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An Adjoint-Based Parameter Identification Algorithm
Applied to Planar Cell Polarity Signaling

Robin L. Raffard, Keith Amonlirdviman, Jeffrey D. Axelrod, and Claire J. Tomlin

Abstract—This paper presents an adjoint-based algorithm for
performing automatic parameter identification on differential
equation models of biological systems. The algorithm locally solves
an optimization problem, in which the cost reflects the deviation
between the observed data and the output of the parameter-
ized mathematical model, and the constraints are the governing
parameterized equations. The tractability and the speed of conver-
gence (to local minima) of the algorithm are strongly favorable to
numerical parameter search algorithms which do not make use of
the adjoint. Furthermore, initializing the algorithm with different
instantiations of the parameters allows one to effectively search
the parameter space. Results of the application of this algorithm
to a previously presented mathematical model of planar cell
polarity (PCP) signaling in the wings of Drosophila melanogaster
are presented, and some new insights into the PCP mechanism
that are enabled by the algorithm are described.

Index Terms—Adjoint method, differential equations, optimal
control, optimization methods, parameter estimation, systems
biology.

I. INTRODUCTION

KEY GOAL of systems biology is the development of

mathematical models, at the appropriate level of abstrac-
tion, to help understand biological processes. This development
usually proceeds in iterative fashion. First, a structure for the
model is chosen based on hypotheses about how the system op-
erates. Second, parameters are identified such that simulations
of the model reproduce observations of the biological system.
Often, the first experiment is to ask if a robust set of parame-
ters exists so that the model reproduces all or most of the ob-
served biological data. If such a parameter set cannot be found,
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the model structure may be brought into question, and the simu-
lation results may be used to indicate how the structure could be
changed [11], [23]. The model is tested against the actual data
and for its predictive capabilities. As new data and/or new un-
derstanding arises, the structure of the model may be altered and
new parameters selected [10].

In protein regulatory networks, the number of states to model
is typically large and depends on the number of proteins of in-
terest, the parameter spaces are large, and the most appropriate
models are often nonlinear functions of the states and parame-
ters. Due to this and the need to efficiently test the feasibility of
different model structures, it is becoming increasingly impor-
tant to develop fast, efficient, scalable methods for large-scale
parameter identification.

In this paper, we present an algorithm for performing auto-
matic parameter identification on differential equation models
of biological systems. The algorithm attempts to minimize an
objective function which encodes the deviation between the ob-
served data of the system and the output of the parameterized
model, with the governing parameterized equations forming the
constraints of this optimization problem. The algorithm relies on
the adjoint method, which efficiently calculates the gradient of
the objective function with respect to the unknown parameters,
essentially describing analytically how to minimize the objec-
tive by varying the parameters. We augment this gradient-based
method by using additional information provided by the deriva-
tive of the gradient to give well-conditioned optimization even
when the optimal parameter values are several orders of mag-
nitude different from each other. While the adjoint method is a
technique familiar to optimal control and has been used to great
extent in areas such as aerodynamic design [12], its application
to the kinds of ordinary differential equation (ODE) and partial
differential equation (PDE) models of protein regulatory net-
works requires elucidation. We state and justify conditions on
the model and the objective function so that the adjoint method
may be applied. In addition, we discuss its implementation and
derive results about its complexity.

The algorithm is described in the context of a previously pre-
sented mathematical model [2], [3] of the signaling network reg-
ulating planar cell polarity (PCP) of Drosophila melanogaster
wing epithelial cells orthogonal to their apical-basal axes. Here,
we demonstrate the ability of the adjoint method to significantly
speed up the identification of parameters of this model. More
importantly, we describe how the method helped lead us to a new
hypothesis about how the PCP mechanism works. At each stage,
we compare results of our identification with biological data.

This paper is organized as follows. Section II reviews PCP
and its mathematical model [2], [3], as well as the current chal-
lenges suggested by this model and the data. Section III reviews

/ © 2008 IEEE



110

|

Fig. 1. Drosophila adult wing epithelium. The proximal edge is to the left, and
the distal edge is to the right.

Fig. 2. Diagram shows that each epithelial cell constructs a hair that protrudes
from its distal vertex and points distally, creating a virtually error-free parallel
array.

the parameter identification problem, using a format amenable
to the adjoint method. Section IV presents the adjoint method
for parameter identification, and Section V details the results of
this method applied to PCP. The adjoint method is presented for
both ODE and PDE models of PCP: the method for ODEs is de-
veloped in the text, and the additional details for PDEs are left
to Appendix B.

II. REVIEW OF PCP

A. Description of PCP Phenotypes and PCP Proteins

Many epithelial tissues are polarized along an axis orthogonal
to the apical-basal axis. For instance, in adult Drosophila, each
epithelial cell on the wing produces a single hair or trichome; the
hairs grow from the distal edge (edge of the cell closest to the
wing tip) of each cell and all point distally, parallel to the long
axis of the wing, as shown in Figs. 1 and 2 (note that all images
in this paper follow the convention that the proximal side of the
cell/wing is to the left of the image and distal is to the right).
Genetic analyses have identified a group of proteins that are re-
quired to correctly polarize these arrays [1], [20]. These proteins
form the PCP signaling pathway. The regular array of hairs is
caused by spatially asymmetric distributions of PCP proteins
within each cell in the epithelium. The wing epithelial cells ag-
gregate in a hexagonal close-packed array (Fig. 2).

