Genetic Analysis of α_4 Integrin Functions in the Development of Mouse Skeletal Muscle

Joy T. Yang,* Thomas A. Rando,† William A. Mohler,‡ Helen Rayburn,* Helen M. Blau,‡ and Richard O. Hynes*

*Howard Hughes Medical Institute, Center for Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and †Department of Molecular Pharmacology, Stanford University School of Medicine, Stanford, California 94305

Abstract. It has been suggested, on the basis of immunolocalization studies in vivo and antibody blocking experiments in vitro, that α_4 integrins interacting with vascular cell adhesion molecule 1 (VCAM-1) are involved in myogenesis and skeletal muscle development. To test this proposal, we generated embryonic stem (ES) cells homozygous null for the gene encoding the α_4 subunit and used them to generate chimeric mice. These chimeric mice showed high contributions of α_4-null cells in many tissues, including skeletal muscle, and muscles lacking any detectable (<2%) α_4-positive cells did not reveal any gross morphological abnormalities. Furthermore, assays for in vitro myogenesis using either pure cultures of α_4-null myoblasts derived from the chimeras or α_4-null ES cells showed conclusively that α_4 integrins are not essential for muscle cell fusion and differentiation. Taking these results together, we conclude that α_4 integrins appear not to play essential roles in normal skeletal muscle development.

Development of skeletal muscle is a multistep process. During embryogenesis, myogenic precursor cells in the somites form myoblasts that proliferate, migrate, and eventually exit the cell cycle and differentiate into postmitotic multinucleated myotubes. The formation of mature muscle involves a biphasic fusion process. Primary myoblasts first fuse with one another to form primary myotubes; secondary myoblasts then proliferate and progressively fuse to form secondary myotubes juxtaposed to the primary myotubes. Eventually, the myotubes, most of which are secondary myotubes, specialize as fast and slow contracting fibers and become striated and innervated (Kelly and Rubenstein, 1994).

In each stage of skeletal muscle development, cell–cell and cell–extracellular matrix adhesion are thought to play critical roles. Inhibition of in vitro myogenic differentiation by antibodies has been interpreted to suggest that adhesion molecules such as NCAM (Knudsen et al., 1990a) and N-cadherin (Knudsen et al., 1990b) are involved. Similarly, myogenic differentiation can be inhibited in culture with antibodies against α_4 integrins or their counterreceptors vascular cell adhesion molecule 1 (VCAM-1) (Rosen et al. 1992). These adhesion receptors have also been implicated in secondary myotube formation based on their patterns of expression during development (Rosen et al., 1992; Sheppard et al., 1994). Finally, studies of expression patterns have also implicated α_β_1, integrin (Song et al., 1993) and M-cadherin (Cifuentes-Diaz et al., 1995) in secondary myogenesis.

Integrins are $\alpha\beta$ heterodimeric transmembrane glycoproteins that mediate cell adhesion to extracellular matrix by interacting with a number of extracellular matrix proteins such as fibronectin, laminin, collagen, and vitronectin. Integrins also mediate cell-cell adhesion by interacting with members of the immunoglobulin superfamily (Hynes, 1992). The integrin family so far has >20 known members, assembled from various combinations of 16 α subunits and 8 β subunits. Among these integrins, those containing the α_4 subunit have been implicated in skeletal muscle development and in other developmental and physiological processes such as hematopoiesis (Williams et al., 1991; Miyake et al., 1991; Papayannopoulou and Brice, 1992; Hemler, 1990; Arroyo et al., 1996), lymphocyte homing (Holzmann et al., 1989; Berlin et al., 1993), recruitment of inflammatory cells (Yednock et al., 1992), and metastasis (Qian et al., 1994). The integrin α_4 subunit can be assem-

1. Abbreviations used in this paper: ES, embryonic stem; GPI, glucose phosphate isomerase; LIF, leukemia inhibitory factor; VCAM-1, vascular cell adhesion molecule 1.
bled into two integrin heterodimers, αβ1 and αβ2. Both αβ1 and αβ2 are fibronectin receptors that bind to a non-RGD peptide in an alternatively spliced V25 (or CS-1) region (Guan and Hynes, 1990; Mould et al., 1990; Ruegg et al., 1992). Both αβ1 and αβ2 also bind to VCAM-1, a member of the immunoglobulin superfamily (Chan et al., 1992).

To study the in vivo functions of α4 integrins further, we have previously generated a null mutation in the gene encoding the α4 subunit and shown that the mutation is recessive embryonic lethal. The resulting embryonic defects show that α4 integrins have important functions in two cell--cell adhesion events during embryogenesis: allantois--chorion fusion during placentation, and epicardium--myocardium attachment during cardiac development (Yang et al., 1995). However, it was not possible to address the question of whether α4 integrins play an essential role in skeletal muscle development, since the embryos deficient in α4 integrins died at gestation days 11–13, whereas skeletal muscles form around gestation day 13.

