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Abstract. Many imaging and compressed sensing applications seek sparse solutions to large
under-determined least-squares problems. The basis pursuit (BP) approach minimizes the 1-norm of
the solution, and the BP denoising (BPDN) approach balances it against the least-squares fit. The
duals of these problems are conventional linear and quadratic programs. We introduce a modified
parameterization of the BPDN problem and explore the effectiveness of active-set methods for solving
its dual. Our algorithm for solving a generalized form of the BP dual unifies several existing algorithms
and is applicable to large-scale examples.
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1. Introduction. Consider the linear system Ax+ r = b, where A is an m-by-n
matrix and b is a m-vector. In many statistical and signal processing applications
the aim is to obtain a solution (x, r) such that the residual vector r is small in norm
and the vector x is sparse. In model selection, for example, the aim is to find a
parsimonious set of regressors that approximately fit the data (Osborne et al. [33],
Efron et al. [16]). In these cases, typically m > n. In signal processing, the columns
of A represent a large collection of atoms in a dictionary, and the aim is to select a
small subset that admits an accurate reconstruction of the observed signal b (Chen
et al. [7, 8]). In contrast to traditional linear-regression applications, typically m� n
and the problem is ill-posed.

Regardless of the shape of A, many techniques for computing sparse solutions
are based on using the one-norm function, or some variation of it, to regularize a
least-squares (LS) problem. Consider the “primal” problem

minimize
x, y

‖x‖1 + 1
2λ‖y‖

2
2

subject to Ax+ λy = b
(1.1)

and its dual

maximize
y

bTy − 1
2λ‖y‖

2
2

subject to −e ≤ ATy ≤ e,
(1.2)

where λ ≥ 0 is a scalar parameter and e is a vector of ones. When λ = 0, (1.1) is
equivalent to the basis pursuit (BP) problem [7,8]. It insists on a zero residual and
often yields a sparse solution x. In some cases it yields the sparsest solution possible
(Candès et al. [5], Donoho [12]). When λ > 0, (1.1) is equivalent to the basis pursuit
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denoising (BPDN) problem [7,8]. It allows a nonzero residual, but the sparsity of x
remains of prime importance. At the extreme, x = 0 and r = b for all λ ≥ ‖ATb‖∞.

Problems (1.1) and (1.2) are duals of each other in the sense that the Karush-
Kuhn-Tucker (KKT) conditions for optimality for each problem are satisfied by the
same vector pair (x, y). (The KKT conditions require the constraints in each problem
to be satisfied and the objective values to be equal.) In particular, the optimal x
values for (1.1) are optimal Lagrange multipliers for the inequality constraints of (1.2).

For all vectors with infinity-norm of one or less, the one-norm is the convex
envelope of the “zero-norm” ‖x‖0, which counts number of nonzero elements of x.
Problem (1.1) is thus often used as a convex relaxation of the nonconvex problem

minimize
x, y

‖x‖0 + 1
2λ‖y‖

2
2

subject to Ax+ λy = b.

In some applications this is called the sparse recovery problem.

The term ‖x‖1 in the primal problem (1.1) is nonsmooth at points for which any
component of x is zero. A standard device is to split x into positive and negative parts
and solve the equivalent smooth problem

minimize
v, w, y

eT(v + w) + 1
2λ‖y‖

2
2

subject to A(v − w) + λy = b, v, w ≥ 0,

where x = v − w. Numerical methods for linear programming (λ = 0) and convex
quadratic programming (λ > 0) may be applied.

1.1. Generalized formulation. Since the dual problem (1.2) is a conventional
convex quadratic program, and since a sparse primal solution x implies relatively few
active constraints in the dual, our interest has been to explore active-set methods
for solving the dual. For practical reasons it has proved important to generalize the
constraints −e ≤ ATy ≤ e to be ` ≤ ATy ≤ u for given vectors satisfying ` ≤ u. For
later reference we state the generalized primal and dual problems as

BPλ: minimize
x, y

c(x)Tx+ 1
2λ‖y‖

2
2

subject to Ax+ λy = b

and

QPλ: minimize
y

1
2λ‖y‖

2
2 − bTy

subject to ` ≤ ATy ≤ u,

where the jth component of the piecewise-linear function c(x) : Rn → Rn used in the
primal objective is defined by

cj(x) =

{
`j if xj ≤ 0,

uj if xj > 0,
for j = 1, . . . , n.

Certain choices for ` and u lead to the weighted one-norm regularization function
(u = −` = w for w > 0), or to a “one-sided” regularization function (u = ∞ or
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` = −∞). This formulation is general enough to capture a wide range of problems.
For example, the generalized one-norm problem

minimize
x,y

‖Bx‖1 + 1
2λ‖y‖

2
2

subject to Ax+ λy = b,
(1.3)

where B is a general matrix, is used for the “analysis” approach for sparse recovery [17],
and the fused Lasso [39], among others. (This is equivalent to the generalized Lasso
problem of Tibshirani and Taylor [40], who vary B to obtain the fused Lasso, trend
filtering, wavelet smoothing, and outlier detection, and who emphasize the benefits of
solving the dual of problem (1.3).) In order to fit this into the BPλ formulation, we
first consider the weighted least-squares problem

minimize
x,y

c(x)Tx+ 1
2λ‖Dy‖

2
2 subject to Ax+ λD2y = b, (1.4)

where D is nonsingular, and note that it can be solved by BPλ via the identifications

A⇔ D−1A, b⇔ D−1b, y ⇔ Dy.

Problem (1.4) then approximates (1.3) if we make the identifications

A⇔
(
A
B I

)
, b⇔

(
b
0

)
, D ⇔

(
I

δI

)
, `⇔

(
0
−e

)
, u⇔

(
0
e

)
,

where δ is a small positive parameter. An acceptable numerical solution might be
obtained if δ is not too small (say δ ≥ 10−4 on a typical machine).

For such variations, the basic form of our proposed algorithm remains the same.
The vital property of the active-set approach is that for sparse optimization problems,
the number of iterations required is often directly proportional to the number of
nonzeros in the primal solution vector x, independent of the size of the problem. The
flexibility of our solver BPdual provides a base from which more involved algorithms
can be easily implemented.

