Reevaluation of the Role of VEGF-B Suggests a Restricted Role in the Revascularization of the Ischemic Myocardium

Xuri Li, Marc Tjwa, Inge Van Hove, Berndt Enholm, Elke Neven, Karri Paavonen, Michael Jeltsch, Toni Diez Juan, Richard E. Sievers, Emmanuel Chorianopoulos, Hiromichi Wada, Maarten Vanwildemeersch, Agnes Noel, Jean-Michel Foidart, Matthew L. Springer, Georges von Degenfeld, Mieke Dewerchin, Helen M. Blau, Kari Alitalo, Ulf Eriksson, Peter Carmeliet and Lieve Moons

Arterioscler Thromb Vasc Biol 2008;28;1614-1620; originally published online May 29, 2008;
DOI: 10.1161/ATVBAHA.107.158725

Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association.
7272 Greenville Avenue, Dallas, TX 72514
Copyright © 2008 American Heart Association. All rights reserved. Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/cgi/content/full/28/9/1614

Data Supplement (unedited) at:
http://atvb.ahajournals.org/cgi/content/full/ATVBAHA.107.158725/DC1

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org/subscriptions/

Permissions: Permissions & Rights Desk, Lippincott Williams & Wilkins, a division of Wolters Kluwer Health, 351 West Camden Street, Baltimore, MD 21202-2436. Phone: 410-528-4050. Fax: 410-528-8550. E-mail:
journalpermissions@lww.com

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints
Reevaluation of the Role of VEGF-B Suggests a Restricted Role in the Revascularization of the Ischemic Myocardium

Xuri Li, Marc Tjwa, Inge Van Hove, Berndt Enholm, Elke Neven, Karri Paavonen, Michael Jeltsch, Toni Diez Juan, Richard E. Sievers, Emmanuel Chorianopoulos, Hiromichi Wada, Maarten Vanwildemeersch, Agnes Noel, Jean-Michel Foidart, Matthew L. Springer, Georges von Degenfeld, Mieke Dewerchin, Helen M. Blau, Kari Alitalo, Ulf Eriksson, Peter Carmeliet, Lieve Moons

Objective—The endogenous role of the VEGF family member vascular endothelial growth factor-B (VEGF-B) in pathological angiogenesis remains unclear.

Methods and Results—We studied the role of VEGF-B in various models of pathological angiogenesis using mice lacking VEGF-B (VEGF-B−/−) or overexpressing VEGF-B167. After occlusion of the left coronary artery, VEGF-B deficiency impaired vessel growth in the ischemic myocardium whereas, in wild-type mice, VEGF-B167 overexpression enhanced revascularization of the infarct and ischemic border zone. By contrast, VEGF-B deficiency did not affect vessel growth in the wounded skin, hypoxic lung, ischemic retina, or ischemic limb. Moreover, VEGF-B167 overexpression failed to enhance vascular growth in the skin or ischemic limb.

Conclusion—VEGF-B appears to have a relatively restricted angiogenic activity in the ischemic heart. These insights might offer novel therapeutic opportunities. (Arterioscler Thromb Vasc Biol. 2008;28:1614-1620)

Key Words: VEGF-B ■ angiogenesis ■ arteriogenesis ■ collateral growth ■ cardiac ischemia ■ limb ischemia

See accompanying article on page 1575

血管内皮生长因子-B（VEGF-B）是一种重要的血管生成调节因子，在健康和疾病中通过与VEGF受体-2（VEGFR-2）的相互作用起作用。但是其具体的生物学功能仍然不明确。在本研究中，我们使用VEGF-B−/−或VEGF-B167过表达小鼠来研究VEGF-B在各种病理血管生成模型中的作用。结果表明，VEGF-B缺乏会抑制心肌梗死区域的血管生长，而野生型小鼠中VEGF-B167过表达会增强再血管化。相比之下，VEGF-B缺乏并不影响皮肤伤口、缺氧肺部、缺血性视网膜或缺血性四肢的血管生长。此外，VEGF-B167过表达在皮肤、缺氧肺部、缺血性视网膜或缺血性四肢中未能促进血管生长。

结论—VEGF-B在心肌梗死区域相对有限的血管生成作用。这些发现可能为治疗提供新的机会。
characterized the angiogenic role of VEGF-B in different mouse models of disease. By using VEGF-B\(^{-/-}\) mice on a pure C57BL/6 inbred background, and various strategies to overexpress VEGF-B, we found that VEGF-B promotes vessel growth in the ischemic heart but not in other organs.

Methods

For detailed Methods, please see the supplemental materials (available online at http://atvb.ahajournals.org).

Animals, Models, Histology, Immunohistochemistry, and Morphometric Analyses

VEGF-B\(^{-/-}\) mice\(^a\) were back-crossed onto a C57BL/6 background for 8 generations. C57BL/6 and NMRI nu/nu mice (all 8 to 12 weeks old) were obtained from Charles River Laboratories (Les Ocins, France) and adult SCID mice were from Taconic M&B Europe (Ry, Denmark). LacZ-tagged Flt1 mice, expressing βgalactosidase (β-Gal) under the control of the Flt-1 promotor were kindly provided by J. Rossant (Toronto, Ontario, Canada).\(^b\) Animal experiments were approved by local committees. All experimental approaches are described in detail in the supplemental methods.

Production and Administration of VEGF-B Protein, Plasmid, and Adenovirus

Recombinant human VEGF-B\(_{167}\) (rhVEGF-B\(_{167}\)) protein was obtained from Amrad Corporation and delivered systemically via osmotic minipumps. Adenoviruses, constructed by cloning the murine PIGF-2, or the human VEGF-B\(_{167}\) or VEGF-B\(_{160}\) cDNA into the pACCMVpLpA plasmid, were intradermally or intravenously injected. A plasmid expressing murine VEGF-B\(_{167}\) (pcDNA3.mVEGF-B\(_{167}\)) or an empty pcDNA3 plasmid was administered via muscle electroporation. These experimental methods are described in more detail in the supplemental methods.

Statistics

Data (mean±SEM) were analyzed using 2-tailed Student \(t\) test, with \(P<0.05\) considered statistically significant.

