Energetics of Primary Charge Separation in Bacterial Photosynthetic Reaction Center Mutants: Triplet Decay in Large Magnetic Fields†

Alex de Winter and Steven G. Boxer*
Department of Chemistry, Stanford University, Stanford, California 94305-5080

Received: August 12, 2002

The triplet state of aromatic molecules forms and decays by intersystem crossing, as originally demonstrated by Kasha and Lewis. By contrast, the triplet state of the primary electron donor, 3P, in photosynthetic reaction centers is formed exclusively by spin- and magnetic-field-dependent charge recombination of the initially formed radical ion pair. 3P decays by intersystem crossing at low temperatures; however, at higher temperatures, it can also decay by activated re-formation of the radical ion pair from which it was born, followed by a spin- and magnetic-field-dependent pathway that leads ultimately to the ground state. The discovery of this activated decay pathway leads to an approach for obtaining information on the relative energies of the radical pair and 3P state (Chidsey et al. Proc. Natl. Acad. Sci. U.S.A. 1985, 82, 6850–6854); with knowledge of the absolute energy of 3P from its phosphorescence, the energy of the initial charge separation reaction can be obtained.

In this paper, we present the first data on the temperature and magnetic field dependence of the formation and decay of 3P for Rb. sphaeroides reaction center mutants in a background that contains no carotenoid. The mutations have been studied in other contexts and were designed to perturb the redox potential of the primary electron donor or acceptor. The measured trends are in the same direction as expected from chemical intuition; however, the quantitative changes are typically smaller than expected. Possible reasons for this finding are discussed. Improved values are obtained for the enthalpy and free energy change associated with primary charge separation in wild-type reaction centers.

Introduction

The energetics of the initial electron-transfer steps in bacterial photosynthetic reaction centers (RCs) is a key element in any attempt to understand the reaction mechanism and the impact of amino acid changes, temperature, and applied electric fields on the reaction. The organization of the chromophores involved in energy and electron transfer along with the sites of mutations considered in the following are shown in Figure 1. A kinetic scheme describing charge separation and recombination when electron transfer to quinone QA is blocked is shown in Figure 2. The enthalpy and free energy changes for the initial process 1P → P+H-L are difficult to obtain reliably in situ. Although the P/P+ oxidation potential can be measured in situ, there is no reliable way to obtain the H-L/H-L reduction potential. Furthermore, it is not certain that the equilibrium P/P+ potential is the relevant quantity for the picosecond to nanosecond time scale processes sketched in Figure 2, as the time scale for solvent reorganizations of the nascent ions is not well understood.

Two separate approaches were developed several years ago to obtain information on the energetics in situ: measurements of the amplitude of delayed fluorescence from 1P following activated charge recombination, P+H-L → 1P,2–7 and the activation energy of the reaction 1P → P+H-L,1,8 combined with information on the 3P energy from phosphorescence measurements.9 The results obtained differ substantially both in the absolute value of the 1P → P+H-L free energy change and in the contributions to this change from enthalpy and entropy.

† Part of the special issue “George S. Hammond & Michael Kasha Festschrift”.
* Corresponding author: Steven G. Boxer. E-mail: Sboxer@Stanford.edu. Phone: (650) 723-4482. Fax: (650) 723-4817.

Figure 1. Arrangement of the chromophores involved in the initial electron transfer in photosynthetic reaction centers. Amino acid residues that were mutated for this study are included in the figure.

Figure 2. Reaction scheme depicting electron transfer as well as the formation and decay of 3P. The vertical positions of the species indicate their relative free energies, although the figure is not to scale.

Some of this difference might result from the time scales sampled, but there might be shortcomings of each approach as well, as discussed below.

In the following, we describe measurements using the temperature and magnetic field dependence of the triplet decay rate in a series of mutants that have been designed to perturb the energetics of charge separation. This approach was originally...
applied to RCs from the carotenoidless \textit{Rh. sphaeroides} R26 strain, but it could not be applied to RC mutants, as they were originally prepared in a carotenoid-containing strain and the carotenoid rapidly quenches \(^3\)P. Recently, a \textit{Rh. sphaeroides} RC mutant, M71GL, has been described that assembles without carotenoids,\(^{10}\) so that experiments that depend on \(^3\)P can be undertaken. In the following, we report the temperature and magnetic field dependence of the triplet decay of a series of RC mutants in the M71GL background to obtain information on the energetics of the initial charge separation reaction.

Principle of Method. As diagrammed in Figure 2, when \(q_A\) is either removed or chemically reduced, the singlet radical pair \(^1\)\((P^+H_{\text{L}}^-)\) can either decay to the ground state with rate \(k_g\), undergo activated charge recombination to re-form \(^1\)P (the basis of the delayed fluorescence approach), or undergo coherent spin evolution, with frequency \(\omega\), to form the triplet spin configuration of the radical pair, \(^3\)\((P^+H_{\text{L}}^-)\). \(^3\)\((P^+H_{\text{L}}^-)\) decays either by charge recombination to form \(^1\)P with rate \(k_T\) or by spin evolution to re-form \(^1\)\((P^+H_{\text{L}}^-)\).\(^{1,11}\) In RCs lacking carotenoid, \(^1\)P decays by intersystem crossing with rate \(k_{\text{isc}}\), or it can re-form the state from which it came by the thermally activated rate \(k_{\text{T}}\), demonstrated by the magnetic field effect on the \(^3\)P decay rate.\(^1\) The activation energy of the latter process provides information on the energetics of charge separation when combined with spectroscopic data on the energies of \(^1\)P and \(^3\)P.\(^9\)

In quinone-depleted RCs, used to avoid further complications involving spin exchange between \(H_{\text{L}}^-\) and \(q_{\text{A}}\),\(^{12}\) within 100 ns of the excitation of \(P\), the RCs have either returned to the ground state or formed the \(^3\)P state. The triplet quantum yield, \(\Phi_{\text{P}}\), and the decay kinetics of \(^3\)P can be measured by monitoring the ground-state recovery of \(P\). As discussed in detail elsewhere,\(^1\) the temperature dependence of the observed triplet decay rate \(k_{\text{obs}}\) is given by

\[
k_{\text{obs}} = k_{\text{isc}} + \alpha e^{-\Delta H^o/T} \tag{1}
\]

where

\[
\alpha = \frac{1}{3} k_s \Phi_{\text{P}} e^{\Delta S^o/k_B} \tag{2}
\]

