraints have been satisfied. Previously,
it occurred at the starting point.

xii

MINOS is licensed by Stanford University. Fortran 77 source code for all common machines
(mainframes, workstations and PCs) is available from SBSI:

Stanford Business Software, Inc. http://www.SBSI-SOL-Optimize.com

SBSI handles individual and site licenses, both non-profit and commercial. (SBSI is separate and
independent from Stanford University.)

Special commercial licenses, such as those involving the re-sale of MINOS as part of a larger
package, are negotiated by OTL, Stanford University:

Office of Technology Licensing http:// www.stanford.edu/group/OTL/

For many applications involving linear and nonlinear models, we recommend the use of algebraic
modeling languages. Two of the most widely used systems are GAMS and AMPL. They provide a
convenient interface to MINOS and many other linear, integer and nonlinear optimization systems:

http://www.gams.com http://www.ampl.com

Bruce Murtagh
Macquarie University

Michael Saunders
Stanford University

September 23, 2003

xiii

xiv

Preface to MINOS 5.0

Since the middle of 1980, approximately 150 academic and research institutions around the world
have installed MINOS/AUGMENTED, the predecessor of the present system. About 30 further
installations exist in private industry. With enquiries continuing to arrive almost daily, the need
for a combined linear and nonlinear programming system is apparent in both environments. To
date, many users have been able to develop substantial nonlinear models and have come to be fairly
confident that the Optimal Solution message actually means what it says. Certainly, other less
joyful exit messages will often have greeted eager eyes. These serve to emphasize that model building
remains an art, and that nonlinear programs can be arbitrarily difficult to solve. Nevertheless, the
success rate has been high, and the positive response from users with diverse applications has inspired
us to pursue further development.

MINOS 5.0 is the result of prolonged refinements to the same basic algorithms that were in
MINOS/AUGMENTED:

• the simplex method (Dantzig, 1947, 1963),

• a quasi-Newton method (very many authors from Davidon, 1959, onward),

• the reduced-gradient method (Wolfe, 1962), and

• a projected Lagrangian method (Robinson, 1972; Rosen and Kreuser, 1972).

From numerous potential options, it has been possible to develop these particular algorithms into
a relatively harmonious whole. The resulting system permits the solution of both small and large
problems in the four main areas of smooth optimization:

• linear programming,

• unconstrained optimization,

• linearly constrained optimization, and

• nonlinearly constrained optimization.

In rare cases, the quasi-Newton method may require excessive storage. We have chosen not to
provide a nonlinear conjugate-gradient method, or a truncated linear conjugate-gradient method,
for this situation. Instead, we retain the quasi-Newton method throughout, restricting it to certain
subspaces where necessary. (The strategy for altering the subspaces remains experimental.)

We regret that other obvious algorithms (such as integer programming, piece-wise smooth opti-
mization, the dual simplex method) are still not available. Nor are ranging procedures or parametric
algorithms. Sensitivity analysis is still confined to the usual interpretation of Lagrange multipliers.

As before, MINOS 5.0 is a stand-alone system that is intended for use alongside commercial
mathematical programming systems whenever such facilities are available. The systems should
complement each other.

xv

To users of MINOS/AUGMENTED, the most apparent extensions are a scaling option (for linear
constraints and variables only), and the ability to estimate some or all gradients numerically, if they
are not computed by the user. On a more mundane level, the names of the user subroutines for
computing nonlinearities have been changed from CALCFG and CALCON to FUNOBJ and FUNCON, and
two new parameters allow access to the workspace used by MINOS.

Internally, one of the major improvements has been the development of a new basis-handling
package, which forms the foundation of LUSOL (Gill, et al., 1984), a set of routines for computing and
updating a sparse LU factorization. This package draws much from the work of Reid (1976, 1982).
It replaces the P 4-based procedures in MINOS/AUGMENTED (Saunders, 1976) and is substantially
more efficient on problems whose basis matrices are not close to triangular. As before, column
updates are performed by the method of Bartels and Golub (1969, 1971), but the implementation is
more efficient and there is no severe degradation arising from large numbers of “spikes”. We venture
to say that LUSOL is the first truly stable basis package that has been implemented for production
use.

A further vital improvement has been the development of two new linesearch procedures (Gill,
et al., 1979) for finding a step length with and without the aid of derivatives. In particular they
cater for function values that are somewhat “noisy”—a common practical circumstance.

From a software engineering viewpoint, the source code has been restructured to ease the prob-
lems of maintenance and future development. MINOS still stands for Modular In-core Nonlinear

Optimization System, and we have done our best to respect the implications of the “M”. Never-
theless, MINOS 5.0 remains a parameter-driven system. It is a speeding train on a railroad that
has parallel tracks and many switches but few closed circuits. Its various modules cannot be called
upon in an arbitrary order. In fact, there are 80 parameters that can be set if necessary—these are
the switching points along the railroad. Fortunately, only a handful need be set for any particular
application. In most cases, the default values are appropriate for large and small problems alike.

For interactive users, a new feature is the Summary file, which provides at the terminal a brief
commentary on the progress of a run. Unfortunately, a two-way conversation is not possible. The
only input engendered by this feature is an occasional dive for the Break key to abort an errant run.
While rarely called upon, such a facility can be crucial to the security of one’s computer funds.

Throughout the development of MINOS, we have received a great deal of assistance from many
kind people. Most especially, our thanks go to Philip Gill, Walter Murray and Margaret Wright,
whose knowledge and advice have made much of this work possible. They are largely responsible
for the linesearch procedures noted above (which are as vital to nonlinear optimization as basis
factors are to linear programming), and they are authorities on all of the algorithms employed
within MINOS. Their patience has been called upon continually as other important work at SOL
either languished or fell unfairly on their shoulders.

Further to basis factors, we acknowledge the pioneering work of John Reid in implementing the
Markowitz-based LU factorization and the Bartels-Golub update. The LUSOL procedures in MINOS

5.0 owe much to the ingenuity embodied in his LA05 package.

Users have naturally provided an essential guiding influence. In some cases they are algo-
rithm developers themselves. At home, we have had constant encouragement from George Dantzig
and the benefit of his modeling activity within SOL, notably on the energy-economic model PI-

LOT. We thank him warmly for bringing the Systems Optimization Laboratory into existence.
We also thank Patrick McAllister, John Stone and Wesley Winkler for the feedback they have
provided by running various versions of MINOS during their work on PILOT. (We note that PI-

LOThas grown to 1500 constraints and 4000 variables, and now has a quadratic objective. From
our perspective, it is a nontrivial test problem!) Likewise, Alan Manne has provided encourage-
ment and assistance from the beginning. Two of his nonlinear economic models have been in-
valuable as test problems (and are included on the MINOS distribution tape). We also thank
him and Paul Preckel for the development of procedures for solving sequences of related prob-

xvi

1

lems (Preckel, 1980). The main ingredients of these procedures are now an integral part of MI-

NOS.
From industry, we have received immense benefit from the working relationship between SOL

and Robert Burchett of the General Electric Company (Electric Utility Systems Engineering De-
partment) in Schenectady, New York. Many algorithmic and user-oriented details have resulted from
his experience and from his interest in the fine points of optimization. Three years ago we did not
envisage that problems involving thousands of nonlinear constraints would soon be solved success-
fully. Rob constantly pushed test versions of MINOS to their limits, and inspired the development
of techniques to extend those limits. We thank him for his tireless contributions.

We are also grateful to Zenon Fortuna, Steven Gorelick, Marc Hellman, Thomas McCormick,
Larry Nazareth, Scott Rogers, John Rowse and John Tomlin for their helpful suggestions and/or
assistance in tracking down bugs. Finally, we thank the staff of the Office of Technology Licensing and
the Information Technology Services at Stanford University for undertaking the task of distributing
MINOS.

Most of the software development was carried out at the Stanford Linear Accelerator Center with
the aid of the Wylbur text editor and the University of Waterloo’s WATFIV compiler. This User’s
Guide was typeset using aTEX

∗, with editorial assistance from Philip Gill and Margaret Wright.

Bruce Murtagh
University of New South Wales

Michael Saunders
Stanford University

December, 1983

∗D. E. Knuth, TEX and METAFONT, New Directions in Typesetting, American Mathematical Society and Digital
Press, Bedford, Massachusetts (1979).

2

Chapter 1 September 23, 2003

Introduction

MINOS is a Fortran-based linear and nonlinear programming system, designed to solve large-scale
constrained optimization problems of the following form:

minimize
x, y

F (x) + cTx + dTy (1)

subject to b1 ≤ f(x) + A1y ≤ b2, (2)

b3 ≤ A2x + A3y ≤ b4, (3)

l ≤ (x, y) ≤ u, (4)

where the vectors bi, c, d, l, u and the matrices Ai are constant, F (x) is a nonlinear function of some
of the variables, and f(x) is a vector of nonlinear functions. The nonlinearities (if present) may be of
a general nature but must be smooth and preferably “almost linear”, in the sense that they should
not change radically with small changes in the variables. We make the following definitions:

x the nonlinear variables
y the linear variables

(x, y) the vector
(

x
y

)

(1) the objective function
(2) the nonlinear constraints
(3) the linear constraints
(4) the bounds on the variables
m the total number of general constraints in (2) and (3)
n the total number of variables in x and y

m1 the number of nonlinear constraints (the dimension of f(x))
n1 the number of nonlinear variables (the dimension of x)
n′

1 the number of nonlinear objective variables (in F (x))
n′′

1 the number of nonlinear Jacobian variables (in f(x))
MINOS a stand-alone system with its own main program
minoss a callable subroutine.

A large-scale problem is one in which m and n are several hundred or several thousand. MINOS

takes advantage of the fact that the constraint matrices Ai and the partial derivatives ∂fi(x)/∂xj

are typically sparse (contain many zeros).
The stand-alone form of MINOS reads constraint data from an MPS file similar to that used by

commercial mathematical programming systems, whereas subroutine minoss (pron. minos-ess) has
the same information passed to it as parameters. Usually the term MINOS refers to both cases, but
occasionally we need to distinguish between them.

The nonlinear functions F (x) and f(x) are defined by two subroutines, funobj and funcon.
These are linked to MINOS before run-time. Preferably they should provide both the functions and
their gradients, but if any gradients are missing, MINOS will estimate them by finite differences.

To bypass the MPS file, one may write a driving program and call minoss. For certain problems,
both the MPS file and the function subroutines may be bypassed by using modeling languages such
as GAMS [BKM88] or AMPL [FGK92]. (These languages allow a concise statement of arbitrarily
large models and they are able to access a variety of solvers such as MINOS. In particular, they
simplify nonlinear modeling by providing gradients to MINOS automatically.)

3

4 Chapter 1. Introduction

The dimensions n′
1 and n′′

1 allow for the fact that F (x) and f(x) may involve different sets of
nonlinear variables “x”. The two sets of variables always overlap, in the sense that the shorter “x” is
always the same as the beginning of the other. This is relevant when it comes to coding subroutines
funobj and funcon to compute F (x) and f(x). If x is the same in both cases, we have n1 = n′

1 = n′′
1 .

Otherwise, we define the number of nonlinear variables to be n1 = max(n′
1, n

′′
1).

In the following sections we introduce more terminology and give an overview of the MINOS

optimization algorithms and the main system features.

1.1 LINEAR PROGRAMMING

When F (x) and f(x) are absent, the problem becomes a linear program. Since there is no need
to distinguish between linear and nonlinear variables, we use x rather than y. We also convert all
general constraints into equalities with the aid of slack variables s, so that the only inequalities are
simple bounds on the variables. Thus, we write linear programs in the form

minimize
x, s

cTx subject to Ax + s = b, l ≤ (x, s) ≤ u. (5)

Problems specified in MPS files and in modeling languages follow the original formulation (1)–(4),
but MINOS uses the form (5) internally. Subroutine minoss works with (5) directly. When the
constraints are linear, the bounds on the slacks are defined so that b = 0. When there are nonlinear
constraints, some elements of b are nonzero.

In the mathematical programming world, x and s are sometimes called structural variables and
logical variables. Their upper and lower bounds are fundamental to problem formulations and
solution algorithms. Some of the components of l may be −∞ and those of u may be +∞. If
lj = uj , a variable is said to be fixed, and if its bounds are −∞ and +∞, the variable is called free.

Within MINOS, a point (x, s) is said to be feasible if the following are true:

• The constraints Ax + s = b are satisfied to within machine precision ≈ 10−15.

• The bounds l ≤ (x, s) ≤ u are satisfied to within a feasibility tolerance δfea ≈ 10−6.

• The nonlinear constraints (2) are satisfied to within a row tolerance δrow ≈ 10−6.

Tolerances such as δfea and δrow may be specified by setting Feasibility tolerance and Row

tolerance in the Specs file (Chapter 3).

MINOS solves linear programs using a reliable implementation of the primal simplex method

[Dan63], in which the constraints Ax + s = b are partitioned into the form

BxB + NxN = b, (6)

where the basis matrix B is a square and nonsingular submatrix of (A I). The elements of xB and
xN are called the basic and nonbasic variables respectively. Together, they are a permutation of the
vector (x, s). Certain dual variables π and reduced costs dN are defined by the equations

BTπ = cB, dN = cN − NTπ, (7)

where (cB, cN) is a permutation of the objective vector (c, 0).
At a feasible point, nonbasic variables are typically equal to one of their bounds, and basic

variables are somewhere between their bounds. To reach an optimal solution, the simplex method
performs a sequence of iterations of the following general nature. With guidance from dN , a nonbasic
variable is chosen to move from its current value, and the basic variables are adjusted to satisfy the
constraints in (5). Usually one of the basic variables reaches a bound. The basis partition is then
redefined with a column of B being replaced by a column of N . When no such interchange can be
found to reduce the value of cTx, the current solution is optimal.

1.2 Problems with a Nonlinear Objective 5

The simplex method

For convenience, let x denote the variables (x, s). The main steps in a simplex iteration are as
follows:

Compute dual variables: Solve BTπ = cB.

Price: Compute some or all of the reduced costs dN = cN − NTπ to determine if a
favorable nonbasic column aq exists.

Compute search direction: Solve BpB = ±aq to determine the basic components of
a search direction p along which the objective is improved. (The nonbasic elements
of p are pN = 0, except for ±1 for the element corresponding to aq.)

Find maximum steplength: Find the largest steplength αmax such that x + αmaxp
continues to satisfy the bounds on the variables. The steplength may be determined
by the new nonbasic variable reaching its opposite bound, but normally some basic
variable will reach a bound first.

Update: Take the step αmax. If this was determined by a basic variable, interchange
the corresponding column of B with column aq from N .

When a starting basis is chosen and the basic variables xB are first computed, if any components
of xB lie significantly outside their bounds, we say that the current point is infeasible. In this case,
the simplex method uses a “Phase 1” procedure to reduce the sum of infeasibilities. This is similar
to the subsequent “Phase 2” procedure just described.

The feasibility tolerance δfea is used to determine which Phase is in effect. A similar optimality

tolerance δopt is used during pricing to judge whether any reduced costs are significantly large. (This
tolerance is scaled by ‖π‖, a measure of the size of the current π.)

If the solution procedures are interrupted, some of the nonbasic variables may lie strictly between

their bounds: lj < xj < uj . In addition, at a “feasible” or “optimal” solution, some of the basic
variables may lie slightly outside their bounds: lj − δfea ≤ xj ≤ uj + δfea. In rare cases, even a few
nonbasic variables might lie outside their bounds by as much as δfea.

MINOS maintains a sparse LU factorization of the basis matrix B, using a Markowitz ordering
scheme and Bartels-Golub updates, as implemented in the Fortran package LUSOL [GMSW87]; see
[BG69, Bar71, Reid76, Reid82]. The basis factorization is central to the efficient handling of sparse
linear and nonlinear constraints.

1.2 PROBLEMS WITH A NONLINEAR OBJECTIVE

When nonlinearities are confined to the term F (x) in the objective function, the problem is a lin-
early constrained nonlinear program. MINOS solves such problems using a reduced-gradient method
[Wolf62] combined with a quasi-Newton method [Dav59, DS83] that generally leads to superlinear
convergence. The implementation follows that described in Murtagh and Saunders [MS78].

As a slight generalization of (6), the constraints Ax + s = b are partitioned into the form

BxB + SxS + NxN = b, (8)

where xS is a set of superbasic variables. As before, the nonbasic variables are normally equal to
one of their bounds, while the basic and superbasic variables lie somewhere between their bounds
(to within δfea). Let the number of superbasic variables be nS, the number of columns in S. At a
solution, nS will be no more than n1, the number of nonlinear variables, and it is often much smaller
than this. In many real-life cases we have found that nS remains reasonably small, say 200 or less,
regardless of the size of the problem. This is one reason why MINOS has proved to be a practical
tool.

6 Chapter 1. Introduction

In the reduced-gradient method, xS is regarded as a set of “independent variables” that are
allowed to move in any desirable direction to reduce the objective function (or the sum of infeasibil-
ities). The basic variables are then adjusted in order to continue satisfying the linear constraints. If
it appears that no improvement can be made with the current definition of B, S and N , one of the
nonbasic variables is selected to be added to S, and the process is repeated with an increased value
of nS. At all stages, if a basic or superbasic variable encounters one of its bounds, that variable is
made nonbasic and the value of nS is reduced by one.

For linear programs, we may interpret the simplex method as being the same as the reduced-
gradient method, with the number of superbasic variables oscillating between 0 and 1. (In general,
a step of the simplex method or the reduced-gradient method is called a minor iteration.)

A certain matrix Z is needed for descriptive purposes. It takes the form

Z =

−B−1S

I

0

, (9)

though it is never computed explicitly. Given LU factors of the basis matrix B, it is possible to
compute products of the form Zq and ZTg by solving linear equations involving B or BT. This in
turn allows optimization to be performed on the superbasic variables, while the basic variables are
adjusted to satisfy the general linear constraints. (In the description below, the reduced-gradient
vector satisfies dS = ZTg, and the search direction satisfies p = ZpS.)

An important part of MINOS is the quasi-Newton method used to optimize the superbasic vari-
ables. This can achieve superlinear convergence during any sequence of iterations for which the B,
S, N partition remains constant. It requires a dense upper-triangular matrix R of dimension nS,
which is updated in various ways to approximate the reduced Hessian:

RTR ≈ ZTHZ, (10)

where H is the Hessian of the objective function, i.e. the matrix of second derivatives of F (x). As
for unconstrained optimization, the storage required for R is sometimes a limiting factor.

The reduced-gradient method

Let g be the gradient of the nonlinear objective (1). The main steps in a reduced-gradient iteration
are as follows:

Compute dual variables and reduced gradient: Solve BTπ = gB and compute the
reduced-gradient vector dS = gS − STπ.

Price: If ‖dS‖ is sufficiently small, compute some or all of the reduced costs dN =
gN − NTπ to determine if a favorable nonbasic column aq exists. If so, move that
column from N into S, expanding R accordingly.

Compute search direction: Solve RTRpS = −dS and BpB = −SpS to determine the
superbasic and basic components of a search direction p along which the objective
is improved. (The nonbasic elements of p are pN = 0.)

Find maximum steplength: Find the largest steplength αmax such that x + αmaxp
continues to satisfy the bounds on the variables.

Perform linesearch: Find an approximate solution to the one-dimensional problem

minimize
α

F (x + αp) subject to 0 ≤ α ≤ αmax.

1.3 Problems with Nonlinear Constraints 7

Update (quasi-Newton): Take the step α. Apply a quasi-Newton update to R to
account for this step.

Update (basis change): If a superbasic variable reached a bound, move it from S into
N . If a basic variable reached a bound, find a suitable superbasic variable to move
from S into B, and move the basic variable into N . Update R if necessary.

At an optimum, the reduced gradient dS should be zero. MINOS terminates when ‖dS‖ ≤ δopt‖π‖
and the reduced costs (component of dN) are all sufficiently positive or negative, as judged by the
same quantity δopt‖π‖.

In the linesearch, F (x + αp) really means the objective function (1) evaluated at the point
(x, y, s) + αp. This steplength procedure is another important part of MINOS. Two differ-
ent procedures are used, depending on whether or not all gradients are known analytically; see
[GMSW79, GMW81]. The number of nonlinear function evaluations required may be influenced by
setting the Linesearch tolerance in the Specs file.

Normally, the objective function F (x) will never be evaluated at a point x unless that point
satisfies the linear constraints and the bounds on the variables. An exception is during a finite-
difference check on the calculation of gradient elements. This check is performed at the starting

point x0, which takes default values or may be specified. MINOS ensures that the bounds l ≤ x0 ≤ u
are satisfied, but in general the starting point will not satisfy the general linear constraints. If F (x0)
is undefined, the gradient check should be suppressed (Verify level -1), or the starting point
should be redefined.

1.3 PROBLEMS WITH NONLINEAR CONSTRAINTS

If any of the constraints are nonlinear, MINOS employs a projected Lagrangian algorithm, based on
a method due to Robinson [Rob72]; see Murtagh and Saunders [MS82]. This involves a sequence
of major iterations, each of which requires the solution of a linearly constrained subproblem. Each
subproblem contains linearized versions of the nonlinear constraints, as well as the original linear
constraints and bounds.

At the start of the k-th major iteration, let (xk, yk) be an estimate of the variables, and let λk be
an estimate of the Lagrange multipliers (dual variables) associated with the nonlinear constraints.
The constraints are linearized by changing f(x) in Equation (2) to its linear approximation:

f̄(x, xk) = f(xk) + J(xk)(x − xk),

or more briefly f̄ = fk + Jk(x − xk), where J(xk) is the Jacobian matrix evaluated at xk. (The
i-th row of the Jacobian is the gradient vector for the i-th nonlinear constraint function.) The
subproblem to be solved during the k-th major iteration is then

minimize
x, y

F (x) + cTx + dTy − λT
k fd + 1

2
ρk‖fd‖2 (11)

subject to b1 ≤ f̄ + A1y ≤ b2, (12)

b3 ≤ A2x + A3y ≤ b4, (13)

l ≤ (x, y) ≤ u, (14)

where fd = f − f̄ is the difference between f(x) and its linearization. The objective function (11) is
called an augmented Lagrangian. The scalar ρk is a penalty parameter, and the term involving ρk is
a modified quadratic penalty function.

MINOS uses the reduced-gradient method to solve each subproblem. As before, slack variables
are introduced and the vectors bi are incorporated into the bounds on the slacks. The linearized
constraints take the form

(

Jk A1

A2 A3

)(

x

y

)

+

(

s1

s2

)

=

(

Jkxk − fk

0

)

.

8 Chapter 1. Introduction

We refer to this system as Ax + s = b as in the linear case. The Jacobian Jk is treated as a sparse
matrix, the same as the matrices A1, A2 and A3. The quantities Jk, b, λk and ρk change each major
iteration.

The projected Lagrangian method

For convenience, suppose that all variables and constraints are nonlinear. The main steps in a major
iteration are as follows:

Solve subproblem: Find an approximate solution (x̄, λ̄) to the kth subproblem (11)–
(14).

Compute search direction: Adjust the elements of λ̄ if necessary (if they have the
wrong sign). Define a search direction (∆x, ∆λ) = (x̄ − xk, λ̄ − λk).

Find steplength: Choose a steplength σ such that some merit function M(x, λ) has a
suitable value at the point (xk + σ∆x, λk + σ∆λ).

Update: Take the step σ to obtain (xk+1, λk+1). In some cases, adjust ρk.

For the first major iteration, the nonlinear constraints are ignored and minor iterations are
performed until the original linear constraints are satisfied.

The initial Lagrange multiplier estimate is typically λk = 0 (though it can be provided by the
user). If a subproblem terminates early, some elements of the new estimate λ̄ may be changed to
zero.

The penalty parameter initially takes a certain default value ρk = 100.0/m1, where m1 is the num-
ber of nonlinear constraints. (A value r times as big is obtained by specifying Penalty parameter

r.) For later major iterations, ρk is reduced in stages when it appears that the sequence {xk, λk} is
converging. In many cases it is safe to specify Penalty parameter 0.0 at the beginning, particu-
larly if a problem is only mildly nonlinear. This may improve the overall efficiency.

In the output from MINOS, the term Feasible subproblem indicates that the linearized con-

straints (12)–(14) have been satisfied. In general, the nonlinear constraints are satisfied only in the
limit, so that feasibility and optimality occur at essentially the same time. The nonlinear constraint
violation is printed every major iteration. Even if it is zero early on (say at the initial point), it may
increase and perhaps fluctuate before tending to zero. On “well behaved” problems, the constraint
violation will decrease quadratically (i.e., very quickly) during the final few major iterations.

For certain rare classes of problem it is safe to request the values λk = 0 and ρk = 0 for all
subproblems by specifying Lagrangian = No (in which case the nonlinear constraint functions are
evaluated only once per major iteration). However for general problems, convergence is much more
likely with the default setting, Lagrangian = Yes.

The merit function

Unfortunately, it is not known how to define a merit function M(x, λ) that can be reduced at every
major iteration. As a result, there is no guarantee that the projected Lagrangian method described
above will converge from an arbitrary starting point. This has been the principal theoretical gap
in MINOS, finally resolved by the PhD research of Michael Friedlander [Fri02]. The main features
needed to stabilize MINOS are:

• To relax the linearized constraints via an ℓ1 penalty function.

• To repeat a major iteration with increased ρk (and more relaxed linearized constraints) if the
nonlinear constraint violation would increase too much.

1.4 Problem Formulation 9

In practice, the method of MINOS 5.51 often does converge and a good rate of convergence
is often achieved in the final major iterations, particularly if the constraint functions are “nearly
linear”. As a precaution, MINOS prevents radical changes from one major iteration to the next.
Where possible, the steplength is chosen to be σ = 1, so that each new estimate of the solution
is (xk+1, λk+1) = (x̄, λ̄), the solution of the subproblem. If this point is “too different”, a shorter
steplength σ < 1 is chosen.

If the major iterations for a particular model do not appear to be converging, some of the
following actions may help:

1. Specify initial activity levels for the nonlinear variables as carefully as possible.

2. Include sensible upper and lower bounds on all variables.

3. Specify a Major damping parameter that is lower than the default value. This tends to make
σ smaller.

4. Specify a Penalty parameter that is higher than the default value. This tends to prevent
excessive departures from the constraint linearization.

1.4 PROBLEM FORMULATION

In general, it is worthwhile expending considerable prior analysis to make the constraints completely
linear if at all possible. Sometimes a simple transformation will suffice. For example, a pipeline
optimization problem has pressure drop constraints of the form

K1

d4.814
1

+
K2

d4.814
2

+ · · · ≤ P 2
T − P 2

0 ,

where di are the design variables (pipe diameters) and the other terms are constant. These con-
straints are highly nonlinear, but by redefining the decision variables to be xi = 1/d4.814

i we can
make the constraints linear. Even if the objective function becomes more nonlinear by such a trans-
formation (and this usually happens), the advantages of having linear constraints greatly outweigh
this.

Similarly, it is usually best not to move nonlinearities from the objective function into the con-
straints. For example, we should not replace “minimize F (x)” by

minimize z subject to F (x) − z = 0.

In fact, the GAMS system recognizes this situation as long as z is a free variable. When passing the
problem to MINOS, GAMS converts that particular constraint into the MINOS objective function
“minimize F (x)”. (AMPL has a more direct method for specifying the objective function.)

Scaling is a very important matter during problem formulation. A general rule is to scale both
the data and the variables to be as close to 1.0 as possible. In general we suggest the range 1.0 to
10.0. When conflicts arise, one should sacrifice the objective function in favor of the constraints.
Real-world problems tend to have a natural scaling within each constraint, as long as the variables
are expressed in consistent physical units. Hence it is often sufficient to apply a scale factor to each
row. MINOS has options to scale the rows and columns of the constraint matrix automatically. By
default, only the linear rows and columns are scaled, and the procedure is reliable. If you request that
the nonlinear constraints and variables be scaled, bear in mind that the scale factors are determined
by the initial Jacobian J(x0), which may differ considerably from J(x) at a solution.

Finally, upper and lower bounds on the variables (and on the constraints) are extremely useful for
confining the region over which optimization has to be performed. If sensible values are known, they
should always be used. They are also important for avoiding singularities in the nonlinear functions.
Note that bounds may be violated slightly by as much as the feasibility tolerance δfea. Hence, if

√
x2

10 Chapter 1. Introduction

or log x2 appear (for example) and if δfea = 10−6, the lower bound on x2 would normally have to be
at least 10−5. If it is known that x2 will be at least 0.5 (say) at a solution, then its lower bound
should be 0.5.

For a detailed discussion of many aspects of numerical optimization, see Gill, Murray and Wright
[GMW81]; in particular, see Chapter 8 for much invaluable advice on problem formulation and
assessment of results.

1.5 RESTRICTIONS

MINOS is designed to find solutions that are locally optimal. The nonlinear functions in a problem
must be smooth (i.e., their first derivatives must exist), especially near the desired solution. The
functions need not be separable.

A certain “feasible” region is defined by the general constraints and the bounds on the variables.
If the objective is convex within this region and if the feasible region itself is convex, any optimal
solution obtained will be a global optimum. Otherwise there may be several local optima, and some
of these may not be global. In such cases the chances of finding a global optimum are usually
increased by choosing a starting point that is “sufficiently close”, but there is no general procedure
for determining what “close” means, or for verifying that a given local optimum is indeed global.

Integer restrictions cannot be imposed directly. If a variable xj is required to be 0 or 1, a
common ploy is to include a quadratic term xj(1−xj) in the objective function. MINOS will indeed
terminate with xj = 0 or 1, but inevitably the final solution will just be a local optimum. (Note
that the quadratic is negative definite. MINOS will find a global minimum for quadratic functions
that are positive definite or positive semidefinite, assuming the constraints are linear.)

1.6 STORAGE

MINOS uses one large array of main storage for most of its workspace. The implementation places
no fixed limit on the size of a problem or on its shape (many constraints and relatively few variables,
or vice versa). In general, the limiting factor will be the amount of main storage available on a
particular machine, and the computation time required. On personal computers with 640K of main
memory, problem size is limited to perhaps 300 constraints and 500 variables for linear models,
and somewhat less if there are many nonlinear variables. Machines with virtual memory can process
several thousand constraints and many thousands of variables. If there are nonlinearities, we assume
that they are not excessively expensive, since they may need to be evaluated thousands of times.

Some detailed knowledge of a particular model will usually indicate whether the solution proce-
dure is likely to be efficient. An important quantity is m, the total number of general constraints in
(2) and (3). The workspace required by MINOS is roughly m kilobytes (mK), plus about 300K for
the program itself.

Another important quantity is n, the total number of variables in x and y. The previous com-
ments assume that n is not much larger than m, the number of constraints. A typical ratio is
n/m = 2 or 3.

If there are many nonlinear variables (i.e., if n1 is large), much depends on whether the objective
function or constraints are highly nonlinear or not. The crucial item is nS, the number of superbasic
variables at an optimum. We know that nS is zero for purely linear problems, and that nS need
never be larger than n1 + 1. In practice, nS is often very much less than this upper limit. For
example, consider a quadratic programming problem with objective function cTx+ 1

2
xTQx. In many

cases the linear term cTx is dominant and MINOS will solve the problem almost as efficiently as if
Q were zero. (The number of superbasics will remain small throughout.) On the other hand, if the
quadratic term is dominant and involves a large number of variables, the final number of superbasics
may be very large.

The same is true for more general nonlinearities.

1.7 Files 11

In the quasi-Newton algorithm, the dense triangular matrix R has dimension nS and requires
about 0.004n2

S
K of storage. If it seems likely that nS will be very large, some aggregation or

reformulation of the problem should be considered.

1.7 FILES

MINOS operates primarily within main memory, and is well suited to a virtual storage environment.
Certain disk files are accessed as follows:

Input file Record Length (characters)

Specs file 72
Read file not used
MPS file 61
Basis files 80

Output file Record Length (characters)

Summary file 78
Print file 129
Solution file 111
Basis files 80

Fixed-length, blocked records may be used in all cases, and the files are always accessed sequentially.
The logical record length must be at least that shown. For efficiency, the physical block size should
be several hundred characters in most cases.

Unit numbers for the Specs, Read, Summary and Print files are defined at compile time; typically
they will be 4, 5, 6 and 9, but they may depend on the installation. The remaining unit numbers
are specified at run time in the Specs file.

Unit numbers for the Read, Print and Summary files are stored in the following Fortran common
block:

common /m1file/ iread,iprint,isumm

It may be convenient to reference these in the user subroutines funobj, funcon and matmod, or in
a program that calls subroutine minoss.

The READ file is not used explicitly by MINOS, but its unit number is used to test if a file should
be rewound. (Thus, input files are subject to a Fortran rewind as long as they are not the same as
the Read file.) The Print file is used frequently. Other output files are rewound if they are not the
same as the Print file.

The following table summarizes when certain files are needed:

Specs MPS

MINOS Yes Yes
minoss Optional No
GAMS Optional No
AMPL No No

1.8 INPUT DATA FLOW

Some or all of the following items are supplied by the user:

• Subroutine funobj

• Subroutine funcon

12 Chapter 1. Introduction

• Subroutine matmod

• A Specs file

• An MPS file

• A Basis file

• Data read by funcon on its first entry

• Data read by funobj on its first entry

• Data read by funcon on its last entry

• Data read by funobj on its last entry

The order of the files and data is important if all are stored in the same input stream.
Subroutines funobj and funcon define the nonlinear objective and constraint functions respec-

tively (if any); they are not needed for linear programs.
Subroutine matmod is occasionally needed for applications involving a sequence of closely related

problems.
The Specs file defines various run-time parameters such as the Iteration limit. Its file number

is defined at compile time.
The MPS file specifies names for the constraints and variables, and defines all the linear con-

straints and bounds. The data format is similar to that used in commercial mathematical program-
ming systems (hence the name). The format has been generalized slightly for nonlinear problems.

