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a b s t r a c t

This work is concerned with the problem of point set matching over features extracted from images. A
novel approach to the problem is proposed which leverages different techniques from the literature. It
combines a number of similarity metrics that quantify measures of correspondence between the two sets
of features and introduces a non-iterative algorithm for feature matching based on spectral methods. The
flexibility of the technique allows its straightforward application in a number of diverse scenarios, thus
overcoming domain-specific limitations of known techniques. The proposed approach is tested in a num-
ber of heterogeneous case studies: of synthetic nature; drawn from experimental biological data; and
taken from known benchmarks in computer vision.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

The general problem of point set matching is a fundamental to-
pic in computer vision and is key for the task of registration of mul-
tiple images. The problem is defined over pairs of feature sets
extracted from images and can be decomposed, as suggested in
(Chui and Rangarajan, 2003), into two related sub-problems: that
of transformation between the images, and that of correspondence
between the features of the two images.

The first problem (transformation) is concerned with finding
the mathematical relationship underlying the overall morphing
between two successive frames, that is a mapping describing the
transformation of the first image into the second frame (Ullman,
1979). This objective is relatively easily obtained when the under-
lying transformation is rigid: our approach instead does not
assume that the transformation between the images is rigid.

The second issue (correspondence), which is the focus of the
present contribution, deals with the task of finding quantitative
matching between features associated with the two images, which
are not necessarily related by a rigid transformation. In the litera-
ture this problem is studied either by working directly on the
intensity maps associated with the two images (Ullman, 1979;
Beauchemin and Barron, 1995), or by extracting correspondences
ll rights reserved.
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between sets of features obtained from the images (Scott and
Longuet-Higgins, 1991; Shapiro and Brady, 1992; Chui and
Rangarajan, 2003). It is often the case that the two sets of features
are composed of heterogeneously distributed points extracted
from the original frames.

The contribution in (Huttenlocher and Rucklidge, 1993) em-
ployed a brute-force approach for the correspondence problem
by exploiting the notion of Hausdorff distance. However the com-
putational burden of the approach arising from combinatorial
explosion can be significant. A popular, non-iterative technique
employs spectral methods over the abstract structures composed
of the feature points. Seminal contributions in this area are those
in (Scott and Longuet-Higgins, 1991; Shapiro and Brady, 1992),
which essentially differ on one major aspect. The former sets up
a similarity metric based on inter-relationships between pairs of
points taken from the two sets, and studies the spectral properties
of a matrix that incorporates such a metric. The latter instead com-
pares the spectral properties of two matrices, each of which is in-
tended to describe the shape of the single image and its local
relations (intra-metrics within the image). The technique is related
to other approaches based on matrix spectral analysis for abstract
weighted graph matching problems. Similar to the cited work in
(Scott and Longuet-Higgins, 1991; Shapiro and Brady, 1992) and
to (Umeyama, 1988), the presented technique is analytic. Alterna-
tively, abstract graph matching can be studied with iterative
schemes, as in (Blondel et al., 2004), which offset the computation
time related to the scheme with a linear dependence on the
graph size.
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Both Scott and Longuet-Higgins (1991), Shapiro and Brady
(1992) have known pitfalls and shortcomings. Scott and
Longuet-Higgins (1991) presents limitations when the rotation or
the scaling between the two images is large. To mitigate this
deficiency, (Pilu, 1997) incorporates a neighborhood correlation
measure in the inter-metrics. A spectral matching algorithm
working along the lines of Scott and Longuet-Higgins (1991), which
exploits intensity information from the raw underlying image, is
proposed in (Srinivasan and Kankanhalli, 2003). As (Shapiro and
Brady, 1992) argues, (Scott and Longuet-Higgins, 1991) suffers also
from numerical instability. On the other hand, the approach in
(Shapiro and Brady, 1992) performs poorly whenever the features
corresponding to the main eigenmodes of either image undergo
structural changes. Furthermore, the technique is not robust to
point-jitter. Shapiro and Brady (1992) can be improved by employ-
ing kernel methods in the definition of the intra-metrics matrices
(Shawe-Taylor and Cristianini, 2004). This is for instance imple-
mented with a kernel PCA in (Wang and Hancock, 2004; Wang
and Hancock, 2006), where the data are embedded in a higher-
dimensional space through a Gaussian kernel. Along with not
accommodating the presence of underlying images, both the ap-
proaches in (Scott and Longuet-Higgins, 1991) and in (Shapiro
and Brady, 1992) do not incorporate information about feature con-
nectivity or feature distinctiveness, which the original images may
be endowed – (Sclaroff and Pentland, 1995) proposes an improve-
ment to the correspondence procedure by incorporating outside
information.