and \(\Delta H^o\) and \(\Delta S^o\) are the standard enthalpy and entropy differences, respectively, between \(^1\)P and \(^3\)\((P^+H_{\text{L}}^-)\). \(\beta\) is \(1/k_BT\), where \(k_B\) is the Boltzmann constant; and \(T\) is the absolute temperature. At zero or low applied magnetic field, singlet–triplet interconversion is driven by the nuclear hyperfine interaction,\(^{13,14}\) whereas at high field, the difference in \(g\) factors of the radicals, \(\Delta g\), dominates singlet–triplet mixing.\(^{15}\) At low field, the subpopulation of RCs whose nuclear spins generate a large hyperfine field will have larger values of \(\alpha\) and will evolve more rapidly to \(^3\)\((P^+H_{\text{L}}^-)\). Thus, the nuclear hyperfine-induced singlet–triplet radical pair interconversion enriches \(^3\)P with nuclear spin states that generate large hyperfine fields, resulting in nuclear spin polarization.\(^{16}\) Because equilibration of nuclear spin states (spin lattice relaxation) might be on the same time scale or slower than the lifetime of \(^3\)P, subsequent decay through \(^3\)\((P^+H_{\text{L}}^-)\) via \(k_{\text{T}}\) might be faster because of a larger \(\alpha\) than it would be if the nuclear spins were at thermal equilibrium.\(^{17}\) As a result, \(k_{\text{obs}}\) is greater than it would be with an equilibrium population of nuclear spins, as was assumed in the derivation of eq 1. The extrapolated activation energy from the low- or zero-field measurements is then smaller than it should be, making the apparent enthalpy difference between \(^1\)P and \(^3\)\((P^+H_{\text{L}}^-)\) larger than it actually is.\(^{18}\) To minimize this problem, the experiment is carried out in the highest possible applied magnetic field so that nuclear spins play a smaller part in singlet–triplet mixing.\(^8\) Ideally, one would like to work in the “infinite-field limit,” where singlet–triplet mixing effectively equilibrates \(^1\)\((P^+H_{\text{L}}^-)\) and \(^3\)\((P^+H_{\text{L}}^-)\), although it might be impractical to achieve such fields depending on the values of \(k_s\), \(k_T\), and \(\Delta g\).

Equation 1 provides an alternative method of determining the activation energy for \(^1\)P \(\rightarrow \) \(^3\)\((P^+H_{\text{L}}^-)\). Because an applied magnetic field can vary the value of \(\omega\) by the \(\Delta g\) effect, the quantum yield of triplet formation is magnetic-field-dependent. Combining the enthalpy and entropy terms, one can rewrite eq 1 as

\[
k_{\text{obs}} = k_{\text{isc}} + \frac{1}{3} k_s \Phi_{\text{P}}(B)e^{-\Delta G^o/B} \tag{3}
\]

where \(\Delta G^o\) is the standard free energy of the reaction and \(\Phi_{\text{P}}(B)\) is the triplet quantum yield at applied magnetic field \(B\). The absolute magnitude of the triplet yield at any magnetic field, \(\Phi_{\text{P}}(B)\), is not simple to measure accurately; however, the triplet yield at a given magnetic field \(B\) relative to the triplet yield at zero field, \(\Phi_{\text{P}}(B)/\Phi_{\text{P}}(B=0)\), is straightforward to measure by taking the ratio of the initial bleach of \(P\) at magnetic field \(B\) relative to that at \(B=0\). A plot of \(k_{\text{obs}}\) vs \(\Phi_{\text{P}}(B)/\Phi_{\text{P}}(B=0)\) has a \(y\) intercept of \(k_{\text{isc}}\) and a slope of

\[
\text{slope} = \frac{1}{3} k_s \Phi_{\text{P}}(B=0)e^{-\Delta G^o/B} \tag{4}
\]

If the values of \(k_s\) and \(\Phi_{\text{P}}(B=0)\) are known, the free energy difference between \(^1\)P and \(^3\)\((P^+H_{\text{L}}^-)\) can be determined. By comparing \(\Delta H^o\) with \(\Delta G^o\), the contribution of \(\Delta S^o\) can be obtained. Although the values of \(k_s\) and \(\Phi_{\text{P}}(B=0)\) are known quite accurately for R26 RCs, they have not been measured for most of the mutants used in this study. Nonetheless, we report data obtained in this way and provide some preliminary analysis given available information.

Choice of Mutants. In the following, we consider four mutants, the M71GL carotenoidless mutant for comparison with R26 RCs and three double mutants in the M71GL background: L168HF, L104EV, and M214LH (the beta mutant). The L168HF mutation is designed to modify the environment of \(P\) by removing a hydrogen-bonding group near the ring I acetyl group of the L-side chromophore of the special pair.\(^{19}\) This has been shown to decrease the oxidation potential of \(P\), thereby altering the energetics of electron transfer; L168HF is the single hydrogen-bond mutation that results in the largest decrease in the P/P\(^+\) potential.\(^{20}\) The L104EV mutation removes a hydrogen bond from the 9-keto carbonyl group of the \(H_{\text{L}}\) chromophore.\(^{21}\) Removing the hydrogen bond should raise the reduction potential of the \(H_{\text{L}}\) bacteriochlorophytin. The M214LH mutation replaces a noncoordinating leucine with a histidine over the center of the \(H_{\text{L}}\) chromophore. This RC assembles with a bacteriochlorophyll in the \(H_{\text{L}}\) binding site, and this new chromophore is called \(\beta_{\text{L}}\).\(^{22}\) Because bacteriochlorophyll has a substantially higher reduction potential in vitro than bacteriopheophytin, the driving force for initial electron transfer should be decreased.

Experimental Section

All of the mutants were constructed with a PCR-based mutagenesis kit, followed by excision and ligation of the relevant restriction fragments. The following \textit{Rh. sphaeroides} mutants were created: M71GL, M71GL/L168HF, M71GL/L104EV, and
M71GL/M214LH. The mutations were inserted into a plasmid that produces RCs with a polyhistidine tag for rapid purification. Following purification, RCs were suspended in 10 mM Tris-HCl (pH 8.0), 0.1% LDAO, 1.0 mM EDTA. Q₈ was removed by standard procedures, and the RCs were mixed with glycerol to a final glycerol concentration of 60%.

For high magnetic field measurements, the RCs were placed in a 3-mm-path-length glass cuvette. The cuvette was mounted on a copper block, which was cooled by a jet of helium gas. The temperature of the helium gas jet could be varied with a heater and was monitored with a Cernox resistance temperature sensor. As a secondary temperature control, the temperature of the copper block was measured with a platinum resistance sensor and was varied with a Kapton film heater. The sample was placed in an Oxford Instruments superconducting Spectromag system, with variable magnetic field up to 8 T. The split-bore Spectromag allowed for a perpendicular pump/probe excitation geometry.