If desired, a Basis file may be loaded at the beginning of a run. This will normally have been
saved at the end of an earlier run. Three kinds of basis file are available; they are used to restart
the solution of a problem that was interrupted, or to provide a good starting point for some slightly
modified problem.

1.9 MULTIPLE SPECS FILES

One or more problems may be processed during a run. The parameters for a particular problem
are delimited by Begin and End in the Specs file. While scanning for the keyword Begin, MINOS

recognizes the keywords Skip and Endrun. Thus in the example

Begin Case 1

.

.

End Case 1

Skip Case 2

.

.

End Case 2

Begin Case 3

.

.

End Case 3

Endrun

Begin Case 4

.

.

End Case 4

only the first and third problem will be processed.

1.10 Internal Modifications 13

1.10 INTERNAL MODIFICATIONS

A sequence of closely related problems may be specified within a single Specs file, via the Cycle

parameter; for example,

Begin Cycling example

.

.

Cycle limit 10

End example

indicates that up to 10 problems are to be processed. This is intended for cases where the solution
of one problem Pk is needed to define the next problem Pk+1.

The actual method for defining the next problem in a cycle depends on the application. Some-
times it can be done by changing the output from the function subroutines funobj and/or funcon.
Alternatively, the user may provide a third subroutine matmod to perform some modifications to the
problem data. If the Cycle limit is 2 or more, matmod is called before the problem is solved (cycle
0), and also after each solve (cycle 1, 2, 3, . . .).

If necessary, the number of linear variables can be increased when a problem Pk+1 is defined.
We think of this as adding new columns to Pk. The new columns are not included in the MPS file,
and their sparsity pattern need not be known until Pk has been solved. Instead, an appropriate
number of Phantom columns and Phantom elements are defined in the Specs file (to reserve a pool
of storage), and the user’s subroutine matmod generates each new column by calling the MINOS

subroutine matcol.

14 Chapter 1. Introduction

Chapter 2 September 23, 2003

User-written Subroutines

To solve linear programs, you must give MINOS the constant data defining A, c, etc. For nonlinear
problems, you must also provide some Fortran code to compute your nonlinear functions. Non-
linearities in the objective are defined by subroutine funobj. Those in the constraints are defined
separately by subroutine funcon. On every entry (except perhaps the last), these subroutines must
return appropriate function values f. Wherever possible, they should also return all gradient ele-
ments in the array g(*). This provides maximum reliability and corresponds to the default setting,
Derivative level 3 in the Specs file.

In practice it is often convenient not to code gradients. MINOS is able to estimate gradients
by finite differences, by making a call to funobj or funcon for each nonlinear variable xj whose
partial derivatives need to be estimated. However, this reduces the reliability of the optimization
algorithms, and can be very expensive if there are many nonlinear variables.

As a compromise, MINOS allows you to code as many gradients as you like. This option is
implemented as follows: just before a function routine is called, each element of the gradient array
g(*) is initialized to a specific value (−111111.0). On exit, any element retaining that value must
be estimated by finite differences.

Some rules of thumb follow for writing funobj and funcon:

1. For maximum reliability, use Derivative level 3 and code all gradients analytically.

2. While developing the function routines, use the Verify parameter to check the computation
of any gradient elements that are supposedly known.

3. If not all gradients are known, compute as many of them as you can. (It often happens that
some of them are constant or even zero.) It may then be convenient to compute the known
gradients every time the function routines are called, even though they will be ignored if
mode = 0.

4. If the known gradients are expensive to compute, set Derivative level 0 and use the parame-
ter mode to avoid computing on certain entries. Derivative level 0 requests a function-only
linesearch, even if you compute all gradients. During the linesearch, funobj and funcon are
called with mode = 0, not mode = 2. An extra call with mode = 2 is needed after the search,
but the net cost may be less if gradients are very expensive.

This approach is recommended if you happen to be estimating derivatives by your own finite-
difference scheme. (It is much easier to let MINOS do the differencing—one column at a
time—but if you have nonlinear constraints, by using the sparsity structure of the Jacobian
you may be able to make funcon estimate several columns of the Jacobian at once.)

2.1 SUBROUTINE FUNOBJ

This subroutine is provided by the user to calculate the objective function F (x) and as much of its
gradient g(x) as possible. It is not needed if the objective is linear and entered as a row of A.

Specification:

subroutine funobj(mode, n, x, f, g, nstate, nprob, z, nwcore)

15

16 Chapter 2. User-written Subroutines

implicit double precision (a-h,o-z)

integer mode, n, nstate, nprob, nwcore

double precision f, x(n), g(n), z(nwcore)

Note: The double precision declarations should be real on machines for which single-precision
floating-point is adequate; e.g., Cray and Convex systems. The implicit statement is then not
necessary. In general, it is safer to declare all variables explicitly and to specify implicit none if
your Fortran compiler allows it.

On entry:

mode says whether or not to compute gradients. It can be ignored if Derivative level

is 1 or 3. In this case, mode will always have the value 2 and you must compute all
elements of g(*).

Otherwise, when Derivative level is 0 or 2, MINOS will call funobj sometimes with
mode = 2 and sometimes with mode = 0. You may test mode to decide what to do:

If mode = 2, compute f and as many elements of g(*) as possible.

If mode = 0, compute f but set g(*) only if you wish. (On exit, the contents
of g(*) will be ignored.)

n is n′
1, the number of variables involved in F (x). They must be the first n′

1 variables
in the problem. For stand-alone MINOS, n′

1 is defined by Nonlinear variables or
Nonlinear objective variables in the Specs file. For minoss, n′

1 is the parameter
nnobj.

x(*) contains the current values of the nonlinear objective variables, x.

nstate indicates the first and last entries to funobj.

If nstate = 0, there is nothing special about the current call to funobj.

If nstate = 1, MINOS is calling your subroutine for the first time. Some data may
need to be input or computed and saved in local or common storage. Note that if there
are nonlinear constraints, the first call to funcon will occur before the first call to
funobj.

If nstate ≥ 2, MINOS is calling your subroutine for the last time. You may wish
to perform some additional computation on the final solution. (If Cycle limit is
specified, this call occurs at the end of each cycle.) Note again that if there are
nonlinear constraints, the last call to funcon will occur before the last call to funobj.

In general, the last call is made with nstate = 2 + ierr, where ierr indicates the
status of the final solution. In particular, if nstate = 2, the current x is optimal; if
nstate = 3, the problem appears to be infeasible; if nstate = 4, the problem appears
to be unbounded; and if nstate = 5, the iterations limit was reached. In some cases,
the solution may be nearly optimal if nstate = 11; this value occurs if the linesearch
procedure was unable to find an improved point.

If the nonlinear functions are expensive to evaluate, it may be desirable to do nothing
on the last call, by including the following statement at the start of the subroutine:
if (nstate .ge. 2) return.

nprob is an integer that you can set to the value i by saying Problem number i. The default
value is nprob = 0.

2.2 Subroutine funcon 17

z(*) is the primary work array used by MINOS and minoss. In certain applications it may
be desirable to access parts of this array, using various common blocks to pinpoint the
required locations; see §§A.5 and ??. Otherwise, z(*) and nwcore can be ignored.

nwcore is the dimension of z(*). It allows compilers to check that you don’t access elements
outside z(*).

On exit:

mode is an error indicator. Normally mode should not be altered, but if for some reason you
wish to terminate solution of the current problem, set mode ≤ −2.

You may set mode = −1 to mean “My nonlinear function is undefined here”. During
normal iterations, this signals the linesearch to try again with a shorter steplength.

f is the computed value of the objective function F (x).

g(*) is the computed gradient vector g(x). In general, g(j) should be set to the partial
derivative ∂F/∂xj for as many j as possible (except perhaps if mode = 0; see above).

2.2 SUBROUTINE FUNCON

This subroutine is provided by the user to compute the nonlinear constraint functions f(x) and as
many of their gradients as possible. It is not needed if the constraints are entirely linear. Note that
the gradients of the vector f(x) define the Jacobian matrix J(x). The j-th column of J(x) is the
vector ∂f/∂xj . The i-th row of J(x) is the gradient vector ∂f i/∂x.

Subroutine funcon may be coded in two different ways, depending on the method used for storing
the Jacobian, as specified in the Specs file. The default method Jacobian = Dense is the simplest.
It is suitable for moderate-sized problems.

Jacobian = Dense

Specification:

subroutine funcon(mode, m, n, njac, x, f, g,

$ nstate, nprob, z, nwcore)

implicit double precision (a-h,o-z)

integer mode, m, n, njac, nstate, nprob, nwcore

double precision x(n), f(m), g(m,n), z(nwcore)

Note: As in funobj, double precision should be real on some machines.

On entry:

mode says whether or not to compute gradients. It can be ignored if Derivative level

is 2 or 3. In this case, mode will always have the value 2 and you must compute all
elements of g(*,*) (except perhaps if there are some constant Jacobian elements; see
next section).

Otherwise, when Derivative level is 0 or 1, you may test mode to decide what to
do:

18 Chapter 2. User-written Subroutines

If mode = 2, compute f(*) and as much of g(*,*) as possible.

If mode = 0, compute f but set g(*,*) only if you wish. (On exit, the
contents of g(*,*) will be ignored.)

m is m1, the number of nonlinear constraints (not counting the objective function). These
must be the first m1 constraints in the problem. Any linear constraints or linear
objective rows must come after the nonlinear rows. For stand-alone MINOS, m1 is
defined by Nonlinear constraints in the Specs file. For minoss, m1 is the parameter
nncon.

n is n′′
1 , the number of variables involved in f(x). These must be the first n′′

1 variables
in the problem. For stand-alone MINOS, n′′

1 is defined by Nonlinear variables or
Nonlinear Jacobian variables in the Specs file. For minoss, n′′

1 is the parameter
nnjac.

njac is the value m*n.

x(*) contains the current values of the nonlinear Jacobian variables, x.

On exit:

mode is an error indicator. Normally mode should not be altered, but if for some reason you
wish to terminate solution of the current problem, set mode ≤ −2.

You may set mode = −1 to mean “My nonlinear function is undefined here”. During
normal iterations, this signals the linesearch to try again with a shorter steplength.

f(*) contains the computed values of the functions in the constraint vector f(x).

g(*,*) is the computed Jacobian matrix J(x). The vector ∂f/∂xj should be stored in the j-th
column of the 2-dimensional array g(*,*) (except perhaps if mode = 0; see above).
Equivalently, the gradient of the i-th constraint should be stored in the i-th row of
g(*,*). Thus,

g(i, j) = ∂f i/∂xj , g(*, j) = ∂f/∂xj , g(i, *) = ∂f i/∂x.

The other parameters are the same as for subroutine funobj.

Jacobian = Sparse

Specification:

subroutine funcon(mode, m, n, njac, x, f, g,

$ nstate, nprob, z, nwcore)

implicit double precision (a-h,o-z)

integer mode, m, n, njac, nstate, nprob, nwcore

double precision x(n), f(m), g(njac), z(nwcore)

This is the same as for Jacobian = Dense, except for the declaration of g(njac).

2.3 Constant Jacobian Elements 19

On entry:

njac is the number of nonzero elements in the Jacobian matrix J(x). For stand-alone
MINOS, this is exactly the number of entries in the MPS file that referred to nonlinear
rows and nonlinear Jacobian columns (the first m rows in the ROWS section and the
first n columns in the COLUMNS section).

Usually njac will be less than m*n. The actual value of njac may not be of any use
when coding funcon, but any expression involving g(l) should have the subscript l
between 1 and njac.

On exit:

g(*) is the computed elements of the Jacobian matrix (except perhaps if mode = 0; see
previous page).

For stand-alone MINOS, these elements must be stored column-wise into g(*) in ex-
actly the same positions as implied by the MPS file, ignoring elements in linear rows.
For minoss, g(*) must be stored in the positions implied by parameters a(*) and
ha(*) (ignoring elements in linear rows). There is no internal check for consistency
(except indirectly via the Verify parameter), so great care is essential.

The other parameters are the same as for Jacobian = Dense.

2.3 CONSTANT JACOBIAN ELEMENTS

Suppose that Derivative level is 2 or 3. This usually means that funcon will compute all con-
straint gradients (so MINOS does not have to estimate them by finite differences). However, any
constant elements of g(*) need not be set by funcon. Instead, you may think of them as being
initialized in the MPS file (for stand-alone MINOS) or in the minoss parameter a(*). An element
of g(*) that is not computed in funcon will retain its initial value.

This feature is useful when Jacobian = Dense and many Jacobian elements are identically zero.
Such elements need not be specified in the MPS file, nor set in funcon (but for minoss they must
be initialized at zero in a(*)).

Note that constant nonzero elements do affect f(*). If Jij is constant, the array element g(i,j)
need not be set in funcon, but the value g(i,j)*x(j) must be added to f(i).

When Jacobian = Sparse, constant Jacobian elements are normally nonzero. If the correct
initial value is supplied, the corresponding element g(l) need not be reassigned in funcon, but a
term of the form g(l)*x(j) must be added to one of the elements of f(*). (This feature allows a
matrix generator to output constant data to the MPS file. Similarly, a program calling minoss can
set constant data within the parameter a(*). Subroutine funcon does not need to know that data
at compile time, but can use it at run time to compute the elements of f(*).)

Remember, if Derivative level is 0 or 1 then unassigned elements of g(*) are not treated as
constant; they are estimated by finite differences, at significant expense.

2.4 SUBROUTINE MATMOD

This subroutine allows you to define a sequence of related problems and have them solved one by one.
It is used in conjunction with the Cycle options (and possibly the Phantom options; see subroutine
matcol).

If the Cycle limit is 1 (the default), matmod is never called. If it is 2 or more, matmod is called
before the original problem is solved (cycle 0), and also after each problem in the sequence is solved
(cycle 1, 2, 3, . . .).

20 Chapter 2. User-written Subroutines

Within matmod you may change the problem data in any desired way; for example, you might
alter some bounds on the variables or revise some of the constraint coefficients. You could also
communicate with the function routines funobj and funcon to alter their behavior (typically by
altering variables in one of your own common blocks). Finally, matmod may specify whether a “warm”
or “hot” start should be used when MINOS starts solving the new problem.

In general, matmod is intended for use with stand-alone MINOS (since minoss can be called
repeatedly with arbitrary problem changes between calls).

Specification:

subroutine matmod(ncycle, nprob, finish,

$ m, n, nb, ne, nka, ns, nscl, nname,

$ a, ha, ka, bl, bu,

$ ascale, hs, name1, name2,

$ x, pi, rc, z, nwcore)

implicit double precision (a-h,o-z)

integer ncycle, nprob,

$ m, n, nb, ne, nka, ns, nscl, nname, nwcore

logical finish

integer*4 ha(ne), hs(nb)

integer ka(nka), name1(nname), name2(nname)

double precision a(ne), ascale(nscl), bl(nb), bu(nb),

$ x(nb), pi(m), rc(nb), z(nwcore)

Note: The integer*4 declaration normally means the same as integer, but to conserve storage in
some installations, all integer*4s in the MINOS source code may have been changed to integer*2.
If so, the same applies here and in subroutine matcol below.

On entry:

ncycle says how many problems have been solved.

If ncycle = 0, this is the first time matmod has been called. MINOS has read the
MPS file. If a Basis file was specified, it has been read and hs is defined. (Otherwise,
Crash has not yet been called and hs does not define a basis.) The problem has not
yet been scaled or solved. This entry allows matmod to initialize problem-dependent
quantities. If you do not wish to do anything before solving the first problem, include
the following statement at the beginning of matmod:
if (ncycle .eq. 0) return.

Otherwise, ncycle gives the number of the cycle that has just terminated. It is the
number of problems that have been solved.

nprob is 0 by default. It can be set to the value i by saying Problem number i in the Specs

file.

finish is .false.

m is m, the number of rows in the constraint matrix.

n is n, the number of variables, excluding slacks.

nb is nb = n + m, the number of variables, including slacks. (It is the length of many
arrays including bl and bu. The name is short for Number of Bounds.)

2.4 Subroutine matmod 21

ne is the number of elements in the constraint matrix (used only to dimension a(*) and
ha(*)).

nka is n + 1 (used to dimension ka).

ns is the number of superbasic variables.

nscl says if the problems are being scaled prior to each solve. If nscl = 1, scaling has not
been specified. (There is only one element in the array ascale and it is undefined.)
Otherwise, nscl = nb and ascale contains the scales used for the cycle that just
finished (assuming ncycle > 0). However, the problem itself has been unscaled.

nname is normally the same as nb, assuming MINOS read an MPS file. If matmod is for some
reason being used with minoss, nname is the same as the minoss parameter: it may
be nb or 1, depending on whether names exist.

a(*), ha(*), ka(*) contain the current constraint matrix. See §A.5.

bl(*), bu(*) are the lower and upper bounds on all column and slack variables (x, s), in that
order.

ascale(*) contains scale factors for columns and rows, in that order. They are defined if ncycle >
0 and scaling has been requested (nscl > 1).

hs(*) is the state vector for all variables. See §A.5.

name1(*), name2(*) contain the first and second halves of the names of the columns and rows, in
that order, in a4 format. For example, if the 20th variable were named ’Capital ’,
we would have name1(20) = ’Capi’ and name2(20) = ’tal ’. Sometimes it may be
useful to determine the index of a column or row by searching these arrays.

x(*) contains the values of all variables (x, s).

pi(*) contains the values of the dual variables π. The first m1 components are the current
estimates of λ, the Lagrange multipliers for the nonlinear constraints. In some cases,
good initial values for λ can assist convergence of the projected Lagrangian algorithm.
They may be provided to MINOS by the MPS file, but it may be more convenient to
define them in matmod on the first entry, when ncycle = 0. (Subroutine minoss allows
them to be passed in directly.)

z(*) is the primary work array used by MINOS. As in funobj or funcon, it may be desirable
to access parts of this array, using various common blocks to pinpoint the required
locations.

nwcore is the dimension of z(*).

On exit:

finish should be set to .true. if you wish the cycles to be terminated; e.g., if some conver-
gence criterion has been satisfied. The Cycle tolerance may be useful for specifying
a numerical value at run-time. This is stored in the variable cnvtol in the common
block

common /cyclcm/ cnvtol,jnew,materr,maxcy,nephnt,nphant,nprint

22 Chapter 2. User-written Subroutines

a(*) contains the constraint matrix, perhaps with some elements modified. In general,
coefficients cannot be added or deleted; instead, existing entries may be changed to or
from zero.

With care, a coefficient could be moved to some other row in the same column, by
altering ha(*) appropriately. With even greater care, a coefficient could be moved
from one column to another, by altering both ha(*) and ka(*).

Additional entries may be created at the end of a(*), ha(*) and ka(*); see subroutine
matcol.

If scaling has been requested, a problem is unscaled at the end of each cycle, and rescaled at
the beginning of the next. Subroutine matmod may therefore treat a, bl, bu, x and pi as being in
original units.

2.5 WARM AND HOT STARTS

At the end of each cycle, MINOS performs certain functions to initiate the solution of the next
problem. The options are:

• retain the current basis B, or perform Crash;

• retain the current basis factorization B = LU , or refactorize;

• retain the current projected Hessian matrix RTR, or reset it;

• retain existing scales, or compute new ones from the current constraint matrix A and/or the
Jacobian;

• retain the current Lagrange multiplier estimates λ for nonlinear constraints, or set them to
specified values.

The default action is to retain current values. This may not be desirable in some cases; for example,
if a(*) is changed, the basis factorization may be rendered incorrect. If necessary, matmod should
include the declarations

logical gotbas,gotfac,gothes,gotscl

common /cycle1/ gotbas,gotfac,gothes,gotscl

and should change the appropriate logical variables from true to false.
For example, if gotscl remains true, MINOS will use the scale factors from the previous solve

(assuming scaling has been requested). If the matrix coefficients in a(*) have changed significantly,
it may be better to set gotscl = .false. and let the scaling procedure be invoked again.

Similarly, if gotbas remains true, a basis is assumed to be specified by the array hs(*). It should
provide a good starting point if the problem has not been dramatically altered. Otherwise, setting
gotbas = .false. means that you want Crash to choose a starting basis (a cold start). (The arrays
hs(*) and xn(*) still come into play, in the same way as they do on entry to subroutine minoss).

For problems with nonlinear constraints, the current basis factorization will not be retained even
if gotfac remains true. When the constraints are linear, the main thing to remember is that if you
change a(*) or ha(*) (even just linear objective coefficients), it is essential to set gotfac = .false.

For any nonlinear problems, if gotbas remains true then it is probably sensible to leave gothes

true, unless for some reason the number of superbasic entries in hs(*) is altered.
For problems with nonlinear constraints, the multiplier estimates λk may be changed by resetting

the appropriate elements of the array pi(*).

2.6 Subroutine matcol 23

For subroutine minoss, the logical variables in the above common block are set via the first
parameter, start, which may be ’Cold’, ’Warm’, ’Hot’ or ’Hot xxx’, where xxx is any number
of the letters FHS to say “Keep the Factors, Hessian and/or Scales” as appropriate. See subroutine
minoss.

2.6 SUBROUTINE MATCOL

If Phantom columns c and Phantom elements e are defined in the Specs file (along with Cycle

limit k), the MINOS subroutine matcol may be called by matmod up to c times during cycles 2
through k. The aim is to turn at most c “Phantom columns” into normal columns containing a total
of at most e nonzero elements. matmod must provide an array col(*) and a zero tolerance ztol for
each call. The significant elements of col will be packed into the matrix data structure, to form a
new column. The associated variable will be given the default Lower bound and Upper bound, and
a scale factor of 1.0.

Specification:

subroutine matcol(m, n, nb, ne, nka,

$ a, ha, ka, bl, bu, col, ztol)

implicit double precision (a-h,o-z)

integer m, n, nb, ne, nka

integer*4 ha(ne)

integer ka(nka)

double precision a(ne), bl(nb), bu(nb), col(m), ztol

On entry:

m is the length of the array col(*). Usually this will be m, the number of rows in the
constraint matrix. In general, it may be anywhere in the range 1 ≤ m ≤ m, if the new
column is known to be zero beyond position m.

n is the total number of columns in the problem, including all Phantom columns. This
number is the same for all calls to matcol.

col(*) is a the dense vector that is to be packed to become a new matrix column.

ztol is a “zero tolerance” for deleting negligible elements from col when it is packed into
a(*) and ha(*). On most machines, a reasonable value is ztol = 1.0e-8.

On exit:

a(*), ha(*), ka(*), bl(*), bu(*) will have been suitably modified.

The other parameters come directly from matmod.
In general it is advisable to make matmod test for errors when calling matcol. At present, this is

done by declaring the common block

common /cyclcm/ cnvtol,jnew,materr,maxcy,nephnt,nphant,nprint

within matmod. If materr = 0 after a call to matcol, a new column was successfully created, and it
is now column number jnew. For further details, see the Cycle options in §?? and the example in
§??.

24 Chapter 2. User-written Subroutines

Chapter 3 September 23, 2003

The SPECS File

The performance of MINOS is controlled by many parameters or “options”, each of which has a
default value. A Specs file allows you to specify some of the options for a particular problem. Note
that most options should be left at their default value. If experimentation is necessary, we recommend
changing just one option at a time.

The following examples illustrate the format. In all cases, the first group of options is needed by
stand-alone MINOS (for reading the MPS file) but not by minoss.

Linear Programs. To solve LP problems of any dimension up to some known limits, use a Specs

file of following form:

Begin LP example

MPS file 10

Rows 2400 * These 3 values aren’t exact.

Columns 10000 * They are suitable for the

Elements 71000 * first 60 Netlib test problems.

Iteration limit 40000

Solution No

End LP specs

Problems with a Nonlinear Objective. Here, we have to give the number of variables in the
objective, and an over-estimate of the final number of superbasics.

Begin Nonlinear Objective example

MPS file 10 * These 5 lines are not needed

Rows 1000 * if you are calling minoss.

Columns 2000 *

Elements 7000 *

Nonlinear variables 150 * This value must be exact.

Scale No * if constraints are well scaled.

Verify gradients * until they all "seem OK".

Superbasics limit 100 * or bigger if necessary (but less than no. nonlinearities).

Iterations 5000

End

Problems with Nonlinear Constraints. The nonlinear dimensions must be given exactly. Here,
the objective and constraints have the same number of nonlinear variables.

Begin Nonlinear Constraint example

MPS file 10

Rows 1000

Columns 2000

25

26 Chapter 3. The SPECS File

Elements 7000

Nonlinear constraints 100 * These 2 values

Nonlinear variables 300 * must be exact.

Scale No * at least initially.

Verify gradients * until they "seem OK".

Superbasics 100

End

Mildly Nonlinear Constraints. Models that are very nearly linear may optimize more efficiently
if some of the “cautious” defaults are relaxed. (Here, the objective and constraints are nonlinear
in different, perhaps overlapping, sets of variables.)

Begin Easy Nonlinear Constraint example

...

...

Nonlinear constraints 100 * These 3 values

Nonlinear Jacobian variables 200 * must be exact.

Nonlinear objective variables 300 *

Scale No

Superbasics 100

Minor iterations 100

Penalty parameter 0.1 * or perhaps 0.0

End

Highly Nonlinear Constraints. Conversely, there is no guarantee that the major iterations will
converge. Raising the penalty parameter and reducing the damping parameter from their
default values may help.

Begin Difficult Nonlinear Constraint example

...

...

Nonlinear constraints 100

Nonlinear Jacobian variables 200

Nonlinear objective variables 0 * The objective is linear.

Superbasics 100

Major iterations 200

Iterations 5000

Completion Full

Penalty parameter 5.0

Major damping parameter 0.1

Row tolerance 1.0e-5 * for nonlinear rows.

Optimality tolerance 1.0e-5 * to stop a little early.

End

3.1 SPECS FILE FORMAT

The first and last lines of a Specs file contain Begin and End as shown above. Most of the first line
is echoed to the Summary file. Comments may appear on any lines following a *, or beyond column

3.2 Options for the MPS File 27

72. Comments and blank lines are ignored. Otherwise, each line specifies a single option using the
following items:

1. A keyword, such as LU.

2. A phrase, such as factor tolerance. This is zero or more words, none of which begins with
a digit, + or -.

3. A number, such as 10.0 (only for some options). This is an integer or real value with up to
16 contiguous characters in Fortran’s I, F, E or D formats.

The items may appear anywhere before column 72, in upper or lower case. Some of the keywords
have synonyms, and abbreviations are allowed if there is no ambiguity.

Stand-alone MINOS requires a Specs file. It is input from a predetermined unit (typically unit
4). For subroutine minoss, the driving program must first call mispec (§7.2) to input a Specs file
from a specified unit.

The following sections describe all options that may appear in the Specs file, and give their
default values. The number ǫ denotes machine precision (typically 10−15 or 10−16). The options are
grouped in the following order:

3.2 MPS File
3.3 Linear Programmming
3.4 All Problems
3.5 Nonlinear Objectives
3.6 All Nonlinear Problems
3.7 Nonlinear Constraints
3.8 Input and Output

3.2 OPTIONS FOR THE MPS FILE

The following options apply to stand-alone MINOS, for reading constraint data from an MPS file.
They are not needed by subroutine minoss.

Aij tolerance t Default = 1.0e-10

During input of the MPS file, matrix elements aij in the COLUMNS section are ignored if |aij | < t.
If Cycle limit > 1 and aij is to be changed from zero to a value greater than t during a later cycle,
set t = 0.0 to retain all entries in the MPS file.

This tolerance does not apply to Jacobian elements (i.e., those belonging to nonlinear constraints
and Jacobian variables: i ≤ m1 and j ≤ n′′

1).

Bounds a Default = blank

This specifies the 8-character name of a Bounds set to be selected from the BOUNDS section of the
MPS file. If a is blank, MINOS selects the first set (if any). If you don’t want the first set to be used,
specify a dummy name such as Bounds = NONE.

Columns n Default = 3 ∗ Rows
This must specify an over-estimate of the number of columns in the constraint matrix (excluding
slack variables, but including any Phantom columns). If n proves to be too small, MINOS issues a
warning and continues reading the MPS file to determine the true value. If the Specs file and MPS

file are on different units, the MPS file is re-read. Otherwise, the problem is terminated.

28 Chapter 3. The SPECS File

Elements e Default = 5 ∗ Columns
This must specify an over-estimate of the number of nonzero elements aij in the constraint matrix,
including all entries in a Dense or Sparse Jacobian, and all nonzeros in the matrices A1, A2, A3.
(It should also include the number of Phantom elements, if any.)

Coefficients is a valid alternative keyword. If e proves to be too small, MINOS continues in
the manner described under Columns.

Error message limit k Default = 10

This is the maximum number of error messages to be printed for each type of error occurring when
the MPS file is read. The default value is reasonable for early runs on a particular problem. If the
same MPS file is used repeatedly, k can be reduced to suppress warning of non-fatal errors.

Jacobian Dense Default
Jacobian Sparse

If there are nonlinear constraints, this determines the manner in which the constraint gradients are
evaluated and stored. It affects the MPS file and subroutine funcon.

The Dense option is convenient if there are not many nonlinear constraints or variables. It
requires storage for three dense matrices of order m1 × n1. The MPS file may then contain any
number of Jacobian entries. Usually this means no entries at all.

For efficiency, the Sparse option is preferable in all nontrivial cases. (Beware—it must be specif-

ically requested.) The MPS file must then specify the position of all Jacobian elements (that are not
identically zero), and subroutine funcon must store the elements of the Jacobian array g in exactly
the same order.

In both cases, if Derivative level = 2 or 3 the MPS file may specify Jacobian elements that
are constant for all values of the nonlinear variables. The corresponding elements of g need not be
reset in funcon.

List limit k Default = 0

This limits the number of lines of the MPS file to be listed on the Print file during input. All
comments and headers are listed (NAME, ROWS, COLUMNS, etc.), along with their position in the file.

Lower bound l Default = 0.0

This specifies a default lower bound for all variables (excluding slacks). Individual variables may
have their lower bound altered by a Bounds set in the MPS file.

Lower bound = 1.0e-5 (say) is a useful method for bounding all variables away from singular-
ities at zero. Explicit bounds may also be necessary in the MPS file.

If all or most variables are to be free, use Lower bound = -1.0e+20 to specify “minus infinity”.
The default upper bound is already 1.0e+20, which is treated as “plus infinity”.

MPS file k Default = Specs file

This is the Fortran file number containing the required MPS file. For nontrivial problems it is usually
best to store the MPS file separately from the Specs file. If the Rows, Columns or Elements estimates
prove to be too low, MINOS determines the correct values and re-reads the MPS file.

The default value is the same as for the Specs file, since it may be convenient to keep the
Specs and MPS files together. The value is system-dependent. It is typically set to ispecs = 4 in
subroutine minos1.

3.2 Options for the MPS File 29

Nonlinear constraints m1 Default = 0
Nonlinear variables n1 Default = 0
Nonlinear objective variables n′

1 Default = 0
Nonlinear Jacobian variables n′′

1 Default = 0

These keywords are needed if a problem has a nonlinear objective or nonlinear constraints or both.
They define the parameters m and n in subroutines funobj and funcon. For example, m in funcon

takes the value m1, if m1 > 0.
Nonlinear variables may be used if only the objective is nonlinear, or if the objective function

and the constraints involve the same set of nonlinear variables x. (It sets n = n1 in funobj and
funcon.)

Otherwise, specify n′
1 and n′′

1 separately. If m1 = 0, the value n′′
1 = 0 is assumed, regardless of

n1 or n′
1.

Remember that the nonlinear constraints and variables must always be the first ones in the
problem. If both the objective and constraints are nonlinear, it is usually best to place Jacobian
variables before objective variables, so that n′′

1 ≤ n′
1. This affects the way the function subroutines

should be coded, and the order in which variables should be placed in the COLUMNS section of the
MPS file.

For example, a problem of the form “min x2 subject to 6x+y2 +z2 = 8” would be better written
as “min z2 subject to x2 + y2 + 6z = 8”, so that n′

1 = 3 and n′′
1 = 2.

Objective a Default = blank

This specifies the 8-character name of a type N row to be selected from the ROWS section of the
MPS file. For linear programs, that row defines the objective function cTx. More generally, it defines
a linear function cTx + dTy to be added to the nonlinear objective F (x).

If a is blank, MINOS selects the first N row (if any). If you don’t want any N rows to be used,
specify a dummy name such as Objective = NONE. If the objective is defined entirely by subroutine
funobj, it may be helpful to specify Objective = funobj. (However, don’t expect a different name
to invoke a different subroutine!)

Note: Objective rows must be listed after nonlinear constraint rows in the ROWS section of the
MPS file.

Phantom columns c Default = 0
Phantom elements e Default = 0

These specify that some extra columns and matrix elements may be generated beyond those con-
tained in the MPS file. The Columns and Elements keywords must be large enough to include c and
e respectively.

The Cycle keywords are also relevant (§3.4). Your subroutine matmod must generate each new
column by calling the MINOS subroutine matcol.

Ranges a Default = blank

This specifies the 8-character name of a Ranges set to be selected from the RANGES section of the
MPS file. If a is blank, MINOS selects the first set (if any). If you don’t want the first set to be used,
specify a dummy name such as Ranges = NONE.

RHS a Default = blank

This specifies the 8-character name of a right-hand side to be selected from the RHS section of the
MPS file. If a is blank, MINOS selects the first RHS (if any). If you want the right-hand side to be
zero, specify a dummy name such as RHS = NONE or RHS = zero.

30 Chapter 3. The SPECS File

Rows m Default = 100

This must specify an over-estimate of the number of rows in the ROWS section of the MPS file.
It includes the number of nonlinear constraints and the number of general linear constraints. If m
proves to be too small, MINOS continues in the manner described under Columns.

Upper bound u Default = 1.0e+20

This specifies a default upper bound for all variables (excluding slacks). Individual variables may
have their upper bound altered by a Bounds set in the MPS file.

3.3 OPTIONS FOR LINEAR PROGRAMMMING

The following options apply specifically to linear programs.