1.2. Overview. Our aim is present an active-set QP solver and demonstrate its
potential to solve effectively a wide variety of sparse optimization problems. The main
components of the paper are as follows.

Active-set quadratic programming (section 2). We describe an active-set method
for solving problem QPλ. It follows many standard procedures in the optimization tool
kit. In particular, it maintains a sequence of iterates {yk} that are feasible for QPλ
(so that every yk satisfies the constraints ` ≤ ATyk ≤ u). This is the base algorithm
for later sections.

Elastic constraints (section 3). In some applications we may have a good estimate
of the optimal y∗ that nevertheless violates the constraints. We adapt the method
of Conn and Sinclair [10] (also described by Gould and Toint [24]), which allows the
iterates to become infeasible, and provides a mechanism to ensure that the iterates
eventually satisfy all the constraints. As we describe, the elastic-constraints variation
allows for warm starts from infeasible points, and a mechanism for maintaining a
well-conditioned subset of constraints in the active set. By judiciously truncating
the solution process, it can also be used to solve BPλ with the additional constraints
−w ≤ x ≤ w for some specified positive vector w.
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Table 1.1: Solvers in the active set pursuit (ASP) Matlab software library.

Solvers Purpose Section

BPdual feasible/infeasible active-set method for QPλ §§2–3
asp bpdn basis pursuit denoising (including λ = 0) §5
asp omp orthogonal matching pursuit §6
asp topy homotopy version of basis pursuit denoising (for all λ) §7
asp rwbp reweighted basis pursuit for approximating `0 solutions §8
asp seqcs sequential compressed sensing (adding rows to A and b) §9
asp nnls nonnegative least-squares §10
asp l1l1 sparse-residual and sparse-solution regression (`1-`1) §11
asp gl1 generalized Lasso for sparsity in Bx §12

Implementation (section 4). We review efficient procedures to update a triangular
matrix used for solving the LS subproblem associated with each iteration of the
active-set method.

Applications (sections 5–12). We describe the use of BPdual on a range of problems
that have been treated by other solvers; see Table 1.1.

1.3. Software implementation. The methods described above have been imple-
mented as a Matlab software package named ASP (active-set pursuit). The primary
solver BPdual implements the feasible active-set method described in section 2, and
also implements as an option the elastic active-set method described in section 3. This
routine forms the kernel from which solvers for certain problems can be implemented
using one or more calls to BPdual. Table 1.1 lists the routines implemented within
the ASP software library. The routine asp omp, which implements the orthogonal
matching pursuit (OMP) algorithm, is an exception and does not make use of BPdual;
it is included only for purposes of comparison.

In many applications that involve sparse optimization, the matrix A is not available
explicitly. Without exception, BPdual and its dependent routines rely only on products
with A and its transpose. These routines accept as input matrix-like objects that define
methods for multiplication with vectors. This feature can be used to accommodate
fast algorithms that might be available for products with the linear operator, such as
when A is defined by a Fourier operator, for example.

1.4. Reproducible research. Following the discipline of reproducible research,
the ASP software library, and the source code and data files required to reproduce
all of the experimental results of this paper, including the figures and tables, can be
downloaded from http://www.cs.ubc.ca/~mpf/asp.

1.5. Notation. Optimal solutions of BPλ and QPλ are denoted by x∗ and y∗.
The objective function of QPλ and its gradient vector are defined as

φ(y) = 1
2λ‖y‖

2
2 − bTy, g(y) = λy − b.

If λ > 0, φ(y) is strictly convex and thus y∗ is unique. The special vectors aj and ej
denote the jth columns of A and the identity matrix. Otherwise, zj denotes the jth
component of a vector z. The support of a vector x is the set of indices j for which
xj 6= 0. We use the index set S to denote the support of x, meaning every component
of the subvector xS is nonzero.

http://www.cs.ubc.ca/~mpf/asp.
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Algorithm 1: Feasible active-set algorithm for QPλ (BPdual).

input: A, b, `, u, λ
1 x← [ ], y ← 0, z ← 0, R← [ ], S ← { } [Initialize iterates]

while true do
2 h← b− λy [negative gradient of φ]
3 x← arg min ‖h− Sx‖2 [x is really xS; solve LS problem using R]
4 ∆y ← (h− Sx)/λ

5 ∆z ← AT∆y
6 (αmax, p)← linesearch(∆z) [step to closest constraint p; see (2.5)]
7 α← min{1, αmax}

y ← y + α∆y
z ← z + α∆z
if α < 1 then
S ← S ∪ {p} [add constraint p to the active set]

8 R← QRaddcol(R,Aep) [add pth column of A to QR factor; see §4.2]
else
C` ← {r | xr < 0 and zj = `j , j = Sr} [lower deletion candidates]

Cu ← {r | xr > 0 and zj = uj , j = Sr} [upper deletion candidates]

if C` ∩ Cu = ∅ then
9 break [optimal solution found; exit]

else
r ← arg max

r∈C1∩C2
|xr|, q ← Sr

S ← S \ {q} [delete constraint q from the working set]

R← QRdelcol(R, r) [delete column r from QR factor; see §4.2]

output: x, y, z, S, R

2. An active-set method for QPλ. Papers by Gill et al. [21], Fletcher [19], and
others survey methods for general QPs. Many of those techniques simplify considerably
when applied to convex problems and when the quadratic term in the objective φ(y) is
simply yTy. Algorithm 1 summarizes an active-set method for solving the specialized
quadratic program QPλ. For simplicity we assume that a feasible initial point y is
known. (For example, y = 0 is feasible for the dual BPDN problem (1.2).) The
algorithm building blocks are detailed in the following sections.

