The Mechanism of Triplet Energy Transfer from the Special Pair to the Carotenoid in Bacterial Photosynthetic Reaction Centers

Alex deWinter and Steven G. Boxer*
Department of Chemistry, Stanford University, Stanford, California 94305-5080

Received: July 1, 1999; In Final Form: August 17, 1999

The kinetics of triplet energy transfer from the primary electron donor P, a bacteriochlorophyll dimer, to the carotenoid were measured in the M182HL mutant of \textit{Rhodobacter sphaeroides} photosynthetic reaction centers. In this mutant, the accessory bacteriochlorophyll that is bound in the B_M position in wild-type reaction centers is changed to a bacteriopheophytin. By using phosphorescence data for P in the reaction center and for bacteriochlorophyll \textit{a} and bacteriopheophytin \textit{a} monomers in simple solvents, the activation energy for triplet energy transfer from the special pair to the bacteriopheophytin at B_M in M182HL is predicted to be 910 ± 50 cm\(^{-1}\). Analysis of the decay kinetics of \(^3\)P as a function of temperature gives an experimental activation energy of 950 ± 50 cm\(^{-1}\). Thus, the M182HL mutant allows for prediction and quantitative verification of the energetics of triplet energy transfer by a two-step mechanism from the special pair to the carotenoid through the chromophore in the B_M binding site.

Introduction

The triplet state of the special pair primary electron donor, \(^3\)P, is formed when electron transfer to the quinone is blocked in bacterial photosynthetic reaction centers (RCs). Once formed, \(^3\)P rapidly transfers its energy to a carotenoid molecule.\(^1\)-\(^5\) As revealed in the crystal structure of the RC, the carotenoid is about 11 Å from P (see Figure 1). Because triplet energy transfer involves transitions that are dipole forbidden, long-distance energy transfer by the Förster mechanism is not operative, and the process must instead proceed by Dexter-type transfer. The Dexter mechanism requires close contact between donor and acceptor in order to achieve sufficient orbital overlap.\(^6\) As seen in Figure 1, a monomeric bacteriochlorophyll \textit{a} (Bchl) labeled B_M is found between P and the carotenoid, suggesting a two-step mechanism for triplet energy transfer: \(^3\)P \(\rightarrow\) \(^3\)B_M \(\rightarrow\) \(^3\)Car. Since \(^3\)B_M has never been directly observed in carotenoid-containing reaction centers,\(^7\) it is generally assumed that the second step in this two-step mechanism is much faster than the first, that is, \(^3\)P \(\rightarrow\) \(^3\)B_M is rate limiting and \(^3\)B_M does not accumulate to an appreciable extent.

For this two-step mechanism to be viable, the energy of \(^3\)P must be near to or higher than that of \(^3\)B_M. The energy difference between these two states can be estimated from spectral data. The energy of \(^3\)P can be measured directly in the RC from the phosphorescence spectrum;\(^8\) the energy of isolated \(^3\)Bchl \textit{a} in an organic glass can also be measured by phosphorescence.\(^9\) Because it is not possible to observe \(^3\)B_M in situ, its energy was estimated starting with the absorption maximum of B_M in the RC and then subtracting half of the Stokes shift plus the difference in emission maxima between the Bchl fluorescence and phosphorescence in a glassy matrix. This led to the prediction that the energy of \(^3\)B_M is 200 ± 70 cm\(^{-1}\) above that of \(^3\)P in wild-type RCs; this analysis is summarized in Table 1. Significantly, the \(^3\)P \(\rightarrow\) \(^3\)Car process has been found to have an activation energy of approximately this magnitude,\(^4,10\) thus this two-step mechanism appears consistent with the energetics.\(^9\)

Despite this excellent agreement, several approximations were made in estimating the absolute energies of \(^3\)P and \(^3\)B_M. Ordinarily these approximations would be of no consequence; however, in a system where the energy difference is so small, it could be argued that the agreement between the observed activation energy and the estimate from the triplet energies is

![Figure 1. Arrangement of the chromophores involved in the initial electron and triplet energy transfer processes in photosynthetic reaction centers from the X-ray structure of wild type.\(^3\),\(^5\),\(^6\) In the mutant M182HL, the bacteriochlorophyll \textit{a} in the B_M binding site is replaced by a bacteriopheophytin \textit{a} and is designated \(\theta\).](image-url)
Fortuitous. For example, the Stokes shifts for both the singlet and triplet states in situ are not known and are assumed to have the same values as in vitro. Furthermore, we assumed that the spectral shift of the singlet state of Bchl in the B M site to lower energy relative to its energy in solution also shifts the energy of its triplet state by an equal amount, that is, that the singlet–triplet splitting is constant and independent of environment.