Results

Loss of VEGF-B Impairs Revascularization After Myocardial Infarction

To study the potential of VEGF-B to stimulate revascularization of the ischemic heart (infarct and border zone), we used a previously established model of acute myocardial infarction (MI) in wild-type (WT) and VEGF-B\(^{-/-}\) mice.\(^2\) At 7 days after MI, the density of both thrombomodulin positive (TM\(^+\)) capillaries and smooth muscle α-actin positive (SMA\(^+\)) covered vessels in the infarct area of VEGF-B\(^{-/-}\) mice was only 65% of that of WT mice (\(n=14\); \(P<0.05\) in all groups; Figure 1A and 1B). Revascularization of the ischemic border zone was also impaired in VEGF-B\(^{-/-}\) mice (TM\(^+\) vessels: 340±39 vessels/mm\(^2\) in WT versus 234±38 vessels/mm\(^2\) in VEGF-B\(^{-/-}\) mice; \(n=5\); \(P<0.05\)). The number of macrophages, infiltrating into the infarct area, was normal (Mac3\(^+\) area/infarct area: 0.22±0.06% in VEGF-B\(^{-/-}\) mice versus 0.22±0.05% in WT mice; \(n=12\); \(P=NS\)). Thus, loss of VEGF-B impairs angiogenesis and vessel maturation in the ischemic heart.

We next analyzed whether administration of recombinant human (rh) VEGF-B\(_{167}\) protein rescued the impaired myocardial revascularization in VEGF-B\(^{-/-}\) mice, and therefore administered rhVEGF-B\(_{167}\), the predominant isoform in cardiac and skeletal muscle.\(^7\) Continuous systemic delivery of a daily dose of 1.5 \(\mu\)g rhVEGF-B\(_{167}\) for 1 week to VEGF-B\(^{-/-}\) mice normalized the impaired revascularization of the infarct (\(n=5\); \(P<0.05\); Figure 1A and 1B), and increased the growth of TM\(^+\) vessels in the ischemic border zone by 1.5-fold (\(P<0.05\), \(n=5\)).

VEGF-B\(_{167}\) Therapy Enhances Ischemic Myocardial Revascularization

We then used 3 different techniques to investigate whether delivery of VEGF-B stimulated revascularization of ischemic hearts in WT mice. First, we administered VEGF-B\(_{167}\) protein. Pilot studies revealed that delivery of VEGF-B\(_{167}\) via osmotic minipumps significantly increased the VEGF-B\(_{167}\) blood plasma levels (Note I, please see supplemental materials). VEGF-B\(_{167}\) protein therapy indeed increased the density of capillaries and arterioles in the infarct area (TM\(^+\) vessels/mm\(^2\): 206±10 after vehicle versus 285±33 after rhVEGF-B\(_{167}\); SMA\(^+\) vessels/mm\(^2\): 47±4 after vehicle versus 62±11 after rhVEGF-B\(_{167}\); \(n=5\); \(P<0.05\); Figure 1C through 1F), and stimulated vessel growth in the ischemic border by 1.5-fold and 1.3-fold, respectively (\(P<0.05\); \(n=5\)).

Second, similar results were obtained after intravenous injection of an adenoviral vector encoding hVEGF-B\(_{167}\) (Ad.hVEGF-B\(_{167}\)), known to transduce hepatocytes, which then release the transgene product into the circulation for up to 21 days (Note II, please see supplemental materials). Compared to control Ad.RR5 virus, VEGF-B\(_{167}\) gene transfer increased the densities of TM\(^+\) and SMA\(^+\) vessels in the infarct and in the ischemic border (\(n=9\); \(P<0.05\) versus Ad.RR5; Figure 1G and 1H) at 7 days after MI. VEGF-B\(_{167}\) gene transfer did not stimulate macrophage recruitment (Mac3\(^+\) area/infarct area:

\(\text{Li et al Restricted Angiogenic Activity of VEGF-B} \)
VEGF-B Does Not Affect Vessel Growth in Skin, Lung, or Retina

To further study the role of VEGF-B in pathological angiogenesis, we analyzed skin wound healing, using a linear skin incision model. Daily measurements revealed no defects in the rate or extent of skin wound healing in VEGF-B−/− mice (Figure 2A through 2C). Consistent herewith, loss of VEGF-B failed to affect the number of endothelial cell–lined and mural cell–covered vessels in the granulation tissue at 5 days after wounding (CD31+ vessels/mm²: 270±16 in WT mice versus 290±20 in VEGF-B−/− mice; SMA+ vessels/mm²: 67±9 in WT mice versus 62±7 in VEGF-B−/− mice; n=5; P=NS). Macrophage infiltration was also normal (F4/80+ area as % of total granulation tissue area: 4.59±0.25 in WT mice versus 4.55±0.92 in VEGF-B−/− mice; n=5; P=NS). Additional studies using adenoviral vectors to locally overexpress VEGFB167 or VEGF-B186 in the skin confirmed that VEGF-B does not affect the skin vasculature (supplemental Figure II).

Furthermore, loss of VEGF-B failed to affect mural cell recruitment and vessel remodeling in hypoxic lungs (supplemental Figure IIIA through IIIC) or neovascularization in ischemic retinas (supplemental Figure IIID through IIIF). Together, VEGF-B plays a negligible role in vessel growth, maturation, and remodeling in normal or wounded skin, in hypoxic lungs, or in ischemic retinas.

Loss of VEGF-B Does Not Affect Revascularization of Ischemic Limbs

We next analyzed whether VEGF-B affects revascularization of ischemic limbs. In an established mouse model of hind-limb ischemia, the ischemic gastrocnemius muscle is revascularized by capillary angiogenesis, whereas collateral vessel growth occurs in the adductor muscle. In the ischemic gastrocnemius muscle, vessel densities in the regenerating areas were comparable in VEGF-B−/− mice at 7 days after ischemia (Table). In addition, laser Doppler perfusion analysis and endurance/graded treadmill exercise tests confirmed normal revascularization of ischemic limbs in VEGF-B−/− mice after ischemia (Table; supplemental Figure IVA and IVB). Moreover, to exclude the possibility that VEGF-B would only act as a modifier of PIGF, we analyzed mice lacking both VEGF-B and PIGF. However, compared to WT or VEGF-B−/− mice, limb reperfusion was comparably reduced in mice lacking PIGF alone or in mice lacking both VEGF-B and PIGF (supplemental Figure IVC and IVD; Table), indicating that VEGF-B is redundant for limb reperfusion even in conditions of genetically crippled limb revas-

