Constraint-based models enable the study of metabolism at genome-scale

- M models: multiscale reconstructions of metabolism
- ME models include protein expression (even more multiscale)
- Stoichiometric matrix \(S \), fluxes \(v \), growth rate \(\mu \)
 - Most coefficients are moderate: \(S_{ij} = 0, \pm 1, \pm 2 \)
 - Some coefficients are large: \(S_{ij} = 10, 10^3 \)
- Similarly for fluxes because of coupling constraints: \(v_i/v_j \geq \mu / k_{\text{eff}} \Rightarrow v_i \leq (\mu / k_{\text{eff}}) v_j \)

Models are linear when \(\mu \) is fixed:

\[
\begin{align*}
\text{max} & \quad c^T v \\
\text{s.t} & \quad S v = b \\
& \quad v \geq 0
\end{align*}
\]

Solved by:
- openCOBRA toolbox (CPLEX, glpk, Gurobi, MINOS, ...)
- MONGOOSE toolbox (exact simplex solver QSpOpt_ex)

Linear ME model of \(E. coli \) double-MINOS, quad-MINOS LP

Problem GlcAerWT (Thiele, Fleming, et al., 2012), 68300 \times 76664

Step 1: double-MINOS, cold start, scaling

Problem name GlcAerWT EXIT — the problem is infeasible

- **No. of iterations**: 62856
- **Objective value**: -2.449880182E-04
- **No. of inequalities**: 41
- **No. of degenerate steps**: 33214
- **Percentage**: 52.84
- **Max \(c_\text{scaled} \)**: 1.0E-03
- **Max \(p \)**: 5000
- **Max Primal inf**: 134382.8E-02
- **Max Dual inf**: 97017.8E-05
- **Time for solving problem**: 97017.8 seconds

Nonlinear ME model variables \(\nu, v, w \)

- **\(\mu = \) growth rate**
- **A and \(B \) overlap**
- **\(st \ mu A v + B v = 0 \)**
- **\(st \ mu A v + w = 0 \)**
- **\(S v = b \)**
- **\(B v - w = 0 \)**
- **\(S v = b \)**
- **bounds on \(v \), none on \(w \)**

Nonlinear ME model quad-MINOS NLP

- **Penalty parameter**: 1.000000
- **Nonlinear objective**: 8.5566388920E-01
- **No. of calls to function**: 942
- **No. of calls to Hessian**: 942
- **No. of superbasics**: 0
- **Nonlinear constraints**: 1
- **Nonlinear objective**: 8.5566388920E-01
- **Nonlinear constraints**: 1

Step 2: quad-MINOS, warm start, scaling

Problem name GlcAerWT EXIT — optimal solution found

- **No. of iterations**: 53986
- **Objective value**: -7.0382449681E+05
- **Max Primal inf**: 134382.8E-02
- **Max Dual inf**: 97017.8E-05
- **Time for solving problem**: 3995.58 seconds

Step 3: quad-MINOS, warm start, no scaling

Problem name GlcAerWT EXIT — optimal solution found

- **No. of iterations**: 43
- **Objective value**: -7.0382449681E+05
- **Max Primal inf**: 134382.8E-02
- **Max Dual inf**: 97017.8E-05
- **Time for solving problem**: 97017.8 seconds

References

- Murtagh and Saunders (1978, 1982)
 - Large-scale linearly constrained optimization, Math. Prog. 14:41–72
- Thiele, Fleming, Que, Bordbar, Diep, and Palsson (2012)
 - Multiscale modeling of metabolism and macromolecular synthesis in \(E. coli \) and its application to the evolution of codon usage, PLOS ONE 7(9), 18 pp
- Chindelevitch, Trigg, Regev, and Berger (2014)
 - An exact arithmetic toolbox for a consistent and reproducible structural analysis of metabolic network models, Nat. Commun. 5(4893), 9 pp
- Ma and Saunders (2015)
 - Solving multiscale linear programs using the simplex method in quadruple precision, Springer, to appear
- Yang, Ma, Ebrahim, Lloyd, Saunders, and Palsson (2015)
 - solveME: fast and reliable solution of nonlinear ME models for metabolic engineering, Metabolic Engineering, submitted

Funding

NIH U01GM102098 DOE ER65524

4th Conference on Constraint-Based Reconstruction and Analysis (COBRA 2015), Heidelberg, Sep 16–18, 2015

[saunders.dingma]@stanford.edu, laurence.yang@gmail.com