Other techniques employed in the literature study variants of
the correspondence detection problem. Statistical methods (Wells,
1997) embed probability distributions over the point sets. The reg-
istration task can then be reframed as a maximum likelihood esti-
mation procedure with coherence constraints (Myronenko et al.,
2007), or as a distribution alignment problem (Jain and Vemuri,
2005). On the other hand, deterministic optimization-based
approaches based on minimum least-squares problems (Chui and
Rangarajan, 2003), or constrained global energy minimization
techniques using objective functions quantifying geometric simi-
larity and features coherence (Torresani et al., 2008) have been
put forward to tackle the correspondence and matching problem.
These techniques are intrinsically different in nature than the
method discussed in this work in that (1) they possibly embed
probabilistic information over the data sets, (2) they do not fully
exploit the texture information underlying the images, and (3) they
are iterative (as opposed to being one-shot), since they leverage
optimization procedures (e.g., energy minimization or likelihood
maximization). As such, while these techniques generally aim
at solving the same problem, they are methodologically and
structurally different than the approach discussed in the present
contribution.

The purpose of this work is to propose a novel approach for the
general problem of point set matching. With reference to the ear-
lier literature review, the approach (1) leverages and combines the
intra- and inter-information obtained from the pair of feature sets;
(2) exploits the use of spectral techniques over the feature sets –
the proposed method is non iterative and achieves a computational
efficiency; (3) embeds additional information deriving from the
possible knowledge of an existing graphical structure over the sin-
gle features set, as well as from the presence of underlying raw
images. Such information is included by exploiting structural prop-
erties of kernel matrices.

As in (Scott and Longuet-Higgins, 1991), we make use of a
pairing matrix, which relates pairs of points taken from the two
sets. In addition, we allow the elements of the pairing matrix to
depend on a combination of possible metrics, each of which is
defined over the two sets of points. This ‘‘library’’ of metrics repre-
sents a set of different possible measures that quantify attributes of
similarity between the pair of feature sets under study, and can be
extended based on the problem under study. For example, one
metric introduces a notion of adjacency between the spatial coor-
dinates of pairs of points, as proposed in (Scott and Longuet-Hig-
gins, 1991); two related metrics compare the eigenmodes
between intra-matrices defined for each of the two feature sets,
as in (Shapiro and Brady, 1992); an additional metric exploits the
presence of a graphical structure underlying the points in each im-
age; a final metric instead uses the information coming from actual
raw images underlying the feature points. Thanks to structural
properties of kernel matrices, such measures are combined into a
single pairing matrix as the multiplication of the single pairing
matrices. This new pairing matrix accommodates different and
heterogeneous information: such versatility allows the application
of the approach to diverse data sets.

The technique performs robustly on a variety of application do-
mains, by automatically adapting the set of useful metrics to the
particular case under study. Specifically, the multiplicative struc-
ture of the pairing matrix ensures that if a particular metric is
not discriminative for a pair of images it is automatically overrid-
den by the other more relevant metrics. The procedure is tested
over a few case studies drawn from different domains, in order
to fairly assess its performance with regard to the following major
characteristic benchmarks: (1) the presence of outliers (i.e., the
emergence or the deletion of a subset of the features) in each im-
age due to structural changes; (2) substantial rotations and trans-
lations between the pair of images; and (3) random position jitter.

The contribution unfolds as follows. Section 2 introduces the
theoretical concepts and delineates the main technical aspects
underlying the proposed technique. In particular, Sections 2.1
and 2.2 discuss the notion of pairing matrix and its use for the
point set matching problem, Section 2.3 introduces a library of dif-
ferent possible metrics to be adaptably embedded within the pair-
ing matrix, and Section 2.4 derives the algorithmic complexity of
the proposed approach. Section 3 covers a number of case studies,
where the technique proposed in this work is tested and bench-
marked. The examples are both synthetic (Section 3.2) and drawn
from biological experimental data (Section 3.3), as well as taken
from known benchmarks in the literature (http://vasc.ri.cmu.edu/
idb/html/motion/house/index.html, Section 3.4). Section 4 con-
cludes the work and delineates future research directions.
2. Theory

This Section discusses the theory that underpins the proposed
point set matching procedure.