In the presence of cell clones mutant for some PCP genes,
the hair polarity in neighboring wild-type cells is disrupted, a
phenomenon termed domineering nonautonomy. Domineering
nonautonomy reverses hair orientation on either the proximal
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or distal side of the clone in a manner characteristic to the par-
ticular mutant protein. Based on the available biological data,
a three-tiered model was hypothesized in order to mediate PCP
signaling and explain domineering nonautonomy [3], [14]. A di-
agram of this model is presented in Fig. 3. The first tier is com-
posed of three proteins: the transmembrane protein four-jointed
(Fj), and the atypical caherins Dachsous (Ds) and Fat (Ft), pro-
viding a global directional signal, or cue, to the second tier. The
hypothesis for this mechanism is shown in the bottom-left sub-
figure of Fig. 3. This diagram indicates that Ft and Ds form
a heterodimer across a cell boundary and that Fj promotes Ft
and inhibits Ds. While it is known that Fj protein appears in a
gradient across the wing, higher at the distal than the proximal
side [14], and it is known that Ft affects the localization Fz, the
exact mechanism by which the first-tier proteins interact with Fz
is not well understood. The second tier, which forms the core
PCP components, amplifies the first-tier signal and converts it
into cellular asymmetric localization of PCP core proteins. This
process, which tends to align neighboring cell polarity, is ex-
plained via a feedback-loop mechanism [4], [21], for which the
signaling diagram is drawn schematically in the upper right of
Fig. 3. This diagram, in which an arrow indicates a positive in-
fluence and a line indicates a negative influence, shows the fol-
lowing: Frizzled (Fz), a membrane protein, promotes the local-
ization of Disheveled (Dsh), a cytoplasmic protein, to a mem-
brane; Dsh stabilizes Fz location; Fz promotes the localization
of Van Gogh (Vang), a membrane protein, and Prickle (Pk), a
cytoplasmic protein, on the membrane of a neighboring cell; Pk
and Vang inhibit the recruitment of Dsh to a membrane. Ex-
perimentally, it has been observed that, in the steady state, Dsh
and Fz proteins localize to the distal edge and Pk and Vang to
the proximal edge of all cells in the array, thus the large font in
Fig. 3 indicates that the wild-type protein localizes at this loca-
tion. Thus, the first-tier proteins cause Fz to localize on the distal
side of each cell. The third tier directs the tissue specific readout
of the cell polarity. Because in Dsh mutants the hair grows from
the center of the cell in all null alleles, whereas in other mu-
tants there exist some cells in which the hair grows from the
periphery, the hair is assumed to grow at the site of the greatest
concentration of Dsh protein [2], [3].

B. PCP Mathematical Modeling

A mathematical model based on the three-tiered model hy-
pothesis was used to demonstrate, through simulation, the fea-
sibility of this hypothesis in its ability to reproduce all of the
most characteristic PCP phenotypes [2], [3]. The mathemat-
ical program simulates the PCP network from shortly after pu-
parium formation (APF) to about 34 h APF. It mechanistically
encodes the logic of the feedback loop of the second tier, while
abstracting the effect of the first tier and shortcutting the be-
havior of the third. In this program, the first tier is represented
by a directional cue which biases the direction towards which
the feedback loop orients. Positive interactions between proteins
are represented as these proteins binding to form protein com-
plexes. For example, the interaction between Fz and Dsh is rep-
resented as a reaction forming the complex DshFz, which can
interact with other proteins and complexes, and it can undergo
a backward reaction that separates it back into its components
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Fig. 3. Three-tiered model for PCP signaling network. The first tier is com-
posed of three proteins: Fj, Ds, and Ft. It provides, via a hypothetical mechanism
represented in the bottom-left diagram, a global asymmetry signal to the second
tier. This asymmetry signal is represented by arrows in the upper left image.
It is read and then amplified by the second-tier proteins (Dsh, Fz, Vang, and
Pk), which results in asymmetric localization of these proteins via a mechanism
represented in the upper right diagram. The third tier converts the asymmetric
accumulation of the second-tier proteins into hair polarity.

Fz and Dsh. The mathematical model includes the four original
proteins, as well as six complexes, the last four of which form
across the cell boundary with the adjacent cell: DshFz, VangPk,
FzVang, DshFzVang, FzVangPk, and DshFzVangPk. While pos-
itive influences are encoded by complex formation, negative in-
fluences are encoded as terms that aid the reverse reaction. The
ten reactions governing the feedback loop mechanism read as
follows [2], [3]:

Ry
Dsh + Fz 2 DshFz 1)
SBA\q
R>
Fz' + Vang 2 FzVang 2)
Az
R3
Vang + Pk 2 VangPk 3)
A3
Ry
DshFz' + Vang & DshFzVang )
Aq
Rs
Dsh 4+ FzVang < DshFzVang 5)
STBiXs
R,
Fz' 4+ VangPk = FzVangPk (©6)
As
Ry
FzVang 4+ Pk 2 FzVangPk @)
A7
R
Dsh' + FzVangPk = DshFzVangPk (8)
STBt\g
R
DshFz' + VangPk = DshFzVangPk )
A9

R
DshFzVang + Pk = DshFzVangPk.
Ao

(10)

In (1)=(10), R;, A;, © = 1,...,10, represent, respectively, the
forward and backward rates of reaction. The daggered (t) vari-
ables indicate that the reaction occurs with a protein across the

cell membrane in a neighboring cell. S represents the strength
of the asymmetry signal. This depends on the location of the
cell in which the reaction takes place. For instance, in wild-type
cells far away from any first-tier protein clone, S decreases lin-
early from the proximal edge to the distal edge of each cell. The
value by which S decreases in wild-type cells is a parameter of
the model. In far clones, S is uniformly equal to 1, indicating
that there is no first-tier asymmetry signal when the Ft function
is absent. Finally, the quantity B accounts for the inhibition, by
Pk and Vang, of the recruitment of Dsh to a membrane. B is
a nonlinear function of second-tier protein concentrations and
is parameterized by two unknown constants [2], [3]. The state
variables of the mathematical model are the local concentrations
of the second-tier proteins and complexes, all of which are as-
sumed to be continuous signals in time.

Two instances of the mathematical program have been devel-
oped. The first program is based on PDEs [2], [3]. The second
program is a simplified version of the first one and is based on
ODEs [2].

1) PDE Model: The PDE mathematical model assumes that
protein molecules move by diffusion: Dsh and Pk diffuse within
the cell interior, while Vang, Fz, and all of the complexes dif-
fuse in the membrane (or shared membranes). The mathematical
model is therefore represented by ten reaction—diffusion PDEs.
The complete development of the model and results of this anal-
ysis are available in [2] and [3]. For example, the rate of change
of Dsh concentration is

[Dsh]
ot

= —P — P! — P} + pupa A[Dsh] (11)

in which

P1 = Rl [DSh] [FZ] - SB)\l [DShFZ]
Ps= R;[Dsh|'[FzVang] — ST BT A5 [DshFzVang]
Py = Rg[Dsh]'[FzVangPk] — ST BY \s[DshFzVangPk]. (12)

Therefore, by noting X(¢,s) = ([Dsh](¢, s), .. .,
[DshFzVangPk](¢, s)), the vector of all protein and protein
complex concentrations at time £ and location s, the PCP PDE
model reads

0X (t,s)

= P(X(t,

$).0) + n(O)AX (t,s)  (13)
in which # € R®" represents the vector of all parameters. It in-
cludes the 20 reaction rates, the ten diffusion constants, three
initial protein concentrations (all concentrations are normalized
with respect to Dsh initial concentration), the asymmetry signal
strength parameter, the two constants parameterizing the Vang
and Pk inhibition, and one parameter describing the initial pro-
tein concentration in overexpression clones. Finally, Neumann
boundary conditions are enforced at the boundary of the com-
putational domain.

