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Abstract. Low-rank approximation of large and/or sparse matrices is important in many ap-
plications, and the singular value decomposition (SVD) gives the best low-rank approximations with
respect to unitarily-invariant norms. In this paper we show that good low-rank approximations can
be directly obtained from the Lanczos bidiagonalization process applied to the given matrix without
computing any SVD. We also demonstrate that a so-called one-sided reorthogonalization process
can be used to maintain an adequate level of orthogonality among the Lanczos vectors and produce
accurate low-rank approximations. This technique reduces the computational cost of the Lanczos
bidiagonalization process. We illustrate the efficiency and applicability of our algorithm using nu-
merical examples from several applications areas.
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1. Introduction. In many applications such as compression of multiple-spectral
image cubes, regularization methods for ill-posed problems, and latent semantic in-
dexing in information retrieval for large document collections, to name a few, it is
necessary to find a low-rank approximation of a given matrix A ∈ Rm×n [4, 9, 17].
Often A is a sparse or structured rectangular matrix, and sometimes either m � n or
m � n. The theory of SVD provides the following characterization of the best rank-j
approximation of A in terms of Frobenius norm ‖ · ‖F [7].

Theorem 1.1. Let the SVD of A ∈ Rm×n be A = PΣQT with Σ = diag
(σ1, . . . , σmin(m,n)), σ1 ≥ · · · ≥ σmin(m,n), and P and Q orthogonal. Then for 1 ≤ j ≤
n,

min(m,n)∑
i=j+1

σ2
i = min{ ‖A−B‖2

F | rank(B) ≤ j}.

And the minimum is achieved with Aj ≡ Pj diag(σ1, . . . , σj)Q
T
j , where Pj and Qj are

the matrices formed by the first j columns of P and Q, respectively.
It follows from Theorem 1.1 that once the SVD of A is available, the best rank-j

approximation of A is readily computed. When A is large and/or sparse, however,
the computation of the SVD of A can be costly, and if we are only interested in
some Aj with j � min(m,n), the computation of the complete SVD of A is rather
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wasteful. Also, in many applications it is not necessary to compute Aj to very high
accuracy since A itself may contain certain errors. It is therefore desirable to develop
less expensive alternatives for computing good approximations of Aj . In this paper,
we explore applying Lanczos bidiagonalization process for finding approximations of
Aj . Lanczos bidiagonalization process has been used for computing a few dominant
singular triplets (singular values and the corresponding left and right singular vec-
tors) of large sparse matrices [1, 3, 6, 8]. We will show that in many cases of interest,
good low-rank approximations of A can be directly obtained from the Lanczos bidiag-
onalization process of A without computing any SVD. We will also explore relations
between the levels of orthogonality of the left Lanczos vectors and the right Lanczos
vectors and propose an efficient reorthogonalization scheme that can be used to re-
duce the computational cost of the Lanczos bidiagonalization process. The rest of the
paper is organized as follows. In section 2, we review the Lanczos bidiagonalization
process and its several variations in finite precision arithmetic. In section 3, we dis-
cuss a priori error estimations for using the low-rank approximations obtained from
Lanczos bidiagonalization process. We also derive stopping criteria for Lanczos bidi-
agonalization process in the context of computing low-rank approximations. Section
4 is devoted to orthogonalization issues in Lanczos bidiagonalization process and a
reorthogonalization scheme is proposed. In section 5, we perform numerical experi-
ments on test matrices from a variety of applications areas. Section 6 concludes the
paper.

2. The Lanczos bidiagonalization process. Bidiagonalization of a rectan-
gular matrix using orthogonal transformations such as Householder transformations
and Givens rotations was first proposed in [5]. It was later adapted to solving large
sparse least squares problems [15] and to finding a few dominant singular triplets of
large sparse matrices [1, 3, 6]. For solving least squares problems the orthogonality
of the left and right Lanczos vectors is usually not a concern and therefore no re-
orthogonalization is incorporated in the algorithm LSQR in [15].1 For computing a
few dominant singular triplets, one approach is to completely ignore the issue of loss
of orthogonality during the Lanczos bidiagonalization process and later on to identify
and eliminate those spurious singular values that are copies of true ones [3]. We will
not pursue this approach since spurious singular values will cause considerable compli-
cation in forming approximations of Aj discussed in the previous section. We opt to
use the approach that will maintain a certain level of orthogonality among the Lanc-
zos vectors [8, 16, 18, 19, 20]. Even within this approach there exist several variations
depending on how reorthogonalization is implemented. For example in SVDPACK,
a state-of-the-art software package for computing dominant singular triplets of large
sparse matrices [22], implementations of Lanczos tridiagonalization process applied
to either ATA or the 2-cyclic matrix [0 A; A’ 0] with partial reorthogonalization
are provided. Interesting enough, for the coupled two-term recurrence that will be de-
tailed in a moment, only a block version with full reorthogonalization is implemented
in SVDPACK.

Now we describe the Lanczos bidiagonalization process presented in [5, 15, 3]. Let
b be a starting vector, for i = 1, 2, . . . , compute

β1u1 = b, α1v1 = ATu1,

1Maintaining a certain level of orthogonality among the Lanczos vectors will accelerate the con-
vergence at the expense of more computational cost and storage requirement [18, Section 4].
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βi+1ui+1 = Avi − αiui,(2.1)

αi+1vi+1 = ATui+1 − βi+1vi.

