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Abstract. The time-frequency and time-scale communities have recently developed a large number of
overcomplete waveform dictionaries—stationary wavelets, wavelet packets, cosine packets,
chirplets, and warplets, to name a few. Decomposition into overcomplete systems is not
unique, and several methods for decomposition have been proposed, including the method
of frames (MOF), matching pursuit (MP), and, for special dictionaries, the best orthogonal
basis (BOB).

Basis pursuit (BP) is a principle for decomposing a signal into an “optimal” superpo-
sition of dictionary elements, where optimal means having the smallest l1 norm of coef-
ficients among all such decompositions. We give examples exhibiting several advantages
over MOF, MP, and BOB, including better sparsity and superresolution. BP has interest-
ing relations to ideas in areas as diverse as ill-posed problems, abstract harmonic analysis,
total variation denoising, and multiscale edge denoising.

BP in highly overcomplete dictionaries leads to large-scale optimization problems.
With signals of length 8192 and a wavelet packet dictionary, one gets an equivalent linear
program of size 8192 by 212,992. Such problems can be attacked successfully only because
of recent advances in linear and quadratic programming by interior-point methods. We
obtain reasonable success with a primal-dual logarithmic barrier method and conjugate-
gradient solver.
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1. Introduction. Over the last several years, there has been an explosion of in-
terest in alternatives to traditional signal representations. Instead of just represent-
ing signals as superpositions of sinusoids (the traditional Fourier representation) we
now have available alternate dictionaries—collections of parameterized waveforms—of
which the wavelets dictionary is only the best known. Wavelets, steerable wavelets,
segmented wavelets, Gabor dictionaries, multiscale Gabor dictionaries, wavelet pack-

∗Published electronically February 2, 2001. This paper originally appeared in SIAM Journal on
Scientific Computing, Volume 20, Number 1, 1998, pages 33–61. This research was partially sup-
ported by NSF grants DMS-92-09130, DMI-92-04208, and ECS-9707111, by the NASA Astrophysical
Data Program, by ONR grant N00014-90-J1242, and by other sponsors.

http://www.siam.org/journals/sirev/43-1/37906.html
†Renaissance Technologies, 600 Route 25A, East Setauket, NY 11733 (schen@rentec.com).
‡Department of Statistics, Stanford University, Stanford, CA 94305 (donoho@stat.stanford.edu).
§Department of Management Science and Engineering, Stanford University, Stanford, CA 94305

(saunders@stanford.edu).

129



130 S. S. CHEN, D. L. DONOHO, AND M. A. SAUNDERS

ets, cosine packets, chirplets, warplets, and a wide range of other dictionaries are
now available. Each such dictionary D is a collection of waveforms (φγ)γ∈Γ, with γ a
parameter, and we envision a decomposition of a signal s as

s =
∑
γ∈Γ

αγφγ ,(1.1)

or an approximate decomposition

s =
m∑
i=1

αγiφγi +R
(m),(1.2)

where R(m) is a residual. Depending on the dictionary, such a representation de-
composes the signal into pure tones (Fourier dictionary), bumps (wavelet dictionary),
chirps (chirplet dictionary), etc.

Most of the new dictionaries are overcomplete, either because they start out that
way or because we merge complete dictionaries, obtaining a new megadictionary con-
sisting of several types of waveforms (e.g., Fourier and wavelets dictionaries). The
decomposition (1.1) is then nonunique, because some elements in the dictionary have
representations in terms of other elements.

1.1. Goals of Adaptive Representation. Nonuniqueness gives us the possibility
of adaptation, i.e., of choosing from among many representations one that is most
suited to our purposes. We are motivated by the aim of achieving simultaneously the
following goals.

• Sparsity. We should obtain the sparsest possible representation of the object—
the one with the fewest significant coefficients.
• Superresolution. We should obtain a resolution of sparse objects that is much
higher resolution than that possible with traditional nonadaptive approaches.

An important constraint, which is perhaps in conflict with both the goals, follows.
• Speed. It should be possible to obtain a representation in order O(n) or
O(n log(n)) time.

1.2. Finding a Representation. Several methods have been proposed for obtain-
ing signal representations in overcomplete dictionaries. These range from general
approaches, like the method of frames (MOF) [9] and the method of matching pursuit
(MP) [29], to clever schemes derived for specialized dictionaries, like the method of
best orthogonal basis (BOB) [7]. These methods are described briefly in section 2.3.

In our view, these methods have both advantages and shortcomings. The principal
emphasis of the proposers of these methods is on achieving sufficient computational
speed. While the resulting methods are practical to apply to real data, we show below
by computational examples that the methods, either quite generally or in important
special cases, lack qualities of sparsity preservation and of stable superresolution.

1.3. Basis Pursuit. Basis pursuit (BP) finds signal representations in overcom-
plete dictionaries by convex optimization: it obtains the decomposition that minimizes
the �1 norm of the coefficients occurring in the representation. Because of the nondif-
ferentiability of the �1 norm, this optimization principle leads to decompositions that
can have very different properties from the MOF—in particular, they can be much
sparser. Because it is based on global optimization, it can stably superresolve in ways
that MP cannot.
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BP can be used with noisy data by solving an optimization problem trading off
a quadratic misfit measure with an �1 norm of coefficients. Examples show that it
can stably suppress noise while preserving structure that is well expressed in the
dictionary under consideration.

BP is closely connected with linear programming. Recent advances in large-
scale linear programming—associated with interior-point methods—can be applied
to BP and can make it possible, with certain dictionaries, to nearly solve the BP
optimization problem in nearly linear time. We have implemented primal-dual log
barrier interior-point methods as part of a MATLAB [31] computing environment
called Atomizer, which accepts a wide range of dictionaries. Instructions for Internet
access to Atomizer are given in section 7.3. Experiments with standard time-frequency
dictionaries indicate some of the potential benefits of BP. Experiments with some
nonstandard dictionaries, like the stationary wavelet dictionary and the heaviside
dictionary, indicate important connections between BP and methods like Mallat and
Zhong’s [29] multiscale edge representation and Rudin, Osher, and Fatemi’s [35] total
variation-based denoising methods.

1.4. Contents. In section 2 we establish vocabulary and notation for the rest of
the article, describing a number of dictionaries and existing methods for overcomplete
representation. In section 3 we discuss the principle of BP and its relations to existing
methods and to ideas in other fields. In section 4 we discuss methodological issues
associated with BP, in particular some of the interesting nonstandard ways it can be
deployed. In section 5 we describe BP denoising, a method for dealing with problem
(1.2). In section 6 we discuss recent advances in large-scale linear programming (LP)
and resulting algorithms for BP.

For reasons of space we refer the reader to [4] for a discussion of related work in
statistics and analysis.

2. Overcomplete Representations. Let s = (st : 0 ≤ t < n) be a discrete-time
signal of length n; this may also be viewed as a vector in Rn. We are interested
in the reconstruction of this signal using superpositions of elementary waveforms.
Traditional methods of analysis and reconstruction involve the use of orthogonal bases,
such as the Fourier basis, various discrete cosine transform bases, and orthogonal
wavelet bases. Such situations can be viewed as follows: given a list of n waveforms,
one wishes to represent s as a linear combination of these waveforms. The waveforms
in the list, viewed as vectors inRn, are linearly independent, and so the representation
is unique.

2.1. Dictionaries and Atoms. A considerable focus of activity in the recent sig-
nal processing literature has been the development of signal representations outside
the basis setting. We use terminology introduced by Mallat and Zhang [29]. A dic-
tionary is a collection of parameterized waveforms D = (φγ : γ ∈ Γ). The waveforms
φγ are discrete-time signals of length n called atoms. Depending on the dictionary,
the parameter γ can have the interpretation of indexing frequency, in which case the
dictionary is a frequency or Fourier dictionary, of indexing time-scale jointly, in which
case the dictionary is a time-scale dictionary, or of indexing time-frequency jointly,
in which case the dictionary is a time-frequency dictionary. Usually dictionaries are
complete or overcomplete, in which case they contain exactly n atoms or more than n
atoms, but one could also have continuum dictionaries containing an infinity of atoms
and undercomplete dictionaries for special purposes, containing fewer than n atoms.
Dozens of interesting dictionaries have been proposed over the last few years; we focus
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in this paper on a half dozen or so; much of what we do applies in other cases as well.