<table>
<thead>
<tr>
<th>Table. Negligible Role of VEGF-B in Revascularization After Limb Ischemia</th>
<th>WT Mice</th>
<th>VEGF-B−/− Mice</th>
<th>Empty Plasmid</th>
<th>pmVEGF-B167</th>
<th>Ad.RRS</th>
<th>Ad.hVEGF-B167</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angiogenesis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capillary-to-myocyte ratio</td>
<td>0.96±0.06</td>
<td>0.97±0.06</td>
<td>ND</td>
<td>ND</td>
<td>1.16±0.06</td>
<td>1.19±0.10</td>
</tr>
<tr>
<td>Total limb perfusion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laser Doppler (% of non-ligated)</td>
<td>90±5</td>
<td>90±11</td>
<td>86±9</td>
<td>82±6</td>
<td>92±5</td>
<td>94±4</td>
</tr>
<tr>
<td>Treadmill exercise test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endurance (% of baseline)</td>
<td>56±6</td>
<td>50±7</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Grade exercise (% of baseline)</td>
<td>57±4</td>
<td>52±6</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Collateral growth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lumen area, μm²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main collateral artery</td>
<td>2810±300</td>
<td>2480±150</td>
<td>2890±190</td>
<td>2630±280</td>
<td>2294±425</td>
<td>2415±511</td>
</tr>
<tr>
<td>2nd collateral branch</td>
<td>740±75</td>
<td>790±50</td>
<td>760±60</td>
<td>790±65</td>
<td>704±190</td>
<td>688±163</td>
</tr>
<tr>
<td>3rd collateral branch</td>
<td>120±10</td>
<td>140±7</td>
<td>96±3</td>
<td>98±6</td>
<td>105±13</td>
<td>92±13</td>
</tr>
<tr>
<td>Collateral side branches (mm³)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd collateral branches</td>
<td>3±0.8</td>
<td>3±0.7</td>
<td>2±0.3</td>
<td>3±0.4</td>
<td>4±1.8</td>
<td>3±1.4</td>
</tr>
<tr>
<td>3rd collateral branches</td>
<td>5±1.0</td>
<td>6±1.5</td>
<td>8±1.2</td>
<td>9±1.6</td>
<td>7±1.6</td>
<td>10±3.6</td>
</tr>
<tr>
<td>Total perfusion area, μm²/mm²</td>
<td>2730±700</td>
<td>3000±800</td>
<td>3140±360</td>
<td>3460±670</td>
<td>3088±569</td>
<td>3020±524</td>
</tr>
</tbody>
</table>

Analysis was performed as described in methods. ND indicates not determined; P=NS for WT/control mice vs VEGF-B−/−/VEGF-B−treated animals.
VEGF-B167 Therapy Does Not Enhance Revascularization in Ischemic Limbs

As our findings above do not exclude the possibility that overexpression of VEGF-B167 might enhance collateral growth or capillary angiogenesis in ischemic limbs, as suggested by others, we overexpressed VEGF-B167 in ischemic hindlimbs of WT mice using various established methods. To analyze the effect of VEGF-B167 overexpression on both collateral growth and capillary angiogenesis in the ischemic limb, we intravenously injected the adenoviral vector Ad.hVEGF-B167, similar as done for our MI experiments and resulting in increased VEGF-B plasma levels (Note II, please see supplemental materials). At 7 days after ligation, Ad.hVEGF-B167 gene transfer did not improve angiogenesis in the gastrocnemius muscle (Table; Figure I). In healthy (nonligated) muscle, no vessel growth was induced at the engraftment site of VEGF-B167–expressing myoblasts, as compared to control LacZ+ myoblasts (Figure 3E). To assess whether VEGF-B167 affects vessel growth in ischemic skeletal muscle, myoblasts were implanted immediately after ligation of the femoral artery. Capillary density was increased in the ischemic anterior tibialis muscle at 28 days postligation, but implantation of VEGF-B167–expressing myoblasts did not further enhance angiogenesis (Figure 3C through 3E). To exclude a transient effect on vessel growth, legs were also harvested 7 days after ischemia induction and myoblast implantation, again not resulting in increased vessel densities (not shown).

Upregulation of VEGF-B167, but not of Flt-1, in the Ischemic Myocardium

In an effort to obtain some insight in the cardio-restricted properties of VEGF-B, we analyzed, by ELISA, the levels of VEGF-B in cardiac and skeletal muscle of WT mice. Compared to skeletal muscle, the heart expressed higher levels of VEGF-B in baseline conditions (pg/mg protein: 272±8 in heart versus 174±6 in skeletal muscle; n=6; P<0.05). At 4 days after MI, levels of VEGF-B were increased by 1.8±0.3-fold and 2.0±0.3-fold in the infarct and infarct border zone, respectively (n=6; P<0.05). At 7 days, the fold upregulation of VEGF-B was 1.4±0.1 and 1.5±0.1, in the respective areas (n=3; P=NS). However, at 4 and 7 days after limb ischemia, VEGF-B protein expression did not increase in the ischemic skeletal muscle (fold increase: 0.9±0.1 at day 4 and 0.8±0.1 at day 7; n=3 to 6; P=NS). This cardio-restricted upregulation of VEGF-B expression was specific, as the PlGF levels were increased in both ischemic myocardium and limb (not shown). Thus, VEGF-B expression is upregulated in ischemic hearts only, consistent with the cardio-restricted phenotype of VEGF-B167 mice (for discussion, see below).

To analyze the expression of Flt-1, we performed RT-PCR using specific primers and found more abundant Flt-1 transcripts in the heart than skeletal muscle in baseline conditions (transcript levels of Flt-1 per 1000 copies of GADPH: 1.29±0.11 in the myocardium versus 0.40±0.04 in skeletal muscle, n=5; P<0.05). However, Flt-1 mRNA expression did not increase in the heart or skeletal muscle at 4 and 7 days after induction of ischemia (not shown). To identify the cell types expressing Flt-1 in vivo, we subjected LacZ-tagged Flt-1 reporter mice to MI or limb ischemia. Immunostaining...
for β-Gal revealed a similar labeling pattern for Flt-1 in both heart and skeletal muscle in ischemic as well as in nonischemic conditions. Indeed, double immuno-labeling studies showed expression of Flt-1 in SMA⁺ SMCs and most CD31⁺ ECs of nonischemic (Figure 4A, 4C, 4E, and 4G) and ischemic heart or limb tissue at 4 (Figure 4B, 4D, 4F, and 4H) and 7 days (not shown) after induction of ischemia. In the ischemic heart and skeletal muscle, Flt-1 expression also colocalized with some of the CD45⁺ infiltrating leukocytes (not shown). Thus, the cardio-restricted activity of VEGF-B is unlikely explained by differences in Flt-1 expression.

