
GAMS/SNOPT: AN SQP ALGORITHM FOR

LARGE-SCALE CONSTRAINED

OPTIMIZATION

PHILIP E. GILL∗ WALTER MURRAY†

MICHAEL A. SAUNDERS† ARNE DRUD‡

ERWIN KALVELAGEN§

May 10, 2002

1 Introduction

This section describes the GAMS interface to the general-purpose NLP solver
SNOPT, (Sparse Nonlinear Optimizer) which implements a sequential quadratic
programming (SQP) method for solving constrained optimization problems with
smooth nonlinear functions in the objective and constraints. The optimization
problem is assumed to be stated in the form

NP minimize
x

or maximize
x

f(x)

subject to
F (x) ∼ b1

Gx ∼ b2

l ≤ x ≤ u,

(1)

where x ∈ <n, f(x) is a linear or nonlinear smooth objective function, l and
u are constant lower and upper bounds, F (x) is a set of nonlinear constraint
functions, G is a sparse matrix, ∼ is a vector of relational operators (≤, ≥ or
=), and b1 and b2 are right-hand side constants. F (x) ∼ b1 are the nonlinear
constraints of the model and Gx ∼ b2 form the linear constraints.

The gradients of f and Fi are automatically provided by GAMS, using its
automatic differentiation engine.

∗Department of Mathematics, University of California, San Diego, La Jolla, CA 92093-
0112.

†Department of EESOR, Stanford University, Stanford, CA 94305-4023
‡ARKI Consulting and Development, Bagsvaerd, Denmark
§GAMS Development Corp., Washington DC

1

The bounds may include special values -INF or +INF to indicate lj = −∞ or
uj = +∞ for appropriate j. Free variables have both bounds infinite and fixed
variables have lj = uj .

1.1 Problem Types

If the nonlinear functions are absent, the problem is a linear program (LP)
and SNOPT applies the primal simplex method [2]. Sparse basis factors are
maintained by LUSOL [11] as in MINOS [14].

If only the objective is nonlinear, the problem is linearly constrained (LC)
and tends to solve more easily than the general case with nonlinear constraints
(NC). Note that GAMS models have an objective variable instead of an objec-
tive function. The GAMS/SNOPT link will try to substitute out the objective
variable and reformulate the model such that SNOPT will see a true objective
function.

For both linearly and nonlinearly constrained problems SNOPT applies a
sparse sequential quadratic programming (SQP) method [6], using limited-
memory quasi-Newton approximations to the Hessian of the Lagrangian. The
merit function for steplength control is an augmented Lagrangian, as in the
dense SQP solver NPSOL [7, 9].

In general, SNOPT requires less matrix computation than NPSOL and fewer
evaluations of the functions than the nonlinear algorithms in MINOS [12, 13]. It
is suitable for nonlinear problems with thousands of constraints and variables,
but not thousands of degrees of freedom. (Thus, for large problems there should
be many constraints and bounds, and many of them should be active at a
solution.)

1.2 Selecting the SNOPT Solver

The GAMS system can be instructed to use the SNOPT solver by incorporating
the following option in the GAMS model:

option NLP=SNOPT;

If the model contains non-smooth functions like abs(x), or max(x, y) you
can try to get it solved by SNOPT using

option DNLP=SNOPT;

These models have discontinuous derivatives however, and SNOPT was not
designed for solving such models. Discontinuities in the gradients can sometimes
be tolerated if they are not too close to an optimum.

It is also possible to specify NLP=SNOPT or DNLP=SNOPT on the command line,
as in:

> gamslib chem
> gams chem nlp=snopt

2

2 Description of the method

Here we briefly describe the main features of the SQP algorithm used in SNOPT

and introduce some terminology. The SQP algorithm is fully described in [6].

2.1 Objective function reconstruction

The first step GAMS/SNOPT performs is to try to reconstruct the objective
function. In GAMS, optimization models minimize or maximize an objective
variable. SNOPT however works with an objective function. One way of dealing
with this is to add a dummy linear function with just the objective variable.
Consider the following GAMS fragment:

obj.. z =e= sum(i, sqr(resid(i)));

model m /all/;
solve m using nlp minimizing z;

This can be cast in form (1) by saying minimize z subject to z =
∑

i resid2
i

and the other constraints in the model. Although simple, this approach is not
always preferable. Especially when all constraints are linear it is important to
minimize

∑
i resid2

i directly. This can be achieved by a simple reformulation: z
can be substituted out. The substitution mechanism carries out the formulation
if all of the following conditions hold:

• the objective variable z is a free continuous variable (no bounds are defined
on z),

• z appears linearly in the objective function,

• the objective function is formulated as an equality constraint,

• z is only present in the objective function and not in other constraints.

For many models it is very important that the nonlinear objective function
be used by SNOPT. For instance the model chem.gms from the model library
solves in 16 iterations. When we add the bound

energy.lo = 0;

on the objective variable energy and thus preventing it from being substituted
out, SNOPT will not be able to find a feasible point for the given starting point.

This reformulation mechanism has been extended for substitutions along the
diagonal. For example, the GAMS model

variables x,y,z;
equations e1,e2;
e1..z =e= y;
e2..y =e= sqr(1+x);
model m /all/;
option nlp=snopt;
solve m using nlp minimizing z;

3

will be reformulated as an unconstrained optimization problem

minimize f(x) = (1 + x)2.

These additional reformulations can be turned off by using the statement option
reform = 0; (see §4.1).

2.2 Constraints and slack variables

The m general constraints of the problem (1) are formed by F (x) ∼ b1 and
Gx ∼ b2. SNOPT will add to each general constraint a slack variable si with
appropriate bounds. The problem defined by (1) can therefore be rewritten in
the following equivalent form:

minimize
x,s

f(x)

subject to

(
F (x)
Gx

)
− s = 0, l ≤

(
x

s

)
≤ u.

where a maximization problem is cast into a minimization by multiplying the
objective function by −1.

The linear and nonlinear general constraints become equalities of the form
F (x)− sN = 0 and Gx− sL = 0, where sL and sN are known as the linear and
nonlinear slacks.

2.3 Major iterations

The basic structure of SNOPT’s solution algorithm involves major and minor
iterations. The major iterations generate a sequence of iterates (xk) that sat-
isfy the linear constraints and converge to a point that satisfies the first-order
conditions for optimality. At each iterate {xk} a QP subproblem is used to
generate a search direction towards the next iterate {xk+1}. The constraints
of the subproblem are formed from the linear constraints Gx− sL = 0 and the
nonlinear constraint linearization

F (xk) + F ′(xk)(x− xk)− sN = 0,

where F ′(xk) denotes the Jacobian: a matrix whose rows are the first derivatives
of F (x) evaluated at xk. The QP constraints therefore comprise the m linear
constraints

F ′(xk)x −sN = −F (xk) + F ′(xk)xk,

Gx −sL = 0,

where x and s are bounded by l and u as before. If the m × n matrix A and
m-vector b are defined as

A =

(
F ′(xk)

G

)
and b =

(
−F (xk) + F ′(xk)xk

0

)
,

4

then the QP subproblem can be written as

minimize
x,s

q(x) subject to Ax− s = b, l ≤

(
x

s

)
≤ u, (2)

where q(x) is a quadratic approximation to a modified Lagrangian function [6].

2.4 Minor iterations

Solving the QP subproblem is itself an iterative procedure, with the minor
iterations of an SQP method being the iterations of the QP method. At each
minor iteration, the constraints Ax− s = b are (conceptually) partitioned into
the form

BxB + SxS + NxN = b,

where the basis matrix B is square and nonsingular. The elements of xB , xS

and xN are called the basic, superbasic and nonbasic variables respectively; they
are a permutation of the elements of x and s. At a QP solution, the basic
and superbasic variables will lie somewhere between their bounds, while the
nonbasic variables will be equal to one of their upper or lower bounds. At each
iteration, xS is regarded as a set of independent variables that are free to move
in any desired direction, namely one that will improve the value of the QP
objective (or the sum of infeasibilities). The basic variables are then adjusted
in order to ensure that (x, s) continues to satisfy Ax − s = b. The number
of superbasic variables (nS say) therefore indicates the number of degrees of
freedom remaining after the constraints have been satisfied. In broad terms, nS

is a measure of how nonlinear the problem is. In particular, nS will always be
zero at a solution for LP problems.

If it appears that no improvement can be made with the current definition
of B, S and N , a nonbasic variable is selected to be added to S, and the process
is repeated with the value of nS increased by one. At all stages, if a basic or
superbasic variable encounters one of its bounds, the variable is made nonbasic
and the value of nS is decreased by one.

Associated with each of the m equality constraints in Ax−s = b are the dual
variables πi. Similarly, each variable in (x, s) has an associated reduced gradient
dj . The reduced gradients for the variables x are the quantities g−AT π, where g
is the gradient of the QP objective, and the reduced gradients for the slacks are
the dual variables π. The QP subproblem is optimal if dj ≥ 0 for all nonbasic
variables at their lower bounds, dj ≤ 0 for all nonbasic variables at their upper
bounds, and dj = 0 for other variables, including superbasics. In practice, an
approximate QP solution is found by relaxing these conditions on dj (see the
Minor optimality tolerance in §4.3).

5

2.5 The merit function

After a QP subproblem has been solved, new estimates of the NP solution are
computed using a linesearch on the augmented Lagrangian merit function

M(x, s, π) = f(x)− πT
(
F (x)− sN

)
+ 1

2

(
F (x)− sN

)T
D
(
F (x)− sN

)
, (3)

where D is a diagonal matrix of penalty parameters. If (xk, sk, πk) denotes the
current solution estimate and (x̂k, ŝk, π̂k) denotes the optimal QP solution, the
linesearch determines a step αk (0 < αk ≤ 1) such that the new point xk+1

sk+1

πk+1

 =

 xk

sk

πk

+ αk

 x̂k − xk

ŝk − sk

π̂k − πk

 (4)

gives a sufficient decrease in the merit function. When necessary, the penalties
in D are increased by the minimum-norm perturbation that ensures descent
for M [9]. As in NPSOL, sN is adjusted to minimize the merit function as a
function of s prior to the solution of the QP subproblem. For more details, see
[7, 3].

