Engineering Mechanics Institute Conference 2015

Full Program »

A new paradigm for modeling fault zone inelasticity: a coupled granular-bulk framework incorporating spontaneous localization and grain fragmentation

The brittle portion of the crust contains structural features such as faults, jogs, joints, bends and cataclastic zones that span a wide range of length scales. These features may have a profound effect on earthquake nucleation, propagation and arrest. Incorporating these existing features in modeling and the ability to spontaneously generate new one in response to earthquake loading is crucial for predicting seismicity patterns, distribution of aftershocks and nucleation sites, earthquakes arrest mechanisms, and topological changes in the seismogenic zone structure.
Here, we report on our efforts in modeling two important mechanisms contributing to the evolution of fault zone topology: (1) Grain comminution at the submeter scale, and (2) Secondary faulting/plasticity at the scale of few to hundreds of meters.
We use the finite element software Pylith to model the dynamic rupture. The constitutive response of the fault zone is modeled using the Shear Transformation Zone theory, a non-equilibrium statistical thermodynamic framework for modeling plastic deformation and localization in amorphous materials such as fault gouge. By coupling the amorphous gouge with the surrounding elastic bulk, the model introduces a set of novel features that go beyond the state of the art. These include: (1) self-consistent rate dependent plasticity with a physically-motivated set of internal variables, (2) non-locality that alleviates mesh dependence of shear band formation, (3) spontaneous evolution of fault roughness and its strike which affects ground motion generation and the local stress fields, and (4) spontaneous evolution of grain size and fault zone fabric.

Author(s):

Ahmed Elbanna    
University of Illinois Urbana Champaign
United States

 

Powered by OpenConf®
Copyright ©2002-2014 Zakon Group LLC