2.1. The active set. Let y be the current estimate of y∗. The jth constraint of
QPλ is active if aTjy is at one of its bounds: aTjy = `j or uj . We maintain an index set
S of constraints that are active at y and whose columns of A form a submatrix S of
full column rank. Thus for some permutation P ,

AP =
[
S N

]
and STy = c,

where each component of c is an element of `S or uS .
We stress that S may not contain all indices of constraints that are currently

active. There may exist degenerate points y for which additional active constraints have
normals that are linearly dependent on S. For this reason, active-set methods are often
described as working-set methods [21,24] to clarify the distinction between all active
constraints and those in S. Various practical strategies are available for systematically
dealing with degeneracy, and are vital for any successful implementation [3, 20, 37]. In
order to streamline later discussion, we make the simplifying assumption that there
are no degenerate points.
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2.2. Stationary points. The current y is stationary for QPλ if it is feasible (i.e.,
` ≤ ATy ≤ u) and if the objective gradient is a linear combination of the gradients
of the constraints in the active set; that is, if there exists a vector xS such that
SxS = −g(y) = b− λy. Thus,

SxS + λy = b and STy = c. (2.1)

These are the optimality conditions for the equality-constrained QP that minimizes
φ(y) on the active set. The first condition in (2.1) implies that the pair (x, y) is feasible
for BPλ.

2.3. Search directions. Let (xS , y) be current solution estimates, with y lying
on the current active set (so that STy = c). A new point (xS + ∆xS , y + ∆y) will be
stationary if it is feasible and satisfies (2.1):

S(xS + ∆xS) + λ(y + ∆y) = b and ST(y + ∆y) = c. (2.2)

This means that we can obtain search directions ∆xS and ∆y by solving the system[
λI S
ST 0

] [
∆y
∆xS

]
=

[
h
0

]
, h ≡ b− λy − SxS , (2.3)

or equivalently

min
∆xS
‖h− S∆xS‖, ∆y = (h− S∆xS)/λ. (2.4)

Note that h becomes small as (xS , y) approaches a stationary point for the active set.
Also, S having full column rank allows us to say that the search directions are zero if
and only if h = 0.

Each iteration of the active-set algorithm needs the solution of (2.3) or (2.4),
where S changes by only one column (added or deleted). This property opens the
door to efficient implementations based on matrix-factorization updates. In particular,
the sequence of LS problems (2.4) may be solved by maintaining the triangular part
of a QR factorization of S. This is described in section 4.2.

2.4. The linesearch. As in more general active-set algorithms for optimization,
we want to choose a steplength α > 0 and take a step

xS ← xS + α∆xS and y ← y + α∆y

in order to reduce the QPλ objective φ(y). From (2.2) and because φ(y) is strictly
convex and quadratic, we know that the steplength α = 1 would minimize φ(y) on
the current active set. Thus we take α = 1 if possible, then start a new iteration.
If a step of α = 1 violates constraints that are not in the active set, a linesearch
determines which constraint would be violated first as α increases from zero. We add
this constraint index to S, add a column to S, then start a new iteration.

The linesearch makes use of the vectors z = ATy and ∆z = AT∆y. If ∆zj < 0 for
some j, the step y ← y + α∆y moves zj toward its lower bound `j , and if ∆zj > 0,
the step moves zj toward its upper bound uj . (Because zj = 0 for all j ∈ S, searching
along ∆y can only encounter constraints that are not already in S.) The maximum
step αj that can be taken without violating a constraint j 6∈ S is

αj =


(uj − zj)/∆zj if ∆zj > 0,

(`j − zj)/∆zj if ∆zj < 0,

+∞ otherwise.
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The steplength along ∆y that reaches the nearest constraint, and the corresponding
constraint index, are therefore given by

αmax = min
j 6∈S

αj and p = arg min
j 6∈S

αj , (2.5)

and the required steplength is α = min{1, αmax}.
2.5. Adding constraints. If α < 1, one of the constraints aTpy ≥ `p or aTpy ≤ up

is encountered before φ(y) reaches a minimum on the current active set. That constraint
is added to S. Otherwise, the full step ∆y is taken.

A crucial implication of the definition of the search direction is that if a new
constraint is encountered, it must be linearly independent of those in the active set.
Recall that ST∆y = 0 and that any constraint encountered during the linesearch must
have a normal ap that satisfies aTp∆y 6= 0. Hence, ap must be linearly independent of
S. We conclude that S always has full column rank.

This is true even in the degenerate case, when α = 0. In all cases, it is important
to break ties (when αmax = αj for more than one j) in favor of large |∆zj |.

2.6. Deleting constraints. If the linesearch returns α = 1, it did not encounter
any new constraint, and the new iterate y ← y + ∆y is a minimizer for φ(y) on the
current active set. From (2.1) we know that SxS = −g(y).

Further progress may be possible by moving away from one of the constraints in
the active set. Suppose that an inequality constraint q = Sp is at its lower bound
(aTqy = `q < uq) and consider a direction ∆y satisfying ST∆y = ep, so that ∆y is a
feasible direction that moves away from the active lower bound `q. Note that

gT∆y = (−SxS)T∆y = −xTSST∆y = −(xS)p.

Thus, if (xS)p > 0, the objective will improve if we move in the direction ∆y. We
allow this by removing constraint q from the active set.

Similarly, if constraint q is at its upper bound and (xS)p < 0, the objective will
improve if we move along a direction for which ST∆y = −ep. Again we allow this by
removing constraint q from the active set.

Thus, the Lagrange multipliers xS reveal which active constraint indices should
be removed from S to allow reduction of the objective function. If no elements of xS
have the correct sign, the current point (x, y) is optimal.

3. Elastic bounds. The basic active-set method describe in section 2 requires a
feasible starting point and maintains feasibility thereafter. For problems that originate
from (possibly weighted) one-norm regularization, ` < 0 < u, and so the trivial starting
point y0 = 0 is always available. However, more general bounds, and the ability to
warm-start the algorithm from arbitrary points, require either a preliminary solution
phase to obtain a feasible vector (such as the “phase 1” procedure common in linear
programming [26]), or a method that allows infeasible intermediate iterates. Sparsity
is paramount for the applications that we consider, and it may be useful to obtain
sparse solutions even at the expense of suboptimality of BPλ, which is the implication
of obtaining infeasible solutions of QPλ.

3.1. An exact penalty function. To this end, we consider a relaxed version
of QPλ that discards the explicit constraints and replaces them with penalties on
constraint violations. The elastic-bounds problem is defined to be

QPλw: minimize
y

φw(y) := φ(y) +
∑n
j=1 wjσj(a

T
jy),
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where φ(y) = 1
2λ‖y‖

2
2 − bTy as before, w is a vector of positive penalty parameters

(each wj > 0), and each function σj measures violation in the jth constraint of QPλ:

σj(ζ) =


`j − ζ if ζ < `j ,

ζ − uj if ζ > uj ,

0 otherwise.