Here nonnegative αi and βi are chosen such that ‖ui‖ = ‖vi‖ = 1. Throughout
the rest of the paper ‖ · ‖ always denotes either the vector or matrix two-norm. In
compact matrix form the above equations can be written as

Uk+1(β1e1) = b,

AVk = Uk+1Bk+1(:, 1 : k),

ATUk+1 = Vk+1B
T
k+1,

(2.2)

where Bk+1 ∈ R(k+1)×(k+1) is lower bidiagonal,

Bk+1 =




α1

β2 α2

. . .
. . .

βk+1 αk+1


 ,

Uk+1 = [u1, . . . , uk+1],

Vk+1 = [v1, . . . , vk+1],

and Bk+1(:, 1 : k) is Bk+1 with the last column removed.
Remark. There is another version of the Lanczos bidiagonalization recurrence

[5, 3],

α1v1 = b, β1u1 = Av1,

αi+1vi+1 = ATui − βivi,

βi+1ui+1 = Avi+1 − αi+1vi.

For A with more columns than rows, this version is usually better than (2.2) because
the chances of introducing extra zero singular values arising from m �= n is reduced
[5, 3]. However, it is easy to see that the two versions of bidiagonalization recurrences
are equivalent in the sense that if we interchange the roles of A and AT , ui and vi,
and αi and βi in (2.2), we obtain the above recurrence. In another word, we may
simply apply (2.2) to AT to obtain the above recurrence. Therefore in what follows
we will deal exclusively with recurrence (2.2). When the need arises we will simply
apply recurrence (2.2) to AT .

Now we take into account the effects of rounding errors, and we denote the com-
puted version of a quantity by adding “ˆ”. Following the error analysis in [14], it is
straightforward to show that in finite precision arithmetic, (2.2) and (2.2) become

β̂1û1 = b, α̂1v̂1 = AT û1 + g1,

β̂i+1ûi+1 = Av̂i − α̂iûi − fi, i = 1, 2, . . . ,

α̂i+1v̂i+1 = AT ûi+1 − β̂i+1v̂i − gi+1,

(2.3)

and in compact matrix form,

Ûk+1(β̂1e1) = b,

AV̂k = Ûk+1B̂k+1(:, 1 : k) + Fk,

AT Ûk+1 = V̂k+1B̂
T
k+1 +Gk+1,

(2.4)
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where ‖Fk‖ = O(‖A‖F εM ) and ‖Gk+1‖ = O(‖A‖F εM ) with εM the machine epsilon,
and

Fi = [f1, . . . , fi], Gi = [g1, . . . , gi].

To find a few dominant singular value triplets of A, one computes the SVD of Bk.
The singular values of Bk are then used as approximations of the singular values of A
and the singular vectors of Bk are combined with the left and right Lanczos vectors
{Uk} and {Vk} to form approximations of the singular vectors of A [3, 1].

Now if one is only interested in finding a low-rank approximation of A, it is
desirable that a more direct approach be used without computing the SVD of Bk.
From the convergence theory of Lanczos process, we know that Uk and Vk contains
good approximations of the dominant singular vectors of A. So it is quite natural to
use Jk ≡ UkBkV

T
k as an approximation of A. In the next section we consider a priori

estimation of ωk ≡ ‖A− Jk‖F .
3. Error estimation and stopping criterion. In this section we will assess the

error of using Jk as an approximation of A. We will also discuss ways to compute ωk

recursively in finite precision arithmetic. Many a priori error bounds have been derived
for the Ritz values/vectors computed by the Lanczos tridiagonalization process [16].
It turns out that our problem of estimating ωk a priori is rather straightforward. It all
boils down to how well a singular vector can be approximated from a Krylov subspace.
To proceed we need a result on the approximation of an eigenvector of a symmetric
matrix from a Krylov subspace [16, Section 12.4].

Lemma 3.1. Let C ∈ Rn×n be symmetric and f an arbitrary vector. Define

Km ≡ span{f, Cf, . . . , Cm−1f}.
Let C = Z diag(λi)Z

T be the eigendecomposition of C with λ1 ≥ · · · ≥ λn its eigen-
values. Write Z = [z1, . . . , zn] and define Zj = span{z1, . . . , zj}. Then

tan∠(zj ,Km) ≤ sin∠(f,Zj)Π
j−1
v=1(λv − λn)/(λv − λj)

cos∠(f, zj)Tm−j(1 + 2γ)
,

where γ = (λj − λj+1)/(λj+1 − λn).
Now let A = P diag(σi)Q

T be the SVD of A, and write P = [p1, p2, . . . , pm].
Furthermore, let P⊥

Uk
≡ (I − UkU

T
k ), the orthogonal projector onto the subspace

span{Uk}⊥, the orthogonal complement of span{Uk}. We have the following error
estimation.

Theorem 3.2. Let Pi ≡ span{p1, . . . , pi}. Assume Lanczos bidiagonalization
process starts with b as in (2.2). Then for any j with 1 < j < n and k > j,

ω2
k ≤

n∑
i=j+1

σ2
i +

j∑
i=1

σ2
i

(
sin∠(b,Pi)Π

i−1
v=1(σ

2
v − σ2

n)/(σ
2
v − σ2

i )

cos∠(b, pi)Tk−i(1 + 2γi)

)2

,(3.1)

where γi = (σ2
i − σ2

i+1)/(σ
2
i+1 − σ2

n).
Proof. From (2.2) we have UT

k A = BkV
T
k . Hence

ω2
k = ‖A− UkBkV

T
k ‖2

F = ‖(I − UkU
T
k )A‖2

F .