Crash option i Default = 3
Crash tolerance t Default = 0.1

Except on restarts, a Crash procedure is used to select an initial basis from certain rows and columns
of the constraint matrix (A I). The Crash option i determines which rows and columns of A are
eligible initially, and how many times Crash is called. Columns of I are used to pad the basis where
necessary.

i = 0 The initial basis contains only slack variables: B = I.

1 Crash is called once, looking for a triangular basis in all rows and columns of A.

2 Crash is called twice (if there are nonlinear constraints). The first call looks for a triangular
basis in linear rows, and the first major iteration proceeds with simplex iterations until the
linear constraints are satisfied. The Jacobian is then evaluated for the second major iteration
and Crash is called again to find a triangular basis in the nonlinear rows (retaining the current
basis for linear rows).

3 Crash is called up to three times (if there are nonlinear constraints). The first two calls treat
linear equalities and linear inequalities separately. As before, the last call treats nonlinear rows
at the start of the second major iteration.

If i ≥ 1, certain slacks on inequality rows are selected for the basis first. (If i ≥ 2, numerical
values are used to exclude slacks that are close to a bound.) Crash then makes several passes through
the columns of A, searching for a basis matrix that is essentially triangular. A column is assigned
to “pivot” on a particular row if the column contains a suitably large element in a row that has not
yet been assigned. (The pivot elements ultimately form the diagonals of the triangular basis.) For
remaining unassigned rows, slack variables are inserted to complete the basis.

The Crash tolerance allows Crash to ignore certain “small” nonzeros in each column of A. If
amax is the largest element in column j, other nonzeros aij in the column are ignored if |aij | ≤ amax×t.
(To be meaningful, t should be in the range 0 ≤ t < 1.)

When t > 0.0, the bases obtained by Crash may not be strictly triangular, but are likely to be
nonsingular and almost triangular. The intention is to choose a basis containing more columns of A
and fewer (arbitrary) slacks. A feasible solution may be reached sooner on some problems.

For example, suppose the first m columns of A are the matrix shown under LU factor tolerance;
i.e., a tridiagonal matrix with entries −1, 4, −1. To help Crash choose all m columns for the initial
basis, we would specify Crash tolerance t for some value of t > 1/4.

3.4 Options for All Problems 31

3.4 OPTIONS FOR ALL PROBLEMS

The following options have the same purpose for all problems, whether they linear or nonlinear.

Check frequency k Default = 60

Every k-th minor iteration after the most recent basis factorization, a numerical test is made to
see if the current solution x satisfies the general linear constraints (including linearized nonlinear
constraints, if any). The constraints are of the form Ax+ s = b, where s is the set of slack variables.
To perform the numerical test, the residual vector r = b − Ax − s is computed. If the largest
component of r is judged to be too large, the current basis is refactorized and the basic variables
are recomputed to satisfy the general constraints more accurately.

Check frequency 1 is useful for debugging purposes, but otherwise this option should not be
needed.

Cycle limit l Default = 1
Cycle print p Default = 1
Cycle tolerance t Default = 0.0
Phantom columns c Default = 0
Phantom elements e Default = 0

Debug level l Default = 0

This causes various amounts of information to be output to the Print file. Most debug levels are not
helpful to normal users, but they are listed here for completeness.

l = 0 No debug output.

l = 2 (or more) Output from m5setx showing the maximum residual after a row check.

l = 40 Output from lu8rpc (which updates the LU factors of the basis matrix), showing the
position of the last nonzero in the transformed incoming column.

l = 50 Output from lu1mar (which computes the LU factors each refactorization), showing
each pivot row and column and the dimensions of the dense matrix involved in the
associated elimination.

l = 100 Output from m2bfac and m5log listing the basic and superbasic variables and their
values at every iteration.

Defaults

This causes all MINOS options to be set to their default values. When minoss is in use, call

miopt(’Defaults’) causes all MINOS options to be set to their default values.

Expand frequency k Default = 10000

This option is part of an anti-cycling procedure designed to guarantee progress even on highly
degenerate problems. See [GMSW89].

“Cycling” can occur only if zero steplengths are allowed. Here, the strategy is to force a positive
step at every iteration, at the expense of violating the bounds on the variables by a small amount.

32 Chapter 3. The SPECS File

Suppose that the Feasibility tolerance is δ. Over a period of k iterations, the tolerance actually
used by MINOS increases from 0.5δ to δ (in steps of 0.5δ/k).

Every k iterations, or when feasibility and optimality are first detected, a resetting procedure
eliminates any infeasible nonbasic variables. Some additional iterations may be needed to restore
feasibility and optimality. Increasing k reduces that likelihood, but it gives less freedom to choose
large pivot elements during basis changes. (See Pivot tolerance.)

Factorization frequency k Default = 100 (LP) or 50 (NLP)

With linear programs, most iterations cause a basis change, in which one column of the basis matrix
B is replaced by another. The LU factors of B must be updated accordingly. At most k updates
are performed before the current B is factorized directly.

Each update tends to add nonzeros to the LU factors. Since the updating method is stable, k
mainly affects the efficiency of minor iterations, rather than stability.

High values of k (such as 100 or 200) may be more efficient on “dense” problems, when the
factors of B tend to have two or three times as many nonzeros as B itself. Lower values of k may
be more efficient on problems that are very sparse.

Feasibility tolerance t Default = 1.0e-6

This sets the feasibility tolerance δfea = t (see §3.3). A variable or constraint is considered feasible

if it does not lie outside its bounds by more than δfea.
MINOS first attempts to satisfy the linear constraints and bounds. If the sum of infeasibilities

cannot be reduced to zero, the problem is declared infeasible. Let sinf be the corresponding sum
of infeasibilities. If sinf is quite small, it may be appropriate to raise t by a factor of 10 or 100.
Otherwise, some error in the data should be suspected. If sinf is not small, there may be other
points that have a significantly smaller sum of infeasibilities. MINOS does not attempt to find a
solution that minimizes the sum.

For Scale option 1 or 2, feasibility is defined in terms of the scaled problem (since it is then more
likely to be meaningful). The final unscaled solution can therefore be infeasible by an unpredictable
amount, depending on the size of the scale factors. Precautions are taken so that in a “feasible
solution” the original variables will never be infeasible by more than 0.1. Values that large are very
unlikely.

Iterations limit k Default = 3m

MINOS stops after k iterations even if the simplex method has not yet reached a solution. If k = 0,
no iterations are performed, but the starting point is tested for both feasibility and optimality.

LU factor tolerance t1 Default = 100.0 (LP) or 5.0 (NLP)
LU update tolerance t2 Default = 10.0 (LP) or 5.0 (NLP)

These tolerances affect the stability and sparsity of the basis factorization B = LU during refactor-
ization and updating, respectively. They must satisfy t1, t2 ≥ 1.0. The matrix L is a product of
matrices of the form

(

1

µ 1

)

,

where the multipliers µ satisfy |µ| ≤ ti. Values near 1.0 favor stability, while larger values favor
sparsity. The default values usually strike a good compromise. For large and relatively dense
problems, t1 = 10.0 or 5.0 (say) may give a useful improvement in stability without impairing
sparsity to a serious degree.

3.4 Options for All Problems 33

For certain very regular structures (e.g., band matrices) it may be necessary to reduce t1 and/or
t2 in order to achieve stability. For example, if the columns of A include a submatrix of the form

4 −1

−1 4 −1
. . .

. . .
. . .

−1 4 −1

−1 4

,

one should set both t1 and t2 to values in the range 1.0 ≤ ti < 4.0.

LU density tolerance t3 Default = 0.6
LU singularity tolerance t4 Default = ǫ2/3 ≈ 10−11

The density tolerance t3 is used during LU factorization of the basis matrix. Columns of L and
rows of U are formed one at a time, and the remaining rows and columns of the basis are altered
appropriately. At any stage, if the density of the remaining matrix exceeds t3, the Markowitz
strategy for choosing pivots is altered to reduce the time spent searching for each remaining pivot.
Raising the density tolerance towards 1.0 may give slightly sparser LU factors, with a slight increase
in factorization time.

The singularity tolerance t4 helps guard against ill-conditioned basis matrices. When the basis
is refactorized, the diagonal elements of U are tested as follows: if |Ujj | ≤ t4 or |Ujj | < t4 maxi |Uij |,
the j-th column of the basis is replaced by the corresponding slack variable. (This is most likely to
occur after a restart, or at the start of a major iteration.)

In some cases, the Jacobian matrix may converge to values that make the basis exactly singular.
(For example, a whole row of the Jacobian could be zero at an optimal solution.) Before exact
singularity occurs, the basis could become very ill-conditioned and the optimization could progress
very slowly (if at all). Setting t4 = 1.0e-5, say, may help cause a judicious change of basis.

Maximize

Minimize Default

This specifies the required direction of optimization.

Multiple price k Default = 1

It is not normal to set k > 1 for linear programs, as it causes MINOS to use the reduced-gradient
method rather than the simplex method. The number of iterations, and the total work, are likely
to increase.

The reduced-gradient iterations do not correspond to the very efficient multiple pricing “minor
iterations” carried out by certain commercial linear programming systems. Such systems require
storage for k dense vectors of dimension m, so that k is usually limited to 5 or 6. In MINOS, the
total storage requirements increase only slightly with k. (The Superbasics limit must be at least
k.)

Optimality tolerance t Default = 1.0e-6

This is used to judge the size of the reduced gradients dj = gj −πTaj , where gj is the gradient of the
objective function corresponding to the j-th variable, aj is the associated column of the constraint
matrix (or Jacobian), and π is the set of dual variables.

34 Chapter 3. The SPECS File

By construction, the reduced gradients for basic variables are always zero. Optimality is declared
if the reduced gradients for nonbasic variables at their lower or upper bounds satisfy dj/‖π‖ ≥ −t
or dj/‖π‖ ≤ t respectively, and if |dj |/‖π‖ ≤ t for superbasic variables.

In those tests, ‖π‖ is a measure of the size of the dual variables. It is included to make the tests
independent of a large scale factor on the objective function. The quantity actually used is defined
by σ =

∑m
i=1

|πi|, ‖π‖ = max{σ/
√

m, 1.0}, so that only scale factors larger than 1.0 are allowed for.
If the objective is scaled down to be very small, the optimality test reduces to comparing dj against
t.

Partial price p Default = 10 (LP) or 1 (NLP)

This parameter is recommended for large problems that have significantly more variables than
constraints. It reduces the work required for each “pricing” operation (when a nonbasic variable is
selected to become basic or superbasic).

When p = 1, all columns of the constraint matrix (A I) are searched. Otherwise, A and I are
partitioned to give p roughly equal segments Aj , Ij (j = 1 to p). If the previous pricing search was
successful on Aj , Ij , the next search begins on the segments Aj+1, Ij+1. (Subscripts are modulo p.)

If a reduced gradient is found that is larger than some dynamic tolerance, the variable with the
largest such reduced gradient (of appropriate sign) is selected to become superbasic. (Several may
be selected if multiple pricing has been specified.) If nothing is found, the search continues on the
next segments Aj+2, Ij+2, and so on.

Partial price t (or t/2 or t/3) may be appropriate for time-stage models having t time periods.

Pivot tolerance t Default = ǫ2/3 ≈ 10−11

Broadly speaking, the pivot tolerance is used to prevent columns entering the basis if they would
cause the basis to become almost singular. When x changes to x+αp for some search direction p, a
“ratio test” is used to determine which component of x reaches an upper or lower bound first. The
corresponding element of p is called the pivot element.

For linear problems, elements of p are ignored (and therefore cannot be pivot elements) if they are
smaller than the pivot tolerance t. For nonlinear problems, elements smaller than t‖p‖ are ignored.

It is common for two or more variables to reach a bound at essentially the same time. In
such cases, the Feasibility tolerance provides some freedom to maximize the pivot element and
thereby improve numerical stability. Excessively small Feasibility tolerances should therefore not be
specified.

To a lesser extent, the Expand frequency also provides some freedom to maximize the pivot
element. Excessively large Expand frequencies should therefore not be specified.

Scale option l Default = 2 (LP) or 1 (NLP)
Scale Yes

Scale No

Scale linear variables Same as Scale option 1

Scale nonlinear variables Same as Scale option 2

Scale all variables Same as Scale option 2

Scale tolerance t Default = 0.9
Scale, Print

Scale, Print, Tolerance t

Three scale options are available as follows:

l = 0 No scaling. If storage is at a premium, this option saves m + n words of workspace.

3.5 Options for Nonlinear Objectives 35

l = 1 Linear constraints and variables are scaled by an iterative procedure that attempts
to make the matrix coefficients as close as possible to 1.0 (see Fourer, 1982). This
sometimes improves the performance of the solution procedures.

l = 2 All constraints and variables are scaled by the iterative procedure. Also, a certain
additional scaling is performed that may be helpful if the right-hand side b or the
solution x is large. This takes into account columns of (A I) that are fixed or have
positive lower bounds or negative upper bounds.

Scale Yes sets the default scaling. (Caution: If all variables are nonlinear, Scale Yes unexpectedly
does nothing, because there are no linear variables to scale.) Scale No suppresses scaling (equivalent
to Scale option 0).

If nonlinear constraints are present, Scale option 1 or 0 should generally be tried at first.
Scale option 2 gives scales that depend on the initial Jacobian, and should therefore be used only
if (a) a good starting point is provided, and (b) the problem is not highly nonlinear.

Scale, Print causes the row-scales r(i) and column-scales c(j) to be printed. The scaled matrix
coefficients are āij = aijc(j)/r(i), and the scaled bounds on the variables and slacks are l̄j =
lj/c(j), ūj = uj/c(j), where c(j) ≡ r(j − n) if j > n.

All forms except Scale option may specify a tolerance t, where 0 < t < 1 (for example: Scale,
Print, Tolerance = 0.99). This affects how many passes might be needed through the constraint
matrix. On each pass, the scaling procedure computes the ratio of the largest and smallest nonzero
coefficients in each column:

ρj = max
i

|aij |/min
i

|aij | (aij 6= 0).

If maxj ρj is less than t times its previous value, another scaling pass is performed to adjust the row
and column scales. Raising t from 0.9 to 0.99 (say) usually increases the number of scaling passes
through A. At most 10 passes are made.

If a Scale option has not already been specified, Scale, Print or Scale tolerance both set
the default scaling.

Weight on linear objective w Default = 0.0

This keyword invokes the so-called composite objective technique, if the first solution obtained is
infeasible, and if the objective function contains linear terms. While trying to reduce the sum of
infeasibilities, the method also attempts to optimize the linear objective. At each infeasible iteration,
the objective function is defined to be

minimize
x

σw(cTx) + (sum of infeasibilities),

where σ = 1 for minimization, σ = −1 for maximization, and c is the linear objective. If an
“optimal” solution is reached while still infeasible, w is reduced by a factor of 10. This helps to
allow for the possibility that the initial w is too large. It also provides dynamic allowance for the
fact that the sum of infeasibilities is tending towards zero.

The effect of w is disabled after 5 such reductions, or if a feasible solution is obtained.
The Weight option is intended mainly for linear programs. It is unlikely to be helpful on nonlinear

problems.

3.5 OPTIONS FOR NONLINEAR OBJECTIVES

The following options apply to nonlinear programs whose constraints are linear.

36 Chapter 3. The SPECS File

Crash option l Default = 3
Crash tolerance t Default = 0.1

These options are the same as for linear programs.

3.6 OPTIONS FOR ALL NONLINEAR PROBLEMS

Expand frequency k Default = 10000

This option is used the same as for linear programs, but takes effect only when there is just one
superbasic variable. (Cycling can occur only when the current solution is at a vertex of the feasible
region. Thus, zero steps are allowed if there is more than one superbasic variable, but otherwise
positive steps are enforced.) Increasing k helps reduce the number of slightly infeasible nonbasic basic
variables (most of which are eliminated during a resetting procedure). However, it also diminishes
the freedom to choose a large pivot element (see Pivot tolerance).

Feasibility tolerance t Default = 1.0e-6

When the constraints are linear, a feasible solution is one in which all variables, including slacks,
satisfy their upper and lower bounds to within the absolute tolerance t. (Since slacks are included,
this means that the general linear constraints are also satisfied to within t.)

When nonlinear constraints are present, a feasible subproblem is one in which the linear con-
straints and bounds, as well as the current linearization of the nonlinear constraints, are satisfied to
within the tolerance t.

MINOS first attempts to satisfy the linear constraints and bounds. If the sum of infeasibilities
cannot be reduced to zero, the problem is declared infeasible.

Normally, the nonlinear functions F (x) and f(x) are evaluated only at points x that satisfy the
linear constraints and bounds. If the functions are undefined in certain regions, every attempt should
be made to eliminate these regions from the problem. For example, for a function F (x) =

√
x1 +

log x2, it would be essential to place lower bounds on both variables. If Feasibility tolerance

= 10−6, the bounds x1 ≥ 10−5 and x2 ≥ 10−4 might be appropriate. (The log singularity is more
serious; in general, keep variables as far away from singularities as possible.)

An exception is during optional gradient checking (see Verify), which occurs before any opti-
mization takes place. The points at which the functions are evaluated satisfy the bounds but not
necessarily the general constraints. If this causes difficulty, gradient checking should be suppressed
by setting Verify level -1.

If a subproblem is infeasible, the bounds on the linearized constraints are relaxed in several stages
until the subproblem appears feasible. (The true bounds are restored for the next subproblem.)
This approach sometimes allows the optimization to proceed successfully. In general, infeasible
subproblems are a symptom of difficulty and it may be necessary to increase the Penalty parameter

or alter the starting point.

Note: Feasibility with respect to the nonlinear constraints is measured against the Row tolerance,
not the Feasibility tolerance.

Hessian dimension r Default = 50

This specifies that an r × r triangular matrix R is to be available for use by the quasi-Newton
algorithm (to approximate the reduced Hessian matrix according to ZTHZ ≈ RTR). Suppose there
are s superbasic variables at a particular iteration. Whenever possible, r should be greater than s.

3.6 Options for All Nonlinear problems 37

If r ≥ s, the first s columns of R are used to approximate the reduced Hessian in the normal
manner. If there are no further changes to the set of superbasic variables, the rate of convergence is
usually superlinear. If r < s, a matrix of the form

R =

(

Rr 0

D

)

is used to approximate the reduced Hessian, where Rr is an r × r upper triangular matrix and D
is a diagonal matrix of order s − r. The rate of convergence is no longer superlinear (and may be
arbitrarily slow).

The storage required is of order 1

2
r2, which is substantial if r is as large as 1000 (say). In general,

r should be a slight over-estimate of the final number of superbasic variables, whenever storage
permits. It need not be larger than n1 +1, where n1 is the number of nonlinear variables. For many
problems it can be much smaller than n1.

Iterations limit k Default = 3m + 10n1

If the constraints are linear, this is the maximum number of iterations allowed for the simplex
method or the reduced-gradient method. Otherwise, it is the maximum number of minor iterations,
summed over all major iterations.

If k = 0, no minor iterations are performed, but the starting point is tested for both feasibility
and optimality.

Linesearch tolerance t Default = 0.1

For nonlinear problems, this controls the accuracy with which a steplength α is located during
one-dimensional searches of the form

minimize
α

F (x + αp) subject to 0 < α ≤ β.

A linesearch occurs on most minor iterations for which x is feasible. (If the constraints are nonlinear,
the function being minimized is the augmented Lagrangian in equation (5).)

The value of t must satisfy 0.0 ≤ t < 1.0. The default value t = 0.1 requests a moderately
accurate search, and should be satisfactory in most cases. If the nonlinear functions are cheap to
evaluate, a more accurate search may be appropriate; try t = 0.01 or t = 0.001. The number of
iterations should decrease, and this will reduce total run time if there are many linear or nonlinear
constraints. If the nonlinear functions are expensive to evaluate, a less accurate search may be
appropriate; try t = 0.5 or perhaps t = 0.9. (The number of iterations will probably increase, but
the total number of function evaluations may decrease enough to compensate.)

LU singularity tolerance t3 Default = ǫ2/3 ≈ 10−11

LU swap tolerance t4 Default = ǫ1/4 ≈ 10−4

The singularity tolerance t3 helps guard against ill-conditioned basis matrices. When the basis is
refactorized, the diagonal elements of U are tested as follows: if |Ujj | ≤ t3 or |Ujj | < t3 maxi |Uij |,
the j-th column of the basis is replaced by the corresponding slack variable. (This is most likely to
occur after a restart, or at the start of a major iteration.)

In some cases, the Jacobian matrix may converge to values that make the basis exactly singular.
(For example, a whole row of the Jacobian could be zero at an optimal solution.) Before exact
singularity occurs, the basis could become very ill-conditioned and the optimization could progress
very slowly (if at all). Setting t3 = 1.0e-5, say, may help cause a judicious change of basis.

38 Chapter 3. The SPECS File

The LU swap tolerance is somewhat similar but can take effect more easily. It is again used
only after a basis factorization, and normally just at the start of a major iteration. If a diagonal
of U seems to be rather small (as measured by t4) relative to the biggest diagonal of U , a basis
change is made in which the basic variable associated with the small diagonal of U is swapped with
a carefully chosen superbasic variable (if there are any). The number of superbasic variables stays
the same. A message is printed to advise that a swap has occurred.

In practice this tends to help problems whose basis is becoming ill-conditioned. If the number of
swaps becomes excessive, set LU swap tolerance 1.0e-6, say, or perhaps smaller.

Minor damping parameter d Default = 2.0

This parameter limits the change in x during a linesearch. It applies to all nonlinear problems, once
a “feasible solution” or “feasible subproblem” has been found.

A linesearch of the form minimizeα F (x + αp) is performed over the range 0 < α ≤ β, where
β is the step to the nearest upper or lower bound on x. Normally, the first steplength tried is
α1 = min(1, β), but in some cases, such as F (x) = aebx or F (x) = axb, even a moderate change in
the components of x can lead to floating-point overflow.

The parameter d is therefore used to define a limit β̄ = d(1 + ‖x‖)/‖p‖, and the first evaluation
of F (x) is at the potentially smaller steplength α1 = min(1, β̄, β).

Wherever possible, upper and lower bounds on x should be used to prevent evaluation of nonlinear
functions at meaningless points. The Minor damping parameter provides an additional safeguard.
The default value d = 2.0 should not affect progress on well behaved problems, but setting d = 0.1
or 0.01 may be helpful when rapidly varying functions are present. A “good” starting point may be
required. An important application is to the class of nonlinear least-squares problems.

In cases where several local optima exist, specifying a small value for d may help locate an
optimum near the starting point.

Multiple price k Default = 1

“Pricing” refers to a scan of the current nonbasic variables to determine if any should be changed
from their current value (by allowing them to become superbasic or basic).

If multiple pricing is in effect, the k best nonbasic variables are selected for admission to the
superbasic set. (“Best” means the variables with largest reduced gradients of appropriate sign.) If
partial pricing is also in effect, the k best variables are selected from the current partition of A and
I.

On large nonlinear problems it may help to set k > 1 if there are not many superbasic variables
at the starting point but many at the optimal solution.

Optimality tolerance t Default = 1.0e-6

Partial price p Default = 10 (LP) or 1 (NLP)

This parameter may be useful for large problems that have significantly more variables than con-
straints. Larger values reduce the work required for each “pricing” operation (when a nonbasic
variable is selected to become basic or superbasic).

3.6 Options for All Nonlinear problems 39

Scale option l Default = 2 (LP) or 1 (NLP)
Scale Yes

Scale No

Scale linear variables Same as Scale option 1

Scale nonlinear variables Same as Scale option 2

Scale all variables Same as Scale option 2

Scale tolerance t Default = 0.9
Scale, Print

Scale, Print, Tolerance t

Three scale options are available as follows:

l = 0 No scaling. If storage is at a premium, this option saves m + n words of workspace.

l = 1 If some of the variables are linear, the constraints and linear variables are scaled by an
iterative procedure that attempts to make the matrix coefficients as close as possible
to 1.0.

l = 2 The constraints and variables are scaled by the iterative procedure. Also, a certain
additional scaling is performed that may be helpful if the right-hand side b or the
solution x is large. This takes into account columns of (A I) that are fixed or have
positive lower bounds or negative upper bounds.

Scale option 1 is the default for nonlinear problems. (Only linear variables are scaled.)
Scale Yes sets the default. (Caution: If all variables are nonlinear, Scale Yes unexpectedly

does nothing, because there are no linear variables to scale.) Scale No suppresses scaling (equivalent
to Scale option 0).

The Scale tolerance and Scale, Print options are the same as for linear programs.

Subspace tolerance t Default = 0.5

This controls the extent to which optimization is confined to the current set of basic and superbasic
variables (Phase 4 iterations), before one or more nonbasic variables are added to the superbasic set
(Phase 3). The value specified must satisfy 0 < t ≤ 1.

When a nonbasic variable xj is made superbasic, the norm of the reduced-gradient vector (for
all superbasics) is recorded. Let this be ‖ZTg0‖. (In fact, the norm is |dj |, the size of the reduced
gradient for the new superbasic variable xj .)

Subsequent Phase 4 iterations continue at least until the norm of the reduced-gradient vector
satisfies ‖ZTg‖ ≤ t×‖ZTg0‖. (‖ZTg‖ is the size of the largest reduced-gradient among the superbasic
variables.)

A smaller value of t is likely to increase the total number of iterations, but may reduce the
number of basis changes. A larger value such as t = 0.9 may sometimes lead to improved overall
efficiency, if the number of superbasic variables is substantially larger at the optimal solution than
at the starting point.

Other convergence tests on the change in the function being minimized and the change in the
variables may prolong Phase 4 iterations. This helps to make the overall performance insensitive to
larger values of t.

Superbasics limit s Default = 50

This places a limit on the storage allocated for superbasic variables. Ideally, s should be set slightly
larger than the “number of degrees of freedom” expected at an optimal solution.

40 Chapter 3. The SPECS File

For nonlinear problems, the number of degrees of freedom is often called the “number of indepen-
dent variables”. Normally, s need not be greater than n1 + 1, where n1 is the number of nonlinear
variables. For many problems, s may be considerably smaller than n1. This saves storage if n1 is
very large.

If Hessian dimension r is specified, the default value of s is the same number (and conversely).
This is a safeguard to ensure superlinear convergence wherever possible. Otherwise, the default for
both r and s is 50.

Unbounded objective value r1 Default = 1.0e+20

Unbounded step size r2 Default = 1.0e+10

These parameters are intended to detect unboundedness in nonlinear problems. During a linesearch
of the form minα F (x + αp), if |F | exceeds r1 or if α exceeds r2, iterations are terminated with the
exit message Problem is unbounded (or badly scaled).

If singularities are present, unboundedness in F (x) may be manifested by a floating-point overflow
(during the evaluation of F (x + αp)), before the test against r1 can be made.

Unboundedness in x is best avoided by placing finite upper and lower bounds on the variables.
See also the Minor damping parameter.

Verify level l Default = 0

Verify objective gradients Same as Verify level 1

Verify constraint gradients Same as Verify level 2

Verify Same as Verify level 3

Verify gradients Same as Verify level 3

Verify Yes Same as Verify level 3

Verify No Same as Verify level 0

These options refer to a check on the gradients computed by your nonlinear function routines funobj
and funcon at the starting point (the initial value of the nonlinear variables x(*)). Values output
in the gradient array g(*) are compared with estimates obtained by finite differences.

l = 0 Only a “cheap” test is performed, requiring three evaluations of the nonlinear objective
(if any) and two evaluations of the nonlinear constraints.

l = 1 A more reliable check is made on each component of the objective gradient.

l = 2 A check is made on each column of the Jacobian matrix associated with the nonlinear
constraints.

l = 3 A detailed check is made on both the objective and the Jacobian.

l = −1 No checking is performed. This may be necessary if the functions are undefined at the
starting point.

Verify level 3 is recommended for a new function routine, particularly if the “cheap” test
indicates error. Missing gradients are not checked (so there is no overhead). If there are many
nonlinear variables, the Start and Stop keywords may be used to limit the check to a subset.

As noted, gradient verification occurs at the starting point, before a problem is scaled, and before
the first basis is factorized. The bounds on x will be satisfied, but the general linear constraints may
not. If the nonlinear objective or constraint functions are undefined, you could initially specify

3.7 Options for Nonlinear Constraints 41

Objective = NONE

Nonlinear objective variables 0

Major iterations 1

New basis file 11 (say)

Verify level -1

to obtain a point that satisfies the linear constraints, and then restart with the correct linear and
nonlinear objective, along with

Old basis file 11

Verify level 3

3.7 OPTIONS FOR NONLINEAR CONSTRAINTS

The following options apply to problems with nonlinear constraints.

Completion Partial Default
Completion Full

When there are nonlinear constraints, this determines whether subproblems should be solved to
moderate accuracy (partial completion), or to full accuracy (full completion). MINOS implements
the option by using two sets of convergence tolerances for the subproblems.

Use of partial completion may reduce the work during early major iterations, unless the Minor

iterations limit is active. The optimal set of basic and superbasic variables will probably be
determined for any given subproblem, but the reduced gradient may be larger than it would have
been with full completion.

An automatic switch to full completion occurs when it appears that the sequence of major
iterations is converging. The switch is made when the nonlinear constraint error is reduced below
100*(Row tolerance), the relative change in λk is 0.1 or less, and the previous subproblem was
solved to optimality.

Full completion tends to give better Lagrange-multiplier estimates. It may lead to fewer major
iterations, but may result in more minor iterations.

Crash option l Default = 3
Crash tolerance t Default = 0.1

Let A refer to the linearized constraint matrix.

l = 0 The initial basis contains only slack variables: B = I.

l = 1 A is evaluated at the starting point. Crash is called once, looking for a triangular basis
in all rows and columns of A.

l = 2 A is evaluated only after the linear constraints are satisfied. Crash is called twice.
The first call looks for a triangular basis in linear rows. The first major iteration
proceeds with simplex-type iterations until the linear constraints are satisfied. A is
then evaluated for the second major iteration and Crash is called again to find a
triangular basis in the nonlinear rows (retaining the current basis for linear rows).

l = 3 Crash is called three times, treating linear equalities and linear inequalities separately,
with simplex-type iterations in between. As before, the last call treats nonlinear rows
at the start of the second major iteration.

42 Chapter 3. The SPECS File

Feasibility tolerance t Default = 1.0e-6

A “feasible subproblem” is one in which the linear constraints and bounds, as well as the current
linearization of the nonlinear constraints, are satisfied to within t.

Note that feasibility with respect to the nonlinear constraints is determined by the Row tolerance

(not the Feasibility tolerance).
MINOS first attempts to satisfy the linear constraints and bounds. If the sum of infeasibilities

cannot be reduced to zero, the problem is declared infeasible.
If Scale option = 1 or 2, feasibility is defined in terms of the scaled problem (since it is then

more likely to be meaningful).
Normally, the nonlinear functions F (x) and f(x) are evaluated only at points x that satisfy the

linear constraints and bounds. If the functions are undefined in certain regions, every attempt should
be made to eliminate these regions from the problem. For example, for a function F (x) =

√
x1 +

log x2, it would be essential to place lower bounds on both variables. If Feasibility tolerance

= 10−6, the bounds x1 ≥ 10−5 and x2 ≥ 10−4 might be appropriate. (The log singularity is more
serious; in general, keep variables as far away from singularities as possible.)

An exception is during optional gradient checking (see Verify), which occurs before any opti-
mization takes place. The points at which the functions are evaluated satisfy the bounds but not
necessarily the general constraints. If this causes difficulty, gradient checking should be suppressed
by setting Verify level -1.

If a subproblem is infeasible, the bounds on the linearized constraints are relaxed in several stages
until the subproblem appears feasible. (The true bounds are restored for the next subproblem.)
This approach sometimes allows the optimization to proceed successfully. In general, infeasible
subproblems are a symptom of difficulty and it may be necessary to increase the Penalty parameter

or alter the starting point.

Jacobian Dense Default
Jacobian Sparse

This is most important for stand-alone MINOS (and for subroutine mirmps) to ensure that the MPS

file is interpreted correctly. See Jacobian in §3.2. For minoss, setting the correct value saves either
time or storage.

Lagrangian Yes Default
Lagrangian No

This determines the form of the objective function used for the linearized subproblems. The default
value Yes is highly recommended. The Penalty parameter value is then also relevant.

If No is specified, the nonlinear constraint functions are evaluated only twice per major iteration.
Hence this option may be useful if the nonlinear constraints are very expensive to evaluate. However,
in general there is a great risk that convergence may not be achieved.

Major damping parameter d Default = 2.0

This parameter may assist convergence on problems that have highly nonlinear constraints. It is
intended to prevent large relative changes between subproblem solutions (xk, λk) and (xk+1, λk+1).
For example, the default value 2.0 prevents the relative change in either xk or λk from exceeding
200 per cent. It will not be active on well behaved problems. (If all components of xk or λk are
small, the norms of those vectors will not be allowed to increase beyond about 2.0.)

The parameter is used to interpolate between the solutions at the beginning and end of each
major iteration. Thus, xk+1 and λk+1 are changed to

xk + σ(xk+1 − xk) and λk + σ(λk+1 − λk)

3.7 Options for Nonlinear Constraints 43

for some steplength σ < 1. In the case of nonlinear equations (where the number of constraints is
the same as the number of variables) this gives a damped Newton method.

This is a very crude control. If the sequence of major iterations does not appear to be converging,
one should first re-run the problem with a higher Penalty parameter (say 2, 4 or 10). (Skip this
re-run in the case of a square system of nonlinear equations: there are no degrees of freedom and
the Penalty parameter value has essentially no effect.)

If the subproblem solutions continue to change violently, try reducing d to 0.2 or 0.1 (say).

Major iterations k Default = 50

This is the maximum number of major iterations allowed. It is intended to guard against an excessive
number of linearizations of the nonlinear constraints, since in some cases the sequence of major
iterations may not converge.

The progress of the major iterations can be best monitored using Print level 0 (the default).