A key feature of this `1-penalty function is that it is exact : sufficiently large values of
wj ensure that minimizers of φw coincide with the solution of the explicitly constrained
problem QPλ, assuming that it is feasible; see, e.g., [18, §14.3].

The dual of the elastic problem QPλw is illuminating:

BPλw: minimize
x

c(x)Tx+ 1
2λ‖y‖

2
2

subject to Ax+ λy = b, −w ≤ x ≤ w.

This is problem BPλ with additional constraints on x. Clearly there are finite values
of the components of w—namely, wj > |x∗j |—that permit recovery of the original
problem solution. Thus, one role of the elastic problem is to bound the primal solution.

The following alternative algorithm for QPλ suggests itself: solve a sequence of
problems QPλw with increasing values of the components of w. If QPλ is feasible,
then the solution of QPλw will be feasible for QPλ after finitely many increases to w,
and will coincide with the solution of QPλ. If, on the other hand, the components
of w are increased beyond some prescribed maximum value and QPλw still does not
yield a solution feasible for QPλ, then QPλ is declared infeasible. We note that it is
not necessary to solve each elastic subproblem to optimality in order for the overall
algorithm to converge.

3.2. An elastic-bounds algorithm. For problem QPλw, we consider the elastic-
bounds approach first proposed by Conn and Sinclair [10], which is the basis for the
active-set large-scale nonconvex QP solver QPA in the GALAHAD optimization
library [23, 24]. For the structured problems that we consider, the elastic-bounds
algorithm can be implemented as a straightforward modification of Algorithm 1.

The active set serves the same role as before, except that search directions are
defined by the solution of the equality-constrained QP

minimize
∆y

1
2λ‖∆y‖

2
2 + gTρ∆y subject to ST∆y = 0,

where

gw = g +Aw̄, with w̄j =


−wj if aTjy < `j

+wj if aTjy > uj

0 otherwise,

(3.1)

is a subgradient of the composite function φw. The definition of w̄ assumes nonde-
generacy: in that case, constraints that are active—but not in S—would contribute a
nonzero element to w̄ in anticipation that the subsequent search direction may cause
these constraints to become infeasible. In contrast, constraints j ∈ S always satisfy
aTj∆y = 0, and hence do not contribute to w̄ because these constraints cannot become
infeasible. Algorithm 2 summarizes the elastic active-set algorithm.

The step along the search direction ∆y (step 5 of Algorithm 2) is computed by
optimizing the one-variable piecewise-quadratic function ψ(α) := φw(y + α∆y). This
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Algorithm 2: Elastic algorithm for QPλw (BPdual elastic).

input: A, b, `, u, λ, w
x← [ ], y ← 0, z ← 0, R← [ ], S ← { } [initialize iterates]

while true do
1 h← b− λy −Aw̄ [negative subgradient of φw; see (3.1)]
2 x← arg minx ‖h− Sx‖2 [solve least-squares problem using R]
3 ∆y ← (h− Sx)/λ

4 ∆z ← AT∆y
5 (α, p)← linesearch(∆z) [exact linesearch on φw(y + α∆y)]

y ← y + α∆y
z ← z + α∆z
if α < 1 then
S ← S ∪ {p} [add constraint p to the active set]

6 R← QRaddcol(R,Aep) [add pth column of A to QR factor; see §4.2]
else
C` ← {r | xr < 0 or xr > +ρ; and zj = `j , j = Sr}
Cu ← {r | xr > 0 or xr < −ρ; and zj = uj , j = Sr}
if C` ∩ Cu = ∅ then

7 break [optimal solution found; exit]

else
r ← arg max

r∈C1∩C2
|xr|, q ← Sr

S ← S \ {q} [delete constraint q from the working set]

R← QRdelcol(R, r) [delete column r from QR factor; see §4.2]

output: x, y, z, S, R

can be accomplished by computing and sorting the breakpoints αj that define the
beginning of each quadratic piece, and sequentially optimizing over each piece until the
optimum α∗ is found. If the optimal step occurs in the first piece (i.e., α∗ = 1 < α1,
where α1 is the first breakpoint), then y + ∆y optimizes φw over the current subspace
and is a stationary point. If the optimal step occurs in the strict interior of a piece
(i.e., αj < α∗ < αj+1), then y + α∗∆y is not necessarily a stationary point, and the
active set does not change. The final possibility is that the optimal step occurs at a
breakpoint (i.e., α∗ = αj+1); in that case, the constraint corresponding to this index
is added to the active set.

For a fixed value of the penalty vector w, Algorithm 2 will converge to a minimizer
of φw that may not be feasible for the original problem. If the resulting solution
is infeasible for QPλ, then w is increased (e.g., w ← 2w) and the elastic problem is
resolved. Because the penalty function is exact, w will increase only finitely many
times if QPλ is feasible. If ‖w‖∞ reaches a specified maximum value, QPλ is declared
infeasible.

4. Implementation. We assume that A is available as an operator. Each
iteration requires one multiplication with AT and one with A; see steps 4 and 6 of
Algorithm 2. If the current y is infeasible, the elastic active-set algorithm requires one
additional product in step 1.

We also maintain a “Q-less” QR factorization of the s-by-m submatrix S by
updating a dense triangular s-by-s matrix R, whose dimension increases or decreases by
1 each iteration. Under the assumption—valid for many sparse-recovery applications—
that s is small, the O(s2) storage for R is relatively small. On the other hand, s may
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Table 4.1: Key to symbols used in tables.

m, n number of rows and columns in A
‖r‖2 two-norm of the final residual r = b−Ax
|S| number of indices in the final active set
nnz(x) number of nonzeros in the computed solution; see (4.1)
itns number of iterations
nMat total number of matrix-vector products with A and AT

cond(S) condition number of the active-set matrix S

Table 4.2: The Sparco test problems used.