2.6 Treatment of constraint infeasibilities

SNOPT makes explicit allowance for infeasible constraints. Infeasible linear
constraints are detected first by solving a problem of the form

FLP minimize
x,v,w

eT (v + w)

subject to Gx− v + w ∼ b2, l ≤ x ≤ u, v, w ≥ 0,

where e is a vector of ones. This is equivalent to minimizing the sum of the
general linear constraint violations subject to the simple bounds. (In the linear
programming literature, the approach is often called elastic programming. We
also describe it as minimizing the `1 norm of the infeasibilities.)

If the linear constraints are infeasible (v 6= 0 or w 6= 0), SNOPT terminates
without computing the nonlinear functions.

If the linear constraints are feasible, all subsequent iterates satisfy the linear
constraints. (Such a strategy allows linear constraints to be used to define
a region in which the functions can be safely evaluated.) SNOPT proceeds to
solve NP as given, using search directions obtained from a sequence of quadratic
programming subproblems (2).

If a QP subproblem proves to be infeasible or unbounded (or if the dual
variables π for the nonlinear constraints become large), SNOPT enters “elastic”
mode and solves the problem

NP(γ) minimize
x,v,w

f(x) + γeT (v + w)

subject to

(
F (x)− v + w

Gx

)
∼ b, l ≤ x ≤ u, v, w ≥ 0,

6

where γ is a nonnegative parameter (the elastic weight), and f(x) + γeT (v + w)
is called a composite objective. If γ is sufficiently large, this is equivalent to
minimizing the sum of the nonlinear constraint violations subject to the linear
constraints and bounds. A similar `1 formulation of NP is fundamental to the
S`1QP algorithm of Fletcher [4]. See also Conn [1].

3 Starting points and advanced bases

A good starting point may be essential for solving nonlinear models. We show
how such a starting point can be specified in a GAMS environment, and how
SNOPT will use this information.

A related issue is the use of “restart” information in case a number of related
models is solved in a row. Starting from an optimal point from a previous solve
statement is in such situations often beneficial. In a GAMS environment this
means reusing primal and dual information, which is stored in the .L and .M
fields of variables and equations.

3.1 Starting points

To specify a starting point for SNOPT use the .L level values in GAMS. For
example, to set all variables xi,j := 1 use x.l(i,j)=1;. The default values for
level values are zero.

Setting a good starting point can be crucial for getting good results. As an
(artificial) example consider the problem where we want to find the smallest
circle that contains a number of points (xi, yi):

Example minimize
r,a,b

r

subject to (xi − a)2 + (yi − b)2 ≤ r2, r ≥ 0.

This problem can be modeled in GAMS as follows.

set i points /p1*p10/;

parameters
x(i) x coordinates,
y(i) y coordinates;

* fill with random data
x(i) = uniform(1,10);
y(i) = uniform(1,10);

variables
a x coordinate of center of circle
b y coordinate of center of circle
r radius;

equations
e(i) points must be inside circle;

e(i).. sqr(x(i)-a) + sqr(y(i)-b) =l= sqr(r);

7

r.lo = 0;

model m /all/;
option nlp=snopt;
solve m using nlp minimizing r;

Without help, SNOPT will not be able to find an optimal solution. The
problem will be declared infeasible. In this case, providing a good starting
point is very easy. If we define

xmin = min
i

xi,

ymin = min
i

yi,

xmax = max
i

xi,

ymax = max
i

yi,

then good estimates are

a = (xmin + xmax)/2,

b = (ymin + ymax)/2,

r =
√

(a− xmin)2 + (b− ymin)2.

Thus we include in our model:

parameters xmin,ymin,xmax,ymax;
xmin = smin(i, x(i));
ymin = smin(i, x(i));
xmax = smax(i, x(i));
ymax = smax(i, y(i));

* set starting point
a.l = (xmin+xmax)/2;
b.l = (ymin+ymax)/2;
r.l = sqrt(sqr(a.l-xmin) + sqr(b.l-ymin));

and now the model solves very easily.
Level values can also be set implicitly as a result of assigning bounds. When

a variable is bounded away from zero, for instance by the statement Y.LO = 1;,
the SOLVE statement will override the default level of zero of such a variable in
order to make it feasible.

Note: another way to formulate the model would be to minimize r2 instead
of r. This allows SNOPT to solve the problem even with the default starting
point.

3.2 Advanced basis

GAMS automatically passes on level values and basis information from one solve
to the next. Thus, when we have two solve statements in a row, with just a
few changes in between SNOPT will typically need very few iterations to find an
optimal solution in the second solve. For instance, when we add a second solve
to the chem.gms model from the model library:

8

model mixer chemical mix for N2H4+O2 / all /;

solve mixer minimizing energy using nlp;
solve mixer minimizing energy using nlp;

we observe the following log:

[erwin@hamilton]$ gams chem nlp=snopt
GAMS 2.50A Copyright (C) 1987-1999 GAMS Development. All rights reserved
Licensee: hamilton G990622:1048CP-LNX

GAMS Development
--- Starting compilation
--- chem.gms(48) 1 Mb
--- Starting execution
--- chem.gms(42) 1 Mb
--- Generating model MIXER
--- chem.gms(46) 1 Mb
--- 5 rows, 12 columns, and 37 non-zeroes.
--- Executing SNOPT

GAMS/SNOPT X86/LINUX version 5.3.4-007-035
P. E. Gill, UC San Diego
W. Murray and M. A. Saunders, Stanford University

Work space allocated -- 0.02 Mb

Major Minor Step nObj Objective Optimal nS PD
0 5 0.0E+00 1 3.292476E+01 2.1E-01 0 TF r
1 4 1.0E+00 2 4.517191E+01 2.2E-01 1 TF n r
2 10 8.6E-02 5 4.533775E+01 1.7E-01 6 TF s
3 3 1.0E+00 6 4.608439E+01 7.6E-02 6 TF
4 2 1.0E+00 7 4.667813E+01 1.4E-01 5 TF
5 2 1.0E+00 8 4.751149E+01 2.2E-02 6 TF
6 3 1.0E+00 9 4.757024E+01 2.1E-02 4 TF
7 2 7.1E-01 11 4.763634E+01 3.3E-02 5 TF
8 3 1.0E+00 12 4.768395E+01 3.3E-02 7 TF
9 3 4.6E-01 14 4.769958E+01 1.9E-02 5 TF

10 2 1.0E+00 15 4.770539E+01 1.5E-02 6 TF

Major Minor Step nObj Objective Optimal nS PD
11 1 1.0E+00 16 4.770639E+01 6.2E-04 6 TF
12 1 1.0E+00 17 4.770650E+01 5.0E-03 6 TF
13 1 1.0E+00 18 4.770651E+01 1.6E-04 6 TF
14 1 1.0E+00 19 4.770651E+01 1.8E-05 6 TF
15 1 1.0E+00 20 4.770651E+01 2.7E-05 6 TF
16 1 1.0E+00 21 4.770651E+01 7.6E-07 6 TT

EXIT - Optimal Solution found.

--- Restarting execution
--- chem.gms(46) 1 Mb
--- Reading solution for model MIXER
--- chem.gms(46) 1 Mb
--- Generating model MIXER
--- chem.gms(47) 1 Mb
--- 5 rows, 12 columns, and 37 non-zeroes.
--- Executing SNOPT

GAMS/SNOPT X86/LINUX version 5.3.4-007-035
P. E. Gill, UC San Diego
W. Murray and M. A. Saunders, Stanford University

Work space allocated -- 0.02 Mb

Major Minor Step nObj Objective Optimal nS PD

9

0 0 0.0E+00 1 4.770651E+01 7.4E-07 0 TT r

EXIT - Optimal Solution found.

--- Restarting execution
--- chem.gms(47) 1 Mb
--- Reading solution for model MIXER
--- chem.gms(47) 1 Mb
*** Status: Normal completion
[erwin@hamilton]$

The first solve takes 16 iterations, while the second solve needs exactly
zero iterations.

Basis information is passed on using the marginals of the variables and equa-
tions. In general the rule is:

X.M = 0 basic
X.M 6= 0 nonbasic if level value is at bound, superbasic otherwise

A marginal value of EPS means that the numerical value of the marginal is
zero, but that the status is nonbasic or superbasic. The user can specify a basis
by assigning zero or nonzero values to the .M values. It is further noted that if
too many .M values are zero, the basis is rejected. This happens for instance
when two subsequent models are too different. This decision is made based on
the value of the bratio option (see §4.1).

4 Options

In many cases NLP models can be solved with GAMS/SNOPT without using
solver options. For special situations it is possible to specify non-standard values
for some or all of the options.

4.1 GAMS options

The following GAMS options affect the behavior of SNOPT.

NLP
This option selects the NLP solver. Example: option NLP=SNOPT;. See
also §1.2.

DNLP
Selects the DNLP solver for models with discontinuous or non-differentiable
functions. Example: option DNLP=SNOPT;. See also §1.2.

RMINLP
Selects the Relaxed Non-linear Mixed-Integer (RMINLP) solver. By re-
laxing the integer conditions in an MINLP, the model becomes effectively
an NLP. Example: option RMINLP=SNOPT;. See also §1.2.