2.1. The pairing matrix for point set matching

Consider two sets of points X = {x1, . . . ,xm} and Y = {y1, . . . ,yn},
with elements lying in Rd for some finite d. As in (Scott and
Longuet-Higgins, 1991), we introduce a pairing matrix Z 2 Rm�n,
with entries zij 2 R. Each element zij is intended to express a mea-
sure of similarity between point xi 2 X and yj 2 Y. The definition of
the elements in Z is elaborated in Sections 2.2 and 2.3. Given a ma-
trix Z, the selection of pairs of matching points from the two sets is
performed after a normalization procedure, and is described in the
following.

The matrix Z is preprocessed by computing its singular-value
decomposition

Z ¼ TDU; ð1Þ

where D 2 Rm�n, whereas T, U are properly-sized orthogonal matri-
ces. We replace diagonal elements dpp of D, p = 1,2, . . . ,min{m,n},
with identity constants, which yields
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eZ ¼ TEU; ð2Þ

where eij = dij, i – j, i = 1, . . . ,m, j = 1, . . . ,n, epp = 1, p = 1, . . . ,
min{m,n}. This technique is generally known as whitening. The
matrix eZ is orthogonal and is the one which maximizes the trace
of eZ TZ (Scott and Longuet-Higgins, 1991). Furthermore, the largest
elements in eZ correspond to candidate matching pairs as follows:
the pair (xi,yj) is matched if and only if zij is the largest element both
of row i and of column j. This strong correspondence implies a
‘‘mutual consent’’ to the match: indeed, if zij is the largest element
of row i but not of column j, point xi is similar to yj, but not the con-
trary. As such, the pair (xi,yj) is not a valid match.

If one considers each row i as an n dimensional vector ri, then Z
is a map from point xi into vector ri. Ideally, a pairing matrix Z
should be sparse, with a single non-zero element per row and lin-
early independent rows. In such a case, ri coincides with one of the
axis and as such is the farthest possible from any other vector row.
More generally, if a row vector ri is close to the axis ej 2 Rn, then it
is likely for the pair (xi,yj) to be a match. However, if two vectors ri1

and ri2 ; i1; i2 2 f1; . . . ;mg, are adjacent to the same axis ej, then the
corresponding points xi1 and xi2 ‘‘compete’’ for the match with yj.
Setting the singular values of Z to be unitary corresponds to a spa-
tial outspread of its row vectors, thus alleviating such potential
conflicts. Fig. 1 displays an instance of Z and eZ matrices corre-
sponding to sets of cardinality three. In this example where
m = n, the above operation corresponds to the normalization the
volume of the associated prism.

Unlike other iterative approaches (Chui and Rangarajan, 2003;
Torresani et al., 2008), the method yields the matching with a sin-
gle-step calculation. The formal algorithmic complexity of the ap-
proach is derived in Section 2.4.

2.2. Flexible design of the pairing matrix

As previously mentioned, the elements zij of Z represent a mea-
sure of similarity between point xi and point yj. A kernel function
K : X � Y ! R is used to define these elements as an inner product
in a (possibly infinite) dimensional space (Shawe-Taylor and
Cristianini, 2004), so that

zij ¼ Kðxi; yjÞ ¼ h/ðxiÞ;/ðyjÞi ð3Þ

and

Z ¼
z11 . . . z1n

..

. . .
. ..

.

zm1 . . . zmn

2
664

3
775 ¼

Kðx1; y1Þ . . . Kðx1; ynÞ
..
. . .

. ..
.

Kðxm; y1Þ . . . Kðxm; ynÞ

2
664

3
775: ð4Þ
Fig. 1. Graphical comparison of pairing matrix Z (left) and its normalized version eZ
(right), where Z ¼

0:7000 0:7500 0:4000
0:9000 0:9500 0:1000
0:3000 0:9000 0:8500

2
4

3
5 and eZ ¼ 0:8519 0:1527 0:5010

0:4249 0:7607 0:4907
0:3062 0:6309 0:7129

2
4

3
5

Notice that the row vectors r1, r2, r3 of eZ do not cluster and better spread in space.

The pairing matrix Z yields one pair (2,2), whereas eZ yields the pairs (1,1), (2,2),
(3,3).
As a special case of (3), one can select Kðxi; yjÞ ¼ hxi; yji, whereby /
(�) = id(�) is the identity function. In general, given a proper kernel
function K, Mercer’s Theorem (Shawe-Taylor and Cristianini,
2004, Thm. 3.13) guarantees the existence of the embedding func-
tion /(�), though it may not be explicitly known.