Discussion

We studied loss- and gain-of-function of VEGF-B in pathological angiogenesis by using various genetic and experimental approaches. The principal finding is that VEGF-B has a relatively restricted role in pathological angiogenesis and, even more remarkably, predominantly in the ischemic myocardium.

The precise role and therapeutic potential of VEGF-B in the revascularization of the ischemic myocardium in vivo has not been studied thus far. By stimulating the ingrowth of new vessels in the ischemic infarct borders, VEGF-B resembles other angiogenic factors such as VEGF and PlGF (and others), which have, quantitatively and qualitatively, similar effects in rodent models of MI (reviewed in4). VEGF-B differs, however, from these agents in its selectivity to stimulate angiogenesis primarily in ischemic myocardium and not in other tissues. These loss- and gain-of-function findings in the mouse, together with findings that VEGF-B promotes compensatory hypertrophy of the remote myocardium after myocardial infarction,¹⁷ warrant further consideration of the therapeutic potential of VEGF-B for promoting functional recovery of MI.

In contrast to its role in the ischemic heart, various types of under- and overexpression studies indicate that VEGF-B is dispensable for vessel growth in the skin, lung, retina, and particularly the ischemic limb. Indeed, although others reported a minor role of VEGF-B in skin, retina, or lung,¹¹–¹⁴ the negligible role of VEGF-B in ischemic limbs was unexpected, given that VEGF-B stimulates revascularization of the ischemic heart, another type of muscle. To confirm that the lack of an effect of VEGF-B was not attributable to a particular experimental condition, we used different complementary, nonoverlapping strategies. First, loss of VEGF-B did not impair revascularization of ischemic limbs, neither did it aggravate the revascularization defect in PlGF⁻/⁻ mice, indicating that VEGF-B was ineffective alone and as a modifier of its homologue PlGF. Gain-of-function of VEGF-B, achieved via various strategies, also failed to stimulate the revascularization of ischemic limbs. This failure was not attributable to insufficient expression, as injection of the same dose of a VEGF-B expressing adenovirus or implantation of the same engineered VEGF-B myoblasts sufficed to stimulate vessel growth in the ischemic heart. Also, each of these strategies have previously been used in ischemic limbs to demonstrate the angiogenic activity of other well-known angiogenic factors, such as VEGF and PlGF (2¹,2³; unpublished Tjwa M and Carmeliet P, 2008). In contrast to our findings, others reported that VEGF-B ¹⁶⁷ promotes ischemic limb revascularization.¹⁵,¹⁶ The precise explanation for this discrepancy remains unknown, and might be attributable to experimental differences in gene transfer method, ischemic limb model or methods of analysis.

A remarkable observation is that VEGF-B has angiogenic properties, which substantially differ from those of its homologues VEGF and PlGF. Of all angiogenic members of the VEGF family, VEGF is the most widely active, affecting angiogenesis in health and disease.¹²¹⁴ PlGF, by contrast, is redundant for embryonic vascularization and vessel maintenance in healthy conditions, but involved in the angiogenic switch in disease conditions.¹²¹₂² VEGF-B is not only dispensable in development and health, but also in most conditions of pathological angiogenesis, except for the ischemic heart. The selectivity and specificity of each of these VEGF family members is remarkable, when comparing it, for instance, to the largely redundant and overlapping angiogenic activity of the 24 FGF family members.²⁴ Though beyond the

Figure 4. A–H, Double immunostaining of β-Gal and CD31 (A, B, E, F) or SMA (C, D, G, H) in normal and ischemic heart (A–D) or skeletal muscle (E–H) sections of LacZ-tagged Flt-1 mice revealed labeling of Flt-1 expressing cells in most CD31⁺ cells (arrowheads) and in all SMA⁺ cells (arrows). Scale bars: 50 μm.
scope of the present study, it remains outstanding why VEGF-B has such a restricted angiogenic activity in the ischemic heart. The lack of its angiogenic activity in noncardiac tissues cannot be simply attributed to absent expression of VEGF-B or its receptor Flt-1, because both are constitutively expressed in these tissues, including in skeletal muscle.27,21,22 Interestingly, however, VEGF-B levels were upregulated by ischemia in the ischemic heart but not in the ischemic muscle, which might possibly explain, at least in part, why angiogenesis was impaired in VEGF-B−/− mice in the ischemic myocardium, but not in the ischemic limb.

Another possible mechanism might be that the endothelial cells in the heart have distinct tissue-specific characteristics as compared to endothelial cells in other tissues, similar to the distinct differentiation properties of endothelial cells in the nervous system, endocrine organs, lymphoid tissue, etc.28 It is indeed known that coronary endothelial cells are derived from unique progenitors, ie, the epicardium-derived progenitor cells, and require distinct angiogenic signals (such as thymosin-β4).26 Perhaps, also, the intracellular signaling pathway, induced by VEGF-B, is distinct in these coronary endothelial cells. Because VEGF and PIGF transmit specific angiogenic signals through Flt-1, VEGF-B could also have a different angiogenic activity profile. Further hypothetical explanations for the selective angiogenic activity of VEGF-B in the heart might include differences in the composition of extracellular matrix proteins (which modulate the activity of VEGF-B),27 or in a role for Neuropilin-1, another VEGF-B receptor (reviewed in).

Regardless of the mechanisms, few other tissue-selective angiogenic molecules have been identified thus far, including EG-VEGF, BDNF, and others.1 Such tissue-specific angiogenic signals are medically relevant, as they offer attractive therapeutic opportunities. Indeed, the potent activity of VEGF and its associated risk of adverse effects (bleeding, leakage, hypotension, malignancy, etc), for instance, has precluded systemic administration of this angiogenic agent leak, hypotension, malignancy, etc), for instance, has precluded systemic administration of this angiogenic agent.