10

iterlim
Sets the (minor) iteration limit. Example: option iterlim=50000;. The
default is 10000. SNOPT will stop as soon as the number of minor itera-
tions exceeds the iteration limit. In that case the current solution will be
reported.

reslim
Sets the time limit or resource limit. Depending on the architecture this
is wall clock time or CPU time. SNOPT will stop as soon as more than
reslim seconds have elapsed since SNOPT started. The current solution
will be reported in this case. Example: option reslim = 600;. The
default is 1000 seconds.

domlim
Sets the domain violation limit. Domain errors are evaluation errors in the
nonlinear functions. An example of a domain error is trying to evaluate√

x for x < 0. Other examples include taking logs of negative numbers,
and evaluating xy for x < 0 (xy is evaluated as exp(y log x)). When
such a situation occurs the number of domain errors is increased by one,
and SNOPT will stop if this number exceeds the limit. If the limit has
not been reached, a reasonable number is returned (e.g., in the case of√

x, x < 0 a zero is passed back) and SNOPT is asked to continue. In many
cases SNOPT will be able to recover from these domain errors, especially
when they happen at some intermediate point. Nevertheless it is best to
add appropriate bounds or linear constraints to ensure that these domain
errors don’t occur. For example, when an expression log(x) is present
in the model, add a statement like x.lo = 0.001;. Example: option
domlim=100;. The default value is 0.

bratio
Basis acceptance test. When several models are solved in a row, GAMS

automatically passes dual information to SNOPT so that it can reconstruct
an advanced basis. When too many new variables or constraints enter the
model, it may be better not to use existing basis information, but to crash
a new basis instead. The bratio determines how quickly an existing basis
is discarded. A value of 1.0 will discard any basis, while a value of 0.0 will
retain any basis. Example: option bratio=1.0;. Default: bratio = 0.25.

sysout
Debug listing. When turned on, extra information printed by SNOPT

will be added to the listing file. Example: option sysout=on;. Default:
sysout = off.

work
The work option sets the amount of memory SNOPT can use. By default
an estimate is used based on the model statistics (number of (nonlinear)
equations, number of (nonlinear) variables, number of (nonlinear) nonze-
roes etc.). In most cases this is sufficient to solve the model. In some

11

extreme cases SNOPT may need more memory, and the user can specify
this with this option. For historical reasons work is specified in “double
words” or 8 byte quantities. For example, option work=100000; will ask
for 0.76 MB (a megabyte being defined as 1024× 1024 bytes).

reform
This option will instruct the reformulation mechanism described in §2.1
to substitute out equality equations. The default value of 100 will cause
the procedure to try further substitutions along the diagonal after the
objective variable has been removed. Any other value will prohibit this
diagonal procedure. Example: option reform = 0;. Default: reform =
100.

4.2 Model suffices

A model identifier in GAMS can have several suffices to which you can assign
values. A small GAMS fragment illustrates this:

model m /all/;
m.iterlim = 3000;
solve m minimizing z using nlp;

Options set by assigning to the suffixed model identifier override the global
options. For example,

model m /all/;
m.iterlim = 3000;
option iterlim = 100;
solve m minimizing z using nlp;

will use an iteration limit of 3000 for this solve.

m.iterlim
Sets the iteration limit. Overrides the global iteration limit. Example:
m.iterlim=50000; The default is 10000. See also §4.1.

m.reslim
Sets the resource or time limit. Overrides the global resource limit. Ex-
ample: m.reslim=600; The default is 1000 seconds. See also §4.1.

m.bratio
Sets the basis acceptance test parameter. Overrides the global setting.
Example: m.bratio=1.0; The default is 0.25. See also §4.1.

m.scaleopt
Whether or not to scale the model using user-supplied scale factors. The
user can provide scale factors using the .scale variable and equation
suffix. For example, x.scale(i,j) = 100; will assign a scale factor of
100 to all xi,j variables. The variables SNOPT will see are scaled by

12

a factor 1/variable scale, so the modeler should use scale factors that
represent the order of magnitude of the variable. In that case SNOPT

will see variables that are scaled around 1.0. Similarly equation scales can
be assigned to equations, which are scaled by a factor 1/equation scale.
Example: m.scaleopt=1; will turn scaling on. The default is not to use
scaling, and the default scale factors are 1.0. Automatic scaling is provided
by the SNOPT option scale option.

m.optfile
Sets whether or not to use a solver option file. Solver specific SNOPT

options are specified in a file called snopt.opt, see §4.3. To tell SNOPT

to use this file, add the statement: option m.optfile=1;. The default is
not to use an option file.

m.workspace
The workspace option sets the amount of memory that SNOPT can use.
By default an estimate is used based on the model statistics (number of
(nonlinear) equations, number of (nonlinear) variables, number of (non-
linear) nonzeroes, etc.). In most cases this is sufficient to solve the model.
In some extreme cases SNOPT may need more memory, and the user can
specify this with this option. The amount of memory is specified in MB.
Example: m.workspace = 5;.

4.3 SNOPT options

SNOPT options are specified in a file called snopt.opt which should reside in
the working directory (this is the project directory when running models from
the IDE). To tell SNOPT to read this file, use the statement m.optfile = 1;
in the model (see §4.2).

An example of a valid snopt.opt is:

Hessian full memory
Hessian frequency 20

Users familiar with the SNOPT distribution from Stanford University will
notice that the begin and end keywords are missing. These markers are optional
in GAMS/SNOPT and will be ignored. Therefore, the following option file is also
accepted:

begin
Hessian full memory
Hessian frequency 20
end

All options are case-insensitive. A line is a comment line if it starts with an
asterisk, *, in column one.

Here follows a description of all SNOPT options that are possibly useful in
a GAMS environment:

13

Check frequency i
Every ith minor iteration after the most recent basis factorization, a nu-
merical test is made to see if the current solution x satisfies the general
linear constraints (including linearized nonlinear constraints, if any). The
constraints are of the form Ax−s = b, where s is the set of slack variables.
To perform the numerical test, the residual vector r = b−Ax + s is com-
puted. If the largest component of r is judged to be too large, the current
basis is refactorized and the basic variables are recomputed to satisfy the
general constraints more accurately.
Check frequency 1 is useful for debugging purposes, but otherwise this
option should not be needed.
Default: check frequency 60.

Crash option i
Except on restarts, a CRASH procedure is used to select an initial basis
from certain rows and columns of the constraint matrix (A − I). The
Crash option i determines which rows and columns of A are eligible
initially, and how many times CRASH is called. Columns of −I are used
to pad the basis where necessary.

Crash option 0: The initial basis contains only slack variables: B = I.
Crash option 1: CRASH is called once, looking for a triangular basis

in all rows and columns of the matrix A.
Crash option 2: CRASH is called twice (if there are nonlinear con-

straints). The first call looks for a triangular basis in linear rows,
and the iteration proceeds with simplex iterations until the linear
constraints are satisfied. The Jacobian is then evaluated for the first
major iteration and CRASH is called again to find a triangular basis
in the nonlinear rows (retaining the current basis for linear rows).

Crash option 3: CRASH is called up to three times (if there are nonlin-
ear constraints). The first two calls treat linear equalities and linear
inequalities separately. As before, the last call treats nonlinear rows
before the first major iteration.

If i ≥ 1, certain slacks on inequality rows are selected for the basis first.
(If i ≥ 2, numerical values are used to exclude slacks that are close to
a bound.) CRASH then makes several passes through the columns of A,
searching for a basis matrix that is essentially triangular. A column is
assigned to “pivot” on a particular row if the column contains a suitably
large element in a row that has not yet been assigned. (The pivot elements
ultimately form the diagonals of the triangular basis.) For remaining
unassigned rows, slack variables are inserted to complete the basis.
Default: Crash option 3 for linearly constrained problems and Crash
option 0; for problems with nonlinear constraints.

Crash tolerance r
The Crash tolerance r allows the starting procedure CRASH to ignore

14

certain “small” nonzeros in each column of A. If amax is the largest element
in column j, other nonzeros aij in the column are ignored if |aij | ≤ amax×r.
(To be meaningful, r should be in the range 0 ≤ r < 1.)
When r > 0.0, the basis obtained by CRASH may not be strictly tri-
angular, but it is likely to be nonsingular and almost triangular. The
intention is to obtain a starting basis containing more columns of A and
fewer (arbitrary) slacks. A feasible solution may be reached sooner on
some problems.
For example, suppose the first m columns of A are the matrix shown un-
der LU factor tolerance; i.e., a tridiagonal matrix with entries −1, 4,
−1. To help CRASH choose all m columns for the initial basis, we would
specify Crash tolerance r for some value of r > 1/4.
Default: Crash tolerance 0.1

Elastic weight ω
This parameter denoted by ω determines the initial weight γ associated
with problem NP(γ).
At any given major iteration k, elastic mode is started if the QP subprob-
lem is infeasible, or the QP dual variables are larger in magnitude than
ω(1 + ‖g(xk)‖2), where g is the objective gradient. In either case, the QP
is re-solved in elastic mode with γ = ω(1 + ‖g(xk)‖2).
Thereafter, γ is increased (subject to a maximum allowable value) at any
point that is optimal for problem NP(γ), but not feasible for NP. After the
rth increase, γ = ω10r(1 + ‖g(xk1)‖2), where xk1 is the iterate at which
γ was first needed.
Default: Elastic weight 10000.0

Expand frequency i
This option is part of the EXPAND anti-cycling procedure [8] designed to
make progress even on highly degenerate problems.
For linear models, the strategy is to force a positive step at every iteration,
at the expense of violating the bounds on the variables by a small amount.
Suppose that the Minor feasibility tolerance is δ. Over a period of
i iterations, the tolerance actually used by SNOPT increases from 0.5δ to
δ (in steps of 0.5δ/i).
For nonlinear models, the same procedure is used for iterations in which
there is only one superbasic variable. (Cycling can occur only when the
current solution is at a vertex of the feasible region.) Thus, zero steps
are allowed if there is more than one superbasic variable, but otherwise
positive steps are enforced.
Increasing the expand frequency helps reduce the number of slightly in-
feasible nonbasic basic variables (most of which are eliminated during a
resetting procedure). However, it also diminishes the freedom to choose a
large pivot element (see Pivot tolerance).
Default: Expand frequency 10000

Factorization frequency k

15

At most k basis changes will occur between factorizations of the basis
matrix.

• With linear programs, the basis factors are usually updated every
iteration. The default k is reasonable for typical problems. Smaller
values (say k = 75 or k = 50) may be more efficient on problems that
are rather dense or poorly scaled.

• When the problem is nonlinear, fewer basis updates will occur as
an optimum is approached. The number of iterations between basis
factorizations will therefore increase. During these iterations a test is
made regularly (according to the Check frequency) to ensure that
the general constraints are satisfied. If necessary the basis will be
refactorized before the limit of k updates is reached.

