
CME 338 Final Project

Matthew Zahr

June 14, 2013

Abstract

For the final project, I enhanced the PDCO code on the SOL website by adding Method = 22, which
is identical to the SQD Method = 21 with the original sparse LU (lu.m) replaced with the MA57 LDLT

factorization (ldl.m). Method 22 is then compared to Methods 1, 2, 3, 21 in a very similar study that
was performed in Homework 5.

Results

Figure 1 contains the sparsity structure of the first problem considered, lp adlittle from Tim Davis’ sparse
matrix collection. Table 1 contains the PDCO results for this problem (lp adlittle.mat). All of the direct
solvers (Cholesky, QR, indefinite-Cholesky type - both lu and ldl factorization) for computing the search
direction give exactly the same number of PDCO iterations (as expected since they should be computing
identical search directions, modulo round-off error). The direct solvers required 21 PDCO. Also, LSMR
gives the same number of PDCO iterations (21) as the direct methods when the tolerances are small.
When the tolerances for LSMR are large, more PDCO iterations (24) are required because the search
directions are only computed approximately. It was also interesting to note that the number of LSMR
iterations increased quite rapidly when small tolerances were used; the increase in LSMR iterations was
slower when large tolerances were used and an upper bound of about 108 iterations was hit. As far as
CPU times go, method 21 and 22 were the fastest (Method 22 was a bit faster than Method 21, but
the CPU times are so small that uncertainty in the timing may be responsible for the differences) with
the Cholesky and QR methods about tied for second fastest. The LSMR methods were the slowest, but
it was beneficial to use larger tolerances (accept more PDCO iterations for a slower increase in LSMR
iterations).

Table 1: PDCO Results: (lp adlittle.mat)
Method (ATol1,ATol2) # PDCO Time (sec)
Chol - 21 0.182
QR - 21 0.190

LSMR Default 21 0.523
LSMR (1e-6,1e-6) 24 0.377
SQD - 21 0.0542

SQD (MA57) - 21 0.0377

Figure 2 contains the sparsity structure of the second problem considered, lp israel from Tim Davis’ sparse
matrix collection. Notice that this problem has a few rather dense columns. Table 2 contains the PDCO
results for this problem (lp israel.mat). First, we observe that all of the direct solvers (Cholesky, QR,
indefinite-Cholesky type - both lu and ldl factorization) returned sub-optimal solutions at “convergence,”
while the LSMR based algorithm required fewer PDCO iterations (32 instead of 36) and obtained a better
solution. This is a rather strange and suggesting that this may be an issue with optimality tolerances
(the direct solver algorithms generate a point that barely satisfies optimality while LSMR generates one
that satisfies the optimality condition by a wide margin). This is, in fact, the case since I re-ran all of

1



Figure 1: LP Sparsity (lp adlittle.mat)

0 20 40 60 80 100 120

0

10

20

30

40

50

nz = 424

Sparsi ty Structure of lp adl i ttl e

Student Version of MATLAB

the tests with the optimality tolerance set to 10−8 instead of 10−6 and all methods converged to the
same value of the objective function (−4.7971602 × 105); the direct algorithms required 44 iterations
with this new tolerance and LSMR (default atol1 and atol2) required 39. Notice that the using LSMR
with relaxed tolerances fails to converge (due to linesearch failures).

Figure 2: LP Sparsity (lp israel.mat)

0 50 100 150 200 250 300

0

20

40

60

80

100

120

140

160

nz = 2443

Sparsi ty Structure of lp i srae l

Student Version of MATLAB

Figure 3 contains the sparsity structure of the third problem considered, lp sc105 from Tim Davis’ sparse
matrix collection. Table 3 contains the PDCO results for this problem (lp sc105mat). All solvers that

2



Table 2: PDCO Results: Small Problem (lp israel.mat)
Method (ATol1,ATol2) # PDCO Time (sec)
Chol - 36 0.395
QR - 36 0.431

LSMR1 Default 32 0.985
LSMR (1e-6,1e-6) Failed Failed
SQD - 36 0.128

SQD (MA57) - 36 0.261

LSMR found point with lower objective function (−4.227× 105) than Chol, QR, and SQD (−3.817× 105).

successfully found the optimal solution required exactly 16 PDCO iterations to do so. LSMR with relaxed
tolerances again failed to converge due to linesearch failures. For this problem, the Cholesky and SQD
with MA57 were the fastest algorithms with LSMR the slowest. The CPU times are again very small
which means that timing uncertainty could be responsible for the differences.