2) ODE Model: In [2], it is shown that all rates of diffusion
in the PDE model are either very large (for all complexes except
DshFz) or very low (for DshFz). Therefore, the PDE model can
be reduced to an ODE model by assuming that the concentra-
tions of all of the complexes, except DshFz, are uniform in the
domain in which they diffuse. In order to approximate its low
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diffusion, the localization of the complex DshFz is restricted
to individual cell edges. To briefly describe the ODE model,
let N denote the number of cells. For each cell7 = 1,..., N,
let N; denote the number of edges of cell . Since Dsh and Pk
are assumed to have a uniform concentration in the interior of
each cell, single variables [Dsh]; and [Pk]; represent their con-
centration in the interior of each cell. Similarly, Fz, Vang, and
VangPk are assumed to be homogeneously distributed in the
boundary of the cell. Therefore, single variables [Fz];, [Vang];,
and [VangPXk]; denote their concentration in the boundary of
each cell. Each of the remaining complexes is represented by a
separate variable for each edge of the cell. For example, we de-
note [DshFzVangPk]; ; as the concentration of DshFzVangPk
in the 5" edge of the ith cell.

Geometrically, each cell ¢ is thus divided into N; + 2 com-
partments: one compartment representing the interior of the cell,
one representing the boundary of the cell (the N; edges of the
cell, all together), and N; others representing the /V; individual
edges of the cell.

The concentration of each molecule is then governed by an
ODE. For example, for Dsh, we have

dDsh]; o~ I A*C;

_ pf
dt 4= C; A;C* F
7j=1

1.,) a4

(_Pl,i,j —P]

252,

in which

Pl,i,j = Rl [DSh],[FL]L - SB)\l [DShFZ],,j’j
Ps; ; = Rs[Dsh]![FzVang]; ; — STBfAs[DshFzVang]; ;
Pg’i,j = RS [DSh]j[FAVanng]L’]

— STBT\g[DshFzVangPk]; ; (15)
and where [, A;, C;, A*, C* are respectively the length of edge
7, the area and the total edge length of cell 7, and the area and
total edge length of a hexagonal cell of unit edge length.

Denoting X; = ([Dshl;, [Pk];,..., [DshFzVangPk]; ;).

’ )

the vector of all concentrations in each cell 7, and X =

(X1,...,Xn) € R™ the vector of all concentrations in the
network, the ODE model is represented as

dX(t

PO _pxa0), xO=x0) a6

in which # € R?7 is the vector of all parameters, containing all
the parameters of the PDE model except the ten diffusion rates.

In conclusion, the ODE model requires solving 5+5/N; ODEs
(one ODE for [Dsh], [Pk], [Fz], [Vang], [VangPk] and N; for
each of the other five complexes) in each cell . In the case of
a hexagonal cell, for instance, this represents 35 ODEs. With
as many as 600 cells being simulated for certain fat phenotypes
[2], [3], the model requires solving systems of ODEs containing
more than 20 000 variables.

C. Previous Results and Current Challenges

In [2] and [3], parameter values were identified using images
of hair polarity, provided at final time 7" = 34 h of the signaling
process. Namely, parameters were constrained to result in the
desired qualitative features of the hair pattern of 17 phenotypes.
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These phenotypes included overexpression and loss-of-function
clones of the four second-tier proteins as well as four fat clones.
The Nelder—-Mead simplex method [16] was used to attempt to
minimize an objective function composed of quadratic penalty
functions corresponding to these feature constraints, to produce
a feasible solution set of parameters. Almost all of the charac-
teristic PCP phenotypes were reproduced by the ODE model.
However, in the simulations based on irregular geometry, many
of the fat clones were not accurately reproduced. Recall that Fat
(Ft) is a protein belonging to the first-tier group of PCP proteins,
which are responsible for the localization of the asymmetry
signal. Fig. 4(a) and (b) shows the localization of the asymmetry
signal (represented by red arrows) as it was encoded in [2] and
[3]. The strength of the signal is part of the parameters which
were identified by the Nelder—-Mead algorithm. Fig. 4(c) shows
the experimental image of one of the four far clones which were
simulated. Note that this clone exhibits characteristic swirling
patterns, resulting from the cells aligning their polarity with that
of their neighboring cells, even when global signaling input is
lost. Fig. 4(d) presents the result of its simulation. Swirling pat-
terns were not reproduced.

At this stage, the challenges are twofold. The first challenge
is to understand the reasons for this mismatch. Namely, is it due
to an inexact parameter identification or is it due to an incorrect
model structure? The second challenge is to derive a mathemat-
ical model able to reproduce all the phenotypes exhibited by the
fat clones as well as all the phenotypes previously reproduced.

We will see that using an adjoint-based parameter identifica-
tion algorithm which significantly speeds up the parameter iden-
tification task has allowed us to overcome these two challenges.

