Disruption of Core Planar Cell Polarity Signaling Regulates Renal Tubule Morphogenesis but Is Not Cystogenic

Graphical Abstract

Highlights
- PCP signaling in kidney tubules controls uniformity of tubule diameter
- PKD mutations do not disrupt PCP signaling
- Primary cilia and PCP signaling provide independent control of CE and OCD
- Loss of PCP signaling does not induce cysts

Authors
Koshi Kunimoto, Roy D. Bayly, Eszter K. Vladar, Tyson Vonderfecht, Anna-Rachel Gallagher, Jeffrey D. Axelrod

Correspondence
jaxelrod@stanford.edu

In Brief
Although perturbation of oriented cell division is frequently associated with polycystic kidney disease, Kunimoto et al. show that blocking planar cell polarity (PCP) signaling is not cystogenic, nor is PCP disturbed in cysts induced by disruption of primary cilia. The commonly proposed model in which PCP regulates cystogenesis is thus incorrect.
Disruption of Core Planar Cell Polarity Signaling Regulates Renal Tubule Morphogenesis but Is Not Cystogenic

Koshi Kunimoto,1 Roy D. Bayly,1 Eszter K. Vladar,1 Tyson Vonderfecht,1 Anna-Rachel Gallagher,2 and Jeffrey D. Axelrod1,3,*
1Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
2Department of Internal Medicine, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
3Lead Contact
*Correspondence: jaxelrod@stanford.edu

SUMMARY

Oriented cell division (OCD) and convergent extension (CE) shape developing renal tubules, and their disruption has been associated with polycystic kidney disease (PKD) genes, the majority of which encode proteins that localize to primary cilia. Core planar cell polarity (PCP) signaling controls OCD and CE in other contexts, leading to the hypothesis that disruption of PCP signaling interferes with CE and/or OCD to produce PKD. Nonetheless, the contribution of PCP to tubulogenesis and cystogenesis is uncertain, and two major questions remain unanswered. Specifically, the inference that mutation of PKD genes interferes with PCP signaling is untested, and the importance of PCP signaling for cystogenic PKD phenotypes has not been examined. We show that, during proliferative stages, PCP signaling polarizes renal tubules to control OCD. However, we find that, contrary to the prevailing model, PKD mutations do not disrupt PCP signaling but instead act independently and in parallel with PCP signaling to affect OCD. Indeed, PCP signaling that is normally downregulated once development is completed is retained in cystic adult kidneys. Disrupting PCP signaling results in inaccurate control of tubule diameter, a tightly regulated parameter with important physiological ramifications. However, we show that disruption of PCP signaling is not cystogenic. Our results suggest that regulating tubule diameter is a key function of PCP signaling but that loss of this control does not induce cysts.

INTRODUCTION

Polycystic kidney disease (PKD) is a prominent feature of single-gene heritable genetic disorders, including autosomal dominant PKD, autosomal recessive PKD, and others (reviewed in [1, 2]). A striking commonality of single-gene PKDs is that the affected proteins function in or contribute to the structure or function of primary cilia [3, 4]. The importance of primary cilia in the etiology of PKD is well documented. However, the developmental and disease-inducing processes affected by primary cilia in the kidney are not well understood.

Two morphogenetic processes, convergent extension (CE) and oriented cell division (OCD), have been proposed to regulate kidney tubule morphogenesis, and their disruption has been associated with development of PKD. CE describes the reorganization of cells to elongate one tissue axis and narrow the orthogonal axis such that, in the renal tubule, CE would reduce tubule diameter [5, 6]. CE has been directly observed by live imaging in the Xenopus nephron [7]. In fixed tissues, CE may be inferred by cellular elongation in the direction of migration and, by this method, has been implicated in mouse nephron morphogenesis [8, 9]. Defective inferred CE precedes cystogenesis in Wnt9b [8] and Pkd1 [9] mouse mutant collecting ducts, but the appealing hypothesis that impaired CE leads to cyst formation has not been directly examined.

OCD, if aligned with the tubule axis, is expected to maintain tubule diameter while facilitating elongation during proliferative growth and has been documented during embryonic and postnatal tubule elongation [8, 10–17]. Perturbation of OCD has been associated with development of PKD [8, 10–12, 14, 15], though whether loss of OCD occurs before or after cystogenesis is controversial [14, 15]. Nonetheless, perturbation of OCD is neither necessary nor sufficient to cause cysts, as impaired OCD is observed in Wnt7b and Pkd1 (causative of autosomal recessive polycystic kidney disease [ARPKD] in humans) mutant mouse kidneys, yet they do not develop cysts [13, 15], and mutation of Ift140, a cilium component, causes cysts without perturbing OCD [16]. Thus, CE and OCD are both integral to normal renal tubule development, but their relationship to PKD is less clear.

PCP signaling controls the polarity of numerous epithelia in both Drosophila and vertebrates and regulates both OCD and CE in various contexts [18]. The Drosophila wing, in which each cell produces a trichome that emerges from the distal side of the cell, has been an instructive model of PCP signaling, revealing a modular signaling system composed of genetically and biochemically related units [19]. The ”core” module acts both to amplify asymmetry and to coordinate polarization between neighboring cells, producing a local alignment of polarity. Proteins in the core module, including the transmembrane
Figure 1. Phenotypes of WT, Vangl2^{Lp/Lp}, and Fz3^{−/−}; Fz6^{−/−} Mutant Kidneys at E18.5

(A and B) Lateral (A) and hilar (B) views of control and Vangl2^{Lp/Lp} kidneys.

(C–D') Low (C and D) and high (C' and D') power H&E histology of control and Vangl2^{Lp/Lp} kidneys.

(E) Fz3^{+/C0}; Fz6^{+/C0} kidneys.

(E' and E'') Low (E) and high power (E') H&E histology of Fz3^{−/−}; Fz6^{−/−} kidneys.
proteins Frizzled (Fz), Flamingo/Starry night (Fmi), Van Gogh/Strabismus (Vang), and the cytosolic/peripheral membrane proteins Dishevelled, Diego, and Prickle, adopt asymmetric subcellular localizations that predict morphological polarity patterns, such as trichome orientation. These proteins communicate at cell boundaries, recruiting one group to the distal side of the cell and the other to the adjacent proximal side through the function of a feedback mechanism, thereby aligning the polarity of adjacent cells [20, 21] (reviewed in [18, 22]).

Downstream of the core module, tissue-specific “effector” modules orchestrate morphological responses to the molecular asymmetry produced by core module function. Upstream of the core module, several “global” modules have been proposed to link the direction of core module polarization to tissue axes. One of these, comprising the atypical cadherins Fat (Ft), Dachsous (Ds), and the Golgi protein Four-jointed, converts opposing tissue-level expression gradients of Four-jointed and Ds into subcellular asymmetry of intercellular Ft-Ds heterodimers that align PCP with the tissue axes [23]. In addition, Wnts and other unknown signals have been implicated as global regulators [24, 25].

In many vertebrate tissues, characteristic features of the PCP signaling mechanism identified in flies are conserved. Yet, in various contexts, features of the mechanism have been adapted and evolved [6, 26], and some PCP genes function in mechanisms other than PCP [18]. Furthermore, whereas Drosophila has one, or in a few cases, two paralogs of essential PCP genes, vertebrates typically have three or more paralogs, suggesting redundancy and/or diversification of function.