Default: Factorization frequency 100 for linear programs and Factorization
frequency 50 for nonlinear models.

Feasibility tolerance t
See Minor feasibility tolerance.
Default: Feasibility tolerance 1.0e-6

Feasible point only
This options means “Ignore the objective function” while finding a feasible
point for the linear and nonlinear constraints. It can be used to check that
the nonlinear constraints are feasible.
Default: turned off.

Feasible exit
If SNOPT is about to terminate with nonlinear constraint violations, the
option Feasible exit requests further effort to satisfy the nonlinear con-
straints while ignoring the objective function.
Default: turned off.

Hessian Full memory
This option selects the full storage method for storing and updating the
approximate Hessian. (SNOPT uses a quasi-Newton approximation to the
Hessian of the Lagrangian. A BFGS update is applied after each major
iteration.)
If Hessian Full memory is specified, the approximate Hessian is treated
as a dense matrix and the BFGS updates are applied explicitly. This
option is most efficient when the number of nonlinear variables n1 is not
too large (say, less than 75). In this case, the storage requirement is fixed
and one can expect 1-step Q-superlinear convergence to the solution.
Default: turned on when the number of nonlinear variables n1 ≤ 75.

Hessian Limited memory
This option selects the limited memory storage method for storing and

16

updating the approximate Hessian. (SNOPT uses a quasi-Newton approx-
imation to the Hessian of the Lagrangian. A BFGS update is applied after
each major iteration.)
Hessian Limited memory should be used on problems where the number
of nonlinear variables n1 is very large. In this case a limited-memory pro-
cedure is used to update a diagonal Hessian approximation Hr a limited
number of times. (Updates are accumulated as a list of vector pairs. They
are discarded at regular intervals after Hr has been reset to their diago-
nal.)
Default: turned on when the number of nonlinear variables n1 > 75.

Hessian frequency i
If Hessian Full is selected and i BFGS updates have already been car-
ried out, the Hessian approximation is reset to the identity matrix. (For
certain problems, occasional resets may improve convergence, but in gen-
eral they should not be necessary.)
Hessian Full memory and Hessian frequency = 20 have a similar ef-
fect to Hessian Limited memory and Hessian updates = 20 (except
that the latter retains the current diagonal during resets).
Default: Hessian frequency 99999999 (i.e. never).

Hessian updates i
If Hessian Limited memory is selected and i BFGS updates have already
been carried out, all but the diagonal elements of the accumulated updates
are discarded and the updating process starts again.
Broadly speaking, the more updates stored, the better the quality of the
approximate Hessian. However, the more vectors stored, the greater the
cost of each QP iteration. The default value is likely to give a robust algo-
rithm without significant expense, but faster convergence can sometimes
be obtained with significantly fewer updates (e.g., i = 5).
Default: Hessian updates 20 (only when limited memory storage model
is used).

Infeasible exit ok
If SNOPT is about to terminate with nonlinear constraint violations, the
companion option Feasible exit requests further effort to satisfy the
nonlinear constraints while ignoring the objective function. Infeasible
exit ok does not do this extra effort.
Default: turned on.

Iterations limit k
This is the maximum number of minor iterations allowed (i.e., iterations
of the simplex method or the QP algorithm), summed over all major
iterations. This option overrides the GAMS iterlim options.
Default: specified by GAMS.

Linesearch tolerance t
This controls the accuracy with which a steplength will be located along

17

the direction of search each iteration. At the start of each linesearch
a target directional derivative for the merit function is identified. This
parameter determines the accuracy to which this target value is approxi-
mated.

• t must be a real value in the range 0.0 ≤ t ≤ 1.0.

• The default value t = 0.9 requests just moderate accuracy in the
linesearch.

• If the nonlinear functions are cheap to evaluate (this is usually the
case for GAMS models), a more accurate search may be appropriate;
try t = 0.1, 0.01 or 0.001. The number of major iterations might
decrease.

• If the nonlinear functions are expensive to evaluate, a less accurate
search may be appropriate. In the case of running under GAMS where
all gradients are known, try t = 0.99. (The number of major iter-
ations might increase, but the total number of function evaluations
may decrease enough to compensate.)

Default: Linesearch tolerance 0.9.

Log frequency k
See Print frequency.
Default: Log frequency 1

LU factor tolerance r1

LU update tolerance r2

These tolerances affect the stability and sparsity of the basis factorization
B = LU during refactorization and updating, respectively. They must
satisfy r1, r2 ≥ 1.0. The matrix L is a product of matrices of the form(

1
µ 1

)
,

where the multipliers µ satisfy |µ| ≤ ri. Smaller values of ri favor stability,
while larger values favor sparsity.

• For large and relatively dense problems, r1 = 5.0 (say) may give
a useful improvement in stability without impairing sparsity to a
serious degree.

• For certain very regular structures (e.g., band matrices) it may be
necessary to reduce r1 and/or r2 in order to achieve stability. For

18

example, if the columns of A include a submatrix of the form

4 −1
−1 4 −1

−1 4 −1
.

−1 4 −1
−1 4


,

both r1 and r2 should be in the range 1.0 ≤ ri < 4.0.

Defaults for linear models: LU factor tolerance 100.0 and LU update
tolerance 10.0.
The defaults for nonlinear models are LU factor tolerance 5.0 and LU
update tolerance 5.0.

LU density tolerance r1

The density tolerance r1 is used during LU factorization of the basis ma-
trix. Columns of L and rows of U are formed one at a time, and the re-
maining rows and columns of the basis are altered appropriately. At any
stage, if the density of the remaining matrix exceeds r1, the Markowitz
strategy for choosing pivots is terminated. The remaining matrix is fac-
tored by a dense LU procedure. Raising the density tolerance towards 1.0
may give slightly sparser LU factors, with a slight increase in factorization
time.
Default: LU density tolerance 0.6

LU singularity tolerance r2

The singularity tolerance r2 helps guard against ill-conditioned basis ma-
trices. When the basis is refactorized, the diagonal elements of U are
tested as follows: if |Ujj | ≤ r2 or |Ujj | < r2 maxi |Uij |, the jth column of
the basis is replaced by the corresponding slack variable. (This is most
likely to occur after a restart, or at the start of a major iteration.)
In some cases, the Jacobian may converge to values that make the ba-
sis exactly singular. (For example, a whole row of the Jacobian could
be zero at an optimal solution.) Before exact singularity occurs, the ba-
sis could become very ill-conditioned and the optimization could progress
very slowly (if at all). Setting a larger tolerance r2 = 1.0e-5, say, may
help cause a judicious change of basis.
Default: LU singularity tolerance 3.7e-11 for most machines. This
value corresponds to ε2/3, where ε is the relative machine precision.

Major feasibility tolerance εr

This specifies how accurately the nonlinear constraints should be satisfied.
The default value of 1.0e-6 is appropriate when the linear and nonlinear
constraints contain data to about that accuracy.

19

Let rowerr be the maximum nonlinear constraint violation, normalized
by the size of the solution. It is required to satisfy

rowerr = max
i

violi/‖x‖ ≤ εr, (5)

where violi is the violation of the ith nonlinear constraint (i = 1 : nnCon,
nnCon being the number of nonlinear constraints).
In the GAMS/SNOPT iteration log, rowerr appears as the quantity labeled
“Feasibl”. If some of the problem functions are known to be of low
accuracy, a larger Major feasibility tolerance may be appropriate.
Default: Major feasibility tolerance 1.0e-6.

Major optimality tolerance εd

This specifies the final accuracy of the dual variables. On successful ter-
mination, SNOPT will have computed a solution (x, s, π) such that

maxgap = max
j

gapj/‖π‖ ≤ εd, (6)

where gapj is an estimate of the complementarity gap for variable j (j =
1 : n + m). The gaps are computed from the final QP solution using the
reduced gradients dj = gj − πT aj (where gj is the jth component of the
objective gradient, aj is the associated column of the constraint matrix
(A − I), and π is the set of QP dual variables):

gapj =

{
dj min{xj − lj , 1} if dj ≥ 0;

−dj min{uj − xj , 1} if dj < 0.

In the GAMS/SNOPT iteration log, maxgap appears as the quantity labeled
“Optimal”.
Default: Major optimality tolerance 1.0e-6.

Major iterations limit k
This is the maximum number of major iterations allowed. It is intended
to guard against an excessive number of linearizations of the constraints.
Default: Major iterations limit max{1000, 3 max{m,n}}.

Major print level p
This controls the amount of output to the GAMS listing file each major
iteration. This output is only visible if the sysout option is turned on (see
§4.1). Major print level 1 gives normal output for linear and nonlin-
ear problems, and Major print level 11 gives additional details of the
Jacobian factorization that commences each major iteration.
In general, the value being specified may be thought of as a binary number
of the form

Major print level JFDXbs

where each letter stands for a digit that is either 0 or 1 as follows:

20

s a single line that gives a summary of each major iteration. (This entry
in JFDXbs is not strictly binary since the summary line is printed
whenever JFDXbs ≥ 1).

b BASIS statistics, i.e., information relating to the basis matrix when-
ever it is refactorized. (This output is always provided if JFDXbs ≥
10).

X xk, the nonlinear variables involved in the objective function or the
constraints.

D πk, the dual variables for the nonlinear constraints.

F F (xk), the values of the nonlinear constraint functions.

J J(xk), the Jacobian.

To obtain output of any items JFDXbs, set the corresponding digit to 1,
otherwise to 0.
If J=1, the Jacobian will be output column-wise at the start of each major
iteration. Column j will be preceded by the value of the corresponding
variable xj and a key to indicate whether the variable is basic, superbasic
or nonbasic. (Hence if J=1, there is no reason to specify X=1 unless the
objective contains more nonlinear variables than the Jacobian.) A typical
line of output is

3 1.250000D+01 BS 1 1.00000E+00 4 2.00000E+00

which would mean that x3 is basic at value 12.5, and the third column of
the Jacobian has elements of 1.0 and 2.0 in rows 1 and 4.
Major print level 0 suppresses most output, except for error messages.
Default: Major print level 00001

Major step limit r
This parameter limits the change in x during a linesearch. It applies to
all nonlinear problems, once a “feasible solution” or “feasible subproblem”
has been found.