Given a (possibly infinite) set of kernel functions K1; . . . ;

Kt ; t 2 N, the closure property (Shawe-Taylor and Cristianini,
2004, Prop.3.22) warrants that

Ksðxi; yjÞ ¼
Xt

k¼1

Kkðxi; yjÞ and Kpðxi; yjÞ ¼
Yt

k¼1

Kkðxi; yjÞ ð5Þ

are also kernel functions. Hence, considering pairing matrices
Z1; . . . ;Zt built on the kernel functions K1; . . . ;Kt as in (4), the
new matrices

Zs ¼
Xt

k¼1

Zk and Zp ¼
Yt

k¼1

Zk ð6Þ

are still valid kernel-based pairing matrices. (Here the symbols
P

and
Q

represent point-wise sum and multiplication.)
For any legitimate choice ofK, the matrix Z relates to the notion

of Gram matrix (Shawe-Taylor and Cristianini, 2004), which con-
nects with a wealth of literature on kernel methods for pattern
analysis. However, since in the present instance Z is applied over
pairs of points extracted from two different sets (rather than from
the very same set), it does not formally belong to this class of
matrices.

The kernels Kk are built around metrics, or distances dk, which
are suitable for the matching problem. We select a Gaussian as
the kernel function:

Kkðxi; yjÞ ¼ e
�

d2
k
ðxi ;yj Þ

r2
k ; ð7Þ

where rk is a parameter of choice that controls the degree of inter-
action between the two feature points.

Next, we introduce a library of possible metrics, which we will
apply in a number of heterogeneous case studies.

2.3. A library of metrics

Let us consider the following set of metrics dk : X � Y !
R; k ¼ 1; . . . ;5:
Metric
 Definition
d1(xi,yj)
 kxi � yjkp, p > 0

d2(xi,yj)
 cos(m(i), m(j))

d3(xi,yj)
 cosð~mðiÞ; ~mðjÞÞ

d4(xi,yj)
 jd(xi) � d(yj)j

d5(xi,yj)
 td(xi,yj)
The metrics are further discussed in the following.

1. d1 is a p-norm distance between pairs of points taken from the
two sets. The present case studies consider the Euclidean norm
(p = 2).

2. d2 is a measure of the distance of the ith mode m(i) and the jth
mode m(j) associated to each of the two sets. As suggested in
(Shapiro and Brady, 1992), the mode m of a point set is computed
as follows: first, a square proximity matrix defined according to
the intra-distances between the features of the image is intro-
duced; it is successively diagonalized and its first min{m,n}
eigenvectors, sorted according to the largest eigenvalues, are
regarded as its modes. The distance between the modes m(i)
and m(j) of the two graphs is then computed as their cosine.
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3. This metric is valid if the sets X, Y are embedded with a graph-
ical structure. The distance d3 is characterized analogously as
d2, however the modes ~m are computed by considering a prox-
imity matrix that has non-zero elements only if the correspond-
ing pair of vertices are connected by an existing edge in the
graph.

4. The metric d4 is defined as the absolute value of the difference
between the graphical degree of a pair of points, taken respec-
tively from X and from Y. The function d is the degree of a node
in a graph. As for d3, this metric is valid if the sets X, Y are
embedded with a graphical structure. However, if no graphical
structure is present over the sets X and Y, then one such graph
can be induced artificially: for instance, edges can be created
between pairs of points if their distance is less than a adjustable
threshold.

5. Given an image underlying the point sets, the metric d5, defined
by a function td, computes the texture difference between a
neighborhood of xi 2 X and one of yj 2 Y. Here the points xi, yj

are intended as features of the corresponding images.
More formally, let us consider the finite discrete domain L � Z2

made up of the pixels of the two-dimensional image frame.
Given a point z 2 R2, we define a neighborhood Nðz; dÞ � Z2

as the set of pixels of the image with centroid lying within a
radius d > 0 from z. A function I : L! Rþ specifies the intensity
of the image over its domain.
Let us now consider the two images Lx, Ly underlying X, Y. Given
a radius d of choice (which value may be related to r5 in (7)),
the function td(z1,z2) computes the absolute value of the differ-
ence between the intensities of the pixels in the neighborhoods
of points z1 and z2:
Table 1
Comput
was bui
least sq
figure le
tdðz1; z2Þ ¼
X

p12Nðz1 ;dÞ\Lx

X
p22Nðz2 ;dÞ\Ly

jIðp1Þ � Iðp2Þj:
This approach is related to a similar procedure used in
(Srinivasan and Kankanhalli, 2003).