To examine the role of α4 integrins in muscle development, in this study we generated chimeric mice using α4 integrin--deficient embryonic stem (ES) cells to circumvent the problem of embryonic lethality. We report that α4 integrin--deficient ES cells are able to contribute to adult skeletal muscle in high proportion. Skeletal muscle derived primarily, if not exclusively, from α4 integrin--deficient ES cells displays no obvious morphological abnormalities. In addition, we show that myoblasts and ES cells completely lacking α4 integrins are both fully competent to differentiate into myotubes in vitro. These results suggest that, in contrast with the implication of previous reports, α4 integrins are not essential for skeletal muscle differentiation during development.

Materials and Methods

Growth, Selection, and Differentiation of ES Cells Mutant in the α4 Integrin Gene

The methods for growth of ES cells were described previously (George et al., 1993; George and Hynes, 1994). The D3 line of ES cells (Doeblschmam et al., 1985) was cultured on irradiated embryonic fibroblast feeder cells in ES cell medium, which contains DMEM (high glucose with 26 mM Hapes, pH 7.5, 14 mM sodium bicarbonate), 15% FBS (Intergen, Schenectady, MD), 0.1 mM β-mercaptoethanol, supplemented with 1,000 U/ml leukemia inhibitory factor (LIF) (ESGRO; Gibco BRL).

A heterozygous α4 knockout ES cell line, 182 (Yang et al., 1995), was expanded and selected with 1 mg/ml or 1.5 mg/ml G418 (Gibco BRL). After 7–9 d of selection, the drug-resistant colonies were picked and expanded on feeder cells. Half of the cells from each colony were frozen in 10% DMSO in FBS and half were lysed for extraction and analysis of DNA.

For differentiation, ES cells were trypsinized and resuspended in ES medium without LIF. The cell suspension was plated and incubated under standard tissue-culture conditions (the same for all the incubations below) for 30 min to remove the feeder cells. Unattached ES cells were removed from the plate, spun down, and resuspended in LIF-free ES medium at 1 × 10^6 cells per ml. 10–15 μl drops, each containing ~100 ES cells, were put onto a cover of a large bacterial petri dish. The cover was placed onto a petri dish containing medium to maintain humidity, and the petri dish with the hanging drop ES cultures was incubated at 37°C. After 2 d of incubation, the petri dish of ES cells were washed into LIF-free ES medium in the petri dish and incubated for an additional 2 d. Embryoid bodies formed from the ES cells and were plated onto 24-well plates. Each well contained 1 ml LIF-free ES medium and a coverslip coated with 0.1% gelatin (type II swine gelatin; Sigma Chemical Co., St. Louis, MO). Two embryoid bodies were plated in each well. The embryoid bodies were incubated for 30 d with daily feeding with LIF-free ES medium. The differentiated ES cells were fixed in methanol for 5 min, and immunohistochemical staining was performed with an antibody against skeletal muscle myosin heavy chain (MY52; Sigma Chemical Co.), using a Vectastain Elite ABC kit from Vector Laboratories, Inc. (Burlingame, CA).

For generating chimeric mice, ES cells were prepared and injected into C57BL/6j blastocysts as described by George et al. (1993) and George and Hynes (1994). Blastocysts were manipulated as described (Bradley, 1987). Chimeric progeny were identified by coat color. The efficiencies of generation of chimeras from α4-null, α4-heterozygous, and wild-type ES cells were all equivalent.

DNA Extraction, Southern Blot, and PCR Analyses

ES cells or myoblasts were washed with PBS (140 mM NaCl, 3 mM KCl, 4 mM Na2HPO4, 1.5 mM KH2PO4, pH 7.2) and lysed with lysozyme buffer (150 mM NaCl, 20 mM Tris, pH 7.5, 5 mM EDTA. 0.5% SDS, and 0.25 mg/ml protease K) for 30 min at 37°C. The lysates were stored at −20°C. DNA was prepared from the lysates by phenol extraction and ethanol precipitation, and redissolved in 50 μl of 10 mM Tris (pH 7.5) and 0.1 mM EDTA. Southern blot analyses were carried out as described elsewhere (Church and Gilbert, 1984) using a 1.4-kb KpnI/PstI fragment S′ of the targeting vector as a probe for genotyping the ES cells (Yang et al., 1995).