Using the SVD of A = P diag(σi)Q
T one can verify that

ω2
k = ‖[σ1P

⊥
Uk

p1, . . . , σnP
⊥
Uk

pn]‖2
F ,
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where we have assumed that m ≥ n. Now arrange the singular values of A in the
following order:

σn ≤ · · · ≤ σj+1 ≤ σj ≤ · · · ≤ σ1.

We have the bound

‖A− Jk‖2
F ≤

n∑
i=j+1

σ2
i +

j∑
i=1

σ2
i ‖P⊥

Uk
pi‖2.

It is readily verified that span{Uk} = span[b, AAT b, . . . , (AAT )k−1b] ≡ Kk. Therefore

‖P⊥
Uk

pi‖ = | sin∠(pi,Kk)| ≤ | tan∠(pi,Kk)|.

Applying Lemma 3.1 with C = AAT and b = f completes the proof.
Remark. Notice that the square root of the first term on the right of (3.1),

(
∑n

i=j+1 σ
2
i )

1/2, is the error of the best rank-j approximation of A in Frobenius norm.
For k > j, usually rank(Jk) > j. The a priori estimation of the above theorem states
that ω2

k will approach ‖A−Aj‖2
F when k gets large. In many examples we will discuss

later in section 5, even for a k that is only slightly larger than j, ω2
k is already very

close to ‖A−Aj‖2
F .

Now we examine the issue of stopping criteria. The accuracy of using Jk =
UkBkV

T
k as a low-rank approximation of A is measured by ωk which can be used

as a stopping criterion in the iterative Lanczos bidiagonalization process, i.e., the
iterative process will be terminated when ωk ≤ tol with tol a user supplied toler-
ance. Therefore it will be very helpful to find an inexpensive way to compute ωk for
k = 1, 2, . . . . We first show that ωk is a monotonically decreasing function of k and it
can be computed recursively.

Proposition 3.3. Let ωk = ‖A− Jk‖F . Then ω2
k+1 = ω2

k − α2
k+1 − β2

k+1, where
αk+1 and βk+1 are from (2.2).

Proof. Notice that

ω2
k+1 = ‖A− Uk+1Bk+1V

T
k+1‖2

F = ‖(I − Uk+1U
T
k+1)A‖2

F .

Now write I − UkU
T
k = (I − Uk+1U

T
k+1) + uk+1u

T
k+1. Notice that (I − Uk+1U

T
k+1)A

and uk+1u
T
k+1A are orthogonal to each other; we obtain

ω2
k = ‖(I − Uk+1U

T
k+1)A‖2

F + ‖uk+1u
T
k+1A‖2

F = ω2
k+1 + ‖ATuk+1‖2.

The proof is completed by noticing that ‖ATuk+1‖2 = α2
k+1 + β2

k+1.
Proposition 3.3 shows that ω2

k = ω2
k+1 + α2

k+1 + β2
k+1 in exact arithmetic. Now

we want to examine to what extent the above relation still holds when the effects of
rounding errors need to be taken into consideration. In finite precision computation
we have (cf. (2.4))

AT Ûk = V̂kB̂
T
k +Gk,

where Gk represents the effects of rounding errors and ‖Gk‖F = O(‖A‖F εM ) with εM
the machine epsilon. It follows that

ω̂2
k ≡ ‖A− ÛkB̂kV̂

T
k ‖2

F = ‖(I − ÛkÛ
T
k )A+ ÛkG

T
k ‖2

F .
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In finite precision computation, due to the loss of orthogonality the matrices Ûk and
V̂k are not necessarily orthonormal anymore. Define

η(Ûk) = ‖I − ÛT
k Ûk‖, η(V̂k) = ‖I − V̂ T

k V̂k‖.

These two quantities measure the level of orthogonality among the columns of Ûk and
V̂k, respectively. In the following we will also need these readily-verified inequalities:

η(Ûk) ≤ η(Ûk+1), η(V̂k) ≤ η(V̂k+1).

Theorem 3.4. In finite precision arithmetic, ω̂k satisfies

ω̂2
k = ω̂2

k+1 + α̂2
k+1 + β̂2

k+1 +O(‖A‖2
F η(Ûk+1)(1 + η(Ûk+1))(1 +mεM ))

+ O(‖A‖2
F (1 + η(Ûk+1))

2εM ) +O(‖A‖2
F η(V̂k+1)).

Proof. We write ω̂2
k = ‖(I − ÛkÛ

T
k )A‖2

F + ‖ÛkG
T
k ‖2

F + term1, where

|term1| = 2|trace(AT (I − ÛkÛ
T
k )ÛkG

T
k )| = O(‖A‖2

F η(Ûk+1)(1 + η(Ûk+1))εM ).

Now split (I − ÛkÛ
T
k )A as (I − Ûk+1Û

T
k+1)A+ ûk+1û

T
k+1A and write

‖(I − ÛkÛ
T
k )A‖2

F = ‖(I − Ûk+1Û
T
k+1)A‖2

F + ‖ûk+1û
T
k+1A‖2

F + term2.(3.2)

We have the bound,

|term2| = 2|trace(AT (I − Ûk+1Û
T
k+1)ûk+1û

T
k+1A)| = O(‖A‖2

F η(Ûk+1)(1 + η(Ûk+1))).

Since ûk+1û
T
k+1A is rank-one, we have ‖ûk+1û

T
k+1A‖2

F = ‖ûk+1‖‖AT ûk+1‖. Now it

follows from AT ûk+1 = α̂k+1v̂k+1 + β̂k+1v̂k − gk+1 (cf. (2.2)) that

‖AT ûk+1‖ = (α̂2
k+1 + β̂2

k+1)(1 + εM ) + ‖gk+1‖2 + 2α̂k+1β̂k+1v̂
T
k v̂k+1

+ 2(α̂k+1 + β̂k+1)O(εM )

= α̂2
k+1 + β̂2

k+1 +O(‖A‖2
F η(V̂k+1) +O(‖A‖F εM ).