Problem ID m n ‖b‖2 operator

blocksig 2 1024 1024 7.9e+1 wavelet
cosspike 3 1024 2048 1.0e+2 DCT
dcthdr 12 2000 8192 2.3e+3 restricted DCT
gcosspike 5 300 2048 8.1e+1 Gaussian ensemble, DCT
jitter 902 200 1000 4.7e−1 DCT
p3poly 6 600 2048 5.4e+3 Gaussian ensemble, wavelet
sgnspike 7 600 2560 2.2e+0 Gaussian ensemble
soccer1 601 3200 4096 5.5e+4 binary ensemble, wavelet
spiketrn 903 1024 1024 5.7e+1 1D convolution
yinyang 603 1024 4096 2.5e+1 wavelet

be large for truly large problems (even if s� n) and the storage requirements may
become prohibitive.

For simplicity we store the submatrix S from the current active set. Storage for
this matrix could be foregone at the expense of two additional products with A, which
would take place in step 3 and inside QRaddcol in step 6 (see section 4.2).

4.1. Numerical experiments. The numerical experiments described in the
following sections include (among others) a selection of nine relevant problems from
the Sparco [42] collection of benchmark sparse-recovery problems of the “primal” form
(1.1). Each problem includes a linear operator A and a right-hand side vector b. We
selected problems where the BP solution x is known to have fewer than 1000 nonzero
entries.

Table 4.1 defines the symbols used in the tables of results, with nnz(x) counting
the significant nonzero entries in the solution vector x. This is computed as the number
of nonzero entries that carry 99.9% of the one-norm of the vector:

nnz(x) = {min r such that
∑r
i |xbic| ≥ 0.999‖x‖1}, (4.1)

where |xb1c| ≥ · · · ≥ |xbnc| are the n elements of x sorted by absolute value.
Table 4.2 lists the selected problems, includes the problem name, the Sparco ID,

and a brief description of the A, which is often a compound operator.

4.2. Least-squares updates. Following (2.4), each search direction is computed
by solving an LS problem minx ‖h− Sx‖2 and setting ∆y = (h− Sx)/λ. Because we
choose not to store A, we are restricted to obtaining the solution of the LS problem via
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Fig. 4.1: The result of trimming the active set on two test problems, showing true (•),
recovered (�), and trimmed (♦) coefficients. The left panel (Sparco problem gcosspike)
shows that the trimming procedure eliminated all of the extraneous coefficients. The right
panel (a problem whose true coefficients span 8 orders of magnitude) shows that none of the
small (and correct) coefficients were trimmed.

the semi-normal equation RTRx = STh. As described by Björck [2, §6.6.5], one step of
iterative refinement—the corrected semi-normal equation method—may be needed to
improve accuracy. (In the case of compressed sensing, however, where A is expected
to satisfy a restricted isometry property [4] or to have a low mutual coherence [13, 14],
S is expected to be extremely well conditioned, and the correction step is not needed.)

Utilities QRaddcol and QRdelcol implement standard procedures [2, §3.2] for
updating R when columns of S are added or deleted without storing or updating the
orthogonal part of the QR factorization.

4.3. Trimming the active set. The optimal active set S returned by Algo-
rithm 1 (BPdual) is often as important as the final solution. For some applications,
the main aim is to discover a minimal set of columns of A that need to participate
in the reproduction of the right-hand side. Indeed, an optimal S is sufficient—via a
conventional linear least-squares solution—to recover an optimal solution x.

The left panel in Figure 4.1 shows that BPdual may yield solutions x with many
small and insignificant entries, i.e., elements in S that are “weakly” active. The naive
approach of simply trimming elements from S that correspond to small coefficients x
suffers from the ambiguity in having to define a suitable threshold that doesn’t also
eliminate small elements that should be in the active set. To illustrate this point, the
right panel shows a contrived example whose true coefficients smoothly span eight
orders of magnitude, and in that case there is no well defined threshold.

Algorithm 3 describes a simple trimming procedure that systematically deletes
elements from S that correspond to small elements in x. The algorithm assumes that
the inputs are optimal—i.e., they are the results of BPdual—and exits when another
constraint deletion would result in loss of optimality (the multipliers x no longer have
the correct sign) or feasibility. A concession to efficiency appears in line 1: a rigorous
test would compute ∆z = AT∆y (see line 5 of Algorithm 1) at each iteration in order
to ensure feasibility, but we wish to keep the iterations lightweight and avoid products
with A (and thus implicitly assume that ‖A‖ ≈ 1).

Figure 4.1 shows the results of applying Algorithm 3 to two different problems. In
the left panel, 117 of 237 elements from S, corresponding to small elements in x, are
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Algorithm 3: Trimming procedure for the working set.

input: S, R, x, λ
h← b− λy [h is the negative gradient of φ]
r ← arg minr |xr| [r is the most weakly active constraint]

while |xr| < tol do
q ← Sr, S ← S \ {q} [delete constraint r from the working set]

R← QRdelcol(R, r) [delete column r from QR factor; see §4.2]
x̄← arg minx ‖h− Sx‖2 [solve least-squares problem using R]
∆y ← (h− Sx)/λ

1 if sgn(x̄) 6= sgn(x−r) or ‖∆y‖ > tol then
S ← S ∪ {q} [add constraint q back into the active set]

R← QRaddcol(R,Aeq) [add qth column of A to QR factor; see §4.2]
break [no more elements to trim; exit]

x← x̄, r ← arg minr |xr|
output: x, S

eliminated; in the right panel, no constraints are trimmed. Table 5.1 gives the number
of elements trimmed for each of the Sparco test problems.

5. Basis pursuit (asp bpdn). The BP problem aims to find a sparse solution to
the system Ax = b, which corresponds to solving BPλ with λ = 0. In this case the dual
problem QP0 is a linear program. However, the active-set algorithm is well defined
only for positive values of λ. In particular, step 4 of Algorithm 1 defines the search
direction ∆y as the residual of an LS problem (computed in the previous step) scaled
by λ.

Our approach for applying Algorithm 1 to the BP problem is based on the fact
that it is not necessary to set λ = 0 in order to obtain a solution of QP0. As shown
by Mangasarian and Meyer [29], there exists a positive parameter λ̄ such that for all
λ ∈ (0, λ̄) the solution y of QPλ coincides with the unique least-norm solution of QP0.
Note that for problems with sparse solutions, we expect the solution of BP0 (the dual
of QP0) to have many fewer than m nonzero elements; this situation translates into
nonuniqueness of y. In the parlance of linear programming, BP0 is expected to be
highly primal degenerate, which means that its set of dual solutions is expected to
have high dimensionality [22]. In this light, solving QPλ with a small but positive
value of λ corresponds to a solving a regularized version of QP0 that ensures that the
solution y is unique (and of minimimum length). The resulting approach is similar to
Plumbley’s polytope faces pursuit algorithm for BP [36], which seems to have been
developed without reference to existing active-set methods.