Disclosures
None.

References

SUPPLEMENTAL INFORMATION

SUPPLEMENTAL NOTES

Note I: Osmotic minipumps, delivering either 1.5 µg/day recombinant mouse VEGF-B₁₆₇ protein (rmVEGF-B₁₆₇, a kind gift from Dr. A. Nash (Amrad Corporation, Melbourne, Australia) or saline vehicle, were implanted subcutaneously in WT mice, subjected to myocardial infarction, and the blood plasma levels of mVEGF-B₁₆₇ were measured at 4 days after pump implantation by using a modified version of a previously established home-made ELISA¹. This mouse VEGF-B₁₆₇ ELISA is more sensitive compared to the human VEGF-B₁₆₇ ELISA, and we therefore chose to analyze the biodistribution of mVEGF-B₁₆₇. Administration of rmVEGF-B₁₆₇ via osmotic minipumps increased the blood plasma levels of mVEGF-B₁₆₇ from below the detection threshold of the ELISA (<0.13 ng/ml) after saline treatment towards 1.5 ± 0.2 ng/ml after rmVEGF-B₁₆₇ therapy (N=4; P<0.05), indicating that our delivery strategy indeed increased the circulating levels of mVEGF-B₁₆₇. We were unable to find increased levels of mVEGF-B₁₆₇ in heart extracts (not shown), likely due to the high endogenous levels of mVEGF-B₁₆₇ in the heart².

Note II: Systemic adenoviral VEGF-B₁₆₇ gene delivery is known to transduce hepatocytes that then release the transgene product. Adenoviral vectors encoding hVEGF-B₁₆₇ (Ad.hVEGF-B₁₆₇) or control vectors (Ad.RR5) were injected intravenously at 3x10⁹ p.f.u. per mouse, immediately after ligation of the LAD or femoral artery. In mice, treated with a control adenovirus (Ad.RR5)³, hVEGF-B plasma levels were below the threshold of detection (<0.50 ng/ml). However, after intravenous injection of Ad.hVEGF-B₁₆₇, at the time of LAD ligation, circulating hVEGF-B₁₆₇ levels were as high as 5 ng/ml at 7 days post-MI (N=10; P<0.05). In addition, after ligation of the femoral artery, the circulating levels of hVEGF-B₁₆₇ increased for periods up to 3 weeks (ng/ml plasma: 4.1 ± 0.6, 4.7 ± 0.4, 2.6 ± 0.9, 1.8 ± 0.5 ng/ml at 3, 7, 14 and 21 days post-ligation; N=8; P<0.05 versus undetectable levels after Ad.RR5 at all days), while by 28 days post-ligation, hVEGF-B₁₆₇ levels reached the detection threshold of the assay.

Note III: A delayed effect of Ad.hVEGF-B₁₆₇ gene transfer on revascularization of ischemic limbs was excluded since, also at 28 days after ischemia, VEGF-B₁₆₇ therapy failed to improve total limb perfusion, angiogenesis in the gastrocnemius muscle (capillary-to-myocyte ratio: 1.71 ± 0.07 after Ad.RR5 versus 1.77 ± 0.14 after Ad.hVEGF-B₁₆₇; N=5;
and size and number of collateral vessels in the adductor muscle (lumen area in µm²: main collateral, 2nd and 3rd collateral branch: 2,040 ± 470, 785 ± 54 and 92 ± 14 after Ad.RR5 versus 2,390 ± 530, 678 ± 125 and 97 ± 16 after Ad.hVEGF-B₁₆₇; number of collateral side branches per mm², 2nd and 3rd collateral branch: 3 ± 0.4 and 12 ± 2.4 after Ad.RR5 versus 3 ± 0.4 and 8 ± 0.9 after Ad.hVEGF-B₁₆₇; total perfusion area in µm²/mm²: 3,020 ± 190 after Ad.RR5 versus 2,940 ± 620 after Ad.hVEGF-B₁₆₇; N=5; P=NS).

Note IV: To selectively analyze the effects on collateral growth, we locally delivered VEGF-B₁₆₇ in the adductor muscle via *in vivo* electroporation of a plasmid expressing murine VEGF-B₁₆₇ (pmVEGF-B₁₆₇) – a technique enabling stable overexpression of a transgene for several weeks starting from 1 day after electroporation⁴⁻⁵ – we achieved a 6-fold increase in the expression levels of mVEGF-B in the adductor muscle at 8 days after electroporation (pg/mg protein: 651 ± 122 after pmVEGF-B₁₆₇ versus 119 ± 15 after empty plasmid; N=6; P<0.05). One day after electroporation (i.e. when the transgene is already expressed⁵), mice were subjected to limb ischemia and sacrificed 7 days later to analyze collateral growth in the adductor muscle. Compared to control, pmVEGF-B₁₆₇ electroporation failed to increase the number or size of the pre-existing collateral vessels (Table 1), indicating that VEGF-B₁₆₇ therapy did not stimulate collateral vessel growth in the limb. Laser Doppler analysis also failed to show better perfusion of the ischemic limbs after local pmVEGF-B₁₆₇ electroporation (Table 1).
SUPPLEMENTAL TABLES