The contribution of PCP-related events, and hence core PCP signaling, to PKD was first proposed based on the observation that OCD is observed along the length of the tubule axis and is disturbed prior to cystogenesis in a model of PKD [10]. The inference or observation of CE in renal tubule morphogenesis reinforced this idea [7, 8]. However, evidence implicating the PCP signaling mechanism per se in kidney morphogenesis or in PKD is circumstantial. Numerous Wnts are associated with loss of OCD and/or cysts, but assigning function to PCP versus other pathways is challenging [8, 13, 27, 28]. Mutations in Inversin, a homolog of Drosophila Diego, cause nephropathies similar to those in wild-type littermates and showed dilated tubules to [29]; however, the association of Inversin with cilia and with both canonical Wnt as well as PCP signaling makes interpretation difficult (reviewed in [30]). Loss of FAT4, the closest vertebrate ortholog of Drosophila Fat [31], results in disruption of OCD and in very dilated, possibly cystic embryonic tubules [11]. Furthermore, FAT4 and DCHS1 may form a heterodimer pair analogous to Drosophila Ft-Ds [11, 32, 33]. The Fat4 dilated tubule/cystic phenotype was enhanced by Vangl2 heterozygosity, possibly connecting global and core PCP signaling to OCD and cystogenesis. In contrast, Vangl2Lp/Lp mutant animals show tubule branching and glomerular defects, but not cysts, at embryonic day 18.5 (E18.5) [34]. Confounding a simple interpretation, FAT4 is mostly expressed in the stroma, whereas DCHS1 is primarily expressed in the metanephric mesenchyme [33].

Studies of additional PCP signaling components have suggested a role for PCP in kidney morphogenesis. Xdd1, a dominant-negative DISHEVELLED derivative, disrupts CE in the frog kidney [7]. However, the association of DISHEVELLED with basal bodies suggests that basal body docking or other ciliary defects may account for this phenotype [35]. Similarly, knockdown of pk1 in the Zebrfish kidney disorganizes basal bodies and produces cysts. However, genetic interaction with intraflagellar transport (IFT) mutants and the known functions of Pks in regulating the cytoskeleton are also consistent with non-PCP mechanisms [24, 36, 37]. Misoriented OCD is observed in Celsr1−− (ortholog of Fmi) and Celsr1−−;Vangl2Lp/+ mutant kidneys [17], providing additional evidence for a role of PCP signaling in tubule morphogenesis. Yet, the characteristic subcellular localization of core PCP components that would substantiate conserved PCP signaling function remains to be demonstrated.

Planar polarized behaviors occur in renal tubule morphogenesis, and evidence cited above suggests that they are controlled by PCP signaling. However, two major questions remain unanswered. Specifically, the inference that mutation of PKD genes interferes with PCP signaling is untested, and the importance of PCP signaling for cystogenic PKD phenotypes has not been examined. We therefore directly and functionally interrogated PCP signaling in the mouse kidney.

RESULTS

Core PCP Components Are Required for Proper Kidney and Tubule Morphology

To determine whether the core PCP pathway is required for kidney tubule morphogenesis, we analyzed kidney development in mice mutant for Vangl1, Vangl2, Fz3, and Fz6 separately and in combination. Vangl2Lp/+ homozygotes die at birth. At E18.5, their kidneys were shorter and wider than wild-type littermates, as previously reported [34], and their tubules appeared mildly dilated (Figures 1A–1D). In contrast, Vangl1−− mice (likely hypomorphs) are viable, fertile, with kidneys macroscopically similar to those of wild-type littermates (data not shown). Similar to Vangl1−−, the kidneys of Fz3−− and Fz6−− single-mutant mice were not obviously affected (data not shown). F3−−;F26−− double-mutant mice die periandually with multiple PCP-related phenotypes [38]. Their kidneys were shorter and wider than wild-type littermates and showed dilated tubules comparable to those in Vangl2Lp/+ kidneys (Figures 1E–1E').

In both Vangl2Lp/+ and Fz3−−;Fz6−− kidneys at E18.5, median tubule diameters of both collecting ducts and proximal tubules were significantly larger compared to wild-type
littermates (Figures 1F–1I). Enlarged diameters were also observed for Vangl1/C0/C0 mutant tubules (Figure S1; related to Figure 1). Importantly, plots of these measurements revealed a substantially broader distribution in the mutants compared to wild-type (Figures 1J, 1K, and S1; related to Figure 1). Core PCP components therefore shape the kidney by regulating the diameter of renal tubules. The mutants examined here have not been implicated in ciliogenesis, and we detected no alteration in cilia morphology.

Core PCP Components Are Asymmetrically Localized along the Proximal-Distal Tubule Axis

We investigated whether core components of the PCP pathway function in tubule epithelia and whether they function in a conserved PCP signaling mechanism. At E18.5, when each stage of nephrogenesis is present (Figure 2A), VANGL1, VANGL2, FZ3, and FZ6 were detected in all tubule segments, primarily in the lateral membranes of epithelial cells with a diffuse cytosolic presence (Figures 2B, 2B', and 2D–2E''; data not shown). This pattern was observed as early as E13.5 and persisted into early postnatal development, after which membrane localization dissipated over several weeks (Figures S2A–S2I; related to Figure 2; Figures 7C–7C''). Consistent with this decline, mRNA expression of multiple core PCP genes and related factors decreased between postnatal day 1 (P1) and 16 weeks (Figure S2J; related to Figure 2). These observations suggest that developing tubule cells participate in PCP signaling but that tubules in a post-proliferative quiescent state no longer engage in PCP signaling.

Using a low-calcium dehydration step prior to fixation that induced separation of a fraction of cell-cell junctions, we reliably observed the selective asymmetric accumulation of VANGL1 and VANGL2 along the proximal side and FZ3 and FZ6 along the distal side of cells in both the collecting duct and proximal tubules (Figures 2B–2E''). This asymmetric localization is indicative of active PCP signaling and is strongly reminiscent of that first observed in Drosophila and subsequently in numerous vertebrate tissues.

A characteristic feature of PCP signaling is the dependence of each core protein’s asymmetric localization on the activity of the other core proteins. In Vangl2Lp/Lp mice, in which strong kidney tubule phenotypes are observed (Figure 1), asymmetry of VANGL1, FZ3, and FZ6 localization was eliminated. In addition, their distributions were more punctate, and levels of VANGL1 in particular were decreased (likely due to the dominant-negative activity of the Lp allele; Figures 3A–3C'') [39]. Similarly, in Fz3/C0/C0; Fz6+/C0 mice, whose phenotype is comparable to that of Vangl2Lp/Lp mice, asymmetry of VANGL1 and VANGL2 localization was significantly diminished, though not eliminated (Figures 3D–3D'' and S3B–S3B''; related to Figure 3; data not shown). This contrasts with Fz3+/C0; Fz6+/C0 and Fz3+/C0; Fz6+/C0 mice, in which the asymmetry of VANGL1 and VANGL2 was not diminished (Figures S3A–S3A''; related to Figure 3; data not shown). In Vangl1+/− tubules, the asymmetric localization of VANGL2, FZ6, and FZ3 was modestly diminished, perhaps...
Effects of PCP Mutation on Postnatal Tubules

The mutants examined thus far are perinatally lethal, precluding analyses of potential adult kidney phenotypes. Furthermore, observations from systemic mutants do not rule out the possibility of non-autonomous perturbation of tubule development. We therefore made conditional Vangl1/Vangl2 double knockouts targeted to the collecting ducts from early branching ureteric bud stage (Vangl1,2DKO, Ksp-Cre; see STAR Methods). Eliminating the only two Vangl paralogs is expected to severely compromise or abolish core PCP signaling. Vangl1,2DKO, Ksp-Cre animals were viable and survived long into adulthood, and recombination in collecting ducts was complete (Figures S4A–S4B”; related to Figure 3; data not shown). The core components are therefore mutually required for establishment and/or maintenance of their asymmetric localization, indicating that they function in a conserved PCP signaling mechanism to regulate tubule diameter.