III. PARAMETER IDENTIFICATION PROBLEM

This section describes the parameter identification problem.
Recall that the unknown parameters of the model are the for-
ward and backward rates of reaction, the parameter encoding
the asymmetry signal, initial concentrations of the proteins, and
parameters representing the strength of the Pk and Vang in-
hibition. Also recall that experimental data consist of images
of hair polarity which are provided at final time 7" of the sig-
naling process. In our PCP model, hair polarity is predicted
based on the Dsh concentration in the cells and is stored in a
vector Y™del ¢ [—1 1]" comprising as many entries as simu-
lated cells and calculated by

ymelel = g (X(T))

A7)
in which g : R* — RY is a twice differentiable function, which
gives a score of 1 to a cell with Dsh localization only on the
distal side, —1 to a cell with Dsh localization only on the prox-
imal side, and an intermediate score to a cell with Dsh localized
on both sides. Similarly, the data Y°* € R" is a vector with
entries ranging from —1 to 1: —1 for cells with reverse polarity
and 1 for cells with correct polarity. The problem of identifying
the unknown parameters is one of finding, among our parame-
terized set of PCP models, the model which best explains the
experimental data. Therefore, it consists of minimizing the pre-
diction error, i.e., the deviation between the observed data and
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Fig.4. (a)Direction of the asymmetry signal (red arrow) used in the simulation
of the fat clones as in [2]. “Cool colors” indicate low Ft concentrations, and
“warm colors” high Ft concentrations. The cells in the clone are indicated by
yellow dots. The asymmetry signal points from proximal to distal sides in the
background and is zero inside the clone. (b) Enlargement of (a) at the clone
boundary. The edges of the fat clone mutant cells are uniformly colored in blue.
(c) Clone exhibiting swirling patterns (courtesy of Dr. D. Ma). The boundary of
the clone is colored in yellow. (d) Simulation of the fat clone using the former
asymmetry signal model shown in (a) and using parameters identified by the
Nelder—Mead simplex method. The cells colored in yellow indicate the clone.

the output of the parameterized model. Mathematically, it reads
in the case of the ODE model

minimize J(f) = ||g(X(T)) _ yobs
dX (t

T = f(X(1),0),

2
2

subject to X(0) = Xo(0) (18)
in which # € R? represents the vector of parameters. In (18), the
prediction error is measured in the L2 norm. Besides its math-
ematical convenience, such a norm is often chosen because it

recovers the maximum-likelihood criterion in the case in which

data are altered by white noise [13]. In the case in which the
noise is Gaussian with covariance ¥, then the norm L? in (18)
should be replaced by the norm || - ||g-1, where ||z||g-1 =
(:cTE_lx)l/z. Without loss of generality, we assume in this
paper that ¥ is the identity matrix.

If the PDE model is used, the parameter identification
problem reads

minimize J(0)= ”9 (X(T))-yeb H;

%:P(X(t,s),H)—l—u(H)AX(t,s). (19)

In conclusion, the parameter identification task for PCP has
been posed as an optimization program involving differential
equations (DEs). This control-based approach is widely used
in the sciences and in engineering [7], [15], [18], [22]. In
Section IV, we will present a fast and scalable algorithm to
solve a wide class of DE optimization programs, thus allowing
us to perform parameter identification on general DE-driven
systems.

subject to

IV. SOLUTION METHOD VIA THE ADJOINT METHOD

Problems (18) and (19) belong to the class of nonlinear op-
timization programs involving DEs. These problems are gener-
ally written in the following form:

minimize J(U) = B / KX (1), U()) dt 4+ 1 (X(T))

subjectto ODE(X,U) =0
or PDE(X,U) =0

or SDE(X, U) = 0. (20)

The parameter vector # has been replaced by an input function
U : [0,T] — R? to stress the fact that the control input of DE
optimization programs are in general functions of time. E[] in-
dicates expectation and is relevant only in the stochastic differ-
ential equation (SDE) case. If inequality constraints are added
on the state variable or on the control parameters, these con-
straints can be easily handled using a barrier method in which
the constraints are incorporated into a logarithmic term added
to the cost function [6]. Provided the DEs of (20) can be solved
numerically, it is usually possible to (locally) solve the opti-
mization program (20) efficiently using an adjoint-based quasi-
Newton method. Although this method is applicable to all of
ODEs, PDEs, and SDEs [17], we present the algorithm on our
PCP ODE model, and we show in Appendix B how it extends
to the PDE model. From a control theory point of view, the al-
gorithm is based on the Pontryagin maximum principle, as it
attempts to iteratively solve the necessary conditions for opti-
mality. From an optimization point of view, the algorithm con-
sists of a quasi-Newton descent algorithm, in which the gra-
dient of the cost function is efficiently computed via the adjoint
method [12].

A. Computation of the Gradient

Although rarely used directly as a descent direction, the gra-
dient plays a key role in the implementation of the descent algo-
rithm. The method developed in this section allows for fast, scal-
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able computation of the gradient and consists of two steps. First, it
consists of computing the firstorder variation (or derivative) of the
cost function when the control input § € R? or U : [0, 7] — R?
varies. Application of the calculus of variations to the cost func-
tion and to the ODE model leaves the variation of the cost function
expressed as a function of the variation of the control input and
as a function of the variation of the state variable, which cannot
be directly manipulated. In order to derive the expression of the
gradient of the cost function, we thus need to replace the variation
of the state variable by the variation of the control. The adjoint
method performs this task very efficiently.

1) Derivative of the Cost Function: For systems driven by
ODE:s, there exists a general theorem proving differentiability of
the cost functionin (20). A similar theorem exists for systems gov-
erned by SDEs but not for systems governed by PDEs, which re-
quire case-by-case analyses. For ODEs, the differentiability the-
orem reads as follows and requires the following regularity con-
ditions.

Assumption 1 (Regularity Conditions on the Dynamics):
Let the ODE be expressed in the general form X(f) =
F(X(t),U(t), X(0) = Xo. U : [0,T] — R? is a measurable,
bounded function, representing the control. f : R” x R¢ — R"
is continuously differentiable with bounded derivative:
V(z,u) € R" x R, | f.(z,u)| < Ky, and |f,(z,u)| < Ky, in
which K¢, and Ky, are positive constants.

Assumption 2 (Regularity Conditions on the Cost Function):
k and [ in (20) are locally continuously differentiable, which
means that & and [/ are continuously differentiable on an open
subset of R™ x R? containing {(X (), U(t)) : t € [0,T]}.

Theorem 1 (Gdteaux Derivative of (20) Cost Function):
Under Assumptions 1 and 2, the cost function J is differen-
tiable with respect to the control U and the Géteaux derivative
of J at U in any direction U : [0, T] — R?, bounded, is

lim JU + hU) —J(U)
h—0 h

T
=VI(X(T +/km U(t) X(t)
+ ke (X (8), U(£) U (t)dt @1

in which X is the derivative of X with respect to U and is the
solution of

P — 1o (X0 U0) R(0) + £ (X0, U0) D),
X(0)=0 (22)
Proof: See [5], [17], or [19]. u

Unfortunately, the dynamics of the PCP ODE, f, is quadratic
and therefore does not satisfy the growth condition of Assump-
tion 1. Nevertheless, we can rely on Theorem 2, which is an
adaptation of Theorem 1 to the case in which the dynamics do
not necessarily satisfy Assumption 1, but in which the state vari-
able is bounded.