1. A linesearch determines a step α over the range 0 < α ≤ β, where
β is 1 if there are nonlinear constraints, or the step to the nearest
upper or lower bound on x if all the constraints are linear. Normally,
the first steplength tried is α1 = min(1, β).

2. In some cases, such as f(x) = aebx or f(x) = axb, even a moderate
change in the components of x can lead to floating-point overflow.
The parameter r is therefore used to define a limit β̄ = r(1+‖x‖)/‖p‖
(where p is the search direction), and the first evaluation of f(x) is
at the potentially smaller steplength α1 = min(1, β̄, β).

3. Wherever possible, upper and lower bounds on x should be used to
prevent evaluation of nonlinear functions at meaningless points. The
Major step limit provides an additional safeguard. The default

21

value r = 2.0 should not affect progress on well behaved problems,
but setting r = 0.1 or 0.01 may be helpful when rapidly varying
functions are present. A “good” starting point may be required.
An important application is to the class of nonlinear least-squares
problems.

4. In cases where several local optima exist, specifying a small value for
r may help locate an optimum near the starting point.

Default: Major step limit 2.0.

Minor iterations limit k
This is the maximum number of minor iterations allowed for each QP
subproblem in the SQP algorithm. Current experience is that the major
iterations converge more reliably if the QP subproblems are allowed to
solve accurately. Thus, k should be a large value.
In the major iteration log, a t at the end of a line indicates that the
corresponding QP was terminated by the limit k.
Note that the SNOPT option Iterations limit or the GAMS iterlim
option defines an independent limit on the total number of minor iterations
(summed over all QP subproblems).
Default: Minor iterations limit max{1000, 5 max{m,n}}

Minor feasibility tolerance t
SNOPT tries to ensure that all variables eventually satisfy their upper
and lower bounds to within the tolerance t. This includes slack variables.
Hence, general linear constraints should also be satisfied to within t.
Feasibility with respect to nonlinear constraints is judged by the Major
feasibility tolerance (not by t).

• If the bounds and linear constraints cannot be satisfied to within t,
the problem is declared infeasible. Let sInf be the corresponding
sum of infeasibilities. If sInf is quite small, it may be appropriate
to raise t by a factor of 10 or 100. Otherwise, some error in the data
should be suspected.

• Nonlinear functions will be evaluated only at points that satisfy the
bounds and linear constraints. If there are regions where a function is
undefined, every attempt should be made to eliminate these regions
from the problem. For example, if f(x) =

√
x1 +log x2, it is essential

to place lower bounds on both variables. If t = 1.0e-6, the bounds
x1 ≥ 10−5 and x2 ≥ 10−4 might be appropriate. (The log singularity
is more serious. In general, keep x as far away from singularities as
possible.)

• If Scale option ≥ 1, feasibility is defined in terms of the scaled
problem (since it is then more likely to be meaningful).

• In reality, SNOPT uses t as a feasibility tolerance for satisfying the
bounds on x and s in each QP subproblem. If the sum of infeasibilities

22

cannot be reduced to zero, the QP subproblem is declared infeasible.
SNOPT is then in elastic mode thereafter (with only the linearized
nonlinear constraints defined to be elastic). See the Elastic options.

Default: Minor feasilibility tolerance 1.0e-6.

Minor optimality tolerance t
This is used to judge optimality for each QP subproblem. Let the QP
reduced gradients be dj = gj − πT aj , where gj is the jth component of
the QP gradient, aj is the associated column of the QP constraint matrix,
and π is the set of QP dual variables.

• By construction, the reduced gradients for basic variables are always
zero. The QP subproblem will be declared optimal if the reduced
gradients for nonbasic variables at their lower or upper bounds satisfy

dj/‖π‖ ≥ −t or dj/‖π‖ ≤ t

respectively, and if |dj |/‖π‖ ≤ t for superbasic variables.
• In the above tests, ‖π‖ is a measure of the size of the dual variables.

It is included to make the tests independent of a large scale factor
on the objective function. The quantity actually used is defined by

‖π‖ = max{σ/
√

m, 1}, where σ =
m∑

i=1

|πi|.

• If the objective is scaled down to be very small, the optimality test
reduces to comparing dj against t.

Default: Minor optimality tolerance 1.0e-6.

Minor print level k
This controls the amount of output to the GAMS listing file during solution
of the QP subproblems. This option is only useful if the sysout option is
turned on (see §4.1). The value of k has the following effect:

0 No minor iteration output except error messages.
≥ 1 A single line of output each minor iteration (controlled by Print

frequency).
≥ 10 Basis factorization statistics generated during the periodic refactor-

ization of the basis (see Factorization frequency). Statistics for
the first factorization each major iteration are controlled by the Major
print level.

Default: Minor print level 0.

Optimality tolerance t
See Minor optimality tolerance.
Default: Optimality tolerance 1.0e-6.

23

Partial Price i
This parameter is recommended for large problems that have significantly
more variables than constraints. It reduces the work required for each
“pricing” operation (when a nonbasic variable is selected to become su-
perbasic).

• When i = 1, all columns of the constraint matrix (A − I) are
searched.

• Otherwise, A and I are partitioned to give i roughly equal segments
Aj , Ij (j = 1 to i). If the previous pricing search was successful
on Aj , Ij , the next search begins on the segments Aj+1, Ij+1. (All
subscripts here are modulo i.)

• If a reduced gradient is found that is larger than some dynamic tol-
erance, the variable with the largest such reduced gradient (of ap-
propriate sign) is selected to become superbasic. If nothing is found,
the search continues on the next segments Aj+2, Ij+2, and so on.

• Partial price t (or t/2 or t/3) may be appropriate for time-stage
models having t time periods.

Default: Partial price 10 for linear models and Partial price 1 for
nonlinear models.

Pivot tolerance r During solution of QP subproblems, the pivot tolerance is
used to prevent columns entering the basis if they would cause the basis
to become almost singular.

• When x changes to x + αp for some search direction p, a “ratio
test” is used to determine which component of x reaches an upper or
lower bound first. The corresponding element of p is called the pivot
element.

• Elements of p are ignored (and therefore cannot be pivot elements)
if they are smaller than the pivot tolerance r.

• It is common for two or more variables to reach a bound at essentially
the same time. In such cases, the Minor Feasibility tolerance
(say t) provides some freedom to maximize the pivot element and
thereby improve numerical stability. Excessively small values of t
should therefore not be specified.

• To a lesser extent, the Expand frequency (say f) also provides some
freedom to maximize the pivot element. Excessively large values of
f should therefore not be specified.

Default: Pivot tolerance 3.7e-11 on most machines. This corresponds
to ε2/3 where ε is the machine precision.

Print frequency k
When sysout is turned on (see §4.1) and Minor print level ≥ 1, a line

24

of the QP iteration log will be printed on the listing file every kth minor
iteration.
Default: Print frequency 1.

Scale option i
Three scale options are available as follows:

Scale option 0: No scaling. This is recommended if it is known that
x and the constraint matrix (and Jacobian) never have very large
elements (say, larger than 1000).

Scale option 1: Linear constraints and variables are scaled by an itera-
tive procedure that attempts to make the matrix coefficients as close
as possible to 1.0 (see Fourer [5]). This will sometimes improve the
performance of the solution procedures.

Scale option 2: All constraints and variables are scaled by the iterative
procedure. Also, an additional scaling is performed that takes into
account columns of (A − I) that are fixed or have positive lower
bounds or negative upper bounds.
If nonlinear constraints are present, the scales depend on the Jaco-
bian at the first point that satisfies the linear constraints. Scale
option 2 should therefore be used only if (a) a good starting point
is provided, and (b) the problem is not highly nonlinear.

Default: Scale option 2 for linear models and Scale option 1 for NLP’s.

Scale tolerance r
This parameter affects how many passes might be needed through the
constraint matrix. On each pass, the scaling procedure computes the
ratio of the largest and smallest nonzero coefficients in each column:

ρj = max
i
|aij |/ min

i
|aij | (aij 6= 0).

If maxj ρj is less than r times its previous value, another scaling pass is
performed to adjust the row and column scales. Raising r from 0.9 to 0.99
(say) usually increases the number of scaling passes through A. At most
10 passes are made.
Default: Scale tolerance 0.9.

Scale Print
This option causes the row-scales r(i) and column-scales c(j) to be printed.
The scaled matrix coefficients are āij = aijc(j)/r(i), and the scaled bounds
on the variables and slacks are l̄j = lj/c(j), ūj = uj/c(j), where c(j) ≡
r(j − n) if j > n.
The listing file will only show these values if the sysout option is turned
on (see §4.1).
Default: turned off.

25

Solution Yes
This option causes the SNOPT solution file to be printed to the GAMS

listing file. It is only visible if the sysout option is turned on (see §4.1).
Default: turned off.

Superbasics limit i
This places a limit on the storage allocated for superbasic variables. Ide-
ally, i should be set slightly larger than the “number of degrees of freedom”
expected at an optimal solution.
For linear programs, an optimum is normally a basic solution with no de-
grees of freedom. (The number of variables lying strictly between their
bounds is no more than m, the number of general constraints.) The de-
fault value of i is therefore 1.
For nonlinear problems, the number of degrees of freedom is often called
the “number of independent variables”.
Normally, i need not be greater than n1 + 1, where n1 is the number of
nonlinear variables. For many problems, i may be considerably smaller
than n1. This will save storage if n1 is very large.

Unbounded objective value fmax

Unbounded step size αmax

These parameters are intended to detect unboundedness in nonlinear prob-
lems. (They may not achieve that purpose!) During a line search, f is
evaluated at points of the form x + αp, where x and p are fixed and α
varies. if |f | exceeds fmax or α exceeds αmax, iterations are terminated
with the exit message Problem is unbounded (or badly scaled).
In a GAMS environment no floating-point overflow errors should occur
when singularities are present during the evaluation of f(x + αp) before
the test can be made.
Defaults: Unbounded objective value 1.0e+15 and Unbounded step
size 1.0e+18.