Loss of Tubule PCP Is Not Cystogenic

Because disruption of PCP has been proposed to be cystogenic, we aged the Vangl1,2DKO, Ksp-Cre mice for up to 50 weeks. Remarkably, and contrary to common conjecture, none of 17 animals aged from 3 to 50 weeks (Table S1) developed renal cysts (Figures 4C–4D”). Indeed, median tubule diameter continued to decrease into adulthood as it did in wild-type. The median diameter of Vangl1,2DKO, Ksp-Cre collecting ducts at 16 weeks decreased compared to P1 yet remained somewhat larger than wild-type, and diameter distribution was broader (Figure 4F). PCP is therefore required to ensure the uniformity of tubule diameters throughout development. During embryogenesis, mutant tubules decrease their diameter less uniformly and reliably than wild-type tubules, leading to both a larger median diameter and a broader diameter distribution. Postnatally, wild-type and mutant tubules continue to decrease in diameter, presumably by a PCP independent process, but the non-uniformity of PCP mutant tubule diameters remains.

due to the hypomorphic nature of the allele or to redundancy between Vangl1 and Vangl2 (Figures S3B–S3B”; related to Figure 3; data not shown). The core components are therefore mutually required for establishment and/or maintenance of their asymmetric localization, indicating that they function in a conserved PCP signaling mechanism to regulate tubule diameter.
PCP Signaling Controls Cellular Rearrangement and Oriented Cell Divisions

PCP-dependent CE, whereas only inferred in mice, is hypothesized to underlie narrowing of tubule diameter and concurrent reduction in the number of cells comprising tubule circumference [8, 9]. We therefore measured cell number in circumferential cross-sections of tubules over time. As previously described [8, 9], the cross-sectional cell number in wild-type collecting ducts and proximal tubules decreases throughout embryonic development, with the most marked reduction occurring between E16.5 and E18.5 (Figure 5A). However, in Vangl2Lp/Lp mutants, collecting duct cross-sectional cell number decreases more slowly, with the most dramatic difference between mutant and wild-type observed at E17.5, suggesting a maximum perturbation of processes occurring between E16.5 and E17.5. The difference between wild-type and mutant persisted through E18.5. A similar effect was observed in proximal tubules (Figure 5B). In both tubule types, the decline in cell counts in mutants was slowed, but not arrested. Thus, either Vangl2Lp/Lp only partially disrupts the relevant mechanism(s) or fully inhibits only a subset of several mechanisms that lead to the reduction in cross-sectional cell number.

Due to the difficulty in breeding Fz3/C0/Fz6/C0 mice, we were only able to analyze tubules at E18.5. Their cross-sectional cell number was very similar to that of Vangl2Lp/Lp mice (Figures 5A and 5B).

Convergent extension is reflected in cellular elongation in the direction of cell intercalation [6]. Unlike previous reports, we observe a bimodal distribution of orientations in wild-type tubules during narrowing, but like Wnt9b−/− mutants that fail to efficiently narrow collecting duct diameters [8], cellular long axes in Vangl2Lp/Lp tubules were shifted toward the tubule axis compared to wild-type (Figure S5; related to Figure 5). These results support existing evidence that core PCP factors control cellular orientation and CE during the embryonic phase of renal tubule diameter reduction.

PCP Signaling Controls Oriented Cell Division in Tubules

Whereas oriented cell divisions are largely parallel to the tubule axis in wild-type tubules [10], off-axis cell division has been observed in a variety of mutants associated with polycystic kidney disease [10, 11, 13, 15, 16] and is also observed in Pkd1del4/del4 mouse mutants, which do not develop cysts [15]. We found that, in P1 Vangl1,2DKO, Ksp-Cre collecting ducts, cell division orientations are significantly off axis relative to the largely parallel wild-type divisions (Figures 5C and 5D; Movies S1 and S2). Therefore, PCP signaling regulates renal tubular OCD.

Primary Cilia Regulate Planar Polarized Behaviors, but Not Core PCP Signaling

Many cilium-associated PKD genes, as well as early genetic ablation of primary cilia (through loss of Kif3a) that result in the development of cysts by P30 [40], also show defective CE and OCD. This observation led to the hypothesis that these mutations induce cystogenesis, at least in part, by disrupting PCP signaling. Indeed, results from multiple systems have led to...
proposals of a mechanistic relationship between PCP signaling and primary cilia, yet no clear understanding of the hypothesized relationship has emerged [41]. We therefore examined the relationship between primary cilia and PCP in renal tubule development.

We determined whether primary cilia contribute to regulation of tubule diameter during embryonic tubulogenesis, a time when PCP signaling contributes to this process. In KspCre; Kif3a^cko/cko mice at E18.5, cilia were nearly ablated from collecting duct cells, leaving only short ciliary remnants (Figures S6B and S6C; related to Figure 6). In these kidneys, the median diameter of collecting duct tubules was significantly increased and the distribution broadened compared to wild-type, comparable to Vangl2^Lp/Lp and Fz3^+/−;Fz6^+/− kidneys (Figures 6A and 6B). Kif3a deletion also had an effect similar to that of the PCP mutants on both the cross-sectional cell number as well as on the distribution of cellular orientations with respect to the tubule axis (Figures 6C and 6D; related to Figure 6). These similar phenotypes may be explained either by dependence of PCP on primary cilia or vice versa or by their independent activity on CE and OCD.

We therefore examined PCP signaling in KspCre; Kif3a^cko/cko mutants by assaying asymmetric PCP factor localization. At E18.5, VANGL1 and FZ6 retain their oppositely oriented asymmetric localization, indicating that core PCP signaling is intact (Figure 6D; data not shown). Thus, a reduction of primary cilia length sufficient to cause a tubule diameter defect similar to that seen in the core PCP mutant kidneys showed no effect on core PCP signaling. Primary cilia therefore appear to influence tubule diameter independent of core PCP signaling. However, because ciliary remnants still exist in KspCre; Kif3a^cko/cko mice at E18.5, these data do not strictly rule out the possibility that renal tubule cilia may be required for generation or maintenance of core PCP factor asymmetric localization.

Pkhd1^del4/del4 mutant mice, which do not develop cysts, show off-axis cell division [15], and median tubule diameter is increased and more broadly distributed than wild-type, albeit modestly (Figure S6D; related to Figure 6). As in Kif3a^cko/cko, core PCP proteins VANGL1 and FZ6 retain their asymmetric localization in P1 Pkhd1^del4/del4 mutant collecting ducts (Figures 6E–6E’), indicating that the off-axis cell division in these mutants cannot be attributed to disruption of PCP signaling. Together, these results suggest that PCP signaling is intact when tubule cilia are mutated and are reminiscent of the findings that Ift88 mutation in the cochlea disrupts sensory hair cell polarity and that Kif3a knockout in ependymal cells disrupts basal body polarity, each without altering PCP protein asymmetry [42, 43].

Robust Asymmetric Localization of Core PCP Components Persists in Cyst-Lining Cells

Several weeks into adulthood, PCP signaling in wild-type ducts is substantially diminished. We therefore determined whether PCP signaling is similarly diminished in P30 Kif3a^cko/cko mutant collecting ducts when Kif3a protein is depleted, cilia are severely shortened, and a strongly cystic phenotype is observed as
previously reported [40] (Figures 7A–7B'). Whereas in unaffected P30 proximal tubules, levels of VANGL1 and FZ6 at the lateral cell membrane were significantly diminished from P1 levels (Figures 7C–7C'''), in the cyst-lining cells of KspCre; Kif3acko/cko mice, cilia were absent, and strikingly, localization of core PCP components was similar to that observed prenatally. Robust VANGL1 and FZ6 expression co-localized with E-CADHERIN (E-CAD) along the lateral membrane of tubule cells (Figures 7D–7D''', compare to Figures 7C–7C'''; Figures S6F–S6F'', compare to Figures S6E–S6E''; related to Figure 7) and was asymmetric in cyst-lining cells, identical to that observed embryonically (Figures 7E–7E'' and S6G–S6G''; related to Figure 6; Movie S1). Consistent with these observations, FZ3 was previously found to be elevated in cysts, though asymmetric localization was not noted [14]. We were unable to determine the global orientation (proximal-distal axis) of cysts and thus cannot rule out a potential disruption to orientation of polarity with respect to the tubule axis. These results demonstrate that, in renal tubule cells, PCP signaling, as revealed by the asymmetric subcellular localization of core PCP proteins, does not depend on primary cilia. Indeed, in adult (P30) kidneys, at a developmental stage at which PCP signaling is no longer active in wild-type, cystic tubule epithelia maintain or restore PCP signaling, perhaps because tubules are inappropriately in an embryonic-like, proliferative state.