Assumption 3 (Bound on the Concentrations): The state vari-
able is bounded: there exists M > 0, such that for all U :
[0, 7] — R?, measurable and bounded, X (t) < M, t € [0,T].
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Assumption 3 is satisfied for the PCP ODE model. The model
indeed conserves the total mass in the cell network and there-
fore the concentrations in each compartment remain bounded no
matter what the input parameters 6 are. Algebraically, if n(¢) de-
notes the cumulated number of Dsh, Vang, Pk, and Fz molecules
in the cell networks, then n(t) is expressed as a weighted sum of
protein concentrations: n(t) = Y., «; X;(t), in which o;; > 0
is the size of the compartment corresponding to the state variable
indexed by 4. Therefore, because n(¢) is constant equal to n.(0),
there exists M € R, such that for all § € R?, | X(T)| < M.

Theorem 2 (Gdteaux Derivative of (18) Cost Function):
Under the conditions that f and X are continuously differen-
tiable, the result of Theorem 1 holds in the setting of problem
(20). Applied to problem (18), the cost function .J is differen-
tiable with respect to § € R? and the directional derivative of .J
at 6 in any direction f € R is

[ (6 + hE) = J(6)
h—0 h

=2 (g (X(1))

—ver) T Vg (X (1) X(1) (23)

in which X is the derivative of X with respect to # and is the
solution of

dX(t - .

P~ (X 0.0 X0+ 12 (X(0),0)F
X(0) = VXy(6)6. (24)
Proof: See Appendix A. |

2) Rewriting the Derivative With the Adjoint Method: The
expression of the derivative of the cost function (23) is not con-
venient as it includes the variation of the state variable with re-
spect to the parameters, which cannot be directly manipulated.
The adjoint method is an ingenious technique which allows us to
replace this expression by an expression including only the pa-
rameter variation 6. It proceeds as follows. Let us take the inner
product of an arbitrary R™-valued continuously differentiable
function of time p, called an adjoint process, with the linearized
dynamics (24), given as follows:

/p(t)Tdd—t(t)dt - /p(t)TfT (X(1),0) X (1)t
0 0
+ [ o0 50 (X0.0) B 25)
0
Integrating the left-hand side by parts yields
p(T)"X(T) -
/
— [T (X0.0) )i
0
+ / p(t)" fo (X(t),0) Bdt (26)
0
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Making the following choice for the adjoint process p:

p(T) =Vh(X(T))"

dp(t
WO _ f xw.0)7 o) )
the directional derivative can be rewritten as
lim J(0+ ho) — J(6)
h—0 }L
T
:1/m0Tﬁ(X@)®dt@+mmTVdeﬁ (28)
0

and therefore the gradient is expressed as
T
V= [p07 1 (KO0 0 TX). (9
0

Besides its importance in the implementation of the descent al-
gorithm, the gradient also provides useful robustness informa-
tion: it is equal to the sensitivity of the cost function with re-
spect to the parameters. Therefore, if the sth component of the
gradient is large, then the cost function will be very sensitive to
a change in the ith parameter. Reversely, if the ith component
of the gradient is close to zero, then the simulated phenotype
is robust with respect to a change in the th parameter. The ad-
joint variable p provides complementary information. It repre-
sents the sensitivity of the cost function with respect to the state
variable.

3) Implementation: The code running the ODE-based sim-
ulation of PCP is composed of several routines. A schematic
representation of the code is shown in Fig. 5. Besides a routine
solving the ODE (called DE), a routine is responsible for setting
the initial protein levels (initialConditions) and another routine
post-processes the final protein concentrations, computes cell
polarities, and evaluates the cost function (costFunction). When
computing the gradient of the cost function with respect to the
parameters, the sensitivity of the output of each routine needs to
be computed with respect to the parameters as well as with re-
spect to the state variable. Therefore, associated to each routine
is an additional routine performing this sensitivity computation.
The results of these computations are then collected and used to
evaluate the gradient

VJ — 8g(XT, 9) 8g(XT, 9) 8XT 8g(XT, 9) 8XT dXO
B 09 0Xr 00 0Xr 0Xo df -
(30)

The routines sensitivityCostFunction and sensitivityInitialCon-
ditions, respectively, evaluate the terms dg(Xr,6)/06 and
dXo/df. These routines perform analytical differentiation of
the output of their associated routine. The routine sensitivi-
tyDE evaluates the terms (9g(Xr,6)/0X1)(0Xr/06) and
(09(XT,0)/0X1)(0X1/0X0). This routine uses the adjoint
method.

4) Computational Complexity: The adjoint method drasti-
cally reduces the complexity of the gradient computation in

dX
A
t
6 — initialConditions @ — sensitivityInitialConditions
| 99(X7.0) 80Xy 9g(Xp0) OX
o x| 5Gr00s sy
t t
0 — DE 0— sensitivityDE
I f
39(X7,0) 99(X7,0)
T o
60— costFunction 6 — sensitivityCostFunction

J = 9xr,0) %y

(@) (b)

Fig. 5. (a) Schematic representation of the code running the PCP ODE model.
(b) Diagram of the code performing sensitivity analyses for the gradient evalu-
ation. The routine sensitivityDE uses the adjoint method.

comparison with other classical methods such as gradient calcu-
lation via finite differences or via sensitivity propagation. These
differences are given here.

* The adjoint method only requires two DE calculations: the
governing DE and the adjoint DE. In principle, the com-
plexity of the adjoint equation is similar to the complexity
of the governing DE. However, in practice, solving the ad-
joint equation is slower than solving the governing equa-
tion, as the adjoint equation requires the entire time his-
tory of the state variable which is only available at the time
steps at which the governing DE is simulated. Therefore,
interpolations of the state variable values often need to be
performed in order to run the adjoint equation, which typi-
cally makes the gradient computation three to five times as
slow as a governing DE simulation.