For measurements of transient absorption kinetics, the sample was excited with a subsaturating 532-nm actinic pulse (fwhm ≈ 8 ns) from a Nd:YAG laser at a 2-Hz repetition rate. The time dependence of the bleach of the P ground state (which is a measure of the relative concentration of 3P) was monitored with a weak probe laser diode at 852 or 905 nm and detected with a fast photodiode and a digital oscilloscope. Data were taken with the probe beam polarized at the magic angle with respect to the magnetic field direction. The absorbance change was linear with respect to pump power and independent of probe power. The Q-depletion procedure is not perfect, so there is a small population (generally less than 10%) of the RCs that still contain quinone. The initial bleach amplitude reflects the fraction of RCs that were excited with a subsaturating 532-nm actinic pulse (fwhm ≈ 8 ns) from a Nd:YAG laser at a 2-Hz repetition rate. The time dependence of the bleach of the P ground state (which is a measure of the relative concentration of 3P) was monitored with a weak probe laser diode at 852 or 905 nm and detected with a fast photodiode and a digital oscilloscope. Data were taken with the probe beam polarized at the magic angle with respect to the magnetic field direction. The absorbance change was linear with respect to pump power and independent of probe power. The Q-depletion procedure is not perfect, so there is a small population (generally less than 10%) of the RCs that still contains quinone. This results in a bleach component that decays on a 100-ms time scale, about 3 orders of magnitude longer than the decay of 3P. This is accounted for by fitting the microsecond decay curves with a small baseline offset.

For low magnetic field experiments, the sample was cooled with a miniature Joule–Thompson refrigerator (MMR Technologies) with precise temperature control from 300 to 117 K. The magnetic field was generated with a Helmholtz electromagnet driven by a 1-kW current-regulated power supply, resulting in a variable magnetic field from 0 to 400 G.

Results

The low-temperature absorption spectra for all four mutants are shown in Figure 3. The absence of carotenoid in the RCs is evidenced by the lack of the broad absorption between 400 and 550 nm attributable to the carotenoid. Note that the absorption at 532 nm, the wavelength of excitation for the transient absorption experiments, differs among the mutants. To roughly compare relative triplet yields between the mutants, the experimental sample concentrations were adjusted such that the absorption at 532 nm was approximately the same.

The time dependence of the bleach of the P ground state (which is a measure of the relative concentration of 3P) was monitored with a weak probe laser diode at 852 or 905 nm and detected with a fast photodiode and a digital oscilloscope. Data were taken with the probe beam polarized at the magic angle with respect to the magnetic field direction. The absorbance change was linear with respect to pump power and independent of probe power. The Q-depletion procedure is not perfect, so there is a small population (generally less than 10%) of the RCs that still contains quinone. This results in a bleach component that decays on a 100-ms time scale, about 3 orders of magnitude longer than the decay of 3P. This is accounted for by fitting the microsecond decay curves with a small baseline offset.

For low magnetic field experiments, the sample was cooled with a miniature Joule–Thompson refrigerator (MMR Technologies) with precise temperature control from 300 to 117 K. The magnetic field was generated with a Helmholtz electromagnet driven by a 1-kW current-regulated power supply, resulting in a variable magnetic field from 0 to 400 G.

Figure 3. Low-temperature (77 K) absorption spectra for the mutants made for this study. The RCs are suspended in 60% glycerol, and the spectra are normalized to the same absorption at 802 nm. The three dotted lines indicate the excitation wavelength (532 nm), and the probe wavelengths (852 and 905 nm).

Figure 4. Relative quantum yield of 3P as a function of magnetic field, normalized to 1 for each mutant with zero applied field at 120 K. Data were taken at 120, 250, and 290 K, as indicated. Vertical axes are scaled to facilitate side-by-side comparison.

Figure 5. kobs as a function of low magnetic field for all four mutants at 290, 250, and 120 K, as indicated. The vertical axes are scaled to facilitate side-by-side comparison.
The in vitro (P is close to the QA binding pocket, and it is possible that the L104EV RCs denature upon quinone depletion. The L104 site for the other mutants, and a large fraction of the M71GL/L168HF mutants: the protein yield per gram of cells is about half that at room temperature are shown in the insets for each mutant in a poorer signal-to-noise ratio for this mutant than for the M71GL/M214LH than in any of the other mutants, indicating the ground-state bleach of P is significantly smaller in a much lower triplet yield, and resulting in a poor signal-to-noise ratio. The low triplet yield is likely due to the fact that there is a smaller range over which to extrapolate a linear relationship between kobs and profile at an applied field (B = 0) plotted against applied magnetic field. Figure 6. Room-temperature quantum yield of 3P formation at an applied field (B = 0) relative to the quantum yield of 3P formation at zero field (B = 0) plotted against applied magnetic field. Figure 7. Temperature dependence of kobs for M71GL at an applied field of 8 T. The solid line is the fit to M71GL data, and the dashed line is fit to R26 data (see text). Data fit to an exponential with kobs = 7900 ± 150 s⁻¹, a = (6.0 ± 1.5) × 10⁸ s⁻¹, and ΔHm = 1230 ± 60 cm⁻¹. Inset: M71GL kobs plotted as a function of relative triplet yield at 290 K. Data fit to a straight line with slope = 5600 ± 1100 s⁻¹ and intercept = 11 700 ± 1500 s⁻¹.

Figure 8. Temperature dependence of kobs for M71GL/L168HF at an applied field of 8 T. Data fit to an exponential with kobs = 8900 ± 600 s⁻¹, a = (3.5 ± 1.9) × 10⁸ s⁻¹, and ΔHm = 1020 ± 100 cm⁻¹. Inset: M71GL/L168HF kobs plotted as a function of relative triplet yield at 290 K. Data fit to a straight line with slope = 13 700 ± 1700 s⁻¹ and intercept = 14 000 ± 2000 s⁻¹.

Figure 9. Temperature dependence of kobs for M71GL/L104EV at an applied field of 8 T. Data fit to an exponential with kobs = 7300 ± 200 s⁻¹, a = (9.6 ± 8.0) × 10⁶ s⁻¹, and ΔHm = 1360 ± 150 cm⁻¹. Inset: M71GL/L104EV kobs plotted as a function of relative triplet yield at 290 K. Data fit to a straight line with slope = 5000 ± 2000 s⁻¹ and intercept = 5800 ± 2500 s⁻¹.

Figures 7–10. The ordinate for each point is kobs for a particular magnetic field B, and the abscissa is ΦP/ΦP(B = 0). Because there is error both in the measurement of the zero-field triplet yield (calculated from the initial bleach amplitude, transmission prior to the pump pulse, and sample absorption) and in the relative triplet yield at the applied magnetic field, and the relative error bars in the insets of Figures 7–10 tend to be large. In the previous iteration of these experiments on the R26 RCs, Goldstein et al. used a 13.5-T magnet. The consequence of using a weaker magnet for the current set of measurements is that there is a smaller range over which to extrapolate a linear relationship between kobs and ΦP(0)/ΦP(B = 0). In the case of the M71GL/M214LH and M71GL/L104EV mutants, where the triplet yields are very low, there is a large error in the zero-field value, giving rise to especially large error in the relative triplet yield. The parameters from the linear fits to the insets in Figures 7–10 are summarized in Table 2.