DISCUSSION

It has been hypothesized that disruption of PCP, and therefore disruption of CE and OCD, contributes to PKD in a variety of cilium-associated mutant conditions. However, we find that, contrary to prior conjecture, not only is disruption of PCP signaling not required for cystogenesis but PCP signaling is retained in adult cysts when it would otherwise be attenuated. We suggest that PCP signaling is part of the developmental program in proliferative renal tubules and that this program is abnormally activated in proliferating cystic epithelia.

Whereas the core PCP system polarizes cells with respect to their neighbors, global directional cues are also required [18]. In the renal tubules, directional signals remain to be identified. Wnts have been proposed as directional signals in Drosophila [25] and in vertebrates [18], though their ability to act as instructive signals is not firmly established. Several Wnts required for kidney development [8, 13, 27, 28] should be considered as candidate directional cues. The requirement of FAT4 and DCHS1 for normal OCD suggests the possibility that these cues are involved in the regulation of renal tubule polarization.

Figure 6. PCP in Cystic Kidneys

(A) Median collecting duct diameters at E18.5 for WT control, Vangl2Lp/Lp, Fz3−/−; Fz6−/−, and KspCre; Kif3a−/−. Data for WT control, Vangl2Lp/Lp, and Fz3−/−; Fz6−/− are from Figure 1H. For KspCre; Kif3a−/−, median = 20.1 μM and *p < 0.0001 compared to wild-type by Mann-Whitney U test.

(B) Distribution plots of the measurements from (A).

(C) Circumferential cell number for E18.5 collecting ducts for WT control, Vangl2Lp/Lp, Fz3−/−; Fz6−/−, and KspCre; Kif3a−/−. Data are displayed in box and whisker format, showing the minimum, lower quartile, median, upper quartile, and maximum values; + indicates mean. *p < 0.0001 by Mann-Whitney U test. Data for WT control, Vangl2Lp/Lp, and Fz3−/−; Fz6−/− are from Figure 5A.

(D–D) E18.5 collecting duct from KspCre; Kif3a−/− precystic kidneys showing asymmetrically localized VANGL1 (green); E-CAD (blue).

(E–E) P1 Pkd1δdel4/δdel4 collecting duct showing asymmetrically localized VANGL1 (green) and FZ6 (red).

The scale bars represent 5 μm. See also Figure S6.
provide a directional cue analogous to that proposed for Drosophila Ft-Ds [11]. However, the predominantly non-epithelial expression of these proteins is not easily reconciled with this model. Further work will be required to identify global PCP directional signals in the kidney.

In renal tubules, primary cilium-associated signals are required for OCD (and likely CE) [44]. We find that intact PCP signaling is also required to correctly regulate these events. Our results are most consistent with the model that primary cilia and PCP are independently required for this regulation. PCP is intact in the absence of primary cilia, suggesting that ciliary signals regulating OCD do not act by altering PCP signaling. And whereas it is formally possible that PCP signaling acts via primary cilia to control OCD, this appears unlikely for several reasons. First, primary cilia appear to be intact in PCP mutants (data not shown). Second, PCP regulates OCD in Drosophila tissues that do not have primary cilia. Third, it is difficult to envision a model in which directional information from the PCP system could pass through primary cilia that do not themselves acquire a polarized localization. We therefore propose that PCP provides directional information for OCD and that a primary cilium signal is necessary to enable the response to this directional information.

By conditionally knocking out both Vangl1 and Vangl2 in collecting ducts, an intervention that severely disrupts core PCP signaling, we find that no cysts develop in adults up to one year of age. Therefore, disrupting PCP signaling, which in turn causes off-axis OCD and interferes with CE, does not cause cysts. Similarly, Pkd1del4/del4 or Pkd2del4/del4 mutants display off-axis OCD but do not become cystic [15]. These results imply that cilium-associated mutations that induce either prenatal or postnatal cysts must do something other than interfere with OCD and CE.

It is likely that proliferative signals fulfill this role. Loss of Kif3a induced conditionally in adult collecting ducts produced cysts only if proliferation was also induced; the induction of cysts by earlier Kif3a loss apparently requires developmentally controlled proliferation [12]. Furthermore, the cystic phenotype of Pkd1 or Pkd2 mutant collecting ducts (encoding polycystin-1 and -2) is suppressed by loss of cilia [45]. Removing polycystins therefore appears to activate a cilium-dependent proliferative signal for robust cystogenesis that is attenuated by disrupting cilia. Blocking PCP does not activate such a signal.

The observation that Fat4 and Dachs1 mutations cause dilations/cysts was suggested to support the idea that impaired PCP signaling is cystogenic [11]. However, whether or not Fat4 and Dachs1 provide PCP directional information in the kidney, the observation that Vangl1,2DKO; Ksp-Cre collecting ducts do not produce cysts argues against the model that Fat4 and Dachs1 act solely by disrupting core PCP signaling to induce cysts. We suggest that these mutations activate a proliferative signal. Drosophila ft and ds mutations activate Hippo signaling [46], and Hippo signaling is activated in human autosomal dominant polycystic kidney disease (ADPKD) and ARPKD [47], but Hippo signaling is not activated in FAT4- or DCHS1-associated mouse mutant dilations/cysts [33]. If Fat4 and Dachs1 mutations induce proliferation, this may be indirect, as the earliest indications of abnormal growth were reported to be increased cell death and decreased proliferation [33]. Of note, INTEGRIN-β1 is required for the proliferative response to Pkd1 mutation, suggesting another possible proliferative pathway [48]. Taken together, these observations suggest that...
ciliation-based and non-ciliation-based proliferative signals may be capable of contributing to cystogenesis.

As disrupted OCD is neither necessary nor sufficient for cystogenesis, it is unclear why it is often associated with conditions that cause cysts. One possibility is that disrupting OCD in combination with another signal is one of several distinct mechanisms of cystogenesis. This remains to be explored.

In animals ranging in size from the shrew to the elephant, proximal tubule diameters are essentially invariant [49]. Because mean arterial pressure is independent of size and therefore glomerular filtration pressure is likely also size independent, renal physiology seems to dictate an optimal diameter. One potential consequence of deviation from this optimum is variation in resistance, resulting in aberrant nephron pressure. Whereas kidney disease (GCKD) [50] in a fraction of older mice and can be found with this article online at https://doi.org/10.1016/j.cub.2017.09.011.

ACKNOWLEDGMENTS

We thank Jill Helms and Yingzi Yang for mice, Hao Chang and Jeremy Nathans for Fz mutant kidneys, Klara Fekete for help with animal husbandry, Neeraja Kambham and Andrew Connolly for pathology consults, Amarejite Grewall and Pauline Chu for H&E staining, Daniel Gray for useful discussions, and Stefan Somlo, Greg Pazour, and Axelrod lab members for comments on the manuscript. Work was supported by a Uehara Memorial Foundation Research Fellowship and JSPS Postdoctoral Fellowships for Research Abroad (K.K.); NIH grant T32 CA 9302-34 and National Kidney Foundation Postdoctoral Fellowships (R.D.B.); American Heart Association Scientist Development Grant 10SDG4590008 (A.-R.G.), NIH grants R37 GM059823 and R01 GM098582, the Stanford Child Health Research Institute, and the Stanford NIH-NCATS-CTSA (grant UL1 TR001085; J.D.A.); and the George M. O’Brien Kidney Center at Yale (NIH grant P30 DK079310).