PCR reaction conditions were essentially those described by the manufacturer of Taq polymerase (Perkin-Elmer Cetus Corp., Norwalk, CT), except that primers were annealed for 2 min at 55°C in each cycle and 40 amplification cycles were performed. The oligonucleotide primer set for PCR were as follows: α4 integrin wild-type primers are 5′-CCTACG- GATCGTCCGCTGTG-3′ and 5′-GAAGTACAACAACAGCATCAACGCGGAC-3′; Neo primers (for control) are 5′-GACAACTGGCTGCT- CTGA-3′ and 5′-CGAGCCGATCCGAGT-3′. The amplified PCR products were separated by electrophoresis on 1% agarose gels and analyzed by Southern blot hybridization (Church and Gilbert, 1984) using a probe for the α4 integrin wild-type allele (a 950-bp PstI/BsmHI fragment; see Yang et al., 1995). For controls, the blot was hybridized with a 650-bp PstI/BamHI fragment containing the coding sequence of the neomycin gene (Yenofsky et al., 1990).

Glucose Phosphate Isomerase Analysis of Muscle

Glucose phosphate isomerase (GPI) analysis was performed on extracts of whole muscle and on extracts from muscle crossections. For whole muscle analysis, muscles were dissected, frozen in liquid N2, and stored at −80°C. The samples, each ~20 μl, were thawed and ground in 200 μl ddH2O in Eppendorf tubes using a mini-pestle (Kontes Co., Vineland, NJ). Intact cells were then lysed by four cycles of freezing and thawing (5 min on dry ice, 5 min at 37°C). The suspension was spun at 3,000 rpm (700 g) for 5 min on dry ice, and 5.0 μl of lysate, diluted to a final volume of 5 μl of ddH2O, was used in the GPI assay.

For analysis of muscle crossections, muscles were dissected, embedded in mounting medium (O.C.T. compound; Miles Laboratories, Elkhart, IN), and frozen in isopentane (2-methyl-butane, Aldrich Chemical Co., Milwaukee, WI) cooled in liquid nitrogen. The muscles were crossectioned along their entire lengths. Every 500 μm, one 30-μm section was collected into a 0.65-ml microcentrifuge tube (cooled to −20°C in the cryostat) and stored at −80°C. The sections were thawed by the addition of 5 μl of ddH2O to each tube, the tissue was subjected to repeated freeze/ thaw cycles as above, and the entire sample was used in the GPI assay.

GPI assay was performed essentially as described by Bradley (1987). Briefly, samples were applied with a Super Z applicator kit, 4088; Holena Laboratories, Beaumont, TX) to a cellulose acetate plate (Titan II 3023; Holena Laboratories) presoaked in 1× TB buffer (25 mM Tris, 200 mM glycine, ammonia-free, pH 8.5). The plate was then subjected to electrophoresis (Zone chip chamber, 1283; Holena Laboratories) in 1× TB buffer at 150 V and 4°C for 1 h. The substrate mixture for staining the isozymes contained 2 ml 0.2 M Tris-HCl, pH 8.0, 0.1 ml 54 l/liter magnesium acetate, 0.1 ml 100 mg/ml fructose-6-phosphate (F6627; Sigma Chemical Co.), 0.1 ml 10 mg/ml NADP (Na2 salt, N5050, Sigma Chemical Co.), 0.1 ml 10 mg/ml methyalbamia tetrazolium (MTT) (M2128; Sigma Chemical Co.), 0.05 ml 2.5% glazeous methanethiolase (PM52; Sigma Chemical Co.). Right before use, 8 μl glucose-6-phosphate dehydrogenase (G5885; Sigma Chemical Co.) and 1.5% agarose (in water) were added to the substrate mixture. The substrate mixture was poured onto...
the plate, and the plate was left in the dark until the isozymes were visualized. The plate was photographed, and the photograph was used for densitometric analysis.

Densitometric analysis of the GPI assays was performed using 1D-multi-lane Scan of the IS-1000 Digital Imaging System (Alpha Innotech, San Leandro, CA). Percentage of the ES cell-derived (129/Sv) isoform of GPI was calculated as:

\[
\text{percentage of 129/Sv isoform} = \frac{\text{area of the upper band} + \frac{1}{2} \text{area of the middle band}}{\text{total area of the three GPI bands}} \times 100\%.
\]

Histological Analysis of Muscle

For some muscles, both histological and biochemical analyses were performed on serial cryosections (Rando et al., 1995). In those muscles, for each section collected for GPI analysis, adjacent 10-μm serial sections were collected onto a gelatin-coated glass slide for histological analysis. The sections were stained with hematoxylin and eosin and mounted in Pro-Exx mounting medium (American Scientific Products, McGraw Park, IL). Microscopic analysis and photography were done using a microscope (Axioskop; Carl Zeiss, Inc., Thornwood, NY).