Discussion

Approaches to Data Analysis. The validity of eq 1 for determining ΔHm for \(\Phi P \rightarrow \Phi P' \) from the temperature...
dependence of the triplet decay has been discussed previously.

Briefly, the analysis is predicated on the assumption that k_s, k_{isc}, ΔH^0, ΔS^0, and Φ_{3P} are temperature-independent. For R26 reaction centers, k_s and Φ_{3P} do not depend on temperature, with k_s decreasing by a factor of about 4 as the temperature is lowered from room temperature to 120 K and Φ_{3P} increasing by a factor of approximately 3 over the same range. The temperature dependences of these two factors are related: as k_s decreases, the triplet-forming pathway competes more effectively with charge recombination to the ground state (Figure 2). The temperature dependences of these parameters have not yet been reported for any of the double mutants made for this study, but it is reasonable to assume that, given the underlying scheme, the temperature dependences will generally offset, so that the product, $k_s\Phi_{3P}$, will be only weakly temperature-dependent and much less so than the exponential dependence in the activation term.

The magnetic field dependence of k_{obs} and the triplet quantum yield is a second method for determining the activation energy for the reaction $3P \rightarrow \frac{1}{3}(P^+H_L^-)$. To extract any useful information from the fit, k_s and Φ_{3P} are assumed to be constant. k_s has not been directly measured for many of the mutants studied, although the radical pair lifetime has been measured for Q-depleted L168HF and M2144L mutants of Rh. sphaeroides. Φ_{3P} is known with reasonable accuracy for R26 reaction centers, and this value should apply to M71GL (see below), but $\Phi_{3P} = 0$ has not been measured for any of the other mutants studied. To estimate $\Phi_{3P} = 0$ for a mutant, we compare the initial bleach of P in the mutant with that of M71GL, using samples with the same absorption at 532 nm and taking into account the probe transmission prior to the excitation pulse and the sample absorption at the probe wavelength (Figure 3). Substituting the slope of the fit line, k_s, and $\Phi_{3P} = 0$ into eq 4 gives the experimental value of ΔG^0.

ΔG^0 is measured with $\phi(3P)$ and $\phi(1P)$ using the standard free energy difference between $3P$ and $3(P^+H_L^-)$, and thereby decade through the process that is affected by an applied magnetic field.

In the earlier experiments on the temperature dependence of k_{obs} for R26 RCs at high magnetic field, the experimental apparatus did not allow the sample temperature to be lowered below 200 K, and this was used to provide the asymptotic value of k_{isc}. In these new measurements, we were unable to apply such high magnetic fields, but were able to lower the temperature to 1.5 K (120 K proves adequate). As shown in Figure 7 (dashed line), the single-exponential fit for the high-magnetic-field data points from 290 to 200 K used in the earlier work on R26 ($\Delta H^0 = 1450$ cm$^{-1}$) fits well to the new data on M71GL over the temperature range 290–200 K; however, it does not adequately fit all of the points in the low-temperature region. If the 8-T field applied in the current experiments are not sufficiently close to the infinite-field limit to circumvent the effects of nuclear spin polarization, the high-temperature points in the current data set would deviate from those of the previous data set with the 13.5-T magnet. The observation that they do not suggests that the 8-T magnet is able to drive the radical pair singlet–triplet interconversion through the ΔG effect, with minimal perturbation from the effects of nuclear spin polarization.

With the wider temperature range, we can refine the value of ΔH^0. Figure 7 shows the single-exponential fit over the entire temperature range and gives $\Delta H^0 = 1230$ cm$^{-1}$. With this improved value for the activation energy for $P \rightarrow \frac{1}{3}(P^+H_L^-)$, the enthalpy difference between P and $\frac{1}{3}(P^+H_L^-)$ increases from the previous value of 2050 to 2270 cm$^{-1}$. The preexponential decreases by a factor of 2 in the full fit relative to the 290–200 K fit for data taken at 13.5 T. The fit to the larger range of temperature points results in a better determination of the preexponential, although some of the difference between the preexponential from this fit and the 13.5-T fit is due to the fact that the triplet quantum yield at 8 T is about 20% less than that at 13.5 T.

The values of k_{obs} as a function of the relative P quantum yield between 2 and 8 T at room temperature fit reasonably well to a line (Figure 7, inset). From eq 3, the y intercept of the line is k_{isc}. k_{isc} is known to have some dependence on temperature, and it is reasonable to assume that the value derived from this room-temperature measurement is not identical to the low-temperature limiting value of k_{isc}. The slope of the fit line, 5600 s$^{-1}$, is equal to $\frac{1}{k_s\Phi_{3P}}(B=0)\exp(-\Delta G^0/RT)$. The value of k_s for R26 RCs (and presumably M71GL) has been measured to be $(4.9 \pm 0.4) \times 10^7$ s$^{-1}$, and $\Phi_{3P} = 0$ for R26 RCs has been determined to be 0.32 ± 0.04 s$^{-1}$, so the value for ΔG^0 for $P \rightarrow \frac{1}{3}(P^+H_L^-)$ is 1390 ± 40 cm$^{-1}$. The resulting free energy difference for initial electron transfer in M71GL derived from the magnetic-field-dependent data is 2110 cm$^{-1}$. As in our earlier work, within the experimental error, the value of ΔG^0 is approximately equal to that of ΔH^0.

The driving force for the reaction $P \rightarrow \frac{1}{3}(P^+H_L^-)$ has also been estimated by redox potentials and delayed fluorescence. Comparisons between redox measurements, delayed fluorescence, and triplet decay measurements have been discussed previously; see Goldstein et al. for reviews. Redox measurements suggest that $P^+H_L^- = 8430$–8510 cm$^{-1}$ (1045–1055 meV) above the ground state and 2690–2770 cm$^{-1}$ below P. Analysis of the amplitude of delayed fluorescence
for wild-type and R26 RCs yields an apparent free energy difference between 1P and P$^+\text{H}_\text{L}$ of about 1370 cm$^{-1}$ at room temperature, decreasing to 400 cm$^{-1}$ at 100 K. Unfortunately, in most measurements of delayed fluorescence because the original papers, magnetic field effects were not reported. We take the presence of a magnetic field effect as an essential indication that the species giving rise to delayed fluorescence (or the back-reaction from 1P, as in the current work) is a weakly coupled radical pair.