REFERENCES

KEY RESOURCES TABLE

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibodies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rabbit anti-Vangl1</td>
<td>Sigma-Aldrich</td>
<td>HPA025235</td>
</tr>
<tr>
<td>Rabbit anti-Vangl2</td>
<td>Millipore</td>
<td>ABN373</td>
</tr>
<tr>
<td>Goat anti-Frizzled6</td>
<td>R&D Systems</td>
<td>AF1526</td>
</tr>
<tr>
<td>Goat anti-Frizzled3</td>
<td>R&D Systems</td>
<td>AF1001</td>
</tr>
<tr>
<td>Rat anti-Frizzled3</td>
<td>R&D Systems</td>
<td>MAB1001</td>
</tr>
<tr>
<td>Rat anti-E-Cadherin</td>
<td>Thermo Fisher Scientific</td>
<td>131900</td>
</tr>
<tr>
<td>Mouse anti-E-cadherin</td>
<td>BD Transduction Laboratories</td>
<td>610181</td>
</tr>
<tr>
<td>Mouse anti-acetylated-α-tubulin</td>
<td>Sigma-Aldrich</td>
<td>6-11B-1</td>
</tr>
<tr>
<td>Rabbit anti-phospho-Histone H3 (Ser10)</td>
<td>Millipore</td>
<td>06-570</td>
</tr>
<tr>
<td>Mouse anti-β-catenin</td>
<td>BD Transduction Laboratories</td>
<td>610153</td>
</tr>
<tr>
<td>Goat anti-AQP2</td>
<td>Santa Cruz Biotechnology</td>
<td>SC-9882</td>
</tr>
<tr>
<td>Alexa 488 donkey-anti-rabbit</td>
<td>Thermo Fisher Scientific</td>
<td>A-21206</td>
</tr>
<tr>
<td>Alexa 594 donkey-anti-rabbit</td>
<td>Thermo Fisher Scientific</td>
<td>A-21207</td>
</tr>
<tr>
<td>Alexa 594 donkey-anti-goat</td>
<td>Thermo Fisher Scientific</td>
<td>A-11055</td>
</tr>
<tr>
<td>Alexa 546 donkey-anti-goat</td>
<td>Thermo Fisher Scientific</td>
<td>A-11056</td>
</tr>
<tr>
<td>Alexa 594 donkey-anti-rat</td>
<td>Thermo Fisher Scientific</td>
<td>A-21209</td>
</tr>
<tr>
<td>Alexa 633 goat-anti-rat</td>
<td>Thermo Fisher Scientific</td>
<td>A-21094</td>
</tr>
<tr>
<td>Alexa 647 chicken-anti-rat</td>
<td>Thermo Fisher Scientific</td>
<td>A-21472</td>
</tr>
<tr>
<td>Alexa 647 donkey-anti-mouse</td>
<td>Thermo Fisher Scientific</td>
<td>A-31571</td>
</tr>
<tr>
<td>Phalloidin conjugated to Alexa 635</td>
<td>Thermo Fisher Scientific</td>
<td>A-34054</td>
</tr>
<tr>
<td>Streptavidin conjugated to Alexa 488</td>
<td>Thermo Fisher Scientific</td>
<td>S-32354</td>
</tr>
<tr>
<td>Streptavidin conjugated to Alexa 594</td>
<td>Thermo Fisher Scientific</td>
<td>S-32356</td>
</tr>
<tr>
<td>Fluorescein-conjugated Lotus Tetragonolobus lectin (LTL)</td>
<td>Vector Laboratories</td>
<td>FL-1321</td>
</tr>
<tr>
<td>Biotinylated Lotus Tetragonolobus lectin (LTL)</td>
<td>Vector Laboratories</td>
<td>B-1325</td>
</tr>
<tr>
<td>Rhodamine-conjugated Dolichos Biflorus Agglutinin (DBA)</td>
<td>Vector Laboratories</td>
<td>RL-1032</td>
</tr>
<tr>
<td>DAPI</td>
<td>Sigma-Aldrich</td>
<td>D-9542</td>
</tr>
<tr>
<td>Sytox Green (1:20,000, Invitrogen)</td>
<td>Thermo Fisher Scientific</td>
<td>S7020</td>
</tr>
<tr>
<td>7-aminoactinomycin D (7-AAD, 1:40, Invitrogen)</td>
<td>Thermo Fisher Scientific</td>
<td>A1310</td>
</tr>
</tbody>
</table>

Critical Commercial Assays

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>QIAGEN RNeasy Mini Kit</td>
<td>QIAGEN</td>
<td>74104</td>
</tr>
<tr>
<td>SuperScript III 1st Strand cDNA Synthesis Kit</td>
<td>Thermo Fisher Scientific</td>
<td>18080051</td>
</tr>
<tr>
<td>Power SYBR Green PCR Master Mix</td>
<td>Thermo Fisher Scientific</td>
<td>4367659</td>
</tr>
<tr>
<td>Applied Biosystems StepOnePlus Real-Time PCR System</td>
<td>Applied Biosystems</td>
<td>4376592R</td>
</tr>
</tbody>
</table>

Experimental Models: Organisms/Strains

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vangl1 ^cko/cko~ mouse</td>
<td>Created in our lab [51]</td>
<td>N/A</td>
</tr>
<tr>
<td>Vangl1 ^-/-~ (previously referred to as Vangl1 ^CKO*-/-~) mouse</td>
<td>Created in our lab [52]</td>
<td>N/A</td>
</tr>
<tr>
<td>Vangl2 ^cko/Lp~ mouse</td>
<td>The Jackson Laboratory</td>
<td>JAX: 000220</td>
</tr>
<tr>
<td>Vangl2 ^cko/cKO~ mouse</td>
<td>Gift from Y. Yang [53]</td>
<td>N/A</td>
</tr>
<tr>
<td>Kif3a ^cko/cko~ mouse</td>
<td>Gift from J. Helms [40]</td>
<td>N/A</td>
</tr>
<tr>
<td>Ksp-Cre mouse</td>
<td>Gift from The George M. O’Brien Kidney Center [40]</td>
<td>N/A</td>
</tr>
<tr>
<td>Fz3 ^+/+;Fz6* ^+/+~ mouse kidney samples</td>
<td>Gift from H. Chang and J. Nathans [38]</td>
<td>N/A</td>
</tr>
<tr>
<td>Pkhd1 ^del4/del4~ mouse kidney samples</td>
<td>Gift from The George M. O’Brien Kidney Center [54]</td>
<td>N/A</td>
</tr>
</tbody>
</table>

(Continued on next page)
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Jeff Axelrod (jaxelrod@stanford.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals

Vangl1^{+/--} (previously referred to as Vangl1^{cko/cko} [51], KspCre;Kif3ac^{cko/cko} [40], Fz3^{--};Fz6^{--} [38], Vangl2^{cko/cko} [53], Pkhdl4^{+/--}/Pkhdl4^{+/--} [15] and Vl2Lp^{+/--} (JAX) mice and genotyping have been previously described. KspCre; Vangl1^{cko/cko}; Vangl2^{cko/cko} (Vangl1,2, DKO, Ksp-Cre) animals were bred from heterozygotes. KspCre drives Cre expression beginning in the early branching ureteric bud stage [55]. Animals were healthy with normal immune status, were not subject to prior procedures, were drug naive and were reared by standard husbandry and housed in standard cages in the Stanford Animal Care Facility. Approximately equal numbers of animals of either sex were used for all experiments. Specimens were collected at the ages indicated in text and legends. All procedures involving animals were approved by the Stanford University Institutional Animal Care and Use Committee in accordance with established guidelines for animal care.

METHOD DETAILS

Harvesting, processing, and sectioning of kidneys

For dehydration fixation, postnatal and embryonic kidneys (E13.5 – E18.5) were harvested and sub dissected in PBS. Collected kidneys were then placed in 4% paraformaldehyde in PBS for 1 hr and transferred into a 30% sucrose solution in calcium and magnesium free PBS at 4°C overnight. The following day, the kidneys were submerged in OCT mounting media and frozen in blocks in an ethanol and dry ice bath and could be stored for further use at –80°C. 12 – 20 μM sections through kidneys were made using a Leica CM 3050S cryostat and mounted on charged slides.

For standard fixation, kidneys were harvested and sub dissected in OCT mounting media and frozen in blocks in liquid nitrogen. The samples could be stored for further use at –80°C. 10 – 30 μM sections through kidneys were made using a Leica CM 3050S cryostat and mounted on charged slides. Samples were fixed in 3.7% formaldehyde or 4% paraformaldehyde in PBS for 10 min and soaked in 0.2% Triton X-100 in PBS for 5 min prior to immunostaining.

For hematoxylin and eosin (H&E) staining, kidneys were fixed in 4% paraformaldehyde in PBS for 1 hr, then in 70% ethanol for 12 hr prior to paraffin-embedding. Paraffin blocks were sectioned at 4 μM thickness and stained with H&E.