* The method of finite differences consists of calculating
Vo, J =~ (J(0+ he;) — J(0 — he;))/2h, in which e; € R?,
1 =1,...,d, is the unit vector with component ¢ equal to
1 and all other components equal to 0. It requires at least
2d DE computations. In practice, the complexity of the
gradient computation via finite differences is larger than
2d times the complexity of a DE simulation. Indeed, if a
precision of € is required on the gradient, then, based on
Vo,J = (J(0+he;)—J(0—he;))/2h+O(h?), a precision
of €3/2 is required on the evaluation of the cost function,
and therefore the DEs need to be computed with greater
precision, which adds to the computational time.

» The method of sensitivity propagation consists of analyti-
cally differentiating the ODE with respect to # and solving
for 0X(t)/08 € R"*? as

dX (1)
T g (0,0 2 4 gy (x5

0X(0)
o0
This method has roughly d times the complexity of a DE
computation.

=VXo. €29)

B. Second-Order Method

The gradient algorithm is numerically efficient when the
problem is well conditioned, meaning that the derivatives in all
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directions have the same order of magnitude. In the case of PCP,
the parameters are unknown and may range over several orders
of magnitude. Therefore, the problem is likely to be poorly
conditioned, in which case a second-order method is preferable.
A second-order method, such as the Newton method, rescales
the variables so that in the new system of variables the problem
is well conditioned and, consequently, the descent algorithm is
fast, yet no tractable method currently exists for executing the
Newton method in optimization programs involving general
DEs. However, it is possible to implement a quasi-Newton
method [8], [9], in which the second-order derivative of the
objective function, called the Hessian, is computed via finite
differences on the gradient.

By so doing, we can form an approximate Hessian H
and the descent direction is taken as the one which mini-
mizes the quadratic approximation of the objective function:
60 = —H1VJ.

C. Summary of the Algorithm

Algorithm 1 (Second-order parameter id. algorithm)

Start with an initial guess for the parameters 08" and an
initial guess for the Hessian H8",

Repeat

1. Solve the governing (16) for X, using the current
parameter vector 6.

2. Solve the adjoint equation for p (27), using the current
0 and X.

3. Form the gradient V.J (29).

4. Update the Hessian H via finite difference between the
current gradient and the previous ones.

5. Form the descent direction A = —H 'V .J.

6. Line search: compute 3 > 0 so that J(6 + BAB) is
minimized.

7. Update 0 := 0 + BAS.

until |VJTH=V J| is small.
Return 0* = 6.

As mentioned in Section II-C, the cost function .J incorporates
17 phenotypes. The simulation as well as the gradient compu-
tation of these 17 phenotypes is performed in parallel. Namely,
Algorithm 1 runs on a 33 node Linux cluster (one central node
and 32 subnodes). The central node runs the quasi-Newton algo-
rithm (main loop of Algorithm 1). Each time the quasi-Newton
algorithm requires gradient or function evaluations, it launches
17 jobs in parallel, corresponding to the 17 phenotypes. The sim-
ulations of these 17 phenotypes are independent of each other;
however, because the cost function is nonlinear, the computation
of the gradient requires collecting all phenotype state variables
at the final time, setting the adjoint variable terminal conditions
(which depend on the variables of all phenotypes), and then run-
ning the adjoint equations in parallel.

Each iteration of Algorithm 1 consists of a coarse one-dimen-
sional minimization (line search of step 6) of the cost function,
which is typically terminated after three to six DE system [(16)]
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computations. Taking into account the computation of the gra-
dient, each iteration of the algorithm requires eight to ten times
the computational time of running the governing DE system
[(16)]. In terms of convergence, the algorithm generally termi-
nates after 50 iterations; therefore, the algorithm requires on the
order of 50 x 10 objective function evaluations, each one being
performed on 17 processors.

Finally, since Algorithm 1 only guarantees convergence to a
local minimum, it is usually run for different initial parameter
guesses, uniformly spread in the parameter space. For this pur-
pose, several instances of Algorithm 1 are run in parallel.

V. RESULTS

Here, we show that the adjoint-based quasi-Newton method
adds significant value to the parameter identification task
for PCP in that it enables the use of gradient-based search
algorithms, such as the fast converging quasi-Newton method,
in a tractable fashion. We compare the convergence of the
Nelder-Mead simplex method [2], which avoids the diffi-
culties of calculating the gradient, to the convergence of the
adjoint-based quasi-Newton method, thus demonstrating the
benefit of using the adjoint-based method.

We also show that this speed-up helps us to better understand
the first tier of the PCP signaling network, in particular the lo-
calization of the initial asymmetry signal.

A. Adjoint-Based Quasi-Newton Method Versus Nelder—Mead
Simplex Method

The first validation of the adjoint-based algorithm is to verify
that it searches the parameter space more efficiently than does
the parameter identification algorithm used previously [2]. For
this purpose, Fig. 6 shows a convergence comparison between
the adjoint-based quasi-Newton method and the Nelder—Mead
simplex method, which was used in [2]. The goal of both al-
gorithms was to identify a set of parameters reproducing the
wild-type phenotype. After 30 function evaluations (ODE com-
putations), the adjoint-based method identified a set of param-
eters reproducing the wild-type phenotype to a good precision,
whereas the Nelder—Mead simplex method failed to identify a
satisfactory set of parameters.

B. Matching the fat Clones

Although it is a key part of PCP signaling, the interaction be-
tween the first-tier and second-tier proteins is not well understood.
Little is known about the role of Ft and Ds in this interaction ei-
ther, and open questions are legion: what is the wild-type orien-
tation of the heterodimer between Ft and Ds? Do far clones in-
fluence the localization of this heterodimer in wild-type cells?
What role does this Ft, Ds heterodimer play in the generation of
the asymmetry signal? To what extent is the asymmetry signal
generated in wild-type cells amplified and then propagated by the
second tier in fat clone mutant cells? The goal of this section is
to shed some light on these questions by efficiently testing, via
simulation, possible hypotheses. We start our analysis with the
following understanding. In mutant cells, because of the absence
of the fat function, the second-tier feedback loop propagates the
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Quasi-Newton method
Guess

Simplex method

Guess

Fig. 6. Comparison between the simplex method and the quasi-Newton method
for the parameter identification problem. “Cool colors” indicate low Dsh con-
centrations, and “warm colors” indicate high Dsh concentrations. After 30 ODE
system computations, the quasi-Newton method has almost recovered the wild-
type phenotype.

asymmetry signal generated in wild-type cells by the first tier,
and this signal gradually attenuates as it penetrates deeper into the
clone. Therefore, in small-size clones [see Fig. 10(c)], the polarity
is not disrupted as it is easily propagated from wild-type cells to
all mutant cells. However in large size clones [see Fig. 10(a)],
wild-type asymmetry information does not manage to penetrate
deep enough inside the clone: the second tier locally aligns po-
larity among neighboring cells, but polarity is progressively dis-
rupted. By challenging our model against various types of fat
clones, we will thus test the modeling of the second-tier feed-
back loop propagation mechanism inside the clone as well as the
strength of the asymmetry signal in wild-type cells. Furthermore,
we expect that the detailed fat clone patterns will provide useful
information regarding the localization of Ft and its effect on the
asymmetry signal generation.