2.1.1. Trivial Dictionaries. We begin with some overly simple examples. The
Dirac dictionary is simply the collection of waveforms that are zero except in one point:
γ ∈ {0, 1, . . . , n− 1} and φγ(t) = 1{t=γ}. This is of course also an orthogonal basis of
Rn—the standard basis. The heaviside dictionary is the collection of waveforms that
jump at one particular point: γ ∈ {0, 1, . . . , n − 1}; φγ(t) = 1{t≥γ}. Atoms in this
dictionary are not orthogonal, but every signal has a representation

s = s0φ0 +
n−1∑
γ=1

(sγ − sγ−1)φγ .(2.1)

2.1.2. Frequency Dictionaries. A Fourier dictionary is a collection of sinusoidal
waveforms φγ indexed by γ = (ω, ν), where ω ∈ [0, 2π) is an angular frequency variable
and ν ∈ {0, 1} indicates phase type: sine or cosine. In detail,

φ(ω,0) = cos(ωt), φ(ω,1) = sin(ωt).

For the standard Fourier dictionary, we let γ run through the set of all cosines with
Fourier frequencies ωk = 2πk/n, k = 0, . . . , n/2, and all sines with Fourier frequencies
ωk, k = 1, . . . , n/2− 1. This dictionary consists of n waveforms; it is in fact a basis,
and a very simple one: the atoms are all mutually orthogonal. An overcomplete
Fourier dictionary is obtained by sampling the frequencies more finely. Let � be a
whole number > 1 and let Γ	 be the collection of all cosines with ωk = 2πk/(�n),
k = 0, . . . , �n/2, and all sines with frequencies ωk, k = 1, . . . , �n/2 − 1. This is an �-
fold overcomplete system. We also use complete and overcomplete dictionaries based
on discrete cosine transforms and sine transforms.

2.1.3. Time-Scale Dictionaries. There are several types of wavelet dictionaries;
to fix ideas, we consider the Haar dictionary with “father wavelet” ϕ = 1[0,1] and
“mother wavelet” ψ = 1(1/2,1] − 1[0,1/2]. The dictionary is a collection of transla-
tions and dilations of the basic mother wavelet, together with translations of a father
wavelet. It is indexed by γ = (a, b, ν), where a ∈ (0,∞) is a scale variable, b ∈ [0, n]
indicates location, and ν ∈ {0, 1} indicates gender. In detail,

φ(a,b,1) = ψ(a(t− b)) ·
√
a, φ(a,b,0) = ϕ(a(t− b)) ·

√
a.

For the standard Haar dictionary, we let γ run through the discrete collection of
mother wavelets with dyadic scales aj = 2j/n, j = j0, . . . , log2(n) − 1, and locations
that are integer multiples of the scale bj,k = k ·aj , k = 0, . . . , 2j−1, and the collection
of father wavelets at the coarse scale j0. This dictionary consists of n waveforms; it
is an orthonormal basis. An overcomplete wavelet dictionary is obtained by sampling
the locations more finely: one location per sample point. This gives the so-called sta-
tionary Haar dictionary, consisting of O(n log2(n)) waveforms. It is called stationary
since the whole dictionary is invariant under circulant shift.

A variety of other wavelet bases are possible. The most important variations are
smooth wavelet bases, using splines or using wavelets defined recursively from two-
scale filtering relations [10]. Although the rules of construction are more complicated
(boundary conditions [33], orthogonality versus biorthogonality [10], etc.), these have
the same indexing structure as the standard Haar dictionary. In this paper, we use
symmlet-8 smooth wavelets, i.e., Daubechies nearly symmetric wavelets with eight
vanishing moments; see [10] for examples.
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Fig. 2.1 Time-frequency phase plot of a wavelet packet atom.

2.1.4. Time-Frequency Dictionaries. Much recent activity in the wavelet com-
munities has focused on the study of time-frequency phenomena. The standard ex-
ample, the Gabor dictionary, is due to Gabor [19]; in our notation, we take γ =
(ω, τ, θ, δt), where ω ∈ [0, π) is a frequency, τ is a location, θ is a phase, and δt is
the duration, and we consider atoms φγ(t) = exp{−(t− τ)2/(δt)2} · cos(ω(t− τ) + θ).
Such atoms indeed consist of frequencies near ω and essentially vanish far away from τ .
For fixed δt, discrete dictionaries can be built from time-frequency lattices, ωk = k∆ω
and τ	 = �∆τ , and θ ∈ {0, π/2}; with ∆τ and ∆ω chosen sufficiently fine these are
complete. For further discussions see, e.g., [9].

Recently, Coifman and Meyer [6] developed the wavelet packet and cosine packet
dictionaries especially to meet the computational demands of discrete-time signal pro-
cessing. For one-dimensional discrete-time signals of length n, these dictionaries each
contain about n log2(n) waveforms. A wavelet packet dictionary includes, as special
cases, a standard orthogonal wavelets dictionary, the Dirac dictionary, and a collec-
tion of oscillating waveforms spanning a range of frequencies and durations. A cosine
packet dictionary contains, as special cases, the standard orthogonal Fourier dictio-
nary and a variety of Gabor-like elements: sinusoids of various frequencies weighted
by windows of various widths and locations.

In this paper, we often use wavelet packet and cosine packet dictionaries as exam-
ples of overcomplete systems, and we give a number of examples decomposing signals
into these time-frequency dictionaries. A simple block diagram helps us visualize the
atoms appearing in the decomposition. This diagram, adapted from Coifman and
Wickerhauser [7], associates with each cosine packet or wavelet packet a rectangle in
the time-frequency phase plane. The association is illustrated in Figure 2.1 for a cer-
tain wavelet packet. When a signal is a superposition of several such waveforms, we
indicate which waveforms appear in the superposition by shading the corresponding
rectangles in the time-frequency plane.
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2.1.5. Further Dictionaries. We can always merge dictionaries to create mega-
dictionaries; examples used below include mergers of wavelets with heavisides.

2.2. Linear Algebra. Suppose we have a discrete dictionary of p waveforms and
we collect all these waveforms as columns of an n-by-p matrix Φ, say. The decompo-
sition problem (1.1) can be written

Φα = s,(2.2)

where α = (αγ) is the vector of coefficients in (1.1). When the dictionary furnishes a
basis, then Φ is an n-by-n nonsingular matrix and we have the unique representation
α = Φ−1s . When the atoms are, in addition, mutually orthonormal, then Φ−1 = ΦT

and the decomposition formula is very simple.

2.2.1. Analysis versus Synthesis. Given a dictionary of waveforms, one can dis-
tinguish analysis from synthesis. Synthesis is the operation of building up a signal by
superposing atoms; it involves a matrix that is n-by-p: s = Φα. Analysis involves the
operation of associating with each signal a vector of coefficients attached to atoms;
it involves a matrix that is p-by-n: α̃ = ΦT s. Synthesis and analysis are very differ-
ent linear operations, and we must take care to distinguish them. One should avoid
assuming that the analysis operator α̃ = ΦT s gives us coefficients that can be used
as is to synthesize s. In the overcomplete case we are interested in, p � n and Φ is
not invertible. There are then many solutions to (2.2), and a given approach selects
a particular solution. One does not uniquely and automatically solve the synthesis
problem by applying a simple, linear analysis operator.

We now illustrate the difference between synthesis (s = Φα) and analysis (α̃ =
ΦT s). Figure 2.2a shows the signal Carbon. Figure 2.2b shows the time-frequency
structure of a sparse synthesis of Carbon, a vector α yielding s = Φα, using a wavelet
packet dictionary. To visualize the decomposition, we present a phase-plane display
with shaded rectangles, as described above. Figure 2.2c gives an analysis of Carbon,
with the coefficients α̃ = ΦT s, again displayed in a phase plane. Once again, between
analysis and synthesis there is a large difference in sparsity. In Figure 2.2d we compare
the sorted coefficients of the overcomplete representation (synthesis) with the analysis
coefficients.

2.2.2. Computational Complexity of Φ and ΦT . Different dictionaries can im-
pose drastically different computational burdens. In this paper we report compu-
tational experiments on a variety of signals and dictionaries. We study primarily
one-dimensional signals of length n, where n is several thousand. Signals of this
length occur naturally in the study of short segments of speech (a quarter-second to a
half-second) and in the output of various scientific instruments (e.g., FT-NMR spec-
trometers). In our experiments, we study dictionaries overcomplete by substantial
factors, say, 10. Hence the typical matrix Φ we are interested in is of size “thousands”
by “tens-of-thousands.”

The nominal cost of storing and applying an arbitrary n-by-p matrix to a p-
vector is a constant times np. Hence with an arbitrary dictionary of the sizes we are
interested in, simply to verify whether (1.1) holds for given vectors α and s would
require tens of millions of multiplications and tens of millions of words of memory.
In contrast, most signal processing algorithms for signals of length 1000 require only
thousands of memory words and a few thousand multiplications.