Two other groups have recently obtained estimates for the driving force for initial electron transfer by a combination of transient absorption spectroscopy and simulations. Holzwarth and Müller measured femtosecond transient absorption spectra from 500 to 940 nm over the range 0–700 ps and fit the resulting spectra with decay-associated difference spectra (DADS) and species-associated difference spectra (SADS). They modeled these spectra extensively and, from the kinetic models, determined that the room-temperature free energy difference between 1P and P$^+\text{H}_\text{L}$ is 730 cm$^{-1}$ and that P$^+\text{B}_\text{L}$ is 330 cm$^{-1}$ below 1P. Holzwarth and Müller did not measure the temperature dependence of ΔG° nor did they study RC mutants. They argue that the discrepancy between their measurements and fluorescence decay measurements, as well as those of Holzwarth and Müller, was due to energetic heterogeneity persisting on the hundreds of microsecond time scale. They pointed out that Holzwarth and Müller analyzed their data using decay components with linked amplitudes taken from delayed fluorescence measurements, so that it was not surprising that the results of Holzwarth and Müller resembled those of delayed fluorescence measurements.

The results for the triplet decay experiments reported here for M71GL are very similar to those previously reported for R26. The free energy change for primary charge separation determined from these measurements is larger (2110 cm$^{-1}$) than the values estimated from delayed fluorescence (1370–400 cm$^{-1}$), and an additional disagreement exists over the role of ΔH° in charge separation. The delayed fluorescence measurements suggest that the charge separation reaction is largely driven by entropy, whereas the triplet decay experiments suggest that the change in entropy associated with charge separation is negligible. There are two recurring explanations for the disagreements between the conclusions reached by delayed fluorescence and triplet decay measurements. The disagreement could stem from the fact that delayed fluorescence measurements sample the system during the 20-ns lifetime of P$^+\text{H}_\text{L}$, whereas the triplet decay measurements cover the 100-µs lifetime of 1P. Thus, the triplet decay and the delayed fluorescence experiments could be measuring the energies of different states or states with differing degrees of relaxation. The second explanation offered is that inhomogeneous broadening, due to different protein conformations, causes the RCs to be heterogeneous with respect to the energy of P$^+\text{H}_\text{L}$. At low temperature, P$^+\text{H}_\text{L}$ will recombine to 1P only in that subpopulation of RCs that has a relatively high energy of P$^+\text{H}_\text{L}$. Persistent energetic inhomogeneity (on the order of 100 µs) might affect the triplet decay measurements in a similar manner, except that, at low temperature, 1P will re-form only in the subpopulation of RCs with a relatively low energy of P$^+\text{H}_\text{L}$. This would cause delayed fluorescence measurements to underestimate the free energy difference between 1P and P$^+\text{H}_\text{L}$ and triplet decay experiments to overestimate the enthalpy difference between 1P and P$^+\text{H}_\text{L}$. This issue is discussed further below.

M71GL/L168HF. The M71GL/L168HF mutant introduces a perturbation to the special pair by removing a hydrogBonding group near the ring I acetyl group of the L-side chromophore. The special pair Q$_{s}$ band shifts to 850 nm at room temperature, compared to 865 nm in wild-type (WT). The fluorescence spectrum for L168HF has not been reported, but room-temperature decay-associated spectra from stimulated emission measurements suggest that the emission from L168HF is blue-shifted relative to that of WT. Assuming that the emission is blue-shifted as much as the absorption, the shift in the absorption maximum represents an increase of 200 cm$^{-1}$ in the energy of 1P in the L168HF mutant. At 77 K, the absorption band for M71GL/L168HF shifts to 870 nm, compared with 890 nm for M71GL (an increase of about 260 cm$^{-1}$ relative to M71GL at 77 K) (Figure 3). Phosphorescence has not been measured to determine whether the energy of 1P also shifts in the L168HF mutant; in the absence of precise information, we will assume that the 1P–3P singlet–triplet splitting is the same as in R26.

TABLE 1: Fit Parameters from the Temperature-Dependent, High-Magnetic-Field Data

<table>
<thead>
<tr>
<th>mutant</th>
<th>k_{isc}, s$^{-1}$</th>
<th>α, s$^{-1}$</th>
<th>$\Delta H^\circ \text{P} \rightarrow \text{(P}^{+}\text{H}_\text{L})$, cm$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>M71GL</td>
<td>7900 ± 150</td>
<td>(6.0 ± 1.5) × 106</td>
<td>1230 ± 60</td>
</tr>
<tr>
<td>M71GL/L168HF</td>
<td>8900 ± 600</td>
<td>(3.5 ± 1.9) × 106</td>
<td>1020 ± 100</td>
</tr>
<tr>
<td>M71GL/L104EV</td>
<td>7300 ± 200</td>
<td>(9.6 ± 8.0) × 106</td>
<td>1360 ± 150</td>
</tr>
<tr>
<td>M71GL/M214LH</td>
<td>8000 ± 300</td>
<td>(15 ± 12) × 106</td>
<td>1440 ± 200</td>
</tr>
</tbody>
</table>

Figure 11. Summary schematic depicting the measured enthalpy difference between 1P and P$^+\text{H}_\text{L}$ for the four mutants studied.
TABLE 2: Fit Parameters from the Magnetic-Field-Dependent, Room-Temperature Data

<table>
<thead>
<tr>
<th>Mutant</th>
<th>k_{obs}, s$^{-1}$</th>
<th>Slope, s$^{-1}$</th>
<th>ΔG°</th>
<th>$\lambda(P \rightarrow \lambda(P^1H^-_L))$, cm$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>M71GL</td>
<td>11 700 ± 1500</td>
<td>5600 ± 1100</td>
<td>1390 ± 40</td>
<td></td>
</tr>
<tr>
<td>M71GL/L168HF</td>
<td>14 000 ± 2000</td>
<td>13 700 ± 1700</td>
<td>1150 ± 50</td>
<td></td>
</tr>
<tr>
<td>M71GL/L104EV</td>
<td>5800 ± 2500</td>
<td>5000 ± 2000</td>
<td>1260 ± 150</td>
<td></td>
</tr>
<tr>
<td>M71GL/M214LH</td>
<td>10 000 ± 2800</td>
<td>3600 ± 1900</td>
<td>1600 ± 300</td>
<td></td>
</tr>
</tbody>
</table>