Table I: Negligible role of VEGF-B in pulmonary vessel remodeling after hypoxia

<table>
<thead>
<tr>
<th></th>
<th>WT mice normoxia</th>
<th>WT mice hypoxia</th>
<th>VEGF-B−/− mice normoxia</th>
<th>VEGF-B−/− mice hypoxia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vessel remodeling (per 10³ alveoli)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-muscularized vessels</td>
<td>6.8 ± 0.4</td>
<td>3.4 ± 0.01*</td>
<td>7.6 ± 0.4</td>
<td>3.8 ± 0.3*</td>
</tr>
<tr>
<td>Partially-muscularized vessels</td>
<td>3.0 ± 0.1</td>
<td>4.5 ± 0.3*</td>
<td>3.8 ± 0.4</td>
<td>4.4 ± 0.4</td>
</tr>
<tr>
<td>Muscularized vessels</td>
<td>1.0 ± 0.3</td>
<td>4.6 ± 0.9*</td>
<td>1.1 ± 0.2</td>
<td>5.2 ± 0.2*</td>
</tr>
<tr>
<td>SMA− vessels</td>
<td>9.3 ± 0.7</td>
<td>4.9 ± 0.1*</td>
<td>10.3 ± 0.3</td>
<td>4.6 ± 1.2*</td>
</tr>
<tr>
<td>SMA± vessels</td>
<td>1.5 ± 0.2</td>
<td>4.3 ± 0.8*</td>
<td>2.6 ± 0.3</td>
<td>4.5 ± 0.2*</td>
</tr>
<tr>
<td>SMA+ vessels</td>
<td>0.1 ± 0.1</td>
<td>2.7 ± 0.6*</td>
<td>0.1 ± 0.1</td>
<td>2.0 ± 0.6*</td>
</tr>
<tr>
<td>Arterial media thickness (µm)</td>
<td>1.53 ± 0.1</td>
<td>2.01 ± 0.08*</td>
<td>1.50 ± 0.07</td>
<td>2.15 ± 0.12*</td>
</tr>
<tr>
<td>RV hypertrophy [RV/(LV+S)]</td>
<td>0.20 ± 0.01</td>
<td>0.26 ± 0.01*</td>
<td>0.20 ± 0.02</td>
<td>0.25 ± 0.01*</td>
</tr>
<tr>
<td>Hematocrit (%)</td>
<td>32 ± 2.5</td>
<td>43 ± 1.4*</td>
<td>35 ± 0.7</td>
<td>45 ± 2.6*</td>
</tr>
</tbody>
</table>

Pulmonary vessel remodeling, induced by chronic exposure to hypoxia and resulting in pulmonary hypertension, was examined in WT and VEGF-B−/− mice. The density of pulmonary vessels was determined, while discriminating between non-muscularized vessels (with only an internal elastic membrane (IEL)), partially-muscularized vessels (IEL and partial external elastic membrane (EEL)) and muscularized vessels (complete IEL and EEL). To evaluate right ventricle (RV) hypertrophy, the dry weight of the RV was measured and divided by the total dry weight of the left ventricle plus septum (LV+S). Values are means ± SEM. * P<0.05 versus normoxia; P=NS for WT mice versus VEGF-B−/− mice.
SUPPLEMENTAL FIGURE LEGENDS

Figure I: As an alternative method to deliver VEGF-B to cardiomyocytes, we implanted in the myocardial wall of the infarct border, mouse myoblasts, transduced *ex vivo* with a retrovirus, to constitutively produce mouse VEGF-B$_{167}$, since a similar strategy using VEGF-A-expressing myoblasts was previously shown to stimulate vessel growth in muscle 6-8. **A,B,** Immunofluorescent staining for VEGF-B (green) confirmed the absence of VEGF-B in control myoblasts expressing only LacZ (**A**) and production of mVEGF-B$_{167}$ in myoblasts expressing both VEGF-B and LacZ (**B**). Nuclei are counterstained with Dapi (blue). The production of mVEGF-B$_{167}$ by engineered myoblasts in vivo was further confirmed by determining mVEGF-B expression levels in cell lysates and muscle extracts. Indeed, myoblasts, transduced with a retrovirus encoding mVEGF-B$_{167}$, secreted 26 ± 2 ng/106 cells/24h of VEGF-B, while control LacZ-expressing myoblasts failed to express detectable amounts of VEGF-B. At 3 days after implantation of myoblasts into the gastrocnemius muscle, increased amounts of VEGF-B protein were found in the muscles implanted with the VEGF-B$_{167}$-expressing myoblasts (299 ± 67 pg/mg protein versus 22 ± 2 pg/mg protein in control muscles; *N*=6; *P*<0.05). **Further in vitro experiments revealed that the secreted VEGF-B protein was bio-active (not shown).** **C,D,** Double immunofluorescent staining for ß-galactosidase (site of myoblast engraftment) and CD31 (blood vessels) in the ischemic myocardium revealed no signs of vessel growth around the implantation site of control myoblasts (**C**), but a robust angiogenic induction around the site of VEGF-B$_{167}$-expressing myoblast implantation (**D**). Thus, *intramyocardial* implantation of VEGF-B$_{167}$-expressing myoblasts enhanced vessel growth in the ischemic myocardium at 28 days post-MI, while control LacZ$^+$ myoblasts failed to promote angiogenesis. Scale bars: 50 µm.

Figure II: We showed previously that adenoviral gene transfer of PIGF into the skin of ears enlarged pre-existing vessels with subsequent stabilization by acquisition of a pericyte coat 9. We therefore injected adenoviruses, expressing hVEGF-B$_{167}$ (Ad.hVEGF-B$_{167}$), hVEGF-B$_{186}$ (Ad.hVEGF-B$_{186}$) or mPIGF-2 (Ad.mPIGF) intradermally into the ear skin. **A-I,** Ears were whole-mount immunostained for CD31 (endothelial cells; brown) in panels **A,D,G,** for CD31 (green) and SMA (smooth muscle cells; red) in panels **B,E,H,** and for F4/80 (macrophages, green) and SMA (red) in panels **C,F,I,** As expected, gene transfer of mPIGF-2 increased the density, tortuosity and size of pre-existing vessels, and
stimulated their coverage by mural cells (A,B). In contrast, Ad.hVEGF-B_{167} or Ad.hVEGF-B_{186} gene transfer minimally enlarged the pre-existing vessels without increase in number, tortuosity or mural cell coverage (D,E,G,H). Consistent herewith, we found that many F4/80+ macrophages had infiltrated after Ad.mPIGF gene transfer, while only few macrophages were present after Ad.hVEGF-B_{167} or Ad.hVEGF-B_{186} gene transfer (C,F,I). A control virus (Ad.CMV) failed to affect any of these parameters (not shown). Scale bars: 100 µm in panels A,B,D,E,G,H and 50 µm in C,F,I.