Antibodies and reagents

The dilution and sources for primary antibodies used were as follows: rabbit anti-Vangl1 (1:200, Sigma), rabbit anti-VANGL2 (1:200, Santa Cruz), goat anti-FRIZZLED6 (1:200, R&D Systems), goat anti-FRIZZLED3 (1:100, R&D Systems), rat anti-FRIZZLED3 (1:100, R&D Systems), rat anti-E-CADHERIN (1:200, Invitrogen) and mouse anti-E-CADHERIN (1:200, BD Transduction Laboratories, mouse anti-acetylated-β-TUBULIN (1:500, Sigma), rabbit anti-phospho-HISTONE H3 (Ser10) (1:200, Millipore) and mouse anti-β-CATENIN (1:100, BD Transduction Laboratories). The following secondary antibodies were used at 1:500 and purchased from Molecular Probes (now ThermoFisher): Alexa 488, 594 donkey-anti-rabbit, Alexa 488, 546 donkey-anti-goat, Alexa 594, 633 donkey-anti-rat, Alexa 647 chicken-anti-rat and STREPTAVIDIN Alexa 488 conjugate. PHALLOIDIN conjugated to Alexa 633 was used at 1:50. RHODAMINE-conjugated Dolichos Biflorus Agglutinin lectin (DBA, 1:50, Vector Laboratories) and goat anti-AQP2 (1:200, Santa Cruz) were used to stain collecting duct. FLUORESCEIN-conjugated Lotus Tetragonolobus lectin (LTL, 1:200, Vector Laboratories) and biotinylated Lotus Tetragonolobus lectin (1:200, Vector Laboratories) were used to stain proximal tubules. DAPI (300nM, Sigma), Sytox Green (1:20,000, Invitrogen) and 7-aminoactinomycin D (7-AAD, 1:40, Invitrogen) were used to stain nuclei.

Continued

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oligonucleotides</td>
<td>See Table S2 for oligonucleotides for qRT-PCR</td>
<td>Stanford PAN facility</td>
</tr>
<tr>
<td>Software and Algorithms</td>
<td>GraphPad Prism</td>
<td>GraphPad Software</td>
</tr>
<tr>
<td>ImageJ</td>
<td>NIH</td>
<td>https://imagej.nih.gov/ij/</td>
</tr>
</tbody>
</table>
Immunostaining

Immunostaining was done according to the following steps:

1. 3x 10min wash in PBT (Phosphate Buffered Saline [PBS] + 0.1% Triton X-100)
2. 1 hr incubation in PBT +10% normal horse serum (NHS) or 1% BSA in PBS
3. Overnight incubation with primary antibodies at required dilution in PBT +10% NHS
4. Next day, 3x 10min wash in PBT
5. 1 hr incubation with secondary antibodies at required dilution in PBT +10% NHS
6. 3x 10 min wash in PBT
7. Add mounting media and apply coverslip

Imaging

For immunofluorescence, sections were mounted in ProLong® Gold Antifade Reagent (Invitrogen) or Vectashield® (Vector Laboratories) mounting medium. Specimens were imaged with a Leica SP5 or SP8 confocal microscope, using accompanying acquisition and 3D software. For bright field, kidneys were imaged with a Nikon Eclipse E1000M microscope and acquired using Spot imaging software.

Tubule diameter and cell number measurements

To measure the diameter of kidney tubules, we stained collecting duct (DBA or AQP2) and proximal tubules (LTL), together with E-CAD. Branching tubules were avoided and we limited our analysis to tubules that were roughly circular in cross-section [8]. To compensate for obliqueness of section, the shortest diameter was measured using ImageJ or Leica software. For consistency, collecting duct diameter was measured in the cortex and proximal medulla near the corticomedullary junction. Due to non-Gaussian distributions, medians were calculated and significance determined by the Mann-Whitney U test. The number of cells within the cross-section of kidney tubules was measured in a similar manner, using (1:20,000, Invitrogen) and 7-aminoactinomycin D (7-AAD, 1:40, Invitrogen) to label nuclei. Nuclei were manually counted in ImageJ. Data are reported as mean ± SEM. Measurements could not be performed in a blinded fashion, as the genotypes are readily recognizable. To address this, for many of the conditions, measurements were performed independently by two different individuals; good concordance between the independent results was achieved.

Measurement of oriented cell division

The method for measuring orientation of mitotic angles was adopted and modified from [10]. Kidney sections (30 μ thick) were stained with anti-phospho-HISTONE H3 (Ser10) antibody to label the chromosomes of dividing cells in late anaphase and telophase. Sections were co-stained with anti-AQP2 or DBA to label the tubular apical membranes. Z stack images were acquired by confocal microscopy. The orientation of cell division was determined by measuring the angle between the mitotic spindles of dividing cells and the longitudinal axis of the collecting ducts. Angular distributions were visualized by rose diagram using Oriana software.

Measurement of cell orientation

The orientation of cells was measured in the collecting duct and proximal tubules of kidneys from E15.5 - E18.5 similar to previous reports [8]. For cell orientation analysis, 20 μ kidney sections were stained for DBA, LTL and E-CAD. Confocal Z stacks were captured through entire tubules to ensure that branching tubules were avoided. From these Z stacks, the outlines of cells, demarcated by E-CAD staining, immediately below the apical (luminal) surface were traced using ImageJ (NIH). Cells that shared an edge with the outside of the tubule in our images were excluded from analysis. The software then calculated the length of the long and short axes and the angle of the long axis for each cell. We limited our analyses of cell orientation to cells that possessed a length:width ratio greater than 1.2 [8]. The angle of orientation for each cell was calculated as the difference between angle of the long axis of each cell and the angle of the tubule segment from which it is a part of. The data was visualized in histograms by graphing the percentage of events in 10° bins.

Quantitative real-time RT-PCR

Total RNA was isolated from 3 P1 kidneys and 3 16w kidneys using the QIAGEN RNeasy Mini Kit (QIAGEN, Valencia, CA). cDNA was generated with the SuperScript III 1st Strand cDNA Synthesis Kit (Life Technologies, Carlsbad, CA). Quantitative real-time PCR was performed in triplicate with SYBR GreenER qPCR SuperMix for ABI PRISM (Life Technologies, Carlsbad, CA) in an Applied Biosystems StepOnePlus Real-Time PCR System (Applied Biosystems, Foster City, CA) using the primers in Table S2. PCR was performed for 40 cycles of 95°C for 15 s and 60°C for 60 s.

QUANTIFICATION AND STATISTICAL ANALYSES

Quantification of PCP protein asymmetry

Samples prepared by the dehydration method were double labeled with either E-CAD or β-CATENIN and the PCP protein of interest. At cell-cell junctions that were separated by dehydration, regions encompassing proximal and distal membranes as defined by the
E-CAD or β-CATENIN staining were defined using ImageJ software, and average pixel intensity was recorded. On average, the proximal and distal intensities were approximately equal for E-CAD and β-CATENIN. The same regions were then used to measure intensities in the PCP channel. PCP intensities were normalized to the corresponding E-CAD or β-CATENIN measurements, and the ratio of proximal to distal (Vang) or distal to proximal (Fz) of the normalized values was determined. The average intensity ratio (IR) for each PCP protein was then determined and reported in the associated Figure panel and graphically ± SEM in Figure S3. We used a minimum of 10 well imaged and separated proximal-distal junctions, and in most cases more for each condition, except for the E13.5 measurements (n = 8 for Vangl1 and n = 5 for FZ6).