In Table 5.1, we summarize experiments in which we apply Algorithm 1 with
` = −e, u = e, and λ =

√
ε (where ε is the relative rounding error in double-precision

floating-point arithmetic) to obtain BP solutions to the problems in Table 4.2. For
most problems, the number of iterations is proportional to nnz(x). In particular, for all
problems except p3poly, soccer1, and yinyang, Algorithm 1 behaves in a perfectly
greedy manner, meaning that elements are only added to the active set. However,
note that for some of these problems—notably cosspike, dcthdr, gcosspike, and
spiketrn—some of the entries in the final support are relatively insignificant (as
suggested by an iteration count larger than |S|; cf. (4.1)). Thus, although the solution
support grows greedily, the final value of some of the coefficients may be negligible,
indicating that the greedy approach is not necessarily optimal. Donoho and Tsaig [15]
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Table 5.1: Performance of the active-set method on basis pursuit problems.

asp bpdn asp topy both solutions

Problem itns trim itns trim nnz(x) |S| ‖r‖2 cond(S)

blocksig 1024 0 1025 0 1017 1024 5e−07 1e+00
cosspike 125 3 126 3 116 122 8e−15 1e+00
dcthdr 357 57 364 49 282 300 1e−12 2e+00
gcosspike 237 174 259 117 59 63 8e−14 2e+00
jitter 3 0 4 0 2 3 6e−08 1e+00
p3poly 2414 0 1027 0 581 600 1e−08 5e+02
sgnspike 20 0 21 0 19 20 1e−07 1e+00
soccer1 14475 0 4935 0 2992 3199 2e−06 3e+03
spiketrn 100 88 138 57 11 12 2e−14 4e+00
yinyang 4370 0 1763 0 994 1024 7e−07 2e+03

Algorithm 4: Orthogonal matching pursuit (as omp).

input: A, b
r ← b, R← [ ], S ← {} [initialize iterates]

while |S| < m or ‖r‖ > 0 do
z ← ATr
p← arg max

∣∣zp∣∣, j ← Sp [choose entering variable j]
S ← S ∪ {j} [add jth variable to the working set]

R← QRaddcol(R,Aej) [add jth column of A to QR factor; see §4.2]
x← arg minx ‖b− Sx‖2 [solve least-squares problem using R]
r ← b− Sx [update the residual vector]

output: x, S

noted the greedy behavior, which they call the “k-step” property, of the homotopy
method [33] on certain input data.

6. Orthogonal matching pursuit (asp omp). The OMP algorithm introduced
by Pati, Rezaifar, and Krishnaprasad [35], and popularized in the book by Mallat [28,
§9.5], is used extensively in the signal-processing literature as a means for obtaining
sparse solutions to underdetermined linear systems. For important cases where A is
either Gaussian or Bernoulli—i.e., every element is drawn from a Gaussian or Bernoulli
distribution respectively—Tropp and Gilbert [41] give conditions that are sufficient
for OMP to recover the sparsest solution. While it is now well known that the BP

problem can recover the sparsest solution under more general conditions than can
OMP, the OMP approach is considered to be computationally cheaper [30]. Indeed,
there are several proposals for closing the gap between OMP and BP while preserving
the computational advantage of OMP; some examples include the CoSamP [31] and
ROMP [32] algorithms.

Each iteration of OMP is based on adding one index to the active set (the variable
that maximizes the gradient of the LS objective ‖Ax−b‖22) and solving the LS problem
over the variables in the active set. Algorithm 4 outlines the OMP algorithm. The
main work per iteration is the same as for the basic active-set algorithm. Both methods
require a product with A and AT and updating of R in the QR factors of S. The main
difference is that OMP is greedy (it only adds elements to the active set).
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Fig. 6.1: Comparing basis pursuit (solid line) against orthogonal matching pursuit (dotted
line) on random problems with different solution sparsity levels k. The left panel plots the
fraction of solutions that are correctly recovered; the right panel gives the average number of
iterations needed on successful solves.

Figure 6.1 reproduces an experiment conducted by Tropp and Gilbert [41] to assess
the performance of OMP in recovering the sparsest solution to an underdetermined
linear system Ax = b. In these experiments, A is an m-by-256 matrix drawn from a
Gaussian distribution, and a random solution x0 with k nonzeros is used to generate b.
OMP is applied to 1,000 instances of a problem for a given pair (m, k), where m ∈
{1, . . . , 256} and k ∈ {4, 12, 20, 28, 36}. The left panel gives the fraction of problems
where OMP succeeded in obtaining the correct support of the solution; the right panel
gives the average number of iterations, over successful solves, to obtain that solution.
Overlayed (solid lines) are the results of applying the active-set algorithm to the
corresponding BP problems.

The left panel confirms the well known property that the BP formulation is
significantly more successful at recovering sparsest solutions. The right panel shows
that, over regimes where OMP and BP both have a high probability of success (nearly
1), the BP active-set algorithm requires the same number of iterations (and therefore
the same computational effort) as OMP; the active-set algorithm incurs more iterations
only in regimes where OMP has a lower probability of succeeding.

7. Homotopy (asp topy). A number of algorithms based on repeatedly solving
a quadratic program have been proposed for obtaining sparse LS solutions. A notable
example is Homotopy [33, 34], which is based on solving a sequence of Lasso [38]
problems

minimize
x

1
2‖Ax− b‖

2
2 subject to ‖x‖1 ≤ τk (7.1)

with increasing values of τk. The algorithm begins with τ0 = 0 (with solution x0 = 0)
and increases τk in stages that predictably change the number of nonzeros in the
solution xk. Typically, the support of xk increases by exactly one index as τk passes
through each “breakpoint”. However, the support can also contract—and in the
presence of degeneracy, multiple entries may be added or deleted at each breakpoint.
The norm of the optimal residuals rk := b − Axk decreases monotonically, and the
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values of τk increase until the desired residual norm is reached. A crucial consequence
of the Homotopy approach is that each intermediate solution xk is optimal (7.1) for a
given value of τk. Efficiency follows from the ability to update the solution of each
subproblem systematically as τk passes through each breakpoint.