Isolation of Wild-type and α4 Integrin-deficient Myoblasts

Muscles from mature wild-type (C57BL/6J) and chimeric mice were dissociated to isolate pure populations of myoblasts (Rando and Blau, 1994). Briefly, the muscles were minced and enzymatically dissociated with a mixture of collagenase (class II, 1%; Boehringer Mannheim Corp., Indianapolis, IN) and dispase (grade II, 2.4 U/ml; Boehringer Mannheim Corp.). Primary cultures were plated and passaged in growth medium consisting of F-10 nutrient mixture (GIBCO BRL), 20% FBS (HyClone Laboratories, Logan, UT), 2.5 ng/ml basic FGF (Promega Corp., Madison, WI), and penicillin (200 U/ml) streptomycin (200 μg/ml) (GIBCO BRL). From these primary cultures, myoblasts were enriched to ~100% by preplating and growth in this selective growth medium (Rando and Blau, 1994). The cells were identified as myogenic by staining with an antibody to desmin (Kaufman and Foster, 1988).

From the myoblast cultures of chimeric mouse muscle, α4 integrin-deficient myoblasts were purified by selection in 50 μg/ml G418 for a week to allow the growth only of those cells expressing the neomycin-resistance gene from the knockout vector. After G418 selection, an aliquot of the cells was analyzed by PCR and Southern blot analysis to confirm the efficacy of the selection process to eliminate all wild-type cells and to purify α4 integrin-deficient cells. The myoblast cultures were maintained in G418 indefinitely to maintain selection pressure.

Analysis of Myoblast Differentiation In Vitro

For studies of differentiation and fusion, myoblast cultures were placed in differentiation medium (DME [GIBCO BRL], 2% horse serum [HyClone Laboratories], and penicillin/streptomycin). In this medium, primary myoblast cultures differentiate and fuse into multinucleated myotubes. The fusion index, a measure of the propensity of the cells to fuse, was determined microscopically as the ratio of the number of nuclei in myotubes (elongated cells with greater than or equal to three nuclei) to the total number of nuclei in a field. 20 random fields at a magnification of 250 were analyzed for each cell type. The indices were calculated as the mean fusion index at each time, ± SD. For photography, the differentiated culture was fixed for 5 min in 4% paraformaldehyde, stained with 0.01% methylene blue in a solution of 50% ethanol, rinsed with water, stained with hematoxylin and Scott’s water, and photographed without phase contrast.

Results

Generation of Chimeric Mice Derived from α4 Integrin-deficient (α4-null) ES Cells

We have previously generated an α4 integrin null mutation in a D3 ES cell line (Yang et al., 1995) by replacing the first coding exon of the α4 integrin gene with a neomycin-resistance cassette, which carries a mutant form of the neomycin gene (Yenofsky et al., 1990). The ES cell lines carrying the α4 integrin null mutation are heterozygous. To obtain ES cells homozygous for the mutation, one of the heterozygous ES cell lines was selected with G418 at a concentration (1–1.5 mg/ml) five times higher than that used for the original selection (Yang et al., 1995). The G418-resistant ES colonies were picked and screened by Southern blot analysis, and 91% of the drug-resistant colonies (n = 46) were homozygous for the α4 integrin knockout mutation (data not shown). Two independent α4-null ES cell lines (4D20 and 4D47) were expanded and confirmed by Southern blot analysis to be homozygous for the α4 integrin null mutation (Fig. 1). Further Southern blot analyses also showed that the vicinity of the mutated genomic region was not altered by the selection (data not shown).

These two α4-null ES cell lines were used for producing chimeric mice by injecting the ES cells into blastocysts derived from wild-type C57BL/6J females. The chimeric mice had both black (from C57BL/6J) and agouti (from 129/Sv-derived ES cells) coat colors. As estimated from the agouti coat color, the contribution of α4-null ES cells in the chimeric mice ranged from 20–100%. These chimeric mice appeared as healthy and active as control mice generated by injecting wild-type D3 ES cells or α4-heterozygous ES cells (line 182) into wild-type C57BL/6J blastocysts. We have also observed germline transmission of the α4-null allele from a male chimera. Thus, many cell types, including mesenchymal cells and sperm, can develop without α4 integrins. The skeletal and cardiac muscle tissues from mice with 50–100% ES cell contributions were further analyzed.

α4-null ES Cells Were Able to Contribute to Chimeric Muscle Tissues

Contributions of α4-null ES cells in skeletal and cardiac muscle tissues were examined using GPI markers (Fig. 2 A).