Violation limit τ
This keyword defines an absolute limit on the magnitude of the maximum
constraint violation after the line search. On completion of the line search,
the new iterate xk+1 satisfies the condition

vi(xk+1) ≤ τ max{1, vi(x0)},

where x0 is the point at which the nonlinear constraints are first evaluated
and vi(x) is the ith nonlinear constraint violation vi(x) = max(0, li −
Fi(x), Fi(x)− ui).
The effect of this violation limit is to restrict the iterates to lie in an
expanded feasible region whose size depends on the magnitude of τ . This
makes it possible to keep the iterates within a region where the objective
is expected to be well-defined and bounded below. If the objective is
bounded below for all values of the variables, then τ may be any large

26

positive value.
Default: Violation limit 10.

5 The SNOPT log

When GAMS/SNOPT solves a linearly constrained problem the following log is
visible on the screen:

[erwin@hamilton]$ gamslib chem
Model chem.gms retrieved
[erwin@hamilton]$ gams chem nlp=snopt
GAMS 2.50A Copyright (C) 1987-1999 GAMS Development. All rights reserved
Licensee: hamilton G990622:1048CP-LNX

GAMS Development
--- Starting compilation
--- chem.gms(47) 1 Mb
--- Starting execution
--- chem.gms(42) 1 Mb
--- Generating model MIXER
--- chem.gms(46) 1 Mb
--- 5 rows, 12 columns, and 37 non-zeroes.
--- Executing SNOPT

GAMS/SNOPT X86/LINUX version 5.3.4-007-035
P. E. Gill, UC San Diego
W. Murray and M. A. Saunders, Stanford University

Work space allocated -- 0.02 Mb

Major Minor Step nObj Objective Optimal nS PD
0 5 0.0E+00 1 3.292476E+01 2.1E-01 0 TF r
1 4 1.0E+00 2 4.517191E+01 2.2E-01 1 TF n r
2 10 8.6E-02 5 4.533775E+01 1.7E-01 6 TF s
3 3 1.0E+00 6 4.608439E+01 7.6E-02 6 TF
4 2 1.0E+00 7 4.667813E+01 1.4E-01 5 TF
5 2 1.0E+00 8 4.751149E+01 2.2E-02 6 TF
6 3 1.0E+00 9 4.757024E+01 2.1E-02 4 TF
7 2 7.1E-01 11 4.763634E+01 3.3E-02 5 TF
8 3 1.0E+00 12 4.768395E+01 3.3E-02 7 TF
9 3 4.6E-01 14 4.769958E+01 1.9E-02 5 TF

10 2 1.0E+00 15 4.770539E+01 1.5E-02 6 TF

Major Minor Step nObj Objective Optimal nS PD
11 1 1.0E+00 16 4.770639E+01 6.2E-04 6 TF
12 1 1.0E+00 17 4.770650E+01 5.0E-03 6 TF
13 1 1.0E+00 18 4.770651E+01 1.6E-04 6 TF
14 1 1.0E+00 19 4.770651E+01 1.8E-05 6 TF
15 1 1.0E+00 20 4.770651E+01 2.7E-05 6 TF
16 1 1.0E+00 21 4.770651E+01 7.6E-07 6 TT

EXIT - Optimal Solution found.

--- Restarting execution
--- chem.gms(46) 1 Mb
--- Reading solution for model MIXER
--- chem.gms(46) 1 Mb
*** Status: Normal completion
[erwin@hamilton]$

For a nonlinearly constrained problem, the log is somewhat different:

[erwin@hamilton]$ gamslib chenery
Model chenery.gms retrieved

27

[erwin@hamilton]$ gams chenery nlp=snopt
GAMS 2.50A Copyright (C) 1987-1999 GAMS Development. All rights reserved
Licensee: hamilton G990622:1048CP-LNX

GAMS Development
--- Starting compilation
--- chenery.gms(240) 1 Mb
--- Starting execution
--- chenery.gms(222) 1 Mb
--- Generating model CHENRAD
--- chenery.gms(225) 1 Mb
--- 39 rows, 44 columns, and 133 non-zeroes.
--- Executing SNOPT

GAMS/SNOPT X86/LINUX version 5.3.4-007-035
P. E. Gill, UC San Diego
W. Murray and M. A. Saunders, Stanford University

Work space allocated -- 0.07 Mb

Major Minor Step nCon Merit Feasibl Optimal nS Penalty PD
0 39 0.0E+00 1 -1.653933E+07 1.4E+00 1.4E+00 6 0.0E+00 FF r i
1 6 1.0E+00 2 6.215366E+03 9.8E-01 1.4E+00 6 0.0E+00 FF n r
2 2 1.0E+00 3 -4.424844E+03 5.6E-01 7.8E-01 7 2.8E-01 FF s
3 1 1.0E+00 4 2.756620E+02 1.1E-01 2.1E-01 7 2.8E-01 FF
4 1 1.0E+00 6 5.640617E+02 5.6E-03 2.2E-01 7 2.8E-01 FF m
5 6 1.0E+00 8 6.188177E+02 9.9E-03 2.6E-01 5 2.8E-01 FF m
6 2 7.2E-01 11 6.827737E+02 2.7E-02 2.0E-01 4 2.8E-01 FF m
7 4 5.9E-01 14 7.516259E+02 3.4E-02 9.4E-02 6 2.8E-01 FF m
8 1 1.0E+00 15 8.437315E+02 6.7E-03 1.7E+00 6 2.8E-01 FF
9 3 1.0E+00 17 8.756771E+02 7.1E-03 3.5E-01 4 2.8E-01 FF m

10 5 3.1E-01 21 9.010440E+02 2.4E-02 1.1E+00 6 2.8E-01 FF m

Major Minor Step nCon Merit Feasibl Optimal nS Penalty PD
11 2 2.6E-01 24 9.168958E+02 2.5E-02 6.9E-01 5 2.8E-01 FF
12 1 4.8E-01 26 9.404851E+02 2.9E-02 5.0E-01 5 2.8E-01 FF
13 3 1.0E+00 27 9.983802E+02 1.6E-02 1.3E-01 6 2.8E-01 FF
14 1 1.0E+00 28 1.013533E+03 6.2E-04 4.8E-02 6 2.8E-01 FF
15 2 1.0E+00 29 1.021295E+03 1.1E-02 1.2E-02 5 2.8E-01 FF
16 1 1.0E+00 30 1.032156E+03 5.2E-03 1.1E-02 5 2.8E-01 FF
17 2 1.0E+00 31 1.033938E+03 6.7E-05 1.4E-02 4 2.8E-01 FF
18 2 1.0E+00 32 1.036764E+03 4.5E-04 1.0E-02 3 2.8E-01 FF
19 2 1.0E+00 33 1.037592E+03 6.5E-05 3.0E-02 2 2.8E-01 FF
20 1 1.0E+00 34 1.039922E+03 4.6E-04 4.4E-02 2 2.8E-01 FF
21 2 1.0E+00 35 1.040566E+03 1.4E-05 7.8E-02 3 2.8E-01 FF

Major Minor Step nCon Merit Feasibl Optimal nS Penalty PD
22 4 1.0E+00 36 1.056256E+03 1.3E-02 5.6E-02 4 2.8E-01 FF
23 2 1.0E+00 37 1.053213E+03 1.9E-04 3.1E-03 3 3.9E-01 FF
24 2 1.0E+00 38 1.053464E+03 2.2E-05 4.7E-03 2 3.9E-01 FF
25 1 1.0E+00 39 1.053811E+03 3.7E-05 1.8E-02 2 3.9E-01 FF
26 1 1.0E+00 40 1.055352E+03 1.1E-03 3.9E-02 2 3.9E-01 FF
27 1 1.0E+00 41 1.055950E+03 1.3E-03 1.5E-02 2 3.9E-01 FF
28 1 1.0E+00 42 1.056047E+03 1.5E-06 1.3E-02 2 3.9E-01 FF
29 1 1.0E+00 43 1.056991E+03 3.2E-04 2.2E-02 2 3.9E-01 FF
30 1 1.0E+00 44 1.058439E+03 2.7E-03 1.8E-02 2 3.9E-01 FF
31 3 1.0E+00 45 1.058885E+03 2.2E-04 9.3E-03 2 3.9E-01 FF
32 1 1.0E+00 46 1.058918E+03 3.3E-05 1.6E-03 2 3.9E-01 FF

Major Minor Step nCon Merit Feasibl Optimal nS Penalty PD
33 1 1.0E+00 47 1.058920E+03 4.6E-06 1.1E-05 2 3.9E-01 FF
34 1 1.0E+00 48 1.058920E+03 5.1E-10 5.3E-07 2 3.9E-01 TT

EXIT - Optimal Solution found.

--- Restarting execution
--- chenery.gms(225) 1 Mb
--- Reading solution for model CHENRAD
--- chenery.gms(239) 1 Mb

28

*** Status: Normal completion
[erwin@hamilton]$

GAMS prints the number of equations, variables and non-zero elements of
the model it generated. This gives an indication of the size of the model. SNOPT

then says how much memory it allocated to solve the model, based on an esti-
mate. If the user had specified a different amount using the work option or the
workspace model suffix, there would be a message like

Work space requested by user -- 0.76 Mb
Work space requested by solver -- 0.02 Mb

The SNOPT log shows the following columns:

Major The current major iteration number.

Minor is the number of iterations required by both the feasibility and opti-
mality phases of the QP subproblem. Generally, Minor will be 1 in the
later iterations, since theoretical analysis predicts that the correct active
set will be identified near the solution (see §2).

Step The step length α taken along the current search direction p. The vari-
ables x have just been changed to x + αp. On reasonably well-behaved
problems, the unit step will be taken as the solution is approached.

nObj The number of times the nonlinear objective function has been evaluated.
nObj is printed as a guide to the amount of work required for the linesearch.

nCon The number of times SNOPT evaluated the nonlinear constraint func-
tions.