Efron et al. [16] interpret Homotopy from a statistical point of view. Their resulting
LARS algorithm is precisely the Homotopy algorithm, except that elements are never
dropped from the support, and instead elements are allowed to pass through zero and
switch sign; the resulting sequence of iterates may no longer be interpreted as optimal
for some optimization problem.

The original motivation for Homotopy was to obtain sparse LS solutions. Donoho
and Tsaig [15] explore the effectiveness of the Homotopy approach for basis pursuit.
In that context, the sequence of Lasso problems is solved with increasing values of τk
and stops at the first breakpoint τk such that Axk = b; this is a basis-pursuit solution.

7.1. Parametric quadratic programming. The Homotopy algorithm is a
particular case of parametric programming (see, e.g., [1]) applied to QPλ. Suppose
y is the optimal solution of QPλ for a given λ, and let xS be the vector of Lagrange
multipliers for the optimal active set S. The goal is to find the largest allowable
reduction in λ for which S continues to be the optimal active set. If λ is reduced to
λ̄ = λ− α, the corresponding optimal pair (x̄S , ȳ) satisfies

Sx̄S + λ̄ȳ = b and STȳ = c (7.2)

(among other conditions), with x̄S having the correct sign pattern. We describe below
how to compute the maximum allowable reduction in λ; the corresponding optimal
solution can obtained as a side-product of this computation.

Subtract (2.1) from (7.2), and use the definition of λ̄ to obtain

S(x̄S − xS) + λ(ȳ − y)− αȳ = 0 and ST(y − ȳ) = 0.

Premultiply the first equation by ST and use the second equation to arrive at

STS(x̄S − xS) = αSTȳ = αSTy.

Note that this equation can be interpreted as the optimality conditions for an LS
problem. In particular,

x̄S = xS + α∆x where ∆x solves minimize ‖y − S∆x‖2. (7.3)

Thus, the direction in which xS moves as α increases is fixed. The maximum step αxj
that can be taken without changing the current sign of xj is then

αxj =

{
−xj/∆xj if j ∈ Cu ∪ C`
+∞ otherwise,

(7.4)

where Cu = {j | xj < 0, ∆xj > 0} and C` = {j | xj > 0, ∆xj < 0} are index sets
of variables that are respectively positive and decreasing, or negative and increasing.
Thus α cannot be larger than αx = minj α

x
j .

With λ decreasing to λ̄, we need to compute the effect on y, and hence on the
constraints ` ≤ ATy ≤ u. Subtract λ̄y from both sides of (7.2) and use the definition
of ∆x to obtain

(λ− α)(ȳ − y) = b− λ̄y − Sx̄S = (b− λy − Sx) + α(y − S∆x) = α(y − S∆x).
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Algorithm 5: The Homotopy method (as topy).

input: A, b, `, u, λmin

λ← ‖ATb‖∞ [initial λ has empty active set]

while λ > λmin do
[x, y, z,S, R]← as bpdn(A, b, `, u, λ) [solve QPλ with current λ]
∆x← arg min∆x ‖y − S∆x‖2 [solve (7.3) using R]
∆y ← y − S∆x

∆z ← AT∆y
αx ← maxstepx(∆x) [max step to sign change; see (7.4)]
αz ← maxstepz(∆z) [max step to constraint violation; see (7.5)]
α← min{αx, αz} [max overall step]

λ← λ− α
output: x, y, z, S

The last equality follows from the optimality of the pair (x, y). Thus,

ȳ = y +
α

λ− α
∆y, where ∆y := y − S∆x

is the residual of the LS problem (7.3). The change in constraints is then given by

z̄ = z +
α

λ− α
∆z, where z := ATy and ∆z := AT∆y.

The maximum step αzj that can be taken without violating a constraint j 6∈ S is

αzj =


λ(uj − zj)/(∆zj − zj + uj) if ∆zj > 0

λ(`j − zj)/(∆zj − zj + `j) if ∆zj < 0

+∞ otherwise.

(7.5)

Thus α cannot be larger than αz = minj /∈S α
z
j . The overall allowed reduction in λ is

then α = min{αx, αz}.
Algorithm 5 outlines the Homotopy method, which is implemented in the routine

asp topy.

7.2. Homotopy path. Figure 7.1 compares the Homotopy method asp topy

against the quadratic programming method asp bpdn on the Sparco test problems
p3poly and spiketrn. Comparing the top and middle panels, it is clear that the
Homotopy solution path is considerably smoother and more predictable than the
active-set method. This is typical behavior. The number of iterations for convergence
between the two methods, however, is not always necessarily the same: on spiketrn,
the active-set method required fewer iterations to converge. Further comparisons
between the active-set and Homotopy methods are given in Table 5.1.

8. Reweighted basis pursuit (asp rwbp). The reweighted BP algorithm pro-
posed by Candés, Wakin, and Boyd [6] aims to improve on the ability of the BP

approach to recover sparse solutions. Candés et al. give empirical evidence that
the algorithm can sometimes recover sparsest solutions (i.e., the so-called zero-norm
solution) in cases where BP fails to do so.

The canonical reweighted BP algorithm solves a sequence of scaled BP problems

minimize
x

‖Wkx‖1 subject to Ax = b, (8.1)
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Fig. 7.1: Solution paths of the basic active-set method (top panels) and the homotopy method
(middle and bottom panels) on the Sparco problems p3poly (left panels) and spiketrn (right
panels).

where Wk is a diagonal weighting matrix defined by xk−1, the solution of the previous
weighted problem, i.e.,

Wk = diag(wk), wk = 1./(εk + |xk−1|);

the positive scalar εk is held constant or adaptively reduced toward zero. (Davis and
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Algorithm 6: Reweighted basis pursuit denoise (as rwbp)

input: A, b, kmax, ε
y ← 0, λ← ‖ATb‖∞/2, w ← e [initialize iterates]

qp solver ← as bpdn or as topy [choose Algorithm 2 or 5 for subproblem]

while k < kmax do
(S, x, y)← qp solver(A, b, w,−w, λ,S, y) [solve QPλ]

foreach j = 1, . . . , n do wj ← 1/(ε+ xj) [update the weights]

λ← λ/2 [reduce the regularization parameter]

output: S, x

Gribonval [11] describe alternative strategies for selecting the weights.) In some sense,
the weights computed in one iteration serve to “precondition” the next BP problem,
encouraging significant coefficients to remain in the support, and discouraging small
or zero coefficients from remaining or entering the support. The positive parameter εk
ensures that the weights remain bounded, so it is possible for even heavily weighted
coefficients to enter the support on subsequent iterations.