![Figure 1](http://example.com/figure1.png)
GPI has different isozyme forms, GPI-I\(^{aa}\) and GPI-I\(^{bb}\), respectively, in 129/Sv and C57BL/6J strains, and these isozymes can be separated as distinct bands by electrophoresis on a cellulose acetate plate. Since GPI isozymes are dimers, a hybrid band (GPI-I\(^{ab}\)) is formed as a result of heterodimerization between the two isozymes in syncytial skeletal muscle tissues (Fig. 2 A, lanes 3-6). To quantitate the contribution of ES cells in the muscle tissues, the intensities of the GPI bands were determined by densitometric scanning, and the percentage of GPI-I\(^{bb}\) isozyme (129/Sv) from each muscle sample was calculated. This analysis was performed on skeletal and cardiac muscle tissues of 29 chimeric mice including 18 et\(^{-}\)null (13 from line 4D20 and five from Line 4D47), four et\(^{4}\) heterozygous (line 182), and seven wild-type (D3) ES cell derived. The results are summarized in Table I and show that the et\(^{-}\)null cells derived from two independent ES cell lines were able to contribute to both skeletal and cardiac muscles. The contributions of et\(^{-}\)-null cells to cardiac muscle were similar to those of et\(^{4}\)-heterozygous and wild-type ES cells, and the contributions of et\(^{-}\)-null cells to skeletal muscles appear even a bit higher than those observed with the et\(^{4}\)-heterozygous and wild-type ES cells. It is noticeable that the chimerism in skeletal muscle from the et\(^{-}\)-null cell-derived chimeras correlated fairly well with that of the coat colors of the mice; skeletal muscles from mice with a high percentage of agouti coat color had a high percentage of contribution from the et\(^{-}\)-null cells (e.g., Fig. 2 A, lanes 3-7). In eight skeletal muscle samples, GPI-I\(^{bb}\) and GPI-I\(^{ab}\) isozymes were completely undetectable (e.g., Fig. 2A, lane 7). To assess the sensitivity of the GPI assay, we performed a serial dilution of a muscle tissue sample from a wild-type mouse for GPI analysis, starting with the equivalent amount used for the chimeric muscle analysis; the GPI band was still detectable when the sample was diluted 1:50 (data not shown). Based on this observation, we conclude that the muscles in those chimeric mice in which the GPI-I\(^{bb}\) and GPI-I\(^{ab}\) isozymes were undetectable were composed of at least 98\% et\(^{-}\)-null cells (e.g., Fig. 2 A, lane 7).

Table 1. Percentage Contributions of et\(^{-}\)-/- Cells in Chimeric Skeletal and Cardiac Muscles

<table>
<thead>
<tr>
<th>ES clone injected</th>
<th>Coat color</th>
<th>Skeletal muscle</th>
<th>Cardiac muscle</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM1</td>
<td>4D47</td>
<td>80</td>
<td>>98</td>
</tr>
<tr>
<td>CM6</td>
<td>4D47</td>
<td>90</td>
<td>85</td>
</tr>
<tr>
<td>CM11</td>
<td>4D20</td>
<td>70</td>
<td>89</td>
</tr>
<tr>
<td>CM12</td>
<td>4D20</td>
<td>70</td>
<td>>98</td>
</tr>
<tr>
<td>CM19</td>
<td>4D20</td>
<td>100</td>
<td>>98</td>
</tr>
<tr>
<td>CM21</td>
<td>4D20</td>
<td>95</td>
<td>>98</td>
</tr>
<tr>
<td>CM25</td>
<td>4D20</td>
<td>100</td>
<td>>98</td>
</tr>
<tr>
<td>CM39</td>
<td>4D20</td>
<td>95</td>
<td>87</td>
</tr>
<tr>
<td>CM40</td>
<td>4D20</td>
<td>90</td>
<td>88</td>
</tr>
<tr>
<td>CM41</td>
<td>4D20</td>
<td>90</td>
<td>97</td>
</tr>
<tr>
<td>CM45</td>
<td>4D20</td>
<td>100</td>
<td>>98</td>
</tr>
<tr>
<td>CM44</td>
<td>4D20</td>
<td>100</td>
<td>97</td>
</tr>
<tr>
<td>CM73</td>
<td>4D47</td>
<td>100</td>
<td>67</td>
</tr>
<tr>
<td>CM74</td>
<td>4D47</td>
<td>100</td>
<td>>98</td>
</tr>
<tr>
<td>CM75</td>
<td>4D47</td>
<td>70</td>
<td>73</td>
</tr>
<tr>
<td>CM28</td>
<td>4D20</td>
<td>100</td>
<td>>98</td>
</tr>
<tr>
<td>CM51</td>
<td>4D20</td>
<td>100</td>
<td>>98</td>
</tr>
<tr>
<td>CM52</td>
<td>4D20</td>
<td>95</td>
<td>>98</td>
</tr>
<tr>
<td>Control 1</td>
<td>182</td>
<td>100</td>
<td>76</td>
</tr>
<tr>
<td>Control 2</td>
<td>182</td>
<td>95</td>
<td>83</td>
</tr>
<tr>
<td>Control 3</td>
<td>182</td>
<td>70</td>
<td>50</td>
</tr>
<tr>
<td>Control 4</td>
<td>182</td>
<td>50</td>
<td>52</td>
</tr>
<tr>
<td>Control 5</td>
<td>D3</td>
<td>90</td>
<td>72</td>
</tr>
<tr>
<td>Control 6</td>
<td>D3</td>
<td>80</td>
<td>86</td>
</tr>
<tr>
<td>Control 7</td>
<td>D3</td>
<td>90</td>
<td>72</td>
</tr>
<tr>
<td>Control 8</td>
<td>D3</td>
<td>100</td>
<td>58</td>
</tr>
<tr>
<td>Control 9</td>
<td>D3</td>
<td>95</td>
<td>76</td>
</tr>
<tr>
<td>Control 10</td>
<td>D3</td>
<td>90</td>
<td>60</td>
</tr>
<tr>
<td>Control 11</td>
<td>D3</td>
<td>90</td>
<td>58</td>
</tr>
</tbody>
</table>