Fortunately, certain dictionaries have fast implicit algorithms. By this we mean
that Φα and ΦT s can be computed, for arbitrary vectors α and s, (a) without ever
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Fig. 2.2 Analysis versus synthesis of the signal Carbon.

storing the matrices Φ and ΦT , and (b) using special properties of the matrices to
accelerate computations.

The most well-known example is the standard Fourier dictionary for which we
have the fast Fourier transform algorithm. A typical implementation requires 2 · n
storage locations and 4·n·J multiplications if n is dyadic: n = 2J . Hence for very long
signals we can apply Φ and ΦT with much less storage and time than the matrices
would nominally require. Simple adaptation of this idea leads to an algorithm for
overcomplete Fourier dictionaries.

Wavelets give a more recent example of a dictionary with a fast implicit algorithm;
if the Haar or S8-symmlet is used, both Φ and ΦT may be applied in O(n) time. For
the stationary wavelet dictionary, O(n log(n)) time is required. Cosine packets and
wavelet packets also have fast implicit algorithms. Here both Φ and ΦT can be applied
in order O(n log(n)) time and order O(n log(n)) space—much better than the nominal
np = n2 log2(n) one would expect from naive use of the matrix definition.

For the viewpoint of this paper, it only makes sense to consider dictionaries with
fast implicit algorithms. Among dictionaries we have not discussed, such algorithms
may or may not exist.

2.3. Existing Decomposition Methods. There are several currently popular ap-
proaches to obtaining solutions to (2.2).

2.3.1. Frames. The MOF [9] picks out, among all solutions of (2.2), one whose
coefficients have minimum l2 norm:

min ‖α‖2 subject to Φα = s.(2.3)

The solution of this problem is unique; label it α†. Geometrically, the collection of all
solutions to (2.2) is an affine subspace inRp; MOF selects the element of this subspace
closest to the origin. It is sometimes called a minimum-length solution. There is a



136 S. S. CHEN, D. L. DONOHO, AND M. A. SAUNDERS

0 0.5 1
-0.4

-0.2

0

0.2

0.4
(a)  Signal: Hydrogen

Time

F
re

qu
en

cy

(b) Ideal Phase Plane

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Time

F
re

qu
en

cy

(c) Phase Plane by MOF

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Fig. 2.3 MOF representation is not sparse.

matrix Φ†, the generalized inverse of Φ, that calculates the minimum-length solution
to a system of linear equations:

α† = Φ†s = ΦT (ΦΦT )−1s.(2.4)

For so-called tight frame dictionaries MOF is available in closed form. A nice example
is the standard wavelet packet dictionary. One can compute that for all vectors v,
‖ΦTv‖2 = Ln · ‖v‖2, Ln = log2(n). In short Φ† = L−1

n Φ
T . Notice that ΦT is simply

the analysis operator.
There are two key problems with the MOF. First, MOF is not sparsity preserving.

If the underlying object has a very sparse representation in terms of the dictionary,
then the coefficients found by MOF are likely to be very much less sparse. Each atom
in the dictionary that has nonzero inner product with the signal is, at least potentially
and also usually, a member of the solution.

Figure 2.3a shows the signal Hydrogen made of a single atom in a wavelet packet
dictionary. The result of a frame decomposition in that dictionary is depicted in a
phase-plane portrait; see Figure 2.3c. While the underlying signal can be synthesized
from a single atom, the frame decomposition involves many atoms, and the phase-
plane portrait exaggerates greatly the intrinsic complexity of the object.

Second, MOF is intrinsically resolution limited. No object can be reconstructed
with features sharper than those allowed by the underlying operator Φ†Φ. Suppose
the underlying object is sharply localized: α = 1{γ=γ0}. The reconstruction will not
be α, but instead Φ†Φα, which, in the overcomplete case, will be spatially spread out.
Figure 2.4 presents a signal TwinSine consisting of the superposition of two sinusoids
that are separated by less than the so-called Rayleigh distance 2π/n. We analyze these
in a fourfold overcomplete discrete cosine dictionary. In this case, reconstruction by
MOF (Figure 2.4b) is simply convolution with the Dirichlet kernel. The result is the
synthesis from coefficients with a broad oscillatory appearance, consisting not of two
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Fig. 2.4 Analyzing TwinSine with a fourfold overcomplete discrete cosine dictionary.

but of many frequencies and giving no visual clue that the object may be synthesized
from two frequencies alone.

2.3.2. Matching Pursuit. Mallat and Zhang [29] discussed a general method for
approximate decomposition (1.2) that addresses the sparsity issue directly. Starting
from an initial approximation s(0) = 0 and residual R(0) = s, it builds up a sequence
of sparse approximations stepwise. At stage k, it identifies the dictionary atom that
best correlates with the residual and then adds to the current approximation a scalar
multiple of that atom, so that s(k) = s(k−1) + αkφγk , where αk = 〈R(k−1), φγk〉 and
R(k) = s − s(k). After m steps, one has a representation of the form (1.2), with
residual R = R(m). Similar algorithms were proposed by Qian and Chen [39] for
Gabor dictionaries and by Villemoes [48] for Walsh dictionaries. A similar algorithm
was proposed for Gabor dictionaries by Qian and Chen [39]. For an earlier instance
of a related algorithm, see [5].

An intrinsic feature of the algorithm is that when stopped after a few steps, it
yields an approximation using only a few atoms. When the dictionary is orthogonal,
the method works perfectly. If the object is made up of only m � n atoms and the
algorithm is run for m steps, it recovers the underlying sparse structure exactly.

When the dictionary is not orthogonal, the situation is less clear. Because the
algorithm is myopic, one expects that, in certain cases, it might choose wrongly in the
first few iterations and end up spending most of its time correcting for any mistakes
made in the first few terms. In fact this does seem to happen.

To see this, we consider an attempt at superresolution. Figure 2.4a portrays again
the signal TwinSine consisting of sinusoids at two closely spaced frequencies. When
MP is applied in this case (Figure 2.4c), using the fourfold overcomplete discrete
cosine dictionary, the initial frequency selected is in between the two frequencies
making up the signal. Because of this mistake, MP is forced to make a series of
alternating corrections that suggest a highly complex and organized structure. MP
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Fig. 2.5 Counterexamples for MP.

misses entirely the doublet structure. One can certainly say in this case that MP has
failed to superresolve.

Second, one can give examples of dictionaries and signals where MP is arbitrarily
suboptimal in terms of sparsity. While these are somewhat artificial, they have a
character not so different from the superresolution example.

DeVore and Temlyakov’s Example. Vladimir Temlyakov, in a talk at the IEEE Confer-
ence on Information Theory and Statistics in October 1994, described an example in
which the straightforward greedy algorithm is not sparsity preserving. In our adapta-
tion of this example, based on Temlyakov’s joint work with DeVore [12], one constructs
a dictionary having n + 1 atoms. The first n are the Dirac basis; the final atom in-
volves a linear combination of the first n with decaying weights. The signal s has an
exact decomposition in terms of A atoms, but the greedy algorithm goes on forever,
with an error of size O(1/

√
m) after m steps. We illustrate this decay in Figure 2.5a.

For this example we set A = 10 and choose the signal st = 10−1/2 · 1{1≤t≤10}. The
dictionary consists of Dirac elements φγ = δγ for 1 ≤ γ ≤ n and

φn+1(t) =
{
c, 1 ≤ t ≤ 10,
c/(t− 10), 10 < t ≤ n,

with c chosen to normalize φn+1 to unit norm.
Shaobing Chen’s Example. The DeVore–Temlyakov example applies to the original

MP algorithm as announced by Mallat and Zhang in 1992. A later refinement of the
algorithm (see Pati, Rezaiifar, and Krishnaprasad [38] and Davis, Mallat, and Zhang
[11]) involves an extra step of orthogonalization. One takes all m terms that have
entered at stage m and solves the least-squares problem

min
(αi)