Substituting the above estimates into (3.2) completes the proof.
Therefore, modulus the level of orthogonality of Ûk+1 and V̂k+1, the recursive

formula ω̂2
k+1 = ω̂2

k − α̂2
k+1 − β̂2

k+1 can still be used to compute ω̂k+1.
Remark. With some extra technical assumptions and further assuming ‖A‖F =

O(1), we can improve the above result which roughly says that

ω̂2
k+1 = ω̂2

k − α̂2
k+1 − β̂2

k+1 +O(η(Ûk+1)) +O(η(V̂k+1))

to

ω̂2
k+1 = ω̂2

k − α̂2
k+1 − β̂2

k+1

+ O(η2(Ûk+1)) +O(η2(V̂k+1)) +O(η(Ûk+1)η(V̂k+1)).

The proof is rather technical and is therefore omitted here. Interested readers are
referred to [21] for the complete proof.
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4. Level of orthogonality and reorthogonalization. It should not come as
a surprise that the level of orthogonality among the computed left Lanczos vectors
{Ûk} and the level of orthogonality among the computed right Lanczos vectors {V̂k}
are closely related to each other since the columns of Ûk and V̂k are generated by the
coupled two-term recurrence (2.3). The following result quantifies this claim.

Proposition 4.1. Assume that B̂k generated by the two-term recurrence (2.3)
is nonsingular. Then

η(V̂k) ≤ ‖B̂−1
k ‖‖B̂k+1(:, 1 : k)‖η(Ûk+1) +O(‖B̂−1

k ‖‖A‖F εM ),

and with σmin(·) denoting the smallest singular value of a matrix,

η(Ûk+1) ≤ ‖B̂k‖η(V̂k)

2σmin(B̂k+1(:, 1 : k))
+O

(
‖A‖F εM

σmin(B̂k+1(:, 1 : k))

)
.

Proof. We can write (2.4) as

AV̂k = ÛkB̂k + β̂k+1ûk+1e
T
k + Fk, AT Ûk = V̂kB̂

T
k +Gk,

where ‖Fk‖F and ‖Gk‖F are of the order of machine epsilon. Therefore we have the
following relations:

ÛT
k AV̂k = ÛT

k ÛkB̂k + β̂k+1Û
T
k ûk+1e

T
k + ÛT

k Fk,

ÛT
k AV̂k = B̂kV̂

T
k V̂k +GT

k V̂k.

This leads to

B̂k(I − V̂ T
k V̂k) = (I − ÛT

k Ûk)B̂k − β̂k+1Û
T
k ûk+1e

T
k − ÛT

k Fk +GT
k V̂

T
k

= [I − ÛT
k Ûk,−ÛT

k ûk+1]B̂k+1(:, 1 : k)− ÛT
k Fk +GT

k V̂
T
k .

(4.1)

Since B̂k is nonsingular and ‖[I − ÛT
k Ûk,−ÛT

k ûk+1]‖ ≤ η(Ûk+1), we have

η(V̂k) ≤ ‖B̂−1
k ‖‖B̂k+1(:, 1 : k)‖η(Ûk+1) +O(‖B̂−1

k ‖A‖F ‖εM ).

On the other hand, it follows from (4.1) that

σmin(B̂k+1(:, 1 : k))‖[I − ÛT
k Ûk,−ÛT

k ûk+1]‖ ≤ ‖[I − ÛT
k Ûk,−ÛT

k ûk+1]B̂(:, 1 : k)‖
≤ ‖B̂k‖‖I − V̂ T

k V̂k‖+O(‖A‖F εM ).

It is easy to see that ‖I−ÛT
k+1Ûk+1‖ ≤ 2‖[I−ÛT

k Ûk,−ÛT
k ûk+1]‖, and Bk nonsingular

implies σmin(B̂k+1(:, 1 : k)) > 0. Combining the above two inequalities completes the
proof.

The above result says that as long as B̂k and B̂k+1(:, 1 : k) are not very ill-
conditioned, the level of orthogonality among the columns of Ûk+1 and the level of
orthogonality among the columns of V̂k should be roughly comparable to each other.
We illustrate this using a numerical example.

Example 4.1. In this example we apply the recurrence (2.2) to a test matrices
from SVDPACK to illustrate the relation between the levels of orthogonality among
columns of Ûk+1 and V̂k. No reorthogonalization is carried out. The initial vector b is
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always chosen to be a vector of all ones. The matrix we used is a term-document ma-
trix from an information retrieval application by Apple Computer Inc. [22]. It is sparse
and of dimension 3206× 44. Its singular values are plotted in Figure 5.1 in section 5.
We first apply the Lanczos bidiagonalization process to AT . For k = 2, 3, . . . , 11, we
tabulate the four quantities η(Ûk), η(V̂k), cond2(B̂k), cond2(B̂k+1(:, 1 : k)) as follows.

k η(Ûk) η(V̂k) cond2(B̂k) cond2(B̂k+1(:, 1 : k))