*Percentage of agouti coat color estimated by eye.

Table I. Percentage Contributions of α4-/- Cells in Chimeric Skeletal and Cardiac Muscles

Figure 2. GPI assays. (A) GPI assays on skeletal and cardiac muscle tissues from α4-null ES cell-derived chimeric mice. (Lanes 1-7) Skeletal muscle; (lane 8) cardiac muscle. (Lane 1) 129/Sv wild type; (lane 2) C57BL/6J wild type; (lanes 3-8) α4-/-; α4+/+ chimeras (lane 3, CM6; lane 4, CM11; lane 5, CM39; lane 6, CM40; lane 7, CM45; lane 8, CM45). (Upper band) GPI-I\(^{aa}\); (lower band) GPI-I\(^{bb}\); (middle band) GPI-I\(^{ab}\). Notice that the GPI-I\(^{bb}\) and GPI-I\(^{ab}\) bands are not detectable in these lanes. (B) GPI assay of sections of skeletal muscle from a single et4+/+; et4-/- chimera with a high percentage contribution of et4-/- cells. (Lanes 1--6) Muscle sections from one et4+/+; et4-/- chimeric muscle. Notice the GPI-I\(^{bb}\) and GPI-I\(^{ab}\) bands are not detectable in these lanes. (Lane 7) Control chimeric muscle showing the bands of all isozymes. (Upper band) GPI-I\(^{aa}\); (lower band) GPI-I\(^{bb}\); (middle band) GPI-I\(^{ab}\).
Skeletal Muscles Deficient in \(\alpha_4 \) Integrins Exhibit No Gross Morphological Changes

Having observed that skeletal muscles of many of the chimeric mice appeared to have been derived predominantly, perhaps even exclusively, from the \(\alpha_4 \)-null ES cells, we analyzed the muscle histologically for signs of structural abnormalities. We chose mice whose coat color suggested that the muscle would likely have low or negligible contribution from wild-type cells, and confirmed this by GPI analysis of the muscle cryosections. Indeed, such an analysis demonstrated that in one muscle segment of 4 mm in length, no contribution from wild-type cells could be detected (Fig. 2 B). In muscle thus shown to be composed almost entirely of \(\alpha_4 \)-null cells, histologic examination revealed no gross abnormalities (see Fig. 4 A). In particular, myofiber alignment was not disrupted, fiber diameters were uniform and indistinguishable from wild-type muscle, no degenerating or regenerating fibers were seen, and no central nuclei were observed. Thus, myofiber formation is not noticeably disrupted by the absence of \(\alpha_4 \) integrins.