∥∥∥∥∥s−
m∑
i=1

αiφγi

∥∥∥∥∥
2
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for coefficients (α(m)
i ). Then one forms the residual R̄[m] = s−∑m

i=1 α
(m)
i φγi , which

will be orthogonal to all terms currently in the model. This method was called or-
thogonal matching pursuit (OMP) by Pati, Rezaiifar, and Krishnaprasad [38]. The
DeVore–Temlyakov example does not apply to OMP, but in 1993 Shaobing Chen
found a similar example that does. In this example, a special signal and dictio-
nary are constructed, with the following flavor. The dictionary is composed of atoms
φγ with γ ∈ {1, . . . , n}. The first A atoms come from the Dirac dictionary with
γ ∈ {1, . . . , A}, φγ = δγ . The signal is a simple equiweighted linear combination of
the first A atoms: s = A−1∑A

i=1 φi. Dictionary atoms with γ > A are a linear combi-
nation of the corresponding Dirac δγ and s. OMP chooses all atoms except the first A
before ever choosing one of the first A. As a result, instead of the ideal behavior one
might hope for, terminating after just A steps, one gets n steps before convergence,
and the rate is relatively slow. We illustrate the behavior of the reconstruction error
in Figure 2.5b. We chose A = 10 and n = 1024. The dictionary was φi = δi for
1 ≤ i ≤ 10 and φi =

√
as +

√
1− aei for 11 ≤ i ≤ n, where a = 2/10. With these

parameters, ‖R̄[m]‖2 = (1−a)/
√
1 + (m− 1)a, whereas one might have hoped for the

ideal behavior R̄[m] = 0,m ≥ 11.
2.3.3. Best Orthogonal Basis. For certain dictionaries, it is possible to develop

specific decomposition schemes custom tailored to the dictionary.
Wavelet packet and cosine packet dictionaries are examples; they have very special

properties. Certain special subcollections of the elements in these dictionaries amount
to orthogonal bases; in this way one gets a wide range of orthonormal bases (in fact
� 2n such orthogonal bases for signals of length n).

Coifman and Wickerhauser [7] have proposed a method of adaptively picking from
among these many bases a single orthogonal basis that is the “best basis.” If (s[B]I)I
denotes the vector of coefficients of s in orthogonal basis B, and if we define the
“entropy” E(s[B]) =∑I e(s[B]I), where e(s) is a scalar function of a scalar argument,
they give a fast algorithm for solving

min {E(s[B]) : B ortho basis ⊂ D}.

The algorithm in some cases delivers near-optimal sparsity representations. In
particular, when the object in question has a sparse representation in an orthogonal
basis taken from the library, one expects that BOB will work well. However, when
the signal is composed of a moderate number of highly nonorthogonal components,
the method may not deliver sparse representations—the demand that BOB find an
orthogonal basis prevents it from finding a highly sparse representation. An example
comes from the signal WernerSorrows, which is a superposition of several chirps,
sinusoids, and Diracs; see Figure 2.6a. When analyzed with a cosine packet dictionary
and the original Coifman–Wickerhauser entropy, BOB finds nothing: it chooses a
global sinusoid basis as best. The lack of time-varying structure in that basis means
that all chirp and transient structure in the signal is missed entirely; see Figure 2.6b.

3. BP. We now discuss our approach to the problem of overcomplete representa-
tions. We assume that the dictionary is overcomplete, so that there are in general
many representations s =

∑
γ αγφγ .

The principle of BP is to find a representation of the signal whose coefficients
have minimal �1 norm. Formally, one solves the problem

min ‖α‖1 subject to Φα = s.(3.1)
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Fig. 2.6 Analyzing the signal WernerSorrows with a cosine packet dictionary.

From one point of view, (3.1) is very similar to the MOF (2.3): we are simply
replacing the �2 norm in (2.3) with the �1 norm. However, this apparently slight
change has major consequences. The MOF leads to a quadratic optimization problem
with linear equality constraints and so involves essentially just the solution of a system
of linear equations. In contrast, BP requires the solution of a convex, nonquadratic
optimization problem, which involves considerably more effort and sophistication.

3.1. LP. To explain the last comment and BP, we develop a connection with LP.
The linear program in so-called standard form [8, 21] is a constrained optimization

problem defined in terms of a variable x ∈ Rm by

min cTx subject to Ax = b, x ≥ 0,(3.2)

where cTx is the objective function, Ax = b is a collection of equality constraints,
and x ≥ 0 is a set of bounds. The main question is which variables should be zero.

The BP problem (3.1) can be equivalently reformulated as a linear program in
the standard form (3.2) by making the following translations:

m⇔ 2p, A⇔ (Φ,−Φ), b⇔ s, c⇔ (1; 1), x⇔ (u;v), α⇔ u− v.

Hence the solution of (3.1) can be obtained by solving an equivalent linear program.
(The equivalence of minimum �1 optimizations with LP has been known since the
1950s; see [2].) The connection between BP and LP is useful in several ways.

3.1.1. Solutions as Bases. In the LP problem (3.2), suppose A is an n-by-m
matrix with m > n, and suppose an optimal solution exists. It is well known that
a solution exists in which at most n of the entries in the optimal x are nonzero.
Moreover, in the generic case, the solution is so-called nondegenerate, and there are
exactly n nonzeros. The nonzero coefficients are associated with n columns of A,
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and these columns make up a basis of Rn. Once the basis is identified, the solution
is uniquely dictated by the basis. Thus finding a solution to the LP is identical to
finding the optimal basis. In this sense, LP is truly a process of BP.

Translating the LP results into BP terminology, we have the decomposition

s =
n∑
i=1

α�γiφγi .

The waveforms (φγi) are linearly independent but not necessarily orthogonal. The
collection γi is not, in general, known in advance but instead depends on the problem
data (in this case s). The selection of waveforms is therefore signal adaptive.

3.1.2. Algorithms. BP is an optimization principle, not an algorithm. Over
the last 40 years, a tremendous amount of work has been done on the solution of
linear programs. Until the 1980s, most work focused on variants of Dantzig’s sim-
plex algorithm, which many readers have no doubt studied. In the last ten years,
some spectacular breakthroughs have been made by the use of so-called interior-point
methods, which use an entirely different principle.

From our point of view, we are free to consider any algorithm from the LP lit-
erature as a candidate for solving the BP optimization problem; both the simplex
and interior-point algorithms offer interesting insights into BP. When it is useful to
consider BP in the context of a particular algorithm, we will indicate this by the label:
either BP-simplex or BP-interior.

BP-Simplex. In standard implementations of the simplex method for LP, one first
finds an initial basis B consisting of n linearly independent columns of A for which the
corresponding solution B−1b is feasible (nonnegative). Then one iteratively improves
the current basis by swapping, at each step, one term in the basis for one term not
in the basis, using the swap that best improves the objective function. There always
exists a swap that improves or maintains the objective value, except at the optimal
solution. Moreover, LP researchers have shown how one can select terms to swap in
such a way as to guarantee convergence to an optimal solution (anticycling rules) [21].
Hence the simplex algorithm is explicitly a process of BP: iterative improvement of a
basis until no improvement is possible, at which point the solution is achieved.

Translating this LP algorithm into BP terminology, one starts from any linearly
independent collection of n atoms from the dictionary. One calls this the current
decomposition. Then one iteratively improves the current decomposition by swapping
atoms in the current decomposition for new atoms, with the goal of improving the
objective function. By application of anticycling rules, there is a way to select swaps
that guarantees convergence to an optimal solution (assuming exact arithmetic).

BP-Interior. The collection of feasible points {x : Ax = b, x ≥ 0} is a convex
polyhedron in Rm (a “simplex”). The simplex method, viewed geometrically, works by
walking around the boundary of this simplex, jumping from one vertex (extreme point)
of the polyhedron to an adjacent vertex at which the objective is better. Interior-
point methods instead start from a point x(0) well inside the interior of the simplex
(x(0) � 0) and go “through the interior” of the simplex. Since the solution of a linear
program is always at an extreme point of the simplex, as the interior-point method
converges, the current iterate x(k) approaches the boundary. One may abandon the
basic interior-point iteration and invoke a “crossover” procedure that uses simplex
iterations to find the optimizing extreme point.

Translating this LP algorithm into BP terminology, one starts from a solution to
the overcomplete representation problem Φα(0) = s with α(0) > 0. One iteratively
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Fig. 3.1 Analyzing the signal Carbon with a wavelet packet dictionary.

modifies the coefficients, maintaining feasibility Φα(k) = s and applying a transfor-
mation that effectively sparsifies the vector α(k). At some iteration, the vector has
≤ n significantly nonzero entries, and it “becomes clear” that those correspond to
the atoms appearing in the final solution. One forces all the other coefficients to
zero and “jumps” to the decomposition in terms of the ≤ n selected atoms. (More
general interior-point algorithms start with a(0) > 0 but don’t require the feasibility
Φα(k) = s throughout; they achieve feasibility eventually.)

3.2. Examples. We now give computational examples of BP in action.

3.2.1. Carbon. The synthetic signal Carbon is a composite of six atoms: a Dirac,
a sinusoid, and four mutually orthogonal wavelet packet atoms, adjacent in the time-
frequency plane. The wavelet packet dictionary of depth D = log2(n) is employed,
based on filters for symmlets with eight vanishing moments. (Information about
problem sizes for all examples is given in Table 6.1.)