In the course of other works, we began investigating a mutant, M182HL, which assembles with a Mg-free bacteriopheophytin a (Bpheo) in the B M binding site in place of the native Bchl.11,12 We will designate a Bpheo in this site as θ. Because the phosphorescence from 'Bpheo isolated in a glassy matrix has been measured,9 this mutant offers an independent and quantitative test for the two-step triplet energy transfer mechanism. As discussed below, an analysis parallel to that sketched above suggests that the activation energy for the rate-limiting P → θ step should be substantially higher than for P → B M. Precisely this is observed, and the predicted activation energy agrees closely with the observed activation energy. We note that many experiments have demonstrated that the triplet energy transfer process is sensitive to changes in the B M chromophore and in the environment around B M; however, as far as we know, in no case has there been a quantitative analysis of the energetics that permits a definitive test of the mechanism.10,13–15

Experimental Section

The gene coding for the M182HL mutant of Rb. sphaeroides RCs was kindly provided by Professor Neal Woodbury, and we inserted this into a strain that produces RCs with a polyhistidine tag for rapid purification.16 RCs were suspended in 10 mM Tris-HCl (pH 8.0), 0.1% Triton X-100, 1.0 mM EDTA. QA was either removed or chemically reduced by the addition of sodium dithionite.17 For measurement of transient absorption kinetics, the sample was excited with a 532 nm actinic pulse from a Nd:YAG laser at 2 Hz repetition rate. The time dependence of the change in the Q T absorption of P was measured with a weak probe beam at 875 nm and detected with a fast photodiode and a digital oscilloscope. The sample temperature was controlled with two cascaded thermoelectric coolers (Melcor Corporation) driven by a variable current power supply. The thermoelectric coolers were themselves cooled with an ethylene glycol/water bath; this allowed for precise temperature control between room temperature and 230 K. For experiments below 230 K, the sample was cooled with a miniature Joule–Thompson refrigerator (MMR Technologies) with precise temperature control from 250 to 117 K. The effects of magnetic fields on the P decay18,19 were measured using an electromagnet driven by a 1 kW current-regulated power supply, resulting in a variable magnetic field from 0 to 400 G.

Results

The absorption spectrum of the M182HL mutant is compared with wild-type in Figure 2. The peak assignments refer to the chromophore labels in Figure 1. The shoulder on the low-energy side of the 800 nm feature seen in wild-type is absent in M182HL, and a new peak appears on the high-energy side of the 800 nm feature. As we ascribe this shift to the formation of Mg-free Bpheo in the high density of Mg-free Bpheo in the B M site. In both cases in that case there are additional amino acid changes in the vicinity of the BM binding site. In both cases in Rb. sphaeroides, the properties of the chromophores appear to depend strongly on the site and less on the chemical identity. The origin of this interesting effect is not known.

Two typical P decay curves for the quinone-depleted M182HL mutant are shown in Figure 3. These decays can each be fit well by a single exponential.22 The P decay analysis was performed as a function of temperature, and the decay rates (kobs) are plotted as an Arrhenius plot in Figure 4A. We assume that the temperature dependence of kobs arises solely from a constant energy difference between P and B M, and is not complicated by temperature-dependent structural changes or entropy differences between the two states. This analysis also assumes that kT (see Figure 5) is temperature independent; it has been previously demonstrated in R-26 RCs that this is only weakly dependent on temperature.19 The small deviation between the
The decay of 3P gave a narrow range of activation energies, resulting in an average value of 936 cm$^{-1}$ in the M182HL mutant. Repeated data sets for M182HL 3P decay data along with a quantitative fit to the Arrhenius equation, where c is a nonactivated, low-temperature limit, accounting for k_{TG} (see Figure 5). Fit parameters: $c = 5760 \text{ s}^{-1}$; $A = 4.0 \times 10^3 \text{ s}^{-1}$; $E_a = 936 \text{ cm}^{-1}$.