Statistical analyses
The Mann-Whitney U test was used to determine significance of difference in median measurements due to the non-Gaussian distribution of datasets.
Supplemental Information

Disruption of Core Planar Cell Polarity Signaling
Regulates Renal Tubule Morphogenesis
but Is Not Cystogenic

Koshi Kunimoto, Roy D. Bayly, Eszter K. Vladar, Tyson Vonderfecht, Anna-Rachel Gallagher, and Jeffrey D. Axelrod
A

E17.5 Collecting Duct

<table>
<thead>
<tr>
<th>Tubule diameter (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vangl1*+ (n=73)</td>
</tr>
<tr>
<td>Vangl1* (n=59)</td>
</tr>
</tbody>
</table>

B

E17.5 Proximal Tubule

<table>
<thead>
<tr>
<th>Tubule diameter (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vangl1*+ (n=166)</td>
</tr>
<tr>
<td>Vangl1 (n=92)</td>
</tr>
</tbody>
</table>

C

Collecting duct diameter at E17.5 (μm)

% events

- Vangl1*+ (n=73)
- Vangl1* (n=59)

D

Proximal tubule diameter at E17.5 (μm)

% events

- Vangl1*+ (n=166)
- Vangl1* (n=92)
Figure S1. *Vangl1* mutant tubule diameters are enlarged at E17.5. Related to Figure 1.
Median collecting duct (A) and proximal tubule (B) diameters in control (*Vangl1*+/−) and *Vangl1*−/− mutant kidneys. * = p<0.0001 by Mann-Whitney U test). (C-D) Distribution of diameters from (A) and (B), respectively. Measurements made using the low calcium dehydration method.
RNA expression of PCP related proteins (P1 vs 16w)

G

Relative ratio / GAPDH x 10000

A E13.5
VANGL1 E-CAD 2.4
FZ6 E-CAD 3.1
VANGL2 E-CAD 2.2
VANGL1 FZ6

B E13.5

E E' E'' E'''
VANGL1 FZ6 merge E-CAD

C E16.5

F E''''
VANGL1 FZ6 merge E-CAD

D P3

E'' E''''
P14 merge

F P21

G RNA expression of PCP related proteins (P1 vs 16w)
Figure S2. Embryonic PCP protein asymmetric localization and expression declines postnatally. Related to Figure 2. (A-F) Collecting ducts from WT kidneys stained for VANGL1 (green), VANGL2 (green) or FZ6 (red) and E-CAD (blue) from age E13.5 to P21. Asymmetric VANGL1 and FZ6 localization are seen throughout embryonic stages and through P3. Membrane associated staining of PCP proteins declines after P3, with some residual membrane associated signal and mostly cytoplasmic signal evident at P15. By P21, minimal membrane associated signal remains. See also Figure 7 for comparable P30 images. (G) qPCR of PCP and related genes, normalized to GAPDH, at P1 and 16 weeks shows decreased gene expression over this time span. Error bars are SEM for n=3 measurements. Scale bars: 5 µm.
Figure S3. Asymmetric localization of core PCP protein localization in E18.5 PCP mutants. Related to Figure 3. (A-A'') VANGL1 (green) and E-CAD (blue) in Fz3-/-; Fz6+/+ kidneys. One copy of Fz6 is sufficient to support PCP signaling as assessed by VANGL1 asymmetric localization. (B-B'') FZ6 (red) and E-CAD (blue) in a Vangl1-/- mutant collecting duct. Asymmetric localization of FZ6 is modestly diminished though not lost. Scale bars: 5 µm. (C) Graph of Intensity Ratios (IRs) representing asymmetry of core PCP protein distributions for conditions examined throughout the manuscript. All values are for collecting ducts unless marked otherwise. Ratios are shown ± SEM. See STAR Methods for method of measurement.
Collecting duct diameter at E18.5 (\(\mu\)m)

Low calcium dehydration method

- **E** Collecting duct diameter at E18.5 (\(\mu\)m)

 - WT (n=222)
 - \(\text{Vangl}^{2Lp/Lp}\) (n=382)

- **F** Proximal tubule diameter at E18.5 (\(\mu\)m)

 - WT (n=220)
 - \(\text{Vangl}^{2Lp/Lp}\) (n=187)

Standard fixation method

- **G** Collecting duct diameter at E18.5 (\(\mu\)m)

 - WT (n=749)
 - \(\text{Vangl}^{2Lp/Lp}\) (n=697)

- **H** Proximal tubules diameter at E18.5 (\(\mu\)m)

 - WT (n=707)
 - \(\text{Vangl}^{2Lp/Lp}\) (n=651)
Figure S4. Validation of the Vangl1,2 DKO mutant kidneys. Related to Figure 4. The mTmG reporter [S1] in P1 Vangl1,2DKO kidneys stained for AQP2 (A-A”; red; collecting duct) or LTL (B-B”; red; proximal tubules) and DAPI (blue) showing only the GFP (green) signal from mTmG indicating recombination. Virtually all collecting duct cells display recombination, and a small number of proximal tubule cells show recombination. (C-D) Gross views of VangL1,2DKO and control mice and kidneys. (E-H) Comparison of the low calcium dehydration fixation and standard fixation for measurement of tubule diameters. Low calcium dehydration fixation data (E-F) are from Figure 1 J and K, respectively. The same relationships, but with different absolute values, are observed. Scale bars: A”,B”, 50 µm; C,D, 5 mm.
Collecting Duct

A Vangl2+/+
A' Vangl2+/+
B Vangl2Lp/Lp
B' Vangl2Lp/Lp

E-CAD E17.5
E-CAD DBA E17.5

WNT4 WT
Vangl2Lp/Lp
Fz3−/−;Fz6−/−

E17.5 E18.5 E'' E''' F' F''

% Events

Degrees from Tubule Axis

Proximal Tubule

C Vangl2+/+
C' Vangl2+/+
D Vangl2Lp/Lp
D' Vangl2Lp/Lp

E-CAD E17.5
E-CAD LTL E17.5

% Events

Degrees from Tubule Axis
Figure S5. Cell shapes suggesting CE in E17.5 collecting duct and proximal tubule.

Related to Figure 5. (A-B’) WT control or Vangl2Lp/Lp collecting ducts stained for E-CAD (green) and DBA (red) to illustrate altered cell shape and orientation in the mutant. (C-D’) WT control or Vangl2Lp/Lp proximal tubules stained for E-CAD (red) and LTL (green) to illustrate altered cell shape and orientation in the mutant. (E-E’’) Plots of orientation of cellular long axes relative to the tubule axis for WT control, Vangl2Lp/Lp and Fz3−/−; Fz6−/− collecting ducts from E13.5 to E18.5. (F-F’’) Plots of orientation of cellular long axes relative to the tubule axis for WT control, Vangl2Lp/Lp and Fz3−/−; Fz6−/− proximal tubules from E16.5 to E18.5. We speculate that the biphasic distribution of wild type orientations may result from rosette configurations through which cells were shown to transition in *Xenopus* [S2]. Regardless, a shift toward the long axis is consistent with CE. Scale bars: 5 μm.
A

Cell Orientation

- WT
- Vangl2^{loxp/loxp}
- Fz3^{-/-};Fz6^{+/+}
- KspCre; Kif3a^{cko/cko}

Degrees from Tubule Axis

- % Events

B

- NoCre; Kif3a^{cko/cko}

Cilia E-CAD — E18.5

C

- KspCre; Kif3a^{cko/cko}

Cilia E-CAD — E18.5

D

Collecting duct diameter at P1 (μm)

- Median Tubule Diameter
- % events

- WT (n=557)
- Pkhd1^{del4/del4} (n=568)

E

- NoCre; Kif3a^{cko/cko}

FZ6 P30 E-CAD P30

F

- KspCre; Kif3a^{cko/cko}

FZ6 2.8 P30 E-CAD P30

G

- FZ6 E-CAD

G'

- Cilia E-CAD FZ6

G''