Figure 3.1 displays the results in phase-plane form; for comparison, we include the
phase planes obtained using MOF, MP, and BOB. First, note that MOF uses all basis
functions that are not orthogonal to the six atoms, i.e., all the atoms at times and
frequencies that overlap with some atom appearing in the signal. The corresponding
phase plane is very diffuse or smeared out. Second, MP is able to do a relatively
good job on the sinusoid and the Dirac, but it makes mistakes in handling the four
close atoms. Third, BOB cannot handle the nonorthogonality between the Dirac and
the cosine; it gives a distortion (a coarsening) of the underlying phase plane picture.
Finally, BP finds the “exact” decomposition in the sense that the four atoms in the
quad, the Dirac, and the sinusoid are all correctly identified.

3.2.2. TwinSine. Recall that the signal TwinSine in Figure 2.4a consists of two
cosines with frequencies closer together than the Rayleigh distance. In Figure 2.4d,
we analyze these in the fourfold overcomplete discrete cosine dictionary. Recall that
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Fig. 3.2 Analyzing the signal FM-Cosine with a cosine packet dictionary.

in this example MP began by choosing at the first step a frequency in between the
two ideal ones and then never corrected the error. In contrast, BP resolves the two
frequencies correctly.

3.2.3. FM Signal. Figure 3.2a displays the artificial signal FM-Cosine consisting
of a frequency-modulated sinusoid superposed with a pure sinusoid: s = cos(ξ0t) +
cos((ξ0t+ α cos(ξ1t))t). Figure 3.2b shows the ideal phase plane.

In Figure 3.2c–3.2f we analyze it using the cosine packet dictionary based on a
bell 16 samples wide. It is evident that BOB cannot resolve the nonorthogonality
between the sinusoid and the FM signal. Neither can MP. However, BP yields a clean
representation of the two structures.

3.2.4. Gong. Figure 3.3a displays the Gong signal, which vanishes until time t0
and then follows a decaying sinusoid for t > t0.

In Figures 3.3c–3.3d, we analyze it with the cosine packet dictionary based on a
bell 16 samples wide. BP gives the finest representation of the decay structure, which
is visually somewhat more interpretable than the BOB and MP results.

3.3. Comparisons. We briefly compare BP with the three main methods intro-
duced in section 2.3.

3.3.1. Matching Pursuit. At first glance MP and BP seem quite different. MP
is an iterative algorithm, which does not explicitly seek any overall goal but merely
applies a simple rule repeatedly. In contrast, BP is a principle of global optimization
without any specified algorithm. The contrast of orthogonal MP with a specific algo-
rithm, BP-simplex, may be instructive. Orthogonal matching pursuit starts from an
“empty model” and builds up a signal model an atom at a time, at each step adding
to the model only the most important new atom among all those not already in the
model. In contrast, BP-simplex starts from a “full” model (i.e., a representation of the
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Fig. 3.3 Analyzing the signal Gong with a cosine packet dictionary.

object in a basis) and then iteratively improves the “full” model by taking relatively
useless terms out of the model and swapping them for useful new ones. Hence MP is
a sort of build-up approach, while BP-simplex is a sort of swap-down approach.

3.3.2. Best Orthogonal Basis. To make BP and BOB most comparable, suppose
that they are both working with a cosine packet dictionary, and note that the �1 norm
of coefficients is what Coifman and Wickerhauser [7] called an “additive measure of
information.” So suppose we apply the Coifman–Wickerhauser best basis algorithm
with entropy E = �1. Then the two methods compare as follows: in BOB, we are
optimizing E only over orthogonal bases taken from the dictionary, while in BP we
are optimizing E over all bases formed from the dictionary.

This last remark suggests that it might be interesting to apply the BOB procedure
with the �1 norm as entropy in place of the standard Coifman–Wickerhauser entropy.
In Figure 2.6c we try this on the WernerSorrows example of section 2.3.3. The
signal is analyzed in a cosine packet dictionary, with primitive bell width 16. The
�1 entropy results in a time-varying basis that reveals clearly some of the underlying
signal structure. The �1 entropy by itself improves the performance of BOB, but BP
does better still (Figure 2.6d).

This connection between BP and BOB suggests an interesting algorithmic idea.
In the standard implementation of the simplex method for LP, one starts from an
initial basis and then iteratively improves the basis by swapping one term in the
basis for one term not in the basis, using the swap that best improves the objective
function. Which initial basis will be used? It seems natural in BP-simplex to use the
Coifman–Wickerhauser algorithm and employ as a start the BOB.

With this choice of starting basis, BP can be seen as a method of refining BOB
by swapping nonorthogonal atoms with orthogonal ones whenever this will improve
the objective.
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Fig. 3.4 Phase plane evolution at BP-interior iteration.

3.3.3. MOF. As already discussed, MOF and BP differ in the replacement of an
l2 objective function by an l1 objective. BP-interior has an interesting relation to
the MOF. BP-interior initializes with the MOF solution. Hence one can say that BP
sequentially “improves” on the MOF. Figure 3.4 shows a “movie” of BP-interior in
action on the FM-Cosine example, using a cosine packet dictionary. Six stages in the
evolution of the phase plane are shown, and one can see how the phase plane improves
in clarity, step by step.

4. Variations. The recent development of time-frequency dictionaries motivates
most of what we have done so far. However, the methods we have developed are
general and can be applied to other dictionaries, with interesting results.

4.1. Stationary SmoothWavelets. The usual (orthonormal) dictionaries of (pe-
riodized) smooth wavelets consist of wavelets at scales indexed by j = j0, . . . , log2(n)
− 1; at the jth scale, there are 2j wavelets of width n/2j . The wavelets at this scale
are all circulant shifts of each other, the shift being n/2j samples. Some authors [45]
have suggested that this scheme can be less than satisfactory, essentially because the
shift between adjacent wavelets is too large. They would say that if the important
“features” of the signal are (fortuitously) “aligned with” the wavelets in the dictio-
nary, then the dictionary will provide a sparse representation of the signal; however,
because there are so few wavelets at level j, then most likely the wavelets in the dic-
tionary are not “precisely aligned” with features of interest, and the dictionary may
therefore provide a very diffuse representation.

The stationary wavelet dictionary has, at the jth level, n (not 2j) wavelets; these
are all the circulant shifts of the basic wavelet of width ≈ n/2j . Since this dictionary
always contains wavelets “aligned with” any given feature, the hope is that such a
dictionary provides a superior representation.
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Fig. 4.1 Analyzing the signal HeaviSine with a stationary wavelet dictionary.

Figure 4.1a shows the signal HeaviSine, and Figure 4.1b shows the result of BP
with the stationary symmlet-8 dictionary mentioned in section 2.1; the coefficients
are displayed in a multiresolution fashion, where at level j all the coefficients of scale
2j/n are plotted according to spatial position.

There is a surprisingly close agreement of the BP representation in a station-
ary wavelet dictionary with ideas about signal representation associated with the
“multiscale edges” ideas of Mallat and Hwang [28] and Mallat and Zhong [30]. The
multiscale edge method analyzes the continuous wavelet transform (CWT) at scale
2−j and identifies the maxima of this transform. Then it selects maxima that are
“important” by thresholding based on amplitude. These “important” maxima iden-
tify important features of the signal. Mallat and Zhong proposed an iterative method
that reconstructs an object having the same values of the CWT at “maxima.” This
is almost (but not quite) the same thing as saying that one is identifying “important”
wavelets located at the corresponding maxima and reconstructing the object using
just those maxima.

Figure 4.1c shows a CWT of HeaviSine based on the same symmlet-8 wavelet,
again in multiresolution fashion; Figure 4.1d shows the maxima of the CWT. At
fine scales, there is virtually a one-to-one relationship between the maxima of the
transform and the wavelets selected by BP; compare Figure 4.1b. So in a stationary
wavelet dictionary, the global optimization principle BP yields results that are close
to certain heuristic methods.

As an important contrast, Meyer has a counterexample to multiscale edge ap-
proaches, which shows that the Mallat–Zhong approach may fail in certain cases [34],
but there can be no such counterexamples to BP.

4.2. Dictionary Mergers. An important methodological tool is the ability to
combine dictionaries to make bigger, more expressive dictionaries. We mention here
two possibilities. Examples of such decompositions are given in section 5 below.
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Jump+sine. Merge the heaviside dictionary with a Fourier dictionary. Either
dictionary can efficiently represent objects that the other cannot; for example, heavi-
sides have difficulty representing sinusoids, while sinusoids have difficulty representing
jumps. Their combination might therefore be able to offer the advantages of both.