Minor iterations k Default = 40

This is the maximum number of minor iterations allowed during a major iteration, after the linearized
constraints for that subproblem have been satisfied. (An arbitrary number of minor iterations
may be needed to find a feasible point for each subproblem.) The Iterations limit provides an
independent limit on the total minor iterations (across all subproblems).

A moderate value (e.g., 30 ≤ k ≤ 200) prevents excessive effort being expended on early major
iterations, but allows later subproblems to be solved to completion.

The first major iteration is special: it terminates as soon as the linear constraints and bounds
are satisfied (if possible), ignoring the nonlinear constraints.

In general it is unsafe to specify a value as small as k = 1 or 2. (Even when an optimal solution
has been reached, a few minor iterations may be needed for the corresponding subproblem to be
recognized as optimal.)

Optimality tolerance t Default = 1.0e-6

Penalty parameter r Default = 1.0

This specifies that the initial value of ρk in the augmented Lagrangian (5) should be r times a certain
default value 100/m1, where m1 is the number of nonlinear constraints. It is used when Lagrangian

= Yes (the default setting).
For early runs on a problem with unknown characteristics, the default value should be acceptable.

If the problem is highly nonlinear and the major iterations do not converge, a larger value such as
2 or 5 may help. In general, a positive r may be necessary to ensure convergence, even for convex

programs.
On the other hand, if r is too large, the rate of convergence may be unnecessarily slow. If the

functions are not highly nonlinear or a good starting point is known, it is often safe to specify
Penalty parameter 0.0.

If several related problems are to be solved, the following strategy for setting the Penalty

parameter may be useful:

1. Initially, use a moderate value for r (such as the default) and a reasonably low Iterations

and/or Major iterations limit.

2. If successive major iterations appear to be terminate with radically different solutions, try
increasing the penalty parameter. (See also the Major damping parameter.)

44 Chapter 3. The SPECS File

3. If there appears to be little progress between major iterations, it may help to reduce the
penalty parameter.

Radius of convergence r Default = 0.01

This determines when the penalty parameter ρk is reduced (if initialized to a positive value). Both
the nonlinear constraint violation (see rowerr below) and the relative change in consecutive Lagrange
multipler estimates must be less than r at the start of a major iteration before ρk is reduced or set
to zero.

A few major iterations later, full completion is requested if not already set, and the remaining
sequence of major iterations should converge quadratically to an optimum.

Row tolerance t Default = 1.0e-6

This specifies how accurately the nonlinear constraints should be satisfied at a solution. The default
value is usually small enough, since model data is often specified to about that accuracy.

Let viol be the maximum violation of the nonlinear constraints (2), and let rowerr = viol/(1 +
xnorm), where xnorm is a measure of the size of the current solution (x, y). The solution is regarded
as acceptably feasible if rowerr ≤ t.

If the problem functions involve data that is known to be of low accuracy, a larger Row tolerance

may be appropriate. On the other hand, nonlinear constraints are often satisfied with rapidly
increasing accuracy during the last few major iterations. It is common for the final solution to
satisfy rowerr = O(ǫ).

Scale option l Default = 2 (LP) or 1 (NLP)
Scale Yes

Scale No

Scale linear variables Same as Scale option 1

Scale nonlinear variables Same as Scale option 2

Scale all variables Same as Scale option 2

Scale tolerance r Default = 0.9
Scale, Print

Scale, Print, Tolerance r

Three scale options are available as follows:

l = 0 No scaling. If storage is at a premium, this option saves m + n words of workspace.

l = 1 Linear constraints and variables are scaled by an iterative procedure that attempts to
make the matrix coefficients as close as possible to 1.0.

l = 2 All constraints and variables are scaled by the iterative procedure. Also, a certain
additional scaling is performed that may be helpful if the right-hand side b or the
solution x is large. This takes into account columns of (A I) that are fixed or have
positive lower bounds or negative upper bounds.

Scale option 1 is the default for nonlinear problems. (Only linear variables are scaled.)
Scale Yes sets the default scaling. Caution: If all variables are nonlinear, Scale Yes unex-

pectedly does nothing, because there are no linear variables to scale.) Scale No suppresses scaling
(equivalent to Scale option 0).

3.8 Options for Input and Output 45

With nonlinear constraints, Scale option 1 or 0 should generally be tried first. Scale option

2 gives scales that depend on the initial Jacobian, and should therefore be used only if (a) a good
starting point is provided, and (b) the problem is not highly nonlinear.

Verify level l Default = 0

Verify objective gradients Same as Verify level 1

Verify constraint gradients Same as Verify level 2

Verify Same as Verify level 3

Verify gradients Same as Verify level 3

Verify Yes Same as Verify level 3

Verify No Same as Verify level 0

This option refers to a finite-difference check on the gradients (first derivatives) of each nonlinear
function. It occurs before a problem is scaled, and before the first basis is factorized. (Hence, the
variables may not yet satisfy the general linear constraints.)

l = 0 Only a “cheap” test is performed, requiring three evaluations of the nonlinear objective
(if any) and two evaluations of the nonlinear constraints.

l = 1 A more reliable check is made on each component of the objective gradient.

l = 2 A check is made on each column of the Jacobian matrix associated with the nonlinear
constraints.

l = 3 A detailed check is made on both the objective and the Jacobian.

l = −1 No checking is performed. This may be necessary if the functions are undefined at the
starting point.

3.8 OPTIONS FOR INPUT AND OUTPUT

The following options specify various files to be used, and the amount of printed output required.

Print file f Default = 9 (typically)
Print level l Default = 0
Print frequency k Default = 100

The Print file provides more complete information than the Summary file. It includes a listing of the
main options, statistics about the problem, scaling information, the iteration log, the exit condition,
and (optionally) the final solution. It also includes error messages.

The default Print file is defined in your system-specific documentation. If f is specified, it must
be a valid Fortran unit number in the range 0 ≤ f ≤ 99. It should be different from the Summary

file. Print file 0 suppresses output to the Print file. (This may be appropriate for repetitive
optimizations.)

For problems with linear constraints, Print level 0 gives most of the normal output. Print

level 1 produces statistics for the basis matrix B and its LU factors each time the basis is
factorized. Print frequency k produces one line of the iteration log every k minor iterations.
Print frequency 1 causes every minor iteration to be logged. Print frequency 0 is shorthand
for k = 99999.

For problems with nonlinear constraints, Print level 0 produces just one line of output per
major iteration. This provides a short summary of the progress of the optimization. The Print

46 Chapter 3. The SPECS File

frequency is ignored. If Print level > 0, certain quantities are printed at the start of each major
iteration, and minor iterations are logged according to the Print frequency.

In the latter case, the value of l is best thought of as a binary number of the form

Print level JFLXB

where each letter stands for a digit that is either 0 or 1. The quantities referred to are:

B Basis statistics, as mentioned above.

X xk, the nonlinear variables involved in the objective function or the constraints.

L λk, the Lagrange-multiplier estimates for the nonlinear constraints. (Suppressed if Lagrangian
= No, since then λk = 0.)

F f(xk), the values of the nonlinear constraint functions.

J J(xk), the Jacobian matrix.

To obtain output of any item, set the corresponding digit to 1, otherwise to 0. For example, Print
level 10 sets X = 1 and the other digits equal to zero. The nonlinear variables will be printed each
major iteration.

If J = 1, the Jacobian is output column-wise. Column j is preceded by the value of the cor-
responding variable xj and a key to indicate whether the variable is basic, superbasic or nonbasic.
(Hence if J = 1, there is no reason to specify X = 1 unless the objective contains more nonlinear
variables than the Jacobian.) A typical line of output is

3 1.250000D+01 BS 1 1.00000D+00 4 2.00000D+00

which means that x3 is basic at value 12.5, and the third column of the Jacobian has elements of
1.0 and 2.0 in rows 1 and 4.

Solution Yes Default
Solution No

Solution file f

The Yes and No options control whether the final solution is output to the Print file. Numerical
values are printed in f16.5 format where possible. The special values 0, 1 and −1 are printed as .,
1.0 and -1.0. Bounds outside the range (−1020, 1020) appear as the word None.

The file option operates independently. If f > 0, the final solution is output to the Solution

file, with numerical values in 1p,e16.5 format.

Summary file f Default = 6 (typically)
Summary level l Default = 0
Summary frequency k Default = 100

The Summary file provides a brief form of the iteration log and the exit condition. It also includes
error messages. In an interactive environment, the output normally appears at the screen and allows
a run to be monitored.

The default Summary file is defined in your system-specific documentation. If f is specified, it
must be a valid Fortran unit number in the range 0 ≤ f ≤ 99. It should be different from the Print

file. Summary file 0 suppresses summary output.
For problems with linear constraints, Summary level 0 produces brief output. Summary level

1 gives a few additional messages. Summary frequency k produces one line of the iteration log

3.8 Options for Input and Output 47

every k minor iterations. Summary frequency 1 causes every minor iteration to be logged. Summary
frequency 0 is shorthand for k = 99999.

For problems with nonlinear constraints, Summary level 0 produces one line of output per
major iteration. This provides a short summary of the progress of the optimization. The Summary

frequency is ignored. If Summary level > 0, certain quantities are printed at the start of each
major iteration, and minor iterations are logged according to the Summary frequency.

Timing level l Default = 2

l = 0 suppresses timing.

l = 1 times input, solve and output.

l = 2 times input, solve, output, funcon and funobj.

The values l = −1 and −2 are the same as 1 and 2, except the times are not printed at the end.
If you are calling subroutine minoss, you may print the times in your own format by accessing the
following common block:

parameter (ntime = 5)

common /m1tim / tlast(ntime), tsum(ntime), numt(ntime), ltime

where
numt(k) is the number of times clock k has been turned on.
tlast(k) is the time at which clock k was last turned on.
tsum(k) is the total time elapsed while clock k was on.
ltime is the Timing level l.

For k = 1 to 5, clock k times input, solve, output, funcon and funobj respectively. See subroutines
m1time and m1timp for further details. For Timing level 2, MINOS and minoss both call m1time
at the end of a run. This prints the “total time” statistics using a loop of the form

do k = 1, ntime

call m1timp(k, ’Time’, tsum(k))

end do

48 Chapter 3. The SPECS File

Chapter 4 September 23, 2003

MPS Files

One way to input much of the data for a problem is via a file in the classical “MPS format” designed
for mathematical programming systems of the 1960s and 70s. Stand-alone MINOS always uses MPS

files. Alternatively, a driver program may call subroutine mirmps to read an MPS file and then pass
the resulting data to subroutine minoss. The program could also call subroutine miwmps to output
an MPS file describing the current problem.

4.1 MPS FILE HEADERS

For linear programs, an MPS file provides all of the problem data, including names for the variables
and constraints. For nonlinear problems, an MPS file provides all data for linear constraints, as well
as the sparsity pattern of the Jacobian (the gradients of nonlinear constraints).

In contrast to the free format allowed in the Specs file, a very fixed format must be used for the
MPS file. (Each item of data must appear in specific columns.) Various headers divide the MPS file
into several sections as follows:

NAME

ROWS

..

COLUMNS

..

RHS

..

RANGES

..

BOUNDS

..

ENDATA

Each header must begin in column 1. The RANGES and BOUNDS sections are optional. The lines
indicated by “..” all have the following format:

Columns 2–3 5–12 15–22 25–36 40–47 50–61

Contents Key Name0 Name1 Value1 Name2 Value2

Comment lines contain an asterisk (*) in column 1 followed by any characters.

MPS files may be created by hand, by your own special-purpose program, or by matrix generators
such as GAMMA, MAGEN and OMNI. Other modeling languages and optimization systems such
as GAMS and CPLEX can also output a model in MPS format.

Beware that variations are inevitable in almost any “standard” format. MINOS needs some minor
extensions to allow for nonlinear problems.1 Restrictions and extensions are listed in Section 4.9.

1The format used for problems in CUTE format [?] is a far greater generalization of MPS format for a large class
of nonlinear problems.

49

50 Chapter 4. MPS Files

4.2 THE NAME HEADER

NAME MODEL001

This line contains the word NAME in columns 1–4 and a name for the problem in columns 15–22.
(The name may be from 1 to 8 characters of any kind, or it may be blank.) The name is used to
label the solution output, and it appears on the first line of each Basis file.

The NAME line is normally the first line in the MPS file, but it may be preceded or followed by
comment lines.

4.3 THE ROWS SECTION

ROWS

E Fun01

G Fun02

L Capital1

N Cost

General constraints are commonly referred to as rows. The ROWS section contains one line for
each constraint (i.e., for each row). Key defines what type the constraint is, and Name0 gives the
constraint an 8-character name. The various row-types are as follows:

Key Row-type

E =
G ≥
L ≤
N Objective
N Free

The 1-character Key may be in column 2 or column 3.
Row-types E, G and L are easily understood in terms of a linear function aTx and a right-hand

side β. They are used to specify constraints of the form

aTx = β, aTx ≥ β and aTx ≤ β

respectively. Nonzero elements of the row-vector a are entered in the COLUMNS section, and if β
is nonzero it is entered in the RHS section.

Row-type N stands for “Not binding”, also known as “Free”. It is used to define the objective

row, and also to prevent a constraint from actually being a constraint. (Note that −∞ ≤ aTx ≤ +∞
is not really a constraint at all. Type N rows are implemented by giving them infinite bounds of this
kind.)

The objective row is a free row that specifies the vectors c and d in the objective function
F (x) + cTx + dTy. It is taken to be the first free row, unless some other free row is specified by the
Objective keyword in the Specs file.

The ROWS section need not contain any free rows if c = d = 0. If there are some nonlinear
objective variables, the objective function will then be F (x) as defined by subroutine FUNOBJ. Oth-
erwise, no objective function exists and MINOS will terminate at the first point that satisfies the
constraints.

If the ROWS section does contain free rows but none of them is intended to be an objective
row, then some dummy name such as OBJECTIVE = NONE should be specified in the Specs file to
prevent the first free row from being selected. (If the objective function is F (x) with no linear terms,
Objective = funobj would be a mnemonic reminder.)

4.4 The COLUMNS Section 51

Row-names for Nonlinear Constraints

The names of nonlinear constraints must be listed first in the ROWS section, and their order must
be consistent with the computation of the array f(*) in subroutine funcon.

In particular, the objective row (if any) must appear after the list of nonlinear row names. For
simplicity we suggest that potential objective rows be placed last:

ROWS

G Fun01 nonlinear constraints first
G Fun02

.

E Lin01 now linear constraints
E Lin02

.

N Cost01 objective rows last
N Cost02

4.4 THE COLUMNS SECTION

1 5.....12 15....22 25........36 40....47 50........61

COLUMNS

x01 Fun06 1.0 Row09 -3.0

x01 Row08 2.5 Row12 1.123456

x01 Row03 -11.111111

x02 Fun02 1.0

x02 Cost01 5.0

For each variable xj , the COLUMNS section defines a name for xj and lists the nonzero entries aij

in the corresponding column of the constraint matrix. The nonzeros for the first column must be
grouped together before those for the second column, and so on. If a column has several nonzeros,
it does not matter what order they appear in (as long as they all appear before the next column).

In general, Key is blank (except for comments), Name0 is the column name, and Name1, Value1

give a row name and value for some coefficient in that column. If there is another row name and
value for the same column, they may appear as Name2, Value2 on the same line, or they may be
on the next line.

If either Name1 or Name2 is blank, the corresponding value is ignored.
Values are input using Fortran format bn, e12.0. This allows values to be entered in several

forms; for example, 1.2345678, 1.2345678e+0, 123.45678e-2 and 12345678e-07 all represent the
same number. It is usually best to include an explicit decimal point or an e (or d). Note that the
bn format treats blanks (spaces) as null (not 0), so that entries such as 1e-2 do not have to be
right-justified in their field.

In the above example, variable x01 has 5 nonzero coefficients in the constraints named Fun06,
Row09, Row08, Row12 and Row03. The row names and values may be in an arbitrary order, but they
must all appear before the entries for column x02.

There is no need to specify columns for the slack variables; they are incorporated implicitly.

Nonlinear Variables

Nonlinear variables must appear first in the COLUMNS section, ordered in a manner that is con-
sistent with the array x(*) in the user subroutines funobjand/or funcon. In the example

minimize (x + y + z)2 + 3z + 5w (1)

52 Chapter 4. MPS Files

subject to x2 + y2 + z = 2 (2)

x4 + y4 + w = 4 (3)

2x + 4y ≥ 0 (4)

z ≥ 0, w ≥ 0 (5)

we have three nonlinear objective variables (x, y, z), two nonlinear Jacobian variables (x, y), one
linear variable w, two nonlinear constraints, one linear constraint, and some simple bounds. The
nonlinear constraints and variables should always be ordered in a similar way, at the top left-hand

corner of the constraint matrix. The latter is therefore of the form

A =

(

Jk A1

A2 A3

)

where Jk is the Jacobian matrix. The variables associated with Jk and A2 must appear first in the
COLUMNS section, and their order must be consistent with the array x(*) in subroutine funcon.
Similarly, entries belonging to Jk must appear in an order that is consistent with the array g(*) in
subroutine funcon.

For convenience, let the first n1 columns of A be

(

Jk

A2

)

=

(

j1 j2 . . . jn1

a1 a2 . . . an1

)

,

where j1 is the first column of Jk and a1 is the first column of A2. The coefficients of j1 and a1 must
appear before the coefficients of j2 and a2 (and so on for all columns). Usually, those belonging
to j1 will appear before any in a1, but this is not essential. (If certain linear constraints are made
nonlinear at a later date, this means that entries in the COLUMNS section will not have to be
reordered. However, the corresponding row names will need be moved towards the top of the ROWS
section.)

If Jacobian = Dense, the elements of Jk need not be specified in the MPS file. If Jacobian =

Sparse, all nonzero elements of Jk must be specified. Any variable coefficients should be given a
dummy value, such as zero. These dummy entries identify the location of the elements; their actual
values are computed later by subroutine funcon or by finite differences.

If all constraint gradients are known (Derivative level = 2 or 3), any Jacobian elements that
are constant may be given their correct values in the COLUMNS section, and then they need not
be reset by subroutine funcon. This includes values that are identically zero—such elements do not
have to be specified anywhere (in the MPS file or in funcon). In other words, Jacobian elements are
assumed to be zero unless otherwise specified.

Note that x(*) need not have the same dimension in subroutines funobj and funcon (i.e.,
the parameter n may differ), in the event that different numbers are specified by the Nonlinear

objective and Nonlinear Jacobian keywords. However the shorter set of nonlinear variables
must occur at the beginning of the longer set, and the ordering of variables in the COLUMNS
section must match both sets.

A nonlinear objective function will often involve variables that occur only linearly in the con-
straints. In such cases we recommend that the objective variables be placed after the Jacobian
variables in the COLUMNS section, since the Jacobian will then be as small as possible. (See the
variable z in the example above.)

4.5 THE RHS SECTION

1 5.....12 15....22 25........36 40....47 50........61

4.6 The RANGES Section (Optional) 53

RHS

RHS01 Fun01 1.0 Row09 -3.0

RHS01 Row08 2.5 Row12 1.123456

RHS01 Row03 -11.111111

RHS02 Fun02 1.0

RHS02 Fun04 5.0

This section specifies the elements of b1 and b2 in (2)–(3). Together these vectors comprise what is
called the right-hand side. Only the nonzero coefficients need to be specified. They may appear in
any order. The format is exactly the same as in the COLUMNS section, with Name0 giving a name
to the right-hand side.

If b1 = 0 and b2 = 0, the RHS header line must appear as usual, but no rhs coefficients need
follow.

The RHS section may contain more than one right-hand side. The first one will be used unless
some other name is specified in the Specs file.

4.6 THE RANGES SECTION (OPTIONAL)

1 5.....12 15....22 25........36 40....47 50........61

ROWS

E Fun01

E Fun02

G Capital1

L Capital2

.

COLUMNS

.

RHS

RHS01 Fun01 4.0 Fun02 4.0

.

RANGES

RANGE01 Fun01 1.0 Fun02 -1.0

RANGE01 Capital1 1.0 Capital2 1.0

Ranges are used for constraints of the form

l ≤ aTx ≤ u,

where both l and u are finite. The range of the constraint is r = u − l. Either l or u is specified in
the RHS section (as b say), and r is defined in the RANGES section. The resulting l and u depend
on the row-type of the constraint and the sign of r as follows:

Row-type Sign of r Lower limit, l Upper limit, u

E + b b + |r|
E − b − |r| b
G + or − b b + |r|
L + or − b − |r| b

The format is exactly the same as in the COLUMNS section, with Name0 giving a name to the

54 Chapter 4. MPS Files

range set. The constraints listed above will have the following limits:

4.0 ≤ Fun01 ≤ 5.0,
3.0 ≤ Fun02 ≤ 4.0,
4.0 ≤ Capital1 ≤ 5.0,
3.0 ≤ Capital2 ≤ 4.0.

The RANGES section may contain more than one set of ranges. The first set will be used unless
some other name is specified in the Specs file.

4.7 THE BOUNDS SECTION (OPTIONAL)

1 5.....12 15....22 25........36

BOUNDS

UP BOUND01 x01 4.0

UP BOUND01 x02 4.0

.

LO BOUND01 x04 -1.0

UP BOUND01 x04 4.0

.

FR BOUND01 x06

UP BOUND01 x06 4.0

.

The default bounds on all variables xj (excluding slacks) are 0 ≤ xj ≤ ∞. If necessary, the default
values 0 and ∞ can be changed in the Specs file to l ≤ xj ≤ u by the Lower and Upper keywords
respectively.

If uniform bounds of this kind are not suitable, any number of alternative values may be specified
in the BOUNDS section. As usual, several sets of bounds may be given, and the first set will be
used unless some other name is specified in the Specs file.

In this section, Key gives the type of bound required, Name0 is the name of the bound set, and
Name1 and Value1 are the column name and bound value. (Name2 and Value2 are ignored.)

Let l and u be the default bounds just mentioned, and let x and b be the column and value
specified. The various bound-types allowed are as follows:

Key Bound-type Resultingbounds

LO Lower bound b ≤ x ≤ u
UP Upper bound l ≤ x ≤ b
FX Fixed variable b ≤ x ≤ b (i.e., x = b)
FR Free variable −∞ ≤ x ≤ +∞
MI Minus infinity −∞ ≤ x ≤ u
PL Plus infinity l ≤ x ≤ +∞

The effect of the examples above is to give the following bounds:

l ≤ x01 ≤ 4.0
l ≤ x02 ≤ 4.0

−1.0 ≤ x04 ≤ 4.0
−∞ ≤ x06 ≤ 4.0

Note that types FR, MI, or PL should always be used to specify “infinite” bounds; they imply values
of ±1020, which are treated specially.

4.7 The BOUNDS Section (Optional) 55

Nonlinear Problems

Bounds are often needed to avoid singularities in the nonlinear functions. For example, if the
functions involve log xj , a bound of the form xj ≥ 10−4 or xj ≥ 10−5 is generally necessary to avoid
evaluating the log at zero or negative values of xj .

The bounds must take into account the Feasibility tolerance t, whose default value is 10−6.
Subroutines funobj and funcon are not called until the linear constraints and bounds are satisfied
to within the specified tolerance. Thus, it would not be safe to specify the bound xj ≥ 10−7 unless
the feasibility tolerance were reduced to t = 10−8 (say).

The INITIAL Bounds Set

In general, variables will initially have the value zero, if zero lies between the associated upper and
lower bounds. Otherwise, the initial value will be the bound closest to zero.

The name INITIAL is reserved for a special bounds set that may be used to assign other initial
values. If an INITIAL bounds set is used, it must appear after any normal bound sets. A warning
is given if it is the first set encountered after the BOUNDS line.

The INITIAL bounds set also influences the CRASH procedure for constructing an initial basis
(unless a basis file is provided). Broadly speaking, CRASH favors certain variables, ignores certain
others, and treats the remainder as neutral. The following example illustrates the various cases:

FR INITIAL x1 1.0

FX INITIAL x2 2.0

LO INITIAL x3

UP INITIAL x4

MI INITIAL x5 5.0

PL INITIAL x6 6.0

1. x1 will then be favored by CRASH for inclusion in the initial basis. Free rows (type N) and
free columns (type FR in a normal bounds set) will also be favored. The initial value of x1 will
be 1.0.

2. If possible, x2 will initially be superbasic at the value 2.0. If the number of FX INITIALs has
already reached the Superbasics limit, x2 will initially be nonbasic at the same value 2.0.

3. x3 and x4 will initially be nonbasic at their respective lower and upper bounds (or at value
zero if those bounds are infinite).

4. x5 and x6 will initially be nonbasic at the specified values 5.0 and 6.0.

The last five bound types (FX, LO, UP, MI, PL) prevent the associated variables from being included
in the initial basis.

FR INITIAL or FX INITIAL should be used if good values are known for variables that are likely
to lie between their bounds in an optimal solution. Type FR is preferred if many such values are to be
specified; however, the values may change when the basic variables are reset to satisfy Ax + Is = 0.
Type FX guarantees the specified starting value, but should not be used excessively if the optimal
solution is likely to be close to a vertex.

LO INITIAL or UP INITIAL should be used for variables that are likely to be on their lower or
upper bound at a solution.

MI INITIAL and PL INITIAL are included for completeness.
As with normal bound sets, variables may be listed in any order. (For each entry a linear search

is made through the column names, starting at the name on the previous entry. Thus, for large
problems it helps to follow the order of the variables in the COLUMNS section, at least to some
extent.)

The INITIAL bounds set is ignored if a basis file is supplied.

56 Chapter 4. MPS Files

4.8 COMMENTS

Any line in the MPS file may contain an asterisk “*” in column 1 and arbitrary data in columns
2–72. Such lines are treated as comments. They appear in the printed listing but are otherwise
ignored.

4.9 RESTRICTIONS AND EXTENSIONS IN MPS FORMAT

1. Fixed format is used.

2. Names cannot be longer than 8 characters.

3. Blanks are significant in the 8-character name fields. We recommend that all names be left-
justified with no imbedded blanks. In particular, names referred to in the Specs file must be
left-justified in the MPS file. For example, Objective = Cost02 specifies an 8-character name
whose last two characters are blank.

4. Scale factors cannot be entered in the ROWS section.

5. It does not matter if there is no row of type N.

6. There must be at least one row in the ROWS section, even for problems with no general
constraints. (It may have row-type N.)

7. Nonlinear constraints must appear before linear constraints in the ROWS section.

8. Markers of the form

’MARKER’ ’INTORG’

’MARKER’ ’INTEND’

may appear in the COLUMNS section, but they will not cause intervening variables to take
integer values.

9. Subroutine mirmps returns an integer array of indicators hint(*) to record the intention of
the above markers.

10. Numerical values may be entered in Fortran’s e or f format. Spaces within the 12-character
fields are treated as if they were absent.

11. Nonlinear variables must appear before linear variables in the COLUMNS section.

12. If RANGES and BOUNDS sections are both present, the RANGES section must appear first.

13. In the BOUNDS section, if an UP entry specifies a zero upper bound, the corresponding lower
bound is not affected. (Beware—in some MP systems, the lower bound is converted to −∞.)

14. The ranges name LAGRANGE has a special meaning.

15. The bounds name INITIAL has a special meaning.

Chapter 5 September 23, 2003

Basis Files

Basis files are used to record full or partial information about the variables and the constraints.
They may be saved at the end of a run in order to restart the run if necessary, or to provide a good
starting point for some closely related problem.

Three formats are available for saving basis information. They are invoked by options of the
form

New Basis file 10

Backup file 11

Punch file 20

Dump file 30

New Basis and Backup files have the same format. They are saved every k-th iteration, in that
order, where k is the Save frequency. The file numbers may be anything convenient in the range
1 to 99, or 0 for files that are not wanted (the default value).

New Basis, Punch and Dump files are saved at the end of a run, in that order. They may be
re-loaded at the start of a later run via options of the form

Old basis file 10

Insert file 20

Load file 30

Only one such file will actually be loaded. If more than one positive file number is specified, the
order of precedence is as shown. If no basis files are specified, one of the Crash options takes effect.

Figures 5.1–5.3 illustrate the data formats used for basis files. 80-character fixed-length records
are suitable in all cases. (36-character records would be adequate for Punch and Dump files.) The
files shown correspond to the optimal solution for the Economic Growth model described in Section
8.4. Selected column numbers are included to define significant data fields. The model has 10
nonlinear constraints, 10 linear constraints, and 30 variables.

5.1 NEW AND OLD BASIS FILES

These files contain the most compact representation of the state of each variable and constraint.
They are intended for restarting the solution of a problem at a point that was reached by an earlier
run on the same problem or a related problem with the same dimensions. (Perhaps the Iterations
limit was previously too small, or some bounds have been altered.)

As illustrated in Figure 5.1, the following information is recorded in New Basis file.

1. The problem name, the iteration number when the file was created, the status of the solution
(OPTIMAL SOLN, INFEASIBLE, UNBOUNDED, EXCESS ITNS, ERROR CONDN, or PROCEEDING), the
number of infeasibilities, and the current objective value (or the sum of infeasibilities).

2. The OBJECTIVE, RHS, RANGES and BOUNDS names, M = m, the number of rows in the constraint
matrix, N = n, the number of columns in the constraint matrix, and SB = nS, the number of
superbasic variables.

57

58 Chapter 5. Basis Files

.........1.........2.........3.........4.........5.........6.........7.........8

MANNE10 ITN 17 OPTIMAL SOLN NINF 0 OBJ 2.670098627239E+00

OBJ=FUNOBJ RHS= RNG=RANGE1 BND=BOUND1 M= 20 N= 30 SB= 7

03333333330323333333323322222111111111110000000000

1 3.05000000000000E+00 0

2 3.12665036215043E+00 3

3 3.21443007884476E+00 3

4 3.30400426867706E+00 3

5 3.39521996012654E+00 3

6 3.48787828288392E+00 3

7 3.58172349003054E+00 3

8 3.67642941254574E+00 3

9 3.77158333557364E+00 3

10 3.86666666666667E+00 3

11 9.50000000000000E-01 0

12 9.68418313307234E-01 3

13 9.97801045227854E-01 2

14 1.02820030935737E+00 3

15 1.05967005676750E+00 3

16 1.09227178532333E+00 3

17 1.12607611310996E+00 3

18 1.16116410684441E+00 3

19 1.19762896604086E+00 3

20 1.21394308356457E+00 3

21 7.66503621504308E-02 3

22 8.77797166943282E-02 2

23 8.95741898323014E-02 3

24 9.12156914494767E-02 3

25 9.26583227573872E-02 2

26 9.38452071466108E-02 2

27 9.47059225152014E-02 2

28 9.51539230279001E-02 2

29 9.50833310930291E-02 2

0

Figure 5.1: Format of NEW and OLD BASIS files

3. A set of (n + m − 1)/80 + 1 lines indicating the state of the n variables x and the m slack
variables, in that order. One character hs(j) is recorded for each j = 1:n + m as follows,
written with format(80i1).

hs(j) State of the j-th variable

0 Nonbasic at lower bound
1 Nonbasic at upper bound
2 Superbasic
3 Basic

If variable j is fixed (lower bound = upper bound), then hs(j) may be 0 or 1. The same is
true if variable j is free (infinite bounds) and still nonbasic, although free variables will almost
always be basic.

4. A set of lines of the form
j xj hsj

5.2 PUNCH and INSERT Files 59

written with format(i8, 1p, e24.14, i3) and terminated by an entry with j = 0, where j
denotes the j-th variable and xj is a real value. The j-th variable is either the j-th column
or the (j − n)-th slack, if j > n. This list is normally empty for linear problems (unless there
happen to be some superbasic variables). For nonlinear problems, all basic, superbasic and
nonliner variables are listed in their natural order. The value hsj matches the corresponding
digit in the hs(j) lines, as a helpful reminder. (It is not used if the data is reloaded as an Old

Basis file.)

Loading a New Basis file

A file that has been saved as an Old Basis file may be input at the beginning of a later run as a
New Basis file.

1. The first line is input and printed but otherwise not used.

2. The values labeled M and N on the second line must agree with m and n, the dimensions of the
current problem. The value labeled SB is input and printed but is not used.

3. The next set of lines must contain n + m entries hs(j) = 0, 1, 2 or 3, including exactly m
values 3, denoting the basic variables.

4. Normally the list of j and xj values will include an entry for every variable whose state is
hs(j) = 2 (the superbasic variables) in the preceding lines. The hsj value is not input or
used.

5. Further (j, xj , hsj) entries may be included in any order. Again the hsj value is not used.

5.2 PUNCH AND INSERT FILES

These files provide compatibility with commercial mathematical programming systems. The Punch

file from a previous run may be used as an Insert file for a later run on the same problem. It may
also be possible to modify the Insert file and/or problem and still obtain a useful advanced basis.

The MPS format has been slightly generalized to allow the saving and reloading of nonbasic
solutions. It is illustrated in Figure 5.2. Apart from the first and last line, each entry has the
following form:

Columns 2–3 5–12 15–22 25–36
Contents Key Name1 Name2 Value

The various keys are best defined in terms of the action they cause on input. It is assumed that the
basis is initially set to be the full set of slack variables, and that column variables are initially at
their smallest bound in absolute magnitude.

Key Action to be taken during INSERT

XL Make variable Name1 basic and slack Name2 nonbasic at its lower bound.
XU Make variable Name1 basic and slack Name2 nonbasic at its upper bound.
LL Make variable Name1 nonbasic at its lower bound.
UL Make variable Name1 nonbasic at its upper bound.
SB Make variable Name1 superbasic at the specified Value.

Note that Name1 may be a column name or a row name, but (on XL and XU lines) Name2 must
be a row name. In all cases, row names indicate the associated slack variable, and if Name1 is a
nonlinear variable, its Value is recorded for possible use in defining the initial Jacobian matrix.

The key SB is an addition to the standard MPS format to allow for nonbasic solutions.