Figure 4. (A) Arrhenius plots of 3P decay in quinone-depleted M182HL and quinone-depleted R-26 reaction centers. On this plot, $\ln(k_{\text{obs}})$ in wild-type (quinone-reduced, carotenoid-containing and with Bchl in the B$_M$ binding site) RCs is approximately 16.5 and is independent of temperature over the range shown.14 (b) Quinone-depleted M182HL 3P decay data along with a quantitative fit to the Arrhenius equation, where c is a nonactivated, low-temperature limit, accounting for k_{TG} (see Figure 5). Fit parameters: $c = 5760 \text{ s}^{-1}$; $A = 4.0 \times 10^3 \text{ s}^{-1}$; $E_a = 936 \text{ cm}^{-1}$.

Figure 5. Reaction scheme describing the formation and decay of 3P. The decay of 3P is much slower in the M182HL mutant, but not as slow as in the carotenoidless R-26 mutant.

We can estimate the energy of the $^3\theta$ state in M182HL following exactly the same method used for the 3B_M state in wild-type.9 The energy of 3P is obtained in situ from the RC phosphorescence spectrum.8 The energy of monomeric Bpheo a in an organic glass has been measured by phosphorescence.9 Because it is not possible to observe $^3\theta$ in situ by phosphorescence, its energy was estimated starting with the absorption maximum of $^3\theta$ in M182HL (Figure 2), and then subtracting half of the Bpheo Stokes shift plus the difference in emission maxima between the Bpheo fluorescence and phosphorescence in a glassy matrix. This analysis is shown in Table 1 for both wild-type and M182HL. The result is that the predicted activation energy for $^3P \rightarrow ^3\theta$ is $910 \pm 50 \text{ cm}^{-1}$. This value is in close agreement with the observed activation energy in the M182HL mutant. We stress that the same approximations have been made in estimating the energy of $^3\theta$ and 3B_M in situ; however, the phosphorescence, absorption and kinetic data are independent of one another, so this is a rigorous check of the energy transfer mechanism.

In conclusion, the data presented here for M182HL are in quantitative agreement with two-step energy transfer from 3P to the carotenoid via the triplet state of the occupant of the B$_M$ site. It is interesting to compare this situation with the ongoing debate about the mechanism of primary electron transfer on the functional L-side, where a two-step mechanism, $^1P \rightarrow ^1P^+B_L^- \rightarrow ^1P^+B_L^-H_L^-$, or a one-step superexchange mechanism may operate. This comparison is relevant because triplet energy transfer, operating by the Dexter mechanism, is closely related to conventional electron transfer. For triplet energy transfer, two electrons are, in effect transferred, and the reorganization energy is expected to be small, as there is little charge displacement.31,32 What is thus far missing in the debate about the electron-transfer mechanism is a quantitative prediction and observation of an activation energy based on experimental data in situ, analogous to what is described here for triplet energy transfer. Recent experiments that provide quantitative information on the energetics of intermediates in situ may make this possible.
Mechanism of Triplet Energy Transfer

Acknowledgment. We thank Neal Woodbury for providing the M182HL strain and critical comments on this work. This research is supported in part by the NSF Biophysics Program.

References and Notes

(5) It is generally believed that triplet energy transfer to the carotenoid

...this role has not, to the best of our knowledge, been demonstrated.

We thank Neal Woodbury for providing the M182HL strain and critical comments on this work. This research is supported in part by the NSF Biophysics Program.

(22) Addition of a secondary exponential component improved the fit, but not enough to justify inclusion of the secondary component in the analysis.

To verify that the triplet decay rate we observed was not activated reformation of \(\text{P}^+ \), we studied the magnetic field dependence of the triplet decay in R-26 and M182HL RCs. Triplet decay in R-26 was slowed by a magnetic field of less than 400 G, as expected owing to the loss of near degeneracy between the singlet and triplet states of \(\text{P}^+ \), which decreases \(\omega_i \) (Figure 5). Triplet decay from M182HL was not slowed by magnetic fields, indicating that triplet decay was not primarily attributable to reformation of \(\text{P}^+ \).

\(\text{P}^+ \) decay in R-26 is due to activated reformation of \(\text{P}^+ \) in competition with intersystem crossing and decay to the ground state; triplet energy transfer plays no role as R-26 lacks carotenoid. We note that the activation energy for magnetic field dependent \(\text{P}^+ \) decay in R-26 to reform \(\text{P}^+ \) (rate constant \(k \) in Figure 5) and for magnetic field independent triplet energy transfer to \(\theta \) in M182HL are coincidentally similar (Figure 4).

(37) We note the upper exciton band of P, thought to contribute to the absorbance of the 810 nm band, must be very small or nonexistent.