Jump+wavelet. For similar reasons, one might want to merge heavisides with
wavelets. In fact, we have found it sometimes preferable instead to merge “tapered
heavisides” with wavelets; these are step discontinuities that start at 0, jump at time
t0 to a level one unit higher, and later decay to the original 0 level.

5. Denoising. We now adapt BP to the case of noisy data. We assume data of
the form

y = s+ σz,

where (zi) is a standard white Gaussian noise, σ > 0 is a noise level, and s is the
clean signal. In this setting, s is unknown, while y is known. We don’t want to get
an exact decomposition of y, so we don’t apply BP directly. Instead decompositions
like (1.2) become relevant.

5.1. Proposal. Basis pursuit denoising (BPDN) refers to the solution of

min
α

1
2
‖y − Φα‖22 + λ‖α‖1.(5.1)

The solution α(λ) is a function of the parameter λ. It yields a decomposition into
signal-plus-residual:

y = s(λ) + r(λ),

where s(λ) = Φα(λ). The size of the residual is controlled by λ. As λ→ 0, the residual
goes to zero and the solution behaves exactly like BP applied to y. As λ → ∞, the
residual gets large; we have r(λ) → y and s(λ) → 0.

As we have noted in [4], (5.1) is equivalent to the following perturbed linear
program:

min
x,p

cTx+
1
2
‖p‖2 subject to Ax+ δp = b, x ≥ 0, δ = 1,

where A = (Φ,−Φ), b = y, c = λ(1; 1), x = (u;v), α = u−v. Perturbed LP is really
quadratic programming, but it retains a structure similar to LP [20]. Hence we can
have a similar classification of algorithms into BPDN-simplex and BPDN-interior-
point types. (In quadratic programming, “simplex-like” algorithms are usually called
active set algorithms, so our label is admittedly nonstandard.)

5.2. Choice of λ. Assuming the dictionary is normalized so that ‖φγ‖2 = 1 for
all γ, we set λ to the value

λp = σ
√
2 log(p),

where p is the cardinality of the dictionary.
This can be motivated as follows. In the case of a dictionary that is an orthonor-

mal basis, a number of papers [13, 18] have carefully studied an approach to denoising
by so-called soft thresholding in an orthonormal basis. In detail, suppose that Φ is
an orthogonal matrix, and define empirical Φ-coefficients by

ỹ = ΦTy.
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Define the soft threshold nonlinearity ηλ(y) = sgn(y) · (|y| − λ)+ and define the
thresholded empirical coefficients by

α̂γ = ηλn(ỹγ), γ ∈ Γ.
This is soft thresholding of empirical orthogonal coefficients. The papers just cited
show that thresholding at λn has a number of optimal and near-optimal properties
regarding mean-squared error.

We claim that (again in the case of an ortho basis) the thresholding estimate α̂ is
also the solution of (5.1). Observe that the soft-thresholding nonlinearity solves the
scalar minimum problem

ηλ(y) =
1
2
arg min

ξ
(y − ξ)2 + λ|ξ|.(5.2)

Note that, because of the orthogonality of Φ, ‖y − Φα‖2 = ‖ỹ − α‖2, and so we can
rewrite (5.1) in this case as

min
α

1
2

∑
γ

(ỹγ − αγ)2 + λ
∑
γ

|αγ |.(5.3)

Now applying (5.2) coordinatewise establishes the claim.
The scheme we have suggested here—to be applied in overcomplete as well as

orthogonal settings—therefore includes soft thresholding in ortho bases as a special
case. Formal arguments similar to those in [17] can be used to give a proof that mean-
squared error properties of the resulting procedure are near optimal under certain
conditions.

5.3. Examples. We present two examples of BPDN in action with time-frequency
dictionaries. We compare BPDN with three other denoising methods adapted from
MOF, MP, and BOB. Method of frames denoising (MOFDN) refers to minimizing the
squared l2 error plus an l2 penalizing term

min
α
‖s− Φα‖22 + λ‖α‖22,

where λ is a penalizing parameter; we chose λ in these examples to be σ
√
2 log(p).

Matching pursuit denoising (MPDN) runs MP until the coefficient associated with the
selected atom gets below the threshold σ

√
2 log(p). Best orthogonal basis denoising

(BOBDN) is a thresholding scheme in the basis chosen by the BOB algorithm with a
special entropy [16].

5.3.1. Gong. Figure 5.1 displays denoising results on the signal Gong, at signal
to noise ratio 1, using a cosine packet dictionary. Figure 5.1a displays the noiseless
signal and Figure 5.1b displays a noisy version. Figures 5.1c–5.1f display denoising
results for MOF, BOB, MP, and BP, respectively. BP outperforms the other methods
visually.

5.3.2. TwinSine. Figure 5.2 employs the signal TwinSine, described earlier, to
investigate superresolution in the noisy case. Figures 5.2a and 5.2b give the noise-
less and noisy TwinSine, respectively. Using a fourfold overcomplete discrete cosine
dictionary, reconstructions by the MOF, MP, and BPDN are given. MOF gives a
reconstruction that is inherently resolution limited and oscillatory. As in the noiseless
case, MP gives a reconstruction that goes wrong at step 1—it selects the average of
the two frequencies in the TwinSine signal. BP correctly resolves the nonnegative
doublet structure.
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Fig. 5.1 Denoising noisy Gong with a cosine packet dictionary.
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Fig. 5.2 Denoising noisy TwinSine-2 with a fourfold overcomplete discrete cosine dictionary.

5.4. Total Variation Denoising. Recently, Rudin, Osher, and Fatemi [41] have
called attention to the possibility of denoising images using total variation penalized
least squares. More specifically, they proposed the optimization problem

min
g

1
2
‖y − g‖22 + λ · TV (g),(5.4)
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Fig. 5.3 Denoising noisy Blocks.

where TV (g) is a discrete measure of the total variation of g. A solution of this
problem is the denoised object. Li and Santosa [26] have developed an alternative
algorithm for this problem based on interior-point methods for convex optimization.

For the one-dimensional case (signals rather than images) it is possible to imple-
ment what amounts to total variation denoising by applying BPDN with a heaviside
dictionary. Indeed, if s is an arbitrary object, it has a unique decomposition in heav-
isides (recall (2.1)). Suppose that the object is 0 at t = 0 and t = n− 1 and that the
decomposition is s =

∑
i αiHti ; then the total variation is given by

TV (s) =
∑
i �=0

|αi|.

Moreover, to get approximate equality even for objects not obeying zero-boundary
conditions, one has only to normalize φ0 appropriately. Consequently, total variation
denoising is essentially a special instance of our proposal (5.1).

We have studied BPDN in the heaviside dictionary, thereby obtaining essentially
a series of tests of total variation denoising. For comparison, we also considered
soft thresholding in orthogonal wavelet dictionaries based on the S8-symmlet smooth
wavelet. We also constructed a new dictionary, based on the jump+wave merger of S8-
symmlet wavelets with “smoothly tapered heavisides,” which is to say atoms φγ that
jump at a given point γ and then decay smoothly away from the discontinuity. For
comparability with the heaviside dictionary, we normalized the jump+wave dictionary
so that every ‖φγ‖TV ≈ 1.

A typical result for the object Blocky is presented in Figure 5.3. From the point of
view of visual appearance, total variation reconstruction (Figure 5.3d) far outperforms
the other methods.

Of course, the object Blocky has a very sparse representation in terms of heavi-
sides. When we consider an object like Cusp, which is piecewise smooth rather than
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Fig. 5.4 Denoising noisy Cusp.

piecewise constant, the object will no longer have a sparse representation. On the
other hand, using the jump+wave dictionary based on a merger of wavelets with ta-
pered heavisides will lead to a sparse representation—see Figure 5.4c. One can predict
that a heaviside dictionary will perform less well than this merged dictionary.

This completely obvious comment, translated into a statement about TV de-
noising, becomes a surprising prediction. One expects that the lack of sparse rep-
resentation of smooth objects in the heaviside dictionary will translate into worse
performance of total variation denoising than of BPDN in the merged jump+wave
dictionary.

To test this, we conducted experiments. Figure 5.4 compares total variation
denoising, wavelet denoising, and BPDN in the merged jump+wave dictionary. Total
variation denoising now exhibits visually distracting stairstep artifacts; the dictionary
jump+wave seems to us to behave much better.