2 2.3052e-14 4.0422e-14 1.5941e+00 1.5349e+00

3 1.0141e-13 1.4936e-13 1.8614e+00 1.7463e+00

4 3.3635e-13 4.8692e-13 2.1773e+00 2.0022e+00

5 9.6149e-13 1.5292e-12 2.6264e+00 2.4151e+00

6 4.2373e-12 8.0257e-12 2.9814e+00 2.6638e+00

7 1.7977e-11 3.5758e-11 3.6939e+00 2.9626e+00

8 8.1124e-11 1.3235e-10 4.2295e+00 3.7537e+00

9 3.5596e-10 5.9628e-10 4.3911e+00 4.2686e+00

10 2.0151e-09 3.4583e-09 4.4231e+00 4.3872e+00

11 9.6713e-09 1.5937e-08 4.4329e+00 4.4189e+00

For this example after about 20 iterations of the Lanczos bidiagonalization process, the
orthogonality among {Ûk} and {V̂k} are completely lost. We notice that both B̂k and
B̂k+1(:, 1 : k) are well-conditioned, and therefore η(Ûk+1) and η(V̂k) are comparable
to each other. Next we apply the Lanczos bidiagonalization process to A itself and
again b is a vector of all ones. This time since an extra zero arising from m �= n is
being approximated by a singular value of B̂k, the matrix B̂k becomes more and more
ill-conditioned as k increases. However, B̂k+1(:, 1 : k) does not become ill-conditioned,
and therefore η(Ûk+1) and η(V̂k) are still comparable to each other.

k η(Ûk) η(V̂k) cond2(B̂k) cond2(B̂k+1(:, 1 : k))

2 5.3798e-14 2.0851e-15 5.9274e+00 1.6027e+00

3 5.4055e-14 1.9953e-14 2.3701e+01 1.7965e+00

4 6.1741e-14 6.4649e-14 5.9076e+01 2.0469e+00

5 1.0555e-13 2.0562e-13 1.5571e+02 2.3917e+00

6 3.5843e-13 9.7851e-13 3.3009e+02 2.7807e+00

7 1.7802e-12 3.7335e-12 5.2861e+02 3.6361e+00

8 7.3623e-12 1.8075e-11 7.5720e+02 4.2095e+00

9 3.1936e-11 8.6667e-11 1.2715e+03 4.4092e+00

10 1.4617e-10 5.3847e-10 3.2588e+03 4.4438e+00

11 9.4875e-10 2.6974e-09 7.3327e+03 4.4517e+00

12 3.9498e-09 1.0662e-08 2.0959e+04 4.4539e+00

13 1.9679e-08 6.9862e-08 5.1566e+04 4.4549e+00

14 1.4828e-07 4.2244e-07 9.0752e+04 4.4558e+00

15 8.3146e-07 2.3219e-06 1.5435e+05 4.4565e+00

16 4.1817e-06 1.9093e-05 4.3127e+05 4.4567e+00

We have also tested several other matrices. In summary, if no reorthogonaliza-
tion is performed in the Lanczos bidiagonalization process, then either η(Ûk+1) ≈
cond(B̂k+1(:, 1 : k))η(V̂k) or η(V̂k) ≈ cond(B̂k)η(Ûk+1) tends to hold.

We mentioned in section 3 that we need to keep certain level of orthogonal-
ity among the computed Lanczos vectors {Ûk} and {V̂k} in order to obtain a good
low-rank approximation Ĵk ≡ ÛkΣ̂kV̂

T
k . As is in Lanczos tridiagonalization process,

maintaining orthogonality of both {Ûk} and {V̂k} to full machine precision is not
necessary. More efficient reorthogonalization schemes such as selective reorthogonal-
ization and partial reorthogonalization have been proposed in the past for Lanczos
tridiagonalization process [8, 16, 18]. Proposition 4.1 quantifies the relation between
levels of orthogonality of the left and right Lanczos vectors generated by a Lanczos
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process without reorthogonalization, and the reorthogonalization scheme we will pro-
pose is motivated by this relation. Another motivation for our reorthogonalization
scheme comes from the observation that in some applications such as compression of
multiple-spectral and hyper-spectral image cubes [4], principal component analysis
for face recognition and image databases [24, 13, 23, 17], each column of the matrix A
represents a single image acquired at a specific wavelength (channel) or a facial image
of a particular individual: the columns of the two-dimensional (2-D) image array is
stacked into a single long vector.2 For a 512×512 2-D image, the row dimension of the
resulting matrix A is 262144,3 while the column dimension is the number of available
wavelengths (channels) or the number of face images used in the image databases. In
early remote sensing satellite facilities, such as Landsat thematic mapper, the number
of channels is 7; now channels are numbered in the several hundreds up to 1024. The
number of face images used in an image database ranges from several hundred to
several thousand [24]. Therefore in those applications the matrix A is very skinny,
i.e., m � n. To facilitate the discussion, we make the following definition.

For a rectangular matrix A ∈ Rm×n that is very skinny, i.e., m � n,
those Lanczos vectors with dimension n are said to belong to the
short space while those with dimension m are said to belong to the
long space.

Recall that during the Lanczos bidiagonalization process, the left and right Lanc-
zos vectors need to be saved so that later they can be used in the reorthogonalization
process. If the dimensions of the matrix A are large, then those Lanczos vectors
may have to be stored out of core in secondary storage and later be brought into
main memory when reorthogonalization is carried out. The most popular secondary
storage is hard disk, and disk access is always slow. With an eye toward parallel imple-
mentation of the Lanczos bidiagonalization process on distributed memory machines,
sophisticated parallel I/O techniques are needed to handle the storage of the Lanczos
vectors. This issue is especially relevant in the applications we just mentioned, since
the row dimension of A is very large. Great efficiency can be gained if we exclusively
perform reorthogonalization in the short space since those vectors have much smaller
dimension and can therefore be stored in the main memory during the entire Lanczos
bidiagonalization process. Disk access is now limited to saving the currently gener-
ated long Lanczos vector to secondary storage, and there is no need to retrieve those
previous long Lanczos vectors to perform the reorthogonalization process.