Merit is the value of the augmented Lagrangian merit function (3). This func-
tion will decrease at each iteration unless it was necessary to increase the
penalty parameters (see §2). As the solution is approached, Merit will
converge to the value of the objective at the solution.
In elastic mode, the merit function is a composite function involving the
constraint violations weighted by the elastic weight.
If the constraints are linear, this item is labeled Objective, the value of
the objective function. It will decrease monotonically to its optimal value.

Feasibl is the value of rowerr, the maximum component of the scaled nonlinear
constraint residual (5). The solution is regarded as acceptably feasible if
Feasibl is less than the Major feasibility tolerance.
If the constraints are linear, all iterates are feasible and this entry is not
printed.

Optimal is the value of maxgap, the maximum complementarity gap (6). It
is an estimate of the degree of nonoptimality of the reduced costs. Both
Feasibl and Optimal are small in the neighborhood of a solution.

29

nS The current number of superbasic variables.

Penalty is the Euclidean norm of the vector of penalty parameters used in the
augmented Lagrangian merit function (not printed if the constraints are
linear).

PD is a two-letter indication of the status of the convergence tests involving
primal and dual feasibility of the iterates (see (5) and (6) in the description
of Major feasibility tolerance and Major optimality tolerance).
Each letter is T if the test is satisfied, and F otherwise.
If either of the indicators is F when SNOPT terminates with 0 EXIT --
optimal solution found, the user should check the solution carefully.

The summary line may include additional code characters that indicate what
happened during the course of the iteration.

c Central differences have been used to compute the unknown components
of the objective and constraint gradients. This should not happen in a
GAMS environment.

d During the linesearch it was necessary to decrease the step in order to ob-
tain a maximum constraint violation conforming to the value of Violation
limit.

l The norm-wise change in the variables was limited by the value of the
Major step limit. If this output occurs repeatedly during later itera-
tions, it may be worthwhile increasing the value of Major step limit.

i If SNOPT is not in elastic mode, an “i” signifies that the QP subproblem
is infeasible. This event triggers the start of nonlinear elastic mode, which
remains in effect for all subsequent iterations. Once in elastic mode, the
QP subproblems are associated with the elastic problem NP(γ).
If SNOPT is already in elastic mode, an “i” indicates that the minimizer
of the elastic subproblem does not satisfy the linearized constraints. (In
this case, a feasible point for the usual QP subproblem may or may not
exist.)

M An extra evaluation of the problem functions was needed to define an ac-
ceptable positive-definite quasi-Newton update to the Lagrangian Hessian.
This modification is only done when there are nonlinear constraints.

m This is the same as “M” except that it was also necessary to modify the
update to include an augmented Lagrangian term.

R The approximate Hessian has been reset by discarding all but the diagonal
elements. This reset will be forced periodically by the Hessian frequency
and Hessian updates keywords. However, it may also be necessary to
reset an ill-conditioned Hessian from time to time.

30

r The approximate Hessian was reset after ten consecutive major iterations
in which no BFGS update could be made. The diagonals of the approxi-
mate Hessian are retained if at least one update has been done since the
last reset. Otherwise, the approximate Hessian is reset to the identity
matrix.

s A self-scaled BFGS update was performed. This update is always used
when the Hessian approximation is diagonal, and hence always follows a
Hessian reset.

S This is the same as a “s” except that it was necessary to modify the
self-scaled update to maintain positive definiteness.

n No positive-definite BFGS update could be found. The approximate Hes-
sian is unchanged from the previous iteration.

t The minor iterations were terminated at the Minor iteration limit.

u The QP subproblem was unbounded.

w A weak solution of the QP subproblem was found.

Finally SNOPT prints an exit message. See §5.1.

5.1 EXIT conditions

When the solution procedure terminates, an EXIT -- message is printed to
summarize the final result. Here we describe each message and suggest possible
courses of action.

0 EXIT -- optimal solution found
This is the message we all hope to see! It is certainly preferable to every other
message, and we naturally want to believe what it says, because this is surely
one situation where the computer knows best.

In all cases, a distinct level of caution is in order, even if it can wait until
next morning. For example, if the objective value is much better than expected,
we may have obtained an optimal solution to the wrong problem! Almost any
item of data could have that effect if it has the wrong value. Verifying that the
problem has been defined correctly is one of the more difficult tasks for a model
builder.

If nonlinearities exist, one must always ask the question: could there be more
than one local optimum? When the constraints are linear and the objective is
known to be convex (e.g., a sum of squares) then all will be well if we are
minimizing the objective: a local minimum is a global minimum in the sense
that no other point has a lower function value. (However, many points could
have the same objective value, particularly if the objective is largely linear.)
Conversely, if we are maximizing a convex function, a local maximum cannot
be expected to be global, unless there are sufficient constraints to confine the
feasible region.

31

Similar statements could be made about nonlinear constraints defining con-
vex or concave regions. However, the functions of a problem are more likely to
be neither convex nor concave. Our advice is always to specify a starting point
that is as good an estimate as possible, and to include reasonable upper and
lower bounds on all variables, in order to confine the solution to the specific
region of interest. We expect modelers to know something about their problem,
and to make use of that knowledge as they themselves know best.

One other caution about “Optimal solution”s. Some of the variables or
slacks may lie outside their bounds more than desired, especially if scaling
was requested. Max Primal infeas refers to the largest bound infeasibility
and which variable is involved. If it is too large, consider restarting with a
smaller Minor feasibility tolerance (say 10 times smaller) and perhaps
Scale option 0.

Similarly, Max Dual infeas indicates which variable is most likely to be at
a non-optimal value. Broadly speaking, if

Max Dual infeas/Norm of pi = 10−d,

then the objective function would probably change in the dth significant digit if
optimization could be continued. If d seems too large, consider restarting with
smaller Major and Minor optimality tolerances.

Finally, Nonlinear constraint violn shows the maximum infeasibility for
nonlinear rows. If it seems too large, consider restarting with a smaller Major
feasibility tolerance.

1 EXIT -- the problem is infeasible
When the constraints are linear, this message can probably be trusted. Feasi-
bility is measured with respect to the upper and lower bounds on the variables
and slacks. Among all the points satisfying the general constraints Ax− s = 0,
there is apparently no point that satisfies the bounds on x and s. Violations
as small as the Minor feasibility tolerance are ignored, but at least one
component of x or s violates a bound by more than the tolerance.

When nonlinear constraints are present, infeasibility is much harder to rec-
ognize correctly. Even if a feasible solution exists, the current linearization of
the constraints may not contain a feasible point. In an attempt to deal with
this situation, when solving each QP subproblem, SNOPT is prepared to relax
the bounds on the slacks associated with nonlinear rows.

If a QP subproblem proves to be infeasible or unbounded (or if the Lagrange
multiplier estimates for the nonlinear constraints become large), SNOPT enters
so-called “nonlinear elastic” mode. The subproblem includes the original QP
objective and the sum of the infeasibilities—suitably weighted using the Elastic
weight parameter. In elastic mode, the nonlinear rows are made “elastic”—i.e.,
they are allowed to violate their specified bounds. Variables subject to elastic
bounds are known as elastic variables. An elastic variable is free to violate
one or both of its original upper or lower bounds. If the original problem has
a feasible solution and the elastic weight is sufficiently large, a feasible point
eventually will be obtained for the perturbed constraints, and optimization can

32

continue on the subproblem. If the nonlinear problem has no feasible solution,
SNOPT will tend to determine a “good” infeasible point if the elastic weight
is sufficiently large. (If the elastic weight were infinite, SNOPT would locally
minimize the nonlinear constraint violations subject to the linear constraints
and bounds.)

Unfortunately, even though SNOPT locally minimizes the nonlinear con-
straint violations, there may still exist other regions in which the nonlinear
constraints are satisfied. Wherever possible, nonlinear constraints should be de-
fined in such a way that feasible points are known to exist when the constraints
are linearized.

2 EXIT -- the problem is unbounded (or badly scaled)
EXIT -- violation limit exceeded -- the problem may be unbounded

For linear problems, unboundedness is detected by the simplex method when
a nonbasic variable can apparently be increased or decreased by an arbitrary
amount without causing a basic variable to violate a bound. A message prior to
the EXIT message will give the index of the nonbasic variable. Consider adding
an upper or lower bound to the variable. Also, examine the constraints that
have nonzeros in the associated column, to see if they have been formulated as
intended.

Very rarely, the scaling of the problem could be so poor that numerical error
will give an erroneous indication of unboundedness. Consider using the Scale
option.

For nonlinear problems, SNOPT monitors both the size of the current objec-
tive function and the size of the change in the variables at each step. If either of
these is very large (as judged by the Unbounded parameters—see §4), the prob-
lem is terminated and declared UNBOUNDED. To avoid large function values,
it may be necessary to impose bounds on some of the variables in order to keep
them away from singularities in the nonlinear functions.

The second message indicates an abnormal termination while enforcing the
limit on the constraint violations. This exit implies that the objective is not
bounded below in the feasible region defined by expanding the bounds by the
value of the Violation limit.

3 EXIT -- major iteration limit exceeded
EXIT -- minor iteration limit exceeded
EXIT -- too many iterations

Either the Iterations limit or the Major iterations limit was exceeded
before the required solution could be found. Check the iteration log to be sure
that progress was being made. If so, repeat the run with higher limits. If not,
consider specifying new initial values for some of the nonlinear variables.

4 EXIT -- requested accuracy could not be achieved
A feasible solution has been found, but the requested accuracy in the dual
infeasibilities could not be achieved. An abnormal termination has occurred, but
SNOPT is within 10−2 of satisfying the Major optimality tolerance. Check
that the Major optimality tolerance is not too small.

33

5 EXIT -- the superbasics limit is too small: nnn
The problem appears to be more nonlinear than anticipated. The current set of
basic and superbasic variables have been optimized as much as possible and a
PRICE operation is necessary to continue, but there are already nnn superbasics
(and no room for any more).

In general, raise the Superbasics limit s by a reasonable amount, bearing
in mind the storage needed for the reduced Hessian (about 1

2s2 double words).