\(\alpha_4 \) Integrin-deficient Myoblasts Fuse As Well As Wild-type Myoblasts

To further assess the role of \(\alpha_4 \) integrins in muscle cell differentiation, wild-type and \(\alpha_4 \) integrin-deficient myoblasts were compared in an in vitro assay of myoblast fusion. Wild-type myoblasts were derived from primary muscle cell cultures from mature C57BL/6J mice. The \(\alpha_4 \) integrin-deficient myoblasts were obtained by deriving primary myoblast cultures from chimeric mouse muscle, purifying the myogenic cells from those cultures, and then selecting \(\alpha_4 \) integrin-deficient cells by growth in G418. The G418-resistant population was genotyped by Southern blot analysis (data not shown) and by PCR (Fig. 3 A), which should detect <1% contribution of wild-type cells, to confirm the absence of any wild-type cells in the population.

Figure 3. Differentiation of \(\alpha_4 \) integrin-deficient myoblasts. (A) PCR analysis of the myoblast cultures. (Lane 1) \(\alpha_4^{+/+} \) (N-cadherin +/-); (lane 2) \(\alpha_4^{+/+} \); (lane 3) \(\alpha_4^{-/-} \). The PCR products were Southern blotted and hybridized with a probe for the \(\alpha_4 \) integrin wild-type bands. The blot was then rehybridized with a probe for the control bands, which are PCR products from the Neo primers. Notice that the PCR product for the \(\alpha_4 \) integrin wild-type allele was absent in lane 3. (B) Histograms of the fusion index of \(\alpha_4^{-/-} \) and \(\alpha_4^{+/+} \) myoblasts at the same time points. Notice that the mutant and wild-type myoblasts fused into myotubes in a similar manner.

The two cell populations were differentiated in vitro, and the degree of fusion was assessed microscopically at two different times. The \(\alpha_4 \) integrin–deficient myoblasts formed multinucleated myotubes when placed in differentiation medium, and myotube formation increased between day 2 and day 5 (Fig. 3 B and 4 B). No significant difference was observed between wild-type and \(\alpha_4 \) integrin–deficient myoblasts in their abilities to differentiate and to fuse in vitro.

Differentiation of \(\alpha_4 \)-Null ES Cells into Myotubes

We also examined the ability of \(\alpha_4 \)-null ES cells to differentiate into myotubes. The wild-type and mutant ES cells were grown in suspension to produce embryoid bodies, and the embryoid bodies were plated on gelatin-coated coverslips to induce differentiation. Among the multiple cell types typical of such differentiating embryoid body cultures, skeletal myotubes were readily detectable. The differentiated cultures were stained with an antibody against skeletal muscle myosin heavy chain. 34.5% of the wells (10 out of 29) with \(\alpha_4 \)-null embryoid bodies and 33% of the wells (6 out of 18) with wild-type embryoid bodies had multinucleated myotubes. The myotubes formed by the \(\alpha_4 \)-null embryoid bodies (Fig. 5 B) were as well differentiated as those formed by the wild-type embryoid bodies (Fig. 5 A). This result shows that ES cells can differentiate into myotubes in the complete absence of \(\alpha_4 \) integrins.

Discussion

We have previously generated a null mutation in the gene encoding the \(\alpha_4 \) integrin subunit and shown that the mutation was embryonic lethal. To circumvent the problem of embryonic lethality and to study the roles of \(\alpha_4 \) integrins in later stages of development, in this study we generated chimeric mice by injecting \(\alpha_4 \)-null ES cells into wild-type blastocysts. We addressed the question of whether \(\alpha_4 \) integrins are essential in skeletal muscle development by examining the ability of \(\alpha_4 \) integrin–deficient ES cells to participate in forming skeletal muscles. Our results showed that the \(\alpha_4 \)-null ES cells were able to contribute to skeletal muscle at high percentages, and the skeletal muscle tissues, where the proportion of \(\alpha_4 \)-null ES cells was >98%, appeared morphologically normal. These results show that skeletal muscle can differentiate normally in the apparent absence of \(\alpha_4 \) integrins, suggesting that \(\alpha_4 \) integrins are not essential for skeletal muscle development. Our in vitro studies also strongly support the view that \(\alpha_4 \) integrins do not play an essential role during myogenesis. First, we showed that primary myoblasts deficient in \(\alpha_4 \) integrins were able to differentiate to form myotubes; second, we showed that \(\alpha_4 \)-null ES cells can also differentiate into myotubes. These results clearly demonstrate that \(\alpha_4 \) integrins are not essential for myogenesis in vitro.

A study on chimeric mice generated using ES cells lacking the \(\beta_1 \) integrin subunit has previously been reported by Fassler and Meyer (1995). They showed that \(\beta_1 \)-null ES cells–derived chimeras with high percentage chimerism die at early embryonic stages, while those with low percentage chimerism (2–25%) can survive to adulthood. In these low percentage chimeras, \(\beta_1 \)-null cells were able to contribute...
to most tissues, including skeletal muscle. However, because of the low percentage chimerism and the syncytial nature of skeletal muscle, these studies do not assess the essentiality of \(\beta_1 \) integrins for skeletal muscle development.