Figure 3: LP Sparsity (lp sc105.mat)

0 20 40 60 80 100 120 140 160

0

10

20

30

40

50

60

70

80

90

100

nz = 340

Sparsi ty Structure of lp sc105

Student Version of MATLAB

Figure 4 contains the sparsity structure of the fourth problem considered, lp ship12l from Tim Davis’
sparse matrix collection. Table 4 contains the PDCO results for this problem (lp sc105mat). All solvers
that successfully found the optimal solution required exactly 28 PDCO iterations to do so. LSMR
with relaxed tolerances again failed to converge due to linesearch failures. For this problem, the sparse
Cholesky algorithm was the fastest with LSMR by far the slowest. For all direct algorithms, the CPU
times are again very small which means that timing uncertainty could be responsible for the differences.
Table 5 contains the PDCO results for the lpi ceria3d. All of the direct solvers (Cholesky, QR, indefinite-
Cholesky type) for computing the search direction give exactly the same number of PDCO iterations

3



Table 3: PDCO Results: Small Problem (lp sc105.mat)
Method (ATol1,ATol2) # PDCO Time (sec)
Chol - 16 0.0249
QR - 16 0.0595

LSMR Default 16 0.452
LSMR (1e-6,1e-6) Fail Fail
SQD - 16 0.0448

SQD (MA57) - 16 0.0359

Figure 4: LP Sparsity (lp ship12l.mat)

0 1000 2000 3000 4000 5000

0

500

1000

nz = 16276

Sparsi ty Structure of lp ship12l

Student Version of MATLAB

Table 4: PDCO Results: Small Problem (lp ship12l.mat)
Method (ATol1,ATol2) # PDCO Time (sec)
Chol - 28 0.302
QR - 28 0.454

LSMR Default 28 3.155
LSMR (1e-6,1e-6) Fail Fail
SQD - 28 0.533

SQD (MA57) - 28 0.819

(as expected since they should be computing identical search directions, modulo round-off error). The
direct solvers required 43 PDCO. For this problem, even with small tolerances, LSMR required more
iterations than the direct solvers; this is due to the fact that during the later PDCO iterations, the
LSMR algorithm was not converging to the specified tolerance before reaching its maximum number of
iterations (178800) causing the later search directions to differ from the directions computed with the
direct solvers. I did not determine the exact number of PDCO iterations required for the large problem
(with small tolerances) because I killed the run after 70 iterations and over an hour of compute time.
When the tolerances for LSMR were large, the optimization failed due to a large number of linesearch
failures (likely due to an inaccurate search direction for the relaxed LSMR tolerances). As far as CPU
times go, method 21 and 22 were the fastest (by a wide margin) with the Cholesky method second fastest
and the QR method third fastest (Method 21 outperformed Method 22 by nearly a factor of 4 in this
case). The LSMR methods were the slowest; in this case, using relaxed LSMR tolerances resulted in a
failure to converge.

4



Figure 5: LP Sparsity (lpi ceria3d.mat)

0 500 1000 1500 2000 2500 3000 3500 4000

0

500

1000

1500

2000

2500

3000

3500

nz = 21178

Sparsi ty Structure of lpi ceria3d

Student Version of MATLAB

Table 5: PDCO Results: Large Problem (lpi ceria3d.mat)
Method (ATol1,ATol2) # PDCO Time (sec)
Chol - 43 78.9395
QR - 43 352.8506

LSMR Default > 70 > 1hr
LSMR (1e-6,1e-6) Failed Failed
SQD - 43 1.2471

SQD (MA57) - 43 4.072

5