The metrics d1, . . . ,d5 used in kernel functions (7) are then com-
bined through a product into a pairing matrix Z as in (5) for the
matching procedure. The multiplicative structure of the pairing ma-
trix ensures that if a particular metric is not discriminative for a pair
of images it is automatically overridden by other more relevant
metrics. This versatile feature allows the automatic adaptation of
the set of useful metrics to the particular case under study.
ational complexity for the synthetic graph test case of Section 3.2, tested on a Linux
lt in Matlab r2009b�. To reduce noise, for each size m of the graph we run 10 trials a
uare analytical fitting (red), obtained with a multiplicative constant 2.1 � 10�7 and
gend, the reader is referred to the web version of this article.)
2.4. Algorithmic complexity

Let us start assuming that we are given t kernel functions
Kk; k ¼ 1; . . . ; t, as in (7), which are used in the matching proce-
dure. The procedure is made up of four sequential steps that criti-
cally determine its algorithmic complexity.

Firstly, we build Z as a point-wise multiplication of the t kernel
functions Kk; k ¼ 1; . . . ; t, according to (6). This involves d � t �m � n
operations, where m and n are the number of features respectively
in X and Y, and d is the dimensionality of their spatial component.
We expect that d, t are constants that are smaller than m, n, which
results in a OðnmÞ computational complexity.

Secondly, we compute eZ using a singular value decomposition
procedure as in (Golub and Reinsch, 1970): accordingly, the com-
putation of U, V and D requires 4m2n + 8mn2 + 9n3 operations.

Thereafter, the whitening procedure is completed by replacing
the diagonal elements of D, which easily results in Oðminfm;ngÞ
computational complexity.

Finally, the matching procedure on eZ requires finding the min-
imum of each row and then scanning the corresponding column to

confirm or discard the matching. This entails in minfm;ng
2

� �
operations, which is Oððminfm;ngÞ2Þ.

The overall computational complexity thus easily add up being
Oðm2nþmn2 þ n3Þ. Intuitively, we can state that the computation
cost grows with the third power of the size of jXj or jYj.

In practice, we have found the computational cost not to be a
burden, even using whitening. All the case studied described in
Section 3, which are by no means of trivial dimensionality or setup,
have resulted in real-time executions. In other words, whilst the
computed polynomial complexity holds, we have experienced that
the hidden constants in Oðm2nþmn2 þ n3Þ to be quite limited in
value. For instance, Table 1 shows the computational complexity
of the matching procedure for the synthetic graph matching test
case in Section 3.2, run using Pe; Pv and Mv ¼ 15:00%: for this
test, we have found that the complexity Oðm2nþmn2 þ n3Þ can
be further computed to be equal to 2.1 � 10�7 m3, where m is
the size of the first graph (here n 6m). On the side, notice that
one can implement a much faster algorithm, albeit at a loss in reli-
ability, by avoiding the whitening of Z (second and third step
above). This obtains a computational cost of OðmnÞ.

3. Case studies

This Section develops a number of case studies to test the
methodology introduced in Section 2. We show that the particular
Ubuntu machine, AMD Mobile Sempron 3600+ processor with 2 GB memory. The test
nd averaged the outcomes. The table shows the experimental result (blue) as well the

here displayed with a 0.5 s offset. (For interpretation of the references to colour in this
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instance under study dictates what subset of metrics ought to be
selected to form the pairing matrix utilized for the matching pro-
cedure, in order to optimize its outcomes. The software and the
hardware for all the case studies are specified in Table 1.

3.1. Performance assessment of the point set matching procedure

Consider the two sets of feature points X and Y, with cardinality
m and n respectively. The outcomes of the point set matching pro-
cedure is compared with the ground truth. The ground truth is
known for the synthetic case studies, whereas for the case studies
based on real images it is directly assessed over the data sets by
independent and unbiased observers. Let us introduce the follow-
ing four entities:

1. Xtm # X, Ytm # Y are the two sets of feature points that are cor-
rectly matched, of cardinality respectively mtm, ntm;

2. Xts # X, Yts # Y are the two sets of feature points that are cor-
rectly left un-matched, of cardinality respectively mts, nts;

3. Xfm # X, Yfm # Y are the two sets of feature points that are
wrongly matched, of cardinality respectively mfm, nfm;

4. Xfs # X, Yfs # Y are the two sets of feature points that are
wrongly left un-matched, of cardinality respectively mfs, nfs.