The dependence of k_{obs} and the quantum yield of triplet formation on a weak magnetic field are similar in M71GL/L168HF and M71GL (Figures 4 and 5). The temperature dependence of k_{obs} at 8 T shown in Figure 8 fits to a single exponential with a slope of 1020 cm$^{-1}$; thus, ΔH° between 3P and $P^1H^-_L$ is about 200 cm$^{-1}$ smaller in this mutant than in M71GL. Assuming that the singlet–triplet splitting remains the same in the M71GL/L168HF mutant and taking the energy of 3P in M71GL/L168HF to be 11 400 cm$^{-1}$, ΔH° for initial electron transfer is 2480 cm$^{-1}$, an increase of 210 cm$^{-1}$ relative to the value derived for M71GL from the temperature-dependent data. k_s has not been explicitly measured; however, the decay of the bleach of P in Q-depleted RCs of the L168HF mutant following excitation by a 5-ns pulse was measured to be 3.8 \times 107 s$^{-1}$, which is similar to the value for R26 RCs. The triplet yield at zero magnetic field was estimated by using samples with the same absorption at 532 nm and measuring the initial bleach of the P band at room temperature corrected for the transmission prior to the excitation pulse at the probe wavelength. The value is about 25% less in the M71GL/L168HF mutant than in M71GL, taking $\Phi_{sp}(B=0) = 0.32$ for M71GL and $\Phi_{sp}(B=0) = 0.25 \pm 0.05$ in the M71GL/L168HF mutant. The smaller preexponential derived from the fit of the temperature-dependent data in Figure 8 is consistent with the smaller value of $\Phi_{sp}(B=0)$ estimated for L168HF.

The magnetic-field-dependent data for M71GL/L168HF fit well to a straight line with slope 13 700 s$^{-1}$. With k_s estimated as 4.9 \times 107 s$^{-1}$ and $\Phi_{sp}(B=0)$ estimated as 0.25, the slope of the fit to the magnetic-field-dependent data translates to ΔG° for $P \rightarrow P^1H^-_L$ of 1150 \pm 50 cm$^{-1}$, corresponding to ΔG° for $^3P \rightarrow P^1H^-_L$ of 2350 \pm 50 cm$^{-1}$. This is an increase of 240 \pm 50 cm$^{-1}$ relative to the value derived for M71GL, and again $\Delta G^\circ \approx \Delta H^\circ$.

The P/P^1 midpoint potential in L168HF decreases by 90 \pm 10 meV relative to wild-type, a change of 725 \pm 80 cm$^{-1}$. Assuming that the mutation does not affect H_L/H^-_L-H$_2$ bond, this change in the redox potential of P could translate directly to a change in the $P \rightarrow P^1H^-_L$ free energy difference, which might be expected to significantly affect the rate of primary charge separation. Nevertheless, the L168HF mutant has an electron-transfer lifetime that is almost identical to that of wild-type at room temperature (3.6 vs 3.8 ps for WT). The change in ΔG° that we measure is substantially smaller than the value predicted from the redox potential shift. Delayed fluorescence has been measured for L168HF, but the analysis of the data is problematic because the decay component of long-lived fluorescence that in WT is most convincingly assigned to $P^1H^-_L$ decay (i.e., due to its magnetic field dependence) is absent in the L168HF mutant. Murchison et al. speculated that the disappearance of the longest-lived delayed fluorescence component indicates an increase in the equilibrium constant favoring the forward reaction, suggesting an increase in the free energy difference between P and $P^1H^-_L$.

By assuming that the $^3P \rightarrow P$ energy difference is the same as in WT, the energies of P and P^1 both increase by approximately 200 cm$^{-1}$, so the observation from the triplet decay experiments that the free energy of charge separation also increases by about 200 cm$^{-1}$ leads to the unexpected result that the energy of the $P^1H^-_L$ state relative to the ground state in M71GL/L168HF is nearly identical to that in M71GL. In this scenario, the increase in the free energy difference between P and $P^1H^-_L$ in M71GL/L168HF appears to be due entirely to the 200 cm$^{-1}$ shift of the P absorption band to higher energy in the double mutant and not to the change in the redox potential of P. We stress that this last conclusion depends on the assumption that the singlet–triplet splitting in P is unchanged by the L168HF mutation. The data show that the energy difference between P and $P^1H^-_L$ is smaller in L168HF; a direct measurement of the phosphorescence spectrum of P in this mutant is needed to ascertain the true singlet–triplet splitting.

M71GL/L104EV. The L104EV mutation removes a hydrogen-bonding group near the ring V keto group in H_L. Resonance Raman, infrared, and ENDOR experiments suggest that the native glutamic acid at position L104 interacts with the bacteriopheophytin in the H_L binding site, probably through a hydrogen bond. Removal of the L104 hydrogen bond is expected to raise the free energy of $P^1H^-_L$ as H_L becomes more difficult to reduce. The hydrogen bond at L104E results in a red shift of the Q_Y absorption of H_L, making the two bacteriopheophytin chromophores spectrally resolvable at low temperature (Figure 3). In the M71GL/L104EV mutant, the Q_Y bacteriopheophytin bands overlap, and the Q_A region of the H band becomes sharper. This is similar to what has been reported previously for the L104EL mutation in Rh. capsulatus21 and the L104EV mutation in Rh. sphaeroides.47

k_{obs} and Φ_{sp} for M71GL/L104EV have little dependence on weak applied fields unlike in M71GL (Figures 4 and 5), whereas Φ_{sp} changes upon application of a high magnetic field much like M71GL (Figure 6). The temperature dependence of k_{obs} for M71GL/L104EV at 8 T fits to a single exponential with a slope of 1360 cm$^{-1}$, that is, the $3P \rightarrow P^1H^-_L$ enthalpy gap is larger than in M71GL. The energy of P should be unaffected by the L104EV mutation because the change is far from P and there is no effect on the Q_Y absorption of P. Thus, ΔH° for $P \rightarrow P^1H^-_L$ is expected to be 2140 cm$^{-1}$, a decrease of 130 cm$^{-1}$ relative to M71GL. The magnetic-field-dependent data for M71GL/L104EV are noisy but can be fit to a line with a slope of 5000 s$^{-1}$. The initial bleach amplitude at zero field and room temperature indicates that the triplet yield in M71GL/L104EV is 40–60% smaller than in M71GL, the uncertainty being due to the low triplet yield and large difference in absorption at 532 nm. A possible explanation for the low triplet yield is that k_s has increased; however, there is no evidence for this using the $P^1H^-_L \rightarrow P^1Q^-_X$ vs $P^1H^-_L \rightarrow P^1Q^-_S$ ground state competition in Rh. sphaeroides as a metric.34 Using the same value for k_s as in R26 and approximating $\Phi_{sp}(B=0)$ for M71GL/L104EV as 0.16 \pm 0.05, we obtain an approximate value for ΔG° for $P \rightarrow P^1Q^-_X$ of 1260 \pm 150 cm$^{-1}$. From this value, the calculated ΔG° for initial electron transfer is 2240 \pm 150 cm$^{-1}$. With the large uncertainty in ΔG°, it is not possible to offer more definitive information on the entropy at this time.

