Metabolic Labeling of Sialic Acids in Living Animals with Alkynyl Sugars

Pamela V. Chang, Xing Chen, Chris Smyrniotis, Alexander Xenakis, Tianshun Hu, Carolyn R. Bertozzi,* and Peng Wu*

Sialic acids, a family of monosaccharides widely distributed in higher eukaryotes and certain bacteria, are determinants of many functional glycans that play central roles in numerous physiological and pathological processes.[1] For example, the sialic acid containing epitope Sia2–6Gal serves as the cellular receptor for human influenza A and B viruses during infection,[2] and linear homopolymers of sialic acid, known as polysialic acid (PSA), modulate the formation of neuronal synapses in mammalian development.[3] The expression of sialylglycoconjugates, such as sialyl Lewis*, sialyl Tn (STn), and PSA, is also a common feature shared by numerous cancers.[4] Interestingly, upregulation of these acids is strongly correlated with the transformed phenotype of many cancers.[5,6] For example, STn, a mucin-associated disaccharide, is not normally found in healthy tissues but is expressed by malignant tumors, including those of the pancreas and breast.[7,8] In addition, a strong correlation between the level of cell-surface sialic acids and metastatic potential has been observed in several different tumor types.[9] Thus, as cancer cells generally display higher levels of sialic acid than their nonmalignant counterparts, sialylated glycoconjugates, collectively termed the “sialome”, constitute attractive targets in the search for novel cancer biomarkers.

A variety of methods have been reported for the enrichment and identification of sialylated glycoproteins from bodily fluids or cell lysates. For example, affinity chromatography using sialic acid specific lectins[10–12] or selective periodate oxidation of sialic acids followed by hydrazide capture[13] can provide glycoprotein samples that are enriched for sialylated species. These methods have been used for comparative analysis of the steady-state abundances of sialylated glycoproteins in serum from cancer patients and healthy subjects.[1]

A complementary method that we have developed involves metabolic labeling of sialylated glycoproteins by treating cells or living animals with peracetylated analogues of N-acetylmannosamine (ManNAc) bearing chemical reporter groups such as the azide (i.e., peracetylated N-azidoacetylmannosamine, Ac3ManNAz).[14,15] Ac3ManNAz is enzymatically deacetylated in the cytosol and then metabolically converted to the corresponding N-azidoacetyl sialic acid (SiaNAz), which is subsequently incorporated into sialylglycoconjugates.[14,16] Once presented on the cell surface, the azide-labeled sialylated glycans can be visualized or captured for glycoproteomic analysis with a variety of reagents[17] including Staudinger ligation phosphines,[14] terminal alkynes along with reagents for CuI-catalyzed azide–alkyne cycloaddition (CuAAC)[18,19] or strained alkynes.[20] Wong and co-workers reversed the polarity of the reagents, using an alkynyl ManNAc derivative for metabolic labeling of cultured cells and CuAAC-mediated reaction with an azide-functionalized probe for capture of sialylated glycoproteins.[21,22]

The metabolic/chemical labeling method holds several advantages over previous approaches to sialylated glycoprotein analysis. First, metabolic labeling selects for those glycoproteins that are biosynthesized at high levels, irrespective of their steady-state abundance. Thus, metabolic labeling may reveal novel sialylated biomarkers that are turned over rapidly and therefore missed by steady-state labeling methods. Second, metabolic labeling can be performed in live animals,[15] permitting the selective tagging of sialylated glycoconjugates within their native tissue environments. However, the efficiency of sialic acid labeling using Ac3ManNAz is fairly low in vivo. Mouse heart tissue glycoproteins incorporate SiaNAz at approximately 3% of total sialic acid, and the azidosugar is undetectable in some organs that are known to possess sialylated glycoconjugates.[23]

The efficiency of sialic acid biosynthesis is very sensitive to the N-acyl structure of nonnatural ManNAc analogues.[24,25] Analogues with long or branched N-acyl chains are poor substrates for the biosynthetic enzymes, while those contain-
ing short, linear side chains are better tolerated. Thus, we were curious how the alkenyl ManNAc analogue reported by Wong and co-workers would fare in live animal metabolic labeling studies compared to ManNAz. Toward this goal, we synthesized peracetylated N-(4-pentyloxy)mannosamine (Ac₄ManNAI, Scheme 1) and confirmed its metabolic conversion to the corresponding sialic acid (SiaNAl, Scheme 1) in cellular glycans by performing sialic acid compositional analysis using established protocols (see the Supporting Information for a description of methods). We compared the efficiencies of metabolic conversion of Ac₄ManNAI and Ac₄ManNAz to glycoconjugate-bound SiaNAl and SiaNAz, respectively (Table 1). Six cell lines were cultured in media supplemented with 50 μM Ac₄ManNAI or Ac₄ManNAz. After 72 h, cells were lysed and the lysates subjected to sialic acid quantification. In every cell line, metabolic labeling with SiaNAl was substantially more efficient than with SiaNAz. For example, in the human prostate cancer cell line LNCaP, 78% of glycoconjugate-bound sialic acids were substituted with SiaNAl. By contrast, SiaNAz constituted only 51% of LNCaP glycan-associated sialic acids under the same metabolic labeling conditions. Fluorescence microscopy analysis of Ac₄ManNAI-labeled cells after reaction with biotin-azide by CuAAC and staining with FITC–streptavidin confirmed that SiaNAl-modified glycans reside on the cell surface (see the Supporting Information).