Notice, as intuitive, that mtm + mts + mfm + mfs = m and that
ntm + nts + nfm + nfs = n. We define as percentages, over both sets of
points, the following quantities:

1. true matches, as the ratio of feature points that are correctly
matched, i.e. mtmþntm

mþn ;
2. true singles, as the ratio of feature points that are correctly left

un-matched, i.e. mtsþnts
mþn ;

3. false matches, as the ratio of feature points that are wrongly
matched, i.e. mfmþnfm

mþn ;
4. false singles, as the ratio of feature points that are wrongly left

un-matched, i.e. mfsþnfs

mþn .

The outcome of the case studies will be evaluated according to
the introduced quality measures.

3.2. Synthetic graph matching

We consider a graphical structure G = (V,E) with two dimen-
sional spatial components, which are constrained to lie within
the unit square in the positive quadrant [0,1]2. The cardinality of
Fig. 2. Synthetic graph generation and perturbation. The original graph (left) contains 5
The blue labels mark the nodes and provide the ground truth correspondence. (For interp
web version of this article.)
the set of nodes V is equal to 50 and their spatial components
are generated uniformly at random within the specified domain.
The edge set E is created between pairs of nodes in V according
to a Bernoulli distribution with mean equal to 0.5, however the
edges that are longer than a specified threshold (0.25) are dis-
carded. Fig. 2 shows an example of a graph.

The graph is then morphed into a new structure eG ¼ ðeV ; eEÞ,
according to the following procedure:

1. The set eE # E is generated from E by discarding each edge
according to a Bernoulli probability distribution with mean Pe;

2. The set eV # V is generated from V by discarding each edge
according to a Bernoulli probability distribution with mean
Pv , and additionally by eliminating the residual edges that con-
nect to vertices in E n eE;

3. The spatial components associated to the elements in eE are
obtained from those belonging to the corresponding elements
in E by perturbing them with the addition of a random variable
that is uniformly distributed within the square Mv

2 ½�1;1�. In
other words, the original coordinates are subjected to a uniform
perturbation that amounts to Mv% of their maximum possible
value.

The matching procedure proposed in Section 2 is tested on a co-
hort of pairs of graphs ðG; eGÞ, parameterized by the input configu-
ration ðPe;Pv ;Mv Þ used to generate them: for each combination
ðPe;Pv ;Mv Þ of perturbation parameters we average the outcomes
of 2000 simulations.

Figs. 2 and 3 represent respectively a single pair of test graphs
ðPe ¼ Pv ¼Mv ¼ 15:00%Þ, and the outcomes of the matching
procedure.

We have employed the first four metrics d1, d2, d3 and d4. The
metric d5 is not employed, since the artificial graphs have no
underlying physical image that can be exploited for the matching
procedure. Table 2 reports the results for each configuration of
the perturbation parameters ðPe;Pv ;MvÞ are the average of the
2000 simulations. The experiments are divided in five batches: in
the first, we uniformly modify the three perturbation parameters;
in the following four, we fix two of the three parameters and mod-
ify the remaining one by using values that match those of the first
batch of experiments. The monotonicity of the performance out-
puts of the algorithm with respect to the perturbation level pro-
vides evidence of the consistency of the procedure (see first set
of simulations). The results of the last four groups of simulations
‘‘lie within’’ those of the first batch (the comparison ought to be
0 nodes. The perturbed graph (right) was generated using Pe ¼ Pv ¼Mv ¼ 15:00%.
retation of the references to colour in this figure legend, the reader is referred to the



Fig. 3. Outcomes of the matching procedure for the synthetic graphs of Fig. 2. Here the blue labels indicate correctly matched nodes (true matches), whereas red labels shows
the wrongly matched ones. Nodes without labels are correct single nodes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Table 2
Outcomes of the matching procedure tested on sets of randomly generated and successively perturbed graphs. We have run 2000 simulation for each
configuration of perturbation parameters and reported the average of the outcomes. For each of the 2000 simulations we have first generated a graph, then
perturbed it. The perturbation level is tuned via three parameters: Pe , the probability that an edge is erased from the original graph; Pv , the probability that a
vertex is eliminated from the original graph; Mv , the level of spatial perturbation applied to a vertex of the original graph.