1) Testing the Former Asymmetry Signal Model: In a first
step, we would like to test the asymmetry signal model which
we previously used in Section II-C and which was introduced in
[2]. According to [2], we suppose that Ft preferentially localizes
on the proximal side of each cell and that the asymmetry signal
points away from Ft and toward Ds accumulation. This model is

Fig. 7. Simulation of the fat clone using the former asymmetry signal model
shown in Fig. 4(a) and using parameters identified by the adjoint-based quasi-
Newton method. The simulated phenotype does not present any improvement
with respect to Fig. 4(d) and suggests that the model structure of the asymmetry
signal in Fig. 4(a) should be revised.

in agreement with the hypothetical diagram of Fig. (9a). There-
fore, in wild-type cells, the asymmetry signal points from the
proximal side to the distal side of each cell. In mutant cells, there
is no asymmetry signal, and no specific clone boundary effect
is implemented. Fig. 4(a) and (b) shows the localization of the
asymmetry signal in this model.

The adjoint-based algorithm was run in order to try to repro-
duce the 17 training phenotypes of [2]. The simulation, after
convergence of the adjoint-based algorithm, of the clone of
Fig. 4(c), is shown in Fig. 7. Results show that swirling patterns
were still not reproduced.

In conclusion, the adjoint-based quasi-Newton algorithm
did not succeed in reproducing the desired fat clone pheno-
type based on the asymmetry signal model structure shown
in Fig. 4(a) and (b). Note that the adjoint-based algorithm
only guarantees local convergence; therefore, it may have
been trapped in a local minimum. Nevertheless, because we
performed the search algorithm with various initial parameter
values, we conjectured that no parameter could properly explain
the desired phenotype, and we concluded that the asymmetry
signal model structure had to be modified.

2) New Asymmetry Signal Model: Discussions including
contributions from Prof. Mike Simon in the Department of
Biological Sciences at Stanford University lead us to the
conjecture that the cause of the problem lay in our incorrect
implementation of the asymmetry signal at the clone boundary.
Inspection of fat clone boundaries proved that polarity tended to
be orthogonal to the boundary of the clones, as shown in Fig. §,
which was in disagreement with the result of our simulation
(Fig. 7). The second step of our analysis was therefore to try
refining the implementation of the clone boundary conditions.
Fig. 9(a)—(e) illustrates our reasoning. As hypothesized in the
diagram of Fig. 9(a), Ft and Ds bind across the cell boundary.
In mutant cells located at the boundary of the clone, Ds can
only bind with Ft from neighboring wild-type cells. Therefore,
in mutant cells at the clone boundary, Ds accumulates at the
boundary of the clone and recruits Ft from wild-type cells, in
order to form a heterodimer at the clone boundary. The exces-
sive accumulation of this heterodimer at the clone boundary is
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Fig. 8. Four images of large fat clones (courtesy of Dr. D. Ma). The hair po-

larity seems to be orthogonal to the clone boundary and to point outward from
the clone, as indicated by the black arrows.

2
wing Fz
(inference)

1=<&
I

(e)

Fig. 9. (a)Hypothetical inference diagram between first-tier PCP proteins. The
asymmetry signal localizes by the cell edge at which Ds binds with Ft across
the cell boundary to form a heterodimer. (b) Accumulation of the heterodimer
between Ds and Ft at the boundary of the fat clone. Because of the absence of the
fat function in the clone, Ds is promoted to the clone boundary in order to bind
with Ft from the wild-type cells. (c) Based on (a), the asymmetry signal should
point away from the clone orthogonally to the clone boundary. (d), (e) Model
structure allowing the asymmetry signal to point either towards or outwards the
clone at the clone boundary.

predicted to distort the asymmetry signal in the wild-type cells
at the clone interface such that it would tend to be orthogonal
to the clone boundary and point away from the clone. We chose
to test this inference by modifying the asymmetry signal so that
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(b)

Fig. 10. (a) fat clone exhibiting swirling patterns (courtesy of Dr. D. Ma). (b)
Simulation of the clone in (a), using new asymmetry signal model structure. (c)
fat clone exhibiting wild-type phenotype (courtesy of Dr. Dali Ma). (d) Sim-
ulation of the clone in (c), using new asymmetry signal model structure. (e)
Direction of asymmetry signal obtained by the adjoint-based parameter identi-
fication algorithm with new model structure.

it reflects this orthogonal orientation and by allowing it to vary
in magnitude in either direction.

In order to reflect our hypothetical understanding of the first
tier and our fat clone observations, we modify the asymmetry
signal model as follows. The direction of the asymmetry signal
is set orthogonal to the clone boundary in order to account for
the probable accumulation of the heterodimer between Ds and
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Ft, but the value of the signal at the boundary is unknown and
consists of a new parameter to be identified. Therefore, within
the new model structure, the asymmetry signal could point to-
wards or away from the clone.

Based on this new model, the adjoint-based algorithm was
run in order to try matching the 17 phenotypes of [2]. All phe-
notypes were reproduced to a good precision. Since the repro-
duction of all loss-of-function and overexpression clones of the
second-tier proteins were already acquired in [2], [3], we only
present the results of the far clones. Fig. 10(b) and (d) show the
results of our simulations for two of these fat clones, one of large
size and one of small size. Both are good reproductions of the
biological data. Fig. 10(e) shows the resulting orientation of the
asymmetry signal within the model structure of Fig. 9(e). This
orientation corroborates our observations of Figs. 8. Following
this dialectic of theory, simulation and experiment, the asym-
metry signal has therefore been incorporated to reflect a more
detailed prediction of the first tier model as shown in Fig. 9(a).
The ability of this more detailed implementation to better repro-
duce the experimental results provides additional evidence for
this structure of the first-tier model.