6. Solutions of Large-Scale Linear Programs. As indicated in section 3.1, the
optimization problem (3.1) is equivalent to a linear program (3.2). Also, as in sec-
tion 5.1, the optimization problem (5.1) is equivalent to a perturbed linear program
(5.3). The problems in question are large scale; we have conducted decompositions of
signals of length n = 8192 in a wavelet packet dictionary, leading to a linear program
of size 8192 by 212,992.

Over the last ten years there has been a rapid expansion in the size of linear
programs that have been successfully solved using digital computers. An overview
of the rapid progress in this field is afforded by the article of Lustig, Marsten, and
Shanno [27] and the accompanying discussions by Bixby [1], Saunders [43], Todd [46],
and Vanderbei [47]. Much of the rapid expansion in the size of linear programs solved
is due to the “interior-point revolution” initiated by Karmarkar’s proof that a pseudo-
polynomial-time algorithm could be based on an interior-point method [24]. Since
then a wide array of interior-point algorithms have been proposed and considerable
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practical [25, 27, 32, 50] and theoretical [49, 35, 40] understanding is now available.
In this section we describe our algorithm and our experience with it.

6.1. Duality Theory. We consider the linear program in the standard form

min cTx subject to Ax = b, x ≥ 0.(6.1)

This is often called the primal linear program. The primal linear program is equivalent
to the dual linear program

max bTy subject to ATy + z = c, z ≥ 0.(6.2)

x is called the primal variable; y and z are called the dual variables. For any (x, y, z)
with x ≥ 0 and z ≥ 0, the term primal infeasibility refers to the quantity ‖b−Ax‖2;
the term dual infeasibility refers to ‖c− z−ATy‖2; the term duality gap refers to the
difference between the primal objective and the dual objective: cTx− bTy.

A fundamental theorem of LP states that (x,y, z) solves the linear program (6.1)
if and only if the primal infeasibility, the dual infeasibility, and the duality gap are
all zero. Therefore, when (x,y, z) are nearly primal feasible and nearly dual feasible,
the duality gap offers a good description about the accuracy of (x,y, z) as a solution:
the smaller the duality gap is, the closer (x,y, z) are to the optimal solution.

6.2. A Primal-Dual Log-Barrier LPAlgorithm. Mathematical work on interior-
point methods over the last ten years has led to a large variety of approaches with
names like projective scaling, (primal/dual) affine scaling, (primal/dual) logarithmic
barrier, and predictor corrector. We cannot summarize all these ideas here; many of
them are mentioned in [49, 27, 50, 40], for example.

Our approach is based on a primal-dual log-barrier algorithm. In order to reg-
ularize standard LP, Gill et al. [20] proposed solving the following perturbed linear
program:

min cTx+
1
2
‖γx‖2 + 1

2
‖p‖2 subject to Ax+ δp = b, x ≥ 0,(6.3)

where γ and δ are normally small (e.g., 10−4) regularization parameters. (We com-
ment that such a perturbed linear program with δ = 1 solves the BPDN problem
(5.1).) The main steps of the interior-point algorithm are as follows.

1. Set parameters: the feasibility tolerance FeaTol, the duality gap tolerance
PDGapTol, the two regularization parameters γ and δ.

2. Initialize x > 0, y = 0, z > 0, µ > 0.
3. Loop

(a) Compute residuals and diagonal matrix D:

t = c+ γ2x− z−ATy,

r = b−Ax− δ2y,

v = µe− Zx,

D = (X−1Z + γ2I)−1,

where X and Z are diagonal matrices composed from x and z; e is a
vector of 1s.

(b) Solve

(ADAT + δ2I)∆y = r+AD(t−X−1v)(6.4)
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for ∆y and set

∆x = D(AT∆y +X−1v − t), ∆z = X−1(v − Z∆x).

(c) Calculate the primal and dual step sizes ρp, ρd and update the variables:

ρp = .99max{ρ : x+ ρ∆x ≥ 0},
ρd = .99max{ρ : z+ ρ∆z ≥ 0},
x = x+ ρp∆x, y = y + ρd∆y, z = z+ ρd∆z,

µ = (1−min(ρp, ρd, .99))µ.

4. Terminate if the following three conditions are satisfied:
(a) Primal infeasibility = ‖r‖2

1+‖x‖2 < FeaTol.

(b) Dual infeasibility = ‖t‖2
1+‖y‖2 < FeaTol.

(c) Duality gap = zTx
1+‖z‖2‖x‖2 < PDGapTol.

For fuller discussions of this and related algorithms, again see [20, 49, 27, 50, 40].
Note that when δ > 0, the central equation (6.4) may be written as the least-

squares problem

min
∆y

∥∥∥∥
(
D1/2AT

δI

)
∆y −

(
D1/2(t−X−1v)

r/δ

)∥∥∥∥
2
,(6.5)

which may be better suited to numerical solution if δ is not too small.
While in principle we could have based our approach on other interior-point

schemes, the primal-dual approach naturally incorporates several features we found
useful. First, the iterates x,y, z do not have to be feasible. We are only able to
choose a starting point that is nearly feasible and remain nearly feasible throughout
the sequence of iterations. Second, after both primal and dual feasibility have been
nearly achieved, it is easy to check for closeness to the solution value; at the limiting
solution cTx∗ = bTy∗, and the duality gap cTx−bTy ≈ xT z quantifies the distance
from this ideal.

6.3. Implementation Heuristics. The primal-dual log barrier algorithm we just
described works in a fashion similar to other interior-point methods [27]. It starts from
an initial feasible (or nearly feasible) solution located at or near the “center” of the
feasible region and iteratively improves the current solution until the iterates (x,y, z)
achieve the desired accuracy. It requires a relatively small number of iterations; for
example, a few dozen iterations would be common. Each iteration requires the solution
of a system of equations involving A, AT , and other problem data like x,y, z. In the
primal-dual log barrier method, the system is (6.4). Thus the numerical solution to
a linear program by interior-point methods amounts to a sequence of several dozen
solutions of special systems of linear equations. This leads to a slogan: if those
systems can be solved rapidly, then it is possible to solve the LP rapidly.

Of course, in general, solving systems of equations is not rapid: a general n-by-n
system Bw = h takes order O(n3) time to solve by standard elimination methods or
by modern stable factorization schemes [22, 21]. In order for practical algorithms to
be based on the interior-point heuristic, it is necessary to be able to solve the systems
of equations much more rapidly than one could solve general systems. In the current
state of the art of linear programming [27], one attempts to do this by exploiting
sparsity of the underlying matrix A.
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However, the optimization problems we are interested in have a key difference
from the successful large-scale applications outlined in [26, 1]. The matrix A we
deal with is not at all sparse; it is generally completely dense. For example, if A is
generated from a Fourier dictionary, most of the elements of A will be of the same
order of magnitude. Because of this density, it is unlikely that existing large-scale
interior-point computer codes could be easily applied to the problems described in
this paper.

In our application we have a substitute for sparsity. We consider only dictionar-
ies that have fast implicit algorithms for Φα and ΦT s and therefore lead to linear
programs where the A matrix admits fast implicit algorithms for both Au and ATv.
(Compare section 2.2.2.) Now whenever one has fast implicit algorithms, it is natu-
ral to think of solving equations by conjugate-gradient methods; such methods allow
one to solve equations Bw = h using only products Bv with various strategically
chosen vectors v. Adapting such ideas, one develops fast implicit algorithms for
(ADAT +δ2I)v and attempts to solve the central equations (6.4) iteratively, avoiding
the costly step of explicitly forming the matrices (ADAT + δ2I).

Similarly, the algorithms for Au and ATv can be used directly in conjugate-
gradient methods such as LSQR [36, 37] for solving the least-squares problem (6.5).

In our application, we do not really need an exact solution of the optimization
problem. Moreover, we have a natural initial solution—from MOF—that would be
viewed by some researchers as already an acceptable method of atomic decomposition.
By starting from this decomposition and applying a strategy based on a limited num-
ber of iterations of our algorithm, we get what we view as an iterative improvement
on MOF. (Compare Figure 3.4.) We stress that our strategy is to “pursue an optimal
basis.” While we would like to reach the optimal basis, we make no specific claims
that we can always reach it in reasonable time; perhaps the “pursuit” language will
help remind one of this fact. We do believe that the pursuit process, carried out for
whatever length of time we are willing to invest in it, makes a useful improvement
over the MOF.

6.4. Routine Settings for BP. Our strategy for routine signal processing by BP
is as follows.

• We employ the “primal-dual logarithmic barrier method” for perturbed LP
[20], as described in section 6.2.
• We assume fast implicit algorithms for Au and ATv.
• We only aim to reach an approximate optimum. FeaTol = 10−1 and PDGapTol
= 10−1 would usually suffice for this.