Perturbation Output Performance

Pe ð%Þ Pv ð%Þ Mv ð%Þ True matches (%) True singles (%) False matches (%) False singles (%)

15.00 15.00 15.00 71.01 7.50 19.37 3.12
12.00 12.00 12.00 79.83 6.66 12.07 1.44
9.00 9.00 9.00 87.65 4.37 7.10 0.88
6.00 6.00 6.00 93.06 3.38 3.36 0.20
3.00 3.00 3.00 97.09 1.82 1.04 0.05
12.00 15.00 15.00 72.40 7.21 18.59 2.80
15.00 12.00 15.00 73.17 6.05 18.64 2.14
15.00 15.00 12.00 78.07 8.94 12.19 1.90
9.00 12.00 12.00 80.29 6.71 11.41 1.59
12.00 9.00 12.00 82.31 4.32 12.05 1.32
12.00 12.00 9.00 84.49 6.64 7.80 1.07
6.00 9.00 9.00 87.86 5.62 6.03 0.49
9.00 6.00 9.00 89.31 3.32 6.72 0.65
9.00 9.00 6.00 90.86 5.23 3.42 0.59
3.00 6.00 6.00 93.26 3.60 2.78 0.36
6.00 3.00 6.00 95.17 1.68 2.99 0.16
6.00 6.00 3.00 94.86 3.70 1.20 0.24
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done by looking at the accrued true and false value pairs). By com-
paring the third result of each group of experiment with the first
two, one can observe that the elimination of edges or vertices af-
fects the quality of the outcomes more than the perturbation of
the spatial coordinates of the vertices. This is despite the fact that
spatial perturbations can result in feature crossover. Furthermore,
as intuitive, the elimination of an edge (first result of the last four
groups) affects the results more than that of a vertex (second
result).

3.3. Image registration of biological data: the Drosophila wing case
study

This experimental study aims at matching two network struc-
tures extracted from biological data.1 Each network describes the
cellular epithelium of a wing of Drosophila melanogaster, the
1 The images have been provided by the Axelrod Lab, at the Department of
Pathology, Stanford University School of Medicine, Stanford, USA. Members of the Lab
have also contributed in the interpretation of the outcomes of the registration
procedure.
common fruit fly. The experimental data are obtained with confocal
microscopy techniques a few hours after puparium formation. It is of
interest for the developmental biologist to have access to quantita-
tive data relating to the network structure of the epithelium. The
graphical structure is extracted from single frames that belong to
time-lapse movies of the epithelium. The details of the computer vi-
sion technique used to extract the network from a single frame are
formally presented in (Silletti et al., 2009). Along with the collection
of the graphical structures corresponding to each frame, it is impor-
tant to match the networks extracted from pairs of frames that are
successive in time. This procedure is also known as the registration
of the frames of the movie.

The experimental data consist of 50 frames consecutive in time,
corresponding to 49 pairs of images. Fig. 4 shows frames (frame 22
and 23) taken from the wet lab experimental data.

For the instance under study, we have employed the metrics d1

and d5. The use of d5 is dictated by the availability of an actual im-
age containing meaningful information for the matching. The intra-
metrics d2, d3 and d4 are discarded, which is explained by observing
the similarity of the neighborhood structure for most of the nodes
in the graph. In other words, if most of the internal nodes have a



Fig. 4. Frames 22 and 23 considered for the matching procedure. The images are part of a 40 frame movie and refer to a section of the epithelium of the Drosophila
melanogaster wing. The polygonal structures are 2-d sections of the epithelial cells.

Fig. 5. The matching procedure applied to the networks of Fig. 4. The yellow labels over the nodes correspond to matches (both correct and wrong ones). The unlabelled
nodes are single nodes (both correct and wrong ones). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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similar number of connected edges, then the information provided
by the metric d4 is redundant. Similar considerations hold for the
metrics d2, d3.

Fig. 5 displays the graphical structures extracted from the
frames in Fig. 4, and labeled with the outcome of the matching pro-
cedure. Unlike the study in Section 3.2, the ground truth has been
provided by manual observation from an independent and unbi-
ased observer. Table 3 displays the outcomes of the procedure,
averaged over the 49 tests. The results appear to be rather good
Table 3
Outcomes of the matching procedure tested on 49 pairs of networks extracted from
50 successive frames of a movie. The results are averages over the 49 tests. The movie
refers to the morphogenesis and the dynamics of a section of the wing of Drosophila
melanogaster.