Now we proceed to describe the algorithm with one-sided reorthogonalization for
A ∈ Rm×n with m � n. At each step of the Lanczos bidiagonalization process, we
orthogonalize v̂i+1 against all the previous Lanczos vectors and leave ûi+1 unchanged.
In the following we list the pseudocode of the one-sided reorthogonalization.

Algorithm One-sided.
b �= 0, a given vector.
β̂1 = ‖b‖, û1 = b/β̂1, α̂1 = ‖AT û1‖, v̂1 = AT û1/α̂1.
For i = 1, 2, 3, . . .
Compute

r̂i+1 = Av̂i − α̂iûi, β̂i+1 = ‖r̂i+1‖, ûi+1 = r̂i+1/β̂i+1,

p̂k+1 = AT ûk+1 − β̂k+1v̂k.

2In latent semantic indexing approach to information retrieval, the term-document matrices can
also either be very skinny or very fat, i.e., with many more terms than documents or vice versa.

3High resolution remote sensing facility can produce 2-D images of dimension 3000 × 3000.
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Fig. 4.1. (Left) level of orthogonality, (right) αk and βk.

Orthogonalize p̂i+1 against V̂i to obtain p̃k+1, and compute

α̂k+1 = ‖p̃k+1‖, v̂k+1 = p̃k+1/α̂k+1.

Example 4.2. We look at levels of orthogonality of {Ûk} and {V̂k} computed by
Algorithm One-sided. We always perform reorthogonalization in the short space, i.e.,
those Lanczos vectors that have smaller dimension. The matrix is the 3206×44 matrix
from SVDPACK which is also used in Example 4.1. We first apply Algorithm One-
sided to AT . In Figure 4.1 on the left we plot η(Ûk) and η(V̂k) for k = 2, . . . , 44, and

on the right we plot the two sequences {α̂k} and {β̂k}. Notice that β̂k drops sharply
toward the end of the Lanczos run, but this does not affect the level of orthogonal-
ity of either {Ûk} or {V̂k}. The condition numbers for both B̂k and B̂k+1(:, 1 : k)
are of order O(1). The orthogonality in the long space is very well controlled by en-
forcing the orthogonality in the short space. We also apply Algorithm One-sided to
A itself and reorthogonalize again in the short space. Now we have η(Ûk) ≈ 10−14

and η(V̂k) ≈ 10−15. We noticed that one singular value of B̂k tracks a spurious zero
singular value resulting in increasingly larger cond(B̂k) but cond(B̂k+1(:, 1 : k)) stays
O(1). Again the level of orthogonality of the long space is well controlled by that of
the short space.

The observation that full reorthogonalization in the short space can, to certain ex-
tent, control the level of orthogonality in the long space can not be directly explained
by Proposition 4.1 since we need to take into account of the effects of reorthogonal-
ization. We did some preliminary analysis, but the results seem to be dependent on
certain intermediate quantities arising from the reorthogonalization process. Now in-
stead of quantifying the relation of levels of orthogonality of the left and right Lanczos
vectors in the presence of reorthogonalization, we explain why we still can obtain good
low-rank approximation even if the level of orthogonality in the long space is poor.
Assuming that A ∈ Rm×n with m ≥ n, and the fact that in the recurrence (2.3) we
perform reorthogonalization in the short space as follows, first we compute

p̂i+1 = AT ûi+1 − β̂i+1v̂i − gi+1,
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and then we orthogonalize p̂i+1 against all the previous vectors v̂1, . . . , v̂i to obtain

p̃i+1 = p̂i+1 −
i∑

j=1

(p̂Ti+1v̂j)v̂j − g̃i+1,

and

α̂i+1 = ‖p̃i+1‖, v̂i+1 = p̃i+1/α̂i+1.

Combining the above equations we obtain

α̂i+1v̂i+1 = AT ûi+1 − β̂i+1v̂i − ĝi+1,

with ĝi+1 = gi+1 + g̃i+1 +
∑i

j=1(p̂
T
i+1v̂j)v̂j . In compact matrix form we have

AT Ûk+1 = V̂k+1B̂k+1 + Ĝk+1, Ĝk+1 = [ĝ1, . . . , ĝk+1].

Ĝk+1 involves terms such as p̂Ti+1v̂j and is difficult to bound, and in general there is no

guarantee that ‖Ĝk+1‖ = O(‖A‖F εM ) as would be the case if no reorthogonalization
is performed. However, notice that the other half of the recurrence in (2.4) still has
the form

AV̂k = Ûk+1B̂k+1(:, 1 : k) + Fk,

with ‖Fk‖ = O(‖A‖F εM ). It follows from the above equation that

‖A− ÛkB̂k+1(:, 1 : k)V̂ T
k ‖F = ‖A(I − V̂kV̂

T
k )‖F +O(‖A‖F εM ).

If columns of V̂k are orthonormal to each other with high precision (notice that v̂i+1

is explicitly orthogonalized against V̂i for i = 1, . . . , k.), then ÛkB̂k+1(:, 1 : k)V̂ T
k will

be a good approximation of Ak as long as V̂k is a good approximation of the first k
right singular vectors of A (cf. section 3). The above statement is true regardless of
the level of orthogonality of Ûk+1.