60 Chapter 5. Basis Files

.........1.........2.........3.........4

NAME MANNE10 PUNCH/INSERT

LL KAP001 3.05000E+00

XU KAP002 MON001 3.12665E+00

XU KAP003 MON002 3.21443E+00

XU KAP004 MON003 3.30400E+00

XU KAP005 MON004 3.39522E+00

XU KAP006 MON005 3.48788E+00

XU KAP007 MON006 3.58172E+00

XU KAP008 MON007 3.67643E+00

XU KAP009 MON008 3.77158E+00

XU KAP010 MON009 3.86667E+00

LL CON001 9.50000E-01

XU CON002 MON010 9.68418E-01

SB CON003 9.97801E-01

XL CON004 CAP002 1.02820E+00

XL CON005 CAP003 1.05967E+00

XL CON006 CAP004 1.09227E+00

XL CON007 CAP005 1.12608E+00

XL CON008 CAP006 1.16116E+00

XL CON009 CAP007 1.19763E+00

XL CON010 CAP008 1.21394E+00

XL INV001 CAP009 7.66504E-02

SB INV002 8.77797E-02

XL INV003 CAP010 8.95742E-02

XL INV004 TERMINV 9.12157E-02

SB INV005 9.26583E-02

SB INV006 9.38452E-02

SB INV007 9.47059E-02

SB INV008 9.51539E-02

SB INV009 9.50833E-02

UL INV010 1.16000E-01

ENDATA

Figure 5.2: Format of PUNCH and INSERT files

.........1.........2.........3.........4

NAME MANNE10 DUMP/LOAD

LL KAP001 3.05000E+00

BS KAP002 3.12665E+00

BS KAP003 3.21443E+00

BS KAP004 3.30400E+00

BS KAP005 3.39522E+00

BS KAP006 3.48788E+00

BS KAP007 3.58172E+00

BS KAP008 3.67643E+00

BS KAP009 3.77158E+00

BS KAP010 3.86667E+00

LL CON001 9.50000E-01

BS CON002 9.68418E-01

SB CON003 9.97801E-01

BS CON004 1.02820E+00

BS CON005 1.05967E+00

BS CON006 1.09227E+00

BS CON007 1.12608E+00

BS CON008 1.16116E+00

BS CON009 1.19763E+00

BS CON010 1.21394E+00

BS INV001 7.66504E-02

SB INV002 8.77797E-02

BS INV003 8.95742E-02

BS INV004 9.12157E-02

SB INV005 9.26583E-02

SB INV006 9.38452E-02

SB INV007 9.47059E-02

SB INV008 9.51539E-02

SB INV009 9.50833E-02

UL INV010 1.16000E-01

UL MON001 0.00000E+00

UL MON002 0.00000E+00

UL MON003 0.00000E+00

UL MON004 0.00000E+00

UL MON005 0.00000E+00

UL MON006 0.00000E+00

UL MON007 0.00000E+00

UL MON008 0.00000E+00

UL MON009 0.00000E+00

UL MON010 0.00000E+00

LL CAP002 0.00000E+00

LL CAP003 0.00000E+00

LL CAP004 0.00000E+00

LL CAP005 0.00000E+00

LL CAP006 0.00000E+00

LL CAP007 0.00000E+00

LL CAP008 0.00000E+00

LL CAP009 0.00000E+00

LL CAP010 0.00000E+00

LL TERMINV 0.00000E+00

ENDATA

Figure 5.3: Format of DUMP and LOAD files

5.3 DUMP and LOAD Files 61

Notes on PUNCH Data

1. Variables are output in natural order. For example, on the first XL or XU line, Name1 will be
the first basic column and Name2 will be the first row whose slack is not basic. (The slack
could be nonbasic or superbasic.)

2. LL lines are not output for nonbasic variables if the corresponding lower bound value is zero.

3. Superbasic slacks are output last.

4. Punch and Insert files deal with the status and values of slack variables. This is in contrast
to the printed solution and the Solution file, which deal with rows.

Notes on INSERT Data

1. Before an Insert file is read, column variables are made nonbasic at their smallest bound in
absolute magnitude, and the slack variables are made basic.

2. Preferably an Insert file should be an unmodified Punch file from an earlier run on the same
problem. If some rows have been added to the problem, the Insert file need not be altered.
(The slacks for the new rows will be in the basis.)

3. Entries will be ignored if Name1 is already basic or superbasic. XL and XU lines will be ignored
if Name2 is not basic.

4. SB lines may be added before the ENDATA line, to specify additional superbasic columns or
slacks.

5. An SB line will not alter the status of Name1 if the Superbasics limit has been reached.
However, the associated Value will be retained if Name1 is a Jacobian variable.

5.3 DUMP AND LOAD FILES

These files are similar to Punch and Insert files, but they record solution information in a manner
that is more direct and more easily modified. In particular, no distinction is made between columns
and slacks. Apart from the first and last line, each entry has the form

Columns 2–3 5–12 25–36

Contents Key Name Value

as illustrated in Figure 5.3. The keys LL, UL, BS and SB mean Lower Limit, Upper Limit, Basic and
Superbasic respectively.

Notes on DUMP Data

1. A line is output for every variable, columns followed by slacks.

2. Nonbasic free variables will be output with either LL or UL keys and with Value zero.

Notes on LOAD Data

1. Before a Load file is read, all columns and slacks are made nonbasic at their smallest bound
in absolute magnitude. The basis is initially empty.

2. Each LL, UL or BS line causes Name to adopt the specified status. The associated Value will
be retained if Name is a Jacobian variable.

62 Chapter 5. Basis Files

3. An SB line causes Name to become superbasic at the specified Value.

4. An entry will be ignored if Name is already basic or superbasic. (Thus, only the first BS or SB
line takes effect for any given Name.)

5. An SB line will not alter the status of Name if the Superbasics limit has been reached, but
the associated Value will be retained if Name is a Jacobian variable.

6. (Partial basis) If fewer than m variables are specified to be basic, a tentative basis list will be
constructed by adding the requisite number of slacks, starting from the first row and taking
those that were not previously specified to be basic or superbasic. (If the resulting basis proves
to be singular, the basis factorization routine will replace a number of basic variables by other
slacks.) The starting point obtained in this way will not necessarily be “good”.

7. (Too many basics) If m variables have already been specified as basic, any further BS keys
will be treated as though they were SB. This feature may be useful for combining solutions to
smaller problems.

5.4 RESTARTING MODIFIED PROBLEMS

Any of the above three starting methods (Old Basis, Insert and Load files) may be preferable to
the cold start (Crash) options. The best choice depends on the extent to which a problem has
been modified, and whether it is more convenient to specify variables by number or by name. The
following notes offer some rules of thumb.

Protection

In general there is no danger of specifying infinite values. For example, if a variable is specified to be
nonbasic at an upper bound that happens to be +∞, it will be made nonbasic at its lower bound.
Conversely if its lower bound is −∞. If the variable is free (both bounds infinite), it will be made
nonbasic at value zero. No warning message is issued.

Default Status

If the status of a variable is not explicitly given, it will initially be nonbasic at the bound that is
smallest in absolute magnitude. Ties are broken in favor of lower bounds, and free variables will
again take the value zero.

Restarting with Different Bounds

Suppose that a problem is to be restarted after the bounds on some variable x have been altered.
Any of the basis files may be used, but the starting point obtained depends on the status of x at
the time the basis is saved.

If x is basic or superbasic, the starting point will be the same as before (unless some nonbasic
variables also have their bounds altered). If x is basic, its initial value may lie outside the new
bounds.

If x was previously fixed, it is likely to be nonbasic at its lower bound. Increasing its upper
bound will not affect the solution.

In contrast, if x was nonbasic at its upper bound and that bound is reduced, the starting values
for an arbitrary number of basic variables could be changed (since they will be recomputed from the
nonbasic and superbasic variables). This may not be of great consequence, but sometimes it may
be worthwhile to retain the old solution precisely. To do this, one must make x superbasic at the
original bound value.

5.4 Restarting Modified Problems 63

For example, if x was nonbasic at an upper bound of 5.0 (which has now been changed), one
should insert a line of the form

j 5.0

near the end of an Old Basis file, or the line

SB x 5.0

near the end of an Insert or Load file. Note that the Specs file must specify a Superbasics limit

at least as large as the number of variables involved, even for purely linear problems.

Sequences of Problems

Whenever practical, a series of related problems should be ordered so that the most tightly con-

strained cases are solved first. Their solutions will often provide feasible starting points for subse-
quent relaxed problems, as long the above precautions are taken.

Altering Bounds with the CYCLE Option

Sequences of problems will sometimes be defined in conjunction with the Cycle facilities. Various
alterations can be made to each problem from within your own subroutine matmod. In particular, it
is straightforward to alter the bounds on any of the columns or slacks.

64 Chapter 5. Basis Files

Chapter 6 September 23, 2003

Output

Subroutine mistart specifies unit numbers for the Print and Summary files described in this section.
The files can be redirected (or suppressed) via the Print file and Summary file options.

6.1 THE PRINT FILE

The following information is output to the Print file during the solution process. The longest line
of output is 124?? characters.

• A listing of the Specs file, if any.

• The selected options.

• An estimate of the storage needed and the amount available.

• Some statistics about the problem data.

• The storage available for the LU factors of the basis matrix.

• A log from the scaling procedure, if Scale option > 0.

• Notes about the initial basis obtained from Crash or a Basis file.

• The major iteration log.

• The minor iteration log.

• Basis factorization statistics.

• The EXIT condition and some statistics about the solution obtained.

• The printed solution, if requested.

The last five items are described in the following sections.

6.1.1 The major iteration log

Problems with nonlinear constraints require several major iterations to reach a solution, each in-
volving the solution of an LC subproblem (a linearly constrained subproblem that generates search
directions for x and λ). If Print level = 0, one line of information is output to the Print file each
major iteration. Problem t4manne gives the log shown in Figure 6.1.

Major minor total ninf step objective Feasible Optimal nsb ncon LU penalty BSwap

1 1T 1 0 0.0E+00 0.00000000E+00 0.0E+00 1.2E+01 8 4 31 1.0E-01 0

2 13 14 0 1.0E+00 2.67011596E+00 4.4E-06 2.8E-03 7 23 56 1.0E-01 8

Completion Full now requested

3 3 17 0 1.0E+00 2.67009870E+00 3.1E-08 1.4E-06 7 29 41 1.0E-01 0

4 0 17 0 1.0E+00 2.67009863E+00 5.6E-17 1.4E-06 7 30 41 1.0E-02 0

Figure 6.1: The Major Iteration log

65

66 Chapter 6. Output

Label Description

Major The current major iteration number.

minor is the number of iterations required by both the feasibility and optimality phases of
the QP subproblem. Generally, Mnr will be 1 in the later iterations, since theoretical
analysis predicts that the correct active set will be identified near the solution (see
§??).

total The total number of minor iterations.

ninf The number of infeasibilities in the LC subproblem. Normally 0, because the bounds
on the linearized constraints are relaxed in several stages until the constraints are
“feasible”.

step The step length α taken along the current search direction p. The variables x have
just been changed to x+αp. On reasonably well-behaved problems, step = 1.0 as the
solution is approached, meaning the new estimate of (x, λ) is the solution of the LC
subproblem.

objective The value of true objective function.

Feasible The value of rowerr, the maximum component of the scaled nonlinear constraint
residual (??). The solution is regarded as acceptably feasible if Feasbl is less than the
Row tolerance.

Optimal The value of maxgap, the maximum complementarity gap (??). It is an estimate of the
degree of nonoptimality of the reduced costs. Both Feasible and Optimal are small
in the neighborhood of a solution.

nsb The current number of superbasic variables.

ncon The number of times subroutine funcon has been called to evaluate the nonlinear
constraint functions. The Jacobian has been evaluated or approximated essentially
the same number of times. (Function evaluations needed to estimate the Jacobian by
finite differences are not included.)

LU The number of nonzeros in the sparse LU factors of the basis matrix on completion of
the LC subproblem. (The factors are computed at the start of each major iteration,
and updated during minor iterations whenever a basis change occurs.)

As the solution is approached and the minor iterations decrease towards zero, LU

reflects the number of nonzeros in the LU factors at the start of the LC subproblem.

penalty The penalty parameter ρk used in the modified augmented Lagrangian that defines
the objective function for the LC subproblem.

BSwap The number of columns of the basis matrix B that were swapped with columns of S
to improve the condition of B. The swaps are determined by an LU factorization of
the rectangular matrix BS = (B S)T with stability being favored more than sparsity.

6.1 The PRINT file 67

Itn ph pp rg +sbs -sbs -bs step pivot ninf sinf,objective L U ncp nobj ncon nsb Hmod cond(H) conv
1 1 1 -1.0E+00 2 2 1 3.0E+01 1.0E+00 1 1.35000000E+02 0 19 0
2 1 1 -1.0E+00 27 27 102 7.0E+01 1.0E+00 1 1.05000000E+02 0 19 0
3 1 1 -1.0E+00 3 3 27 3.0E+01 -1.0E+00 1 3.50000000E+01 1 19 0
4 1 1 -1.0E+00 28 28 26 4.9E-11 1.0E+00 1 5.00000000E+00 1 20 0
5 1 1 -1.0E+00 47 47 2 4.9E-11 1.0E+00 1 5.00000000E+00 1 20 0
6 1 1 1.0E+00 27 27 101 5.0E+00 -1.0E+00 1 5.00000000E+00 2 20 0

Itn 6 -- feasible solution. Objective = -1.818044887E+02

7 3 1 -1.7E+01 87 0 0 1.0E+00 0.0E+00 0 -2.77020571E+02 4 21 0 6 0 1 1 0 1.0E+00 FFTT
8 3 1 -1.7E+01 72 0 0 1.9E-01 0.0E+00 0 -3.05336895E+02 4 21 0 8 0 2 1 0 5.5E+00 FFTT
9 3 1 -2.3E+01 41 0 0 1.0E+00 0.0E+00 0 -4.43743832E+02 4 21 0 9 0 3 1 0 6.5E+00 FFFF

10 4 1 6.6E-01 0 0 0 6.0E+00 0.0E+00 0 -5.64075338E+02 4 21 0 11 0 3 1 0 3.5E+00 FFTT
...

Itn ph pp rg +sbs -sbs -bs step pivot ninf sinf,objective L U ncp nobj ncon nsb Hmod cond(H) conv
161 4 1 8.8E-03 0 73 71 4.2E+00 1.0E+00 0 -1.73532497E+03 4 20 0 340 0 17 1 1 9.6E+00 TTTF
162 3 1 -3.5E-02 6 0 0 1.5E+00 0.0E+00 0 -1.73533264E+03 4 20 0 342 0 18 1 0 1.3E+02 TTFF
163 4 1 2.9E-02 0 0 0 4.5E+00 0.0E+00 0 -1.73533617E+03 4 20 0 344 0 18 1 0 2.0E+01 TTFF
164 4 1 2.1E-02 0 0 0 2.3E+01 0.0E+00 0 -1.73538331E+03 4 20 0 347 0 18 1 0 9.8E+00 TTFF
165 4 1 3.0E-02 0 0 0 5.0E+00 0.0E+00 0 -1.73552261E+03 4 20 0 349 0 18 1 0 2.1E+01 TTFF
166 4 1 1.2E-02 0 0 0 1.0E+00 0.0E+00 0 -1.73556089E+03 4 20 0 350 0 18 1 0 2.2E+01 TTTF

tolrg reduced to 1.162E-03 lvltol = 1
167 4 1 2.3E-03 0 0 0 1.0E+00 0.0E+00 0 -1.73556922E+03 4 20 0 351 0 18 1 0 2.2E+01 TTFF
168 4 1 1.2E-03 0 0 0 7.9E-01 0.0E+00 0 -1.73556953E+03 4 20 0 353 0 18 1 0 2.1E+01 TTFF
169 4 1 1.0E-04 0 0 0 1.0E+00 0.0E+00 0 -1.73556958E+03 4 20 0 354 0 18 1 0 2.0E+01 TTTT

tolrg reduced to 1.013E-05 lvltol = 1
170 4 1 2.9E-05 0 0 0 1.1E+00 0.0E+00 0 -1.73556958E+03 4 20 0 356 0 18 1 0 1.7E+01 TTFF
171 4 1 1.0E-05 0 0 0 1.0E+00 0.0E+00 0 -1.73556958E+03 4 20 0 357 0 18 1 0 1.7E+01 TTFF
172 4 1 1.5E-06 0 0 0 1.2E+00 0.0E+00 0 -1.73556958E+03 4 20 0 359 0 18 1 0 1.7E+01 TTTF

tolrg reduced to 1.000E-06 lvltol = 2
173 4 1 2.4E-07 0 0 0 1.0E+00 0.0E+00 0 -1.73556958E+03 4 20 0 360 0 18 1 0 1.7E+01 TTTF

Biggest dj = 3.583E-03 (variable 25) norm rg = 2.402E-07 norm pi = 1.000E+00

Figure 6.2: The Minor Iteration log

6.1.2 The minor iteration log

If Print level ≥ 1, one line of information is output to the Print file every kth minor iteration,
where k is the specified Print frequency (default k = 100). A heading is printed periodically.
Problem t5weapon gives the log shown in Figure 6.2.

Label Description

Itn The current minor iteration number.

ph The current phase of the solution procedure:

1 Phase 1 simplex method, trying to satisfy the linear constraints. The current
solution is an infeasible vertex.

2 Phase 2 simplex method, solving a linear program.

3 Reduced-gradient method. A nonbasic variable has just become superbasic.

4 Reduced-gradient method, optimizing the current set of superbasic variables.

pp The Partial Price indicator. The variable selected by the last Price operation came
from the ppth partition of A and I. pp is set to zero when the basis is refactored.

A Price operation is defined to be the process by which a nonbasic variable is selected
to become a new superbasic. The selected variable is denoted by jq. Variable jq

often becomes basic immediately. Otherwise it remains superbasic, unless it reaches
its opposite bound and becomes nonbasic again. If Partial price is in effect, variable
jq is selected from App or Ipp, the ppth segments of the constraint matrix (A I).

68 Chapter 6. Output

rg In Phase 1, 2 or 3, this is dj , the reduced cost (reduced gradient) of the variable jq

selected by Price at the start of the present iteration. Algebraically, dj = gj − πT aj

for j = jq, where gj is the gradient of the current objective function, π is the vector
of dual variables for the problem (or LC subproblem), and aj is the jth column of the
current (A I).

In Phase 4, rg is the largest reduced gradient among the superbasic variables.

+sbs The variable jq selected by Price to be added to the superbasic set.

-sbs The variable chosen to leave the set of superbasics. It has become basic if the entry
under -bs is nonzero; otherwise it has become nonbasic.

-bs The variable removed from the basis (if any) to become nonbasic.

step The step length α taken along the current search direction p. The variables x have
just been changed to x + αp.

pivot If column aq replaces the rth column of the basis B, pivot is the rth element of a
vector y satisfying By = aq. Wherever possible, step is chosen to avoid extremely
small values of pivot (because they cause the basis to be nearly singular). In rare
cases, it may be necessary to increase the Pivot tolerance to exclude very small
elements of y from consideration during the computation of step.

ninf The number of infeasibilities before the present iteration. This number decreases
monotonically.

sinf,objective If ninf > 0, this is sinf, the sum of infeasibilities before the present iteration.
It usually decreases at each nonzero step, but if ninf decreases by 2 or more, sinf
may occasionally increase.

Otherwise it is the value of the current objective function after the present iteration.
For linear programs, it means the true linear objective function. For problems with
linear constraints, it means the sum of the linear objective and the value returned by
subroutine funobj. For problems with nonlinear constraints, it is the quantity just
described if Lagrangian = No; otherwise it is the value of the augmented Lagrangian
for the current major iterations (which tends to the true objective as convergence is
approached).

L The number of nonzeros representing the basis factor L. Immediately after a basis
factorization B = LU , this is lenL, the number of subdiagonal elements in the columns
of a lower triangular matrix. Further nonzeros are added to L when various columns
of B are later replaced. (Thus, L increases monotonically.)

U The number of nonzeros in the basis factor U . Immediately after a basis factorization,
this is lenU, the number of diagonal and superdiagonal elements in the rows of an
upper-triangular matrix. As columns of B are replaced, the matrix U is maintained
explicitly (in sparse form). The value of U may fluctuate up or down; in general it will
tend to increase.

ncp The number of compressions required to recover storage in the data structure for U .
This includes the number of compressions needed during the previous basis factor-
ization. Normally ncp should increase very slowly. If not, the amount of workspace
available to MINOS should be increased by a significant amount. As a suggestion, the
work array z(*) should be extended by 2(L + U) elements.

6.1 The PRINT file 69

The following items are printed if the problem is nonlinear or if the superbasic set is non-empty (i.e.,
if the current solution is not a vertex).

Label Description

nobj The number of times subroutine funobj has been called.

ncon The number of times subroutine funcon has been called.

nsb The current number of superbasic variables.

Hmod An indication of the type of modifications made to the triangular matrix R that is
used to approximate the reduced Hessian matrix. Two integers i1 and i2 are shown.
They will remain zero for linear problems. If i1 = 1, a BFGS quasi-Newton update
has been made to R, to account for a move within the current subspace. (This will
not occur if the solution is infeasible.) If i2 = 1, R has been modified to account for
a change in basis. This will sometimes occur even if the solution is infeasible (if a
feasible point was obtained at some earlier stage).

Both updates are implemented by triangularizing the matrix R+vwT for some vectors
v and w. If an update fails for numerical reasons, i1 or i2 will be set to 2, and the
resulting R will be nearly singular. (However, this is highly unlikely.)

cond(H) An estimate of the condition number of the reduced Hessian. It is the square of
the ratio of the largest and smallest diagonals of the upper triangular matrix R—
a lower bound on the condition number of the matrix RT R that approximates the
reduced Hessian. cond(H) gives a rough indication of whether or not the optimization
procedure is having difficulty. The reduced-gradient algorithm will make slow progress
if cond(H) becomes as large as 108, and will probably fail to find a better solution if
cond(H) reaches 1012 or more.

To guard against high values of cond(H), attention should be given to the scaling of
the variables and the constraints. In some cases it may be necessary to add upper or
lower bounds to certain variables to keep them a reasonable distance from singularities
in the nonlinear functions or their derivatives.

conv A set of four logical variables C1, C2, C3, C4 that are used to determine when to
discontinue optimization in the current subspace (Phase 4) and consider releasing a
nonbasic variable from its bound (the Price operation of Phase 3). Let rg be the
norm of the reduced gradient, as described above. The meaning of the variables Cj is
as follows:

C1 is true if the change in x was sufficiently small;
C2 is true if the change in the objective was sufficiently small;
C3 is true if rg is smaller than some loose tolerance TOLRG;
C4 is true if rg is smaller than some tighter tolerance.

The test used is of the form

if (C1 and C2 and C3) or C4 then go to Phase 3.

At present, tolrg = t|dj|, where t is the Subspace tolerance (nominally 0.5) and
dj is the reduced-gradient norm at the most recent Phase 3 iteration. The “tighter
tolerance” is the maximum of 0.1 tolrg and 10−7‖π‖. Only the tolerance t can be
altered at run-time.

70 Chapter 6. Output

6.1.3 Crash statistics

The following items are output to the Print file when start = ’Cold’ and no basis file is loaded.
They refer to the number of columns that the Crash procedure selects during several passes through
A while searching for a triangular basis matrix.

Label Description

Slacks is the number of slacks selected initially.

Free cols is the number of free columns in the basis, including those whose bounds are rather
far apart.

Preferred is the number of “preferred” columns in the basis (i.e., hs(j) = 3 for some j ≤ n). It
will be a subset of the columns for which hs(j) = 3 was specified.

Unit is the number of unit columns in the basis.

Double is the number of columns in the basis containing 2 nonzeros.

Triangle is the number of triangular columns in the basis with 3 or more nonzeros.

Pad is the number of slacks used to pad the basis (to make it a nonsingular triangle).

6.1.4 Basis factorization statistics

If Print level ≥ 1, the following items are output to the Print file whenever the basis B or the
rectangular matrix BS = (B S)T is factorized. Note that BS may be factorized at the start of just
some of the major iterations. It is immediately followed by a factorization of B itself.

Gaussian elimination is used to compute a sparse LU factorization of B or BS , where PLPT and
PUQ are lower and upper triangular matrices for some permutation matrices P and Q. Stability is
ensured as described under LU factor tolerance in §??.

Label Description

Factorize The number of factorizations since the start of the run.

Demand A code giving the reason for the present factorization.

Itn The current iteration number.

Nonlin The number of nonlinear variables in the current basis B.

Linear The number of linear variables in B.

Slacks The number of slack variables in B.

m The number of rows in the matrix being factorized (B or BS).

n The number of columns in the matrix being factorized. Preceded by “=” if the matrix
is B; by “¿” if it is BS.

Elems The number of nonzero elements in B or BS.

Amax The largest nonzero in B or BS.

Density The density of the matrix (percentage of nonzeros).

6.1 The PRINT file 71

Merit The average Markowitz merit count for the elements chosen to be the diagonals of
PUQ. Each merit count is defined to be (c − 1)(r − 1) where c and r are the number
of nonzeros in the column and row containing the element at the time it is selected to
be the next diagonal. Merit is the average of m such quantities. It gives an indication
of how much work was required to preserve sparsity during the factorization.

lenL The number of nonzeros in the factor L.

L+U The number of nonzeros in both L and U .

Cmprssns The number of times the data structure holding the partially factored matrix needed
to be compressed to recover unused storage. Ideally this number should be zero. If it
is more than 3 or 4, the amount of workspace available to MINOS should be increased
for efficiency.

Incres The percentage increase in the number of nonzeros in L and U relative to the number
of nonzeros in B or BS.

Utri The size of the “backward triangle” in B or BS. These top rows of U come directly
from the matrix.

lenU The number of nonzeros in the factor U .

Ltol The maximum allowed size of nonzeros in L. Usually equal to the LU factor tolerance.

Umax The maximum nonzero in U .

Ugrwth The ratio Umax / Amax.

Ltri The size of the “forward triangle” in B or BS. These initial columns of L come directly
from the matrix.

dense1 is the number of columns remaining when the density of the basis matrix being fac-
torized reached 0.3.

Lmax The maximum nonzero in L (no larger than Ltol).

Akmax The maximum nonzero arising during the factorizaiton. (Printed only if Theshold
Complete Pivoting is in effect.)

Agrwth The ratio Akmax / Amax. (Printed only if Theshold Complete Pivoting is in effect.)

bump The number of columns of B or BS excluding Utri and Ltri.

dense2 The number of columns remaining when the density of the basis matrix being factorized
reached 0.6.

DUmax The largest diagonal of U (really PUQ).

DUmin The smallest diagonal of U .

condU The ratio DUmax/DUmin. As long as Ltol is not large (say 10.0 or less), condU is an
estimate of the condition number of B. If this number is extremely large, the basis
is nearly singular and some numerical difficulties might occur. (However, an effort is
made to avoid near-singularity by using slacks to replace columns of B that would
have made Umin extremely small. Messages are issued to this effect, and the modified
basis is refactored.)

72 Chapter 6. Output

6.1.5 EXIT conditions

When the solution procedure terminates, an EXIT -- message is printed to summarize the final
result. Here we describe each message and suggest possible courses of action.

The number associated with each EXIT is the output value of the integer variable inform.

The following messages arise when the Specs file is found to contain no
further problems.

-2 EXIT -- input error. MINOS encountered end-of-file or an

endrun card before finding a Specs file on unit nn

The Specs file may not be properly assigned. Its unit number nn is defined at compile time in
subroutine snInit, and normally it is the system card input stream.

Otherwise, the Specs file may be empty, or cards containing the keywords Skip or Endrun may
imply that all problems should be ignored (see §??).

-1 ENDRUN

This message is printed at the end of a run if MINOS terminates of its own accord. Otherwise, the
operating system will have intervened for one of many possible reasons (excess time, missing file,
arithmetic error in user routines, etc.).

The following messages arise when a solution exists (though it may not be
optimal). A BASIS file may be saved, and the solution will be output to
the PRINT or SOLUTION files if requested.

0 EXIT -- optimal solution found

This is the message we all hope to see! It is certainly preferable to every other message, and we
naturally want to believe what it says, because this is surely one situation where the computer knows

best. There may be cause for celebration if the objective function has reached an astonishing new
high (or low).

In all cases, a distinct level of caution is in order, even if it can wait until next morning. For
example, if the objective value is much better than expected, we may have obtained an optimal
solution to the wrong problem! Almost any item of data could have that effect if it has the wrong
value. Verifying that the problem has been defined correctly is one of the more difficult tasks for a
model builder. It is good practice in the function subroutines to print any data that is input during
the first entry.

If nonlinearities exist, one must always ask the question: could there be more than one local
optimum? When the constraints are linear and the objective is known to be convex (e.g., a sum
of squares) then all will be well if we are minimizing the objective: a local minimum is a global
minimum in the sense that no other point has a lower function value. (However, many points could
have the same objective value, particularly if the objective is largely linear.) Conversely, if we are
maximizing a convex function, a local maximum cannot be expected to be global, unless there are
sufficient constraints to confine the feasible region.

Similar statements could be made about nonlinear constraints defining convex or concave regions.
However, the functions of a problem are more likely to be neither convex nor concave. Always specify
a good starting point if possible, especially for nonlinear variables, and include reasonable upper and
lower bounds on the variables to confine the solution to the specific region of interest. We expect
modelers to know something about their problem, and to make use of that knowledge as well as they
can.

One other caution about “Optimal solution”s. Some of the variables or slacks may lie outside
their bounds more than desired, especially if scaling was requested. Max Primal infeas refers to
the largest bound infeasibility and which variable (or slack) is involved. If it is too large, consider

6.1 The PRINT file 73

restarting with a smaller Feasibility tolerance (say 10 times smaller) and perhaps Scale option

0.
Similarly, Max Dual infeas indicates which variable is most likely to be at a non-optimal value.

Broadly speaking, if

Max Dual infeas/Norm of pi = 10−d,

then the objective function would probably change in the dth significant digit if optimization could
be continued. If d seems too large, consider restarting with smaller Optimality tolerances.

Finally, Nonlinear constraint violn shows the maximum infeasibility for nonlinear rows. If
it seems too large, consider restarting with a smaller Row tolerance.

1 EXIT -- the problem is infeasible

When the constraints are linear, this message can probably be trusted. Feasibility is measured with
respect to the upper and lower bounds on the variables and slacks. Among all the points satisfying
the general constraints Ax + s = 0, there is apparently no point that satisfies the bounds on x and
s. Violations as small as the Feasibility tolerance are ignored, but at least one component of x
or s violates a bound by more than the tolerance.

When nonlinear constraints are present, infeasibility is much harder to recognize correctly. Even
if a feasible solution exists, the current linearization of the constraints may not contain a feasible
point. In an attempt to deal with this situation, when solving each linearly constrained (LC)
subproblem, MINOS is prepared to relax the bounds on the slacks associated with nonlinear rows.

If an LC subproblem proves to be infeasible or unbounded (or if the Lagrange multiplier estimates
for the nonlinear constraints become large), MINOS enters so-called “nonlinear elastic” mode. The
subproblem includes the original QP objective and the sum of the infeasibilities—suitably weighted
using the Elastic weight parameter. In elastic mode, some of the bounds on the nonlinear rows
“elastic”—i.e., they are allowed to violate their specified bounds. Variables subject to elastic bounds
are known as elastic variables. An elastic variable is free to violate one or both of its original upper
or lower bounds. If the original problem has a feasible solution and the elastic weight is sufficiently
large, a feasible point eventually will be obtained for the perturbed constraints, and optimization
can continue on the subproblem. If the nonlinear problem has no feasible solution, MINOS will tend
to determine a “good” infeasible point if the elastic weight is sufficiently large. (If the elastic weight
were infinite, MINOS would locally minimize the nonlinear constraint violations subject to the linear
constraints and bounds.)

Unfortunately, even though MINOS locally minimizes the nonlinear constraint violations, there
may still exist other regions in which the nonlinear constraints are satisfied. Wherever possible,
nonlinear constraints should be defined in such a way that feasible points are known to exist when
the constraints are linearized.

2 EXIT -- the problem is unbounded (or badly scaled)

EXIT -- violation limit exceeded -- the problem may be unbounded

For linear problems, unboundedness is detected by the simplex method when a nonbasic variable
can apparently be increased or decreased by an arbitrary amount without causing a basic variable to
violate a bound. A message prior to the EXIT message will give the index of the nonbasic variable.
Consider adding an upper or lower bound to the variable. Also, examine the constraints that have
nonzeros in the associated column, to see if they have been formulated as intended.

Very rarely, the scaling of the problem could be so poor that numerical error will give an erroneous
indication of unboundedness. Consider using the Scale option.

For nonlinear problems, MINOS monitors both the size of the current objective function and the
size of the change in the variables at each step. If either of these is very large (as judged by the
Unbounded parameters—see §??), the problem is terminated and declared Unbounded. To avoid
large function values, it may be necessary to impose bounds on some of the variables in order to
keep them away from singularities in the nonlinear functions.

74 Chapter 6. Output

The second message indicates an abnormal termination while enforcing the limit on the constraint
violations. This exit implies that the objective is not bounded below in the feasible region defined
by expanding the bounds by the value of the Violation limit.

3 EXIT -- major iteration limit exceeded

EXIT -- minor iteration limit exceeded

EXIT -- too many iterations

Either the Iterations limit or the Major iterations limit was exceeded before the required
solution could be found. Check the iteration log to be sure that progress was being made. If so,
restart the run using a basis file that was saved (or should have been saved!) at the end of the run.

4 EXIT -- requested accuracy could not be achieved

A feasible solution has been found, but the requested accuracy in the dual infeasibilities could not
be achieved. An abnormal termination has occurred, but MINOS is within 10−2 of satisfying the
Major optimality tolerance. Check that the Major optimality tolerance is not too small.