Output performance
True matches True singles False matches False singles
88.23% 3.61% 7.92% 0.24%
when compared to others in the biology literature (Ma et al.,
2008), especially given the complexity of the structures and of
the dynamics under study (cells both appear do to divide and to
exit the epithelium, the frames are subject to translation, and the
images are quite noisy – the last two are known issues for algo-
rithms as in (Scott and Longuet-Higgins, 1991)). (See Fig. 6)

3.4. Point set matching over a literature benchmark: the ‘‘CMU House’’

We have finally tested our procedure on a known benchmark
from the computer vision literature, known as the ‘‘CMU House’’
(http://vasc.ri.cmu.edu/idb/html/motion/house/index.html). This
benchmark contains a set of 110 pictures of a toy house, taken over
a black background. We have extracted a set of features from each
image by applying a corner detector (Xiao and Nelson, 2008). The
obtained sets have a cardinality that is very similar to the sets used
in (Carcassoni and Hancock, 2003; Wang and Hancock, 2006) for
the same benchmark, which allows for a fair comparison with
those results.



Fig. 6. A particular of the matching procedure from Fig. 5, involving a topological change. The green circle highlights a difficult match that is correctly resolved. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

738 A. Silletti et al. / Pattern Recognition Letters 32 (2011) 731–739
We have tested our algorithm on two experimental setups.
Firstly, we have matched the 109 sequential pairs of images (1–
2,2–3, . . . ,109–110). Fig. 7 displays the output of one such pairing:
the green labels are obtained from the matching procedure. Sec-
ondly, we have matched 109 pairs of distinct images, randomly
Fig. 7. Two successive images (frames 1 and 2) from the CMU House benchmark (http:/
from the matching procedure. The outcome is in this case perfect. (For interpretation of th
of this article.)

Fig. 8. Two random images (frames 1 and 67) considered for the matching procedure
index.html). The green labels correspond to correctly matched points (true matches and
singles). (For interpretation of the references to colour in this figure legend, the reader
chosen from the set. Fig. 8 displays the output of one such match-
ing: in green are the correct labels obtained from the matching
procedure, whereas in red are the wrong outcomes.

The first study is meant to test the robustness of the method
with respect to positional jitter, while the second targets the per-
/vasc.ri.cmu.edu/idb/html/motion/house/index.html). The green labels are obtained
e references to colour in this figure legend, the reader is referred to the web version

over the CMU House benchmark (http://vasc.ri.cmu.edu/idb/html/motion/house/
true singles), whereas the red labels mark wrong outcomes (false matches and false
is referred to the web version of this article.)



Table 4
Outcomes of the matching procedure tested on 109 pairs of feature sets extracted
from 110 images in (http://vasc.ri.cmu.edu/idb/html/motion/house/index.html). The
results are averages over the 109 tests. The top line refers to the 109 pairs of
sequential images, whereas the bottom one to 109 pairs of randomly extracted
images.

Input Output performance

Image pairs True matches True singles False matches False singles

Sequential 93.32% 5.48% 0.73% 0.47%
Random 75.86% 16.20% 5.68% 2.26%
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formance against large transformations and the presence of feature
occlusions. (Both studies focus on known issues reported for algo-
rithms as in Scott and Longuet-Higgins (1991)). Table 4 displays
the results as averages over the 109 tests. The outcomes of both
studies appear to sensibly improve those in (Carcassoni and
Hancock, 2003), and to remarkably improve those in (Wang and
Hancock, 2006). Notice that the performance measure in
(Carcassoni and Hancock, 2003; Wang and Hancock, 2006) is based
exclusively on the second component of the pair of images, and
hence slightly differs from the one used in this work, which we be-
lieve is more accurate. Also, the statistics in both (Carcassoni and
Hancock, 2003; Wang and Hancock, 2006) are quite limited in
sample size and image range.

4. Conclusions and future work

This article has proposed a versatile technique to perform point
set matching over features extracted from images. The approach
combines a number of ideas from related techniques in the litera-
ture. Its overall flexibility results from the possibility to define a li-
brary of metrics, from which similarity measures are selected and
later employed over the specific matching problem. These hetero-
geneous measures are combined into a single pairing matrix,
which is then manipulated via spectral techniques to obtain the ac-
tual matching.

The method has been tested on a number of different experi-
mental studies, which have highlighted its performance, its robust-
ness, as well as its computational scalability.

It is of future interest to come up with novel, descriptive metrics
that can extend the applicability of the library and its usefulness in
new domains of study.
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