5. Numerical experiments. In this section we will use test matrices from sev-
eral applications fields to demonstrate the accuracy of the low-rank approximation
computed by Algorithm One-sided. Before we present the results, we want to say a
few words about the efficiency of the algorithm. One contribution of this paper is the
introduction of the idea of using Ĵk = ÛkB̂kV̂

T
k as a low-rank approximation of a

given matrix A. Compared with the approach where SVD of B̂k is computed and its
left and right singular vectors are combined with the left and right Lanczos vectors to
give the left and right singular vectors of A, the savings in flop counts is approximately
24k3 + 4mk2 + 4nk2, where we have assume that A ∈ Rm×n and the SVD of B̂k is
computed. How much of the above savings accounts for the total CPU time depends
on the number of Lanczos steps k, the matrix A (e.g., its sparsity or structure and its
singular value distribution) and the underlying computer architectures used (both for
sequential and parallel computers). Notice that the part of computation for the SVD
of B̂k and the combination of the singular vectors and Lanczos vectors have to be done
after the Lanczos bidiagonalization process. In [1] the computation of the SVD of B̂k

along on a Cray-2S accounts for 12 to 34% of the total CPU time for a 5831× 1033
matrix with k = 100, depending on whether ATA or the 2-cyclic matrix [0 A; A’

0] is used. As a concrete example, we show various timings for a term-document ma-
trix of size 4322×11429 with 224918 nonzeros generated from the document collection
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Fig. 5.1. Plots for apple1.mat.

NPL [2]. Let the SVD of B̂k be B̂k = UB
k ΣB

k (V
B
k )T . Then ÛkU

B
k and V̂kV

B
k give the

left and right singular vectors of A, respectively. Here k = 350, and the CPU time is
in seconds.

Au AT v ÛkU
B
k V̂kV

B
k

Flops 449836 449836 1.06e9 2.80e9

CPU time 0.1650 0.0780 41.4800 110.2600

We should also mention that the potential savings in computational time should
be weighed against the possible deterioration in the quality of the low-rank approx-
imation. Fortunately, for most of the applications this is not a problem. Another
contribution of the paper is the use of one-sided reorthogonalization technique. The
major gain in efficiency from this technique is the reduction in disk access time when
the Lanczos vectors have to be stored out of core and later on be brought back in
for reorthogonalization. This part of the saving depends heavily on the underlying
computer architectures used and is not easy to quantify.

We have tested three classes of matrices and compared the low-rank approxima-
tions computed by Algorithm One-sided with those computed by the SVD:

• Large sparse test matrices from SVDPACK [22] and document collections [2].
• Several general rectangular matrix from Matrix Market [11].
• Three-dimensional (3-D) image cubes from remote sensing applications.

All the computation is done using MATLAB Version 5 on a Sun server 2000. For
each test matrix we first plot the singular values of the matrix and then the two

sequences {‖A− ÛkB̂kV̂
T
k ‖F } and {(∑min(m,n)

j=k+1 σ2
j )

1/2}. We run Algorithm One-sided
for min(m,n) iterations just to test the algorithm, since in practice the algorithm will
be stopped when a user supplied tolerance is satisfied or the maximum number of
iterations has been reached, and usually the number of iterative steps will be much
less than min(m,n). If the range of the quantities to be plotted is too large, we will
plot them in log-scale. We also compute

ratiok =

(∑min(m,n)
j=k+1 σ2

j

)1/2
‖A− ÛkB̂kV̂ T

k ‖F
.(5.1)
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Fig. 5.2. Plots for apple2.mat.

Example 5.1. Three test matrices are included in SVDPACK [22]. All of them
are in Harwell–Boeing format. We used a utility routine that converts a Harwell–
Boeing format to MATLAB’s .mat format. A brief description of the three matrices
is given in the following:

• apple1.mat, a 3206×44 term-document matrix from an information retrieval
application by Apple Computer Inc.

• apple2.mat, a 1472 × 294 term-document matrix from an information re-
trieval application by Apple Computer Inc.

• amoco.mat, a 1436× 330 Jacobian matrix from a seismic tomography appli-
cation by Amoco Research Inc.

For the three test matrices in this example, Algorithm One-sided is applied with
reorthogonalization in the short space. For both apple1.mat and apple2.mat, one-
sided reorthogonalization controls the level of orthogonality very well, and the level of
orthogonality for both {Ûk} and {V̂k} is around 10−14. (See Figures 5.1 and 5.2.) For
amoco.mat, the level of orthogonality for the long space deteriorates from 10−14 to
10−12 at the end of 330 steps. (See Figure 5.3.) In the following table we list both the
maximum and minimum of the ratio {ratiok} defined in (5.1) for the three matrices.
It is also interesting to notice that even though there is difference between ‖A−Ak‖F
and ‖A − Ĵk‖F for a fixed k, it is always possible to move forward a few steps s to
get a Ĵk+s such that ‖A− Ĵk+s‖F ≈ ‖A−Ak‖F . For these three test matrices we can
chose s to be rather small, say s ≤ 3, especially in the initial several iterations of the
Lanczos run. The following table lists max(ratiok) and min(ratiok) for these three
matrices.

apple1.mat apple2.mat amoco.mat

max(ratiok) 9.9741e-01 9.9820e-01 9.8656e-01

min(ratiok) 3.9749e-01 2.5214e-01 9.1414e-02

Example 5.2. To illustrate the effectiveness of using Ĵk as a low-rank approxima-
tion of A for LSI information retrieval applications, we compare it with Ak obtained
from the partial SVD of A, i.e., Ak ≡ Pk diag(σ1, . . . , σk)Q