To determine whether the superior metabolic conversion efficiency of Ac₄ManNAI observed in cell culture is recapitulated in vivo, we evaluated its conversion to SiaNAl after administration to laboratory mice. B6D2F1/J mice were injected intraperitoneally with Ac₄ManNAI (300 mg kg⁻¹) or vehicle once daily for seven days (Scheme 2). On the eighth day, the mice were euthanized, and a panel of organs was harvested and homogenized. The presence of glycoprotein-associated alkynes in the soluble fraction of homogenates was probed by CuAAC with biotin-azide, followed by Western blot analysis. As shown in Figure 2, labeling was observed in organ lysates from mice treated with Ac₄ManNAI but not in organ lysates from vehicle-treated mice. Labeled glycoproteins were observed in lysates from the bone marrow, thymus, intestines, lung, spleen, heart, and liver, but not the kidney. These results indicated that Ac₄ManNAI is metabolized in vivo and has access to most organs. Furthermore, during this one-week period, no toxic side effects were observed, suggesting that Ac₄ManNAI is well tolerated by the mice.

We then performed comparative in vivo metabolism studies of Ac₄ManNAI and Ac₄ManNAz using a similar protocol. The organs were harvested as described above, and the soluble fractions of the organ lysates were reacted with either biotin-azide or a biotin-alkyne derivative under the same CuAAC conditions. Similar to our observations using cultured cells (Table 1), Ac₄ManNAI treatment produced

Table 1: Comparison of the incorporation percentage of SiaNAl versus SiaNAz in vitro.

<table>
<thead>
<tr>
<th>Cell line</th>
<th>Jurkat</th>
<th>HEK 293T</th>
<th>CHO</th>
<th>LNCaP</th>
<th>DU145</th>
<th>PC3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiaNAl [%]</td>
<td>74 ± 1</td>
<td>46 ± 2</td>
<td>38 ± 2</td>
<td>78 ± 1</td>
<td>58 ± 2</td>
<td>71 ± 6</td>
</tr>
<tr>
<td>SiaNAz [%]</td>
<td>29 ± 2</td>
<td>27 ± 2</td>
<td>20 ± 4</td>
<td>51 ± 2</td>
<td>40 ± 3</td>
<td>56 ± 2</td>
</tr>
</tbody>
</table>

[a] The cells were metabolically labeled with 50 μM Ac₄ManNAI (top row) or Ac₄ManNAz (bottom row) for three days and then lysed. Identification and quantification of SiaNAl and SiaNAz was determined by comparison with synthetic standards according to established procedures. The error represents the standard deviation from the mean of at least three replicate experiments.

Scheme 1. Metabolic labeling of cellular glycans with Ac₄ManNAI and detection with Cu¹-catalyzed CuAAC chemistry. TBTA = tris[1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine.

Figure 1. Western blot analysis of lysates from Jurkat cells treated with Ac₄ManNAI (50 μM) or no sugar. The lysates were reacted with biotin-azide (100 μM) in the presence CuSO₄ (1 mM), sodium ascorbate (1 mM), and the tris-triazolyl ligand TBTA (100 μM) for 1 h at room temperature and analyzed by Western blot using an HRP-conjugated anti-biotin antibody (left panel). Total protein loading was confirmed by Coomassie staining of a duplicate protein gel (right panel).
Given that the reaction kinetics are reaction kinetics depending on whether the limiting reagent is on these data is difficult because CuAAC displays different information. However, estimating metabolic incorporation based on densitometry to be a lower limit. Two to three times faster in the latter case, we believe our estimate based on densitometry to be a lower limit.

In summary, we have demonstrated that Ac4ManNAc can metabolically label sialic acids in cultured cells and mice with greater efficiency than Ac4ManNAz. The alkylnl sugar may therefore be useful in the discovery of sialylated cancer biomarkers using murine cancer models. Moreover, these results underscore the sensitivity of sialic acid biosynthetic enzymes to subtle differences in the N-acyl structures of the two ManNAc analogues. Accordingly, further structural modulation of alkylnl and azido ManNAc analogues is worth pursuing in order to further increase metabolic labeling efficiency in vivo.

Received: December 25, 2008
Published online: April 22, 2009

Keywords: alkylnls · click chemistry · glyobiology · nonnatural sugars · sialic acids

Figure 2. Experimental overview for probing Ac4ManNAI metabolism in vivo. Wild-type B6D2F1/J mice were injected with Ac4ManNAI or vehicle intraperitoneally once daily for seven days. On the eighth day, the organs were collected and homogenized, and organ lysates were probed using CuAAC chemistry for the presence of alkyne-bearing glycoproteins by reaction with biotin-azide, followed by Western blot analysis using an HRP-conjugated anti-biotin antibody.

Figure 3. Ac4ManNAI is converted into the corresponding sialic acid more efficiently than Ac4ManNAz in mouse organs. A panel of organ lysates from mice treated with Ac4ManNAI (Al) or Ac4ManNAz (Az) (300 mg kg\(^{-1}\)) once daily for seven days were reacted with 100 μM biotin-azide or biotin-alkyne, respectively, in the presence CuSO\(_4\) (1 mM), sodium ascorbate (1 mM), and TBT (100 μM) for 1 h at room temperature and analyzed by Western blot using an HRP-conjugated anti-biotin antibody. Shown are representative data from three replicate experiments. Total protein loading was confirmed by Coomassie Blue staining of a duplicate protein gel (data not shown).