The redox potential of the H_L chromophore in situ in L104EV has not been measured. Room-temperature delayed fluorescence for the L104EV mutant in Q_A containing Rh. sphaeroides suggests that the free energy of charge separation decreases by
about 250—320 cm\(^{-1}\) relative to wild-type.\(^{34}\) Unfortunately, the magnetic field dependence was not reported for this mutant, so it is not clear that the measured delayed fluorescence arises from \(1^P\) re-formation from the radical pair. The decrease in \(\Delta H^p\) for charge separation in M71GL/L104EV relative to M71GL that we measure is consistent with the direction of change measured by delayed fluorescence, but the magnitude of the change is substantially smaller.

The energetic effects of the L104EV mutation can also be measured by resonance Stark spectroscopy on the \(B_1\) absorption band.\(^{38,49}\) This spectroscopic observable arises from the effect of an applied electric field on the \(B_1^+ combustion of \(B_1^+\) with \(H_2^-\) electron-transfer reaction. Among other electron-transfer parameters, changes in the driving force can be obtained. Assuming that only \(H_2^-\) is affected by the L104EV mutation, the energetic shift of \(B_1^+\) in L104EV can be compared to the energetic shift of \(P^+\) determined from triplet decay kinetics as they share the same energetic perturbation.\(^{50}\) Both resonance Stark spectroscopy from our laboratory\(^{51}\) and the \(3^P\) decay measurements presented here are consistent with an increase in the energy of the charge-separated states in L104EV relative to that in wild-type. The resonance Stark effect in the L104EV mutant is small and difficult to resolve, but the extrapolated energy of \(B_1^+\) in L104EV is at least 300 cm\(^{-1}\) larger than in wild-type. This is larger than the change in \(P^+\) as measured by triplet decay. The source of this discrepancy is not known and is discussed below. We note that the states and the underlying processes measured by each methodology are different and that both methods require multiple assumptions to extract energetics from the observables.

M71GL/M214LH. In M71GL/M214LH, the bacteriopheophytin in the \(H_2^-\) binding site is replaced by a bacteriochlorophyll. This improves the spectral resolution in the \(Q_Y\) region (Figure 3), and because bacteriochlorophyll is more difficult to reduce in vitro, this change is expected to perturb the energetics of initial electron transfer. Because M214 is far from the special pair, the energies of \(1^P\) and \(3^P\) are not expected to change in M71GL/M214LH mutant relative to M71GL, and the \(P\)-band \(Q_Y\) transition is unaffected (Figure 2).

Triplet yield and decay in M71GL/M214LH depend weakly on a small, applied magnetic field (Figures 4 and 5). The observed \(\Phi_{3P}(B=8)/\Phi_{3P}(B=1)\) ratios for M71GL and M71GL/M214LH are the same within experimental error, with values of about 3 (Figure 6). Within the framework of the scheme in Figure 2 and in the high-field (\(>1\ T\)) limit, triplet yields can be calculated using the equation\(^{52}\)

\[
\Phi_{3P}(B) = \frac{k_T}{k_T + k_S (\omega^2 + \kappa^2)}
\]

where

\[
\omega = \frac{\Delta g \beta B}{\hbar}
\]

and

\[
\kappa^2 = k_S k_T + \frac{4 \Delta E^2 k_SK_T}{(k_S + k_T)^2}
\]

where \(\beta\) is the Bohr magneton, \(B\) is the applied magnetic field, \(\hbar\) is Planck’s constant divided by \(2\pi\), and \(\Delta E\) is the splitting between the \(S\) and \(T_0\) states of the \(P^+\) radical pair. With the same values of \(\Delta g\) (0.001), \(\Delta E\) (7 G), and \(k_T\) (5 \(\times\) 10\(^9\) s\(^{-1}\)) for these mutants, but assuming that \(k_S\) is 4.9 \(\times\) 10\(^7\) s\(^{-1}\) for M71GL and 1 \(\times\) 10\(^9\) s\(^{-1}\) for M71GL/M214LH, we calculate that \(\Phi_{3P}(B=8)/\Phi_{3P}(B=1)\) should be 32 for M71GL/M214LH and 4 for M71GL. Thus, the experimental results suggest the M214LH mutation might affect \(k_T\), \(\Delta E\), or \(\Delta g\), in addition to \(k_S\).

Fitting the temperature-dependent data to an exponential results in a \(\Delta H^p\) value for \(3^P\) \(\rightarrow\) \(1^P(\beta H)\) of 1440 cm\(^{-1}\). Combining this value with the energies of \(1^P\) and \(3^P\) results in a \(\Delta H^p\) for \(3^P\) \(\rightarrow\) \(1^P(\beta H)\) of 2060 cm\(^{-1}\) for this mutant, 210 cm\(^{-1}\) less than the value obtained for M71GL. This difference is similar in magnitude to the decrease in enthalpy measured in M71GL/L104EV.

Whereas \(k_S\) can be estimated for M214LH because singlet charge recombination to the ground state is so dominant in this mutant, \(\Phi_{3P}(B=0)\) has not been reported. There are two ways to estimate \(\Phi_{3P}(B=0)\) in M71GL/M214LH. We can compare the initial bleach of \(P\) at room temperature in M71GL/M214LH with that of M71GL, in which case we find that \(\Phi_{3P}(B=0)\) is approximately a factor of 15 less in the double mutant than in M71GL, or about 0.02. Alternatively, the preexponential derived from the fit to the M71GL/M214LH data is found to be 3 times larger than the preexponential for M71GL. From eq 1, the preexponential is equal to \(1/k_S \Phi_{3P}(B=0)\). Then assuming that \(k_S\) is 20 times greater in M71GL/M214LH than in M71GL and that \(\Delta g^p\) is similar in M71GL and M71GL/M214LH, \(\Phi_{3P}(B=8)\) is about 7 times less for M71GL/M214LH than for M71GL under the same conditions. We measure \(\Phi_{3P}(B=8)/\Phi_{3P}(B=0)\) in M71GL as 1.7, suggesting that, for M71GL/M214LH, \(\Phi_{3P}(B=8)\) \(\approx\) 0.08. In M71GL/M214LH, \(\Phi_{3P}(B=8)/\Phi_{3P}(B=0)\) is about 2.3, suggesting that, for M71GL/M214LH at room temperature, \(\Phi_{3P}(B=0)\) \(\approx\) 0.03. This low triplet yield of course relates directly to the difficulty of measuring the triplet decay in M71GL/M214LH.