T
k , where Pk and Qk are

the matrices formed by the first k columns of P and Q, respectively. In this exam-
ple we tested two data collections: a 3681 × 1033 term-document matrix from data
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Fig. 5.3. Plots for amoco.mat.
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Fig. 5.4. Comparison of average precisions.

collection consisting of abstracts in biomedicine with 30 queries, and a 4322× 11529
term-document matrix from the NPL collection with 93 queries [2]. We used 11-point
average precision, a standard measure for comparing information retrieval systems
[10]. For k = 10, 20, . . . , 150, two sequences are plotted in the left of Figure 5.4 for
the first matrix, one for Jk and one for Ak. k = 110 is chosen for the reduced di-
mension, and the precision for A110 and J110 are 65.50% and 63.21%, respectively.
The right plot is for the second matrix with k = 50, 100, . . . , 550. Judging from the
curve, for this particular matrix we probably should have used larger k, but we are
limited by computation time. The precision for A550 and J550 are 23.23% and 21.42%,
respectively.

Example 5.3. Matrix Market contains several general rectangular matrices. Of
special interests to us is the set LSQ which comes from linear least squares problems
in surveying [11]. This set contains four matrices, and all of them are in Harwell–
Boeing format. We first convert them into MATLAB’s .mat format. The matrix
illc1033.mat is of dimension 1033 × 320; it is an interesting matrix because it has
several clusters of singular values which are very close to each other. For example, the
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Fig. 5.5. Plots for illc1033.mat.
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Fig. 5.6. Plots for well1033.mat.

first cluster contains the first 13 singular values ranging from 2.550026352702592e+02

to 2.550020307989260e+02 and another cluster contains σ113 to σ205 ranging from
1.000021776237986e+00 to 9.999997517165140e-01. This clustering actually ex-
poses one weakness of using Ĵk = ÛkB̂kV̂

T
k as approximations of A. It is well known

that single-vector Lanczos algorithm can compute multiple eigenvalues of a symmet-
ric matrix, but the multiple eigenvalues do not necessarily converge consecutively one
after the other. To be precise, say λmax(H) is a multiple eigenvalue of a symmetric
matrix H. Then usually a copy of λmax(H) will converge first, followed by several
other smaller eigenvalues of H, then another copy of λmax(H) will converge, followed
by still several other smaller eigenvalues, and so on. The consequence of this con-
vergence pattern to our task of computing low-rank approximation of a rectangular
matrix A is that in the first few steps with k < l, l the multiplicity of σmax(A), Ĵk will
contain fewer than k copies of σmax. Therefore Jk will not be a good approximation
of A as compared with Ak if σmax(A) is much larger than the next singular value.
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Fig. 5.7. Plots for 92AV3C.mat.

This is why in the right plot of Figure 5.5, the curve for the Lanczos approximation
lags behind that of the SVD approximation in the initial several iterations. We also
noticed that for illc1033.mat the level of orthogonality changes from 10−14 to 10−10

while for well1033.mat it changes from 10−14 to 10−13. (See Figure 5.6.)
Example 5.4. This test matrix is obtained by converting a 220-band image

cube taken from the homepage of MultiSpec, a software package for analyzing mul-
tispectral and hyperspectral image data developed at Purdue University [12]. The
data values are proportional to radiance units. The number 1000 was added to the
data so that there were no negative data values. (Negative data values could occur in
the water absorption bands where the signal was very low and noisy.) The data was
recorded as 12-bit data and was collected near West Lafayette, IL with the AVIRIS
system, which is operated by NASA JPL and AMES.4 Each of the 2-D images is of
dimension 145×145, and therefore the resulting matrix A is of dimension 21025×220.
We applied Algorithm One-sided to AT with the starting b a vector of all ones. The
left of Figure 5.7 plots the singular values of A, and we can see there are only very
few dominant singular values and all the others are relative small. The reason for
this is that the 2-D images in the image cube are for the same scene acquired at
different wavelengths and therefore there is very high correlation among them. In
fact the largest singular value of A accounts for about 88% of ‖A‖F , the first three
largest singular values account for about 98%, and the first five largest singular values
account for more than 99%. As a comparison, for a 2-D image matrix of dimension
837× 640 it takes the first 23 largest singular values to account for 88% of ‖A‖F , the
first 261 largest singular values to account for 98%, and the first 347 largest singular
values to account for 99%. We also notice that Jk gives very good approximation of
Ak, and max(ratiok) = 9.3841e− 01 and min(ratiok) = 2.2091e− 01 in the first
50 iterations.

6. Concluding remarks. Low-rank matrix approximation of large and/or sparse
matrices plays an important role in many applications. We showed that good low-rank

4Larry Biehl of Purdue University provided several MATLAB m-files for reading multiple-spectral
images in BIL format with an ERDAS74 header into MATLAB. He also provided the description of
the data set.
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matrix approximations can be obtained directly from the Lanczos bidiagonalization
process. We discussed several theoretical and practical issues such as a priori error
estimation, recursive computation of stopping criterion, and relations between levels
of orthogonality of the left and right Lanczos vectors. We also proposed an efficient
reorthogonalization scheme: one-sided reorthogonalization. A collection of test matri-
ces from several applications areas were used to illustrate the accuracy and efficiency
of Lanczos bidiagonalization process with one-sided reorthogonalization. There are
several issues that we think deserves further investigation, specifically it is of great
interest to develop a theory that can quantify the relation between the levels of orthog-
onality of the left and right Lanczos vectors in the presence of reorthogonalization.
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