5 EXIT -- the superbasics limit is too small: nnn

The problem appears to be more nonlinear than anticipated. The current set of basic and superbasic
variables have been optimized as much as possible and a Price operation is necessary to continue,
but there are already nnn superbasics (and no room for any more).

In general, raise the Superbasics limit s by a reasonable amount, bearing in mind the storage
needed for the reduced Hessian (about 1

2
s2 double words).

6 EXIT -- constraint and objective values could not be calculated

This exit occurs if a value mode ≤ −1 is set during some call to funobj or funcon. MINOS assumes
that you want the problem to be abandoned forthwith.

In some environments, this exit means that your subroutines were not successfully linked to
MINOS. If the default versions of funobj and funcon are ever called, they issue a warning message
and then set mode to terminate the run.

7 EXIT -- subroutine funobj seems to be giving incorrect gradients

A check has been made on some individual elements of the objective gradient array at the first point
that satisfies the linear constraints. At least one component gObj(j) is being set to a value that
disagrees markedly with a forward-difference estimate of ∂f/∂xj . (The relative difference between
the computed and estimated values is 1.0 or more.) This exit is a safeguard, since MINOS will
usually fail to make progress when the computed gradients are seriously inaccurate. In the process
it may expend considerable effort before terminating with EXIT 9 below.

Check the function and gradient computation very carefully in funobj. A simple omission (such
as forgetting to divide fObj by 2) could explain everything. If fObj or gObj(j) is very large, then
give serious thought to scaling the function or the nonlinear variables.

If you feel certain that the computed gObj(j) is correct (and that the forward-difference estimate
is therefore wrong), you can specify Verify level 0 to prevent individual elements from being
checked. However, the optimization procedure may have difficulty.

8 EXIT -- subroutine funcon seems to be giving incorrect gradients

This is analogous to the preceding exit. At least one of the computed Jacobian elements is sig-
nificantly different from an estimate obtained by forward-differencing the constraint vector F (x).
Follow the advice given above, trying to ensure that the arrays fCon and gCon are being set correctly
in funcon.

9 EXIT -- the current point cannot be improved upon

Several circumstances could lead to this exit.

1. Subroutines funobj or funcon could be returning accurate function values but inaccurate
gradients (or vice versa). This is the most likely cause. Study the comments given for EXIT

7 and 8, and do your best to ensure that the coding is correct.

6.1 The PRINT file 75

2. The function and gradient values could be consistent, but their precision could be too low.
For example, accidental use of a real data type when double precision was intended would
lead to a relative function precision of about 10−6 instead of something like 10−15. The default
Optimality tolerance of 10−6 would need to be raised to about 10−3 for optimality to be
declared (at a rather suboptimal point). Of course, it is better to revise the function coding
to obtain as much precision as economically possible.

3. If function values are obtained from an expensive iterative process, they may be accurate to
rather few significant figures, and gradients will probably not be available. One should specify

Function precision t

Major optimality tolerance
√

t

but even then, if t is as large as 10−5 or 10−6 (only 5 or 6 significant figures), the same exit
condition may occur. At present the only remedy is to increase the accuracy of the function
calculation.

10 EXIT -- cannot satisfy the general constraints

An LU factorization of the basis has just been obtained and used to recompute the basic variables xB,
given the present values of the superbasic and nonbasic variables. A step of “iterative refinement”
has also been applied to increase the accuracy of xB. However, a row check has revealed that the
resulting solution does not satisfy the current constraints Ax − s = 0 sufficiently well.

This probably means that the current basis is very ill-conditioned. Try Scale option 1 if scaling
has not yet been used and there are some linear constraints and variables.

For certain highly structured basis matrices (notably those with band structure), a systematic
growth may occur in the factor U . Consult the description of Umax, Umin and Growth in §6.1.4, and
set the LU factor tolerance to 2.0 (or possibly even smaller, but not less than 1.0).

12 EXIT -- terminated from subroutine s1User

The user has set the value iAbort = 1 in subroutine s1User. MINOS assumes that you want the
problem to be abandoned forthwith.

If the following exits occur during the first basis factorization, the primal
and dual variables x and pi will have their original input values. Basis files
will be saved if requested, but certain values in the printed solution will not
be meaningful.

20 EXIT -- not enough integer/real storage for the basis factors

The main integer or real storage array iw(*) or rw(*) is apparently not large enough for this
problem. The routine declaring iw and rw should be recompiled with a larger dimensions for those
arrays. The new values should also be assigned to leniw and lenrw.

An estimate of the additional storage required is given in messages preceding the exit.

21 EXIT -- error in basis package

A preceding message will describe the error in more detail. One such message says that the current
basis has more than one element in row i and column j. This could be caused by a corresponding
error in the input parameters a(*), ha(*), and ka(*).

22 EXIT -- singular basis after nnn factorization attempts

This exit is highly unlikely to occur. The first factorization attempt will have found the basis to be
structurally or numerically singular. (Some diagonals of the triangular matrix U were respectively
zero or smaller than a certain tolerance.) The associated variables are replaced by slacks and the

76 Chapter 6. Output

modified basis is refactorized, but singularity persists. This must mean that the problem is badly
scaled, or the LU factor tolerance is too much larger than 1.0.

If the following messages arise, either an Old Basis file could not be loaded
properly, or some fatal system error has occurred. New Basis files cannot
be saved, and there is no solution to print. The problem is abandoned.

30 EXIT -- the basis file dimensions do not match this problem

On the first line of the Old Basis file, the dimensions labeled m and n are different from those
associated with the problem that has just been defined. You have probably loaded a file that
belongs to another problem.

Remember, if you have added rows or columns to a(*), ha(*) and ka(*), you will have to alter
m and n and the map beginning on the third line (a hazardous operation). It may be easier to restart
with a Punch or Dump file from an earlier version of the problem.

31 EXIT -- the basis file state vector does not match this problem

For some reason, the Old Basis file is incompatible with the present problem, or is not consistent
within itself. The number of basic entries in the state vector (i.e., the number of 3’s in the map)
is not the same as m on the first line, or some of the 2’s in the map did not have a corresponding
“j xj” entry following the map.

32 EXIT -- system error. Wrong no. of basic variables: nnn

This exit should never happen. It may indicate that the wrong MINOS source files have been
compiled, or incorrect parameters have been used in the call to subroutine minoss.

Check that all integer variables and arrays are declared integer in your calling program (in-
cluding those beginning with h!), and that all “real” variables and arrays are declared consistently.
(They should be double precision on most machines.)

The following messages arise if additional storage is needed to allow opti-
mization to begin. The problem is abandoned.

42 EXIT -- not enough 8-character storage to start solving the problem

The main character storage array cw(*) is not large enough.

43 EXIT -- not enough integer storage to start solving the problem

The main integer storage array iw(*) is not large enough to provide workspace for the optimization
procedure. See the advice given for Exit 20.

44 EXIT -- not enough real storage to start solving the problem

The main storage array rw(*) is not large enough to provide workspace for the optimization proce-
dure. Be sure that the Superbasics limit is not unreasonably large. Otherwise, see the advice for
EXIT 20.

6.1.6 Solution output

At the end of a run, the final solution is output to the Print file in accordance with the Solution

keyword. Some header information appears first to identify the problem and the final state of the
optimization procedure. A ROWS section and a COLUMNS section then follow, giving one line of
information for each row and column. The format used is similar to certain commercial systems,
though there is no industry standard.

An example of the printed solution is given in §6. In general, numerical values are output with
format f16.5. The maximum record length is 111 characters, including the first (carriage-control)
character.

6.1 The PRINT file 77

To reduce clutter, a dot “.” is printed for any numerical value that is exactly zero. The values
±1 are also printed specially as 1.0 and −1.0. Infinite bounds (±1020 or larger) are printed as None.

Note: If two problems are the same except that one minimizes an objective f(x) and the other
maximizes −f(x), their solutions will be the same but the signs of the dual variables πi and the
reduced gradients dj will be reversed.

The ROWS section

General linear constraints take the form l ≤ Ax ≤ u. The ith constraint is therefore of the form

α ≤ aTx ≤ β,

and the value of aTx is called the row activity. Internally, the linear constraints take the form
Ax − s = 0, where the slack variables s should satisfy the bounds l ≤ s ≤ u. For the ith “row”, it
is the slack variable si that is directly available, and it is sometimes convenient to refer to its state.
Slacks may be basic or nonbasic (but not superbasic).

Nonlinear constraints α ≤ Fi(x) + aTx ≤ β are treated similarly, except that the row activity
and degree of infeasibility are computed directly from Fi(x) + aTx rather than from si.

Label Description

Number The value n + i. This is the internal number used to refer to the ith slack in the
iteration log.

Row The name of the ith row.

State The state of the ith row relative to the bounds α and β. The various states possible
are as follows.

LL The row is at its lower limit, α.

UL The row is at its upper limit, β.

EQ The limits are the same (α = β).

BS The constraint is not binding. si is basic.

A key is sometimes printed before the State to give some additional information about
the state of the slack variable.

A Alternative optimum possible. The slack is nonbasic, but its reduced
gradient is essentially zero. This means that if the slack were allowed
to start moving from its current value, there would be no change in
the objective function. The values of the basic and superbasic variables
might change, giving a genuine alternative solution. The values of the
dual variables might also change.

D Degenerate. The slack is basic, but it is equal to (or very close to) one
of its bounds.

I Infeasible. The slack is basic and is currently violating one of its bounds
by more than the Feasibility tolerance.

N Not precisely optimal. The slack is nonbasic. Its reduced gradient is
larger than the Optimality tolerance .

Note: If Scale option > 0, the tests for assigning A, D, I, N are made on
the scaled problem, since the keys are then more likely to be meaningful.

78 Chapter 6. Output

Activity The row value aTx (or Fi(x) + aTx for nonlinear rows).

Slack activity The amount by which the row differs from its nearest bound. (For free rows, it
is taken to be minus the Activity.)

Lower limit α, the lower bound on the row.

Upper limit β, the upper bound on the row.

Dual activity The value of the dual variable πi, often called the shadow price (or simplex mul-
tiplier) for the ith constraint. The full vector π always satisfies BTπ = gB , where B
is the current basis matrix and gB contains the associated gradients for the current
objective function.

I The constraint number, i.

The COLUMNS section

Here we talk about the “column variables” xj , j = 1 : n. We assume that a typical variable has
bounds α ≤ xj ≤ β.

Label Description

Number The column number, j. This is the internal number used to refer to xj in the iteration
log.

Column The name of xj .

State The state of xj relative to the bounds α and β. The various states possible are as
follows.

LL xj is nonbasic at its lower limit, α.

UL xj is nonbasic at its upper limit, β.

EQ xj is nonbasic and fixed at the value α = β.

FR xj is nonbasic at some value strictly between its bounds: α < xj < β.

BS xj is basic. Usually α < xj < β.

SBS xj is superbasic. Usually α < xj < β.

A key is sometimes printed before the State to give some additional information about
the state of xj .

A Alternative optimum possible. The variable is nonbasic, but its reduced
gradient is essentially zero. This means that if xj were allowed to start
moving from its current value, there would be no change in the objective
function. The values of the basic and superbasic variables might change,
giving a genuine alternative solution. The values of the dual variables
might also change.

D Degenerate. xj is basic, but it is equal to (or very close to) one of its
bounds.

I Infeasible. xj is basic and is currently violating one of its bounds by
more than the Feasibility tolerance.

6.2 The SOLUTION file 79

N Not precisely optimal. xj is nonbasic. Its reduced gradient is larger than
the Optimality tolerance .

Note: If Scale option > 0, the tests for assigning A, D, I, N are made on
the scaled problem, since the keys are then more likely to be meaningful.

Activity The value of the variable xj .

Obj Gradient gj , the jth component of the gradient of the (linear or nonlinear) objective function.
(If any xj is infeasible, gj is the gradient of the sum of infeasibilities.)

Lower limit α, the lower bound on xj .

Upper limit β, the upper bound on xj .

Reduced gradnt The reduced gradient dj = gj−πT aj , where aj is the jth column of the constraint
matrix (or the jth column of the Jacobian at the start of the final major iteration).

M+J The value m + j.

6.2 THE SOLUTION FILE

The information in a printed solution (§6.1.6) may be output as a Solution file, according to the
Solution file option (which may refer to the Print file if so desired). Infinite bounds appear as
±1020 rather than None. Other numerical values are output with format 1p, e16.6.

A Solution file is intended to be read from disk by a self-contained program that extracts and
saves certain values as required for possible further computation. Typically the first 14 records
would be ignored. Each subsequent record may be read using

format(i8, 2x, 2a4, 1x, a1, 1x, a3, 5e16.6, i7)

adapted to suit the occasion. The end of the ROWS section is marked by a record that starts with
a 1 and is otherwise blank. If this and the next 4 records are skipped, the COLUMNS section can
then be read under the same format. (There should be no need for backspace statements.)

6.3 THE SUMMARY FILE

If Summary file > 0, the following information is output to the Summary file. (It is a brief form of
the Print file.) All output lines are less than 72 characters.

• The Begin line from the Specs file, if any.

• The basis file loaded, if any.

• A brief Major iteration log.

• A brief Minor iteration log.

• The EXIT condition and a summary of the final solution.

The following Summary file is from example problem t6wood using Print level 0 and Major

damping parameter 0.5.

80 Chapter 6. Output

==============================

M I N O S 5.51 (Nov 2002)

==============================

Begin t6wood (WOPLANT test problem; optimal obj = -15.55716)

Name WOPLANT

===> Note: row OBJ selected as linear part of objective.

Rows 9

Columns 12

Elements 73

Scale option 2, Partial price 1

Itn 0 -- linear constraints satisfied.

This is problem t6wood. Derivative level = 3

funcon sets 36 out of 50 constraint gradients.

Major minor step objective Feasible Optimal nsb ncon penalty BSwap

1 0T 0.0E+00 0.00000E+00 5.9E-01 1.1E+01 0 4 1.0E+00 0

2 22 5.0E-01 -1.56839E+01 2.7E-01 1.6E+01 3 47 1.0E+00 0

3 10 6.0E-01 -1.51527E+01 1.5E-01 9.9E+00 2 68 1.0E+00 2

4 21 5.7E-01 -1.53638E+01 6.4E-02 3.6E+00 3 113 1.0E+00 1

5 15 1.0E+00 -1.55604E+01 2.7E-02 1.4E-01 3 144 1.0E+00 0

6 5 1.0E+00 -1.55531E+01 6.4E-03 2.2E-01 3 154 1.0E+00 0

7 4 1.0E+00 -1.55569E+01 3.1E-04 7.0E-04 3 160 1.0E-01 0

8 2 1.0E+00 -1.55572E+01 1.6E-08 1.1E-04 3 163 1.0E-02 0

9 1 1.0E+00 -1.55572E+01 5.1E-14 2.2E-06 3 165 1.0E-03 0

EXIT -- optimal solution found

Problem name WOPLANT

No. of iterations 80 Objective value -1.5557160112E+01

No. of major iterations 9 Linear objective -1.5557160112E+01

Penalty parameter 0.000100 Nonlinear objective 0.0000000000E+00

No. of calls to funobj 0 No. of calls to funcon 165

No. of superbasics 3 No. of basic nonlinears 6

No. of degenerate steps 0 Percentage 0.00

Norm of x (scaled) 9.8E-01 Norm of pi (scaled) 1.8E+02

Norm of x 3.2E+01 Norm of pi 1.6E+01

Max Prim inf(scaled) 0 0.0E+00 Max Dual inf(scaled) 1 2.2E-06

Max Primal infeas 0 0.0E+00 Max Dual infeas 1 5.8E-08

Nonlinear constraint violn 5.1E-14

Solution printed on file 9

funcon called with nstate = 2

Time for MPS input 0.00 seconds

Time for solving problem 0.04 seconds

Time for solution output 0.00 seconds

Time for constraint functions 0.00 seconds

Time for objective function 0.00 seconds

Endrun

Chapter 7 September 23, 2003

Subroutine minoss

This chapter describes minoss, the subroutine version of MINOS. Later sections describe an auxiliary
routine (mispec) for reading a Specs file, and some additional routines for specifying individual lines
of such a file as part of the calling program.

Note that subroutine mispec must be called before the first call to minoss, even if a Specs file
is not being read.

In the subroutine specifications, “double precision” entities are appropriate for most machines,
but in same cases (e.g. on Cray and Convex systems) they should be changed to their “single
precision” equivalents. In some installations, integer*4 may have been changed to integer*2

throughout the MINOS source code, to conserve storage. Otherwise, both integer*4 and plain
integer are intended to mean 4-byte words.

7.1 SUBROUTINE MINOSS

Problem data is passed to minoss as parameters, rather than from an MPS file. This is generally
more efficient and convenient for applications that would normally use a “matrix generator”.

Specification

subroutine minoss(start, m, n, nb, ne, nname,

$ nncon, nnobj, nnjac,

$ iobj, objadd, names,

$ a, ha, ka, bl, bu, name1, name2,

$ hs, xn, pi, rc,

$ inform, mincor, ns, ninf, sinf, obj,

$ z, nwcore)

implicit double precision (a-h,o-z)

character*(*) start

integer m, n, nb, ne, nname,

$ nncon, nnobj, nnjac, iobj,

$ inform, mincor, ns, ninf, nwcore

double precision objadd, sinf, obj

character*8 names(5)

integer*4 ha(ne), hs(nb)

integer ka(n+1), name1(nname), name2(nname)

double precision a(ne), bl(nb), bu(nb)

double precision xn(nb), pi(m), rc(nb), z(nwcore)

On entry:

start specifies how a starting basis (and certain other items) are to be obtained.

start = ’Cold’ means that Crash should be used to choose an initial basis (unless
a basis file is provided).

81

82 Chapter 7. Subroutine minoss

start = ’Warm’ means that a basis is already defined in hs (probably from an
earlier call).

start = ’Hot’ or ’Hot FHS’ implies a Hot start. hs defines a basis and an earlier
call has defined certain other things that should also be kept. The problem
dimensions and the array z(*) must not have changed.

F refers to the LU factors of the basis.
H refers to the approximate reduced Hessian R.
S refers to column and row scales.

start = ’Hot H’ (for example) means that only the Hessian is defined.

start = ’Basis file’ is the same as start = ’Cold’ (but is more meaningful if
an Old Basis, Insert or Load file is provided).

m is m, the number of general constraints. For LP problems this means the number
of rows in the constraint matrix A. If integer*4 has been replaced by integer*2

throughout the Fortran source code, m should not exceed 16383. Otherwise there is
essentially no upper limit.

In principle, m > 0, though sometimes m = 0 may be acceptable. (Strictly speaking,
Fortran declarations of the form double precision pi(m) require m to be positive. In
debug mode, compilers will probably enforce this, but optimized code may sometimes
run successfully with m = 0.)

n is n, the number of variables (excluding slacks). For LP problems, this is the number
of columns in A (> 0).

nb is nb = n + m (the number of bounds in bl or bu).

ne is ne, the number of nonzero entries in A (including the Jacobian for any nonlinear
constraints). In principle, ne > 0, though again m = 0, ne = 0 may work with some
compilers.

nname is the number of column and row names provided in the arrays name1 and name2. If
nname = 1, there are no names. Generic names will be used in the printed solution.
Otherwise, nname = nb and all names must be provided.

nncon is m1, the number of nonlinear constraints (≥ 0).

nnobj is n′
1, the number of nonlinear objective variables (≥ 0).

nnjac is n′′
1 , the number of nonlinear Jacobian variables (≥ 0). If nncon = 0, nnjac = 0. If

nncon > 0, nnjac > 0.

iobj says which row of A is a free row containing a linear objective vector c. If there is no
such vector, iobj = 0. Otherwise, this row must come after any nonlinear rows, so
that nncon < iobj ≤ m.

objadd is a constant that will be added to the objective. Typically objadd = 0.0d+0.

names(5) is a set of 8-character names for the problem, the linear objective, the rhs, the ranges
and bounds. (This is a hangover from MPS files. The names are used in the printed
solution and in some of the basis files.)

a(ne) is the constraint matrix (Jacobian), stored column-wise.

ha(ne) is a list of row indices for each nonzero in a(*).

7.1 Subroutine minoss 83

ka(n+1) is a set of pointers to the beginning of each column of the constraint matrix within
a(*) and ha(*). It is essential that ka(1) = 1 and ka(n + 1) = ne + 1.

1. If the problem has a nonlinear objective, the first nnobj columns of a and ha

belong to the nonlinear objective variables. Subroutine funobj deals with these
variables.

2. If the problem has nonlinear constraints, the first nnjac columns of a and ha

belong to the nonlinear Jacobian variables, and the first nncon rows of a and ha

belong to the nonlinear constraints. Subroutine funcon deals with these variables
and constraints.

3. If nnobj > 0 and nnjac > 0, the two sets of nonlinear variables overlap. The
total number of nonlinear variables is nn = max(nnobj, nnjac).

4. The Jacobian forms the top left corner of a and ha. If a Jacobian column j
(1 ≤ j ≤ nnjac) contains any entries a(k), ha(k) associated with nonlinear
constraints (1 ≤ ha(k) ≤ nncon), those entries must come before any other
(linear) entries.

5. The row indices ha(k) for a column may be in any order (subject to Jacobian
entries appearing first). Subroutine funcon must define Jacobian entries in the
same order.

6. Columns of A should contain at least one entry, so that ka(j) < ka(j + 1) for
every j. If a column has no meaningful entry, include a dummy entry a(k) =
0.0d+0, ha(k) = 1.

bl(nb) is the lower bounds on the variables and slacks (x, s).

The first n entries of bl, bu, hs and xn refer to the variables x. The last m entries
refer to the slacks s.

bu(nb) is the upper bounds on (x, s).

Beware: MINOS represents general constraints as Ax+ s = 0. Constraints of the form
l ≤ Ax ≤ u therefore mean l ≤ −s ≤ u, so that −u ≤ s ≤ −l. The last m components
of bl and bu are −u and −l.

name1(nname), name2(nname) are integer arrays.

If nname = 1, name1 and name2 are not used. The printed solution will use generic
names for the columns and rows. If nname = nb, name1(j) and name2(j) should
contain the name of the j-th variable in 2a4 format (j = 1 to nb). If j = n + i, the
j-th variable is the i-th row.

hs(nb) sometimes contains a set of initial states for each variable x, or for each variable and
slack (x, s). See next lines.

xn(nb) sometimes contains a set of initial values for each variable x, or for each variable and
slack (x, s).

1. For cold starts, you must define hs(j) and xn(j), j = 1 to n. (The values for
j = n+1 to nb need not be set.) If nothing special is known about the problem, or
if there is no wish to provide special information, you may set hs(j) = 0, xn(j) =
0.0 for all j = 1 to n. All variables will be eligible for the initial basis.

Less trivially, to say that variable j will probably be equal to one of its bounds, set
hs(j) = 4 and xn(j) = bl(j) or hs(j) = 5 and xn(j) = bu(j) as appropriate.

84 Chapter 7. Subroutine minoss

2. For Cold starts with no basis file, a Crash procedure is used to select an initial
basis. The initial basis matrix will be triangular (ignoring certain small entries
in each column). The values hs(j) = 0, 1, 2, 3, 4, 5 have the following meaning:

If hs(j) = 0, 1 or 3, Crash considers that column j is eligible for the basis, with
preference given to 3.

If hs(j) = 2, 4 or 5, Crash ignores column j.

After Crash, columns for which hs(j) = 2 are made superbasic. Other columns
not selected for the basis are made nonbasic at the value xn(j) if bl(j) ≤ xn(j) ≤
bu(j), or at the value bl(j) or bu(j) closest to xn(j).

3. For Warm or Hot starts, all of hs(1:nb) is assumed to be set to the values 0, 1,
2 or 3 (probably from some previous call) and all of xn(1:nb) must have values.

If start = ’Cold’ or ’Basis file’ and an Old Basis, Insert or Load file is provided,
hs and xn need not be set at all.

pi(m) contains an estimate of the vector of Lagrange multipliers (shadow prices) for the
nonlinear constraints. The first nncon components must be defined. They will be used
as λk in the subproblem objective function for the first major iteration. If nothing is
known about λk, set pi(i) = 0.0d+0, i = 1 to nncon.

ns need not be specified for Cold starts, but should retain its value from a previous call
when a Warm or Hot start is used.

z(nwcore) is a (large) array that provides all workspace. Problems involving m general constraints
typically need nwcore at least 100m. See the output parameter mincor below.

On exit:

hs(nb) is the final state vector. If the solution is optimal or feasible, the entries of hs usually
have the following meaning:

hs(j) State of variable j Usual value of xn(j)

0 nonbasic bl(j)
1 nonbasic bu(j)
2 superbasic Between bl(j) and bu(j)
3 basic Between bl(j) and bu(j)

Basic and superbasic variables may be outside their bounds by as much as the Feasibility
tolerance. Note that if scaling is specified, the Feasibility tolerance applies to
the variables of the scaled problem. In this case, the variables of the original problem
may be as much as 0.1 outside their bounds, but this is unlikely unless the problem is
very badly scaled. Check the “Primal infeasibility” printed after the EXIT message.

Very occasionally some nonbasic variables may be outside their bounds by as much as
the Feasibility tolerance, and there may be some nonbasics for which xn(j) lies
strictly between its bounds.

If ninf > 0, some basic and superbasic variables may be outside their bounds by an
arbitrary amount (bounded by sinf if scaling was not used).

xn(nb) is the final variables and slacks (x, s).

pi(m) is the vector of dual variables π (a set of Lagrange multipliers for the general con-
straints).

7.1 Subroutine minoss 85

rc(nb) is a vector of reduced costs, g − (A I)Tπ, where g is the gradient of the objective
function if xn is feasible, or the gradient of the Phase-1 objective otherwise. If ninf
= 0, the last m entries are −π.

inform says what happened, as described more fully in Chapter 6.3.

inform Meaning

0 Optimal solution found.
1 The problem is infeasible.
2 The problem is unbounded (or badly scaled).
3 Too many iterations.
4 Apparent stall. The solution has not changed for a

large number of iterations (e.g. 1000).
5 The Superbasics limit is too small.
6 Subroutine funobj or funcon requested termination

by returning mode < 0.
7 funobj seems to be giving incorrect gradients.
8 funcon seems to be giving incorrect gradients.
9 The current point cannot be improved.
10 Numerical error in trying to satisfy the linear constraints

(or the linearized nonlinear constraints). The basis is
very ill-conditioned.

11 Cannot find a superbasic to replace a basic variable.
12 Basis factorization requested twice in a row.

Should probably be treated as inform = 9.
13 Near-optimal solution found.

Should probably be treated as inform = 9.

inform Meaning

20 Not enough storage for the basis factorization.
21 Error in basis package.
22 The basis is singular after several attempts to

factorize it (and add slacks where necessary).
30 An OLD BASIS file had dimensions that did not match the

current problem.
32 System error. Wrong number of basic variables.
40 Fatal errors in the MPS file.
41 Not enough storage to read the MPS file.
42 Not enough storage to solve the problem.

mincor says how much storage is needed to solve the problem. If inform = 42, the work array
z(nwcore) was too small. minoss may be called again with nwcore suitably larger
than mincor. (The bigger the better, since it is not certain how much storage the basis
factors need.)

ns is the final number of superbasics.

ninf is the number of infeasibilities.

sinf is the sum of infeasibilities.

obj is the value of the objective function. If ninf = 0, obj includes the nonlinear objective
if any. If ninf > 0, obj is just the linear objective if any.

86 Chapter 7. Subroutine minoss

7.2 SUBROUTINE MISPEC

This subroutine must be called before the first call to minoss. It opens the Specs, Print and
Summary files (if they exist), sets all options to default values, and reads the Specs file if any. File
numbers must be in the range 1 to 99, or 0 if the associated file does not exist.

Specification

subroutine mispec(ispecs, iprint, isumm, nwcore, inform)

integer ispecs, iprint, isumm, nwcore, inform

On entry:

ispecs says whether or not a Specs file exists. If ispecs > 0, a file is read from the specified
Fortran file number. Typically ispecs = 4.

iprint says if a Print file is to be created. Typically iprint = 9.

isumm says if a Summary file is to be created. Typically isumm = 6. In an interactive
environment, this value usually denotes the screen.

nwcore is the length of the workspace array z(*) that is later passed to minoss.

On exit:

inform is 0 if there was no Specs file, or if the Specs file was successfully read. Otherwise, it
returns the number of errors encountered.

7.3 SUBROUTINES MIOPT, MIOPTI, MIOPTR

These subroutines may be called from the program that calls minoss. They specify a single option
that might otherwise be defined in one line of a Specs file.

Specification

subroutine miopt (buffer, iprint, isumm, inform)

subroutine miopti(buffer, ivalue, iprint, isumm, inform)

subroutine mioptr(buffer, rvalue, iprint, isumm, inform)

character*(*) buffer

integer ivalue

double precision rvalue

integer iprint, isumm, inform

On entry:

buffer is a string to be decoded as if it were a line of a Specs file. For miopt, the maximum
length of buffer is 72 characters. Use miopt if the string contains all of the data
associated with a particular keyword. For example,

call miopt (’Iterations 1000’, iprint, isumm, inform)

7.3 Subroutines miopt, miopti, mioptr 87

is suitable if the value 1000 is known at compile time.

For miopti and mioptr the maximum length of buffer is 55 characters.

ivalue is an integer value associated with the keyword in buffer. Use miopti if it is conve-
nient to define the value at run time. For example,

itnlim = 1000

if (m .gt. 500) itnlim = 8000

call miopti(’Iterations’, itnlim, iprint, isumm, inform)

allows the iteration limit to be computed.

rvalue is a floating-point value associated with the keyword in buffer. Use mioptr if it is
convenient to define the value at run time. For example,

factol = 100.0d+0

if (illcon) factol = 5.0d+0

call mioptr(’LU factor tol’, factol, iprint, isumm, inform)

allows the LU stability tolerance to be computed.

iprint is a file number for printing each line of data, along with any error messages. iprint
= 0 suppresses this output.

isumm is a file number for printing any error messages. isumm = 0 suppresses this output.

inform should be 0.

On exit:

inform is the number of errors encountered so far.

88 Chapter 7. Subroutine minoss

7.4 EXAMPLE USE OF MINOSS

File minost.for contains a Fortran test program to illustrate the use of subroutines mispec, minoss,
miopt, miopti and mioptr. The test program reads a Specs file, generates test problem MANNE
(see Pages 98–108 of the User’s Guide), sets some options not specified in the Specs file, then calls
minoss to solve the problem.

The Specs file is in minost.spc. The required function subroutines funobj and funcon are part
of the MINOS source file mi05funs.for.

To use the test program, compile and link minost.for and all of the MINOS source files, excluding
the stand-alone MINOS main program (mi00main.for). See file unix.mak or minost.mak.

To run the resulting binary file, see file unix.run or vminost.com.

Good luck with your own use of minoss!

File minost.for

* --

* File minost.for

* This is a main program to test subroutine minoss, which is

* part of MINOS 5.5. It generates the problem called MANNE on

* Pages 98-108 of the MINOS 5.1 User’s Guide, then asks minoss

* to solve it.

*

*

* 11 Nov 1991: First version.

* 27 Nov 1991: miopt, miopti, mioptr used to alter some options

* for a second call to minoss.

* 10 Apr 1992: objadd added as input parameter to minoss.

* 26 Jun 1992: integer*2 changed to integer*4.

* 15 Oct 1993: t4data now outputs pi.

* 24 Jan 1995: MINOS inadvertently scales all of xn before solving,

* so t4data sets dummy values for the slacks after all.

* 05 Feb 1998: No longer have to set Jacobian = dense or sparse

* when MINOS is called as a subroutine.

* --

program minost

implicit double precision (a-h,o-z)

parameter (maxm = 100,

$ maxn = 150,

$ maxnb = maxm + maxn,

$ maxne = 500,

$ nname = 1)

character*8 names(5)

integer*4 ha(maxne) , hs(maxnb)

integer ka(maxn+1), name1(nname), name2(nname)

double precision a(maxne) , bl(maxnb) , bu(maxnb),

$ xn(maxnb) , pi(maxm) , rc(maxnb)

parameter (nwcore = 50000)

double precision z(nwcore)

* --

7.4 Example Use of minoss 89

* Give names to the Problem, Objective, Rhs, Ranges and Bounds.

names(1) = ’manne10 ’

names(2) = ’funobj ’

names(3) = ’zero ’

names(4) = ’range1 ’

names(5) = ’bound1 ’

* Specify some of the MINOS files.

* ispecs is the Specs file (0 if none).

* iprint is the Print file (0 if none).

* isumm is the Summary file (0 if none).

* (mispec opens these files via mifile and m1open.)

* nout is an output file used here by mitest.

ispecs = 4

iprint = 9

isumm = 6

nout = 6

* --

* Set options to default values.

* Read a Specs file (if ispecs > 0).

* --

call mispec(ispecs, iprint, isumm, nwcore, inform)

if (inform .ge. 2) then

write(nout, *) ’ispecs > 0 but no Specs file found’

stop

end if

* --

* Generate a 10-period problem (nt = 10).

* Instead of hardwiring nt here, we could do the following:

* 1. Say Nonlinear constraints 10 in the Specs file.

* 2. At the top of this program include the following common block:

* common /m8len / njac ,nncon ,nncon0,nnjac

* 3. Say nt = nncon in the line below.

* --

nt = 10

call t4data(nt, maxm, maxn, maxnb, maxne, inform,

$ m, n, nb, ne, nncon, nnobj, nnjac,

$ a, ha, ka, bl, bu, hs, xn, pi)

if (inform .ge. 1) then

write(nout, *) ’Not enough storage to generate a problem ’,

$ ’with nt =’, nt

stop

end if

* --

* Specify options that were not set in the Specs file.

* i1 and i2 may refer to the Print and Summary file respectively.

* Setting them to 0 suppresses printing.

* --

90 Chapter 7. Subroutine minoss

i1 = 0

i2 = 0

ltime = 2

call miopti(’Timing level ’, ltime, i1, i2, inform)

* --

* Go for it, using a Cold start.