The magnetic-field-dependent data for M71GL/M214LH have a huge uncertainty because of the small triplet yield. The best fit to a line gives a slope of 3600 \(\pm\) 1900 s\(^{-1}\). Combining this result with the value of \(k_S\) for M214LH and a range of values for the zero-field \(\Phi_{3P}(B=0)\) \(=\) 0.03 \(\pm\) 0.02 gives \(\Delta g^p\) for \(3^P\) \(\rightarrow\) \(1^P(\beta H)\) of 1600 \(\pm\) 300 cm\(^{-1}\), resulting in \(\Delta g^p\) for \(1^P(\beta H)\) of 1900 \(\pm\) 300 cm\(^{-1}\) for M71GL/M214LH, 210 \(\pm\) 300 cm\(^{-1}\) less than in M71GL. Many approximations were made in this estimate of \(\Delta g^p\); the sign of the change relative to M71GL is what is expected, and \(\Delta g^p\) is in the same range as \(\Delta H^p\).

Although the midpoint oxidation potential of \(P\) in M214LH has not been reported, the mutation is far enough away from the special pair that it should be unaffected. The reduction potential of bacteriochlorophyll \(a\) in \(\text{CH}_2\text{Cl}_2\) has been measured to be \(-850\ \text{meV}\),\(^{29}\) and this value would predict that \(P^+(\beta H)\) is only 270—350 cm\(^{-1}\) below \(1^P\) in M71GL/M214LH. Delayed fluorescence has been reported for the M214LH mutant, indicating that the free energy change associated with charge transfer is 600 \(\pm\) 200 cm\(^{-1}\), although the magnetic field dependence of the delayed fluorescence components was not measured to verify that the fluorescence is due to recombination from the radical pair state.\(^{22}\)

Assuming that only \(H_2^-\) is affected by the M214LH mutation, we can directly compare the energy shifts extracted from resonance Stark spectroscopy on the \(B_1\) absorption\(^{51}\) to those obtained from the \(3^P\) decay data, as was done for L104EV. Both resonance Stark spectroscopy and \(3^P\) decay suggest that the energy of the charge-separated states is increased in M214LH relative to that in WT. The resonance Stark effect for \(B_1\) in the M214LH mutant is small and difficult to resolve; nonetheless,
the extrapolated energy of B_L^+\bar{\nu}_L^- appears to be greater than that in L104EV. Thus, although the direction of the change is the same, as with L104EV, the resonance Stark data suggest a larger change than the 3P decay data.

Summary and Issues. An analysis of the temperature dependence of the 3P decay in high magnetic fields can provide quantitative information on the energetics of P^+H_L^- relative to 1P. Experimental information on the energetics in situ is invariably obtained by indirect approaches, and each approach has specific assumptions and associated limitations. As discussed earlier, there appears to be a consistent difference in the energetics obtained by delayed fluorescence and by the activation energy of the triplet decay. Volk et al. have discussed the possibility that there is a distribution of P^+H_L^- energies, and this possibility is reasonable given the large change in charge distribution associated with charge separation.43 On the other hand, the RC is exquisitely designed to perform efficient charge separation, even at low temperature, so an alternative view is that the RC protein has evolved specifically to accommodate the charge-separated species, i.e., the distribution might be quite homogeneous (this would have little effect on the neutral ground state).

If an inhomogeneous distribution of P^+H_L^- energies were relevant for the delayed fluorescence and triplet decay measurements, then one would expect that the energies extracted by each method would be weighted toward the top and bottom, respectively, of this distribution. Because the triplet decay experiments sample the lower fraction of the radical pair, the data would underestimate the enthalpy difference between 1P and P^+H_L^-, leading to an overestimate of the enthalpy difference between 3P and P^+H_L^- if the width of the energetic inhomogeneity is the same for all mutants but the center of the distribution shifts systematically, the triplet decay would underestimate the enthalpy difference for each mutant, but the relative enthalpy difference between mutants should reflect the actual enthalpy difference between the mutants. The magnitude of the systematic underestimate depends on the energetic width of the radical ion pair inhomogeneity. Ogrodnik et al. used a Gaussian distribution of free energies and estimated a width of 800 cm^{-1}.7 Resonance Stark experiments from our laboratory are interpreted using a distribution of coupled energies (in that case, for the B_L^+\bar{\nu}_L^- state) that is on the order of 1000 cm^{-1}. Unfortunately, this parameter is not well determined by the resonance Stark data obtained to date; however, the data are totally inconsistent with a spread less than about 500 cm^{-1}. It is interesting that the resonance Stark data give energy shifts with mutation that are intermediate between the values estimated from delayed fluorescence and triplet decay data. The resonance Stark effect depends both on the width of the distribution (assumed to be Gaussian) and on its peak value, so this might ultimately prove to be the best method for extracting true energies. Unfortunately, resonance Stark effects are not observed for the excitation of P itself for reasons discussed in the original papers.48,49,51 Nonetheless, in cases where the perturbation is shared, such as those for H_L^+/\bar{\nu}_L^-, direct comparisons are possible.

Acknowledgment. We thank the Stanford Free Electron Laser Center, supported by the Air Force Office of Scientific Research (Grant F49620-00-1-0349), for generous use of their Spectromag system and the NSF Biophysics Program for ongoing support of this research.

References and Notes

(11) The notation P^1 was used in the earlier literature, as the nature of the intermediate electron acceptor I was not certain. It is generally agreed that the radical pair whose magnetic exchange interaction is small enough to allow singlet–triplet mixing by hyperfine fields and g factor differences is P^+H_L^-, not P^1B_L^-V. There is no definitive proof for this, and the observation that the mutations near B_L can affect P^1 decay suggest that P^1B_L^-V might be involved. We will use the notation P^++H_L^- to describe operationally the state whose fate can be manipulated by a magnetic field, noting this caveat.

(17) To circumvent the problems of nuclear spin polarization, we attempted to excite 1P directly in Q-depleted M71GL RCs, using an optical parametric oscillator (OPO) as an excitation source. We scanned the output of the OPO between 1200 and 1400 nm without observing any measurable P ground-state bleach signal with lock-in detection. Because the molar extinction coefficient of the B band is known, we used 800-nm excitation of the B band as a standard to estimate that the molar extinction coefficient for triplet absorption must be less than 10.

(18) We note that the interconversion between (P^+H_L^-) and (P^1H_L^-) is also critical for delayed fluorescence measurements, because in those experiments the delayed fluorescence arises from equilibration between (P^+H_L^-) and 1P. Delayed fluorescence measurements and triplet decay experiments are thus both plagued to some degree by nuclear spin polarization.

(26) Mueh, F.; Lubitz, W. Personal communication; Max-Planck-Institut für Strahlenchemie, Mülheim an der Ruhr, Germany, 2002.

de Winter and Boxer

(50) The distance of the cation, P^+ or B_{L}^+, from H_{L}^- might alter the energetics somewhat.
(51) Treynor, T.; Boxer, S. G., manuscript in preparation.