The weighted BP problem (8.1) is the dual of QPλ with λ = 0 and u = −` = wk.
Because the weights may decrease (i.e., ` and u may tighten), the solution of one
weighted problem may become infeasible for the next. Thus we apply the elastic
active-set method of Algorithm 2 to QPλ with appropriate bounds, using the solution
of each weighted problem to warm-start the next.

Rather than solving each weighted BP problem to optimality (via QP0), we solve a
sequence of problems QPλ with decreasing values of λ. This approach has two benefits:
it reduces the amount of effort spent on early subproblems (larger values of λ lead
to easier solves), and it helps to control the size of the support. The approach is
summarized in Algorithm 6, and implemented in the routine asp rwbp.

The left panel of Figure 8.1 compares the recovery rates of the BP approach
(labeled BP), the reweighted BP approach described in Candés et al. [6] (labeled
RW-BP), and the reweighted BPDN described above (labeled RW-HT). The right
panel summarizes for each approach the corresponding cost (measured in the average
number of required matrix-vector products) of successful recoveries. We used the same
experimental setup as described in section 5, except that m was held constant at 100,
and k was varied between 10 and 60.

The left panel confirms the empirical observation made by Candés et al. [6] that
reweighted BP can recover the sparsest solution more often than BP alone. The
reweighted BP approach, using the Homotopy solver (RW-HT) seems to offer some
savings over RW-BP for problems that are difficult to recover. The current RW-HT
implementation naively reduces λ by half at each iteration; a more adaptive approach
might further improve savings.

9. Sequential compressed sensing.

10. Sparse PageRank. Sparse solutions for Ax ≈ b are typically sought for
over- or under-determined systems (e.g., Lasso [38] and BP), but we may also consider
square systems. As described by Langville and Meyer [27], the Google PageRank
eigenvector problem is equivalent to solving a sparse linear system

(I − αHT )x = v, (10.1)

where H is an n× n substochastic hyperlink matrix (Hij ≥ 0, He ≤ e), α is a scalar
parameter (0 < α < 1), v is a teleportation vector (v ≥ 0), and the solution is
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Fig. 8.1: Performance of elastic active-set method (Algorithm 2) used within the BP approach
(BP), the reweighted BP approach (RW-BP), and the reweighted BPDN approach (RW-HT).

nonnegative: x = (I + αHT + (αHT )2 + · · · )v ≥ 0.
For the classical PageRank problem, v = (1/n)e is a dense vector and we would

not expect x to be sparse, although most elements will be tiny compared to the largest.
For personalized PageRank, v is called a personalization vector and is typically v = ei
for some i that might correspond to one’s own homepage. We expect the exact x to
have just a few significant values and the remainder to be tiny or exactly zero.

Choi and Saunders [9] suggest that personalized PageRank vectors can be approx-
imated by basis pursuit denoising. Since x is known to be nonnegative, our simplified
solver LPdual was applied to the problem

minimize
y

−vTy + 1
2λ‖y‖

2 subject to (I − αH)y ≤ e (10.2)

in order to solve

minimize
x,r

λeTx+ 1
2‖r‖

2 subject to (I − αHT )x+ r = v, x ≥ 0. (10.3)

Small values of λ were used to approximate x in (10.1) fairly accurately. Figure 10.1
illustrates an ideal case where the exact x is sparse (only 32 nonzeros). The data for
H represents the Computer Science Department of Stanford University in the year
2001. The page i = 111 was chosen arbitrarily; it refers to the Orientation homepage.
LPdual located the nonzeros in a greedy way (32 iterations), almost in the order of
largest values first. From other such examples [9] we conclude that the denoising
approach to square Ax ≈ b can be effective when the exact x is extremely sparse.

To cover more cases, larger values of λ were used in [25] to maintain sparsity
in x at the expense of larger errors in x. The aim was relaxed to finding which
elements of x are reasonably large, without requiring accurate numerical values for
those elements. Figure 10.2 illustrates using H data for all of Stanford University
in 2001, with i = 23036 being the home page for the Computer Science Department.
The true x has about 20,000 nonzeros larger than 2 × 10−3, with just a handful of
them being larger than 0.01. With λ = 2 × 10−3, LPdual chose 76 nonzeros in 76
iterations, including the significant handful. A larger λ would reduce the number of
iterations but increase the absolute error already visible in the largest elements of x.
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Fig. 10.1: Stanford CS Department webmatrix H of order n = 9914 with α = 0.99 and
v = e111 in (10.1). Left: The exact solution x with 32 nonzero entries. Right: Accurate
values of those nonzeros in the order chosen by LPdual solving (10.2)–(10.3) with λ = 10−5.

Fig. 10.2: Stanford webmatrix H of order n = 275000 with α = 0.85 and v = e23036 in (10.1).
Left: Significant entries in the exact solution x (about 20,000 entries larger than 2× 10−3).
Right: Estimates of those entries chosen by LPdual solving (10.2)–(10.3) with λ = 2× 10−3

(only 76 entries are nonzero).

From more such examples [25] we conclude that BP denoising with relatively large λ
can be effective as a selector for ranking the largest solution elements.

This suggests a further application to the sparse approximate inverse (SPAI)
approach to computing preconditioners for iterative solvers; see xxx
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11. Sparse regression with sparse solutions.

12. Generalized Lasso.

13. Other applications.

• Nonnegative least-squares: Application of BPdual with ` = −∞, u = 0 and
λ = 1.
• Sparse approximate inverse (SPAI): Parallel estimation of each column of A−1

for some sparse matrix A, to achieve automatic computation of preconditioners
for iterative solution of Ax = b.
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