• Each barrier iteration involves approximate solution of the central equations
(6.4) using the conjugate-gradient method, e.g., with CGAccuracy = 10−1.

We refer the reader to [4] for a more detailed discussion of our implementation.

6.5. Complexity Analysis. Table 6.1 displays the CPU times spent running var-
ious atomic decomposition techniques in our experiments; all computation was done
on a Sun Sparc20 workstation. We employ a conjugate-gradient solver for the gen-
eralized inverse in the MOF solution (2.4); the resulting algorithm for MOF has a
complexity of O(n log(n)). (Note that it would be numerically preferable to apply
Craig’s method or LSQR to problem (2.3); see [36].) We implement Coifman and
Wickerhauser’s BOB algorithm [7], which also has complexity O(n log(n)). We ob-
serve that BP is typically slower than MOF and BOB. BP is also slower than MP
(which has a quasi-linear complexity, depending on the number of chosen atoms)
except on the FM-Cosine signal in Figure 3.2.
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Table 6.1 CPU running times of the examples.

CPU running time in seconds
Figure Signal Problem size

MOF BOB MP BP
Figure 2.4 TwinSine 256 .3500 – .6667 7.517
Figure 2.6 WernerSorrows 1024 – .9500 – 158.2
Figure 3.1 Carbon 1024 .2000 2.617 2.650 11.70
Figure 3.2 FM-Cosine 1024 1.050 .9333 182.9 150.2
Figure 3.3 Gong 1024 1.433 5.683 50.63 448.2
Figure 4.1 HeaviSine 256 – – – 26.92
Figure 5.1 Noisy Gong 1024 2.117 6.767 8.600 142.2
Figure 5.2 Noisy TwinSine 256 .4167 – .6833 5.717

Several factors influence the running time of BP.
1. Problem sizes. The complexity goes up quasi-linearly as the problem size

increases [4]. By this we mean merely that the innermost computational step—a
conjugate-gradient iteration—has a complexity that scales with problem size like O(n)
or O(n log(n)) depending on the type of dictionary we are using. We generally run the
algorithm using parameters set so that the number of invocations of this innermost
step increases only gradually with problem size.

2. Parameter settings. The complexity of our primal-dual logarithmic barrier
interior-point implementation depends on both the accuracy of the solution and the
accuracy of the conjugate-gradient solver. The accuracy of the solution is determined
by the two parameters FeaTol, PDGapTol controlling the number of barrier iterations,
and the parameter CGAccuracy, which decides the accuracy of the conjugate-gradient
solver and consequently the number of conjugate-gradient iterations. As the required
solution accuracy goes up, the complexity goes up drastically. We recommend setting
FeaTol, PDGapTol, and CGAccuracy at 10−1 for routine signal processing; we recom-
mend 10−2 or 10−3 when one is interested in superresolution. We used the setting
10−1 for the computational experiments presented in Figures 2.6, 3.1–3.3, 5.1, and
5.3. In Figures 2.5, 3.2, and 5.2, we attempted to superresolve two cosines with close
frequencies; thus we used the setting 10−2. In Figure 4.1, we used the setting 10−3.

3. Signal complexity. When the signal has a very sparse representation, the al-
gorithm converges quickly. The signal Carbon, which contains only six atoms from
a wavelet packet dictionary, takes about 10 seconds, whereas it takes about seven
minutes for the signal Gong, which is much more complex.

4. BP versus BPDN. We employ the same interior-point implementation for BP
and BPDN, except for a difference in the value of the regularization parameter δ:
δ is small, e.g., 10−4 for BP, while δ = 1 for BPDN. The choice δ = 1 helps: it
regularizes the central equations to be solved at each barrier iteration. Thus the
BPDN implementation (BPDN Interior.m on the Atomizer web site; see section 7.3)
seems to converge more quickly than BP Interior.m. For example, according to our
experiments [4], it takes only three minutes to perform BPDN on the noisy Gong
signal of length 1024 with a cosine packet dictionary at the parameter setting 10−3;
it takes about eight hours to perform BP on the signal Gong at the same parameter
setting.

5. Alternative implementations. We have recently developed BP Interior2.m and
BPDN Interior2.m, in which pdsco.m [44] is used to solve the perturbed LP problem
(6.3), with a MATLAB form of LSQR being applied to the least-squares problem
(6.5) to compute ∆y. pdsco.m has a more elaborate strategy for adjusting the barrier
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parameter µ, and LSQR incorporates reliable stopping rules for its conjugate-gradient-
type method. We wish to explore more fully the effect of BPAccuracy and CGAccuracy
using these codes. Comparisons will be reported on the Atomizer web site.

6.6. Alternative Algorithms for BPDN. For certain dictionaries, Sardy et al.
[42] showed how to minimize the BPDN function (5.1) using a block coordinate relax-
ation (BCR) method. They assumed that the columns of Φ are the union of (perhaps
many) orthonormal complete matrices Φ(1), . . . ,Φ(M), and they took advantage of the
closed form solution for ortho bases (see section 5.2).

For low-accuracy solutions, the BCR method may be significantly faster than
our primal-dual conjugate-gradient approach. Further, the BCR approach extends
naturally to complex signals (again assuming ortho union-complete bases).

7. Concluding Comments.

7.1. The Phenomenon of Ideal Atomic Decomposition. Empirically one often
observes that BP provides a kind of ideal atomic decomposition. We mean that, in
synthetic examples where “everything is known” and where by design there is a truly
sparse solution to the atomic decomposition problem, BP will typically find exactly
that sparse solution. We saw numerous examples of this phenomenon in preparing
this paper and in Chen’s thesis [4].

Recently, Donoho and Huo [15] have given a theoretical explanation. They have
proven a number of results showing that mathematically exact solution of BP in
overcomplete dictionaries can exhibit precisely the phenomenon of ideal atomic de-
composition. For example, suppose we have a combined dictionary of sinusoids and
Diracs and that the underlying object y, a discrete-time signal of length n, is truly
a superposition of fewer than

√
n/2 sinusoids and Diracs. Then (a) there is only one

way a signal can be made up of so few sinusoids and Diracs, and (b) BP in such a
dictionary will recover exactly that solution, with the frequencies and spike locations
correctly determined, along with the amplitudes and signs.

Related results are obtained for dictionaries of wavelets and sinusoids and for
dictionaries of ridgelets and wavelets, and applications are given to robust speech
scrambling.

7.2. BP Image Processing. BP has been discussed here in the context of treat-
ing one-dimensional signals, although in fact it can be used to decompose multi-
dimensional arrays, such as the two-way arrays of the type that represent images.
However, such higher dimensional arrays typically lead to much larger optimization
problems than in the one-dimensional case. When the original work for this paper was
done (1993–1995), the linear programs and quadratic programs attacked here, with
sizes of tens of thousands by hundreds of thousands, were among the very largest that
had been attempted. We would not have dared then to consider the solution of the
even larger problems that would arise in an image processing context.

Since that time, however, Moore’s law and other related phenomena (such as de-
clining memory prices and multicomputers) have made it possible to consider image
processing experiments, at least on a limited scale. Huo’s thesis [23] considered decom-
positions in an overcomplete dictionary consisting of wavelets and so-called edgelets
[14]. This allowed both dictionaries to compete on an equal footing to use exactly the
terms that best “explain” the image data.

In one experiment, Huo analyzed a digitized image and found that the humanly
interpretable information was really carried by the edgelet component of the decom-
position. This surprising finding shows that, in a certain sense, images are not made
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Fig. 7.1 Decomposition of an image in an overcomplete dictionary composed of wavelets and
edgelets; note the extent to which edgelets carry the visually interpretable component of
the solution. From Huo [23].

of wavelets, but instead, the perceptually important components of the image are
carried by edgelets. This contradicts the frequent claim that wavelets are the optimal
basis for image representation, which may stimulate discussion.

Figure 7.1 illustrates this finding; see [23] for more details. (Note: Huo’s work did
not actually apply the BP ideas and software developed here, but instead developed a
modified approach inspired by BP but specifically adapted to the needs of large-scale
image processing.)

A valuable role for BP has thus emerged. BP extracts a basis from a large
dictionary according to objective principles, in a setting where we want to understand
what the “right basis” for a given kind of data might be, rather than imposing our
own opinion.

7.3. Reproducible Research. This paper has been written following the disci-
pline of reproducible research [3]. As a complement to this article, we are releasing
the underlying software environment via the WaveLab and Atomizer web sites:

http://www-stat.stanford.edu/˜wavelab/ http://www-stat.stanford.edu/˜atomizer/
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