- Cilia E-CAD FZ6
Figure S6. Analysis of Kif3a mutant precystic and cystic kidneys. Related to Figure 6. (A) Plots of orientation of cellular long axes relative to the tubule axis for E18.5 KspCre;Kif3a\(^{cko/cko}\) collecting ducts plotted with data for WT control, Vangl2\(^{Lp/Lp}\) and Fz3\(^{−/−}\); Fz6\(^{−/−}\) collecting ducts from Figure S5E'''. (B-C) WT control (NoCre;Kif3a\(^{cko/cko}\)) and KspCre;Kif3a\(^{cko/cko}\) collecting ducts stained at E18.5 for acetylated-\(\alpha\)-tubulin (red; cilia) and E-Cadherin (green) showing residual short cilia in the mutant ducts. (D-D'''') Median collecting duct diameter in matched littermate control and Pkhd1\(^{del4del4}\) mutant kidneys at P1, and distribution of diameters. * = p<0.0001 by Mann-Whitney U test). Measurements made using the low calcium dehydration method. (E-E'') WT control (NoCre;Kif3a\(^{cko/cko}\)) and (F-F'') KspCre;Kif3a\(^{cko/cko}\) kidneys stained at P30 for FZ6 (red), E-CAD (blue) acetylated-\(\alpha\)-TUBULIN (green; cilia). Low levels of mostly cytoplasmic Fz6 and E-Cadherin (overexposed in E-E'') remain in the WT control collecting ducts. FZ6 and E-CAD are strongly expressed in the KspCre;Kif3a\(^{cko/cko}\) cysts. (G-G'') Higher magnification image of a KspCre;Kif3a\(^{cko/cko}\) mutant cyst (boxed region of F) stained for FZ6 (red) and E-CAD (blue) showing asymmetric localization of Fz6 at a cell-cell junction that separated during fixation. Scale bars: 5 \(\mu\)m.
Figure S7. Vl1,2DKO kidney showing the GCKD phenotype. Related to Figure 7. 16w H&E stained kidney showing glomeruli with dilated capsules varying in severity (grey to black arrows) and one nearly normal glomerulus (yellow arrow). Scale bar: 200 µm.

<table>
<thead>
<tr>
<th>age (weeks)</th>
<th>number of animals</th>
<th>animals with GCKD phenotype/ no. examined</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>0/1</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>1/9</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>0/1</td>
</tr>
<tr>
<td>50</td>
<td>1</td>
<td>1/1</td>
</tr>
</tbody>
</table>

Table S1. Vangl1,2 DKO mice examined for cysts. Related to Figure 4.
<table>
<thead>
<tr>
<th>gene name</th>
<th>primer, sense</th>
<th>primer, antisense</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAPDH</td>
<td>GACTTCAACAGCAACTCCAC</td>
<td>TCCACCACCTGTGGTGTCGTA</td>
</tr>
<tr>
<td>Pk1</td>
<td>GATGGGAAAGAAAGCAAGCAAG</td>
<td>TGTGCAGCATGGAAGAGTTTC</td>
</tr>
<tr>
<td>Pk2</td>
<td>ACATGGGCACTCTCAACTCC</td>
<td>TGTATCTCATGGGGGTGTTTG</td>
</tr>
<tr>
<td>Pk3</td>
<td>TGGATGTTTCAGTGGTGAACG</td>
<td>CATCACAGTATTCCCGATGG</td>
</tr>
<tr>
<td>Pk4</td>
<td>CCACAGGACAGTGTGAACCG</td>
<td>CTTTCAAGCTTTGAGGAGGAG</td>
</tr>
<tr>
<td>Celsr1</td>
<td>ATGCTGTGGTGCAGCATGTC</td>
<td>GGGATCTGGAACAAACACAG</td>
</tr>
<tr>
<td>Celsr2</td>
<td>GCTGTGTGAGGAGCTCTCGT</td>
<td>CATCATGAGGCTGTGGTG</td>
</tr>
<tr>
<td>Celsr3</td>
<td>GGAGTTGAAAGAGGCAAGGA</td>
<td>ATTAGCAGCAGGAGTCGCT</td>
</tr>
<tr>
<td>Fzd3</td>
<td>GAATCAGGTCTGGGACGACTCA</td>
<td>CATCTGGGAGACACATGGA</td>
</tr>
<tr>
<td>Fzd4</td>
<td>TGCCACATAAACAGGCAAGC</td>
<td>TACACGTGACACAGATGCC</td>
</tr>
<tr>
<td>Fzd5</td>
<td>GGATGATAGGCGCTCCGACT</td>
<td>CGGCCACAGGTACCTAGTT</td>
</tr>
<tr>
<td>Fzd6</td>
<td>AAAAACTTTGGGCAAGGACA</td>
<td>ATTATGACAGGGGAGTCG</td>
</tr>
<tr>
<td>Fzd8</td>
<td>CGGTGGTGTGCTGCTATAGAA</td>
<td>CAGTCTCAAGCAGCAAGGA</td>
</tr>
<tr>
<td>Dvl1</td>
<td>GGCAACTTGGGCAATTGTCATC</td>
<td>GGTGCAGCGCCTACAAATT</td>
</tr>
<tr>
<td>Dvl2</td>
<td>ACACAAGCCAGGACACCTCC</td>
<td>TCCATGGGATCGGATTTTG</td>
</tr>
<tr>
<td>Dvl3</td>
<td>CAGGGTAGGCTTTGGCATTGTC</td>
<td>GGCGCCCAGCTATAAGG</td>
</tr>
<tr>
<td>Vangl1</td>
<td>GATGCTGTAGGAGGTTTGGGG</td>
<td>AGTCCCCGCTTTACAGCTT</td>
</tr>
<tr>
<td>Vangl2</td>
<td>TGCTGGACAAGTAAGGCTTTAT</td>
<td>GTGCCGTGCGGATACAAA</td>
</tr>
<tr>
<td>Fat1</td>
<td>ATTCCAAGCGACCTCGAGAAA</td>
<td>GAGGCAAGTGGGGAGCTACG</td>
</tr>
<tr>
<td>Fat2</td>
<td>ACCACGCTTGGGACACTTCACC</td>
<td>CAGCCACTTCCTGTCCTCA</td>
</tr>
<tr>
<td>Fat3</td>
<td>TCAACGGGAGAACACTGTGGA</td>
<td>CACAATCGTCACATCC</td>
</tr>
<tr>
<td>Fat4</td>
<td>TCCGTCGAGTGTGGTGCAAG</td>
<td>GGTGGCCACAAATGAGAG</td>
</tr>
<tr>
<td>Dachsous1</td>
<td>AGTGGAACACCCACCTGCTGG</td>
<td>GGCCTAGACAGGTGAGGTA</td>
</tr>
<tr>
<td>Dachsous2</td>
<td>TCAGGGGACACTTACAACAC</td>
<td>GTGCAAGCAGGAGATACA</td>
</tr>
<tr>
<td>Fjx1</td>
<td>TCTCTGGATCCCAATCTTGCA</td>
<td>GTTCTGGAAGGGCAACTCA</td>
</tr>
<tr>
<td>Diversin</td>
<td>TTGTGAGGGCAAGGATAGAAG</td>
<td>TCCAGCTGCTGATCAC</td>
</tr>
<tr>
<td>Wnt1</td>
<td>TAGTGCGACAGTGCGAGCT</td>
<td>CTCTTGGCAAGATCGTCA</td>
</tr>
<tr>
<td>Wnt2b</td>
<td>TGCTGATGCTGGTTCGACAC</td>
<td>CTGCTGCTGCTACTCC</td>
</tr>
<tr>
<td>Wnt3a</td>
<td>GGGTGGTCTTGCCAGAACA</td>
<td>ACTACGTTAGGAGATGCCC</td>
</tr>
<tr>
<td>Wnt4</td>
<td>TCTGTGATAGGCTTTGGAAT</td>
<td>CTTGCGACTCCCTGTCCT</td>
</tr>
<tr>
<td>Wnt5a</td>
<td>CCAGGGTTAATATTCCAATG</td>
<td>ACGGCTTGCTTTGAGATC</td>
</tr>
<tr>
<td>Wnt6</td>
<td>CTTGAGATGCTGGTAGGATAG</td>
<td>CGGTAGACGCTCCGATTC</td>
</tr>
<tr>
<td>Wnt7b</td>
<td>CTCCCGGATCACATGATAG</td>
<td>GCCGTCTACGTAAGGCT</td>
</tr>
<tr>
<td>Wnt9b</td>
<td>GGAGGTTGCTACAGCTC</td>
<td>CGAGGAGATGGGAGAGT</td>
</tr>
<tr>
<td>Wnt11</td>
<td>AGGCTCGACAGCTGGGTTA</td>
<td>GTCTGCGAGAAGCTGCTT</td>
</tr>
</tbody>
</table>

Table S2. Primers for qPCR. Related to STAR Methods.
Supplemental References