6 EXIT -- constraint and objective values could not be calculated
This exit should not occur in a GAMS environment.

7 EXIT -- subroutine funobj seems to be giving incorrect gradients
This exit should not occur in a GAMS environment.

8 EXIT -- subroutine funcon seems to be giving incorrect gradients
This exit should not occur in a GAMS environment.

9 EXIT -- the current point cannot be improved upon
The algorithm could not find a better solution although optimality was not
achieved within the optimality tolerance. Possibly scaling can lead to better
function values and derivatives. Raising the optimality tolerance will prob-
ably make this message go away.

10 EXIT -- cannot satisfy the general constraints
An LU factorization of the basis has just been obtained and used to recompute
the basic variables xB , given the present values of the superbasic and nonbasic
variables. A step of “iterative refinement” has also been applied to increase the
accuracy of xB . However, a row check has revealed that the resulting solution
does not satisfy the current constraints Ax− s = 0 sufficiently well.

This probably means that the current basis is very ill-conditioned. Try Scale
option 1 if scaling has not yet been used and there are some linear constraints
and variables.

For certain highly structured basis matrices (notably those with band struc-
ture), a systematic growth may occur in the factor U . Try setting the LU factor
tolerance to 2.0 (or possibly even smaller, but not less than 1.0).

12 EXIT -- terminated from subroutine s1User
This message appears when the resource limit was reached (see §4.1) or when
the solver was interrupted by a Ctrl-C keyboard signal.

20 EXIT -- not enough integer/real storage for the basis factors
Increase the workspace by using the work option or the workspace model suffix.

21 EXIT -- error in basis package
A preceding message will describe the error in more detail. This error should
not happen easily in a GAMS environment.

22 EXIT -- singular basis after nnn factorization attempts
This exit is highly unlikely to occur. The first factorization attempt will have
found the basis to be structurally or numerically singular. (Some diagonals

34

of the triangular matrix U were respectively zero or smaller than a certain
tolerance.) The associated variables are replaced by slacks and the modified
basis is refactorized, but singularity persists. This must mean that the problem
is badly scaled, or the LU factor tolerance is too much larger than 1.0.

30 EXIT -- the basis file dimensions do not match this problem
This exit should not occur in a GAMS environment.

31 EXIT -- the basis file state vector does not match this problem
This exit should not occur in a GAMS environment.

32 EXIT -- system error. Wrong no. of basic variables: nnn
This exit should never happen, and may indicate a configuration problem with
your GAMS/SNOPT version.

42 EXIT -- not enough 8-character storage to start solving the problem
Increase the workspace by using the work option or the workspace model suffix.

43 EXIT -- not enough integer storage to start solving the problem
Increase the work space by using the work option or the workspace model suffix.

44 EXIT -- not enough real storage to start solving the problem
Increase the work space by using the work option or the workspace model suffix.

45 EXIT -- Function evaluation error limit exceeded
The function evaluation error limit was reached. When evaluating a non-
linear function either in the objective or in the constraints, an evaluation error
occurred and the allowed number of such errors was exceeded. Either increase
the domlim option (see §4.1) or preferably add bounds or linear constraints such
that these errors cannot happen. The errors are most often caused by declaring
x to be a free variable while the model contains functions like

√
x or log(x).

Overflows in exponentiation xy are also a common cause for this exit. Inspect
the listing file for messages like

**** ERROR(S) IN EQUATION PRODF
2 INSTANCES OF - UNDEFINED LOG OPERATION (RETURNED -0.1E5)

The equation name mentioned in this message gives a good indication where to
look in the model.

6 Listing file messages

The listing file (.lst file) also contains feedback on how the SNOPT solver
performed on a particular model. For the chem.gms model, the solve summary
looks like the following:

S O L V E S U M M A R Y

MODEL MIXER OBJECTIVE ENERGY
TYPE NLP DIRECTION MINIMIZE
SOLVER SNOPT FROM LINE 46

35

**** SOLVER STATUS 1 NORMAL COMPLETION
**** MODEL STATUS 2 LOCALLY OPTIMAL
**** OBJECTIVE VALUE -47.7065

RESOURCE USAGE, LIMIT 0.010 1000.000
ITERATION COUNT, LIMIT 45 10000
EVALUATION ERRORS 0 0

GAMS/SNOPT X86/LINUX version 5.3.4-007-035
P. E. Gill, UC San Diego
W. Murray and M. A. Saunders, Stanford University

Work space allocated -- 0.02 Mb

EXIT - Optimal Solution found.

Major, Minor Iterations 16 45
Funobj, Funcon calls 22 0
Superbasics 6
Aggregations 0
Interpreter Usage 0.01 100.0%

Work space used by solver -- 0.02 Mb

The solver completed normally at a local (or possibly global) optimum. A
complete list of possible solver status and model status values is in Tables 1 and
2.

The resource usage (time used), iteration count and evaluation errors during
nonlinear function and gradient evaluation are all within their limits. These
limits can be increased by the option reslim, iterlim and domlim (see §4.1).

The possible EXIT messages are listed in §5.1.
The statistics following the EXIT message are as follows.

Major, minor iterations. The number of major and minor iterations for this
optimization task. Note that the number of minor iterations is the same
as reported by ITERATION COUNT.

Funobj, Funcon calls. The number of times SNOPT evaluated the objective
function f(x) or the constraint functions Fi(x) and their gradients. For a
linearly constrained problem the number of funcon calls should be zero.

Superbasics. This is number of superbasic variables in the reported solution.
See §2.4.

Aggregations. The number of equations removed from the model by the ob-
jective function recovery algorithm (see §2.1).

Interpreter usage. This line refers to how much time was spent evaluating
functions and gradients. Due to the low resolution of the clock and the
small size of this model, it was concluded that 100% of the time was spent
inside the routines that do function and gradient evaluations. For larger
models these numbers are more accurate.

36

Model status Remarks
1 OPTIMAL Applies only to linear models.
2 LOCALLY OPTIMAL A local optimum in an NLP was

found. It may or may not be a global
optimum.

3 UNBOUNDED For LP’s this message is reliable. A
badly scaled NLP can also cause this
message to appear.

4 INFEASIBLE Applies to LP’s: the model is infea-
sible.

5 LOCALLY INFEASIBLE Applies to NLP’s: Given the start-
ing point, no feasible solution could
be found although feasible points
may exist.

6 INTERMEDIATE INFEASIBLE The search was stopped (e.g., be-
cause of an iteration or time limit)
and the current point violates some
constraints or bounds.

7 INTERMEDIATE NONOPTIMAL The search was stopped (e.g., be-
cause of an iteration or time limit)
and the current point is feasible but
violates the optimality conditions.

8 INTEGER SOLUTION Does not apply to SNOPT.
9 INTERMEDIATE NON-INTEGER Does not apply to SNOPT.
10 INTEGER INFEASIBLE Does not apply to SNOPT.
ERROR UKNOWN Check listing file for error messages.
ERROR NO SOLUTION Check listing file for error messages.

Table 1: Model status values

37

Solver status Remarks
1 NORMAL COMPLETION SNOPT completed the optimization

task.
2 ITERATION INTERRUPT Iteration limit was hit. Increase the

iterlim option (see §4.1).
3 RESOURCE INTERRUPT Time limit was hit. Increase the

reslim option (see §4.1).
4 TERMINATED BY SOLVER Check the listing file.
5 EVALUATION ERROR LIMIT domlim error limit was exceeded.

See §4.1.
6 UNKNOWN ERROR Check the listing file for error mes-

sages.
ERROR SETUP FAILURE Id.
ERROR SOLVER FAILURE Id.
ERROR INTERNAL SOLVER FAILURE Id.
ERROR SYSTEM FAILURE Id.

Table 2: Solver status values

References

[1] A. R. Conn, Constrained optimization using a nondifferentiable penalty
function, SIAM J. Numer. Anal., 10 (1973), pp. 760–779.

[2] G. B. Dantzig, Linear Programming and Extensions, Princeton Univer-
sity Press, Princeton, New Jersey, 1963.

[3] S. K. Eldersveld, Large-scale sequential quadratic programming algo-
rithms, PhD thesis, Department of Operations Research, Stanford Univer-
sity, Stanford, CA, 1991.

[4] R. Fletcher, An `1 penalty method for nonlinear constraints, in Numeri-
cal Optimization 1984, P. T. Boggs, R. H. Byrd, and R. B. Schnabel, eds.,
Philadelphia, 1985, SIAM, pp. 26–40.

[5] R. Fourer, Solving staircase linear programs by the simplex method. 1:
Inversion, Math. Prog., 23 (1982), pp. 274–313.

[6] P. E. Gill, W. Murray, and M. A. Saunders, SNOPT: An SQP algo-
rithm for large-scale constrained optimization, Numerical Analysis Report
97-2, Department of Mathematics, University of California, San Diego, La
Jolla, CA, 1997.

[7] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, User’s
guide for NPSOL (Version 4.0): a Fortran package for nonlinear program-
ming, Report SOL 86-2, Department of Operations Research, Stanford Uni-
versity, Stanford, CA, 1986.

38

[8] , A practical anti-cycling procedure for linearly constrained optimiza-
tion, Math. Prog., 45 (1989), pp. 437–474.

[9] , Some theoretical properties of an augmented Lagrangian merit func-
tion, in Advances in Optimization and Parallel Computing, P. M. Pardalos,
ed., North Holland, North Holland, 1992, pp. 101–128.

[10] , Sparse matrix methods in optimization, SIAM J. on Scientific and
Statistical Computing, 5 (1984), pp. 562–589.

[11] , Maintaining LU factors of a general sparse matrix, Linear Algebra
and its Applications, 88/89 (1987), pp. 239–270.

[12] B. A. Murtagh and M. A. Saunders, Large-scale linearly constrained
optimization, Math. Prog., 14 (1978), pp. 41–72.

[13] , A projected Lagrangian algorithm and its implementation for sparse
nonlinear constraints, Math. Prog. Study, 16 (1982), pp. 84–117.

[14] , MINOS 5.5 User’s Guide, Report SOL 83-20R, Department of Op-
erations Research, Stanford University, Stanford, CA, Revised 1998.

39