Our GPI analysis also showed that \(\alpha_4 \)-null ES cells are able to contribute to cardiac muscles at a percentage similar to that of wild-type ES cells, suggesting that \(\alpha_4 \) integrins also may not play an essential role in cardiac muscle development. This is consistent with our previous study of \(\alpha_4 \)-null embryos, showing that \(\alpha_4 \) integrins play an important role in the formation and maintenance of epicardium but do not play any essential roles in cardiac muscle formation (Yang et al., 1995). Moreover, we have observed high percentage contributions of \(\alpha_4 \)-null ES cells in the generation of agouti coat color, as well as germline transmission of the \(\alpha_4 \)-null allele from a male chimera. Thus, besides skeletal muscle, cardiac muscle, mesenchymal cells (responsible for the agouti coat color) and sperm, can also develop without \(\alpha_4 \) integrins. Given the high efficiency of generation of chimeras with a high contribution of \(\alpha_4 \)-null cells, many other cell types clearly can develop normally without \(\alpha_4 \) integrins.

Although our results suggest that \(\alpha_4 \) integrins are not essential for skeletal muscle development, they do not rule out a possible nonessential involvement of \(\alpha_4 \) integrins in this process. Immunohistochemical studies by Rosen et al. (1992) and Sheppard et al. (1994) have shown that the \(\alpha_4 \) integrin subunit and VCAM-1, the counterreceptor of \(\alpha_4 \) integrins, are localized on secondary myotubes and secondary myoblasts, respectively, suggesting a role for \(\alpha_4 \) integrin–VCAM-1 interactions during secondary myotube fusion. Our results, however, did not reveal an essential role of \(\alpha_4 \) integrins in this process. One possible explanation is that functional overlap may exist among members of the integrin superfamily. It has been shown that \(\alpha_2 \beta_1 \) is expressed on secondary myoblasts, and there is an increased expression level of \(\alpha_2 \beta_1 \) when these secondary myoblasts fuse into secondary myotubes (Song et al., 1992). It is possible that both \(\alpha_2 \beta_1 \) and \(\alpha_2 \beta_1 \) are involved in secondary myotube fusion. Functional overlap could also explain the discrepancy between our in vitro results and the observation by Rosen et al. (1992) that an anti-\(\alpha_4 \) integrin antibody inhibited the ability of C2C12 myoblast cells to differentiate into myotubes. A related but distinct possibility...
is that other adhesion receptors could compensate for the loss of α4 integrins by upregulation of expression or function. Alternatively, the antibody blocking results could be misleading for a variety of reasons. The antibodies could be having effects above and beyond merely inhibiting the interactions of α4 integrins and/or VCAM-1. Apart from the relatively trivial possibilities of cross-reaction with, or steric hindrance of, other adhesion receptors, it is known that some blocking antibodies to integrins can act as agonists themselves, leading to secondary consequences in addition to the blockade of adhesion. Such secondary consequences can include the transdominant inhibition of other integrins in the same cell (Diaz-Gonzalez, F., J. Forsyth, B. Steiner, and M.H. Ginsberg, manuscript submitted for publication).

Based on our studies of myogenesis in vitro and in vivo, we conclude that skeletal muscle differentiation can proceed in the absence of the α4 integrins, although we cannot rule out the possibility that a small contribution (<2%) of α4 integrin–expressing cells in vivo were not detected in our assays might nucleate skeletal muscle formation. The temporal expression of the α4 integrins during development suggested a role for these molecules in the differentiation process. However, as determined by our assays, the processes of cell fusion and differentiation are not dependent on these integrins. The biological role of the α4 integrins in myogenesis remains to be determined.

We thank Jane Trevithick, Marge Cummiskey, and Carol Charffo for technical assistance. We are also grateful to Colleen Leslie for help in manuscript preparation.

This work was supported by a Program of Excellence grant (PO1-HL41484 to R.O. Hynes; PI; Robert Rosenberg) from the National Heart Lung and Blood Institute, by grants from the National Institutes of Health (NIH) (HD18179 and AG-09521) and the Muscular Dystrophy Association of America to H.M. Blau, and by the Howard Hughes Medical Institute (HHMI). J.T. Yang was an associate and R.O. Hynes is an investigator of the HHMI. T. Rando was supported by postdoctoral fellowships from the Dana Foundation and the HHMI; W.A. Mohler was supported by NIH predoctoral training grants (GM07149, HD07249, and GM08412).

Received for publication 31 May 1996 and in revised form 12 August 1996.

References

