  # Systems Optimization Laboratory

## MINRES-QLP: Sparse Symmetric Equations or Least-Squares Problems

• AUTHORS: S.-C. T. Choi, M. A. Saunders.
• CONTRIBUTORS: C. C. Paige.
• CONTENTS: Implementation of a conjugate-gradient type method for solving sparse linear equations: \begin{align*} \text{Solve } & Ax=b \\ \text{or } & (A - sI)x = b \\ \text{or minimize } & \|Ax-b\|^2 \\ \text{or minimize } & \|(A - sI)x-b\|^2 \end{align*} The matrix $$A - sI$$ must be symmetric or Hermitian, but it may be definite or indefinite, singular or nonsingular. The scalar $$s$$ is a shifting parameter – it may be any real number. The method is based on Lanczos tridiagonalization. You may provide a preconditioner, but it must be symmetric positive definite.

If $$(A - sI)$$ is nonsingular, use SYMMLQ or MINRES.

If $$(A - sI)x = b$$ is singular and compatible, use MINRES or MINRES-QLP (this routine).

If $$(A - sI)x = b$$ is singular and incompatible, use MINRES-QLP (this routine).

If $$A$$ is unsymmetric or rectangular, use LSQR or LSMR.

Special application: To find a null vector of a singular symmetric or Hermitian matrix $$A$$, apply MINRES-QLP to the system $$\min \|Ax - b\|$$ with any nonzero vector $$b$$ (e.g. a random $$b$$). At a minimizer, the residual vector $$r = b - Ax$$ will satisfy $$Ar=0$$. See  for examples.

If an eigenvalue $$\lambda$$ is known, the associated eigenvector may be obtained by applying MINRES-QLP to $$(A - \lambda I)x = b$$. The residual $$r = b - (A - \lambda I)x$$ is an eigenvector because $$(A - \lambda I)r = 0$$.

If $$\lambda$$ is not exact, use a loose stopping tolerance and Rayleigh-quotient iteration to refine $$\lambda$$.

• REFERENCES:
 S.-C. T. Choi (2006). Iterative Methods for Singular Linear Equations and Least-Squares Problems, PhD thesis, ICME, Stanford University.

 S.-C. T. Choi, C. C. Paige and M. A. Saunders. MINRES-QLP: A Krylov subspace method for indefinite or singular symmetric systems, SIAM J. Sci. Comput. 33:4, 1810-1836, published electronically Aug 4, 2011.

 S.-C. T. Choi and M. A. Saunders. Algorithm 937: MINRES-QLP for symmetric and Hermitian linear equations and least-squares problems, ACM Trans. Math. Softw. 40:2, Article 16 (Feb 2014), 12 pp. (pdf)

• RELEASE:

02 May 2010: MATLAB implementation

12 Sep 2013: f90 implementations (real and complex) version 27

07 Jun 2018: Python implementation available from Yang Liu et al. 