VI. CONCLUSION

The construction of mathematical models in systems biology
usually involves two phases: 1) the construction of the model
structure based on biological insights and 2) the identification
of the unknown constants parameterizing the model structure.
The more rapidly the parameter identification can be performed,
the more iterations on the model structure can be accomplished,
thus allowing for better testing of biological hypotheses.

Through the example of PCP, this paper has shown the im-
portance of using adjoint-based control in the parameter identi-
fication of protein networks driven by DEs. The simulation of
such complex systems is indeed computationally very expen-
sive, requiring the parameter identification task to be performed
with as few system simulations as possible. Because of its fast
convergence (in terms of system simulation numbers), the ad-
joint-based quasi-Newton algorithm meets this requirement.

Finally, we have shown that using this parameter identifica-
tion algorithm allowed us to quickly test hypothetical model
structures for the first-tier proteins of PCP.

APPENDIX A
ODE MODEL GRADIENT COMPUTATION

Proof of Theorem 2: Let us denote by ] =0+ h € R? the
perturbed control and with similar notation X € L*(0,T,R™)

the perturbed state variable: )?(t)~: F(X(1),6(t)), X(0) =
Xo(0). Furthermore, let ex (t) = X (t) — X (¢) be the deviation
between the perturbed and the nominal state variables. Since f
is continuously differentiable, then

1

ex(t) = / o (X0 + Aex(1).0 4+ Ahf) ex (1)

1
+ / fo (X(t) + Xex(t),0 + Ah@) hAdX. (32)
0

Furthermore, ex(0) = fol VXo(f + MhB)hBdA. Since X(t)
and X (t) are bounded by M according to Assumption 3, and
since f,, fs and VX are continuous, there exist K, K,, and
Ky x,, positive constants, such that for all & €]0, 1], we have

fo (X(t) +dex(t),0 + Ahﬁ) <K,
fo (X(t) +hex(1),0 + Ahﬁ) <K,

-~

VXo(6 + Ahf) < Kvx,. (33)

Therefore

t
lex ()] < fo/|em(t)|dt+KfoTh|§|+KVX0h|§| (34)
0

and, thus, by Gronwall’s lemma, we have

lex ()] < (Ky, T + Kvx,) hlf]exp (K¢, 1) (35)
which proves that e x uniformly converges to O when & tends to 0
and therefore that the state variable X is continuous with respect
to the control variable §. Furthermore, let us note that ex /h is
bounded: 3K; > 0 such that V¢ € [0, T, lex (¢)|/h < K.

We now need to obtain a result on the convergence of ex /h
towards X . For this purpose, using (32), we have

EX(t)

A —X(f/)‘ < /fo

x Bd\dt

+ / (VXo(0y) — VXo(0)BdN  (36)
0

in which X, () = X(t) 4+ Aex(t) and 8 = 6 + Ah8. Because
of the bound on ¢ x obtained in (35) and because of the bounds
on f, fa, and VX, obtained in (33), the three last integrands
in (36) are bounded. Furthermore, since f., fg, and VX, are
continuous, these three integrands converge to 0 almost every-
where when i — 0. By the theorem of dominated convergence,
we have

GXh(t) —)?(t)‘ < /thx

€<Y}L(t) - )?(t)‘ dt +o(1). (37)

Using Gronwall’s lemma, we deduce that

sup { ﬁ—)?(t)‘}—m (38)
t€[0,T]

h—0
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Finally, posing ¢(X (7)) = [|g(X
of variations on .J leads to

Y ©P3||2, the calculus

(T)) -

T=d (g x(ry) -

h
1

+ / bz (XA(T)) — ¢ (X(T)) X(T)dX.  (39)
0

(XA(1) ( L

Since ¢ is continuously differentiable, the two integrands are
bounded and converge to zero almost everywhere when h — 0.
By the theorem of dominated convergence, the proof is com-
plete. ]
APPENDIX B
ADJOINT EQUATIONS FOR PCP PDE MODEL

Let us explicit the dependence in space of the cost
function by rewriting J = ||g( (T)) — Y| as J =
Il Jo k( ,8)ds — Y°"||”, in which Q is the compu-
tatlonal domam Furthermore, let us specify the boundary
conditions for the PDE (13) as follows:

w(0)0: X (t,s) -n=P(s,X(t,5),0), VsedQ (40)

in which 7 is the unit vector normal to the boundary 9€). The
regularity of the PCP PDEs provides us with enough technical
conditions to compute the derivative of .J as follows:

T

J(9) =2 /k’(X(&T),s) ds — y°bs
X /k,, (X(s,7)

in which X is the solution of the following linear PDE:

lim J(0 + ho) —
h—0 h

,8) X (s,T)ds

(41)

0X

=7 P, (s, X(t,5),0) X (t,5) + (@) AX (¢, s)

+(Py (s, X(t,5),0) + AX(t,8)Vu(6) 8 (42)

t,s) =

with linear boundary conditions
Vi(0)00,X (t,5) -+ u(0)0: X (t, ) - n
= c( (s, X (t,5),0) X(t,5) + Py (s7X(t7s),9)§). 43)

Taking the inner product of this linear PDE with an arbitrary
costate p yields

[

T

T2 (1,9) //pT P X+ u(0)AX (¢, s))

0

T
+ / / p' (Pp+ AXVu(0)6. (44)
Q 0
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Integrating by parts, we obtain

/prf(T)://TffT (%JrPJeru(H)Ap)

Q Q

+ p' (Py+ AXVu()8

R

XT(P]p— p(0)dup - n)

Q
e}

+
Sty Ty TT—

+ p (Py— 0,X -nVu() 6. (45)

1249}

We are now in a position to extract the gradient of .J. Provided
that p solves the following linear PDE:

—; = P o+ u(0)Ap, (46)
with boundary conditions
p(0)dup-n = Pl p (47)
and terminal condition
-
sy =2 | [BOEET)) =Y |k (X T)5)
Q
(48)
the gradient is
T
VJ= //pT (Py+ AXVu(h))
0
T
+ /pT Py — 3, X -nVu(9)). (49)
o0 0
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