* iobj = 0 means there is no linear objective row in a(*).

* objadd = 0.0 means there is no constant to be added to the

* objective.

* hs need not be set if a basis file is to be input.

* Otherwise, each hs(1:n) should be 0, 1, 2, 3, 4, or 5.

* The values are used by the Crash procedure m2crsh

* to choose an initial basis B.

* If hs(j) = 0 or 1, column j is eligible for B.

* If hs(j) = 2, column j is initially superbasic (not in B).

* If hs(j) = 3, column j is eligible for B and is given

* preference over columns with hs(j) = 0 or 1.

* If hs(j) = 4 or 5, column j is initially nonbasic.

* --

iobj = 0

objadd = 0.0

* For straightforward applications we would call minoss just once,

* giving it all of z(*) for workspace.

* Here we call it twice to illustrate situations where z(*) can be

* expanded to suit the problem size.

*

* For the first call, set lenz foolishly small and let minoss

* tell us (via mincor) how big it would like z(*) to be.

lenz = 2

call minoss(’Cold’, m, n, nb, ne, nname,

$ nncon, nnobj, nnjac,

$ iobj, objadd, names,

$ a, ha, ka, bl, bu, name1, name2,

$ hs, xn, pi, rc,

$ inform, mincor, ns, ninf, sinf, obj,

$ z, lenz)

write(nout, *) ’ ’

write(nout, *) ’Estimate of required workspace: mincor =’, mincor

* Since nwcor2 was not big enough, we will now have inform = 42.

* Make z(*) longer and try again. mincor SHOULD be enough.

* (In general we should allow more to give the LU factors

* as much room as possible). For example,

* mincor = mincor + 5*m + 1000 might be enough.)

*

* Note that we can’t say z(*) is longer than nwcore here.

* minoss will return inform = 42 again if mincor > nwcore.

lenz = min(mincor, nwcore)

call minoss(’Cold’, m, n, nb, ne, nname,

7.4 Example Use of minoss 91

$ nncon, nnobj, nnjac,

$ iobj, objadd, names,

$ a, ha, ka, bl, bu, name1, name2,

$ hs, xn, pi, rc,

$ inform, mincor, ns, ninf, sinf, obj,

$ z, lenz)

write(nout, *) ’ ’

write(nout, *) ’minoss finished.’

write(nout, *) ’inform =’, inform

write(nout, *) ’ninf =’, ninf

write(nout, *) ’sinf =’, sinf

write(nout, *) ’obj =’, obj

if (inform .ge. 20) go to 900

* --

* Alter some options and test the Warm start.

* --

* The following illustrates the use of miopt, miopti and mioptr

* to set specific options. If necessary, we could ensure that

* all unspecified options take default values

* by first calling miopt (’Defaults’, ...).

* Beware that certain parameters would then need to be redefined.

write(nout, *) ’ ’

write(nout, *) ’Alter options and test Warm start:’

inform = 0

itnlim = 20

penpar = 0.01

call miopt (’ ’, iprint, isumm, inform)

*--- call miopt (’Defaults ’, iprint, isumm, inform)

*--- call miopti(’Problem number ’, 1114, iprint, isumm, inform)

*--- call miopt (’Maximize ’, iprint, isumm, inform)

call miopt (’Derivative level 3’, iprint, isumm, inform)

*--- call miopt (’Print level 0’, iprint, isumm, inform)

call miopt (’Verify level 0’, iprint, isumm, inform)

call miopt (’Scale option 0’, iprint, isumm, inform)

call miopti(’Iterations ’, itnlim, iprint, isumm, inform)

call mioptr(’Penalty parameter ’, penpar, iprint, isumm, inform)

if (inform .gt. 0) then

write(nout, *) ’NOTE: Some of the options were not recognized’

end if

* Test the Warm start.

* hs(*) specifies a complete basis from the previous call.

* A Warm start uses hs(*) directly, without calling Crash.

*

* Warm and Hot starts are normally used after minoss has solved a

* problem with the SAME DIMENSIONS but perhaps altered data.

* Here we have not altered the data, so very few iterations

* should be required.

call minoss(’Warm’, m, n, nb, ne, nname,

92 Chapter 7. Subroutine minoss

$ nncon, nnobj, nnjac,

$ iobj, objadd, names,

$ a, ha, ka, bl, bu, name1, name2,

$ hs, xn, pi, rc,

$ inform, mincor, ns, ninf, sinf, obj,

$ z, nwcore)

write(nout, *) ’ ’

write(nout, *) ’minoss finished again.’

write(nout, *) ’inform =’, inform

write(nout, *) ’obj =’, obj

if (inform .ge. 20) go to 900

* --

* Alter more options (perhaps) and test the Hot start.

* As with a Warm start, hs(*) specifies a basis from the

* previous call. In addition, up to three items from the previous

* call can be reused. They are denoted by F, H and S as follows:

* ’Hot F’ means use the existing basis FACTORS (B = LU).

* ’Hot H’ means use the existing reduced HESSIAN approximation.

* ’Hot S’ means use the existing column and row SCALES.

* ’Hot FS’ means use the Factors and Scales but not the Hessian.

* ’Hot FHS’ means use all three items.

* ’Hot’ is equivalent to ’Hot FHS’.

* The letters F,H,S may be in any order.

* Note that ’Hot’ keeps existing scales. Must say

* ’Hot H’ or ’Hot ...’ or something longer than 4 characters

* if new scales are wanted.

* --

write(nout, *) ’ ’

write(nout, *) ’Test Hot start:’

call miopt (’ ’, iprint, isumm, inform)

call miopt (’Scale option 2’, iprint, isumm, inform)

call minoss(’Hot H’, m, n, nb, ne, nname,

$ nncon, nnobj, nnjac,

$ iobj, objadd, names,

$ a, ha, ka, bl, bu, name1, name2,

$ hs, xn, pi, rc,

$ inform, mincor, ns, ninf, sinf, obj,

$ z, nwcore)

write(nout, *) ’ ’

write(nout, *) ’minoss finished again.’

write(nout, *) ’inform =’, inform

write(nout, *) ’obj =’, obj

if (inform .ge. 20) go to 900

stop

* --

* Error exit.

* --

900 write(nout, *) ’ ’

write(nout, *) ’STOPPING because of error condition’

stop

7.4 Example Use of minoss 93

* end of main program to test subroutine minoss

end

*+++

subroutine t4data(nt, maxm, maxn, maxnb, maxne, inform,

$ m, n, nb, ne, nncon, nnobj, nnjac,

$ a, ha, ka, bl, bu, hs, xn, pi)

implicit double precision (a-h,o-z)

integer*4 ha(maxne), hs(maxnb)

integer ka(maxn+1)

double precision a(maxne) , bl(maxnb), bu(maxnb),

$ xn(maxnb), pi(maxm)

* --

* t4data generates data for the test problem t4manne

* (called problem MANNE in the MINOS 5.1 User’s Guide).

* The constraints take the form

* f(x) + A*x + s = 0,

* where the Jacobian for f(x) + Ax is stored in a(*), and any

* terms coming from f(x) are in the TOP LEFT-HAND CORNER of a(*),

* with dimensions nncon x nnjac.

* Note that the right-hand side is zero.

* s is a set of slack variables whose bounds contain any constants

* that might have formed a right-hand side.

*

* The objective function is

* F(x) + c’x

* where c would be row iobj of A (but there is no such row in

* this example). F(x) involves only the FIRST nnobj variables.

*

* On entry,

* nt is T, the number of time periods.

* maxm, maxn, maxnb, maxne are upper limits on m, n, nb, ne.

*

* On exit,

* inform is 0 if there is enough storage, 1 otherwise.

* m is the number of nonlinear and linear constraints.

* n is the number of variables.

* nb is n + m.

* ne is the number of nonzeros in a(*).

* nncon is the number of nonlinear constraints (they come first).

* nnobj is the number of nonlinear objective variables.

* nnjac is the number of nonlinear Jacobian variables.

* a is the constraint matrix (Jacobian), stored column-wise.

* ha is the list of row indices for each nonzero in a(*).

* ka is a set of pointers to the beginning of each column of a.

* bl is the lower bounds on x and s.

* bu is the upper bounds on x and s.

* hs(1:n) is a set of initial states for each x (0,1,2,3,4,5).

* xn(1:n) is a set of initial values for x.

* pi(1:m) is a set of initial values for the dual variables pi.

*

94 Chapter 7. Subroutine minoss

* 09 Jul 1992: No need to initialize xn and hs for the slacks.

* 15 Oct 1993: pi is now an output parameter. (Should have been

* all along.)

* 24 Jan 1995: MINOS inadvertently scales all of xn before solving,

* so we set dummy values for the slacks after all.

* --

parameter (zero = 0.0d+0, one = 1.0d+0,

$ dummy = 0.1d+0, growth = .03d+0,

$ bplus = 1.0d+20, bminus = - bplus)

* nt defines the dimension of the problem.

m = nt*2

n = nt*3

nb = n + m

nncon = nt

nnobj = nt*2

nnjac = nt

ne = nt*6 - 1

* Check if there is enough storage.

inform = 0

if (m .gt. maxm) inform = 1

if (n .gt. maxn) inform = 1

if (nb .gt. maxnb) inform = 1

if (ne .gt. maxne) inform = 1

if (inform .gt. 0) return

* Generate columns for Capital (Kt, t = 1 to nt).

* The first nt rows are nonlinear, and the next nt are linear.

* The Jacobian is an nt x nt diagonal.

* We generate the sparsity pattern here.

* We put in dummy numerical values of 0.1 for the gradients.

* Real values for the gradients are computed by t4con.

ne = 0

do 100 k = 1, nt

* There is one Jacobian nonzero per column.

ne = ne + 1

ka(k) = ne

ha(ne) = k

a(ne) = dummy

* The linear constraints form an upper bidiagonal pattern.

if (k .gt. 1) then

ne = ne + 1

ha(ne) = nt + k - 1

a(ne) = one

end if

7.4 Example Use of minoss 95

ne = ne + 1

ha(ne) = nt + k

a(ne) = - one

100 continue

* The last nonzero is special.

a(ne) = growth

* Generate columns for Consumption (Ct for t = 1 to nt).

* They form -I in the first nt rows.

* jC and jI are base indices for the Ct and It variables.

jC = nt

jI = nt*2

do 200 k = 1, nt

ne = ne + 1

ka(jC+k) = ne

ha(ne) = k

a(ne) = - one

200 continue

* Generate columns for Investment (It for t = 1 to nt).

* They form -I in the first nt rows and -I in the last nt rows.

do 300 k = 1, nt

ne = ne + 1

ka(jI+k) = ne

ha(ne) = k

a(ne) = - one

ne = ne + 1

a(ne) = - one

ha(ne) = nt + k

300 continue

* ka(*) has one extra element.

ka(n+1) = ne + 1

* Set lower and upper bounds for Kt, Ct, It.

* Also initial values and initial states for all variables.

* The Jacobian variables are the most important.

* Set hs(k) = 2 to make them initially superbasic.

* The others might as well be on their smallest bounds (hs(j) = 0).

do 400 k = 1, nt

bl(k) = 3.05d+0

bu(k) = bplus

bl(jC+k) = 0.95d+0

bu(jC+k) = bplus

bl(jI+k) = 0.05d+0

bu(jI+k) = bplus

xn(k) = 3.0d+0 + (k - 1)/10.0d+0

96 Chapter 7. Subroutine minoss

xn(jC+k) = bl(jC+k)

xn(jI+k) = bl(jI+k)

hs(k) = 2

hs(jC+k) = 0

hs(jI+k) = 0

400 continue

* The first Capital is fixed.

* The last three Investments are bounded.

bu(1) = bl(1)

xn(1) = bl(1)

hs(1) = 0

bu(jI+nt-2) = 0.112d+0

bu(jI+nt-1) = 0.114d+0

bu(jI+nt) = 0.116d+0

* Set bounds on the slacks.

* The nt nonlinear (Money) rows are >=.

* The nt linear (CapacitY) rows are <=.

* We no longer need to set initial values and states for slacks.

* 24 Jan 1995: MINOS inadvertently scales all of xn before solving,

* so we set dummy values for the slacks after all.

jM = n

jY = n + nt

do 500 k = 1, nt

bl(jM+k) = bminus

bu(jM+k) = zero

bl(jY+k) = zero

bu(jY+k) = bplus

xn(jM+k) = zero

xn(jY+k) = zero

*- hs(jM+k) = 0

*- hs(jY+k) = 0

500 continue

* The last Money and Capacity rows have a Range.

bl(jM+nt) = - 10.0d+0

bu(jY+nt) = 20.0d+0

* Initialize pi.

* 5.4 requires only pi(1:nncon) to be initialized.

* 5.5 may want all of pi to be initialized (not yet sure).

do 600 i = 1, nt

pi(i) = - one

pi(nt+i) = + one

600 continue

* end of t4data

7.5 MINOS(IIS): Debugging Infeasible Models 97

end

File minost.spc

Begin manne10 (10-period economic growth model)

Problem number 1114

Maximize

Major iterations 8

Minor iterations 20

Penalty parameter 0.1

Hessian dimension 10

Derivative level 3

* Verify gradients

Verify level 0

Scale option 2

Scale option 1

Iterations 50

Print level (jflxb) 00000

Print frequency 1

Summary level 0

Summary frequency 1

End Manne10

7.5 MINOS(IIS): DEBUGGING INFEASIBLE MODELS

If the linear constraints in a model cannot be satisfied, MINOS will exit with the message “The
problem is infeasible”. This usually implies some formulation error in the model. The printed
solution shows which variables or slacks lie outside their bounds, and by how much. However, the
exact cause of infeasibility may be difficult to detect.

In such cases, further analysis is provided by MINOS(IIS), a modified version of MINOS available
from John Chinneck at Carleton University:

J. W. Chinneck (1993). MINOS(IIS) 4.2 User’s Manual, Report SCE-93-17, Department of
Systems and Computer Engineering, Carleton University, Ottawa, Canada K1S 5B6.

Phone: (613)788-5733, Fax: (613)788-5727, Email: chinneck@sce.carleton.ca.

98 Chapter 7. Subroutine minoss

Chapter 8 September 23, 2003

Library Subroutines

This chapter describes additional library subroutines that were not discussed in the previous chapter
on minoss. These are as follows:

mititle Obtain MINOS version/date string if you want it.

mistart Initialize MINOS. CALL THIS BEFORE OTHER ROUTINES.

micore Estimate length of work array z(*).

minos Alternative solve routine to minoss allowing constraint bounds

the same as SNOPT. (But it calls \minoss.)

micmps Count MPS file rows, columns, elements.

micjac Count Jacobian elements.

mirmps Read an MPS file.

miwmps Write an MPS file.

8.1 SUBROUTINE MITITLE

This subroutine simply defines the label title as a 30-character string detailing the current version
of MINOS.

Specification

subroutine mititle(title)

character*30 title

title = ’M I N O S 5.51 (Nov 2002)’

8.2 SUBROUTINE MISTART

This must be the first subroutine called from your code, i.e. must be called before any other MINOS

library subroutines (including those described in the previous chapter). It opens the default files
Print Summary and also Specs if it is required. It also initialises the title and sets the Specs options
to their default values.

Specification

subroutine mistart(iprint, isumm, ispecs)

call mifile(1) ! Open the PRINT, SUMMARY and SPECS files.

call m1init() ! Set a few constants.

99

100 Chapter 8. Library Subroutines

call mititle(title) ! Get title.

call m1page(1) ! Indicate new page, then print title.

call m3dflt(1) ! Set the options to default values.

On entry:

ispecs says whether or not a Specs file exists. If ispecs > 0, a file is read from the specified
Fortran file number. The default value is ispecs = 4.

iprint says if a Print file is to be created. The default value is iprint = 9.

isumm says if a Summary file is to be created. The default value is isumm = 6. In an interactive
environment, this value usually denotes the screen.

8.3 SUBROUTINE MICORE

This subroutine estimates the amount of core required to solve a problem when the size is specified
in terms of the number of rows, columns and elements, and the size of the nonlinear portion of the
problem (and number of Jacobian elements if it is sparse).

Specification

subroutine micore(m, n, ne, nscl, maxr, maxs,

$ nnobj, nncon, nnjac, nejac,

$ mincor)

integer m, n, ne, nscl, maxr, maxs,

$ nnobj, nncon, nnjac, nejac,

$ mincor

On entry:

m is m, the number of general constraints.

n is n, the number of variables (excluding slacks).

ne is ne, the number of nonzero entries in A (including the Jacobian for any nonlinear
constraints).

nscl is the size of the scaling array ascale.

maxr is the maximum Hessian size (Hessian dimension in the Specs).

maxs is the maximum Superbasics limit (Superbasics limit in the Specs).

nnobj is n′
1, the number of nonlinear objective variables (≥ 0).

nncon is m1, the number of nonlinear constraints (≥ 0).

nnjac is n′′
1 , the number of nonlinear Jacobian variables (≥ 0). If nncon = 0, nnjac = 0. If

nncon > 0, nnjac > 0.

nejac is the number of Jacobian elements (allowing for possible sparsity).

8.4 Subroutine minos 101

On exit:

mincor is the minimum size of the array real*8 z(mincor).

8.4 SUBROUTINE MINOS

This subroutine has the same input and output parameters as minoss. However minosallows the
constraint bounds bl and bu to be input in the form bl ≤ Ax ≤ bu and bl ≤ x ≤ bu.

Hence, the constraints are Ax− s = 0, bl ≤ (x, s) ≤ bu, rather than Ax+ s = 0, bl ≤ (x, s) ≤ bu

as in minoss. pi and the last m components of bl, bu, hs, xn, rc are ”back to front”, but the other
parameters are the same as in minoss.

Specification

subroutine minos (start, m, n, nb, ne, nname,

$ nncon, nnobj, nnjac,

$ iobj, objadd, names,

$ a, ha, ka, bl, bu, name1, name2,

$ hs, xn, pi, rc,

$ inform, mincor, ns, ninf, sinf, obj,

$ z, nwcore)

implicit double precision (a-h,o-z)

character*(*) start

integer m, n, nb, ne, nname,

$ nncon, nnobj, nnjac, iobj,

$ inform, mincor, ns, ninf, nwcore

double precision objadd, sinf, obj

character*8 names(5)

integer*4 ha(ne), hs(nb)

integer ka(n+1), name1(nname), name2(nname)

double precision a(ne), bl(nb), bu(nb)

double precision xn(nb), pi(m), rc(nb), z(nwcore)

On entry:

(See the parameter list for minoss).

On exit:

(See the parameter list for minoss).

8.5 SUBROUTINE MICMPS

This subroutine is used to determine the size of the probem as measured by the MPS file.

Specification

subroutine micmps(imps, m, n, ne, nint, inform)

implicit none

102 Chapter 8. Library Subroutines

integer imps, m, n, ne, nint, inform

On entry:

imps is the unit number for the MPS file.

On exit:

m is m, the number of general constraints.

n is n, the number of variables (excluding slacks).

ne is ne, the number of nonzero entries in A (including the Jacobian for any nonlinear
constraints).

nint is the number of integer bound types in the FIRST BOUNDS section.

inform = 0 if the MPS file was processed correctly = 1 if a NAME record wasn’t found = 2
if a ROWS record wasn’t found = 3 if a COLUMNS record wasn’t found = 4 if an
ENDATA record wasn’t found = 5 if an unexpected END OF FILE occurred.

8.6 SUBROUTINE MICJAC

This subroutine counts how many elements are in the m1xn′′
1top left-hand corner of the mxn sparse

matrix defined by ha and ka.

Specification

subroutine micjac(m, n, ne, nncon, nnjac, nejac,

$ ha, ka)

integer m, n, ne, nncon, nnjac, nejac

integer ha(ne), ka(n+1)

On entry:

m is m, the number of general constraints.

n is n, the number of variables (excluding slacks).

ne is ne, the number of nonzero entries in A (including the Jacobian for any nonlinear
constraints).

nncon is m1, the number of nonlinear constraints (≥ 0).

nnjac is n′′
1 , the number of nonlinear Jacobian variables (≥ 0).

ha(ne) is a list of row indices for each nonzero in a(*).

ka(n+1) is a set of pointers to the beginning of each column of the constraint matrix within
a(*) and ha(*).

8.7 Subroutine mirmps 103

On exit:

nejac is the number of non-zero Jacobian elements.

8.7 SUBROUTINE MIRMPS

Subroutine mirmpsinputs constraint data for a linear or nonlinear program in MPS format, consisting
of NAME, ROWS, COLUMNS, RHS, RANGES and BOUNDS sections in that order. The RANGES
and BOUNDS sections are optional. In the LP case, MPS format defines a set of constraints of the
form l ≤ x ≤ u, b1 ≤ Ax ≤ b2, where l and u are specified by the BOUNDS section, and b1 and b2
are defined somewhat indirectly by the ROWS, RHS and RANGES sections. mirmpsconverts these
constraints into the equivalent form Ax + s = 0, bl ≤ (x, s) ≤ bu,

where s is a set of slack variables. This is the way MINOS deals with the data. The first n
components of bl and bu are the same as l and u. The last m components are −b2 and −b1.

MPS format gives 8-character names to the rows and columns of A. One of the rows of A may
be regarded as a linear objective row. This will be row iobj, where iobj = 0 means there is no such
row.

The data defines a linear program if nncon = nnjac = nnobj = 0. The nonlinear case is the
same except for a few details.

1. If nncon = nnjac = 0 but nnobj > 0, the first nnobj columns are associated with a nonlinear
objective function.

2. If nncon > 0, then nnjac > 0 and nnobj may be zero or positive. The first nncon rows and
the first nnjac columns are associated with a set of nonlinear constraints.

3. Let nn = max(nnjac, nnobj). The first nn columns correspond to ”nonlinear variables”.

4. If an objective row is specified (iobj > 0), then it must be such that iobj > nncon.

5. ”Small” elements (below the Aij tolerance) are ignored only if they lie outside the nncon by
nnjac Jacobian, i.e. outside the top-left corner of A.

6. No warning is given if some of the first nn columns are empty.

Specification

subroutine mirmps(imps, maxm, maxn, maxnb, maxne,

$ nncon, nnjac, nnobj,

$ m, n, nb, ne, nint,

$ iobj, objadd, names,

$ a, ha, ka, bl, bu, name1, name2,

$ hint, hs, xn, pi,

$ inform, ns, z, nwcore)

implicit double precision (a-h,o-z)

character*8 names(5)

integer ha(maxne) , hint(maxn) , hs(maxnb)

integer ka(maxn+1), name1(maxnb), name2(maxnb)

double precision a(maxne) , bl(maxnb) , bu(maxnb)

double precision xn(maxnb) , pi(maxm) , z(nwcore)

104 Chapter 8. Library Subroutines

On entry:

imps is the unit containing the MPS file. On some systems, it may be necessary to open file
imps before calling mirmps.

maxm is an overestimate of the number of rows in the ROWS section of the MPS file.

maxn is an overestimate of the number of columns in the COLUMNS section of the MPS file.

maxnb is maxm + maxn.

maxne is an overestimate of the number of elements (matrix coefficients) in the COLUMNS
section.

nncon is the number of nonlinear constraints in the problem. These must be the FIRST rows
in the ROWS section.

nnjac is the number of nonlinear Jacobian variables in the problem. These must be the
FIRST columns in the COLUMNS section.

nnobj is the number of nonlinear objective variables in the problem. These must be the
FIRST columns in the COLUMNS section, overlapping where necessary with the
Jacobian variables.

names is an array of five 8-character names. names(1) need not be specified... it will be
changed to the name on the NAME record of the MPS file. names(2) is the name of
the objective row to be selected from the ROWS section, or blank if mirmpsshould
select the first type N row encountered. Similarly, names(3), names(4) and names(5)
are the names of the RHS, RANGES and BOUNDS to be selected from the RHS,
RANGES and BOUNDS sections respectively, or blank if mirmpsshould select the first
ones encountered.

z is a workspace array of length nwcore. It is needed to hold the row-name hash table
and a few other things.

nwcore is the length of z(∗). It should be at least 4 ∗ maxm.

On exit:

m is m, the number of general constraints.

n is n, the number of variables (excluding slacks).

nb is nb = n + m (the number of bounds in bl or bu).

ne is ne, the number of nonzero entries in A (including the Jacobian for any nonlinear
constraints).

nint is the number of integer variables detected.

iobj is the row number of the specified objective row, or zero if no such row was found.

objadd is a real constant extracted from row iobj of the RHS. It is zero if the RHS contained
no objective entry. MINOS adds objadd to the objective function.

names names(1)−names(5) contain the names of the Problem, Objective row, RHS, RANGES
and BOUNDS respectively.

8.8 Subroutine miwmps 105

a a(∗) contains the ne entries for each column of the matrix specified in the COLUMNS
section.

ha ha(∗) contains the corresponding row indices.

ka ka(j)(j = 1ton) points to the beginning of column j in the parallel arrays a(∗), ha(∗).
ka(n + 1) = ne + 1.

bl bl(∗) contains nb lower bounds for the columns and slacks. If there is no lower bound
on x(j), then bl(j) = −1.0d + 20.

bu bu(∗) contains nb lower bounds for the columns and slacks. If there is no upper bound
on x(j), then bu(j) = +1.0d + 20.

name1,name2 name1(∗), name2(∗) contain nb column and row names in 2a4 format. The j − th
column name is stored in name1(j) and name2(j). The i − th row name is stored in
name1(k) and name2(k), where k = n + i.

hint hint(j) = 0 if x(j) is continuous, = 1 if x(j) is integer.

hs hs(∗) contains an initial state for each column and slack.

xn xn(∗) contains an initial value for each column and slack.

If there is no INITIAL bounds set, xn(j) = 0 if that value lies between bl(j) and bu(j),
= the bound closest to zero otherwise, hs(j) = 0 if xn(j) < bu(j), = 1 if xn(j) = bu(j).

If there is an INITIAL bounds set, xn(j) and hs(j) are set as follows. Suppose the
j-th variable has the name Xj, and suppose any numerical value specified happens to
be 3.

xn(j) hs(j)

FR INITIAL Xj 3.0 3.0 -1
FX INITIAL Xj 3.0 3.0 2
LO INITIAL Xj bl(j) 4
UP INITIAL Xj bu(j) 5
MI INITIAL Xj 3.0 3.0 4
PL INITIAL Xj 3.0 3.0 5

pi pi(∗) contains a vector defined by a special RHS called LAGRANGE. If the MPS file
contains no such RHS, pi(i) = 0.0, i = 1 : m.

inform inform = 0 if no fatal errors were encountered, = 40 if the ROWS or COLUMNS
sections were empty or iobj > 0 but iobj ≤ nncon, = 41 if maxm, maxn or maxne were
too small.

ns is the number of FX INITIAL entries in the INITIAL bounds set.

8.8 SUBROUTINE MIWMPS

The subroutine miwmps writes an MPS file to file number mps. All parameters except mps are the
same as for minoss . They are all input parameters.

106 Chapter 8. Library Subroutines

Specification

subroutine miwmps(mps, m, n, nb, ne, nname, names,

$ a, ha, ka, bl, bu, name1, name2)

implicit double precision (a-h,o-z)

character*8 names(5)

integer ha(ne)

integer ka(n+1), name1(nname), name2(nname)

double precision a(ne), bl(nb), bu(nb)

On entry:

(See the parameter list for minoss.)

mps is the unit number for the MPS file.

m is m, the number of general constraints.

n is n, the number of variables (excluding slacks).

nb is nb = n + m (the number of bounds in bl or bu).

ne is ne, the number of nonzero entries in A (including the Jacobian for any nonlinear
constraints).

nname is the number of column and row names provided in the arrays name1 and name2.

names(5) is a set of 8-character names for the problem, the linear objective, the rhs, the ranges
and bounds. (This is a hangover from MPS files. The names are used in the printed
solution and in some of the basis files.)

a(ne) is the constraint matrix (Jacobian), stored column-wise.

ha(ne) is a list of row indices for each nonzero in a(*).

ka(n+1) is a set of pointers to the beginning of each column of the constraint matrix within
a(*) and ha(*). It is essential that ka(1) = 1 and ka(n + 1) = ne + 1. (See also the
discussion in Section 7.1)

bl(nb) is the lower bounds on the variables and slacks (x, s).

The first n entries of bl, bu, hs and xn refer to the variables x. The last m entries
refer to the slacks s.

bu(nb) is the upper bounds on (x, s).

name1(nname), name2(nname) are integer arrays.

(See also the discussion in Section 7.1)

Chapter 9 September 23, 2003

Examples

The following sections define some example problems and show the input required to solve them using
MINOS. The last example in section 8.4 is test problem MANNE as supplied on the distribution
tape. For this example we also give the output produced by MINOS.

As the examples show, certain Fortran routines may be required to run a particular problem,
depending on the problem and on the Fortran installation:

• A main program to allocate workspace

• Subroutine FUNOBJ to define a nonlinear objective function (if any)

• Subroutine FUNCON to define nonlinear constraint functions (if any)

• Subroutine MATMOD for special applications

The following input items are always required:

• A SPECS file

• An MPS file

Additional input may include a BASIS file and data read by the Fortran routines.

Load modules and file specifications are inevitably machine-dependent. A resident expert will
be needed to install MINOS on your particular machine and to recommend job control or operating
system commands. On some machines it will be possible to run linear programs through MINOS
without compiling any routines or linking them to the MINOS code file. For nonlinear problems,
some compilation and linking is unavoidable.

For some installations it may also be convenient to have your own copy of subroutine MIFILE, to
define certain file attributes in (non-standard) Fortran, rather than via operating system commands.
The resident expert will know best.

Good luck ! We hope the examples that follow are general enough to set you on the right track.

107

108 Chapter 9. Examples

9.1 LINEAR PROGRAMMING

One of the classical applications of the simplex method was to the so-called diet problem. Given the
nutritional content of a selection of foods, the cost of each food, and the consumer’s minimum daily
requirements, the problem is to find the combination that is least expensive. The following example
is taken from Chvátal (1983).

minimize cTx subject to Ax ≥ b, 0 ≤ x ≤ u,

where

A =

110 205 160 160 420 260

4 32 13 8 4 14

2 12 54 285 22 80

, b =

2000

55

800

,

and

c =
(

3 24 13 9 20 19
)T

, u =
(

4 3 2 8 2 2
)T

.

Main program (not needed for some installations)

DOUBLE PRECISION Z(10000)

DATA NWCORE/10000/

C

CALL MINOS1(Z,NWCORE)

STOP

END

Dummy user routines (not needed for some installations)

SUBROUTINE FUNOBJ

ENTRY FUNCON

ENTRY MATMOD

RETURN

END

SPECS File

BEGIN DIET PROBLEM

MINIMIZE

ROWS 20

COLUMNS 30

ELEMENTS 50

SUMMARY FILE 9

SUMMARY FREQUENCY 1 * (for small problems only)}

NEW BASIS FILE 11

END DIET PROBLEM

9.1 Linear Programming 109

MPS File

NAME DIET

ROWS

G ENERGY

G PROTEIN

G CALCIUM

N COST

COLUMNS

OATMEAL ENERGY 110.0 PROTEIN 4.0

OATMEAL CALCIUM 2.0 COST 3.0

CHICKEN ENERGY 205.0 PROTEIN 32.0

CHICKEN CALCIUM 12.0 COST 24.0

EGGS ENERGY 160.0 PROTEIN 13.0

EGGS CALCIUM 54.0 COST 13.0

MILK ENERGY 160.0 PROTEIN 8.0

MILK CALCIUM 285.0 COST 9.0

PIE ENERGY 420.0 PROTEIN 4.0

PIE CALCIUM 22.0 COST 20.0

PORKBEAN ENERGY 260.0 PROTEIN 14.0

PORKBEAN CALCIUM 80.0 COST 19.0

RHS

DEMANDS ENERGY 2000.0 PROTEIN 55.0

DEMANDS CALCIUM 800.0

BOUNDS

UP SERVINGS OATMEAL 4.0

UP SERVINGS CHICKEN 3.0

UP SERVINGS EGGS 2.0

UP SERVINGS MILK 8.0

UP SERVINGS PIE 2.0

UP SERVINGS PORKBEAN 2.0

ENDATA

Notes on the Diet Problem

1. For small problems such as this, the SPECS file does not really need to specify certain para-
meters, because the default values are large enough. However, we include them as a reminder
for more substantial models.

2. In the MPS file we put the objective row last. Looking ahead, this is one way of ensuring that
it does not get mixed up with nonlinear constraints, whose names must appear first in the
ROWS section.

3. The constraint matrix is unusual in being 100% dense. Most models have at least a few zeros
in each column and in b. They would not need to appear in the COLUMNS and RHS sections.

4. MINOS takes three iterations to solve the problem. The optimal objective is cTx = 92.5. The
optimal solution is x = (4, 0, 0, 4.5, 2, 0)T and s = (0, −5, −534.5)T. The optimal dual
variables are π = (0.05625, 0, 0)T.

110 Chapter 9. Examples

9.2 UNCONSTRAINED OPTIMIZATION

The following is a classical unconstrained problem, due to Rosenbrock (1960):

minimize F (x) = 100(x2 − x2
1)

2 + (1 − x1)
2.

We use it to illustrate the data required to minimize a function with no general constraints. Bounds
on the variables are easily included; we specify −10 ≤ x1 ≤ 5 and −10 ≤ x2 ≤ 10.

Calculation of F (x) and its gradients

SUBROUTINE FUNOBJ(MODE,N,X,F,G,NSTATE,NPROB,Z,NWCORE)

IMPLICIT\ \ \ \ \ \ \ \ \ \ \ REAL*8(A-H,O-Z)

DOUBLE PRECISION\ \ \ X(N), G(N), Z(NWCORE)

C

C ROSENBROCK’S BANANA FUNCTION.