Figure III: A-D, To further analyze the effects of VEGF-B on vessel remodeling and recruitment of mural cells, we examined in VEGF-B^{-/-} mice the remodeling of pulmonary vessels in response to chronic hypoxia. Hart’s elastin staining revealed no genotypic differences between WT and VEGF-B^{-/-} mice in pulmonary vessel structure in normoxia (A,B; see also Table S1). In WT mice, continuous hypoxic conditions for 4 weeks increased the number of thick-walled muscularized vessels by ~4.6-fold (C; Table S1). A comparable 4.7-fold increase in the number of thick-walled muscularized vessels was observed in VEGF-B^{-/-} mice (D; Table S1), suggesting that loss of VEGF-B did not impair mural cell recruitment. Similar results were obtained when hypoxic vessel remodeling was analyzed by immunostaining for SMA (Table S1). Consistent herewith, no genotypic differences were observed in the development of right ventricle (RV) hypertrophy, which normally is caused by pulmonary hypertension (Table S1). Compared to WT mice, VEGF-B^{-/-} mice were as sensitive to chronic hypoxia, as evidenced by the similar increase in hematocrit levels (Table S1). The lack of an effect of VEGF-B on pulmonary hypertension is consistent with earlier findings by Louzier et al. E,F, To further analyze the effects of VEGF-B on angiogenesis, we studied in VEGF-B^{-/-} mice retinal neovascularization in response to ischemia, using an established model. Neovascularization of the ischemic retina, analyzed by H&E staining on cross-sections, was comparable in WT (E) and VEGF-B^{-/-} mice (F; arrows indicate neovessels). Indeed, compared to WT mice, loss of VEGF-B failed to reduce the number of endothelial cells, forming new intravitreal vessel sprouts (per retinal cross-section: 102 ± 13 in WT mice versus 118 ± 10 in VEGF-B^{-/-} mice; N=5; P=NS) or the number of neovascular tufts (per retinal cross-section: 42 ± 4 in WT mice versus 50 ± 8 in VEGF-B^{-/-} mice; N=5; P=NS; Figure S3E,F). These findings are consistent with findings by Reichelt et al. Scale bars: 50 µm in panels E,F and 25 µm in panels A-D.
Figure IV: A-D. At 7 days after ligation, laser Doppler perfusion analysis on ischemic limbs also failed to show any genotypic differences (A,B; see also Table 1). Ischemic limb perfusion was also measured in mice lacking both VEGF-B and PIGF – the rationale for this experiment being that limb perfusion was reduced in PIGF⁻/⁻ mice ¹⁰ and that, possibly, the consequences of VEGF-B deficiency might be more apparent when limb revascularization was already impaired by prior loss of PIGF. However, at 7 days after ischemia, laser Doppler imaging revealed that, compared to WT or VEGF-B⁻/- mice (Table 1; \(P<0.05 \)), limb perfusion was comparably reduced in mice lacking PIGF alone or in mice lacking both VEGF-B and PIGF (C,D; % perfusion of non-ligated limb: 47 ± 5% in PIGF⁻⁻ mice versus 55 ± 9% in VEGF-B⁻⁻:PIGF⁻⁻ mice; \(N=5;\ P=\)NS). Please note the color scale: from blue (low perfusion) to red (high perfusion). E,F, H&E staining of transverse sections through the adductor muscles revealed a comparable size of the main collateral vessel in WT (E) and VEGF-B⁻⁻ mice (F). G-I, Morphometric analysis revealed a similar amount of F4/80⁺ macrophages around the collaterals in WT and VEGF-B⁻⁻ adductor muscles (G), as also illustrated by microscopic pictures (H,I). In addition, VEGF-B failed to stimulate the production by cultured macrophages of TNF-alpha, previously implicated in collateral growth ⁹ (data not shown). Please note that the black staining inside the vessels results from bismuth-gelatin filling of the vessels, which enables a better macroscopic visualization of the collaterals. Scale bars: 50 µm.
SUPPLEMENTAL METHODS

Animal models

Myocardial ischemia model: Myocardial ischemia was induced by ligation of the left anterior descending (LAD) coronary artery in female mice as described \(^3, 9\). Seven days after LAD ligation, hearts were harvested, sectioned and analysed for vessel densities and/or macrophage infiltration in the infarct area and border zone.

Mouse skin wound model: A standardized 15 mm full-thickness skin incision was made on the back of mice, taking care not to damage the underlying muscle, as described \(^10\). Wound healing was quantified by daily measuring the width and the length of the wound. Analysis of vessel densities and inflammation was performed in skin sections, harvested 5 days after wounding.

Mouse ear skin assay: Mouse ears, injected with the PIGF or VEGF-B adenoviral vectors, were dissected, fixed in 1% phosphate buffered paraformaldehyde and whole-mount immunostained for endothelial cells, smooth muscle cells and macrophages using fluorescently conjugated secondary antibodies (Alexa 488 or 546, Molecular Probes).

Mouse ischemic retinopathy model: Mice at postnatal day 7 were exposed to hyperbaric (80%) oxygen for 5 days, as described \(^10\). After returning to normoxia for another 5 days, the eyes were harvested, fixed in 1% paraformaldehyde, paraffin embedded and sectioned. After H&E staining, the number of endothelial cells and vascular tufts in the vitreous cavity were counted, as described \(^10, 13\).

Pulmonary vascular remodeling: Eight-weeks old male mice were placed in a chamber under normobaric hypoxia (10% \(O_2\)) or in normal air (21% \(O_2\); control) as described \(^14\). After 4 weeks, the right ventricular (RV) wall was dissected from the left ventricle (LV) and septum (S), and dried at 55°C before weighing. Alternatively, lungs were perfusion-fixed, dissected and sectioned as described \(^14\). Pulmonary vascular remodeling was assessed by counting the number of non-muscularized (only IEL), partially muscularized (IEL plus incomplete EEL) and fully muscularized (IEL and complete EEL) peripheral vessels (located distal to the bronchi) per \(10^3\) alveoli, as described \(^14\).

