Finding the neural correlates of collaboration using a three-person fMRI hyperscanning paradigm

Xie H., Howell A., Scherier M., Sheau K., Manchanda M., Ayub R., Glover G., Jung M., Reiss A.L., and Saggar M. 2019. bioRxiv

Abstract

Humans have an extraordinary ability to interact and cooperate with others, which plays a pivotal role in societies at large. Despite its potential social and evolutionary significance, research on finding the neural correlates of collaboration has been limited partly due to restrictions on simultaneous neuroimaging of more than one participant (a.k.a. hyperscanning). A series of works now exists that used dyadic fMRI hyperscanning to examine the interaction between two participants. However, to our knowledge, no study to date has aimed at revealing the neural correlates of social interactions using a 3-person (or triadic) fMRI hyperscanning paradigm. Here, for the first time, we simultaneously measured the blood-oxygenation-level-dependent (BOLD) signal of triads (m=12 triads; n=36 participants), while they engaged in a joint drawing task based on the social game of Pictionary®. General linear model (GLM) analysis revealed increased activation in the brain regions previously linked with the theory of mind (ToM) during the collaborative phase compared to the independent phase of the task. Furthermore, using intersubject brain synchronization (IBS) analysis, we revealed increased synchrony of the right temporo-parietal junction (R TPJ) during the collaborative phase. The increased synchrony in the R TPJ was observed to be positively associated with the overall team performance on the task. In sum, our novel paradigm revealed a vital role of the R TPJ among other ToM regions during a triadic collaborative drawing task.