C

X1 = X(1)

X2 = X(2)

T1 = X2 - X1**2

T2 = 1.0 - X1

F = 100.0 * T1**2 + T2**2

G(1) = - 400.0 * T1 * X1 - 2.0 * T2

G(2) = 200.0 * T1

RETURN

C

C END OF FUNOBJ FOR ROSENBROCK

END

SPECS File

BEGIN ROSENBROCK

OBJECTIVE = FUNOBJ

NONLINEAR VARIABLES 2

SUPERBASICS LIMIT 3

LOWER BOUND -10.0

UPPER BOUND 10.0

SUMMARY FILE 9

SUMMARY FREQUENCY 1

ITERATIONS LIMIT 50

END ROSENBROCK

MPS File

NAME ROSENBROCK

ROWS

N DUMMYROW

COLUMNS

X1

X2

RHS

9.3 Linearly Constrained Optimization 111

BOUNDS

UP BOUND1 X1 5.0

FX INITIAL X1 -1.2

FX INITIAL X2 1.0

ENDATA

Notes on Rosenbrock’s function

1. There is nothing special about subroutine FUNOBJ. It returns the function value F (x) and two
gradient values gj = ∂F/∂xj on every entry. If G(1) or G(2) were not assigned values, MINOS
would “notice” and proceed to estimate either or both by finite differences.

2. The SPECS file apparently does not need to estimate the dimensions of the constraint matrix
A, which is supposed to be void anyway. But in fact, MINOS will represent A as a 1 × n1

matrix containing n1 elements that are all zero. For very large unconstrained problems, the
COLUMNS and ELEMENTS keywords must be specified accordingly.

3. The SPECS file must specify the exact number of nonlinear variables, n1. To allow a little
elbow room, the SUPERBASICS LIMIT must be set to n1 + 1, unless it is known that some of
the bounds will be active at the solution.

4. The MPS file must specify at least one row. Here it is a dummy free row (type N = non-
binding constraint). The basis matrix will remain B = 1 throughout, corresponding to the
slack variable on the free row.

5. The COLUMNS section contains just a list of the variable names. The RHS header card must
appear, but a free row has no right-hand-side entry.

6. Uniform bounds −10 ≤ xj ≤ 10 are specified in the SPECS file as a matter of good practice.
Their presence does not imply additional work. If the LOWER and UPPER BOUND keywords did
not appear, the variables would implicitly have the bounds 0 ≤ xj ≤ ∞, which will not always
be appropriate.

7. With the uniform bounds specified, only one additional card is needed in the BOUNDS section
to impose the restriction x1 ≤ 5.

8. The INITIAL bound set illustrates how the starting point (x1, x2) = (−1.2, 1.0) is specified.
These cards must appear at the end of the BOUNDS section. Since the SUPERBASICS LIMIT

is sufficiently high, both variables will initially be superbasic at the indicated values.

9. If the INITIAL bound set were absent (and if no BASIS file were loaded), x1 and x2 would
initially be nonbasic at the bound that is smaller in absolute value (with ties broken in favor
of lower bounds); in this case, x1 = u1 = 5 and x2 = l2 = −10.

10. From the standard starting point shown, a quasi-Newton method with a moderately accurate
linesearch takes about 20 iterations and 60 function and gradient evaluations to reach the
unique solution x1 = x2 = 1.0.

9.3 LINEARLY CONSTRAINED OPTIMIZATION

Quadratic programming (QP) is a particular case of linearly constrained optimization, in which the
objective function F (x) includes linear and quadratic terms. There is no special way of informing
MINOS that F (x) is quadratic, but the algorithms in MINOS will tend to perform more efficiently

112 Chapter 9. Examples

on quadratics than on other nonlinear functions. The following items are required to solve the
quadratic program

minimize F (x) =
1

2
xTQx + cTx subject to Ax ≤ b, x ≥ 0

for the particular data

Q =

4 2 2

2 4 0

2 0 2

, c =

−8

−6

−4

, A =

(

1 1 2
)

, b = 3.

Calculation of quadratic term and its gradients

SUBROUTINE FUNOBJ(MODE,N,X,F,G,NSTATE,NPROB,Z,NWCORE)

IMPLICIT REAL*8(A-H,O-Z)

DOUBLE PRECISION X(N), G(N), Z(NWCORE)

COMMON /QPCOMM/ Q(50,50)

C

C Computation of F = 1/2 x’Qx, g = Qx.

C The COMMON statement and subroutine SETQ are problem

dependent.

C

C

IF (NSTATE .EQ. 1) CALL SETQ(Q, 50, N)

F = 0.0

C

DO 200 I = 1, N

GRAD = 0.0

DO 100 J = 1, N

GRAD = GRAD + Q(I,J)*X(J)

100 CONTINUE

F = F + X(I)*GRAD

G(I) = GRAD

200 CONTINUE

C

F = 0.5*F

RETURN

C

C END OF FUNOBJ FOR QP

END

SPECS File

BEGIN QP

NONLINEAR VARIABLES 3

SUPERBASICS LIMIT 3

SUMMARY FILE 9

SUMMARY FREQUENCY 1

ITERATIONS LIMIT 50

END QP

9.3 Linearly Constrained Optimization 113

MPS File

NAME QP

ROWS

L A

N C

COLUMNS

X1 A 1.0 C -8.0

X2 A 1.0 C -6.0

X3 A 2.0 C -4.0

RHS

B A 3.0

ENDATA

Notes on the QP example

1. In subroutine FUNOBJ we assume that the array Q(*,*) is initialized during the first entry by
another subroutine SETQ, which is problem-dependent. The COMMON statement is also problem-
dependent and is included to ensure that Q will retain its values for later entries. (In some
Fortran implementations, local variables are not retained between entries.)

2. The quadratic form will often involve only some of the variables. In such cases the variables
should be ordered so that the nonzero rows and columns of Q come first, thus:

Q =

(

Q̄

0

)

.

3. The parameter N and the number of NONLINEAR VARIABLES would then be the dimension of
Q̄.

4. FUNOBJ could have computed the linear term cTx (and its gradient c). However we have
included c as an objective row in the MPS file, in the same manner as for linear programs.
This is more general, because c could contain entries for all variables, not just those associated
with Q̄.

5. Beware—if c 6= 0, the factor 1

2
makes a vital difference to the function being minimized.

6. The optimal solution to the QP problem as stated is

x = (1.3333, 0.77777, 0.44444), 1

2
xTQx = 8.2222,

cTx = −17.111, F (x) = −8.8888.

Test Problems WEAPON and ETAMACRO

The MINOS distribution tape contains data for these two linearly constrained problems. The SPECS
file for ETAMACRO is as follows. It is set up to solve a linear form of the problem first, and then
use the optimal basis as a starting point for the nonlinear form.

114 Chapter 9. Examples

Linear Least Squares

Data-fitting can give rise to a constrained linear least-squares problem of the form

minimize ‖Xx − y‖2 subject to Ax ≥ b, l ≤ x ≤ u.

This problem may be solved with MINOS as it stands, by coding subroutine FUNOBJ to compute the
objective function F (x) = 1

2
‖Xx−y‖2

2 and its gradient g(x) = XT(Xx−y). If X is a sparse matrix,
it may be more convenient to express the problem in the form

minimize F (r) =
1

2
rTr subject to

(

I X

A

)(

r

x

)(

=

≥

)(

y

b

)

, r free, l ≤ x ≤ u.

Notes on the least-squares problem

1. As usual, the constraints in Ax ≥ b may include all types of inequality.

2. r = y − Xx is the residual vector and rTr is the sum of squares.

3. The objective function is easily programmed as F (r) = 1

2
rTr and g(r) = r.

9.4 Nonlinearly Constrained Optimization 115

4. More stable methods are known for the least-squares problem. If there are no constraints at
all, several codes are available for minimizing ‖Xx − y‖2 when X is either dense or sparse.
When there are equality constraints only (Ax = b), we know of one specialized method that
can treat X and A as sparse matrices (Björck and Duff, 1980). For the more general case
with inequalities and bounds, MINOS is one of very few systems that could attempt to solve
problems in which X and A are sparse. However, if n (the dimension of x) is very large,
MINOS will not be efficient unless almost n constraints and bounds are active at the solution.

5. If it is expected that most of the elements of x will be away from their bounds, it will be
worthwhile to specify MULTIPLE PRICE 10 (say). This will allow up to 10 variables at a time
to be added to the set currently being optimized, instead of the usual 1.

The Discrete ℓ1 Problem

An apparently similar data-fitting problem is

minimize ‖Xx − y‖1 subject to Ax ≥ b

where ‖r‖1 ≡ ∑ |ri|. However, this problem is best solved by means of the following purely linear

program:
maximizeλ, µ yT λ + bTµ

subject to XT λ + ATµ = 0, −1 ≤ λi ≤ 1, µ ≥ 0.

Notes on the ℓ1 problem

1. The solution x is recovered as the dual variables, i.e., the Lagrange multipliers associated with
the general constraints.

2. The optimal value of ‖Xx−y‖1 is the sum of the absolute values of the reduced costs associated
with λ. (It is also the maximal value of yT λ + bTµ.)

3. If a particular row in Ax ≥ b is required to be an equality constraint, the corresponding
component of µ should be a free variable.

4. It does not appear simple to include the bounds l ≤ x ≤ u except as part of Ax ≥ b. If
there are many finite bounds, it may be best to solve the original problem directly as a linear
program, thus:

minimizer, s eTr + eTs

subject to

(

A

I −I X

)

r

s

x

(

≥
=

)(

b

y

)

, r, s ≥ 0, l ≤ x ≤ u,

where eT = (1 1 . . . 1).

9.4 NONLINEARLY CONSTRAINED OPTIMIZATION

Two example problems are described here to illustrate the subroutines and data required to specify a
problem with nonlinear constraints. The first example is small, dense and highly nonlinear; it shows
how the Jacobian matrix may be handled most simply (as a dense matrix) when there are very few
nonlinear constraints or variables. The second example has both linear and nonlinear constraints,
and illustrates most of the features that will be present in large-scale applications where it is essential
to treat the Jacobian as a sparse matrix.

116 Chapter 9. Examples

Problem MHW4D (Wright (1976), example 4, starting point D)

minimize (x1 − 1)2 + (x1 − x2)
2 + (x2 − x3)

3 + (x3 − x4)
4 + (x4 − x5)

4

subject to x1 + x2
2 + x3

3 = 3
√

2 + 2,

x2 − x2
3 + x4 = 2

√
2 − 2,

x1x5 = 2.

Starting point: x0 = (−1, 2, 1,−2,−2)

Notes for problem MHW4D

1. The function subroutines include code for a second problem (Wright, 1976, example 9). The
parameter NPROB is used to branch to the appropriate calculation.

2. In subroutine FUNOBJ, F is the value of the objective function F (x) and G contains the corre-
sponding 5 partial derivatives.

3. In subroutine FUNCON, F is an array containing the vector of constraint functions f(x), and
G holds the Jacobian matrix; thus, the i-th row of G contains the partial derivatives for the
i-th constraint. In this example the Jacobian is best treated as a dense matrix, so G is a two-
dimensional array. Note that several elements of G are zero; they do not need to be explicitly
set.

4. Subroutine FUNCON will be called before subroutine FUNOBJ. The parameter NSTATE is used to
print a message on the very first entry to FUNCON. This is just a matter of good practice, since
it is often convenient to compile MINOS and the function routines into an executable code
file, and one can easily forget which particular function routines were used.

5. The SPECS file shown contains keywords that should in general be specified for small, dense
problems (i.e., ones whose default values would not be ideal).

6. The COLUMNS section of the MPS file contains only the names of the variables, since they
are all “nonlinear”, and because there are no linear constraints.

7. The BOUNDS section specifies only the initial point. Uniform bounds on the variables are
given in the SPECS file.

8. Since FX indicators are used for the INITIAL bounds, the SUPERBASICS LIMIT needs to be at
least 5 in this case, plus 1 for elbow room during the optimization.

9. This example has several local minima, and the performance of MINOS is very dependent on
the initial point x0. See Wright (1976) or Murtagh and Saunders (1982) for computational
details.

Problem MHW4D; computation of the objective function

9.4 Nonlinearly Constrained Optimization 117

Problem MHW4D; computation of the constraint functions

118 Chapter 9. Examples

Problem MHW4D; the SPECS file

Problem MHW4D; the MPS file

9.4 Nonlinearly Constrained Optimization 119

Problem MANNE (Manne, 1979)

maximize

T
∑

t=1

βt log Ct

subject to αtK
b
t ≥ Ct + It, 1 ≤ t ≤ T, (nonlinear constraints)

Kt+1 ≤ Kt + It, 1 ≤< T, (linear constraints)
gKT ≤ IT ,

with various ranges and bounds.

The variables here are Kt, Ct and It, representing capital, consumption and investment during T
time periods. The first T constraints are nonlinear because the variables Kt are raised to the power
b = 0.25. The problem is described more fully in Murtagh and Saunders (1982), where results are
given for the case T = 100.

The main program and subroutines shown on the following pages are part of the file HEAD1 on the
MINOS distribution tape (see sections 7.1 and 7.4). The SPECS data and MPS data are contained
in the file MANNE DATA; they apply to the case T = 10.

Notes for problem MANNE

1. For efficiency, the Jacobian variables Kt are made the first T components of x, followed by the
objective variables Ct. Since the objective does not involve Kt, subroutine FUNOBJ must set
the first T components of the objective gradient to zero. The parameter N will have the value
2T . Verification of the objective gradients may as well start at variable T + 1.

2. For subroutine FUNCON, N will be T . The Jacobian matrix is particularly simple in this example;
in fact J(x) has only one nonzero element per column (i.e., it is diagonal). The parameter
NJAC will therefore be T also. It is used only to dimension the array G.

3. NSTATE enables B, AT and BT to be initialized on the first entry to FUNCON, for subsequent use
in both of the function subroutines. (Remember that the first call to FUNCON occurs before the
first call to FUNOBJ.) The name chosen for the labeled COMMON block holding these quantities
must be different from the other COMMON names used by MINOS, as listed in section 7.3.

4. NSTATE is also used to produce some output on the final call to FUNCON.

5. The COMMON block M1FILE is one of those used by MINOS; see section 1.6. For test purposes
we also use COMMON block M8DIFF to access the variable LDERIV.

6. The SPECS file uses keywords that you should become familiar with before running large
problems. Other values will be appropriate for other applications.

7. The MPS file specifies a sparse T × T Jacobian in the top left corner of the constraint matrix.
An arbitrary value of 0.1 has been used for the nonzero variable coefficients. A zero or blank
numeric field would be equally good.

120 Chapter 9. Examples

Problem MANNE; main program and calculation of the objective function

9.4 Nonlinearly Constrained Optimization 121

Problem MANNE; calculation of the constraint functions

122 Chapter 9. Examples

Problem MANNE; the SPECS file

9.4 Nonlinearly Constrained Optimization 123

Problem MANNE; the MPS file

124 Chapter 9. Examples

Problem MANNE; the MPS file, continued

9.4 Nonlinearly Constrained Optimization 125

Problem MANNE; output from MINOS

126 Chapter 9. Examples

Problem MANNE; output from MINOS, continued

9.4 Nonlinearly Constrained Optimization 127

Problem MANNE; output from MINOS, continued

128 Chapter 9. Examples

Problem MANNE; output from MINOS, continued

9.4 Nonlinearly Constrained Optimization 129

Problem MANNE; output from MINOS, continued

130 Chapter 9. Examples

9.5 USE OF SUBROUTINE MATMOD

The following example illustrates the construction of a sequence of problems, based on the Diet
problem of section 8.1. It assumes that the following cards have been added to the SPECS file:

CYCLE LIMIT 3

CYCLE PRINT 3

CYCLE TOLERANCE 2.0

PHANTOM COLUMNS 1 (or more)

PHANTOM ELEMENTS 3 (or more)

1. Solution of the original problem constitutes cycle 1.

2. After cycle 1, MATMOD will be called twice with NCYCLE = 2 and 3 respectively, denoting the
beginning of cycles 2 and 3. The value of N will include the normal columns and the phantom
columns; in this case, N = 6 + 1 = 7. Likewise, NE includes normal and phantom elements; in
this case, NE = 24 + 3 = 27.

3. For cycle 2, we alter the cost coefficient on the variable called CHICKEN. This happens to be the
second variable, but for illustrative purposes we use the MINOS subroutine M3NAME to search
the list of column names to find the appropriate index. In this case, M3NAME will return the
value JCHICK = 2.

4. Similarly, we use M3NAME to search the list of row names to find the index for the objective row,
whose name is known to be COST. In this case, M3NAME will return the value JCOST = 11. Since
rows are stored after the N columns, this means that the objective is row number JCOST−N = 4.
(As it happens, this value is already available in the COMMON variable IOBJ.)

5. This example assumes that CHICKEN already had a nonzero cost coefficient, since it is not
possible to increase the number of entries in existing columns. If the cost coefficient was
previously zero, it would have to be entered as such in the MPS file, and the SPECS file would
have to set AIJ TOLERANCE = 0.0 to prevent zero coefficients from being rejected.

6. For cycle 3, we generate one new column by calling upon the MINOS subroutine MATCOL. The
PHANTOM COLUMNS and PHANTOM ELEMENTS keywords must define sufficient storage for this
new column. (The estimates defined by the normal COLUMNS and ELEMENTS keywords must
also allow for the phantom columns and elements.)

7. For illustrative purposes, we make use of the specified CYCLE TOLERANCE and the value of X(1)
in the current solution, to decide whether to proceed with cycle 3.

8. After the call to MATCOL, the COMMON variable JNEW points to the new column. It allows us
to set a finite upper bound on the associated variable. If there had been insufficient storage,
or if COL(*) contained no significant elements, MATERR would have been increased from 0 to
1. Usually, this means that the sequence of cycles should be terminated (by setting FINISH =

.TRUE.).

9.5 Use of Subroutine MATMOD 131

132 Chapter 9. Examples

9.6 THINGS TO REMEMBER

Use the following space to record the fruits of your experience. They may be useful reminders the
next time you come to run MINOS. (We suggest you use a pencil.)

Bibliography

[Bar71] R. H. Bartels (1971). A stabilization of the simplex method, Numerische Mathematik

16, 414–434.

[BG69] R. H. Bartels and G. H. Golub (1969). The simplex method of linear programming using
the LU decomposition, Communications of the ACM 12, 266–268.

[BD80] Å. Björck and I. S. Duff (1980). A direct method for the solution of sparse linear least
squares problems, Linear Algebra and its Applications 34, 43–67.

[BM68] J. Bracken and G. P. McCormick (1968). Selected Applications of Nonlinear Program-

ming, John Wiley and Sons, New York and Toronto.

[BKM88] A. Brooke, D. Kendrick and A. Meeraus (1988). GAMS: A User’s Guide, The Scientific
Press, Redwood City, California.

[Chv83] V. Chvátal (1983). Linear Programming, W. H. Freeman and Company, New York and
San Francisco.

[Dan51] G. B. Dantzig (1951). Maximization of a linear function of variables subject to linear
inequalities, in T. C. Koopmans (ed.), Activity Analysis of Production and Allocation,
Proceedings of Linear Programming Conference, June 20–24, 1949, John Wiley and
Sons, New York, 359–373.

[Dan63] G. B. Dantzig (1963). Linear Programming and Extensions, Princeton University Press,
Princeton, New Jersey.

[Dav59] W. C. Davidon (1959). Variable metric methods for minimization, A.E.C. Research and
Development Report ANL-5990, Argonne National Laboratory, Argonne, Illinois.

[DS83] J. E. Dennis, Jr. and R. B. Schnabel (1983). Numerical Methods for Unconstrained

Optimization, Prentice-Hall, Englewood Cliffs, New Jersey.

[Fou82] R. Fourer (1982). Solving staircase linear programs by the simplex method, Mathemat-

ical Programming 23, 274–313.

[FGK92] R. Fourer, D. Gay and B. Kernighan (1992). AMPL: A Modeling Language for Mathe-

matical Programming, The Scientific Press, South San Francisco, California.

[Fri02] M. P. Friedlander. A Globally Convergent Linearly Constrained Lagrangian Method for

Nonlinear Optimization. PhD thesis, Dept of Management Science and Engineering,
Stanford University, 2002. http://www.stanford.edu/group/SOL/dissertations.html.

[GMW81] P. E. Gill, W. Murray and M. H. Wright (1981). Practical Optimization, Academic Press,
London.

133

134 BIBLIOGRAPHY

[GMSW79] P. E. Gill, W. Murray, M. A. Saunders and M. H. Wright (1979). Two step-length
algorithms for numerical optimization, Report SOL 79-25, Department of Operations
Research, Stanford University, California.

[GMSW87] P. E. Gill, W. Murray, M. A. Saunders and M. H. Wright (1987). Maintaining LU factors
of a general sparse matrix, Linear Algebra and its Applications 88/89, 239–270.

[GMSW89] P. E. Gill, W. Murray, M. A. Saunders and M. H. Wright (1989). A practical anti-
cycling procedure for linearly constrained optimization, Mathematical Programming 45,
437–474.

[Him72] D. M. Himmelblau (1972). Applied Nonlinear Programming, McGraw-Hill.

[LHKK79] C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. Krogh (1979). Basic Linear
Algebra Subprograms for Fortran usage, ACM Transactions on Mathematical Software

5, 308–323 and (Algorithm) 324–325.

[Man77] A. S. Manne (1977). ETA-MACRO: A Model of Energy-Economy Interactions, in C. J.
Hitch (ed.), Modeling Energy-Economy Interactions, Resources for the Future, Washing-
ton, DC. Also in R. Pindyck (ed.), Advances in the Economics of Energy and Resources,
Vol. 2: The Production and Pricing of Energy Resources, JAI Press, Inc., Greenwich,
Connecticut, 1979, 205–233.

[Man79] A. S. Manne (1979). Private communication.

[MS78] B. A. Murtagh and M. A. Saunders (1978). Large-scale linearly constrained optimization,
Mathematical Programming 14, 41–72.

[MS82] B. A. Murtagh and M. A. Saunders (1982). A projected Lagrangian algorithm and its
implementation for sparse nonlinear constraints, Mathematical Programming Study 16,
Algorithms for Constrained Minimization of Smooth Nonlinear Functions, 84–117.

[Pre80] P. V. Preckel (1980). Modules for use with MINOS/AUGMENTED in solving sequences
of mathematical programs, Report SOL 80-15, Department of Operations Research,
Stanford University, California.

[Reid76] J. K. Reid (1976). Fortran subroutines for handling sparse linear programming bases,
Report R8269, Atomic Energy Research Establishment, Harwell, England.

[Reid82] J. K. Reid (1982). A sparsity-exploiting variant of the Bartels-Golub decomposition for
linear programming bases, Mathematical Programming 24, 55–69.

[Rob72] S. M. Robinson (1972). A quadratically convergent algorithm for general nonlinear pro-
gramming problems, Mathematical Programming 3, 145–156.

[RK72] J. B. Rosen and J. Kreuser (1972). A gradient projection algorithm for nonlinear con-
straints, in F. A. Lootsma (ed.), Numerical Methods for Nonlinear Optimization, Aca-
demic Press, London and New York, 297–300.

[Ros60] H. H. Rosenbrock (1960). An automatic method for finding the greatest or least value
of a function, Computer Journal 3, 175–184.

[Sau76] M. A. Saunders (1976). A fast, stable implementation of the simplex method using
Bartels-Golub updating, in J. R. Bunch and D. J. Rose (eds.), Sparse Matrix Compu-

tations, Academic Press, New York, 213–226.

BIBLIOGRAPHY 135

[Wolf62] P. Wolfe (1962). The reduced-gradient method, unpublished manuscript, RAND Cor-
poration, Santa Monica, California.

[Wri76] M. H. Wright (1976). Numerical methods for nonlinearly constrained optimization, PhD
thesis, Computer Science Department, Stanford University, California.

136 BIBLIOGRAPHY

Appendix A September 23, 2003

System Information

A.1 DISTRIBUTION FILES

The MINOS source code and test problems are distributed as a set of Fortran and data files.

• For installation instructions, please see file m1minos.doc.

• Certain other *.doc files give information for specific machines.

• File readme lists changes not documented elsewhere.

Troubleshooting

If you encounter difficulty with compiling or linking, please check the following items. The Fortran
files are referred to here by names of the form *.for. (On Unix systems, they are renamed *.f.)

1. Most current machines require double-precision arithmetic. Check that the Fortran files use
appropriate declarations. For example, file mi00main.for should contain the line

implicit double precision (a-h,o-z)

Single precision is correct on a few machines (notably Cray and Convex). These use
implicit real (a-h,o-z)

throughout.

2. File mi00main.for declares an array z(nwcore) for MINOS to use as workspace. Make nwcore
as large as possible, bearing in mind the maximum problem size that is likely to be encountered.
Very roughly, linear programs with m rows may require nwcore ≥ 100m.

3. File mi05funs.for contains nonlinear function routines for the supplied test problems. Use
this file initially to run the test cases, but replace it later with your own functions.

4. On most machines, use file mi10unix.for. Check a few machine-dependencies in the following
subroutines. The requirements are described in the source code.
m1open opens files.
m1init sets the machine precision, eps. Typically 2−52 = 2.22d-16 in IEEE arithmetic.
m1cpu calls the system timer. On some Unix systems, the timer is etime. If the name is
unknown, set time = -1.0 as shown in the source code.

5. For DEC OpenVMS systems, use file mi10vms.for. All machine-dependent subroutines are
ready to go. In addition, minos2 uses dynamic memory allocation.

6. In file mi35inpt.for, subroutine m3hash is suitable for most machines. In rare cases it may
need to be altered if MPS data files are not input correctly. Again, the requirements are
described in the source code.

137

138 Appendix A. System Information

A.2 SOURCE FILES

The Fortran source code is divided into several files, each containing several subroutines or functions.
The naming convention used should minimize the risk of a clash with user-written routines.

mi00main.for Main program for Stand-alone MINOS.
Program MINOS

mi05funs.for Function routines for test problems.
funobj funcon matmod

t2obj t3obj t4obj t4con t5obj t6con t7obj

mi10unix.for Machine-dependent routines. (Use mi10vms.for for OpenVMS.)
minoss minos1 minos2 minos3

mifile mispec misolv

m1clos m1envt m1init

m1open m1page m1time m1timp m1cpu

mi15blas.for Basic Linear Algebra Subprograms (a subset).
dasum daxpy dcopy ddot dnrm2 dscal idamax

These routines are members of the Level 1 BLAS (Lawson, et al., 1979). It may be possible to replace
them by versions that have been tuned to your particular machine.

Single-precision versions of MINOS use sasum, saxpy, etc.

dddiv ddscl dload dnorm1

hcopy hload icopy iload iload1

These are additional utility routines that could be tuned to your machine. dload is used the most, to
set a vector to zero.

mi20amat.for Core allocation and constraint matrix routines.
m2core m2amat m2aprd m2apr1 m2apr5

m2crsh m2scal m2scla m2unpk matcol

mi25bfac.for Basis factorization routines.
m2bfac m2bmap m2belm m2bsol m2sing

lu1fac lu1fad lu1gau lu1mar lu1pen

lu1max lu1or1 lu1or2 lu1or3 lu1or4

lu1pq1 lu1pq2 lu1pq3 lu1rec

lu6chk lu6sol lu7add lu7elm lu7for lu7zap lu8rpc

mi30spec.for SPECS file input.
miopt miopti mioptr m3char m3dflt m3key

m3file oplook opnumb opscan optokn opuppr

mi35inpt.for MPS file input.
m3getp m3hash m3imov

m3inpt m3mpsa m3mpsb m3mpsc m3read

mi40bfil.for BASIS file input/output and SOLUTION printing.
m4getb m4chek m4id m4name m4inst m4load m4oldb

m4savb m4dump m4newb m4pnch m4rc m4infs

m4rept m4soln m4solp m4stat

mi50lp.for Primal simplex method.
m5bsx m5chzr m5dgen m5frmc m5hs m5log m5lpit

m5pric m5rc m5setp m5setx m5solv

mi60srch.for Linesearch and function evaluation.
m6dmmy m6fcon m6fobj m6fun m6fun1 m6grd m6grd1

m6dobj m6dcon m6srch srchc srchq

mi65rmod.for Maintaining the quasi-Newton factor R

m6bfgs m6bswp m6radd m6rcnd m6rdel

m6rmod m6rset m6rsol m6swap

A.3 COMMON Blocks 139

mi70nobj.for Nonlinear objective; reduced-gradient algorithm.
m7bsg m7chkd m7chkg m7chzq m7fixb

m7rg m7rgit m7sdir m7sscv

mi80ncon.for Nonlinear constraints; projected Lagrangian algorithm.
m8ajac m8augl m8aug1 m8chkj m8prtj m8sclj

m8setj m8viol

minosl.for For installations solving linear programs only.
Program MINOSL

funobj funcon etc. (dummy entries)

The last file minosl.for is included as a substitute for files mi00main.for, mi60srch.for, mi65rmod.for,
mi70nobj.for, mi80ncon.for, if MINOS is to be used to solve linear programs only. It reduces the
compiled code size by about 100K bytes. It is recommended for use on microcomputers and machines
that do not have virtual memory.

A.3 COMMON BLOCKS

Certain Fortran COMMON blocks are used in the MINOS source code to communicate between subrou-
tines. Their names are listed below.

m1env m1eps m1file m1savz m1tim m1word

m2file m2len m2lu1 m2lu2 m2lu3 m2lu4 m2mapa m2mapz

m2parm

m3len m3loc m3mps1 m3mps2 m3mps3 m3mps4 m3mps5 m3scal

m5len m5loc m5freq m5inf m5lobj m5log1 m5log2 m5log3

m5log4 m5lp1 m5lp2 m5prc m5step m5tols

m7len m7loc m7cg1 m7cg2 m7conv m7phes m7tols

m8len m8loc m8al1 m8al2 m8diff m8func m8save m8veri

cycle1 cycle2 cyclcm

A complete listing of the COMMON blocks and their contents appears in subroutine minos3. (Also see
Section 2.6.) It may be convenient to make use of these occasionally; for example,

common /m1file/ iread,iprint,isumm

gives the unit numbers for the Print file and the Summary file.

As supplied, MINOS does not use blank COMMON. However, in some installations it may be
desirable to store the workspace array Z there.

A.4 SUBROUTINE STRUCTURE

The following picture illustrates the top levels of the subroutine hierarchy for Stand-alone MINOS
and for user programs that call subroutine minoss.

140 Appendix A. System Information

MINOS

main program

USER

main program

minos1 mispec

minoss

minos2

minos3

m3dflt

m3inpt

misolv

m3dflt

misolv

m4getb

matmod

m8chkj

m7chkg

m4chek

m5solv

m5dgen

m8setj

m2bfac

m5frmc

m5setp

m5pric

m5lpit

m7rgit

m5setx

m4newb

1. For Stand-alone MINOS, minos1 reads the SPECS file. For each begin–end sequence found,
it allocates storage and calls minos2.

2. In some implementations (e.g. file mi10vms.for), minos2 expands the work array z(*) if
necessary. It then calls minos3 to finish processing the current problem.

3. minos3 reads an MPS file, loads a basis file (if any), and checks gradients. According to the
Cycle limit, it then solves one or more related problems.

4. For User programs, mispec reads a SPECS file (if any). It must be called before minoss, even
if no SPECS file is provided.

A.5 MATRIX DATA STRUCTURE

In the MINOS source code, the constraint matrix A is stored column-wise in sparse format in the
arrays a, ha, ka, as defined in the specifications of subroutine minoss (Section ??). The matrix I
associated with the slack variables is represented implicitly. If the objective function contains linear
terms cTx + dTy, then (cT dT) is included as the iobj-th row of A. (See the common block m5lobj

below.)

A.5 Matrix Data Structure 141

If there are nonlinear constraints, the top left-hand corner of A is loaded with the current Jacobian
matrix at the start of each major iteration.

The following common blocks contain dimensions and other items relating to the storage of A.

common /m3len / m ,n ,nb ,nscl

m m, the number of rows in A, including the linear objective row (if any).

n n, the number of columns in A, possibly including c “phantom columns”.

nb n + m = n+m, the total number of variables in the problem, including the slacks.

nscl Either nb or 1, depending on whether Scale has been specified or not.

common /m2mapa/ ne ,nka ,la ,lha ,lka

ne The number of nonzero elements in A, possibly including e “phantom elements”.

nka n + 1 = n+1, the number of pointers in the array ka.

la The address of a(*) in the work array z(*).

lha The address of ha(*) in the work array z(*).

lka The address of ka(*) in the work array z(*).

Beware that for minoss, the arrays a, ha, ka, bl, bu, name1, name2, hs, xn, pi, rc,
are not stored in z in this way, since they are parameters to minoss.

common /m5len / maxr ,maxs ,mbs ,nn ,nn0 ,nr ,nx

maxr The Hessian dimension.

maxs The Superbasics limit.

mbs m+maxs, the maximum number of basic and superbasic variables.

nn n1 = max{nnobj, nnjac}, the number of Nonlinear variables.

nn0 max{1, nn}.

nr The dimension of the array r that is used to approximate the reduced Hessian, R.

nx max{mbs, nn}.

common /m5lobj/ sinf ,wtobj ,minimz,ninf ,iobj

sinf The current sum of infeasibilities.

wtobj The scalar w used in the composite objective technique.

minimz +1 if the objective is to be minimized; −1 if it is to be maximized.

ninf The current number of infeasibilities.

iobj The row number for the linear objective. (If iobj is zero, there is no such row.)

142 Appendix A. System Information

common /m7len / fobj ,fobj2 ,nnobj ,nnobj0

fobj The current value of the function value f returned by funobj.

fobj2 A temporary value of fobj.

nnobj n′
1, the number of Nonlinear objective variables.

nnobj0 max{1, nnobj}.

common /m8len / njac ,nncon ,nncon0,nnjac

njac The number of elements in the Jacobian.

nncon m1, the number of Nonlinear constraints.

nncon0 max{1, nncon}.

nnjac n′′
1 , the number of Nonlinear Jacobian variables.