Ischemic hindlimb model: In male mice, the right femoral artery and vein (proximal to the popliteal artery) and the cutaneous vessels branching from the caudal femoral artery side branch were ligated, avoiding damage of the femorale nerve \(^9\). Seven days after ligation, functional perfusion measurements of the total limb were performed using a Lisca PIM II camera (Gambro). Perfusion, averaged over 3 images per mouse in the total hindlimb, was expressed as a ratio of right (ischemic) to left (normal) limb. Limb motor
function was determined via treadmill running exercise (Simplex II, Columbus Instruments), after a one-day conditioning training session. The test protocol included a graded exercise test at constant inclination of 10 degrees with increases in belt speed of 2 m/min every 5 minutes. Exhaustion was defined as failure to abandon the shock grid within 15 seconds. After training, the femoral artery was occluded, and at 7 days later, mice were re-tested on the treadmill. Recovery of function was expressed as a ratio to the baseline exercise time. For histology, the gastrocnemius and adductor muscles were harvested at 7 or 28 days after femoral artery ligation. Vessel densities in the regenerating gastrocnemius muscle were determined morphometrically by analyzing the capillary-to-myocyte ratio. Remodeling of collateral vessels and macrophage recruitment in the upper hindlimb were analyzed as described. In brief, collateral side branches were categorized as smaller or larger than 300 µm². Total perfusion area was calculated using the total sum of the side branch luminal areas.

Transplantation of VEGF-B₁₆₇-expressing myoblasts: A MFG retrovirus encoding mouse VEGF-B₁₆₇ cDNA, generated as described, was used to transduce LacZ-expressing myoblasts. LacZ-expressing myoblasts were used for transplantation to visualize the engrafted cells. Specific expression of the VEGF-B gene was verified by immunofluorescent staining of myoblasts using antibody, recognizing mouse VEGF-B₁₆₇ (R&D Systems). The amount of gene product, secreted by the VEGF-B producing myoblasts in vitro, was quantified by ELISA. The biological activity of medium conditioned by VEGF-B producing myoblasts was compared to medium of VEGF-A expressing cells or control myoblasts, using a HUVEC proliferation assay (Cell Titer Aqueous One Solution Assay, Promega). Myoblasts, co-expressing VEGF-B₁₆₇ and LacZ or control LacZ-myoblasts, were injected into the anterior tibial muscle (5x10⁵ cells/injection) in normal conditions or immediately after femoral artery ligation and transection in adult male SCID mice, as described. At 28 days following surgery, tibialis and myocardial muscles were harvested and double labeled for endothelial cells and muscle fibers expressing the LacZ reporter gene, using a polyclonal rabbit antibody to LacZ (Eppendorf 5-Prime). Capillaries and muscle fibers were counted and expressed as capillary-to-muscle fiber ratio. Myoblasts were also injected in the infarct border zone (5x10⁵ cells/injection) of female SCID mice, immediately after LAD ligation, and hearts were harvested for histology at 28 days post-MI.

Histology, immunohistochemistry and morphometric analyses
All tissues were fixed in 1% phosphate buffered paraformaldehyde and embedded in paraffin. Serial parasagittal (hearts) or transverse (skin, retina, lung, limb muscle) sections were cut at 8 µm thickness and stained for H&E or Hart’s elastin. Immunostainings were performed using primary antibodies for endothelial cells (rabbit anti-thrombomodulin (TM), gift from Dr. R.W. Jackman, Boston, MA; rat anti-CD31, Becton Dickinson), smooth muscle cells (mouse anti-smooth muscle alpha-actin (SMA), Sigma), macrophages (rat anti-Mac3 and rat anti-F4/80, both Becton Dickinson), and β-Gal (rabbit anti- β-Gal, Cappel). Following primary antibody incubation, sections were incubated with peroxidase-labeled IgGs (Dako), followed by amplification with the proper tyramide signal amplification systems (Perkin Elmer, Life Sciences). Morphometric analyses of the vessel densities and macrophage positive areas in the ischemic, granulation or wound border tissues were performed using a Zeiss Axioplan microscope with KS300 image analysis software.

Production and administration of VEGF-B protein, plasmid and adenovirus

The recombinant human VEGF-B167 (rhVEGF-B167) protein was obtained from Amrad Corporation (gift from Dr. A. Nash), and its activity was tested using the Ba/F3 pre-B cell viability assay as described 17 (data not shown). Continuous delivery of 1.5 µg/mouse/day rhVEGF-B167 protein was achieved by subcutaneously implanting osmotic minipumps (Alzet, type 2001), as described 3.

Adenoviruses were constructed by cloning the murine PlGF-2, or the human VEGF-B167 or VEGF-B186 cDNA into the pACCMVpLpA plasmid, using previously published methods 3, 9. RNA analysis and immunoblotting of extracts and conditioned medium of cells, transduced with the respective adenovirus, revealed that the transduced cells produced murine PlGF-2, hVEGF-B167 or hVEGF-B186 protein (not shown). For the ear assays, 1x10⁹ pfu adenovirus (Ad.mPlGF, Ad.hVEGF-B167, Ad.hVEGF-B186 or control Ad.CMV) was injected intradermally in the ears of female NMRI nu/nu mice. In the ischemic hind limb model, 3x10⁹ pfu adenovirus (Ad.hVEGF-B167 or control Ad.RR5) was intravenously injected in the tail vein of male C57BL/6 mice, immediately after ligation of the femoral artery.

A plasmid expressing murine VEGF-B167 (pcDNA3.mVEGF-B167) or an empty pcDNA3 plasmid was administered via muscle electroporation as described 4, 5. Briefly, one day before ligation of the femoral artery, 15 µg of expression plasmid, encoding
mVEGF-B$_{167}$, or 15 µg empty plasmid (both at 1mg/ml in 0.9% NaCl) was injected into the adductor muscle (total volume of 15 µl over 3 injection sites) using a Hamilton syringe, and electrotransfer (five electric pulses of 100V with a fixed pulse duration of 20 ms and an interval of 200 ms; Electro Square Porator ECM 830, BTX, Harvard Bioscience), with Tweezertrode 520 electrodes (BTX, Harvard Bioscience) was performed.

RT-PCR for Flt-1 and ELISA for human and mouse VEGF-B

Quantitative real-time RT-PCR and protein extraction were performed as described 10. For determining mouse VEGF-B$_{167}$ levels a modified version of a previously established ELISA 1 was used. Plates were coated with a monoclonal antibody to murine VEGF-B (#MAB751, R&D Systems) and mrVEGF-B$_{167}$ (gift from Dr. A. Nash) was used as standard. Human VEGF-B$_{167}$ plasma levels were determined with a home-made ELISA using antibodies (#MAB3372 as capture antibody and #AF751 as detection antibody) and rhVEGF-B$_{167}$ (#751-VE-025) from R&D Systems.
SUPPLEMENTAL REFERENCES

Supplement Figure 1
Supplement Figure IV